diff options
Diffstat (limited to 'include/asm-ia64/sn')
-rw-r--r-- | include/asm-ia64/sn/addrs.h | 238 | ||||
-rw-r--r-- | include/asm-ia64/sn/arch.h | 52 | ||||
-rw-r--r-- | include/asm-ia64/sn/bte.h | 148 | ||||
-rw-r--r-- | include/asm-ia64/sn/clksupport.h | 28 | ||||
-rw-r--r-- | include/asm-ia64/sn/fetchop.h | 85 | ||||
-rw-r--r-- | include/asm-ia64/sn/geo.h | 124 | ||||
-rw-r--r-- | include/asm-ia64/sn/intr.h | 56 | ||||
-rw-r--r-- | include/asm-ia64/sn/io.h | 265 | ||||
-rw-r--r-- | include/asm-ia64/sn/klconfig.h | 272 | ||||
-rw-r--r-- | include/asm-ia64/sn/l1.h | 36 | ||||
-rw-r--r-- | include/asm-ia64/sn/leds.h | 33 | ||||
-rw-r--r-- | include/asm-ia64/sn/module.h | 127 | ||||
-rw-r--r-- | include/asm-ia64/sn/nodepda.h | 86 | ||||
-rw-r--r-- | include/asm-ia64/sn/pda.h | 80 | ||||
-rw-r--r-- | include/asm-ia64/sn/rw_mmr.h | 74 | ||||
-rw-r--r-- | include/asm-ia64/sn/shub_mmr.h | 441 | ||||
-rw-r--r-- | include/asm-ia64/sn/shubio.h | 3476 | ||||
-rw-r--r-- | include/asm-ia64/sn/simulator.h | 27 | ||||
-rw-r--r-- | include/asm-ia64/sn/sn2/sn_hwperf.h | 226 | ||||
-rw-r--r-- | include/asm-ia64/sn/sn_cpuid.h | 144 | ||||
-rw-r--r-- | include/asm-ia64/sn/sn_fru.h | 44 | ||||
-rw-r--r-- | include/asm-ia64/sn/sn_sal.h | 1015 | ||||
-rw-r--r-- | include/asm-ia64/sn/sndrv.h | 47 | ||||
-rw-r--r-- | include/asm-ia64/sn/types.h | 25 |
24 files changed, 7149 insertions, 0 deletions
diff --git a/include/asm-ia64/sn/addrs.h b/include/asm-ia64/sn/addrs.h new file mode 100644 index 000000000000..c916bd22767a --- /dev/null +++ b/include/asm-ia64/sn/addrs.h | |||
@@ -0,0 +1,238 @@ | |||
1 | /* | ||
2 | * This file is subject to the terms and conditions of the GNU General Public | ||
3 | * License. See the file "COPYING" in the main directory of this archive | ||
4 | * for more details. | ||
5 | * | ||
6 | * Copyright (c) 1992-1999,2001-2004 Silicon Graphics, Inc. All rights reserved. | ||
7 | */ | ||
8 | |||
9 | #ifndef _ASM_IA64_SN_ADDRS_H | ||
10 | #define _ASM_IA64_SN_ADDRS_H | ||
11 | |||
12 | #include <asm/percpu.h> | ||
13 | #include <asm/sn/types.h> | ||
14 | #include <asm/sn/arch.h> | ||
15 | #include <asm/sn/pda.h> | ||
16 | |||
17 | /* | ||
18 | * Memory/SHUB Address Format: | ||
19 | * +-+---------+--+--------------+ | ||
20 | * |0| NASID |AS| NodeOffset | | ||
21 | * +-+---------+--+--------------+ | ||
22 | * | ||
23 | * NASID: (low NASID bit is 0) Memory and SHUB MMRs | ||
24 | * AS: 2-bit Address Space Identifier. Used only if low NASID bit is 0 | ||
25 | * 00: Local Resources and MMR space | ||
26 | * Top bit of NodeOffset | ||
27 | * 0: Local resources space | ||
28 | * node id: | ||
29 | * 0: IA64/NT compatibility space | ||
30 | * 2: Local MMR Space | ||
31 | * 4: Local memory, regardless of local node id | ||
32 | * 1: Global MMR space | ||
33 | * 01: GET space. | ||
34 | * 10: AMO space. | ||
35 | * 11: Cacheable memory space. | ||
36 | * | ||
37 | * NodeOffset: byte offset | ||
38 | * | ||
39 | * | ||
40 | * TIO address format: | ||
41 | * +-+----------+--+--------------+ | ||
42 | * |0| NASID |AS| Nodeoffset | | ||
43 | * +-+----------+--+--------------+ | ||
44 | * | ||
45 | * NASID: (low NASID bit is 1) TIO | ||
46 | * AS: 2-bit Chiplet Identifier | ||
47 | * 00: TIO LB (Indicates TIO MMR access.) | ||
48 | * 01: TIO ICE (indicates coretalk space access.) | ||
49 | * | ||
50 | * NodeOffset: top bit must be set. | ||
51 | * | ||
52 | * | ||
53 | * Note that in both of the above address formats, the low | ||
54 | * NASID bit indicates if the reference is to the SHUB or TIO MMRs. | ||
55 | */ | ||
56 | |||
57 | |||
58 | /* | ||
59 | * Define basic shift & mask constants for manipulating NASIDs and AS values. | ||
60 | */ | ||
61 | #define NASID_BITMASK (sn_hub_info->nasid_bitmask) | ||
62 | #define NASID_SHIFT (sn_hub_info->nasid_shift) | ||
63 | #define AS_SHIFT (sn_hub_info->as_shift) | ||
64 | #define AS_BITMASK 0x3UL | ||
65 | |||
66 | #define NASID_MASK ((u64)NASID_BITMASK << NASID_SHIFT) | ||
67 | #define AS_MASK ((u64)AS_BITMASK << AS_SHIFT) | ||
68 | #define REGION_BITS 0xe000000000000000UL | ||
69 | |||
70 | |||
71 | /* | ||
72 | * AS values. These are the same on both SHUB1 & SHUB2. | ||
73 | */ | ||
74 | #define AS_GET_VAL 1UL | ||
75 | #define AS_AMO_VAL 2UL | ||
76 | #define AS_CAC_VAL 3UL | ||
77 | #define AS_GET_SPACE (AS_GET_VAL << AS_SHIFT) | ||
78 | #define AS_AMO_SPACE (AS_AMO_VAL << AS_SHIFT) | ||
79 | #define AS_CAC_SPACE (AS_CAC_VAL << AS_SHIFT) | ||
80 | |||
81 | |||
82 | /* | ||
83 | * Base addresses for various address ranges. | ||
84 | */ | ||
85 | #define CACHED 0xe000000000000000UL | ||
86 | #define UNCACHED 0xc000000000000000UL | ||
87 | #define UNCACHED_PHYS 0x8000000000000000UL | ||
88 | |||
89 | |||
90 | /* | ||
91 | * Virtual Mode Local & Global MMR space. | ||
92 | */ | ||
93 | #define SH1_LOCAL_MMR_OFFSET 0x8000000000UL | ||
94 | #define SH2_LOCAL_MMR_OFFSET 0x0200000000UL | ||
95 | #define LOCAL_MMR_OFFSET (is_shub2() ? SH2_LOCAL_MMR_OFFSET : SH1_LOCAL_MMR_OFFSET) | ||
96 | #define LOCAL_MMR_SPACE (UNCACHED | LOCAL_MMR_OFFSET) | ||
97 | #define LOCAL_PHYS_MMR_SPACE (UNCACHED_PHYS | LOCAL_MMR_OFFSET) | ||
98 | |||
99 | #define SH1_GLOBAL_MMR_OFFSET 0x0800000000UL | ||
100 | #define SH2_GLOBAL_MMR_OFFSET 0x0300000000UL | ||
101 | #define GLOBAL_MMR_OFFSET (is_shub2() ? SH2_GLOBAL_MMR_OFFSET : SH1_GLOBAL_MMR_OFFSET) | ||
102 | #define GLOBAL_MMR_SPACE (UNCACHED | GLOBAL_MMR_OFFSET) | ||
103 | |||
104 | /* | ||
105 | * Physical mode addresses | ||
106 | */ | ||
107 | #define GLOBAL_PHYS_MMR_SPACE (UNCACHED_PHYS | GLOBAL_MMR_OFFSET) | ||
108 | |||
109 | |||
110 | /* | ||
111 | * Clear region & AS bits. | ||
112 | */ | ||
113 | #define TO_PHYS_MASK (~(REGION_BITS | AS_MASK)) | ||
114 | |||
115 | |||
116 | /* | ||
117 | * Misc NASID manipulation. | ||
118 | */ | ||
119 | #define NASID_SPACE(n) ((u64)(n) << NASID_SHIFT) | ||
120 | #define REMOTE_ADDR(n,a) (NASID_SPACE(n) | (a)) | ||
121 | #define NODE_OFFSET(x) ((x) & (NODE_ADDRSPACE_SIZE - 1)) | ||
122 | #define NODE_ADDRSPACE_SIZE (1UL << AS_SHIFT) | ||
123 | #define NASID_GET(x) (int) (((u64) (x) >> NASID_SHIFT) & NASID_BITMASK) | ||
124 | #define LOCAL_MMR_ADDR(a) (LOCAL_MMR_SPACE | (a)) | ||
125 | #define GLOBAL_MMR_ADDR(n,a) (GLOBAL_MMR_SPACE | REMOTE_ADDR(n,a)) | ||
126 | #define GLOBAL_MMR_PHYS_ADDR(n,a) (GLOBAL_PHYS_MMR_SPACE | REMOTE_ADDR(n,a)) | ||
127 | #define GLOBAL_CAC_ADDR(n,a) (CAC_BASE | REMOTE_ADDR(n,a)) | ||
128 | #define CHANGE_NASID(n,x) ((void *)(((u64)(x) & ~NASID_MASK) | NASID_SPACE(n))) | ||
129 | |||
130 | |||
131 | /* non-II mmr's start at top of big window space (4G) */ | ||
132 | #define BWIN_TOP 0x0000000100000000UL | ||
133 | |||
134 | /* | ||
135 | * general address defines | ||
136 | */ | ||
137 | #define CAC_BASE (CACHED | AS_CAC_SPACE) | ||
138 | #define AMO_BASE (UNCACHED | AS_AMO_SPACE) | ||
139 | #define GET_BASE (CACHED | AS_GET_SPACE) | ||
140 | |||
141 | /* | ||
142 | * Convert Memory addresses between various addressing modes. | ||
143 | */ | ||
144 | #define TO_PHYS(x) (TO_PHYS_MASK & (x)) | ||
145 | #define TO_CAC(x) (CAC_BASE | TO_PHYS(x)) | ||
146 | #define TO_AMO(x) (AMO_BASE | TO_PHYS(x)) | ||
147 | #define TO_GET(x) (GET_BASE | TO_PHYS(x)) | ||
148 | |||
149 | |||
150 | /* | ||
151 | * Covert from processor physical address to II/TIO physical address: | ||
152 | * II - squeeze out the AS bits | ||
153 | * TIO- requires a chiplet id in bits 38-39. For DMA to memory, | ||
154 | * the chiplet id is zero. If we implement TIO-TIO dma, we might need | ||
155 | * to insert a chiplet id into this macro. However, it is our belief | ||
156 | * right now that this chiplet id will be ICE, which is also zero. | ||
157 | */ | ||
158 | #define PHYS_TO_TIODMA(x) ( (((u64)(x) & NASID_MASK) << 2) | NODE_OFFSET(x)) | ||
159 | #define PHYS_TO_DMA(x) ( (((u64)(x) & NASID_MASK) >> 2) | NODE_OFFSET(x)) | ||
160 | |||
161 | |||
162 | /* | ||
163 | * The following definitions pertain to the IO special address | ||
164 | * space. They define the location of the big and little windows | ||
165 | * of any given node. | ||
166 | */ | ||
167 | #define BWIN_SIZE_BITS 29 /* big window size: 512M */ | ||
168 | #define TIO_BWIN_SIZE_BITS 30 /* big window size: 1G */ | ||
169 | #define NODE_SWIN_BASE(n, w) ((w == 0) ? NODE_BWIN_BASE((n), SWIN0_BIGWIN) \ | ||
170 | : RAW_NODE_SWIN_BASE(n, w)) | ||
171 | #define NODE_IO_BASE(n) (GLOBAL_MMR_SPACE | NASID_SPACE(n)) | ||
172 | #define BWIN_SIZE (1UL << BWIN_SIZE_BITS) | ||
173 | #define NODE_BWIN_BASE0(n) (NODE_IO_BASE(n) + BWIN_SIZE) | ||
174 | #define NODE_BWIN_BASE(n, w) (NODE_BWIN_BASE0(n) + ((u64) (w) << BWIN_SIZE_BITS)) | ||
175 | #define RAW_NODE_SWIN_BASE(n, w) (NODE_IO_BASE(n) + ((u64) (w) << SWIN_SIZE_BITS)) | ||
176 | #define BWIN_WIDGET_MASK 0x7 | ||
177 | #define BWIN_WINDOWNUM(x) (((x) >> BWIN_SIZE_BITS) & BWIN_WIDGET_MASK) | ||
178 | |||
179 | #define TIO_BWIN_WINDOW_SELECT_MASK 0x7 | ||
180 | #define TIO_BWIN_WINDOWNUM(x) (((x) >> TIO_BWIN_SIZE_BITS) & TIO_BWIN_WINDOW_SELECT_MASK) | ||
181 | |||
182 | |||
183 | |||
184 | /* | ||
185 | * The following definitions pertain to the IO special address | ||
186 | * space. They define the location of the big and little windows | ||
187 | * of any given node. | ||
188 | */ | ||
189 | |||
190 | #define SWIN_SIZE_BITS 24 | ||
191 | #define SWIN_WIDGET_MASK 0xF | ||
192 | |||
193 | #define TIO_SWIN_SIZE_BITS 28 | ||
194 | #define TIO_SWIN_SIZE (1UL << TIO_SWIN_SIZE_BITS) | ||
195 | #define TIO_SWIN_WIDGET_MASK 0x3 | ||
196 | |||
197 | /* | ||
198 | * Convert smallwindow address to xtalk address. | ||
199 | * | ||
200 | * 'addr' can be physical or virtual address, but will be converted | ||
201 | * to Xtalk address in the range 0 -> SWINZ_SIZEMASK | ||
202 | */ | ||
203 | #define SWIN_WIDGETNUM(x) (((x) >> SWIN_SIZE_BITS) & SWIN_WIDGET_MASK) | ||
204 | #define TIO_SWIN_WIDGETNUM(x) (((x) >> TIO_SWIN_SIZE_BITS) & TIO_SWIN_WIDGET_MASK) | ||
205 | |||
206 | |||
207 | /* | ||
208 | * The following macros produce the correct base virtual address for | ||
209 | * the hub registers. The REMOTE_HUB_* macro produce | ||
210 | * the address for the specified hub's registers. The intent is | ||
211 | * that the appropriate PI, MD, NI, or II register would be substituted | ||
212 | * for x. | ||
213 | * | ||
214 | * WARNING: | ||
215 | * When certain Hub chip workaround are defined, it's not sufficient | ||
216 | * to dereference the *_HUB_ADDR() macros. You should instead use | ||
217 | * HUB_L() and HUB_S() if you must deal with pointers to hub registers. | ||
218 | * Otherwise, the recommended approach is to use *_HUB_L() and *_HUB_S(). | ||
219 | * They're always safe. | ||
220 | */ | ||
221 | #define REMOTE_HUB_ADDR(n,x) \ | ||
222 | ((n & 1) ? \ | ||
223 | /* TIO: */ \ | ||
224 | ((volatile u64 *)(GLOBAL_MMR_ADDR(n,x))) \ | ||
225 | : /* SHUB: */ \ | ||
226 | (((x) & BWIN_TOP) ? ((volatile u64 *)(GLOBAL_MMR_ADDR(n,x)))\ | ||
227 | : ((volatile u64 *)(NODE_SWIN_BASE(n,1) + 0x800000 + (x))))) | ||
228 | |||
229 | |||
230 | |||
231 | #define HUB_L(x) (*((volatile typeof(*x) *)x)) | ||
232 | #define HUB_S(x,d) (*((volatile typeof(*x) *)x) = (d)) | ||
233 | |||
234 | #define REMOTE_HUB_L(n, a) HUB_L(REMOTE_HUB_ADDR((n), (a))) | ||
235 | #define REMOTE_HUB_S(n, a, d) HUB_S(REMOTE_HUB_ADDR((n), (a)), (d)) | ||
236 | |||
237 | |||
238 | #endif /* _ASM_IA64_SN_ADDRS_H */ | ||
diff --git a/include/asm-ia64/sn/arch.h b/include/asm-ia64/sn/arch.h new file mode 100644 index 000000000000..7c349f07916a --- /dev/null +++ b/include/asm-ia64/sn/arch.h | |||
@@ -0,0 +1,52 @@ | |||
1 | /* | ||
2 | * This file is subject to the terms and conditions of the GNU General Public | ||
3 | * License. See the file "COPYING" in the main directory of this archive | ||
4 | * for more details. | ||
5 | * | ||
6 | * SGI specific setup. | ||
7 | * | ||
8 | * Copyright (C) 1995-1997,1999,2001-2004 Silicon Graphics, Inc. All rights reserved. | ||
9 | * Copyright (C) 1999 Ralf Baechle (ralf@gnu.org) | ||
10 | */ | ||
11 | #ifndef _ASM_IA64_SN_ARCH_H | ||
12 | #define _ASM_IA64_SN_ARCH_H | ||
13 | |||
14 | #include <asm/types.h> | ||
15 | #include <asm/percpu.h> | ||
16 | #include <asm/sn/types.h> | ||
17 | #include <asm/sn/sn_cpuid.h> | ||
18 | |||
19 | /* | ||
20 | * The following defines attributes of the HUB chip. These attributes are | ||
21 | * frequently referenced. They are kept in the per-cpu data areas of each cpu. | ||
22 | * They are kept together in a struct to minimize cache misses. | ||
23 | */ | ||
24 | struct sn_hub_info_s { | ||
25 | u8 shub2; | ||
26 | u8 nasid_shift; | ||
27 | u8 as_shift; | ||
28 | u8 shub_1_1_found; | ||
29 | u16 nasid_bitmask; | ||
30 | }; | ||
31 | DECLARE_PER_CPU(struct sn_hub_info_s, __sn_hub_info); | ||
32 | #define sn_hub_info (&__get_cpu_var(__sn_hub_info)) | ||
33 | #define is_shub2() (sn_hub_info->shub2) | ||
34 | #define is_shub1() (sn_hub_info->shub2 == 0) | ||
35 | |||
36 | /* | ||
37 | * Use this macro to test if shub 1.1 wars should be enabled | ||
38 | */ | ||
39 | #define enable_shub_wars_1_1() (sn_hub_info->shub_1_1_found) | ||
40 | |||
41 | |||
42 | /* | ||
43 | * This is the maximum number of nodes that can be part of a kernel. | ||
44 | * Effectively, it's the maximum number of compact node ids (cnodeid_t). | ||
45 | * This is not necessarily the same as MAX_NASIDS. | ||
46 | */ | ||
47 | #define MAX_COMPACT_NODES 2048 | ||
48 | #define CPUS_PER_NODE 4 | ||
49 | |||
50 | extern void sn_flush_all_caches(long addr, long bytes); | ||
51 | |||
52 | #endif /* _ASM_IA64_SN_ARCH_H */ | ||
diff --git a/include/asm-ia64/sn/bte.h b/include/asm-ia64/sn/bte.h new file mode 100644 index 000000000000..0ec27f99c181 --- /dev/null +++ b/include/asm-ia64/sn/bte.h | |||
@@ -0,0 +1,148 @@ | |||
1 | /* | ||
2 | * This file is subject to the terms and conditions of the GNU General Public | ||
3 | * License. See the file "COPYING" in the main directory of this archive | ||
4 | * for more details. | ||
5 | * | ||
6 | * Copyright (c) 2000-2004 Silicon Graphics, Inc. All Rights Reserved. | ||
7 | */ | ||
8 | |||
9 | |||
10 | #ifndef _ASM_IA64_SN_BTE_H | ||
11 | #define _ASM_IA64_SN_BTE_H | ||
12 | |||
13 | #include <linux/timer.h> | ||
14 | #include <linux/spinlock.h> | ||
15 | #include <linux/cache.h> | ||
16 | #include <asm/sn/types.h> | ||
17 | |||
18 | |||
19 | /* #define BTE_DEBUG */ | ||
20 | /* #define BTE_DEBUG_VERBOSE */ | ||
21 | |||
22 | #ifdef BTE_DEBUG | ||
23 | # define BTE_PRINTK(x) printk x /* Terse */ | ||
24 | # ifdef BTE_DEBUG_VERBOSE | ||
25 | # define BTE_PRINTKV(x) printk x /* Verbose */ | ||
26 | # else | ||
27 | # define BTE_PRINTKV(x) | ||
28 | # endif /* BTE_DEBUG_VERBOSE */ | ||
29 | #else | ||
30 | # define BTE_PRINTK(x) | ||
31 | # define BTE_PRINTKV(x) | ||
32 | #endif /* BTE_DEBUG */ | ||
33 | |||
34 | |||
35 | /* BTE status register only supports 16 bits for length field */ | ||
36 | #define BTE_LEN_BITS (16) | ||
37 | #define BTE_LEN_MASK ((1 << BTE_LEN_BITS) - 1) | ||
38 | #define BTE_MAX_XFER ((1 << BTE_LEN_BITS) * L1_CACHE_BYTES) | ||
39 | |||
40 | |||
41 | /* Define hardware */ | ||
42 | #define BTES_PER_NODE 2 | ||
43 | |||
44 | |||
45 | /* Define hardware modes */ | ||
46 | #define BTE_NOTIFY (IBCT_NOTIFY) | ||
47 | #define BTE_NORMAL BTE_NOTIFY | ||
48 | #define BTE_ZERO_FILL (BTE_NOTIFY | IBCT_ZFIL_MODE) | ||
49 | /* Use a reserved bit to let the caller specify a wait for any BTE */ | ||
50 | #define BTE_WACQUIRE (0x4000) | ||
51 | /* Use the BTE on the node with the destination memory */ | ||
52 | #define BTE_USE_DEST (BTE_WACQUIRE << 1) | ||
53 | /* Use any available BTE interface on any node for the transfer */ | ||
54 | #define BTE_USE_ANY (BTE_USE_DEST << 1) | ||
55 | /* macro to force the IBCT0 value valid */ | ||
56 | #define BTE_VALID_MODE(x) ((x) & (IBCT_NOTIFY | IBCT_ZFIL_MODE)) | ||
57 | |||
58 | #define BTE_ACTIVE (IBLS_BUSY | IBLS_ERROR) | ||
59 | #define BTE_WORD_AVAILABLE (IBLS_BUSY << 1) | ||
60 | #define BTE_WORD_BUSY (~BTE_WORD_AVAILABLE) | ||
61 | |||
62 | /* | ||
63 | * Some macros to simplify reading. | ||
64 | * Start with macros to locate the BTE control registers. | ||
65 | */ | ||
66 | #define BTE_LNSTAT_LOAD(_bte) \ | ||
67 | HUB_L(_bte->bte_base_addr) | ||
68 | #define BTE_LNSTAT_STORE(_bte, _x) \ | ||
69 | HUB_S(_bte->bte_base_addr, (_x)) | ||
70 | #define BTE_SRC_STORE(_bte, _x) \ | ||
71 | HUB_S(_bte->bte_base_addr + (BTEOFF_SRC/8), (_x)) | ||
72 | #define BTE_DEST_STORE(_bte, _x) \ | ||
73 | HUB_S(_bte->bte_base_addr + (BTEOFF_DEST/8), (_x)) | ||
74 | #define BTE_CTRL_STORE(_bte, _x) \ | ||
75 | HUB_S(_bte->bte_base_addr + (BTEOFF_CTRL/8), (_x)) | ||
76 | #define BTE_NOTIF_STORE(_bte, _x) \ | ||
77 | HUB_S(_bte->bte_base_addr + (BTEOFF_NOTIFY/8), (_x)) | ||
78 | |||
79 | |||
80 | /* Possible results from bte_copy and bte_unaligned_copy */ | ||
81 | /* The following error codes map into the BTE hardware codes | ||
82 | * IIO_ICRB_ECODE_* (in shubio.h). The hardware uses | ||
83 | * an error code of 0 (IIO_ICRB_ECODE_DERR), but we want zero | ||
84 | * to mean BTE_SUCCESS, so add one (BTEFAIL_OFFSET) to the error | ||
85 | * codes to give the following error codes. | ||
86 | */ | ||
87 | #define BTEFAIL_OFFSET 1 | ||
88 | |||
89 | typedef enum { | ||
90 | BTE_SUCCESS, /* 0 is success */ | ||
91 | BTEFAIL_DIR, /* Directory error due to IIO access*/ | ||
92 | BTEFAIL_POISON, /* poison error on IO access (write to poison page) */ | ||
93 | BTEFAIL_WERR, /* Write error (ie WINV to a Read only line) */ | ||
94 | BTEFAIL_ACCESS, /* access error (protection violation) */ | ||
95 | BTEFAIL_PWERR, /* Partial Write Error */ | ||
96 | BTEFAIL_PRERR, /* Partial Read Error */ | ||
97 | BTEFAIL_TOUT, /* CRB Time out */ | ||
98 | BTEFAIL_XTERR, /* Incoming xtalk pkt had error bit */ | ||
99 | BTEFAIL_NOTAVAIL, /* BTE not available */ | ||
100 | } bte_result_t; | ||
101 | |||
102 | |||
103 | /* | ||
104 | * Structure defining a bte. An instance of this | ||
105 | * structure is created in the nodepda for each | ||
106 | * bte on that node (as defined by BTES_PER_NODE) | ||
107 | * This structure contains everything necessary | ||
108 | * to work with a BTE. | ||
109 | */ | ||
110 | struct bteinfo_s { | ||
111 | volatile u64 notify ____cacheline_aligned; | ||
112 | u64 *bte_base_addr ____cacheline_aligned; | ||
113 | spinlock_t spinlock; | ||
114 | cnodeid_t bte_cnode; /* cnode */ | ||
115 | int bte_error_count; /* Number of errors encountered */ | ||
116 | int bte_num; /* 0 --> BTE0, 1 --> BTE1 */ | ||
117 | int cleanup_active; /* Interface is locked for cleanup */ | ||
118 | volatile bte_result_t bh_error; /* error while processing */ | ||
119 | volatile u64 *most_rcnt_na; | ||
120 | }; | ||
121 | |||
122 | |||
123 | /* | ||
124 | * Function prototypes (functions defined in bte.c, used elsewhere) | ||
125 | */ | ||
126 | extern bte_result_t bte_copy(u64, u64, u64, u64, void *); | ||
127 | extern bte_result_t bte_unaligned_copy(u64, u64, u64, u64); | ||
128 | extern void bte_error_handler(unsigned long); | ||
129 | |||
130 | #define bte_zero(dest, len, mode, notification) \ | ||
131 | bte_copy(0, dest, len, ((mode) | BTE_ZERO_FILL), notification) | ||
132 | |||
133 | /* | ||
134 | * The following is the prefered way of calling bte_unaligned_copy | ||
135 | * If the copy is fully cache line aligned, then bte_copy is | ||
136 | * used instead. Since bte_copy is inlined, this saves a call | ||
137 | * stack. NOTE: bte_copy is called synchronously and does block | ||
138 | * until the transfer is complete. In order to get the asynch | ||
139 | * version of bte_copy, you must perform this check yourself. | ||
140 | */ | ||
141 | #define BTE_UNALIGNED_COPY(src, dest, len, mode) \ | ||
142 | (((len & L1_CACHE_MASK) || (src & L1_CACHE_MASK) || \ | ||
143 | (dest & L1_CACHE_MASK)) ? \ | ||
144 | bte_unaligned_copy(src, dest, len, mode) : \ | ||
145 | bte_copy(src, dest, len, mode, NULL)) | ||
146 | |||
147 | |||
148 | #endif /* _ASM_IA64_SN_BTE_H */ | ||
diff --git a/include/asm-ia64/sn/clksupport.h b/include/asm-ia64/sn/clksupport.h new file mode 100644 index 000000000000..d340c365a824 --- /dev/null +++ b/include/asm-ia64/sn/clksupport.h | |||
@@ -0,0 +1,28 @@ | |||
1 | /* | ||
2 | * This file is subject to the terms and conditions of the GNU General Public | ||
3 | * License. See the file "COPYING" in the main directory of this archive | ||
4 | * for more details. | ||
5 | * | ||
6 | * Copyright (C) 2000-2004 Silicon Graphics, Inc. All rights reserved. | ||
7 | */ | ||
8 | |||
9 | /* | ||
10 | * This file contains definitions for accessing a platform supported high resolution | ||
11 | * clock. The clock is monitonically increasing and can be accessed from any node | ||
12 | * in the system. The clock is synchronized across nodes - all nodes see the | ||
13 | * same value. | ||
14 | * | ||
15 | * RTC_COUNTER_ADDR - contains the address of the counter | ||
16 | * | ||
17 | */ | ||
18 | |||
19 | #ifndef _ASM_IA64_SN_CLKSUPPORT_H | ||
20 | #define _ASM_IA64_SN_CLKSUPPORT_H | ||
21 | |||
22 | extern unsigned long sn_rtc_cycles_per_second; | ||
23 | |||
24 | #define RTC_COUNTER_ADDR ((long *)LOCAL_MMR_ADDR(SH_RTC)) | ||
25 | |||
26 | #define rtc_time() (*RTC_COUNTER_ADDR) | ||
27 | |||
28 | #endif /* _ASM_IA64_SN_CLKSUPPORT_H */ | ||
diff --git a/include/asm-ia64/sn/fetchop.h b/include/asm-ia64/sn/fetchop.h new file mode 100644 index 000000000000..5f4ad8f4b5d2 --- /dev/null +++ b/include/asm-ia64/sn/fetchop.h | |||
@@ -0,0 +1,85 @@ | |||
1 | /* | ||
2 | * | ||
3 | * This file is subject to the terms and conditions of the GNU General Public | ||
4 | * License. See the file "COPYING" in the main directory of this archive | ||
5 | * for more details. | ||
6 | * | ||
7 | * Copyright (c) 2001-2004 Silicon Graphics, Inc. All rights reserved. | ||
8 | */ | ||
9 | |||
10 | #ifndef _ASM_IA64_SN_FETCHOP_H | ||
11 | #define _ASM_IA64_SN_FETCHOP_H | ||
12 | |||
13 | #include <linux/config.h> | ||
14 | |||
15 | #define FETCHOP_BASENAME "sgi_fetchop" | ||
16 | #define FETCHOP_FULLNAME "/dev/sgi_fetchop" | ||
17 | |||
18 | |||
19 | |||
20 | #define FETCHOP_VAR_SIZE 64 /* 64 byte per fetchop variable */ | ||
21 | |||
22 | #define FETCHOP_LOAD 0 | ||
23 | #define FETCHOP_INCREMENT 8 | ||
24 | #define FETCHOP_DECREMENT 16 | ||
25 | #define FETCHOP_CLEAR 24 | ||
26 | |||
27 | #define FETCHOP_STORE 0 | ||
28 | #define FETCHOP_AND 24 | ||
29 | #define FETCHOP_OR 32 | ||
30 | |||
31 | #define FETCHOP_CLEAR_CACHE 56 | ||
32 | |||
33 | #define FETCHOP_LOAD_OP(addr, op) ( \ | ||
34 | *(volatile long *)((char*) (addr) + (op))) | ||
35 | |||
36 | #define FETCHOP_STORE_OP(addr, op, x) ( \ | ||
37 | *(volatile long *)((char*) (addr) + (op)) = (long) (x)) | ||
38 | |||
39 | #ifdef __KERNEL__ | ||
40 | |||
41 | /* | ||
42 | * Convert a region 6 (kaddr) address to the address of the fetchop variable | ||
43 | */ | ||
44 | #define FETCHOP_KADDR_TO_MSPEC_ADDR(kaddr) TO_MSPEC(kaddr) | ||
45 | |||
46 | |||
47 | /* | ||
48 | * Each Atomic Memory Operation (AMO formerly known as fetchop) | ||
49 | * variable is 64 bytes long. The first 8 bytes are used. The | ||
50 | * remaining 56 bytes are unaddressable due to the operation taking | ||
51 | * that portion of the address. | ||
52 | * | ||
53 | * NOTE: The AMO_t _MUST_ be placed in either the first or second half | ||
54 | * of the cache line. The cache line _MUST NOT_ be used for anything | ||
55 | * other than additional AMO_t entries. This is because there are two | ||
56 | * addresses which reference the same physical cache line. One will | ||
57 | * be a cached entry with the memory type bits all set. This address | ||
58 | * may be loaded into processor cache. The AMO_t will be referenced | ||
59 | * uncached via the memory special memory type. If any portion of the | ||
60 | * cached cache-line is modified, when that line is flushed, it will | ||
61 | * overwrite the uncached value in physical memory and lead to | ||
62 | * inconsistency. | ||
63 | */ | ||
64 | typedef struct { | ||
65 | u64 variable; | ||
66 | u64 unused[7]; | ||
67 | } AMO_t; | ||
68 | |||
69 | |||
70 | /* | ||
71 | * The following APIs are externalized to the kernel to allocate/free pages of | ||
72 | * fetchop variables. | ||
73 | * fetchop_kalloc_page - Allocate/initialize 1 fetchop page on the | ||
74 | * specified cnode. | ||
75 | * fetchop_kfree_page - Free a previously allocated fetchop page | ||
76 | */ | ||
77 | |||
78 | unsigned long fetchop_kalloc_page(int nid); | ||
79 | void fetchop_kfree_page(unsigned long maddr); | ||
80 | |||
81 | |||
82 | #endif /* __KERNEL__ */ | ||
83 | |||
84 | #endif /* _ASM_IA64_SN_FETCHOP_H */ | ||
85 | |||
diff --git a/include/asm-ia64/sn/geo.h b/include/asm-ia64/sn/geo.h new file mode 100644 index 000000000000..f566343d25f8 --- /dev/null +++ b/include/asm-ia64/sn/geo.h | |||
@@ -0,0 +1,124 @@ | |||
1 | /* | ||
2 | * This file is subject to the terms and conditions of the GNU General Public | ||
3 | * License. See the file "COPYING" in the main directory of this archive | ||
4 | * for more details. | ||
5 | * | ||
6 | * Copyright (C) 1992 - 1997, 2000-2004 Silicon Graphics, Inc. All rights reserved. | ||
7 | */ | ||
8 | |||
9 | #ifndef _ASM_IA64_SN_GEO_H | ||
10 | #define _ASM_IA64_SN_GEO_H | ||
11 | |||
12 | /* The geoid_t implementation below is based loosely on the pcfg_t | ||
13 | implementation in sys/SN/promcfg.h. */ | ||
14 | |||
15 | /* Type declaractions */ | ||
16 | |||
17 | /* Size of a geoid_t structure (must be before decl. of geoid_u) */ | ||
18 | #define GEOID_SIZE 8 /* Would 16 be better? The size can | ||
19 | be different on different platforms. */ | ||
20 | |||
21 | #define MAX_SLABS 0xe /* slabs per module */ | ||
22 | |||
23 | typedef unsigned char geo_type_t; | ||
24 | |||
25 | /* Fields common to all substructures */ | ||
26 | typedef struct geo_any_s { | ||
27 | moduleid_t module; /* The module (box) this h/w lives in */ | ||
28 | geo_type_t type; /* What type of h/w is named by this geoid_t */ | ||
29 | slabid_t slab; /* The logical assembly within the module */ | ||
30 | } geo_any_t; | ||
31 | |||
32 | /* Additional fields for particular types of hardware */ | ||
33 | typedef struct geo_node_s { | ||
34 | geo_any_t any; /* No additional fields needed */ | ||
35 | } geo_node_t; | ||
36 | |||
37 | typedef struct geo_rtr_s { | ||
38 | geo_any_t any; /* No additional fields needed */ | ||
39 | } geo_rtr_t; | ||
40 | |||
41 | typedef struct geo_iocntl_s { | ||
42 | geo_any_t any; /* No additional fields needed */ | ||
43 | } geo_iocntl_t; | ||
44 | |||
45 | typedef struct geo_pcicard_s { | ||
46 | geo_iocntl_t any; | ||
47 | char bus; /* Bus/widget number */ | ||
48 | char slot; /* PCI slot number */ | ||
49 | } geo_pcicard_t; | ||
50 | |||
51 | /* Subcomponents of a node */ | ||
52 | typedef struct geo_cpu_s { | ||
53 | geo_node_t node; | ||
54 | char slice; /* Which CPU on the node */ | ||
55 | } geo_cpu_t; | ||
56 | |||
57 | typedef struct geo_mem_s { | ||
58 | geo_node_t node; | ||
59 | char membus; /* The memory bus on the node */ | ||
60 | char memslot; /* The memory slot on the bus */ | ||
61 | } geo_mem_t; | ||
62 | |||
63 | |||
64 | typedef union geoid_u { | ||
65 | geo_any_t any; | ||
66 | geo_node_t node; | ||
67 | geo_iocntl_t iocntl; | ||
68 | geo_pcicard_t pcicard; | ||
69 | geo_rtr_t rtr; | ||
70 | geo_cpu_t cpu; | ||
71 | geo_mem_t mem; | ||
72 | char padsize[GEOID_SIZE]; | ||
73 | } geoid_t; | ||
74 | |||
75 | |||
76 | /* Preprocessor macros */ | ||
77 | |||
78 | #define GEO_MAX_LEN 48 /* max. formatted length, plus some pad: | ||
79 | module/001c07/slab/5/node/memory/2/slot/4 */ | ||
80 | |||
81 | /* Values for geo_type_t */ | ||
82 | #define GEO_TYPE_INVALID 0 | ||
83 | #define GEO_TYPE_MODULE 1 | ||
84 | #define GEO_TYPE_NODE 2 | ||
85 | #define GEO_TYPE_RTR 3 | ||
86 | #define GEO_TYPE_IOCNTL 4 | ||
87 | #define GEO_TYPE_IOCARD 5 | ||
88 | #define GEO_TYPE_CPU 6 | ||
89 | #define GEO_TYPE_MEM 7 | ||
90 | #define GEO_TYPE_MAX (GEO_TYPE_MEM+1) | ||
91 | |||
92 | /* Parameter for hwcfg_format_geoid_compt() */ | ||
93 | #define GEO_COMPT_MODULE 1 | ||
94 | #define GEO_COMPT_SLAB 2 | ||
95 | #define GEO_COMPT_IOBUS 3 | ||
96 | #define GEO_COMPT_IOSLOT 4 | ||
97 | #define GEO_COMPT_CPU 5 | ||
98 | #define GEO_COMPT_MEMBUS 6 | ||
99 | #define GEO_COMPT_MEMSLOT 7 | ||
100 | |||
101 | #define GEO_INVALID_STR "<invalid>" | ||
102 | |||
103 | #define INVALID_NASID ((nasid_t)-1) | ||
104 | #define INVALID_CNODEID ((cnodeid_t)-1) | ||
105 | #define INVALID_PNODEID ((pnodeid_t)-1) | ||
106 | #define INVALID_SLAB (slabid_t)-1 | ||
107 | #define INVALID_MODULE ((moduleid_t)-1) | ||
108 | #define INVALID_PARTID ((partid_t)-1) | ||
109 | |||
110 | static inline slabid_t geo_slab(geoid_t g) | ||
111 | { | ||
112 | return (g.any.type == GEO_TYPE_INVALID) ? | ||
113 | INVALID_SLAB : g.any.slab; | ||
114 | } | ||
115 | |||
116 | static inline moduleid_t geo_module(geoid_t g) | ||
117 | { | ||
118 | return (g.any.type == GEO_TYPE_INVALID) ? | ||
119 | INVALID_MODULE : g.any.module; | ||
120 | } | ||
121 | |||
122 | extern geoid_t cnodeid_get_geoid(cnodeid_t cnode); | ||
123 | |||
124 | #endif /* _ASM_IA64_SN_GEO_H */ | ||
diff --git a/include/asm-ia64/sn/intr.h b/include/asm-ia64/sn/intr.h new file mode 100644 index 000000000000..e51471fb0867 --- /dev/null +++ b/include/asm-ia64/sn/intr.h | |||
@@ -0,0 +1,56 @@ | |||
1 | /* | ||
2 | * This file is subject to the terms and conditions of the GNU General Public | ||
3 | * License. See the file "COPYING" in the main directory of this archive | ||
4 | * for more details. | ||
5 | * | ||
6 | * Copyright (C) 1992 - 1997, 2000-2004 Silicon Graphics, Inc. All rights reserved. | ||
7 | */ | ||
8 | |||
9 | #ifndef _ASM_IA64_SN_INTR_H | ||
10 | #define _ASM_IA64_SN_INTR_H | ||
11 | |||
12 | #define SGI_UART_VECTOR (0xe9) | ||
13 | #define SGI_PCIBR_ERROR (0x33) | ||
14 | |||
15 | /* Reserved IRQs : Note, not to exceed IA64_SN2_FIRST_DEVICE_VECTOR */ | ||
16 | #define SGI_XPC_ACTIVATE (0x30) | ||
17 | #define SGI_II_ERROR (0x31) | ||
18 | #define SGI_XBOW_ERROR (0x32) | ||
19 | #define SGI_PCIBR_ERROR (0x33) | ||
20 | #define SGI_ACPI_SCI_INT (0x34) | ||
21 | #define SGI_TIOCA_ERROR (0x35) | ||
22 | #define SGI_TIO_ERROR (0x36) | ||
23 | #define SGI_TIOCX_ERROR (0x37) | ||
24 | #define SGI_MMTIMER_VECTOR (0x38) | ||
25 | #define SGI_XPC_NOTIFY (0xe7) | ||
26 | |||
27 | #define IA64_SN2_FIRST_DEVICE_VECTOR (0x3c) | ||
28 | #define IA64_SN2_LAST_DEVICE_VECTOR (0xe6) | ||
29 | |||
30 | #define SN2_IRQ_RESERVED (0x1) | ||
31 | #define SN2_IRQ_CONNECTED (0x2) | ||
32 | #define SN2_IRQ_SHARED (0x4) | ||
33 | |||
34 | // The SN PROM irq struct | ||
35 | struct sn_irq_info { | ||
36 | struct sn_irq_info *irq_next; /* sharing irq list */ | ||
37 | short irq_nasid; /* Nasid IRQ is assigned to */ | ||
38 | int irq_slice; /* slice IRQ is assigned to */ | ||
39 | int irq_cpuid; /* kernel logical cpuid */ | ||
40 | int irq_irq; /* the IRQ number */ | ||
41 | int irq_int_bit; /* Bridge interrupt pin */ | ||
42 | uint64_t irq_xtalkaddr; /* xtalkaddr IRQ is sent to */ | ||
43 | int irq_bridge_type;/* pciio asic type (pciio.h) */ | ||
44 | void *irq_bridge; /* bridge generating irq */ | ||
45 | void *irq_pciioinfo; /* associated pciio_info_t */ | ||
46 | int irq_last_intr; /* For Shub lb lost intr WAR */ | ||
47 | int irq_cookie; /* unique cookie */ | ||
48 | int irq_flags; /* flags */ | ||
49 | int irq_share_cnt; /* num devices sharing IRQ */ | ||
50 | }; | ||
51 | |||
52 | extern void sn_send_IPI_phys(int, long, int, int); | ||
53 | |||
54 | #define CPU_VECTOR_TO_IRQ(cpuid,vector) (vector) | ||
55 | |||
56 | #endif /* _ASM_IA64_SN_INTR_H */ | ||
diff --git a/include/asm-ia64/sn/io.h b/include/asm-ia64/sn/io.h new file mode 100644 index 000000000000..42209733f6b1 --- /dev/null +++ b/include/asm-ia64/sn/io.h | |||
@@ -0,0 +1,265 @@ | |||
1 | /* | ||
2 | * This file is subject to the terms and conditions of the GNU General Public | ||
3 | * License. See the file "COPYING" in the main directory of this archive | ||
4 | * for more details. | ||
5 | * | ||
6 | * Copyright (C) 2000-2004 Silicon Graphics, Inc. All rights reserved. | ||
7 | */ | ||
8 | |||
9 | #ifndef _ASM_SN_IO_H | ||
10 | #define _ASM_SN_IO_H | ||
11 | #include <linux/compiler.h> | ||
12 | #include <asm/intrinsics.h> | ||
13 | |||
14 | extern void * sn_io_addr(unsigned long port) __attribute_const__; /* Forward definition */ | ||
15 | extern void __sn_mmiowb(void); /* Forward definition */ | ||
16 | |||
17 | extern int numionodes; | ||
18 | |||
19 | #define __sn_mf_a() ia64_mfa() | ||
20 | |||
21 | extern void sn_dma_flush(unsigned long); | ||
22 | |||
23 | #define __sn_inb ___sn_inb | ||
24 | #define __sn_inw ___sn_inw | ||
25 | #define __sn_inl ___sn_inl | ||
26 | #define __sn_outb ___sn_outb | ||
27 | #define __sn_outw ___sn_outw | ||
28 | #define __sn_outl ___sn_outl | ||
29 | #define __sn_readb ___sn_readb | ||
30 | #define __sn_readw ___sn_readw | ||
31 | #define __sn_readl ___sn_readl | ||
32 | #define __sn_readq ___sn_readq | ||
33 | #define __sn_readb_relaxed ___sn_readb_relaxed | ||
34 | #define __sn_readw_relaxed ___sn_readw_relaxed | ||
35 | #define __sn_readl_relaxed ___sn_readl_relaxed | ||
36 | #define __sn_readq_relaxed ___sn_readq_relaxed | ||
37 | |||
38 | /* | ||
39 | * The following routines are SN Platform specific, called when | ||
40 | * a reference is made to inX/outX set macros. SN Platform | ||
41 | * inX set of macros ensures that Posted DMA writes on the | ||
42 | * Bridge is flushed. | ||
43 | * | ||
44 | * The routines should be self explainatory. | ||
45 | */ | ||
46 | |||
47 | static inline unsigned int | ||
48 | ___sn_inb (unsigned long port) | ||
49 | { | ||
50 | volatile unsigned char *addr; | ||
51 | unsigned char ret = -1; | ||
52 | |||
53 | if ((addr = sn_io_addr(port))) { | ||
54 | ret = *addr; | ||
55 | __sn_mf_a(); | ||
56 | sn_dma_flush((unsigned long)addr); | ||
57 | } | ||
58 | return ret; | ||
59 | } | ||
60 | |||
61 | static inline unsigned int | ||
62 | ___sn_inw (unsigned long port) | ||
63 | { | ||
64 | volatile unsigned short *addr; | ||
65 | unsigned short ret = -1; | ||
66 | |||
67 | if ((addr = sn_io_addr(port))) { | ||
68 | ret = *addr; | ||
69 | __sn_mf_a(); | ||
70 | sn_dma_flush((unsigned long)addr); | ||
71 | } | ||
72 | return ret; | ||
73 | } | ||
74 | |||
75 | static inline unsigned int | ||
76 | ___sn_inl (unsigned long port) | ||
77 | { | ||
78 | volatile unsigned int *addr; | ||
79 | unsigned int ret = -1; | ||
80 | |||
81 | if ((addr = sn_io_addr(port))) { | ||
82 | ret = *addr; | ||
83 | __sn_mf_a(); | ||
84 | sn_dma_flush((unsigned long)addr); | ||
85 | } | ||
86 | return ret; | ||
87 | } | ||
88 | |||
89 | static inline void | ||
90 | ___sn_outb (unsigned char val, unsigned long port) | ||
91 | { | ||
92 | volatile unsigned char *addr; | ||
93 | |||
94 | if ((addr = sn_io_addr(port))) { | ||
95 | *addr = val; | ||
96 | __sn_mmiowb(); | ||
97 | } | ||
98 | } | ||
99 | |||
100 | static inline void | ||
101 | ___sn_outw (unsigned short val, unsigned long port) | ||
102 | { | ||
103 | volatile unsigned short *addr; | ||
104 | |||
105 | if ((addr = sn_io_addr(port))) { | ||
106 | *addr = val; | ||
107 | __sn_mmiowb(); | ||
108 | } | ||
109 | } | ||
110 | |||
111 | static inline void | ||
112 | ___sn_outl (unsigned int val, unsigned long port) | ||
113 | { | ||
114 | volatile unsigned int *addr; | ||
115 | |||
116 | if ((addr = sn_io_addr(port))) { | ||
117 | *addr = val; | ||
118 | __sn_mmiowb(); | ||
119 | } | ||
120 | } | ||
121 | |||
122 | /* | ||
123 | * The following routines are SN Platform specific, called when | ||
124 | * a reference is made to readX/writeX set macros. SN Platform | ||
125 | * readX set of macros ensures that Posted DMA writes on the | ||
126 | * Bridge is flushed. | ||
127 | * | ||
128 | * The routines should be self explainatory. | ||
129 | */ | ||
130 | |||
131 | static inline unsigned char | ||
132 | ___sn_readb (const volatile void __iomem *addr) | ||
133 | { | ||
134 | unsigned char val; | ||
135 | |||
136 | val = *(volatile unsigned char __force *)addr; | ||
137 | __sn_mf_a(); | ||
138 | sn_dma_flush((unsigned long)addr); | ||
139 | return val; | ||
140 | } | ||
141 | |||
142 | static inline unsigned short | ||
143 | ___sn_readw (const volatile void __iomem *addr) | ||
144 | { | ||
145 | unsigned short val; | ||
146 | |||
147 | val = *(volatile unsigned short __force *)addr; | ||
148 | __sn_mf_a(); | ||
149 | sn_dma_flush((unsigned long)addr); | ||
150 | return val; | ||
151 | } | ||
152 | |||
153 | static inline unsigned int | ||
154 | ___sn_readl (const volatile void __iomem *addr) | ||
155 | { | ||
156 | unsigned int val; | ||
157 | |||
158 | val = *(volatile unsigned int __force *)addr; | ||
159 | __sn_mf_a(); | ||
160 | sn_dma_flush((unsigned long)addr); | ||
161 | return val; | ||
162 | } | ||
163 | |||
164 | static inline unsigned long | ||
165 | ___sn_readq (const volatile void __iomem *addr) | ||
166 | { | ||
167 | unsigned long val; | ||
168 | |||
169 | val = *(volatile unsigned long __force *)addr; | ||
170 | __sn_mf_a(); | ||
171 | sn_dma_flush((unsigned long)addr); | ||
172 | return val; | ||
173 | } | ||
174 | |||
175 | /* | ||
176 | * For generic and SN2 kernels, we have a set of fast access | ||
177 | * PIO macros. These macros are provided on SN Platform | ||
178 | * because the normal inX and readX macros perform an | ||
179 | * additional task of flushing Post DMA request on the Bridge. | ||
180 | * | ||
181 | * These routines should be self explainatory. | ||
182 | */ | ||
183 | |||
184 | static inline unsigned int | ||
185 | sn_inb_fast (unsigned long port) | ||
186 | { | ||
187 | volatile unsigned char *addr = (unsigned char *)port; | ||
188 | unsigned char ret; | ||
189 | |||
190 | ret = *addr; | ||
191 | __sn_mf_a(); | ||
192 | return ret; | ||
193 | } | ||
194 | |||
195 | static inline unsigned int | ||
196 | sn_inw_fast (unsigned long port) | ||
197 | { | ||
198 | volatile unsigned short *addr = (unsigned short *)port; | ||
199 | unsigned short ret; | ||
200 | |||
201 | ret = *addr; | ||
202 | __sn_mf_a(); | ||
203 | return ret; | ||
204 | } | ||
205 | |||
206 | static inline unsigned int | ||
207 | sn_inl_fast (unsigned long port) | ||
208 | { | ||
209 | volatile unsigned int *addr = (unsigned int *)port; | ||
210 | unsigned int ret; | ||
211 | |||
212 | ret = *addr; | ||
213 | __sn_mf_a(); | ||
214 | return ret; | ||
215 | } | ||
216 | |||
217 | static inline unsigned char | ||
218 | ___sn_readb_relaxed (const volatile void __iomem *addr) | ||
219 | { | ||
220 | return *(volatile unsigned char __force *)addr; | ||
221 | } | ||
222 | |||
223 | static inline unsigned short | ||
224 | ___sn_readw_relaxed (const volatile void __iomem *addr) | ||
225 | { | ||
226 | return *(volatile unsigned short __force *)addr; | ||
227 | } | ||
228 | |||
229 | static inline unsigned int | ||
230 | ___sn_readl_relaxed (const volatile void __iomem *addr) | ||
231 | { | ||
232 | return *(volatile unsigned int __force *) addr; | ||
233 | } | ||
234 | |||
235 | static inline unsigned long | ||
236 | ___sn_readq_relaxed (const volatile void __iomem *addr) | ||
237 | { | ||
238 | return *(volatile unsigned long __force *) addr; | ||
239 | } | ||
240 | |||
241 | struct pci_dev; | ||
242 | |||
243 | static inline int | ||
244 | sn_pci_set_vchan(struct pci_dev *pci_dev, unsigned long *addr, int vchan) | ||
245 | { | ||
246 | |||
247 | if (vchan > 1) { | ||
248 | return -1; | ||
249 | } | ||
250 | |||
251 | if (!(*addr >> 32)) /* Using a mask here would be cleaner */ | ||
252 | return 0; /* but this generates better code */ | ||
253 | |||
254 | if (vchan == 1) { | ||
255 | /* Set Bit 57 */ | ||
256 | *addr |= (1UL << 57); | ||
257 | } else { | ||
258 | /* Clear Bit 57 */ | ||
259 | *addr &= ~(1UL << 57); | ||
260 | } | ||
261 | |||
262 | return 0; | ||
263 | } | ||
264 | |||
265 | #endif /* _ASM_SN_IO_H */ | ||
diff --git a/include/asm-ia64/sn/klconfig.h b/include/asm-ia64/sn/klconfig.h new file mode 100644 index 000000000000..9f920c70a62a --- /dev/null +++ b/include/asm-ia64/sn/klconfig.h | |||
@@ -0,0 +1,272 @@ | |||
1 | /* | ||
2 | * This file is subject to the terms and conditions of the GNU General Public | ||
3 | * License. See the file "COPYING" in the main directory of this archive | ||
4 | * for more details. | ||
5 | * | ||
6 | * Derived from IRIX <sys/SN/klconfig.h>. | ||
7 | * | ||
8 | * Copyright (C) 1992-1997,1999,2001-2004 Silicon Graphics, Inc. All Rights Reserved. | ||
9 | * Copyright (C) 1999 by Ralf Baechle | ||
10 | */ | ||
11 | #ifndef _ASM_IA64_SN_KLCONFIG_H | ||
12 | #define _ASM_IA64_SN_KLCONFIG_H | ||
13 | |||
14 | /* | ||
15 | * The KLCONFIG structures store info about the various BOARDs found | ||
16 | * during Hardware Discovery. In addition, it stores info about the | ||
17 | * components found on the BOARDs. | ||
18 | */ | ||
19 | |||
20 | typedef s32 klconf_off_t; | ||
21 | |||
22 | |||
23 | /* Functions/macros needed to use this structure */ | ||
24 | |||
25 | typedef struct kl_config_hdr { | ||
26 | char pad[20]; | ||
27 | klconf_off_t ch_board_info; /* the link list of boards */ | ||
28 | char pad0[88]; | ||
29 | } kl_config_hdr_t; | ||
30 | |||
31 | |||
32 | #define NODE_OFFSET_TO_LBOARD(nasid,off) (lboard_t*)(GLOBAL_CAC_ADDR((nasid), (off))) | ||
33 | |||
34 | /* | ||
35 | * The KLCONFIG area is organized as a LINKED LIST of BOARDs. A BOARD | ||
36 | * can be either 'LOCAL' or 'REMOTE'. LOCAL means it is attached to | ||
37 | * the LOCAL/current NODE. REMOTE means it is attached to a different | ||
38 | * node.(TBD - Need a way to treat ROUTER boards.) | ||
39 | * | ||
40 | * There are 2 different structures to represent these boards - | ||
41 | * lboard - Local board, rboard - remote board. These 2 structures | ||
42 | * can be arbitrarily mixed in the LINKED LIST of BOARDs. (Refer | ||
43 | * Figure below). The first byte of the rboard or lboard structure | ||
44 | * is used to find out its type - no unions are used. | ||
45 | * If it is a lboard, then the config info of this board will be found | ||
46 | * on the local node. (LOCAL NODE BASE + offset value gives pointer to | ||
47 | * the structure. | ||
48 | * If it is a rboard, the local structure contains the node number | ||
49 | * and the offset of the beginning of the LINKED LIST on the remote node. | ||
50 | * The details of the hardware on a remote node can be built locally, | ||
51 | * if required, by reading the LINKED LIST on the remote node and | ||
52 | * ignoring all the rboards on that node. | ||
53 | * | ||
54 | * The local node uses the REMOTE NODE NUMBER + OFFSET to point to the | ||
55 | * First board info on the remote node. The remote node list is | ||
56 | * traversed as the local list, using the REMOTE BASE ADDRESS and not | ||
57 | * the local base address and ignoring all rboard values. | ||
58 | * | ||
59 | * | ||
60 | KLCONFIG | ||
61 | |||
62 | +------------+ +------------+ +------------+ +------------+ | ||
63 | | lboard | +-->| lboard | +-->| rboard | +-->| lboard | | ||
64 | +------------+ | +------------+ | +------------+ | +------------+ | ||
65 | | board info | | | board info | | |errinfo,bptr| | | board info | | ||
66 | +------------+ | +------------+ | +------------+ | +------------+ | ||
67 | | offset |--+ | offset |--+ | offset |--+ |offset=NULL | | ||
68 | +------------+ +------------+ +------------+ +------------+ | ||
69 | |||
70 | |||
71 | +------------+ | ||
72 | | board info | | ||
73 | +------------+ +--------------------------------+ | ||
74 | | compt 1 |------>| type, rev, diaginfo, size ... | (CPU) | ||
75 | +------------+ +--------------------------------+ | ||
76 | | compt 2 |--+ | ||
77 | +------------+ | +--------------------------------+ | ||
78 | | ... | +--->| type, rev, diaginfo, size ... | (MEM_BANK) | ||
79 | +------------+ +--------------------------------+ | ||
80 | | errinfo |--+ | ||
81 | +------------+ | +--------------------------------+ | ||
82 | +--->|r/l brd errinfo,compt err flags | | ||
83 | +--------------------------------+ | ||
84 | |||
85 | * | ||
86 | * Each BOARD consists of COMPONENTs and the BOARD structure has | ||
87 | * pointers (offsets) to its COMPONENT structure. | ||
88 | * The COMPONENT structure has version info, size and speed info, revision, | ||
89 | * error info and the NIC info. This structure can accommodate any | ||
90 | * BOARD with arbitrary COMPONENT composition. | ||
91 | * | ||
92 | * The ERRORINFO part of each BOARD has error information | ||
93 | * that describes errors about the BOARD itself. It also has flags to | ||
94 | * indicate the COMPONENT(s) on the board that have errors. The error | ||
95 | * information specific to the COMPONENT is present in the respective | ||
96 | * COMPONENT structure. | ||
97 | * | ||
98 | * The ERRORINFO structure is also treated like a COMPONENT, ie. the | ||
99 | * BOARD has pointers(offset) to the ERRORINFO structure. The rboard | ||
100 | * structure also has a pointer to the ERRORINFO structure. This is | ||
101 | * the place to store ERRORINFO about a REMOTE NODE, if the HUB on | ||
102 | * that NODE is not working or if the REMOTE MEMORY is BAD. In cases where | ||
103 | * only the CPU of the REMOTE NODE is disabled, the ERRORINFO pointer can | ||
104 | * be a NODE NUMBER, REMOTE OFFSET combination, pointing to error info | ||
105 | * which is present on the REMOTE NODE.(TBD) | ||
106 | * REMOTE ERRINFO can be stored on any of the nearest nodes | ||
107 | * or on all the nearest nodes.(TBD) | ||
108 | * Like BOARD structures, REMOTE ERRINFO structures can be built locally | ||
109 | * using the rboard errinfo pointer. | ||
110 | * | ||
111 | * In order to get useful information from this Data organization, a set of | ||
112 | * interface routines are provided (TBD). The important thing to remember while | ||
113 | * manipulating the structures, is that, the NODE number information should | ||
114 | * be used. If the NODE is non-zero (remote) then each offset should | ||
115 | * be added to the REMOTE BASE ADDR else it should be added to the LOCAL BASE ADDR. | ||
116 | * This includes offsets for BOARDS, COMPONENTS and ERRORINFO. | ||
117 | * | ||
118 | * Note that these structures do not provide much info about connectivity. | ||
119 | * That info will be part of HWGRAPH, which is an extension of the cfg_t | ||
120 | * data structure. (ref IP27prom/cfg.h) It has to be extended to include | ||
121 | * the IO part of the Network(TBD). | ||
122 | * | ||
123 | * The data structures below define the above concepts. | ||
124 | */ | ||
125 | |||
126 | |||
127 | /* | ||
128 | * BOARD classes | ||
129 | */ | ||
130 | |||
131 | #define KLCLASS_MASK 0xf0 | ||
132 | #define KLCLASS_NONE 0x00 | ||
133 | #define KLCLASS_NODE 0x10 /* CPU, Memory and HUB board */ | ||
134 | #define KLCLASS_CPU KLCLASS_NODE | ||
135 | #define KLCLASS_IO 0x20 /* BaseIO, 4 ch SCSI, ethernet, FDDI | ||
136 | and the non-graphics widget boards */ | ||
137 | #define KLCLASS_ROUTER 0x30 /* Router board */ | ||
138 | #define KLCLASS_MIDPLANE 0x40 /* We need to treat this as a board | ||
139 | so that we can record error info */ | ||
140 | #define KLCLASS_IOBRICK 0x70 /* IP35 iobrick */ | ||
141 | #define KLCLASS_MAX 8 /* Bump this if a new CLASS is added */ | ||
142 | |||
143 | #define KLCLASS(_x) ((_x) & KLCLASS_MASK) | ||
144 | |||
145 | |||
146 | /* | ||
147 | * board types | ||
148 | */ | ||
149 | |||
150 | #define KLTYPE_MASK 0x0f | ||
151 | #define KLTYPE(_x) ((_x) & KLTYPE_MASK) | ||
152 | |||
153 | #define KLTYPE_SNIA (KLCLASS_CPU | 0x1) | ||
154 | #define KLTYPE_TIO (KLCLASS_CPU | 0x2) | ||
155 | |||
156 | #define KLTYPE_ROUTER (KLCLASS_ROUTER | 0x1) | ||
157 | #define KLTYPE_META_ROUTER (KLCLASS_ROUTER | 0x3) | ||
158 | #define KLTYPE_REPEATER_ROUTER (KLCLASS_ROUTER | 0x4) | ||
159 | |||
160 | #define KLTYPE_IOBRICK_XBOW (KLCLASS_MIDPLANE | 0x2) | ||
161 | |||
162 | #define KLTYPE_IOBRICK (KLCLASS_IOBRICK | 0x0) | ||
163 | #define KLTYPE_NBRICK (KLCLASS_IOBRICK | 0x4) | ||
164 | #define KLTYPE_PXBRICK (KLCLASS_IOBRICK | 0x6) | ||
165 | #define KLTYPE_IXBRICK (KLCLASS_IOBRICK | 0x7) | ||
166 | #define KLTYPE_CGBRICK (KLCLASS_IOBRICK | 0x8) | ||
167 | #define KLTYPE_OPUSBRICK (KLCLASS_IOBRICK | 0x9) | ||
168 | #define KLTYPE_SABRICK (KLCLASS_IOBRICK | 0xa) | ||
169 | #define KLTYPE_IABRICK (KLCLASS_IOBRICK | 0xb) | ||
170 | #define KLTYPE_PABRICK (KLCLASS_IOBRICK | 0xc) | ||
171 | #define KLTYPE_GABRICK (KLCLASS_IOBRICK | 0xd) | ||
172 | |||
173 | |||
174 | /* | ||
175 | * board structures | ||
176 | */ | ||
177 | |||
178 | #define MAX_COMPTS_PER_BRD 24 | ||
179 | |||
180 | typedef struct lboard_s { | ||
181 | klconf_off_t brd_next_any; /* Next BOARD */ | ||
182 | unsigned char struct_type; /* type of structure, local or remote */ | ||
183 | unsigned char brd_type; /* type+class */ | ||
184 | unsigned char brd_sversion; /* version of this structure */ | ||
185 | unsigned char brd_brevision; /* board revision */ | ||
186 | unsigned char brd_promver; /* board prom version, if any */ | ||
187 | unsigned char brd_flags; /* Enabled, Disabled etc */ | ||
188 | unsigned char brd_slot; /* slot number */ | ||
189 | unsigned short brd_debugsw; /* Debug switches */ | ||
190 | geoid_t brd_geoid; /* geo id */ | ||
191 | partid_t brd_partition; /* Partition number */ | ||
192 | unsigned short brd_diagval; /* diagnostic value */ | ||
193 | unsigned short brd_diagparm; /* diagnostic parameter */ | ||
194 | unsigned char brd_inventory; /* inventory history */ | ||
195 | unsigned char brd_numcompts; /* Number of components */ | ||
196 | nic_t brd_nic; /* Number in CAN */ | ||
197 | nasid_t brd_nasid; /* passed parameter */ | ||
198 | klconf_off_t brd_compts[MAX_COMPTS_PER_BRD]; /* pointers to COMPONENTS */ | ||
199 | klconf_off_t brd_errinfo; /* Board's error information */ | ||
200 | struct lboard_s *brd_parent; /* Logical parent for this brd */ | ||
201 | char pad0[4]; | ||
202 | unsigned char brd_confidence; /* confidence that the board is bad */ | ||
203 | nasid_t brd_owner; /* who owns this board */ | ||
204 | unsigned char brd_nic_flags; /* To handle 8 more NICs */ | ||
205 | char pad1[24]; /* future expansion */ | ||
206 | char brd_name[32]; | ||
207 | nasid_t brd_next_same_host; /* host of next brd w/same nasid */ | ||
208 | klconf_off_t brd_next_same; /* Next BOARD with same nasid */ | ||
209 | } lboard_t; | ||
210 | |||
211 | #define KLCF_NUM_COMPS(_brd) ((_brd)->brd_numcompts) | ||
212 | #define NODE_OFFSET_TO_KLINFO(n,off) ((klinfo_t*) TO_NODE_CAC(n,off)) | ||
213 | #define KLCF_NEXT(_brd) \ | ||
214 | ((_brd)->brd_next_same ? \ | ||
215 | (NODE_OFFSET_TO_LBOARD((_brd)->brd_next_same_host, (_brd)->brd_next_same)): NULL) | ||
216 | #define KLCF_NEXT_ANY(_brd) \ | ||
217 | ((_brd)->brd_next_any ? \ | ||
218 | (NODE_OFFSET_TO_LBOARD(NASID_GET(_brd), (_brd)->brd_next_any)): NULL) | ||
219 | #define KLCF_COMP(_brd, _ndx) \ | ||
220 | ((((_brd)->brd_compts[(_ndx)]) == 0) ? 0 : \ | ||
221 | (NODE_OFFSET_TO_KLINFO(NASID_GET(_brd), (_brd)->brd_compts[(_ndx)]))) | ||
222 | |||
223 | |||
224 | /* | ||
225 | * Generic info structure. This stores common info about a | ||
226 | * component. | ||
227 | */ | ||
228 | |||
229 | typedef struct klinfo_s { /* Generic info */ | ||
230 | unsigned char struct_type; /* type of this structure */ | ||
231 | unsigned char struct_version; /* version of this structure */ | ||
232 | unsigned char flags; /* Enabled, disabled etc */ | ||
233 | unsigned char revision; /* component revision */ | ||
234 | unsigned short diagval; /* result of diagnostics */ | ||
235 | unsigned short diagparm; /* diagnostic parameter */ | ||
236 | unsigned char inventory; /* previous inventory status */ | ||
237 | unsigned short partid; /* widget part number */ | ||
238 | nic_t nic; /* MUst be aligned properly */ | ||
239 | unsigned char physid; /* physical id of component */ | ||
240 | unsigned int virtid; /* virtual id as seen by system */ | ||
241 | unsigned char widid; /* Widget id - if applicable */ | ||
242 | nasid_t nasid; /* node number - from parent */ | ||
243 | char pad1; /* pad out structure. */ | ||
244 | char pad2; /* pad out structure. */ | ||
245 | void *data; | ||
246 | klconf_off_t errinfo; /* component specific errors */ | ||
247 | unsigned short pad3; /* pci fields have moved over to */ | ||
248 | unsigned short pad4; /* klbri_t */ | ||
249 | } klinfo_t ; | ||
250 | |||
251 | |||
252 | static inline lboard_t *find_lboard_any(lboard_t * start, unsigned char brd_type) | ||
253 | { | ||
254 | /* Search all boards stored on this node. */ | ||
255 | |||
256 | while (start) { | ||
257 | if (start->brd_type == brd_type) | ||
258 | return start; | ||
259 | start = KLCF_NEXT_ANY(start); | ||
260 | } | ||
261 | /* Didn't find it. */ | ||
262 | return (lboard_t *) NULL; | ||
263 | } | ||
264 | |||
265 | |||
266 | /* external declarations of Linux kernel functions. */ | ||
267 | |||
268 | extern lboard_t *root_lboard[]; | ||
269 | extern klinfo_t *find_component(lboard_t *brd, klinfo_t *kli, unsigned char type); | ||
270 | extern klinfo_t *find_first_component(lboard_t *brd, unsigned char type); | ||
271 | |||
272 | #endif /* _ASM_IA64_SN_KLCONFIG_H */ | ||
diff --git a/include/asm-ia64/sn/l1.h b/include/asm-ia64/sn/l1.h new file mode 100644 index 000000000000..d5dbd55e44b5 --- /dev/null +++ b/include/asm-ia64/sn/l1.h | |||
@@ -0,0 +1,36 @@ | |||
1 | /* | ||
2 | * This file is subject to the terms and conditions of the GNU General Public | ||
3 | * License. See the file "COPYING" in the main directory of this archive | ||
4 | * for more details. | ||
5 | * | ||
6 | * Copyright (C) 1992-1997,2000-2004 Silicon Graphics, Inc. All Rights Reserved. | ||
7 | */ | ||
8 | |||
9 | #ifndef _ASM_IA64_SN_L1_H | ||
10 | #define _ASM_IA64_SN_L1_H | ||
11 | |||
12 | /* brick type response codes */ | ||
13 | #define L1_BRICKTYPE_PX 0x23 /* # */ | ||
14 | #define L1_BRICKTYPE_PE 0x25 /* % */ | ||
15 | #define L1_BRICKTYPE_N_p0 0x26 /* & */ | ||
16 | #define L1_BRICKTYPE_IP45 0x34 /* 4 */ | ||
17 | #define L1_BRICKTYPE_IP41 0x35 /* 5 */ | ||
18 | #define L1_BRICKTYPE_TWISTER 0x36 /* 6 */ /* IP53 & ROUTER */ | ||
19 | #define L1_BRICKTYPE_IX 0x3d /* = */ | ||
20 | #define L1_BRICKTYPE_IP34 0x61 /* a */ | ||
21 | #define L1_BRICKTYPE_GA 0x62 /* b */ | ||
22 | #define L1_BRICKTYPE_C 0x63 /* c */ | ||
23 | #define L1_BRICKTYPE_OPUS_TIO 0x66 /* f */ | ||
24 | #define L1_BRICKTYPE_I 0x69 /* i */ | ||
25 | #define L1_BRICKTYPE_N 0x6e /* n */ | ||
26 | #define L1_BRICKTYPE_OPUS 0x6f /* o */ | ||
27 | #define L1_BRICKTYPE_P 0x70 /* p */ | ||
28 | #define L1_BRICKTYPE_R 0x72 /* r */ | ||
29 | #define L1_BRICKTYPE_CHI_CG 0x76 /* v */ | ||
30 | #define L1_BRICKTYPE_X 0x78 /* x */ | ||
31 | #define L1_BRICKTYPE_X2 0x79 /* y */ | ||
32 | #define L1_BRICKTYPE_SA 0x5e /* ^ */ /* TIO bringup brick */ | ||
33 | #define L1_BRICKTYPE_PA 0x6a /* j */ | ||
34 | #define L1_BRICKTYPE_IA 0x6b /* k */ | ||
35 | |||
36 | #endif /* _ASM_IA64_SN_L1_H */ | ||
diff --git a/include/asm-ia64/sn/leds.h b/include/asm-ia64/sn/leds.h new file mode 100644 index 000000000000..66cf8c4d92c9 --- /dev/null +++ b/include/asm-ia64/sn/leds.h | |||
@@ -0,0 +1,33 @@ | |||
1 | /* | ||
2 | * This file is subject to the terms and conditions of the GNU General Public | ||
3 | * License. See the file "COPYING" in the main directory of this archive | ||
4 | * for more details. | ||
5 | * Copyright (C) 2000-2004 Silicon Graphics, Inc. All rights reserved. | ||
6 | */ | ||
7 | #ifndef _ASM_IA64_SN_LEDS_H | ||
8 | #define _ASM_IA64_SN_LEDS_H | ||
9 | |||
10 | #include <asm/sn/addrs.h> | ||
11 | #include <asm/sn/pda.h> | ||
12 | #include <asm/sn/shub_mmr.h> | ||
13 | |||
14 | #define LED0 (LOCAL_MMR_ADDR(SH_REAL_JUNK_BUS_LED0)) | ||
15 | #define LED_CPU_SHIFT 16 | ||
16 | |||
17 | #define LED_CPU_HEARTBEAT 0x01 | ||
18 | #define LED_CPU_ACTIVITY 0x02 | ||
19 | #define LED_ALWAYS_SET 0x00 | ||
20 | |||
21 | /* | ||
22 | * Basic macros for flashing the LEDS on an SGI SN. | ||
23 | */ | ||
24 | |||
25 | static __inline__ void | ||
26 | set_led_bits(u8 value, u8 mask) | ||
27 | { | ||
28 | pda->led_state = (pda->led_state & ~mask) | (value & mask); | ||
29 | *pda->led_address = (short) pda->led_state; | ||
30 | } | ||
31 | |||
32 | #endif /* _ASM_IA64_SN_LEDS_H */ | ||
33 | |||
diff --git a/include/asm-ia64/sn/module.h b/include/asm-ia64/sn/module.h new file mode 100644 index 000000000000..734e980ece2f --- /dev/null +++ b/include/asm-ia64/sn/module.h | |||
@@ -0,0 +1,127 @@ | |||
1 | /* | ||
2 | * This file is subject to the terms and conditions of the GNU General Public | ||
3 | * License. See the file "COPYING" in the main directory of this archive | ||
4 | * for more details. | ||
5 | * | ||
6 | * Copyright (C) 1992 - 1997, 2000-2004 Silicon Graphics, Inc. All rights reserved. | ||
7 | */ | ||
8 | #ifndef _ASM_IA64_SN_MODULE_H | ||
9 | #define _ASM_IA64_SN_MODULE_H | ||
10 | |||
11 | /* parameter for format_module_id() */ | ||
12 | #define MODULE_FORMAT_BRIEF 1 | ||
13 | #define MODULE_FORMAT_LONG 2 | ||
14 | #define MODULE_FORMAT_LCD 3 | ||
15 | |||
16 | /* | ||
17 | * Module id format | ||
18 | * | ||
19 | * 31-16 Rack ID (encoded class, group, number - 16-bit unsigned int) | ||
20 | * 15-8 Brick type (8-bit ascii character) | ||
21 | * 7-0 Bay (brick position in rack (0-63) - 8-bit unsigned int) | ||
22 | * | ||
23 | */ | ||
24 | |||
25 | /* | ||
26 | * Macros for getting the brick type | ||
27 | */ | ||
28 | #define MODULE_BTYPE_MASK 0xff00 | ||
29 | #define MODULE_BTYPE_SHFT 8 | ||
30 | #define MODULE_GET_BTYPE(_m) (((_m) & MODULE_BTYPE_MASK) >> MODULE_BTYPE_SHFT) | ||
31 | #define MODULE_BT_TO_CHAR(_b) ((char)(_b)) | ||
32 | #define MODULE_GET_BTCHAR(_m) (MODULE_BT_TO_CHAR(MODULE_GET_BTYPE(_m))) | ||
33 | |||
34 | /* | ||
35 | * Macros for getting the rack ID. | ||
36 | */ | ||
37 | #define MODULE_RACK_MASK 0xffff0000 | ||
38 | #define MODULE_RACK_SHFT 16 | ||
39 | #define MODULE_GET_RACK(_m) (((_m) & MODULE_RACK_MASK) >> MODULE_RACK_SHFT) | ||
40 | |||
41 | /* | ||
42 | * Macros for getting the brick position | ||
43 | */ | ||
44 | #define MODULE_BPOS_MASK 0x00ff | ||
45 | #define MODULE_BPOS_SHFT 0 | ||
46 | #define MODULE_GET_BPOS(_m) (((_m) & MODULE_BPOS_MASK) >> MODULE_BPOS_SHFT) | ||
47 | |||
48 | /* | ||
49 | * Macros for encoding and decoding rack IDs | ||
50 | * A rack number consists of three parts: | ||
51 | * class (0==CPU/mixed, 1==I/O), group, number | ||
52 | * | ||
53 | * Rack number is stored just as it is displayed on the screen: | ||
54 | * a 3-decimal-digit number. | ||
55 | */ | ||
56 | #define RACK_CLASS_DVDR 100 | ||
57 | #define RACK_GROUP_DVDR 10 | ||
58 | #define RACK_NUM_DVDR 1 | ||
59 | |||
60 | #define RACK_CREATE_RACKID(_c, _g, _n) ((_c) * RACK_CLASS_DVDR + \ | ||
61 | (_g) * RACK_GROUP_DVDR + (_n) * RACK_NUM_DVDR) | ||
62 | |||
63 | #define RACK_GET_CLASS(_r) ((_r) / RACK_CLASS_DVDR) | ||
64 | #define RACK_GET_GROUP(_r) (((_r) - RACK_GET_CLASS(_r) * \ | ||
65 | RACK_CLASS_DVDR) / RACK_GROUP_DVDR) | ||
66 | #define RACK_GET_NUM(_r) (((_r) - RACK_GET_CLASS(_r) * \ | ||
67 | RACK_CLASS_DVDR - RACK_GET_GROUP(_r) * \ | ||
68 | RACK_GROUP_DVDR) / RACK_NUM_DVDR) | ||
69 | |||
70 | /* | ||
71 | * Macros for encoding and decoding rack IDs | ||
72 | * A rack number consists of three parts: | ||
73 | * class 1 bit, 0==CPU/mixed, 1==I/O | ||
74 | * group 2 bits for CPU/mixed, 3 bits for I/O | ||
75 | * number 3 bits for CPU/mixed, 2 bits for I/O (1 based) | ||
76 | */ | ||
77 | #define RACK_GROUP_BITS(_r) (RACK_GET_CLASS(_r) ? 3 : 2) | ||
78 | #define RACK_NUM_BITS(_r) (RACK_GET_CLASS(_r) ? 2 : 3) | ||
79 | |||
80 | #define RACK_CLASS_MASK(_r) 0x20 | ||
81 | #define RACK_CLASS_SHFT(_r) 5 | ||
82 | #define RACK_ADD_CLASS(_r, _c) \ | ||
83 | ((_r) |= (_c) << RACK_CLASS_SHFT(_r) & RACK_CLASS_MASK(_r)) | ||
84 | |||
85 | #define RACK_GROUP_SHFT(_r) RACK_NUM_BITS(_r) | ||
86 | #define RACK_GROUP_MASK(_r) \ | ||
87 | ( (((unsigned)1<<RACK_GROUP_BITS(_r)) - 1) << RACK_GROUP_SHFT(_r) ) | ||
88 | #define RACK_ADD_GROUP(_r, _g) \ | ||
89 | ((_r) |= (_g) << RACK_GROUP_SHFT(_r) & RACK_GROUP_MASK(_r)) | ||
90 | |||
91 | #define RACK_NUM_SHFT(_r) 0 | ||
92 | #define RACK_NUM_MASK(_r) \ | ||
93 | ( (((unsigned)1<<RACK_NUM_BITS(_r)) - 1) << RACK_NUM_SHFT(_r) ) | ||
94 | #define RACK_ADD_NUM(_r, _n) \ | ||
95 | ((_r) |= ((_n) - 1) << RACK_NUM_SHFT(_r) & RACK_NUM_MASK(_r)) | ||
96 | |||
97 | |||
98 | /* | ||
99 | * Brick type definitions | ||
100 | */ | ||
101 | #define MAX_BRICK_TYPES 256 /* brick type is stored as uchar */ | ||
102 | |||
103 | extern char brick_types[]; | ||
104 | |||
105 | #define MODULE_CBRICK 0 | ||
106 | #define MODULE_RBRICK 1 | ||
107 | #define MODULE_IBRICK 2 | ||
108 | #define MODULE_KBRICK 3 | ||
109 | #define MODULE_XBRICK 4 | ||
110 | #define MODULE_DBRICK 5 | ||
111 | #define MODULE_PBRICK 6 | ||
112 | #define MODULE_NBRICK 7 | ||
113 | #define MODULE_PEBRICK 8 | ||
114 | #define MODULE_PXBRICK 9 | ||
115 | #define MODULE_IXBRICK 10 | ||
116 | #define MODULE_CGBRICK 11 | ||
117 | #define MODULE_OPUSBRICK 12 | ||
118 | #define MODULE_SABRICK 13 /* TIO BringUp Brick */ | ||
119 | #define MODULE_IABRICK 14 | ||
120 | #define MODULE_PABRICK 15 | ||
121 | #define MODULE_GABRICK 16 | ||
122 | #define MODULE_OPUS_TIO 17 /* OPUS TIO Riser */ | ||
123 | |||
124 | extern char brick_types[]; | ||
125 | extern void format_module_id(char *, moduleid_t, int); | ||
126 | |||
127 | #endif /* _ASM_IA64_SN_MODULE_H */ | ||
diff --git a/include/asm-ia64/sn/nodepda.h b/include/asm-ia64/sn/nodepda.h new file mode 100644 index 000000000000..2fbde33656e6 --- /dev/null +++ b/include/asm-ia64/sn/nodepda.h | |||
@@ -0,0 +1,86 @@ | |||
1 | /* | ||
2 | * This file is subject to the terms and conditions of the GNU General Public | ||
3 | * License. See the file "COPYING" in the main directory of this archive | ||
4 | * for more details. | ||
5 | * | ||
6 | * Copyright (C) 1992 - 1997, 2000-2004 Silicon Graphics, Inc. All rights reserved. | ||
7 | */ | ||
8 | #ifndef _ASM_IA64_SN_NODEPDA_H | ||
9 | #define _ASM_IA64_SN_NODEPDA_H | ||
10 | |||
11 | |||
12 | #include <asm/semaphore.h> | ||
13 | #include <asm/irq.h> | ||
14 | #include <asm/sn/arch.h> | ||
15 | #include <asm/sn/intr.h> | ||
16 | #include <asm/sn/pda.h> | ||
17 | #include <asm/sn/bte.h> | ||
18 | |||
19 | /* | ||
20 | * NUMA Node-Specific Data structures are defined in this file. | ||
21 | * In particular, this is the location of the node PDA. | ||
22 | * A pointer to the right node PDA is saved in each CPU PDA. | ||
23 | */ | ||
24 | |||
25 | /* | ||
26 | * Node-specific data structure. | ||
27 | * | ||
28 | * One of these structures is allocated on each node of a NUMA system. | ||
29 | * | ||
30 | * This structure provides a convenient way of keeping together | ||
31 | * all per-node data structures. | ||
32 | */ | ||
33 | struct phys_cpuid { | ||
34 | short nasid; | ||
35 | char subnode; | ||
36 | char slice; | ||
37 | }; | ||
38 | |||
39 | struct nodepda_s { | ||
40 | void *pdinfo; /* Platform-dependent per-node info */ | ||
41 | spinlock_t bist_lock; | ||
42 | |||
43 | /* | ||
44 | * The BTEs on this node are shared by the local cpus | ||
45 | */ | ||
46 | struct bteinfo_s bte_if[BTES_PER_NODE]; /* Virtual Interface */ | ||
47 | struct timer_list bte_recovery_timer; | ||
48 | spinlock_t bte_recovery_lock; | ||
49 | |||
50 | /* | ||
51 | * Array of pointers to the nodepdas for each node. | ||
52 | */ | ||
53 | struct nodepda_s *pernode_pdaindr[MAX_COMPACT_NODES]; | ||
54 | |||
55 | /* | ||
56 | * Array of physical cpu identifiers. Indexed by cpuid. | ||
57 | */ | ||
58 | struct phys_cpuid phys_cpuid[NR_CPUS]; | ||
59 | }; | ||
60 | |||
61 | typedef struct nodepda_s nodepda_t; | ||
62 | |||
63 | /* | ||
64 | * Access Functions for node PDA. | ||
65 | * Since there is one nodepda for each node, we need a convenient mechanism | ||
66 | * to access these nodepdas without cluttering code with #ifdefs. | ||
67 | * The next set of definitions provides this. | ||
68 | * Routines are expected to use | ||
69 | * | ||
70 | * nodepda -> to access node PDA for the node on which code is running | ||
71 | * subnodepda -> to access subnode PDA for the subnode on which code is running | ||
72 | * | ||
73 | * NODEPDA(cnode) -> to access node PDA for cnodeid | ||
74 | * SUBNODEPDA(cnode,sn) -> to access subnode PDA for cnodeid/subnode | ||
75 | */ | ||
76 | |||
77 | #define nodepda pda->p_nodepda /* Ptr to this node's PDA */ | ||
78 | #define NODEPDA(cnode) (nodepda->pernode_pdaindr[cnode]) | ||
79 | |||
80 | /* | ||
81 | * Check if given a compact node id the corresponding node has all the | ||
82 | * cpus disabled. | ||
83 | */ | ||
84 | #define is_headless_node(cnode) (nr_cpus_node(cnode) == 0) | ||
85 | |||
86 | #endif /* _ASM_IA64_SN_NODEPDA_H */ | ||
diff --git a/include/asm-ia64/sn/pda.h b/include/asm-ia64/sn/pda.h new file mode 100644 index 000000000000..e940d3647c80 --- /dev/null +++ b/include/asm-ia64/sn/pda.h | |||
@@ -0,0 +1,80 @@ | |||
1 | /* | ||
2 | * This file is subject to the terms and conditions of the GNU General Public | ||
3 | * License. See the file "COPYING" in the main directory of this archive | ||
4 | * for more details. | ||
5 | * | ||
6 | * Copyright (C) 1992 - 1997, 2000-2004 Silicon Graphics, Inc. All rights reserved. | ||
7 | */ | ||
8 | #ifndef _ASM_IA64_SN_PDA_H | ||
9 | #define _ASM_IA64_SN_PDA_H | ||
10 | |||
11 | #include <linux/cache.h> | ||
12 | #include <asm/percpu.h> | ||
13 | #include <asm/system.h> | ||
14 | #include <asm/sn/bte.h> | ||
15 | |||
16 | |||
17 | /* | ||
18 | * CPU-specific data structure. | ||
19 | * | ||
20 | * One of these structures is allocated for each cpu of a NUMA system. | ||
21 | * | ||
22 | * This structure provides a convenient way of keeping together | ||
23 | * all SN per-cpu data structures. | ||
24 | */ | ||
25 | |||
26 | typedef struct pda_s { | ||
27 | |||
28 | /* Having a pointer in the begining of PDA tends to increase | ||
29 | * the chance of having this pointer in cache. (Yes something | ||
30 | * else gets pushed out). Doing this reduces the number of memory | ||
31 | * access to all nodepda variables to be one | ||
32 | */ | ||
33 | struct nodepda_s *p_nodepda; /* Pointer to Per node PDA */ | ||
34 | struct subnodepda_s *p_subnodepda; /* Pointer to CPU subnode PDA */ | ||
35 | |||
36 | /* | ||
37 | * Support for SN LEDs | ||
38 | */ | ||
39 | volatile short *led_address; | ||
40 | u8 led_state; | ||
41 | u8 hb_state; /* supports blinking heartbeat leds */ | ||
42 | unsigned int hb_count; | ||
43 | |||
44 | unsigned int idle_flag; | ||
45 | |||
46 | volatile unsigned long *bedrock_rev_id; | ||
47 | volatile unsigned long *pio_write_status_addr; | ||
48 | unsigned long pio_write_status_val; | ||
49 | volatile unsigned long *pio_shub_war_cam_addr; | ||
50 | |||
51 | unsigned long sn_soft_irr[4]; | ||
52 | unsigned long sn_in_service_ivecs[4]; | ||
53 | short cnodeid_to_nasid_table[MAX_NUMNODES]; | ||
54 | int sn_lb_int_war_ticks; | ||
55 | int sn_last_irq; | ||
56 | int sn_first_irq; | ||
57 | } pda_t; | ||
58 | |||
59 | |||
60 | #define CACHE_ALIGN(x) (((x) + SMP_CACHE_BYTES-1) & ~(SMP_CACHE_BYTES-1)) | ||
61 | |||
62 | /* | ||
63 | * PDA | ||
64 | * Per-cpu private data area for each cpu. The PDA is located immediately after | ||
65 | * the IA64 cpu_data area. A full page is allocated for the cp_data area for each | ||
66 | * cpu but only a small amout of the page is actually used. We put the SNIA PDA | ||
67 | * in the same page as the cpu_data area. Note that there is a check in the setup | ||
68 | * code to verify that we don't overflow the page. | ||
69 | * | ||
70 | * Seems like we should should cache-line align the pda so that any changes in the | ||
71 | * size of the cpu_data area don't change cache layout. Should we align to 32, 64, 128 | ||
72 | * or 512 boundary. Each has merits. For now, pick 128 but should be revisited later. | ||
73 | */ | ||
74 | DECLARE_PER_CPU(struct pda_s, pda_percpu); | ||
75 | |||
76 | #define pda (&__ia64_per_cpu_var(pda_percpu)) | ||
77 | |||
78 | #define pdacpu(cpu) (&per_cpu(pda_percpu, cpu)) | ||
79 | |||
80 | #endif /* _ASM_IA64_SN_PDA_H */ | ||
diff --git a/include/asm-ia64/sn/rw_mmr.h b/include/asm-ia64/sn/rw_mmr.h new file mode 100644 index 000000000000..f40fd1a5510d --- /dev/null +++ b/include/asm-ia64/sn/rw_mmr.h | |||
@@ -0,0 +1,74 @@ | |||
1 | /* | ||
2 | * This file is subject to the terms and conditions of the GNU General Public | ||
3 | * License. See the file "COPYING" in the main directory of this archive | ||
4 | * for more details. | ||
5 | * | ||
6 | * Copyright (C) 2002-2004 Silicon Graphics, Inc. All Rights Reserved. | ||
7 | */ | ||
8 | #ifndef _ASM_IA64_SN_RW_MMR_H | ||
9 | #define _ASM_IA64_SN_RW_MMR_H | ||
10 | |||
11 | |||
12 | /* | ||
13 | * This file contains macros used to access MMR registers via | ||
14 | * uncached physical addresses. | ||
15 | * pio_phys_read_mmr - read an MMR | ||
16 | * pio_phys_write_mmr - write an MMR | ||
17 | * pio_atomic_phys_write_mmrs - atomically write 1 or 2 MMRs with psr.ic=0 | ||
18 | * Second MMR will be skipped if address is NULL | ||
19 | * | ||
20 | * Addresses passed to these routines should be uncached physical addresses | ||
21 | * ie., 0x80000.... | ||
22 | */ | ||
23 | |||
24 | |||
25 | extern inline long | ||
26 | pio_phys_read_mmr(volatile long *mmr) | ||
27 | { | ||
28 | long val; | ||
29 | asm volatile | ||
30 | ("mov r2=psr;;" | ||
31 | "rsm psr.i | psr.dt;;" | ||
32 | "srlz.i;;" | ||
33 | "ld8.acq %0=[%1];;" | ||
34 | "mov psr.l=r2;;" | ||
35 | "srlz.i;;" | ||
36 | : "=r"(val) | ||
37 | : "r"(mmr) | ||
38 | : "r2"); | ||
39 | return val; | ||
40 | } | ||
41 | |||
42 | |||
43 | |||
44 | extern inline void | ||
45 | pio_phys_write_mmr(volatile long *mmr, long val) | ||
46 | { | ||
47 | asm volatile | ||
48 | ("mov r2=psr;;" | ||
49 | "rsm psr.i | psr.dt;;" | ||
50 | "srlz.i;;" | ||
51 | "st8.rel [%0]=%1;;" | ||
52 | "mov psr.l=r2;;" | ||
53 | "srlz.i;;" | ||
54 | :: "r"(mmr), "r"(val) | ||
55 | : "r2", "memory"); | ||
56 | } | ||
57 | |||
58 | extern inline void | ||
59 | pio_atomic_phys_write_mmrs(volatile long *mmr1, long val1, volatile long *mmr2, long val2) | ||
60 | { | ||
61 | asm volatile | ||
62 | ("mov r2=psr;;" | ||
63 | "rsm psr.i | psr.dt | psr.ic;;" | ||
64 | "cmp.ne p9,p0=%2,r0;" | ||
65 | "srlz.i;;" | ||
66 | "st8.rel [%0]=%1;" | ||
67 | "(p9) st8.rel [%2]=%3;;" | ||
68 | "mov psr.l=r2;;" | ||
69 | "srlz.i;;" | ||
70 | :: "r"(mmr1), "r"(val1), "r"(mmr2), "r"(val2) | ||
71 | : "p9", "r2", "memory"); | ||
72 | } | ||
73 | |||
74 | #endif /* _ASM_IA64_SN_RW_MMR_H */ | ||
diff --git a/include/asm-ia64/sn/shub_mmr.h b/include/asm-ia64/sn/shub_mmr.h new file mode 100644 index 000000000000..5c2fcf13d5ce --- /dev/null +++ b/include/asm-ia64/sn/shub_mmr.h | |||
@@ -0,0 +1,441 @@ | |||
1 | /* | ||
2 | * | ||
3 | * This file is subject to the terms and conditions of the GNU General Public | ||
4 | * License. See the file "COPYING" in the main directory of this archive | ||
5 | * for more details. | ||
6 | * | ||
7 | * Copyright (c) 2001-2004 Silicon Graphics, Inc. All rights reserved. | ||
8 | */ | ||
9 | |||
10 | #ifndef _ASM_IA64_SN_SHUB_MMR_H | ||
11 | #define _ASM_IA64_SN_SHUB_MMR_H | ||
12 | |||
13 | /* ==================================================================== */ | ||
14 | /* Register "SH_IPI_INT" */ | ||
15 | /* SHub Inter-Processor Interrupt Registers */ | ||
16 | /* ==================================================================== */ | ||
17 | #define SH1_IPI_INT 0x0000000110000380 | ||
18 | #define SH2_IPI_INT 0x0000000010000380 | ||
19 | |||
20 | /* SH_IPI_INT_TYPE */ | ||
21 | /* Description: Type of Interrupt: 0=INT, 2=PMI, 4=NMI, 5=INIT */ | ||
22 | #define SH_IPI_INT_TYPE_SHFT 0 | ||
23 | #define SH_IPI_INT_TYPE_MASK 0x0000000000000007 | ||
24 | |||
25 | /* SH_IPI_INT_AGT */ | ||
26 | /* Description: Agent, must be 0 for SHub */ | ||
27 | #define SH_IPI_INT_AGT_SHFT 3 | ||
28 | #define SH_IPI_INT_AGT_MASK 0x0000000000000008 | ||
29 | |||
30 | /* SH_IPI_INT_PID */ | ||
31 | /* Description: Processor ID, same setting as on targeted McKinley */ | ||
32 | #define SH_IPI_INT_PID_SHFT 4 | ||
33 | #define SH_IPI_INT_PID_MASK 0x00000000000ffff0 | ||
34 | |||
35 | /* SH_IPI_INT_BASE */ | ||
36 | /* Description: Optional interrupt vector area, 2MB aligned */ | ||
37 | #define SH_IPI_INT_BASE_SHFT 21 | ||
38 | #define SH_IPI_INT_BASE_MASK 0x0003ffffffe00000 | ||
39 | |||
40 | /* SH_IPI_INT_IDX */ | ||
41 | /* Description: Targeted McKinley interrupt vector */ | ||
42 | #define SH_IPI_INT_IDX_SHFT 52 | ||
43 | #define SH_IPI_INT_IDX_MASK 0x0ff0000000000000 | ||
44 | |||
45 | /* SH_IPI_INT_SEND */ | ||
46 | /* Description: Send Interrupt Message to PI, This generates a puls */ | ||
47 | #define SH_IPI_INT_SEND_SHFT 63 | ||
48 | #define SH_IPI_INT_SEND_MASK 0x8000000000000000 | ||
49 | |||
50 | /* ==================================================================== */ | ||
51 | /* Register "SH_EVENT_OCCURRED" */ | ||
52 | /* SHub Interrupt Event Occurred */ | ||
53 | /* ==================================================================== */ | ||
54 | #define SH1_EVENT_OCCURRED 0x0000000110010000 | ||
55 | #define SH1_EVENT_OCCURRED_ALIAS 0x0000000110010008 | ||
56 | #define SH2_EVENT_OCCURRED 0x0000000010010000 | ||
57 | #define SH2_EVENT_OCCURRED_ALIAS 0x0000000010010008 | ||
58 | |||
59 | /* ==================================================================== */ | ||
60 | /* Register "SH_PI_CAM_CONTROL" */ | ||
61 | /* CRB CAM MMR Access Control */ | ||
62 | /* ==================================================================== */ | ||
63 | #define SH1_PI_CAM_CONTROL 0x0000000120050300 | ||
64 | |||
65 | /* ==================================================================== */ | ||
66 | /* Register "SH_SHUB_ID" */ | ||
67 | /* SHub ID Number */ | ||
68 | /* ==================================================================== */ | ||
69 | #define SH1_SHUB_ID 0x0000000110060580 | ||
70 | #define SH1_SHUB_ID_REVISION_SHFT 28 | ||
71 | #define SH1_SHUB_ID_REVISION_MASK 0x00000000f0000000 | ||
72 | |||
73 | /* ==================================================================== */ | ||
74 | /* Register "SH_RTC" */ | ||
75 | /* Real-time Clock */ | ||
76 | /* ==================================================================== */ | ||
77 | #define SH1_RTC 0x00000001101c0000 | ||
78 | #define SH2_RTC 0x00000002101c0000 | ||
79 | #define SH_RTC_MASK 0x007fffffffffffff | ||
80 | |||
81 | /* ==================================================================== */ | ||
82 | /* Register "SH_PIO_WRITE_STATUS_0|1" */ | ||
83 | /* PIO Write Status for CPU 0 & 1 */ | ||
84 | /* ==================================================================== */ | ||
85 | #define SH1_PIO_WRITE_STATUS_0 0x0000000120070200 | ||
86 | #define SH1_PIO_WRITE_STATUS_1 0x0000000120070280 | ||
87 | #define SH2_PIO_WRITE_STATUS_0 0x0000000020070200 | ||
88 | #define SH2_PIO_WRITE_STATUS_1 0x0000000020070280 | ||
89 | #define SH2_PIO_WRITE_STATUS_2 0x0000000020070300 | ||
90 | #define SH2_PIO_WRITE_STATUS_3 0x0000000020070380 | ||
91 | |||
92 | /* SH_PIO_WRITE_STATUS_0_WRITE_DEADLOCK */ | ||
93 | /* Description: Deadlock response detected */ | ||
94 | #define SH_PIO_WRITE_STATUS_WRITE_DEADLOCK_SHFT 1 | ||
95 | #define SH_PIO_WRITE_STATUS_WRITE_DEADLOCK_MASK 0x0000000000000002 | ||
96 | |||
97 | /* SH_PIO_WRITE_STATUS_0_PENDING_WRITE_COUNT */ | ||
98 | /* Description: Count of currently pending PIO writes */ | ||
99 | #define SH_PIO_WRITE_STATUS_PENDING_WRITE_COUNT_SHFT 56 | ||
100 | #define SH_PIO_WRITE_STATUS_PENDING_WRITE_COUNT_MASK 0x3f00000000000000 | ||
101 | |||
102 | /* ==================================================================== */ | ||
103 | /* Register "SH_PIO_WRITE_STATUS_0_ALIAS" */ | ||
104 | /* ==================================================================== */ | ||
105 | #define SH1_PIO_WRITE_STATUS_0_ALIAS 0x0000000120070208 | ||
106 | #define SH2_PIO_WRITE_STATUS_0_ALIAS 0x0000000020070208 | ||
107 | |||
108 | /* ==================================================================== */ | ||
109 | /* Register "SH_EVENT_OCCURRED" */ | ||
110 | /* SHub Interrupt Event Occurred */ | ||
111 | /* ==================================================================== */ | ||
112 | /* SH_EVENT_OCCURRED_UART_INT */ | ||
113 | /* Description: Pending Junk Bus UART Interrupt */ | ||
114 | #define SH_EVENT_OCCURRED_UART_INT_SHFT 20 | ||
115 | #define SH_EVENT_OCCURRED_UART_INT_MASK 0x0000000000100000 | ||
116 | |||
117 | /* SH_EVENT_OCCURRED_IPI_INT */ | ||
118 | /* Description: Pending IPI Interrupt */ | ||
119 | #define SH_EVENT_OCCURRED_IPI_INT_SHFT 28 | ||
120 | #define SH_EVENT_OCCURRED_IPI_INT_MASK 0x0000000010000000 | ||
121 | |||
122 | /* SH_EVENT_OCCURRED_II_INT0 */ | ||
123 | /* Description: Pending II 0 Interrupt */ | ||
124 | #define SH_EVENT_OCCURRED_II_INT0_SHFT 29 | ||
125 | #define SH_EVENT_OCCURRED_II_INT0_MASK 0x0000000020000000 | ||
126 | |||
127 | /* SH_EVENT_OCCURRED_II_INT1 */ | ||
128 | /* Description: Pending II 1 Interrupt */ | ||
129 | #define SH_EVENT_OCCURRED_II_INT1_SHFT 30 | ||
130 | #define SH_EVENT_OCCURRED_II_INT1_MASK 0x0000000040000000 | ||
131 | |||
132 | /* ==================================================================== */ | ||
133 | /* LEDS */ | ||
134 | /* ==================================================================== */ | ||
135 | #define SH1_REAL_JUNK_BUS_LED0 0x7fed00000UL | ||
136 | #define SH1_REAL_JUNK_BUS_LED1 0x7fed10000UL | ||
137 | #define SH1_REAL_JUNK_BUS_LED2 0x7fed20000UL | ||
138 | #define SH1_REAL_JUNK_BUS_LED3 0x7fed30000UL | ||
139 | |||
140 | #define SH2_REAL_JUNK_BUS_LED0 0xf0000000UL | ||
141 | #define SH2_REAL_JUNK_BUS_LED1 0xf0010000UL | ||
142 | #define SH2_REAL_JUNK_BUS_LED2 0xf0020000UL | ||
143 | #define SH2_REAL_JUNK_BUS_LED3 0xf0030000UL | ||
144 | |||
145 | /* ==================================================================== */ | ||
146 | /* Register "SH1_PTC_0" */ | ||
147 | /* Puge Translation Cache Message Configuration Information */ | ||
148 | /* ==================================================================== */ | ||
149 | #define SH1_PTC_0 0x00000001101a0000 | ||
150 | |||
151 | /* SH1_PTC_0_A */ | ||
152 | /* Description: Type */ | ||
153 | #define SH1_PTC_0_A_SHFT 0 | ||
154 | |||
155 | /* SH1_PTC_0_PS */ | ||
156 | /* Description: Page Size */ | ||
157 | #define SH1_PTC_0_PS_SHFT 2 | ||
158 | |||
159 | /* SH1_PTC_0_RID */ | ||
160 | /* Description: Region ID */ | ||
161 | #define SH1_PTC_0_RID_SHFT 8 | ||
162 | |||
163 | /* SH1_PTC_0_START */ | ||
164 | /* Description: Start */ | ||
165 | #define SH1_PTC_0_START_SHFT 63 | ||
166 | |||
167 | /* ==================================================================== */ | ||
168 | /* Register "SH1_PTC_1" */ | ||
169 | /* Puge Translation Cache Message Configuration Information */ | ||
170 | /* ==================================================================== */ | ||
171 | #define SH1_PTC_1 0x00000001101a0080 | ||
172 | |||
173 | /* SH1_PTC_1_START */ | ||
174 | /* Description: PTC_1 Start */ | ||
175 | #define SH1_PTC_1_START_SHFT 63 | ||
176 | |||
177 | |||
178 | /* ==================================================================== */ | ||
179 | /* Register "SH2_PTC" */ | ||
180 | /* Puge Translation Cache Message Configuration Information */ | ||
181 | /* ==================================================================== */ | ||
182 | #define SH2_PTC 0x0000000170000000 | ||
183 | |||
184 | /* SH2_PTC_A */ | ||
185 | /* Description: Type */ | ||
186 | #define SH2_PTC_A_SHFT 0 | ||
187 | |||
188 | /* SH2_PTC_PS */ | ||
189 | /* Description: Page Size */ | ||
190 | #define SH2_PTC_PS_SHFT 2 | ||
191 | |||
192 | /* SH2_PTC_RID */ | ||
193 | /* Description: Region ID */ | ||
194 | #define SH2_PTC_RID_SHFT 4 | ||
195 | |||
196 | /* SH2_PTC_START */ | ||
197 | /* Description: Start */ | ||
198 | #define SH2_PTC_START_SHFT 63 | ||
199 | |||
200 | /* SH2_PTC_ADDR_RID */ | ||
201 | /* Description: Region ID */ | ||
202 | #define SH2_PTC_ADDR_SHFT 4 | ||
203 | #define SH2_PTC_ADDR_MASK 0x1ffffffffffff000 | ||
204 | |||
205 | /* ==================================================================== */ | ||
206 | /* Register "SH_RTC1_INT_CONFIG" */ | ||
207 | /* SHub RTC 1 Interrupt Config Registers */ | ||
208 | /* ==================================================================== */ | ||
209 | |||
210 | #define SH1_RTC1_INT_CONFIG 0x0000000110001480 | ||
211 | #define SH2_RTC1_INT_CONFIG 0x0000000010001480 | ||
212 | #define SH_RTC1_INT_CONFIG_MASK 0x0ff3ffffffefffff | ||
213 | #define SH_RTC1_INT_CONFIG_INIT 0x0000000000000000 | ||
214 | |||
215 | /* SH_RTC1_INT_CONFIG_TYPE */ | ||
216 | /* Description: Type of Interrupt: 0=INT, 2=PMI, 4=NMI, 5=INIT */ | ||
217 | #define SH_RTC1_INT_CONFIG_TYPE_SHFT 0 | ||
218 | #define SH_RTC1_INT_CONFIG_TYPE_MASK 0x0000000000000007 | ||
219 | |||
220 | /* SH_RTC1_INT_CONFIG_AGT */ | ||
221 | /* Description: Agent, must be 0 for SHub */ | ||
222 | #define SH_RTC1_INT_CONFIG_AGT_SHFT 3 | ||
223 | #define SH_RTC1_INT_CONFIG_AGT_MASK 0x0000000000000008 | ||
224 | |||
225 | /* SH_RTC1_INT_CONFIG_PID */ | ||
226 | /* Description: Processor ID, same setting as on targeted McKinley */ | ||
227 | #define SH_RTC1_INT_CONFIG_PID_SHFT 4 | ||
228 | #define SH_RTC1_INT_CONFIG_PID_MASK 0x00000000000ffff0 | ||
229 | |||
230 | /* SH_RTC1_INT_CONFIG_BASE */ | ||
231 | /* Description: Optional interrupt vector area, 2MB aligned */ | ||
232 | #define SH_RTC1_INT_CONFIG_BASE_SHFT 21 | ||
233 | #define SH_RTC1_INT_CONFIG_BASE_MASK 0x0003ffffffe00000 | ||
234 | |||
235 | /* SH_RTC1_INT_CONFIG_IDX */ | ||
236 | /* Description: Targeted McKinley interrupt vector */ | ||
237 | #define SH_RTC1_INT_CONFIG_IDX_SHFT 52 | ||
238 | #define SH_RTC1_INT_CONFIG_IDX_MASK 0x0ff0000000000000 | ||
239 | |||
240 | /* ==================================================================== */ | ||
241 | /* Register "SH_RTC1_INT_ENABLE" */ | ||
242 | /* SHub RTC 1 Interrupt Enable Registers */ | ||
243 | /* ==================================================================== */ | ||
244 | |||
245 | #define SH1_RTC1_INT_ENABLE 0x0000000110001500 | ||
246 | #define SH2_RTC1_INT_ENABLE 0x0000000010001500 | ||
247 | #define SH_RTC1_INT_ENABLE_MASK 0x0000000000000001 | ||
248 | #define SH_RTC1_INT_ENABLE_INIT 0x0000000000000000 | ||
249 | |||
250 | /* SH_RTC1_INT_ENABLE_RTC1_ENABLE */ | ||
251 | /* Description: Enable RTC 1 Interrupt */ | ||
252 | #define SH_RTC1_INT_ENABLE_RTC1_ENABLE_SHFT 0 | ||
253 | #define SH_RTC1_INT_ENABLE_RTC1_ENABLE_MASK 0x0000000000000001 | ||
254 | |||
255 | /* ==================================================================== */ | ||
256 | /* Register "SH_RTC2_INT_CONFIG" */ | ||
257 | /* SHub RTC 2 Interrupt Config Registers */ | ||
258 | /* ==================================================================== */ | ||
259 | |||
260 | #define SH1_RTC2_INT_CONFIG 0x0000000110001580 | ||
261 | #define SH2_RTC2_INT_CONFIG 0x0000000010001580 | ||
262 | #define SH_RTC2_INT_CONFIG_MASK 0x0ff3ffffffefffff | ||
263 | #define SH_RTC2_INT_CONFIG_INIT 0x0000000000000000 | ||
264 | |||
265 | /* SH_RTC2_INT_CONFIG_TYPE */ | ||
266 | /* Description: Type of Interrupt: 0=INT, 2=PMI, 4=NMI, 5=INIT */ | ||
267 | #define SH_RTC2_INT_CONFIG_TYPE_SHFT 0 | ||
268 | #define SH_RTC2_INT_CONFIG_TYPE_MASK 0x0000000000000007 | ||
269 | |||
270 | /* SH_RTC2_INT_CONFIG_AGT */ | ||
271 | /* Description: Agent, must be 0 for SHub */ | ||
272 | #define SH_RTC2_INT_CONFIG_AGT_SHFT 3 | ||
273 | #define SH_RTC2_INT_CONFIG_AGT_MASK 0x0000000000000008 | ||
274 | |||
275 | /* SH_RTC2_INT_CONFIG_PID */ | ||
276 | /* Description: Processor ID, same setting as on targeted McKinley */ | ||
277 | #define SH_RTC2_INT_CONFIG_PID_SHFT 4 | ||
278 | #define SH_RTC2_INT_CONFIG_PID_MASK 0x00000000000ffff0 | ||
279 | |||
280 | /* SH_RTC2_INT_CONFIG_BASE */ | ||
281 | /* Description: Optional interrupt vector area, 2MB aligned */ | ||
282 | #define SH_RTC2_INT_CONFIG_BASE_SHFT 21 | ||
283 | #define SH_RTC2_INT_CONFIG_BASE_MASK 0x0003ffffffe00000 | ||
284 | |||
285 | /* SH_RTC2_INT_CONFIG_IDX */ | ||
286 | /* Description: Targeted McKinley interrupt vector */ | ||
287 | #define SH_RTC2_INT_CONFIG_IDX_SHFT 52 | ||
288 | #define SH_RTC2_INT_CONFIG_IDX_MASK 0x0ff0000000000000 | ||
289 | |||
290 | /* ==================================================================== */ | ||
291 | /* Register "SH_RTC2_INT_ENABLE" */ | ||
292 | /* SHub RTC 2 Interrupt Enable Registers */ | ||
293 | /* ==================================================================== */ | ||
294 | |||
295 | #define SH1_RTC2_INT_ENABLE 0x0000000110001600 | ||
296 | #define SH2_RTC2_INT_ENABLE 0x0000000010001600 | ||
297 | #define SH_RTC2_INT_ENABLE_MASK 0x0000000000000001 | ||
298 | #define SH_RTC2_INT_ENABLE_INIT 0x0000000000000000 | ||
299 | |||
300 | /* SH_RTC2_INT_ENABLE_RTC2_ENABLE */ | ||
301 | /* Description: Enable RTC 2 Interrupt */ | ||
302 | #define SH_RTC2_INT_ENABLE_RTC2_ENABLE_SHFT 0 | ||
303 | #define SH_RTC2_INT_ENABLE_RTC2_ENABLE_MASK 0x0000000000000001 | ||
304 | |||
305 | /* ==================================================================== */ | ||
306 | /* Register "SH_RTC3_INT_CONFIG" */ | ||
307 | /* SHub RTC 3 Interrupt Config Registers */ | ||
308 | /* ==================================================================== */ | ||
309 | |||
310 | #define SH1_RTC3_INT_CONFIG 0x0000000110001680 | ||
311 | #define SH2_RTC3_INT_CONFIG 0x0000000010001680 | ||
312 | #define SH_RTC3_INT_CONFIG_MASK 0x0ff3ffffffefffff | ||
313 | #define SH_RTC3_INT_CONFIG_INIT 0x0000000000000000 | ||
314 | |||
315 | /* SH_RTC3_INT_CONFIG_TYPE */ | ||
316 | /* Description: Type of Interrupt: 0=INT, 2=PMI, 4=NMI, 5=INIT */ | ||
317 | #define SH_RTC3_INT_CONFIG_TYPE_SHFT 0 | ||
318 | #define SH_RTC3_INT_CONFIG_TYPE_MASK 0x0000000000000007 | ||
319 | |||
320 | /* SH_RTC3_INT_CONFIG_AGT */ | ||
321 | /* Description: Agent, must be 0 for SHub */ | ||
322 | #define SH_RTC3_INT_CONFIG_AGT_SHFT 3 | ||
323 | #define SH_RTC3_INT_CONFIG_AGT_MASK 0x0000000000000008 | ||
324 | |||
325 | /* SH_RTC3_INT_CONFIG_PID */ | ||
326 | /* Description: Processor ID, same setting as on targeted McKinley */ | ||
327 | #define SH_RTC3_INT_CONFIG_PID_SHFT 4 | ||
328 | #define SH_RTC3_INT_CONFIG_PID_MASK 0x00000000000ffff0 | ||
329 | |||
330 | /* SH_RTC3_INT_CONFIG_BASE */ | ||
331 | /* Description: Optional interrupt vector area, 2MB aligned */ | ||
332 | #define SH_RTC3_INT_CONFIG_BASE_SHFT 21 | ||
333 | #define SH_RTC3_INT_CONFIG_BASE_MASK 0x0003ffffffe00000 | ||
334 | |||
335 | /* SH_RTC3_INT_CONFIG_IDX */ | ||
336 | /* Description: Targeted McKinley interrupt vector */ | ||
337 | #define SH_RTC3_INT_CONFIG_IDX_SHFT 52 | ||
338 | #define SH_RTC3_INT_CONFIG_IDX_MASK 0x0ff0000000000000 | ||
339 | |||
340 | /* ==================================================================== */ | ||
341 | /* Register "SH_RTC3_INT_ENABLE" */ | ||
342 | /* SHub RTC 3 Interrupt Enable Registers */ | ||
343 | /* ==================================================================== */ | ||
344 | |||
345 | #define SH1_RTC3_INT_ENABLE 0x0000000110001700 | ||
346 | #define SH2_RTC3_INT_ENABLE 0x0000000010001700 | ||
347 | #define SH_RTC3_INT_ENABLE_MASK 0x0000000000000001 | ||
348 | #define SH_RTC3_INT_ENABLE_INIT 0x0000000000000000 | ||
349 | |||
350 | /* SH_RTC3_INT_ENABLE_RTC3_ENABLE */ | ||
351 | /* Description: Enable RTC 3 Interrupt */ | ||
352 | #define SH_RTC3_INT_ENABLE_RTC3_ENABLE_SHFT 0 | ||
353 | #define SH_RTC3_INT_ENABLE_RTC3_ENABLE_MASK 0x0000000000000001 | ||
354 | |||
355 | /* SH_EVENT_OCCURRED_RTC1_INT */ | ||
356 | /* Description: Pending RTC 1 Interrupt */ | ||
357 | #define SH_EVENT_OCCURRED_RTC1_INT_SHFT 24 | ||
358 | #define SH_EVENT_OCCURRED_RTC1_INT_MASK 0x0000000001000000 | ||
359 | |||
360 | /* SH_EVENT_OCCURRED_RTC2_INT */ | ||
361 | /* Description: Pending RTC 2 Interrupt */ | ||
362 | #define SH_EVENT_OCCURRED_RTC2_INT_SHFT 25 | ||
363 | #define SH_EVENT_OCCURRED_RTC2_INT_MASK 0x0000000002000000 | ||
364 | |||
365 | /* SH_EVENT_OCCURRED_RTC3_INT */ | ||
366 | /* Description: Pending RTC 3 Interrupt */ | ||
367 | #define SH_EVENT_OCCURRED_RTC3_INT_SHFT 26 | ||
368 | #define SH_EVENT_OCCURRED_RTC3_INT_MASK 0x0000000004000000 | ||
369 | |||
370 | /* ==================================================================== */ | ||
371 | /* Register "SH_INT_CMPB" */ | ||
372 | /* RTC Compare Value for Processor B */ | ||
373 | /* ==================================================================== */ | ||
374 | |||
375 | #define SH1_INT_CMPB 0x00000001101b0080 | ||
376 | #define SH2_INT_CMPB 0x00000000101b0080 | ||
377 | #define SH_INT_CMPB_MASK 0x007fffffffffffff | ||
378 | #define SH_INT_CMPB_INIT 0x0000000000000000 | ||
379 | |||
380 | /* SH_INT_CMPB_REAL_TIME_CMPB */ | ||
381 | /* Description: Real Time Clock Compare */ | ||
382 | #define SH_INT_CMPB_REAL_TIME_CMPB_SHFT 0 | ||
383 | #define SH_INT_CMPB_REAL_TIME_CMPB_MASK 0x007fffffffffffff | ||
384 | |||
385 | /* ==================================================================== */ | ||
386 | /* Register "SH_INT_CMPC" */ | ||
387 | /* RTC Compare Value for Processor C */ | ||
388 | /* ==================================================================== */ | ||
389 | |||
390 | #define SH1_INT_CMPC 0x00000001101b0100 | ||
391 | #define SH2_INT_CMPC 0x00000000101b0100 | ||
392 | #define SH_INT_CMPC_MASK 0x007fffffffffffff | ||
393 | #define SH_INT_CMPC_INIT 0x0000000000000000 | ||
394 | |||
395 | /* SH_INT_CMPC_REAL_TIME_CMPC */ | ||
396 | /* Description: Real Time Clock Compare */ | ||
397 | #define SH_INT_CMPC_REAL_TIME_CMPC_SHFT 0 | ||
398 | #define SH_INT_CMPC_REAL_TIME_CMPC_MASK 0x007fffffffffffff | ||
399 | |||
400 | /* ==================================================================== */ | ||
401 | /* Register "SH_INT_CMPD" */ | ||
402 | /* RTC Compare Value for Processor D */ | ||
403 | /* ==================================================================== */ | ||
404 | |||
405 | #define SH1_INT_CMPD 0x00000001101b0180 | ||
406 | #define SH2_INT_CMPD 0x00000000101b0180 | ||
407 | #define SH_INT_CMPD_MASK 0x007fffffffffffff | ||
408 | #define SH_INT_CMPD_INIT 0x0000000000000000 | ||
409 | |||
410 | /* SH_INT_CMPD_REAL_TIME_CMPD */ | ||
411 | /* Description: Real Time Clock Compare */ | ||
412 | #define SH_INT_CMPD_REAL_TIME_CMPD_SHFT 0 | ||
413 | #define SH_INT_CMPD_REAL_TIME_CMPD_MASK 0x007fffffffffffff | ||
414 | |||
415 | |||
416 | /* ==================================================================== */ | ||
417 | /* Some MMRs are functionally identical (or close enough) on both SHUB1 */ | ||
418 | /* and SHUB2 that it makes sense to define a geberic name for the MMR. */ | ||
419 | /* It is acceptible to use (for example) SH_IPI_INT to reference the */ | ||
420 | /* the IPI MMR. The value of SH_IPI_INT is determined at runtime based */ | ||
421 | /* on the type of the SHUB. Do not use these #defines in performance */ | ||
422 | /* critical code or loops - there is a small performance penalty. */ | ||
423 | /* ==================================================================== */ | ||
424 | #define shubmmr(a,b) (is_shub2() ? a##2_##b : a##1_##b) | ||
425 | |||
426 | #define SH_REAL_JUNK_BUS_LED0 shubmmr(SH, REAL_JUNK_BUS_LED0) | ||
427 | #define SH_IPI_INT shubmmr(SH, IPI_INT) | ||
428 | #define SH_EVENT_OCCURRED shubmmr(SH, EVENT_OCCURRED) | ||
429 | #define SH_EVENT_OCCURRED_ALIAS shubmmr(SH, EVENT_OCCURRED_ALIAS) | ||
430 | #define SH_RTC shubmmr(SH, RTC) | ||
431 | #define SH_RTC1_INT_CONFIG shubmmr(SH, RTC1_INT_CONFIG) | ||
432 | #define SH_RTC1_INT_ENABLE shubmmr(SH, RTC1_INT_ENABLE) | ||
433 | #define SH_RTC2_INT_CONFIG shubmmr(SH, RTC2_INT_CONFIG) | ||
434 | #define SH_RTC2_INT_ENABLE shubmmr(SH, RTC2_INT_ENABLE) | ||
435 | #define SH_RTC3_INT_CONFIG shubmmr(SH, RTC3_INT_CONFIG) | ||
436 | #define SH_RTC3_INT_ENABLE shubmmr(SH, RTC3_INT_ENABLE) | ||
437 | #define SH_INT_CMPB shubmmr(SH, INT_CMPB) | ||
438 | #define SH_INT_CMPC shubmmr(SH, INT_CMPC) | ||
439 | #define SH_INT_CMPD shubmmr(SH, INT_CMPD) | ||
440 | |||
441 | #endif /* _ASM_IA64_SN_SHUB_MMR_H */ | ||
diff --git a/include/asm-ia64/sn/shubio.h b/include/asm-ia64/sn/shubio.h new file mode 100644 index 000000000000..fbd880e6bb96 --- /dev/null +++ b/include/asm-ia64/sn/shubio.h | |||
@@ -0,0 +1,3476 @@ | |||
1 | /* | ||
2 | * This file is subject to the terms and conditions of the GNU General Public | ||
3 | * License. See the file "COPYING" in the main directory of this archive | ||
4 | * for more details. | ||
5 | * | ||
6 | * Copyright (C) 1992 - 1997, 2000-2004 Silicon Graphics, Inc. All rights reserved. | ||
7 | */ | ||
8 | |||
9 | #ifndef _ASM_IA64_SN_SHUBIO_H | ||
10 | #define _ASM_IA64_SN_SHUBIO_H | ||
11 | |||
12 | #define HUB_WIDGET_ID_MAX 0xf | ||
13 | #define IIO_NUM_ITTES 7 | ||
14 | #define HUB_NUM_BIG_WINDOW (IIO_NUM_ITTES - 1) | ||
15 | |||
16 | #define IIO_WID 0x00400000 /* Crosstalk Widget Identification */ | ||
17 | /* This register is also accessible from | ||
18 | * Crosstalk at address 0x0. */ | ||
19 | #define IIO_WSTAT 0x00400008 /* Crosstalk Widget Status */ | ||
20 | #define IIO_WCR 0x00400020 /* Crosstalk Widget Control Register */ | ||
21 | #define IIO_ILAPR 0x00400100 /* IO Local Access Protection Register */ | ||
22 | #define IIO_ILAPO 0x00400108 /* IO Local Access Protection Override */ | ||
23 | #define IIO_IOWA 0x00400110 /* IO Outbound Widget Access */ | ||
24 | #define IIO_IIWA 0x00400118 /* IO Inbound Widget Access */ | ||
25 | #define IIO_IIDEM 0x00400120 /* IO Inbound Device Error Mask */ | ||
26 | #define IIO_ILCSR 0x00400128 /* IO LLP Control and Status Register */ | ||
27 | #define IIO_ILLR 0x00400130 /* IO LLP Log Register */ | ||
28 | #define IIO_IIDSR 0x00400138 /* IO Interrupt Destination */ | ||
29 | |||
30 | #define IIO_IGFX0 0x00400140 /* IO Graphics Node-Widget Map 0 */ | ||
31 | #define IIO_IGFX1 0x00400148 /* IO Graphics Node-Widget Map 1 */ | ||
32 | |||
33 | #define IIO_ISCR0 0x00400150 /* IO Scratch Register 0 */ | ||
34 | #define IIO_ISCR1 0x00400158 /* IO Scratch Register 1 */ | ||
35 | |||
36 | #define IIO_ITTE1 0x00400160 /* IO Translation Table Entry 1 */ | ||
37 | #define IIO_ITTE2 0x00400168 /* IO Translation Table Entry 2 */ | ||
38 | #define IIO_ITTE3 0x00400170 /* IO Translation Table Entry 3 */ | ||
39 | #define IIO_ITTE4 0x00400178 /* IO Translation Table Entry 4 */ | ||
40 | #define IIO_ITTE5 0x00400180 /* IO Translation Table Entry 5 */ | ||
41 | #define IIO_ITTE6 0x00400188 /* IO Translation Table Entry 6 */ | ||
42 | #define IIO_ITTE7 0x00400190 /* IO Translation Table Entry 7 */ | ||
43 | |||
44 | #define IIO_IPRB0 0x00400198 /* IO PRB Entry 0 */ | ||
45 | #define IIO_IPRB8 0x004001A0 /* IO PRB Entry 8 */ | ||
46 | #define IIO_IPRB9 0x004001A8 /* IO PRB Entry 9 */ | ||
47 | #define IIO_IPRBA 0x004001B0 /* IO PRB Entry A */ | ||
48 | #define IIO_IPRBB 0x004001B8 /* IO PRB Entry B */ | ||
49 | #define IIO_IPRBC 0x004001C0 /* IO PRB Entry C */ | ||
50 | #define IIO_IPRBD 0x004001C8 /* IO PRB Entry D */ | ||
51 | #define IIO_IPRBE 0x004001D0 /* IO PRB Entry E */ | ||
52 | #define IIO_IPRBF 0x004001D8 /* IO PRB Entry F */ | ||
53 | |||
54 | #define IIO_IXCC 0x004001E0 /* IO Crosstalk Credit Count Timeout */ | ||
55 | #define IIO_IMEM 0x004001E8 /* IO Miscellaneous Error Mask */ | ||
56 | #define IIO_IXTT 0x004001F0 /* IO Crosstalk Timeout Threshold */ | ||
57 | #define IIO_IECLR 0x004001F8 /* IO Error Clear Register */ | ||
58 | #define IIO_IBCR 0x00400200 /* IO BTE Control Register */ | ||
59 | |||
60 | #define IIO_IXSM 0x00400208 /* IO Crosstalk Spurious Message */ | ||
61 | #define IIO_IXSS 0x00400210 /* IO Crosstalk Spurious Sideband */ | ||
62 | |||
63 | #define IIO_ILCT 0x00400218 /* IO LLP Channel Test */ | ||
64 | |||
65 | #define IIO_IIEPH1 0x00400220 /* IO Incoming Error Packet Header, Part 1 */ | ||
66 | #define IIO_IIEPH2 0x00400228 /* IO Incoming Error Packet Header, Part 2 */ | ||
67 | |||
68 | |||
69 | #define IIO_ISLAPR 0x00400230 /* IO SXB Local Access Protection Regster */ | ||
70 | #define IIO_ISLAPO 0x00400238 /* IO SXB Local Access Protection Override */ | ||
71 | |||
72 | #define IIO_IWI 0x00400240 /* IO Wrapper Interrupt Register */ | ||
73 | #define IIO_IWEL 0x00400248 /* IO Wrapper Error Log Register */ | ||
74 | #define IIO_IWC 0x00400250 /* IO Wrapper Control Register */ | ||
75 | #define IIO_IWS 0x00400258 /* IO Wrapper Status Register */ | ||
76 | #define IIO_IWEIM 0x00400260 /* IO Wrapper Error Interrupt Masking Register */ | ||
77 | |||
78 | #define IIO_IPCA 0x00400300 /* IO PRB Counter Adjust */ | ||
79 | |||
80 | #define IIO_IPRTE0_A 0x00400308 /* IO PIO Read Address Table Entry 0, Part A */ | ||
81 | #define IIO_IPRTE1_A 0x00400310 /* IO PIO Read Address Table Entry 1, Part A */ | ||
82 | #define IIO_IPRTE2_A 0x00400318 /* IO PIO Read Address Table Entry 2, Part A */ | ||
83 | #define IIO_IPRTE3_A 0x00400320 /* IO PIO Read Address Table Entry 3, Part A */ | ||
84 | #define IIO_IPRTE4_A 0x00400328 /* IO PIO Read Address Table Entry 4, Part A */ | ||
85 | #define IIO_IPRTE5_A 0x00400330 /* IO PIO Read Address Table Entry 5, Part A */ | ||
86 | #define IIO_IPRTE6_A 0x00400338 /* IO PIO Read Address Table Entry 6, Part A */ | ||
87 | #define IIO_IPRTE7_A 0x00400340 /* IO PIO Read Address Table Entry 7, Part A */ | ||
88 | |||
89 | #define IIO_IPRTE0_B 0x00400348 /* IO PIO Read Address Table Entry 0, Part B */ | ||
90 | #define IIO_IPRTE1_B 0x00400350 /* IO PIO Read Address Table Entry 1, Part B */ | ||
91 | #define IIO_IPRTE2_B 0x00400358 /* IO PIO Read Address Table Entry 2, Part B */ | ||
92 | #define IIO_IPRTE3_B 0x00400360 /* IO PIO Read Address Table Entry 3, Part B */ | ||
93 | #define IIO_IPRTE4_B 0x00400368 /* IO PIO Read Address Table Entry 4, Part B */ | ||
94 | #define IIO_IPRTE5_B 0x00400370 /* IO PIO Read Address Table Entry 5, Part B */ | ||
95 | #define IIO_IPRTE6_B 0x00400378 /* IO PIO Read Address Table Entry 6, Part B */ | ||
96 | #define IIO_IPRTE7_B 0x00400380 /* IO PIO Read Address Table Entry 7, Part B */ | ||
97 | |||
98 | #define IIO_IPDR 0x00400388 /* IO PIO Deallocation Register */ | ||
99 | #define IIO_ICDR 0x00400390 /* IO CRB Entry Deallocation Register */ | ||
100 | #define IIO_IFDR 0x00400398 /* IO IOQ FIFO Depth Register */ | ||
101 | #define IIO_IIAP 0x004003A0 /* IO IIQ Arbitration Parameters */ | ||
102 | #define IIO_ICMR 0x004003A8 /* IO CRB Management Register */ | ||
103 | #define IIO_ICCR 0x004003B0 /* IO CRB Control Register */ | ||
104 | #define IIO_ICTO 0x004003B8 /* IO CRB Timeout */ | ||
105 | #define IIO_ICTP 0x004003C0 /* IO CRB Timeout Prescalar */ | ||
106 | |||
107 | #define IIO_ICRB0_A 0x00400400 /* IO CRB Entry 0_A */ | ||
108 | #define IIO_ICRB0_B 0x00400408 /* IO CRB Entry 0_B */ | ||
109 | #define IIO_ICRB0_C 0x00400410 /* IO CRB Entry 0_C */ | ||
110 | #define IIO_ICRB0_D 0x00400418 /* IO CRB Entry 0_D */ | ||
111 | #define IIO_ICRB0_E 0x00400420 /* IO CRB Entry 0_E */ | ||
112 | |||
113 | #define IIO_ICRB1_A 0x00400430 /* IO CRB Entry 1_A */ | ||
114 | #define IIO_ICRB1_B 0x00400438 /* IO CRB Entry 1_B */ | ||
115 | #define IIO_ICRB1_C 0x00400440 /* IO CRB Entry 1_C */ | ||
116 | #define IIO_ICRB1_D 0x00400448 /* IO CRB Entry 1_D */ | ||
117 | #define IIO_ICRB1_E 0x00400450 /* IO CRB Entry 1_E */ | ||
118 | |||
119 | #define IIO_ICRB2_A 0x00400460 /* IO CRB Entry 2_A */ | ||
120 | #define IIO_ICRB2_B 0x00400468 /* IO CRB Entry 2_B */ | ||
121 | #define IIO_ICRB2_C 0x00400470 /* IO CRB Entry 2_C */ | ||
122 | #define IIO_ICRB2_D 0x00400478 /* IO CRB Entry 2_D */ | ||
123 | #define IIO_ICRB2_E 0x00400480 /* IO CRB Entry 2_E */ | ||
124 | |||
125 | #define IIO_ICRB3_A 0x00400490 /* IO CRB Entry 3_A */ | ||
126 | #define IIO_ICRB3_B 0x00400498 /* IO CRB Entry 3_B */ | ||
127 | #define IIO_ICRB3_C 0x004004a0 /* IO CRB Entry 3_C */ | ||
128 | #define IIO_ICRB3_D 0x004004a8 /* IO CRB Entry 3_D */ | ||
129 | #define IIO_ICRB3_E 0x004004b0 /* IO CRB Entry 3_E */ | ||
130 | |||
131 | #define IIO_ICRB4_A 0x004004c0 /* IO CRB Entry 4_A */ | ||
132 | #define IIO_ICRB4_B 0x004004c8 /* IO CRB Entry 4_B */ | ||
133 | #define IIO_ICRB4_C 0x004004d0 /* IO CRB Entry 4_C */ | ||
134 | #define IIO_ICRB4_D 0x004004d8 /* IO CRB Entry 4_D */ | ||
135 | #define IIO_ICRB4_E 0x004004e0 /* IO CRB Entry 4_E */ | ||
136 | |||
137 | #define IIO_ICRB5_A 0x004004f0 /* IO CRB Entry 5_A */ | ||
138 | #define IIO_ICRB5_B 0x004004f8 /* IO CRB Entry 5_B */ | ||
139 | #define IIO_ICRB5_C 0x00400500 /* IO CRB Entry 5_C */ | ||
140 | #define IIO_ICRB5_D 0x00400508 /* IO CRB Entry 5_D */ | ||
141 | #define IIO_ICRB5_E 0x00400510 /* IO CRB Entry 5_E */ | ||
142 | |||
143 | #define IIO_ICRB6_A 0x00400520 /* IO CRB Entry 6_A */ | ||
144 | #define IIO_ICRB6_B 0x00400528 /* IO CRB Entry 6_B */ | ||
145 | #define IIO_ICRB6_C 0x00400530 /* IO CRB Entry 6_C */ | ||
146 | #define IIO_ICRB6_D 0x00400538 /* IO CRB Entry 6_D */ | ||
147 | #define IIO_ICRB6_E 0x00400540 /* IO CRB Entry 6_E */ | ||
148 | |||
149 | #define IIO_ICRB7_A 0x00400550 /* IO CRB Entry 7_A */ | ||
150 | #define IIO_ICRB7_B 0x00400558 /* IO CRB Entry 7_B */ | ||
151 | #define IIO_ICRB7_C 0x00400560 /* IO CRB Entry 7_C */ | ||
152 | #define IIO_ICRB7_D 0x00400568 /* IO CRB Entry 7_D */ | ||
153 | #define IIO_ICRB7_E 0x00400570 /* IO CRB Entry 7_E */ | ||
154 | |||
155 | #define IIO_ICRB8_A 0x00400580 /* IO CRB Entry 8_A */ | ||
156 | #define IIO_ICRB8_B 0x00400588 /* IO CRB Entry 8_B */ | ||
157 | #define IIO_ICRB8_C 0x00400590 /* IO CRB Entry 8_C */ | ||
158 | #define IIO_ICRB8_D 0x00400598 /* IO CRB Entry 8_D */ | ||
159 | #define IIO_ICRB8_E 0x004005a0 /* IO CRB Entry 8_E */ | ||
160 | |||
161 | #define IIO_ICRB9_A 0x004005b0 /* IO CRB Entry 9_A */ | ||
162 | #define IIO_ICRB9_B 0x004005b8 /* IO CRB Entry 9_B */ | ||
163 | #define IIO_ICRB9_C 0x004005c0 /* IO CRB Entry 9_C */ | ||
164 | #define IIO_ICRB9_D 0x004005c8 /* IO CRB Entry 9_D */ | ||
165 | #define IIO_ICRB9_E 0x004005d0 /* IO CRB Entry 9_E */ | ||
166 | |||
167 | #define IIO_ICRBA_A 0x004005e0 /* IO CRB Entry A_A */ | ||
168 | #define IIO_ICRBA_B 0x004005e8 /* IO CRB Entry A_B */ | ||
169 | #define IIO_ICRBA_C 0x004005f0 /* IO CRB Entry A_C */ | ||
170 | #define IIO_ICRBA_D 0x004005f8 /* IO CRB Entry A_D */ | ||
171 | #define IIO_ICRBA_E 0x00400600 /* IO CRB Entry A_E */ | ||
172 | |||
173 | #define IIO_ICRBB_A 0x00400610 /* IO CRB Entry B_A */ | ||
174 | #define IIO_ICRBB_B 0x00400618 /* IO CRB Entry B_B */ | ||
175 | #define IIO_ICRBB_C 0x00400620 /* IO CRB Entry B_C */ | ||
176 | #define IIO_ICRBB_D 0x00400628 /* IO CRB Entry B_D */ | ||
177 | #define IIO_ICRBB_E 0x00400630 /* IO CRB Entry B_E */ | ||
178 | |||
179 | #define IIO_ICRBC_A 0x00400640 /* IO CRB Entry C_A */ | ||
180 | #define IIO_ICRBC_B 0x00400648 /* IO CRB Entry C_B */ | ||
181 | #define IIO_ICRBC_C 0x00400650 /* IO CRB Entry C_C */ | ||
182 | #define IIO_ICRBC_D 0x00400658 /* IO CRB Entry C_D */ | ||
183 | #define IIO_ICRBC_E 0x00400660 /* IO CRB Entry C_E */ | ||
184 | |||
185 | #define IIO_ICRBD_A 0x00400670 /* IO CRB Entry D_A */ | ||
186 | #define IIO_ICRBD_B 0x00400678 /* IO CRB Entry D_B */ | ||
187 | #define IIO_ICRBD_C 0x00400680 /* IO CRB Entry D_C */ | ||
188 | #define IIO_ICRBD_D 0x00400688 /* IO CRB Entry D_D */ | ||
189 | #define IIO_ICRBD_E 0x00400690 /* IO CRB Entry D_E */ | ||
190 | |||
191 | #define IIO_ICRBE_A 0x004006a0 /* IO CRB Entry E_A */ | ||
192 | #define IIO_ICRBE_B 0x004006a8 /* IO CRB Entry E_B */ | ||
193 | #define IIO_ICRBE_C 0x004006b0 /* IO CRB Entry E_C */ | ||
194 | #define IIO_ICRBE_D 0x004006b8 /* IO CRB Entry E_D */ | ||
195 | #define IIO_ICRBE_E 0x004006c0 /* IO CRB Entry E_E */ | ||
196 | |||
197 | #define IIO_ICSML 0x00400700 /* IO CRB Spurious Message Low */ | ||
198 | #define IIO_ICSMM 0x00400708 /* IO CRB Spurious Message Middle */ | ||
199 | #define IIO_ICSMH 0x00400710 /* IO CRB Spurious Message High */ | ||
200 | |||
201 | #define IIO_IDBSS 0x00400718 /* IO Debug Submenu Select */ | ||
202 | |||
203 | #define IIO_IBLS0 0x00410000 /* IO BTE Length Status 0 */ | ||
204 | #define IIO_IBSA0 0x00410008 /* IO BTE Source Address 0 */ | ||
205 | #define IIO_IBDA0 0x00410010 /* IO BTE Destination Address 0 */ | ||
206 | #define IIO_IBCT0 0x00410018 /* IO BTE Control Terminate 0 */ | ||
207 | #define IIO_IBNA0 0x00410020 /* IO BTE Notification Address 0 */ | ||
208 | #define IIO_IBIA0 0x00410028 /* IO BTE Interrupt Address 0 */ | ||
209 | #define IIO_IBLS1 0x00420000 /* IO BTE Length Status 1 */ | ||
210 | #define IIO_IBSA1 0x00420008 /* IO BTE Source Address 1 */ | ||
211 | #define IIO_IBDA1 0x00420010 /* IO BTE Destination Address 1 */ | ||
212 | #define IIO_IBCT1 0x00420018 /* IO BTE Control Terminate 1 */ | ||
213 | #define IIO_IBNA1 0x00420020 /* IO BTE Notification Address 1 */ | ||
214 | #define IIO_IBIA1 0x00420028 /* IO BTE Interrupt Address 1 */ | ||
215 | |||
216 | #define IIO_IPCR 0x00430000 /* IO Performance Control */ | ||
217 | #define IIO_IPPR 0x00430008 /* IO Performance Profiling */ | ||
218 | |||
219 | |||
220 | /************************************************************************ | ||
221 | * * | ||
222 | * Description: This register echoes some information from the * | ||
223 | * LB_REV_ID register. It is available through Crosstalk as described * | ||
224 | * above. The REV_NUM and MFG_NUM fields receive their values from * | ||
225 | * the REVISION and MANUFACTURER fields in the LB_REV_ID register. * | ||
226 | * The PART_NUM field's value is the Crosstalk device ID number that * | ||
227 | * Steve Miller assigned to the SHub chip. * | ||
228 | * * | ||
229 | ************************************************************************/ | ||
230 | |||
231 | typedef union ii_wid_u { | ||
232 | uint64_t ii_wid_regval; | ||
233 | struct { | ||
234 | uint64_t w_rsvd_1 : 1; | ||
235 | uint64_t w_mfg_num : 11; | ||
236 | uint64_t w_part_num : 16; | ||
237 | uint64_t w_rev_num : 4; | ||
238 | uint64_t w_rsvd : 32; | ||
239 | } ii_wid_fld_s; | ||
240 | } ii_wid_u_t; | ||
241 | |||
242 | |||
243 | /************************************************************************ | ||
244 | * * | ||
245 | * The fields in this register are set upon detection of an error * | ||
246 | * and cleared by various mechanisms, as explained in the * | ||
247 | * description. * | ||
248 | * * | ||
249 | ************************************************************************/ | ||
250 | |||
251 | typedef union ii_wstat_u { | ||
252 | uint64_t ii_wstat_regval; | ||
253 | struct { | ||
254 | uint64_t w_pending : 4; | ||
255 | uint64_t w_xt_crd_to : 1; | ||
256 | uint64_t w_xt_tail_to : 1; | ||
257 | uint64_t w_rsvd_3 : 3; | ||
258 | uint64_t w_tx_mx_rty : 1; | ||
259 | uint64_t w_rsvd_2 : 6; | ||
260 | uint64_t w_llp_tx_cnt : 8; | ||
261 | uint64_t w_rsvd_1 : 8; | ||
262 | uint64_t w_crazy : 1; | ||
263 | uint64_t w_rsvd : 31; | ||
264 | } ii_wstat_fld_s; | ||
265 | } ii_wstat_u_t; | ||
266 | |||
267 | |||
268 | /************************************************************************ | ||
269 | * * | ||
270 | * Description: This is a read-write enabled register. It controls * | ||
271 | * various aspects of the Crosstalk flow control. * | ||
272 | * * | ||
273 | ************************************************************************/ | ||
274 | |||
275 | typedef union ii_wcr_u { | ||
276 | uint64_t ii_wcr_regval; | ||
277 | struct { | ||
278 | uint64_t w_wid : 4; | ||
279 | uint64_t w_tag : 1; | ||
280 | uint64_t w_rsvd_1 : 8; | ||
281 | uint64_t w_dst_crd : 3; | ||
282 | uint64_t w_f_bad_pkt : 1; | ||
283 | uint64_t w_dir_con : 1; | ||
284 | uint64_t w_e_thresh : 5; | ||
285 | uint64_t w_rsvd : 41; | ||
286 | } ii_wcr_fld_s; | ||
287 | } ii_wcr_u_t; | ||
288 | |||
289 | |||
290 | /************************************************************************ | ||
291 | * * | ||
292 | * Description: This register's value is a bit vector that guards * | ||
293 | * access to local registers within the II as well as to external * | ||
294 | * Crosstalk widgets. Each bit in the register corresponds to a * | ||
295 | * particular region in the system; a region consists of one, two or * | ||
296 | * four nodes (depending on the value of the REGION_SIZE field in the * | ||
297 | * LB_REV_ID register, which is documented in Section 8.3.1.1). The * | ||
298 | * protection provided by this register applies to PIO read * | ||
299 | * operations as well as PIO write operations. The II will perform a * | ||
300 | * PIO read or write request only if the bit for the requestor's * | ||
301 | * region is set; otherwise, the II will not perform the requested * | ||
302 | * operation and will return an error response. When a PIO read or * | ||
303 | * write request targets an external Crosstalk widget, then not only * | ||
304 | * must the bit for the requestor's region be set in the ILAPR, but * | ||
305 | * also the target widget's bit in the IOWA register must be set in * | ||
306 | * order for the II to perform the requested operation; otherwise, * | ||
307 | * the II will return an error response. Hence, the protection * | ||
308 | * provided by the IOWA register supplements the protection provided * | ||
309 | * by the ILAPR for requests that target external Crosstalk widgets. * | ||
310 | * This register itself can be accessed only by the nodes whose * | ||
311 | * region ID bits are enabled in this same register. It can also be * | ||
312 | * accessed through the IAlias space by the local processors. * | ||
313 | * The reset value of this register allows access by all nodes. * | ||
314 | * * | ||
315 | ************************************************************************/ | ||
316 | |||
317 | typedef union ii_ilapr_u { | ||
318 | uint64_t ii_ilapr_regval; | ||
319 | struct { | ||
320 | uint64_t i_region : 64; | ||
321 | } ii_ilapr_fld_s; | ||
322 | } ii_ilapr_u_t; | ||
323 | |||
324 | |||
325 | |||
326 | |||
327 | /************************************************************************ | ||
328 | * * | ||
329 | * Description: A write to this register of the 64-bit value * | ||
330 | * "SGIrules" in ASCII, will cause the bit in the ILAPR register * | ||
331 | * corresponding to the region of the requestor to be set (allow * | ||
332 | * access). A write of any other value will be ignored. Access * | ||
333 | * protection for this register is "SGIrules". * | ||
334 | * This register can also be accessed through the IAlias space. * | ||
335 | * However, this access will not change the access permissions in the * | ||
336 | * ILAPR. * | ||
337 | * * | ||
338 | ************************************************************************/ | ||
339 | |||
340 | typedef union ii_ilapo_u { | ||
341 | uint64_t ii_ilapo_regval; | ||
342 | struct { | ||
343 | uint64_t i_io_ovrride : 64; | ||
344 | } ii_ilapo_fld_s; | ||
345 | } ii_ilapo_u_t; | ||
346 | |||
347 | |||
348 | |||
349 | /************************************************************************ | ||
350 | * * | ||
351 | * This register qualifies all the PIO and Graphics writes launched * | ||
352 | * from the SHUB towards a widget. * | ||
353 | * * | ||
354 | ************************************************************************/ | ||
355 | |||
356 | typedef union ii_iowa_u { | ||
357 | uint64_t ii_iowa_regval; | ||
358 | struct { | ||
359 | uint64_t i_w0_oac : 1; | ||
360 | uint64_t i_rsvd_1 : 7; | ||
361 | uint64_t i_wx_oac : 8; | ||
362 | uint64_t i_rsvd : 48; | ||
363 | } ii_iowa_fld_s; | ||
364 | } ii_iowa_u_t; | ||
365 | |||
366 | |||
367 | /************************************************************************ | ||
368 | * * | ||
369 | * Description: This register qualifies all the requests launched * | ||
370 | * from a widget towards the Shub. This register is intended to be * | ||
371 | * used by software in case of misbehaving widgets. * | ||
372 | * * | ||
373 | * * | ||
374 | ************************************************************************/ | ||
375 | |||
376 | typedef union ii_iiwa_u { | ||
377 | uint64_t ii_iiwa_regval; | ||
378 | struct { | ||
379 | uint64_t i_w0_iac : 1; | ||
380 | uint64_t i_rsvd_1 : 7; | ||
381 | uint64_t i_wx_iac : 8; | ||
382 | uint64_t i_rsvd : 48; | ||
383 | } ii_iiwa_fld_s; | ||
384 | } ii_iiwa_u_t; | ||
385 | |||
386 | |||
387 | |||
388 | /************************************************************************ | ||
389 | * * | ||
390 | * Description: This register qualifies all the operations launched * | ||
391 | * from a widget towards the SHub. It allows individual access * | ||
392 | * control for up to 8 devices per widget. A device refers to * | ||
393 | * individual DMA master hosted by a widget. * | ||
394 | * The bits in each field of this register are cleared by the Shub * | ||
395 | * upon detection of an error which requires the device to be * | ||
396 | * disabled. These fields assume that 0=TNUM=7 (i.e., Bridge-centric * | ||
397 | * Crosstalk). Whether or not a device has access rights to this * | ||
398 | * Shub is determined by an AND of the device enable bit in the * | ||
399 | * appropriate field of this register and the corresponding bit in * | ||
400 | * the Wx_IAC field (for the widget which this device belongs to). * | ||
401 | * The bits in this field are set by writing a 1 to them. Incoming * | ||
402 | * replies from Crosstalk are not subject to this access control * | ||
403 | * mechanism. * | ||
404 | * * | ||
405 | ************************************************************************/ | ||
406 | |||
407 | typedef union ii_iidem_u { | ||
408 | uint64_t ii_iidem_regval; | ||
409 | struct { | ||
410 | uint64_t i_w8_dxs : 8; | ||
411 | uint64_t i_w9_dxs : 8; | ||
412 | uint64_t i_wa_dxs : 8; | ||
413 | uint64_t i_wb_dxs : 8; | ||
414 | uint64_t i_wc_dxs : 8; | ||
415 | uint64_t i_wd_dxs : 8; | ||
416 | uint64_t i_we_dxs : 8; | ||
417 | uint64_t i_wf_dxs : 8; | ||
418 | } ii_iidem_fld_s; | ||
419 | } ii_iidem_u_t; | ||
420 | |||
421 | |||
422 | /************************************************************************ | ||
423 | * * | ||
424 | * This register contains the various programmable fields necessary * | ||
425 | * for controlling and observing the LLP signals. * | ||
426 | * * | ||
427 | ************************************************************************/ | ||
428 | |||
429 | typedef union ii_ilcsr_u { | ||
430 | uint64_t ii_ilcsr_regval; | ||
431 | struct { | ||
432 | uint64_t i_nullto : 6; | ||
433 | uint64_t i_rsvd_4 : 2; | ||
434 | uint64_t i_wrmrst : 1; | ||
435 | uint64_t i_rsvd_3 : 1; | ||
436 | uint64_t i_llp_en : 1; | ||
437 | uint64_t i_bm8 : 1; | ||
438 | uint64_t i_llp_stat : 2; | ||
439 | uint64_t i_remote_power : 1; | ||
440 | uint64_t i_rsvd_2 : 1; | ||
441 | uint64_t i_maxrtry : 10; | ||
442 | uint64_t i_d_avail_sel : 2; | ||
443 | uint64_t i_rsvd_1 : 4; | ||
444 | uint64_t i_maxbrst : 10; | ||
445 | uint64_t i_rsvd : 22; | ||
446 | |||
447 | } ii_ilcsr_fld_s; | ||
448 | } ii_ilcsr_u_t; | ||
449 | |||
450 | |||
451 | /************************************************************************ | ||
452 | * * | ||
453 | * This is simply a status registers that monitors the LLP error * | ||
454 | * rate. * | ||
455 | * * | ||
456 | ************************************************************************/ | ||
457 | |||
458 | typedef union ii_illr_u { | ||
459 | uint64_t ii_illr_regval; | ||
460 | struct { | ||
461 | uint64_t i_sn_cnt : 16; | ||
462 | uint64_t i_cb_cnt : 16; | ||
463 | uint64_t i_rsvd : 32; | ||
464 | } ii_illr_fld_s; | ||
465 | } ii_illr_u_t; | ||
466 | |||
467 | |||
468 | /************************************************************************ | ||
469 | * * | ||
470 | * Description: All II-detected non-BTE error interrupts are * | ||
471 | * specified via this register. * | ||
472 | * NOTE: The PI interrupt register address is hardcoded in the II. If * | ||
473 | * PI_ID==0, then the II sends an interrupt request (Duplonet PWRI * | ||
474 | * packet) to address offset 0x0180_0090 within the local register * | ||
475 | * address space of PI0 on the node specified by the NODE field. If * | ||
476 | * PI_ID==1, then the II sends the interrupt request to address * | ||
477 | * offset 0x01A0_0090 within the local register address space of PI1 * | ||
478 | * on the node specified by the NODE field. * | ||
479 | * * | ||
480 | ************************************************************************/ | ||
481 | |||
482 | typedef union ii_iidsr_u { | ||
483 | uint64_t ii_iidsr_regval; | ||
484 | struct { | ||
485 | uint64_t i_level : 8; | ||
486 | uint64_t i_pi_id : 1; | ||
487 | uint64_t i_node : 11; | ||
488 | uint64_t i_rsvd_3 : 4; | ||
489 | uint64_t i_enable : 1; | ||
490 | uint64_t i_rsvd_2 : 3; | ||
491 | uint64_t i_int_sent : 2; | ||
492 | uint64_t i_rsvd_1 : 2; | ||
493 | uint64_t i_pi0_forward_int : 1; | ||
494 | uint64_t i_pi1_forward_int : 1; | ||
495 | uint64_t i_rsvd : 30; | ||
496 | } ii_iidsr_fld_s; | ||
497 | } ii_iidsr_u_t; | ||
498 | |||
499 | |||
500 | |||
501 | /************************************************************************ | ||
502 | * * | ||
503 | * There are two instances of this register. This register is used * | ||
504 | * for matching up the incoming responses from the graphics widget to * | ||
505 | * the processor that initiated the graphics operation. The * | ||
506 | * write-responses are converted to graphics credits and returned to * | ||
507 | * the processor so that the processor interface can manage the flow * | ||
508 | * control. * | ||
509 | * * | ||
510 | ************************************************************************/ | ||
511 | |||
512 | typedef union ii_igfx0_u { | ||
513 | uint64_t ii_igfx0_regval; | ||
514 | struct { | ||
515 | uint64_t i_w_num : 4; | ||
516 | uint64_t i_pi_id : 1; | ||
517 | uint64_t i_n_num : 12; | ||
518 | uint64_t i_p_num : 1; | ||
519 | uint64_t i_rsvd : 46; | ||
520 | } ii_igfx0_fld_s; | ||
521 | } ii_igfx0_u_t; | ||
522 | |||
523 | |||
524 | /************************************************************************ | ||
525 | * * | ||
526 | * There are two instances of this register. This register is used * | ||
527 | * for matching up the incoming responses from the graphics widget to * | ||
528 | * the processor that initiated the graphics operation. The * | ||
529 | * write-responses are converted to graphics credits and returned to * | ||
530 | * the processor so that the processor interface can manage the flow * | ||
531 | * control. * | ||
532 | * * | ||
533 | ************************************************************************/ | ||
534 | |||
535 | typedef union ii_igfx1_u { | ||
536 | uint64_t ii_igfx1_regval; | ||
537 | struct { | ||
538 | uint64_t i_w_num : 4; | ||
539 | uint64_t i_pi_id : 1; | ||
540 | uint64_t i_n_num : 12; | ||
541 | uint64_t i_p_num : 1; | ||
542 | uint64_t i_rsvd : 46; | ||
543 | } ii_igfx1_fld_s; | ||
544 | } ii_igfx1_u_t; | ||
545 | |||
546 | |||
547 | /************************************************************************ | ||
548 | * * | ||
549 | * There are two instances of this registers. These registers are * | ||
550 | * used as scratch registers for software use. * | ||
551 | * * | ||
552 | ************************************************************************/ | ||
553 | |||
554 | typedef union ii_iscr0_u { | ||
555 | uint64_t ii_iscr0_regval; | ||
556 | struct { | ||
557 | uint64_t i_scratch : 64; | ||
558 | } ii_iscr0_fld_s; | ||
559 | } ii_iscr0_u_t; | ||
560 | |||
561 | |||
562 | |||
563 | /************************************************************************ | ||
564 | * * | ||
565 | * There are two instances of this registers. These registers are * | ||
566 | * used as scratch registers for software use. * | ||
567 | * * | ||
568 | ************************************************************************/ | ||
569 | |||
570 | typedef union ii_iscr1_u { | ||
571 | uint64_t ii_iscr1_regval; | ||
572 | struct { | ||
573 | uint64_t i_scratch : 64; | ||
574 | } ii_iscr1_fld_s; | ||
575 | } ii_iscr1_u_t; | ||
576 | |||
577 | |||
578 | /************************************************************************ | ||
579 | * * | ||
580 | * Description: There are seven instances of translation table entry * | ||
581 | * registers. Each register maps a Shub Big Window to a 48-bit * | ||
582 | * address on Crosstalk. * | ||
583 | * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window * | ||
584 | * number) are used to select one of these 7 registers. The Widget * | ||
585 | * number field is then derived from the W_NUM field for synthesizing * | ||
586 | * a Crosstalk packet. The 5 bits of OFFSET are concatenated with * | ||
587 | * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34] * | ||
588 | * are padded with zeros. Although the maximum Crosstalk space * | ||
589 | * addressable by the SHub is thus the lower 16 GBytes per widget * | ||
590 | * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this * | ||
591 | * space can be accessed. * | ||
592 | * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big * | ||
593 | * Window number) are used to select one of these 7 registers. The * | ||
594 | * Widget number field is then derived from the W_NUM field for * | ||
595 | * synthesizing a Crosstalk packet. The 5 bits of OFFSET are * | ||
596 | * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP * | ||
597 | * field is used as Crosstalk[47], and remainder of the Crosstalk * | ||
598 | * address bits (Crosstalk[46:34]) are always zero. While the maximum * | ||
599 | * Crosstalk space addressable by the Shub is thus the lower * | ||
600 | * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB> * | ||
601 | * of this space can be accessed. * | ||
602 | * * | ||
603 | ************************************************************************/ | ||
604 | |||
605 | typedef union ii_itte1_u { | ||
606 | uint64_t ii_itte1_regval; | ||
607 | struct { | ||
608 | uint64_t i_offset : 5; | ||
609 | uint64_t i_rsvd_1 : 3; | ||
610 | uint64_t i_w_num : 4; | ||
611 | uint64_t i_iosp : 1; | ||
612 | uint64_t i_rsvd : 51; | ||
613 | } ii_itte1_fld_s; | ||
614 | } ii_itte1_u_t; | ||
615 | |||
616 | |||
617 | /************************************************************************ | ||
618 | * * | ||
619 | * Description: There are seven instances of translation table entry * | ||
620 | * registers. Each register maps a Shub Big Window to a 48-bit * | ||
621 | * address on Crosstalk. * | ||
622 | * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window * | ||
623 | * number) are used to select one of these 7 registers. The Widget * | ||
624 | * number field is then derived from the W_NUM field for synthesizing * | ||
625 | * a Crosstalk packet. The 5 bits of OFFSET are concatenated with * | ||
626 | * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34] * | ||
627 | * are padded with zeros. Although the maximum Crosstalk space * | ||
628 | * addressable by the Shub is thus the lower 16 GBytes per widget * | ||
629 | * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this * | ||
630 | * space can be accessed. * | ||
631 | * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big * | ||
632 | * Window number) are used to select one of these 7 registers. The * | ||
633 | * Widget number field is then derived from the W_NUM field for * | ||
634 | * synthesizing a Crosstalk packet. The 5 bits of OFFSET are * | ||
635 | * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP * | ||
636 | * field is used as Crosstalk[47], and remainder of the Crosstalk * | ||
637 | * address bits (Crosstalk[46:34]) are always zero. While the maximum * | ||
638 | * Crosstalk space addressable by the Shub is thus the lower * | ||
639 | * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB> * | ||
640 | * of this space can be accessed. * | ||
641 | * * | ||
642 | ************************************************************************/ | ||
643 | |||
644 | typedef union ii_itte2_u { | ||
645 | uint64_t ii_itte2_regval; | ||
646 | struct { | ||
647 | uint64_t i_offset : 5; | ||
648 | uint64_t i_rsvd_1 : 3; | ||
649 | uint64_t i_w_num : 4; | ||
650 | uint64_t i_iosp : 1; | ||
651 | uint64_t i_rsvd : 51; | ||
652 | } ii_itte2_fld_s; | ||
653 | } ii_itte2_u_t; | ||
654 | |||
655 | |||
656 | /************************************************************************ | ||
657 | * * | ||
658 | * Description: There are seven instances of translation table entry * | ||
659 | * registers. Each register maps a Shub Big Window to a 48-bit * | ||
660 | * address on Crosstalk. * | ||
661 | * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window * | ||
662 | * number) are used to select one of these 7 registers. The Widget * | ||
663 | * number field is then derived from the W_NUM field for synthesizing * | ||
664 | * a Crosstalk packet. The 5 bits of OFFSET are concatenated with * | ||
665 | * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34] * | ||
666 | * are padded with zeros. Although the maximum Crosstalk space * | ||
667 | * addressable by the Shub is thus the lower 16 GBytes per widget * | ||
668 | * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this * | ||
669 | * space can be accessed. * | ||
670 | * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big * | ||
671 | * Window number) are used to select one of these 7 registers. The * | ||
672 | * Widget number field is then derived from the W_NUM field for * | ||
673 | * synthesizing a Crosstalk packet. The 5 bits of OFFSET are * | ||
674 | * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP * | ||
675 | * field is used as Crosstalk[47], and remainder of the Crosstalk * | ||
676 | * address bits (Crosstalk[46:34]) are always zero. While the maximum * | ||
677 | * Crosstalk space addressable by the SHub is thus the lower * | ||
678 | * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB> * | ||
679 | * of this space can be accessed. * | ||
680 | * * | ||
681 | ************************************************************************/ | ||
682 | |||
683 | typedef union ii_itte3_u { | ||
684 | uint64_t ii_itte3_regval; | ||
685 | struct { | ||
686 | uint64_t i_offset : 5; | ||
687 | uint64_t i_rsvd_1 : 3; | ||
688 | uint64_t i_w_num : 4; | ||
689 | uint64_t i_iosp : 1; | ||
690 | uint64_t i_rsvd : 51; | ||
691 | } ii_itte3_fld_s; | ||
692 | } ii_itte3_u_t; | ||
693 | |||
694 | |||
695 | /************************************************************************ | ||
696 | * * | ||
697 | * Description: There are seven instances of translation table entry * | ||
698 | * registers. Each register maps a SHub Big Window to a 48-bit * | ||
699 | * address on Crosstalk. * | ||
700 | * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window * | ||
701 | * number) are used to select one of these 7 registers. The Widget * | ||
702 | * number field is then derived from the W_NUM field for synthesizing * | ||
703 | * a Crosstalk packet. The 5 bits of OFFSET are concatenated with * | ||
704 | * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34] * | ||
705 | * are padded with zeros. Although the maximum Crosstalk space * | ||
706 | * addressable by the SHub is thus the lower 16 GBytes per widget * | ||
707 | * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this * | ||
708 | * space can be accessed. * | ||
709 | * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big * | ||
710 | * Window number) are used to select one of these 7 registers. The * | ||
711 | * Widget number field is then derived from the W_NUM field for * | ||
712 | * synthesizing a Crosstalk packet. The 5 bits of OFFSET are * | ||
713 | * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP * | ||
714 | * field is used as Crosstalk[47], and remainder of the Crosstalk * | ||
715 | * address bits (Crosstalk[46:34]) are always zero. While the maximum * | ||
716 | * Crosstalk space addressable by the SHub is thus the lower * | ||
717 | * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB> * | ||
718 | * of this space can be accessed. * | ||
719 | * * | ||
720 | ************************************************************************/ | ||
721 | |||
722 | typedef union ii_itte4_u { | ||
723 | uint64_t ii_itte4_regval; | ||
724 | struct { | ||
725 | uint64_t i_offset : 5; | ||
726 | uint64_t i_rsvd_1 : 3; | ||
727 | uint64_t i_w_num : 4; | ||
728 | uint64_t i_iosp : 1; | ||
729 | uint64_t i_rsvd : 51; | ||
730 | } ii_itte4_fld_s; | ||
731 | } ii_itte4_u_t; | ||
732 | |||
733 | |||
734 | /************************************************************************ | ||
735 | * * | ||
736 | * Description: There are seven instances of translation table entry * | ||
737 | * registers. Each register maps a SHub Big Window to a 48-bit * | ||
738 | * address on Crosstalk. * | ||
739 | * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window * | ||
740 | * number) are used to select one of these 7 registers. The Widget * | ||
741 | * number field is then derived from the W_NUM field for synthesizing * | ||
742 | * a Crosstalk packet. The 5 bits of OFFSET are concatenated with * | ||
743 | * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34] * | ||
744 | * are padded with zeros. Although the maximum Crosstalk space * | ||
745 | * addressable by the Shub is thus the lower 16 GBytes per widget * | ||
746 | * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this * | ||
747 | * space can be accessed. * | ||
748 | * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big * | ||
749 | * Window number) are used to select one of these 7 registers. The * | ||
750 | * Widget number field is then derived from the W_NUM field for * | ||
751 | * synthesizing a Crosstalk packet. The 5 bits of OFFSET are * | ||
752 | * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP * | ||
753 | * field is used as Crosstalk[47], and remainder of the Crosstalk * | ||
754 | * address bits (Crosstalk[46:34]) are always zero. While the maximum * | ||
755 | * Crosstalk space addressable by the Shub is thus the lower * | ||
756 | * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB> * | ||
757 | * of this space can be accessed. * | ||
758 | * * | ||
759 | ************************************************************************/ | ||
760 | |||
761 | typedef union ii_itte5_u { | ||
762 | uint64_t ii_itte5_regval; | ||
763 | struct { | ||
764 | uint64_t i_offset : 5; | ||
765 | uint64_t i_rsvd_1 : 3; | ||
766 | uint64_t i_w_num : 4; | ||
767 | uint64_t i_iosp : 1; | ||
768 | uint64_t i_rsvd : 51; | ||
769 | } ii_itte5_fld_s; | ||
770 | } ii_itte5_u_t; | ||
771 | |||
772 | |||
773 | /************************************************************************ | ||
774 | * * | ||
775 | * Description: There are seven instances of translation table entry * | ||
776 | * registers. Each register maps a Shub Big Window to a 48-bit * | ||
777 | * address on Crosstalk. * | ||
778 | * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window * | ||
779 | * number) are used to select one of these 7 registers. The Widget * | ||
780 | * number field is then derived from the W_NUM field for synthesizing * | ||
781 | * a Crosstalk packet. The 5 bits of OFFSET are concatenated with * | ||
782 | * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34] * | ||
783 | * are padded with zeros. Although the maximum Crosstalk space * | ||
784 | * addressable by the Shub is thus the lower 16 GBytes per widget * | ||
785 | * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this * | ||
786 | * space can be accessed. * | ||
787 | * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big * | ||
788 | * Window number) are used to select one of these 7 registers. The * | ||
789 | * Widget number field is then derived from the W_NUM field for * | ||
790 | * synthesizing a Crosstalk packet. The 5 bits of OFFSET are * | ||
791 | * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP * | ||
792 | * field is used as Crosstalk[47], and remainder of the Crosstalk * | ||
793 | * address bits (Crosstalk[46:34]) are always zero. While the maximum * | ||
794 | * Crosstalk space addressable by the Shub is thus the lower * | ||
795 | * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB> * | ||
796 | * of this space can be accessed. * | ||
797 | * * | ||
798 | ************************************************************************/ | ||
799 | |||
800 | typedef union ii_itte6_u { | ||
801 | uint64_t ii_itte6_regval; | ||
802 | struct { | ||
803 | uint64_t i_offset : 5; | ||
804 | uint64_t i_rsvd_1 : 3; | ||
805 | uint64_t i_w_num : 4; | ||
806 | uint64_t i_iosp : 1; | ||
807 | uint64_t i_rsvd : 51; | ||
808 | } ii_itte6_fld_s; | ||
809 | } ii_itte6_u_t; | ||
810 | |||
811 | |||
812 | /************************************************************************ | ||
813 | * * | ||
814 | * Description: There are seven instances of translation table entry * | ||
815 | * registers. Each register maps a Shub Big Window to a 48-bit * | ||
816 | * address on Crosstalk. * | ||
817 | * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window * | ||
818 | * number) are used to select one of these 7 registers. The Widget * | ||
819 | * number field is then derived from the W_NUM field for synthesizing * | ||
820 | * a Crosstalk packet. The 5 bits of OFFSET are concatenated with * | ||
821 | * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34] * | ||
822 | * are padded with zeros. Although the maximum Crosstalk space * | ||
823 | * addressable by the Shub is thus the lower 16 GBytes per widget * | ||
824 | * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this * | ||
825 | * space can be accessed. * | ||
826 | * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big * | ||
827 | * Window number) are used to select one of these 7 registers. The * | ||
828 | * Widget number field is then derived from the W_NUM field for * | ||
829 | * synthesizing a Crosstalk packet. The 5 bits of OFFSET are * | ||
830 | * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP * | ||
831 | * field is used as Crosstalk[47], and remainder of the Crosstalk * | ||
832 | * address bits (Crosstalk[46:34]) are always zero. While the maximum * | ||
833 | * Crosstalk space addressable by the SHub is thus the lower * | ||
834 | * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB> * | ||
835 | * of this space can be accessed. * | ||
836 | * * | ||
837 | ************************************************************************/ | ||
838 | |||
839 | typedef union ii_itte7_u { | ||
840 | uint64_t ii_itte7_regval; | ||
841 | struct { | ||
842 | uint64_t i_offset : 5; | ||
843 | uint64_t i_rsvd_1 : 3; | ||
844 | uint64_t i_w_num : 4; | ||
845 | uint64_t i_iosp : 1; | ||
846 | uint64_t i_rsvd : 51; | ||
847 | } ii_itte7_fld_s; | ||
848 | } ii_itte7_u_t; | ||
849 | |||
850 | |||
851 | /************************************************************************ | ||
852 | * * | ||
853 | * Description: There are 9 instances of this register, one per * | ||
854 | * actual widget in this implementation of SHub and Crossbow. * | ||
855 | * Note: Crossbow only has ports for Widgets 8 through F, widget 0 * | ||
856 | * refers to Crossbow's internal space. * | ||
857 | * This register contains the state elements per widget that are * | ||
858 | * necessary to manage the PIO flow control on Crosstalk and on the * | ||
859 | * Router Network. See the PIO Flow Control chapter for a complete * | ||
860 | * description of this register * | ||
861 | * The SPUR_WR bit requires some explanation. When this register is * | ||
862 | * written, the new value of the C field is captured in an internal * | ||
863 | * register so the hardware can remember what the programmer wrote * | ||
864 | * into the credit counter. The SPUR_WR bit sets whenever the C field * | ||
865 | * increments above this stored value, which indicates that there * | ||
866 | * have been more responses received than requests sent. The SPUR_WR * | ||
867 | * bit cannot be cleared until a value is written to the IPRBx * | ||
868 | * register; the write will correct the C field and capture its new * | ||
869 | * value in the internal register. Even if IECLR[E_PRB_x] is set, the * | ||
870 | * SPUR_WR bit will persist if IPRBx hasn't yet been written. * | ||
871 | * . * | ||
872 | * * | ||
873 | ************************************************************************/ | ||
874 | |||
875 | typedef union ii_iprb0_u { | ||
876 | uint64_t ii_iprb0_regval; | ||
877 | struct { | ||
878 | uint64_t i_c : 8; | ||
879 | uint64_t i_na : 14; | ||
880 | uint64_t i_rsvd_2 : 2; | ||
881 | uint64_t i_nb : 14; | ||
882 | uint64_t i_rsvd_1 : 2; | ||
883 | uint64_t i_m : 2; | ||
884 | uint64_t i_f : 1; | ||
885 | uint64_t i_of_cnt : 5; | ||
886 | uint64_t i_error : 1; | ||
887 | uint64_t i_rd_to : 1; | ||
888 | uint64_t i_spur_wr : 1; | ||
889 | uint64_t i_spur_rd : 1; | ||
890 | uint64_t i_rsvd : 11; | ||
891 | uint64_t i_mult_err : 1; | ||
892 | } ii_iprb0_fld_s; | ||
893 | } ii_iprb0_u_t; | ||
894 | |||
895 | |||
896 | /************************************************************************ | ||
897 | * * | ||
898 | * Description: There are 9 instances of this register, one per * | ||
899 | * actual widget in this implementation of SHub and Crossbow. * | ||
900 | * Note: Crossbow only has ports for Widgets 8 through F, widget 0 * | ||
901 | * refers to Crossbow's internal space. * | ||
902 | * This register contains the state elements per widget that are * | ||
903 | * necessary to manage the PIO flow control on Crosstalk and on the * | ||
904 | * Router Network. See the PIO Flow Control chapter for a complete * | ||
905 | * description of this register * | ||
906 | * The SPUR_WR bit requires some explanation. When this register is * | ||
907 | * written, the new value of the C field is captured in an internal * | ||
908 | * register so the hardware can remember what the programmer wrote * | ||
909 | * into the credit counter. The SPUR_WR bit sets whenever the C field * | ||
910 | * increments above this stored value, which indicates that there * | ||
911 | * have been more responses received than requests sent. The SPUR_WR * | ||
912 | * bit cannot be cleared until a value is written to the IPRBx * | ||
913 | * register; the write will correct the C field and capture its new * | ||
914 | * value in the internal register. Even if IECLR[E_PRB_x] is set, the * | ||
915 | * SPUR_WR bit will persist if IPRBx hasn't yet been written. * | ||
916 | * . * | ||
917 | * * | ||
918 | ************************************************************************/ | ||
919 | |||
920 | typedef union ii_iprb8_u { | ||
921 | uint64_t ii_iprb8_regval; | ||
922 | struct { | ||
923 | uint64_t i_c : 8; | ||
924 | uint64_t i_na : 14; | ||
925 | uint64_t i_rsvd_2 : 2; | ||
926 | uint64_t i_nb : 14; | ||
927 | uint64_t i_rsvd_1 : 2; | ||
928 | uint64_t i_m : 2; | ||
929 | uint64_t i_f : 1; | ||
930 | uint64_t i_of_cnt : 5; | ||
931 | uint64_t i_error : 1; | ||
932 | uint64_t i_rd_to : 1; | ||
933 | uint64_t i_spur_wr : 1; | ||
934 | uint64_t i_spur_rd : 1; | ||
935 | uint64_t i_rsvd : 11; | ||
936 | uint64_t i_mult_err : 1; | ||
937 | } ii_iprb8_fld_s; | ||
938 | } ii_iprb8_u_t; | ||
939 | |||
940 | |||
941 | /************************************************************************ | ||
942 | * * | ||
943 | * Description: There are 9 instances of this register, one per * | ||
944 | * actual widget in this implementation of SHub and Crossbow. * | ||
945 | * Note: Crossbow only has ports for Widgets 8 through F, widget 0 * | ||
946 | * refers to Crossbow's internal space. * | ||
947 | * This register contains the state elements per widget that are * | ||
948 | * necessary to manage the PIO flow control on Crosstalk and on the * | ||
949 | * Router Network. See the PIO Flow Control chapter for a complete * | ||
950 | * description of this register * | ||
951 | * The SPUR_WR bit requires some explanation. When this register is * | ||
952 | * written, the new value of the C field is captured in an internal * | ||
953 | * register so the hardware can remember what the programmer wrote * | ||
954 | * into the credit counter. The SPUR_WR bit sets whenever the C field * | ||
955 | * increments above this stored value, which indicates that there * | ||
956 | * have been more responses received than requests sent. The SPUR_WR * | ||
957 | * bit cannot be cleared until a value is written to the IPRBx * | ||
958 | * register; the write will correct the C field and capture its new * | ||
959 | * value in the internal register. Even if IECLR[E_PRB_x] is set, the * | ||
960 | * SPUR_WR bit will persist if IPRBx hasn't yet been written. * | ||
961 | * . * | ||
962 | * * | ||
963 | ************************************************************************/ | ||
964 | |||
965 | typedef union ii_iprb9_u { | ||
966 | uint64_t ii_iprb9_regval; | ||
967 | struct { | ||
968 | uint64_t i_c : 8; | ||
969 | uint64_t i_na : 14; | ||
970 | uint64_t i_rsvd_2 : 2; | ||
971 | uint64_t i_nb : 14; | ||
972 | uint64_t i_rsvd_1 : 2; | ||
973 | uint64_t i_m : 2; | ||
974 | uint64_t i_f : 1; | ||
975 | uint64_t i_of_cnt : 5; | ||
976 | uint64_t i_error : 1; | ||
977 | uint64_t i_rd_to : 1; | ||
978 | uint64_t i_spur_wr : 1; | ||
979 | uint64_t i_spur_rd : 1; | ||
980 | uint64_t i_rsvd : 11; | ||
981 | uint64_t i_mult_err : 1; | ||
982 | } ii_iprb9_fld_s; | ||
983 | } ii_iprb9_u_t; | ||
984 | |||
985 | |||
986 | /************************************************************************ | ||
987 | * * | ||
988 | * Description: There are 9 instances of this register, one per * | ||
989 | * actual widget in this implementation of SHub and Crossbow. * | ||
990 | * Note: Crossbow only has ports for Widgets 8 through F, widget 0 * | ||
991 | * refers to Crossbow's internal space. * | ||
992 | * This register contains the state elements per widget that are * | ||
993 | * necessary to manage the PIO flow control on Crosstalk and on the * | ||
994 | * Router Network. See the PIO Flow Control chapter for a complete * | ||
995 | * description of this register * | ||
996 | * The SPUR_WR bit requires some explanation. When this register is * | ||
997 | * written, the new value of the C field is captured in an internal * | ||
998 | * register so the hardware can remember what the programmer wrote * | ||
999 | * into the credit counter. The SPUR_WR bit sets whenever the C field * | ||
1000 | * increments above this stored value, which indicates that there * | ||
1001 | * have been more responses received than requests sent. The SPUR_WR * | ||
1002 | * bit cannot be cleared until a value is written to the IPRBx * | ||
1003 | * register; the write will correct the C field and capture its new * | ||
1004 | * value in the internal register. Even if IECLR[E_PRB_x] is set, the * | ||
1005 | * SPUR_WR bit will persist if IPRBx hasn't yet been written. * | ||
1006 | * * | ||
1007 | * * | ||
1008 | ************************************************************************/ | ||
1009 | |||
1010 | typedef union ii_iprba_u { | ||
1011 | uint64_t ii_iprba_regval; | ||
1012 | struct { | ||
1013 | uint64_t i_c : 8; | ||
1014 | uint64_t i_na : 14; | ||
1015 | uint64_t i_rsvd_2 : 2; | ||
1016 | uint64_t i_nb : 14; | ||
1017 | uint64_t i_rsvd_1 : 2; | ||
1018 | uint64_t i_m : 2; | ||
1019 | uint64_t i_f : 1; | ||
1020 | uint64_t i_of_cnt : 5; | ||
1021 | uint64_t i_error : 1; | ||
1022 | uint64_t i_rd_to : 1; | ||
1023 | uint64_t i_spur_wr : 1; | ||
1024 | uint64_t i_spur_rd : 1; | ||
1025 | uint64_t i_rsvd : 11; | ||
1026 | uint64_t i_mult_err : 1; | ||
1027 | } ii_iprba_fld_s; | ||
1028 | } ii_iprba_u_t; | ||
1029 | |||
1030 | |||
1031 | /************************************************************************ | ||
1032 | * * | ||
1033 | * Description: There are 9 instances of this register, one per * | ||
1034 | * actual widget in this implementation of SHub and Crossbow. * | ||
1035 | * Note: Crossbow only has ports for Widgets 8 through F, widget 0 * | ||
1036 | * refers to Crossbow's internal space. * | ||
1037 | * This register contains the state elements per widget that are * | ||
1038 | * necessary to manage the PIO flow control on Crosstalk and on the * | ||
1039 | * Router Network. See the PIO Flow Control chapter for a complete * | ||
1040 | * description of this register * | ||
1041 | * The SPUR_WR bit requires some explanation. When this register is * | ||
1042 | * written, the new value of the C field is captured in an internal * | ||
1043 | * register so the hardware can remember what the programmer wrote * | ||
1044 | * into the credit counter. The SPUR_WR bit sets whenever the C field * | ||
1045 | * increments above this stored value, which indicates that there * | ||
1046 | * have been more responses received than requests sent. The SPUR_WR * | ||
1047 | * bit cannot be cleared until a value is written to the IPRBx * | ||
1048 | * register; the write will correct the C field and capture its new * | ||
1049 | * value in the internal register. Even if IECLR[E_PRB_x] is set, the * | ||
1050 | * SPUR_WR bit will persist if IPRBx hasn't yet been written. * | ||
1051 | * . * | ||
1052 | * * | ||
1053 | ************************************************************************/ | ||
1054 | |||
1055 | typedef union ii_iprbb_u { | ||
1056 | uint64_t ii_iprbb_regval; | ||
1057 | struct { | ||
1058 | uint64_t i_c : 8; | ||
1059 | uint64_t i_na : 14; | ||
1060 | uint64_t i_rsvd_2 : 2; | ||
1061 | uint64_t i_nb : 14; | ||
1062 | uint64_t i_rsvd_1 : 2; | ||
1063 | uint64_t i_m : 2; | ||
1064 | uint64_t i_f : 1; | ||
1065 | uint64_t i_of_cnt : 5; | ||
1066 | uint64_t i_error : 1; | ||
1067 | uint64_t i_rd_to : 1; | ||
1068 | uint64_t i_spur_wr : 1; | ||
1069 | uint64_t i_spur_rd : 1; | ||
1070 | uint64_t i_rsvd : 11; | ||
1071 | uint64_t i_mult_err : 1; | ||
1072 | } ii_iprbb_fld_s; | ||
1073 | } ii_iprbb_u_t; | ||
1074 | |||
1075 | |||
1076 | /************************************************************************ | ||
1077 | * * | ||
1078 | * Description: There are 9 instances of this register, one per * | ||
1079 | * actual widget in this implementation of SHub and Crossbow. * | ||
1080 | * Note: Crossbow only has ports for Widgets 8 through F, widget 0 * | ||
1081 | * refers to Crossbow's internal space. * | ||
1082 | * This register contains the state elements per widget that are * | ||
1083 | * necessary to manage the PIO flow control on Crosstalk and on the * | ||
1084 | * Router Network. See the PIO Flow Control chapter for a complete * | ||
1085 | * description of this register * | ||
1086 | * The SPUR_WR bit requires some explanation. When this register is * | ||
1087 | * written, the new value of the C field is captured in an internal * | ||
1088 | * register so the hardware can remember what the programmer wrote * | ||
1089 | * into the credit counter. The SPUR_WR bit sets whenever the C field * | ||
1090 | * increments above this stored value, which indicates that there * | ||
1091 | * have been more responses received than requests sent. The SPUR_WR * | ||
1092 | * bit cannot be cleared until a value is written to the IPRBx * | ||
1093 | * register; the write will correct the C field and capture its new * | ||
1094 | * value in the internal register. Even if IECLR[E_PRB_x] is set, the * | ||
1095 | * SPUR_WR bit will persist if IPRBx hasn't yet been written. * | ||
1096 | * . * | ||
1097 | * * | ||
1098 | ************************************************************************/ | ||
1099 | |||
1100 | typedef union ii_iprbc_u { | ||
1101 | uint64_t ii_iprbc_regval; | ||
1102 | struct { | ||
1103 | uint64_t i_c : 8; | ||
1104 | uint64_t i_na : 14; | ||
1105 | uint64_t i_rsvd_2 : 2; | ||
1106 | uint64_t i_nb : 14; | ||
1107 | uint64_t i_rsvd_1 : 2; | ||
1108 | uint64_t i_m : 2; | ||
1109 | uint64_t i_f : 1; | ||
1110 | uint64_t i_of_cnt : 5; | ||
1111 | uint64_t i_error : 1; | ||
1112 | uint64_t i_rd_to : 1; | ||
1113 | uint64_t i_spur_wr : 1; | ||
1114 | uint64_t i_spur_rd : 1; | ||
1115 | uint64_t i_rsvd : 11; | ||
1116 | uint64_t i_mult_err : 1; | ||
1117 | } ii_iprbc_fld_s; | ||
1118 | } ii_iprbc_u_t; | ||
1119 | |||
1120 | |||
1121 | /************************************************************************ | ||
1122 | * * | ||
1123 | * Description: There are 9 instances of this register, one per * | ||
1124 | * actual widget in this implementation of SHub and Crossbow. * | ||
1125 | * Note: Crossbow only has ports for Widgets 8 through F, widget 0 * | ||
1126 | * refers to Crossbow's internal space. * | ||
1127 | * This register contains the state elements per widget that are * | ||
1128 | * necessary to manage the PIO flow control on Crosstalk and on the * | ||
1129 | * Router Network. See the PIO Flow Control chapter for a complete * | ||
1130 | * description of this register * | ||
1131 | * The SPUR_WR bit requires some explanation. When this register is * | ||
1132 | * written, the new value of the C field is captured in an internal * | ||
1133 | * register so the hardware can remember what the programmer wrote * | ||
1134 | * into the credit counter. The SPUR_WR bit sets whenever the C field * | ||
1135 | * increments above this stored value, which indicates that there * | ||
1136 | * have been more responses received than requests sent. The SPUR_WR * | ||
1137 | * bit cannot be cleared until a value is written to the IPRBx * | ||
1138 | * register; the write will correct the C field and capture its new * | ||
1139 | * value in the internal register. Even if IECLR[E_PRB_x] is set, the * | ||
1140 | * SPUR_WR bit will persist if IPRBx hasn't yet been written. * | ||
1141 | * . * | ||
1142 | * * | ||
1143 | ************************************************************************/ | ||
1144 | |||
1145 | typedef union ii_iprbd_u { | ||
1146 | uint64_t ii_iprbd_regval; | ||
1147 | struct { | ||
1148 | uint64_t i_c : 8; | ||
1149 | uint64_t i_na : 14; | ||
1150 | uint64_t i_rsvd_2 : 2; | ||
1151 | uint64_t i_nb : 14; | ||
1152 | uint64_t i_rsvd_1 : 2; | ||
1153 | uint64_t i_m : 2; | ||
1154 | uint64_t i_f : 1; | ||
1155 | uint64_t i_of_cnt : 5; | ||
1156 | uint64_t i_error : 1; | ||
1157 | uint64_t i_rd_to : 1; | ||
1158 | uint64_t i_spur_wr : 1; | ||
1159 | uint64_t i_spur_rd : 1; | ||
1160 | uint64_t i_rsvd : 11; | ||
1161 | uint64_t i_mult_err : 1; | ||
1162 | } ii_iprbd_fld_s; | ||
1163 | } ii_iprbd_u_t; | ||
1164 | |||
1165 | |||
1166 | /************************************************************************ | ||
1167 | * * | ||
1168 | * Description: There are 9 instances of this register, one per * | ||
1169 | * actual widget in this implementation of SHub and Crossbow. * | ||
1170 | * Note: Crossbow only has ports for Widgets 8 through F, widget 0 * | ||
1171 | * refers to Crossbow's internal space. * | ||
1172 | * This register contains the state elements per widget that are * | ||
1173 | * necessary to manage the PIO flow control on Crosstalk and on the * | ||
1174 | * Router Network. See the PIO Flow Control chapter for a complete * | ||
1175 | * description of this register * | ||
1176 | * The SPUR_WR bit requires some explanation. When this register is * | ||
1177 | * written, the new value of the C field is captured in an internal * | ||
1178 | * register so the hardware can remember what the programmer wrote * | ||
1179 | * into the credit counter. The SPUR_WR bit sets whenever the C field * | ||
1180 | * increments above this stored value, which indicates that there * | ||
1181 | * have been more responses received than requests sent. The SPUR_WR * | ||
1182 | * bit cannot be cleared until a value is written to the IPRBx * | ||
1183 | * register; the write will correct the C field and capture its new * | ||
1184 | * value in the internal register. Even if IECLR[E_PRB_x] is set, the * | ||
1185 | * SPUR_WR bit will persist if IPRBx hasn't yet been written. * | ||
1186 | * . * | ||
1187 | * * | ||
1188 | ************************************************************************/ | ||
1189 | |||
1190 | typedef union ii_iprbe_u { | ||
1191 | uint64_t ii_iprbe_regval; | ||
1192 | struct { | ||
1193 | uint64_t i_c : 8; | ||
1194 | uint64_t i_na : 14; | ||
1195 | uint64_t i_rsvd_2 : 2; | ||
1196 | uint64_t i_nb : 14; | ||
1197 | uint64_t i_rsvd_1 : 2; | ||
1198 | uint64_t i_m : 2; | ||
1199 | uint64_t i_f : 1; | ||
1200 | uint64_t i_of_cnt : 5; | ||
1201 | uint64_t i_error : 1; | ||
1202 | uint64_t i_rd_to : 1; | ||
1203 | uint64_t i_spur_wr : 1; | ||
1204 | uint64_t i_spur_rd : 1; | ||
1205 | uint64_t i_rsvd : 11; | ||
1206 | uint64_t i_mult_err : 1; | ||
1207 | } ii_iprbe_fld_s; | ||
1208 | } ii_iprbe_u_t; | ||
1209 | |||
1210 | |||
1211 | /************************************************************************ | ||
1212 | * * | ||
1213 | * Description: There are 9 instances of this register, one per * | ||
1214 | * actual widget in this implementation of Shub and Crossbow. * | ||
1215 | * Note: Crossbow only has ports for Widgets 8 through F, widget 0 * | ||
1216 | * refers to Crossbow's internal space. * | ||
1217 | * This register contains the state elements per widget that are * | ||
1218 | * necessary to manage the PIO flow control on Crosstalk and on the * | ||
1219 | * Router Network. See the PIO Flow Control chapter for a complete * | ||
1220 | * description of this register * | ||
1221 | * The SPUR_WR bit requires some explanation. When this register is * | ||
1222 | * written, the new value of the C field is captured in an internal * | ||
1223 | * register so the hardware can remember what the programmer wrote * | ||
1224 | * into the credit counter. The SPUR_WR bit sets whenever the C field * | ||
1225 | * increments above this stored value, which indicates that there * | ||
1226 | * have been more responses received than requests sent. The SPUR_WR * | ||
1227 | * bit cannot be cleared until a value is written to the IPRBx * | ||
1228 | * register; the write will correct the C field and capture its new * | ||
1229 | * value in the internal register. Even if IECLR[E_PRB_x] is set, the * | ||
1230 | * SPUR_WR bit will persist if IPRBx hasn't yet been written. * | ||
1231 | * . * | ||
1232 | * * | ||
1233 | ************************************************************************/ | ||
1234 | |||
1235 | typedef union ii_iprbf_u { | ||
1236 | uint64_t ii_iprbf_regval; | ||
1237 | struct { | ||
1238 | uint64_t i_c : 8; | ||
1239 | uint64_t i_na : 14; | ||
1240 | uint64_t i_rsvd_2 : 2; | ||
1241 | uint64_t i_nb : 14; | ||
1242 | uint64_t i_rsvd_1 : 2; | ||
1243 | uint64_t i_m : 2; | ||
1244 | uint64_t i_f : 1; | ||
1245 | uint64_t i_of_cnt : 5; | ||
1246 | uint64_t i_error : 1; | ||
1247 | uint64_t i_rd_to : 1; | ||
1248 | uint64_t i_spur_wr : 1; | ||
1249 | uint64_t i_spur_rd : 1; | ||
1250 | uint64_t i_rsvd : 11; | ||
1251 | uint64_t i_mult_err : 1; | ||
1252 | } ii_iprbe_fld_s; | ||
1253 | } ii_iprbf_u_t; | ||
1254 | |||
1255 | |||
1256 | /************************************************************************ | ||
1257 | * * | ||
1258 | * This register specifies the timeout value to use for monitoring * | ||
1259 | * Crosstalk credits which are used outbound to Crosstalk. An * | ||
1260 | * internal counter called the Crosstalk Credit Timeout Counter * | ||
1261 | * increments every 128 II clocks. The counter starts counting * | ||
1262 | * anytime the credit count drops below a threshold, and resets to * | ||
1263 | * zero (stops counting) anytime the credit count is at or above the * | ||
1264 | * threshold. The threshold is 1 credit in direct connect mode and 2 * | ||
1265 | * in Crossbow connect mode. When the internal Crosstalk Credit * | ||
1266 | * Timeout Counter reaches the value programmed in this register, a * | ||
1267 | * Crosstalk Credit Timeout has occurred. The internal counter is not * | ||
1268 | * readable from software, and stops counting at its maximum value, * | ||
1269 | * so it cannot cause more than one interrupt. * | ||
1270 | * * | ||
1271 | ************************************************************************/ | ||
1272 | |||
1273 | typedef union ii_ixcc_u { | ||
1274 | uint64_t ii_ixcc_regval; | ||
1275 | struct { | ||
1276 | uint64_t i_time_out : 26; | ||
1277 | uint64_t i_rsvd : 38; | ||
1278 | } ii_ixcc_fld_s; | ||
1279 | } ii_ixcc_u_t; | ||
1280 | |||
1281 | |||
1282 | /************************************************************************ | ||
1283 | * * | ||
1284 | * Description: This register qualifies all the PIO and DMA * | ||
1285 | * operations launched from widget 0 towards the SHub. In * | ||
1286 | * addition, it also qualifies accesses by the BTE streams. * | ||
1287 | * The bits in each field of this register are cleared by the SHub * | ||
1288 | * upon detection of an error which requires widget 0 or the BTE * | ||
1289 | * streams to be terminated. Whether or not widget x has access * | ||
1290 | * rights to this SHub is determined by an AND of the device * | ||
1291 | * enable bit in the appropriate field of this register and bit 0 in * | ||
1292 | * the Wx_IAC field. The bits in this field are set by writing a 1 to * | ||
1293 | * them. Incoming replies from Crosstalk are not subject to this * | ||
1294 | * access control mechanism. * | ||
1295 | * * | ||
1296 | ************************************************************************/ | ||
1297 | |||
1298 | typedef union ii_imem_u { | ||
1299 | uint64_t ii_imem_regval; | ||
1300 | struct { | ||
1301 | uint64_t i_w0_esd : 1; | ||
1302 | uint64_t i_rsvd_3 : 3; | ||
1303 | uint64_t i_b0_esd : 1; | ||
1304 | uint64_t i_rsvd_2 : 3; | ||
1305 | uint64_t i_b1_esd : 1; | ||
1306 | uint64_t i_rsvd_1 : 3; | ||
1307 | uint64_t i_clr_precise : 1; | ||
1308 | uint64_t i_rsvd : 51; | ||
1309 | } ii_imem_fld_s; | ||
1310 | } ii_imem_u_t; | ||
1311 | |||
1312 | |||
1313 | |||
1314 | /************************************************************************ | ||
1315 | * * | ||
1316 | * Description: This register specifies the timeout value to use for * | ||
1317 | * monitoring Crosstalk tail flits coming into the Shub in the * | ||
1318 | * TAIL_TO field. An internal counter associated with this register * | ||
1319 | * is incremented every 128 II internal clocks (7 bits). The counter * | ||
1320 | * starts counting anytime a header micropacket is received and stops * | ||
1321 | * counting (and resets to zero) any time a micropacket with a Tail * | ||
1322 | * bit is received. Once the counter reaches the threshold value * | ||
1323 | * programmed in this register, it generates an interrupt to the * | ||
1324 | * processor that is programmed into the IIDSR. The counter saturates * | ||
1325 | * (does not roll over) at its maximum value, so it cannot cause * | ||
1326 | * another interrupt until after it is cleared. * | ||
1327 | * The register also contains the Read Response Timeout values. The * | ||
1328 | * Prescalar is 23 bits, and counts II clocks. An internal counter * | ||
1329 | * increments on every II clock and when it reaches the value in the * | ||
1330 | * Prescalar field, all IPRTE registers with their valid bits set * | ||
1331 | * have their Read Response timers bumped. Whenever any of them match * | ||
1332 | * the value in the RRSP_TO field, a Read Response Timeout has * | ||
1333 | * occurred, and error handling occurs as described in the Error * | ||
1334 | * Handling section of this document. * | ||
1335 | * * | ||
1336 | ************************************************************************/ | ||
1337 | |||
1338 | typedef union ii_ixtt_u { | ||
1339 | uint64_t ii_ixtt_regval; | ||
1340 | struct { | ||
1341 | uint64_t i_tail_to : 26; | ||
1342 | uint64_t i_rsvd_1 : 6; | ||
1343 | uint64_t i_rrsp_ps : 23; | ||
1344 | uint64_t i_rrsp_to : 5; | ||
1345 | uint64_t i_rsvd : 4; | ||
1346 | } ii_ixtt_fld_s; | ||
1347 | } ii_ixtt_u_t; | ||
1348 | |||
1349 | |||
1350 | /************************************************************************ | ||
1351 | * * | ||
1352 | * Writing a 1 to the fields of this register clears the appropriate * | ||
1353 | * error bits in other areas of SHub. Note that when the * | ||
1354 | * E_PRB_x bits are used to clear error bits in PRB registers, * | ||
1355 | * SPUR_RD and SPUR_WR may persist, because they require additional * | ||
1356 | * action to clear them. See the IPRBx and IXSS Register * | ||
1357 | * specifications. * | ||
1358 | * * | ||
1359 | ************************************************************************/ | ||
1360 | |||
1361 | typedef union ii_ieclr_u { | ||
1362 | uint64_t ii_ieclr_regval; | ||
1363 | struct { | ||
1364 | uint64_t i_e_prb_0 : 1; | ||
1365 | uint64_t i_rsvd : 7; | ||
1366 | uint64_t i_e_prb_8 : 1; | ||
1367 | uint64_t i_e_prb_9 : 1; | ||
1368 | uint64_t i_e_prb_a : 1; | ||
1369 | uint64_t i_e_prb_b : 1; | ||
1370 | uint64_t i_e_prb_c : 1; | ||
1371 | uint64_t i_e_prb_d : 1; | ||
1372 | uint64_t i_e_prb_e : 1; | ||
1373 | uint64_t i_e_prb_f : 1; | ||
1374 | uint64_t i_e_crazy : 1; | ||
1375 | uint64_t i_e_bte_0 : 1; | ||
1376 | uint64_t i_e_bte_1 : 1; | ||
1377 | uint64_t i_reserved_1 : 10; | ||
1378 | uint64_t i_spur_rd_hdr : 1; | ||
1379 | uint64_t i_cam_intr_to : 1; | ||
1380 | uint64_t i_cam_overflow : 1; | ||
1381 | uint64_t i_cam_read_miss : 1; | ||
1382 | uint64_t i_ioq_rep_underflow : 1; | ||
1383 | uint64_t i_ioq_req_underflow : 1; | ||
1384 | uint64_t i_ioq_rep_overflow : 1; | ||
1385 | uint64_t i_ioq_req_overflow : 1; | ||
1386 | uint64_t i_iiq_rep_overflow : 1; | ||
1387 | uint64_t i_iiq_req_overflow : 1; | ||
1388 | uint64_t i_ii_xn_rep_cred_overflow : 1; | ||
1389 | uint64_t i_ii_xn_req_cred_overflow : 1; | ||
1390 | uint64_t i_ii_xn_invalid_cmd : 1; | ||
1391 | uint64_t i_xn_ii_invalid_cmd : 1; | ||
1392 | uint64_t i_reserved_2 : 21; | ||
1393 | } ii_ieclr_fld_s; | ||
1394 | } ii_ieclr_u_t; | ||
1395 | |||
1396 | |||
1397 | /************************************************************************ | ||
1398 | * * | ||
1399 | * This register controls both BTEs. SOFT_RESET is intended for * | ||
1400 | * recovery after an error. COUNT controls the total number of CRBs * | ||
1401 | * that both BTEs (combined) can use, which affects total BTE * | ||
1402 | * bandwidth. * | ||
1403 | * * | ||
1404 | ************************************************************************/ | ||
1405 | |||
1406 | typedef union ii_ibcr_u { | ||
1407 | uint64_t ii_ibcr_regval; | ||
1408 | struct { | ||
1409 | uint64_t i_count : 4; | ||
1410 | uint64_t i_rsvd_1 : 4; | ||
1411 | uint64_t i_soft_reset : 1; | ||
1412 | uint64_t i_rsvd : 55; | ||
1413 | } ii_ibcr_fld_s; | ||
1414 | } ii_ibcr_u_t; | ||
1415 | |||
1416 | |||
1417 | /************************************************************************ | ||
1418 | * * | ||
1419 | * This register contains the header of a spurious read response * | ||
1420 | * received from Crosstalk. A spurious read response is defined as a * | ||
1421 | * read response received by II from a widget for which (1) the SIDN * | ||
1422 | * has a value between 1 and 7, inclusive (II never sends requests to * | ||
1423 | * these widgets (2) there is no valid IPRTE register which * | ||
1424 | * corresponds to the TNUM, or (3) the widget indicated in SIDN is * | ||
1425 | * not the same as the widget recorded in the IPRTE register * | ||
1426 | * referenced by the TNUM. If this condition is true, and if the * | ||
1427 | * IXSS[VALID] bit is clear, then the header of the spurious read * | ||
1428 | * response is capture in IXSM and IXSS, and IXSS[VALID] is set. The * | ||
1429 | * errant header is thereby captured, and no further spurious read * | ||
1430 | * respones are captured until IXSS[VALID] is cleared by setting the * | ||
1431 | * appropriate bit in IECLR.Everytime a spurious read response is * | ||
1432 | * detected, the SPUR_RD bit of the PRB corresponding to the incoming * | ||
1433 | * message's SIDN field is set. This always happens, regarless of * | ||
1434 | * whether a header is captured. The programmer should check * | ||
1435 | * IXSM[SIDN] to determine which widget sent the spurious response, * | ||
1436 | * because there may be more than one SPUR_RD bit set in the PRB * | ||
1437 | * registers. The widget indicated by IXSM[SIDN] was the first * | ||
1438 | * spurious read response to be received since the last time * | ||
1439 | * IXSS[VALID] was clear. The SPUR_RD bit of the corresponding PRB * | ||
1440 | * will be set. Any SPUR_RD bits in any other PRB registers indicate * | ||
1441 | * spurious messages from other widets which were detected after the * | ||
1442 | * header was captured.. * | ||
1443 | * * | ||
1444 | ************************************************************************/ | ||
1445 | |||
1446 | typedef union ii_ixsm_u { | ||
1447 | uint64_t ii_ixsm_regval; | ||
1448 | struct { | ||
1449 | uint64_t i_byte_en : 32; | ||
1450 | uint64_t i_reserved : 1; | ||
1451 | uint64_t i_tag : 3; | ||
1452 | uint64_t i_alt_pactyp : 4; | ||
1453 | uint64_t i_bo : 1; | ||
1454 | uint64_t i_error : 1; | ||
1455 | uint64_t i_vbpm : 1; | ||
1456 | uint64_t i_gbr : 1; | ||
1457 | uint64_t i_ds : 2; | ||
1458 | uint64_t i_ct : 1; | ||
1459 | uint64_t i_tnum : 5; | ||
1460 | uint64_t i_pactyp : 4; | ||
1461 | uint64_t i_sidn : 4; | ||
1462 | uint64_t i_didn : 4; | ||
1463 | } ii_ixsm_fld_s; | ||
1464 | } ii_ixsm_u_t; | ||
1465 | |||
1466 | |||
1467 | /************************************************************************ | ||
1468 | * * | ||
1469 | * This register contains the sideband bits of a spurious read * | ||
1470 | * response received from Crosstalk. * | ||
1471 | * * | ||
1472 | ************************************************************************/ | ||
1473 | |||
1474 | typedef union ii_ixss_u { | ||
1475 | uint64_t ii_ixss_regval; | ||
1476 | struct { | ||
1477 | uint64_t i_sideband : 8; | ||
1478 | uint64_t i_rsvd : 55; | ||
1479 | uint64_t i_valid : 1; | ||
1480 | } ii_ixss_fld_s; | ||
1481 | } ii_ixss_u_t; | ||
1482 | |||
1483 | |||
1484 | /************************************************************************ | ||
1485 | * * | ||
1486 | * This register enables software to access the II LLP's test port. * | ||
1487 | * Refer to the LLP 2.5 documentation for an explanation of the test * | ||
1488 | * port. Software can write to this register to program the values * | ||
1489 | * for the control fields (TestErrCapture, TestClear, TestFlit, * | ||
1490 | * TestMask and TestSeed). Similarly, software can read from this * | ||
1491 | * register to obtain the values of the test port's status outputs * | ||
1492 | * (TestCBerr, TestValid and TestData). * | ||
1493 | * * | ||
1494 | ************************************************************************/ | ||
1495 | |||
1496 | typedef union ii_ilct_u { | ||
1497 | uint64_t ii_ilct_regval; | ||
1498 | struct { | ||
1499 | uint64_t i_test_seed : 20; | ||
1500 | uint64_t i_test_mask : 8; | ||
1501 | uint64_t i_test_data : 20; | ||
1502 | uint64_t i_test_valid : 1; | ||
1503 | uint64_t i_test_cberr : 1; | ||
1504 | uint64_t i_test_flit : 3; | ||
1505 | uint64_t i_test_clear : 1; | ||
1506 | uint64_t i_test_err_capture : 1; | ||
1507 | uint64_t i_rsvd : 9; | ||
1508 | } ii_ilct_fld_s; | ||
1509 | } ii_ilct_u_t; | ||
1510 | |||
1511 | |||
1512 | /************************************************************************ | ||
1513 | * * | ||
1514 | * If the II detects an illegal incoming Duplonet packet (request or * | ||
1515 | * reply) when VALID==0 in the IIEPH1 register, then it saves the * | ||
1516 | * contents of the packet's header flit in the IIEPH1 and IIEPH2 * | ||
1517 | * registers, sets the VALID bit in IIEPH1, clears the OVERRUN bit, * | ||
1518 | * and assigns a value to the ERR_TYPE field which indicates the * | ||
1519 | * specific nature of the error. The II recognizes four different * | ||
1520 | * types of errors: short request packets (ERR_TYPE==2), short reply * | ||
1521 | * packets (ERR_TYPE==3), long request packets (ERR_TYPE==4) and long * | ||
1522 | * reply packets (ERR_TYPE==5). The encodings for these types of * | ||
1523 | * errors were chosen to be consistent with the same types of errors * | ||
1524 | * indicated by the ERR_TYPE field in the LB_ERROR_HDR1 register (in * | ||
1525 | * the LB unit). If the II detects an illegal incoming Duplonet * | ||
1526 | * packet when VALID==1 in the IIEPH1 register, then it merely sets * | ||
1527 | * the OVERRUN bit to indicate that a subsequent error has happened, * | ||
1528 | * and does nothing further. * | ||
1529 | * * | ||
1530 | ************************************************************************/ | ||
1531 | |||
1532 | typedef union ii_iieph1_u { | ||
1533 | uint64_t ii_iieph1_regval; | ||
1534 | struct { | ||
1535 | uint64_t i_command : 7; | ||
1536 | uint64_t i_rsvd_5 : 1; | ||
1537 | uint64_t i_suppl : 14; | ||
1538 | uint64_t i_rsvd_4 : 1; | ||
1539 | uint64_t i_source : 14; | ||
1540 | uint64_t i_rsvd_3 : 1; | ||
1541 | uint64_t i_err_type : 4; | ||
1542 | uint64_t i_rsvd_2 : 4; | ||
1543 | uint64_t i_overrun : 1; | ||
1544 | uint64_t i_rsvd_1 : 3; | ||
1545 | uint64_t i_valid : 1; | ||
1546 | uint64_t i_rsvd : 13; | ||
1547 | } ii_iieph1_fld_s; | ||
1548 | } ii_iieph1_u_t; | ||
1549 | |||
1550 | |||
1551 | /************************************************************************ | ||
1552 | * * | ||
1553 | * This register holds the Address field from the header flit of an * | ||
1554 | * incoming erroneous Duplonet packet, along with the tail bit which * | ||
1555 | * accompanied this header flit. This register is essentially an * | ||
1556 | * extension of IIEPH1. Two registers were necessary because the 64 * | ||
1557 | * bits available in only a single register were insufficient to * | ||
1558 | * capture the entire header flit of an erroneous packet. * | ||
1559 | * * | ||
1560 | ************************************************************************/ | ||
1561 | |||
1562 | typedef union ii_iieph2_u { | ||
1563 | uint64_t ii_iieph2_regval; | ||
1564 | struct { | ||
1565 | uint64_t i_rsvd_0 : 3; | ||
1566 | uint64_t i_address : 47; | ||
1567 | uint64_t i_rsvd_1 : 10; | ||
1568 | uint64_t i_tail : 1; | ||
1569 | uint64_t i_rsvd : 3; | ||
1570 | } ii_iieph2_fld_s; | ||
1571 | } ii_iieph2_u_t; | ||
1572 | |||
1573 | |||
1574 | /******************************/ | ||
1575 | |||
1576 | |||
1577 | |||
1578 | /************************************************************************ | ||
1579 | * * | ||
1580 | * This register's value is a bit vector that guards access from SXBs * | ||
1581 | * to local registers within the II as well as to external Crosstalk * | ||
1582 | * widgets * | ||
1583 | * * | ||
1584 | ************************************************************************/ | ||
1585 | |||
1586 | typedef union ii_islapr_u { | ||
1587 | uint64_t ii_islapr_regval; | ||
1588 | struct { | ||
1589 | uint64_t i_region : 64; | ||
1590 | } ii_islapr_fld_s; | ||
1591 | } ii_islapr_u_t; | ||
1592 | |||
1593 | |||
1594 | /************************************************************************ | ||
1595 | * * | ||
1596 | * A write to this register of the 56-bit value "Pup+Bun" will cause * | ||
1597 | * the bit in the ISLAPR register corresponding to the region of the * | ||
1598 | * requestor to be set (access allowed). ( | ||
1599 | * * | ||
1600 | ************************************************************************/ | ||
1601 | |||
1602 | typedef union ii_islapo_u { | ||
1603 | uint64_t ii_islapo_regval; | ||
1604 | struct { | ||
1605 | uint64_t i_io_sbx_ovrride : 56; | ||
1606 | uint64_t i_rsvd : 8; | ||
1607 | } ii_islapo_fld_s; | ||
1608 | } ii_islapo_u_t; | ||
1609 | |||
1610 | /************************************************************************ | ||
1611 | * * | ||
1612 | * Determines how long the wrapper will wait aftr an interrupt is * | ||
1613 | * initially issued from the II before it times out the outstanding * | ||
1614 | * interrupt and drops it from the interrupt queue. * | ||
1615 | * * | ||
1616 | ************************************************************************/ | ||
1617 | |||
1618 | typedef union ii_iwi_u { | ||
1619 | uint64_t ii_iwi_regval; | ||
1620 | struct { | ||
1621 | uint64_t i_prescale : 24; | ||
1622 | uint64_t i_rsvd : 8; | ||
1623 | uint64_t i_timeout : 8; | ||
1624 | uint64_t i_rsvd1 : 8; | ||
1625 | uint64_t i_intrpt_retry_period : 8; | ||
1626 | uint64_t i_rsvd2 : 8; | ||
1627 | } ii_iwi_fld_s; | ||
1628 | } ii_iwi_u_t; | ||
1629 | |||
1630 | /************************************************************************ | ||
1631 | * * | ||
1632 | * Log errors which have occurred in the II wrapper. The errors are * | ||
1633 | * cleared by writing to the IECLR register. * | ||
1634 | * * | ||
1635 | ************************************************************************/ | ||
1636 | |||
1637 | typedef union ii_iwel_u { | ||
1638 | uint64_t ii_iwel_regval; | ||
1639 | struct { | ||
1640 | uint64_t i_intr_timed_out : 1; | ||
1641 | uint64_t i_rsvd : 7; | ||
1642 | uint64_t i_cam_overflow : 1; | ||
1643 | uint64_t i_cam_read_miss : 1; | ||
1644 | uint64_t i_rsvd1 : 2; | ||
1645 | uint64_t i_ioq_rep_underflow : 1; | ||
1646 | uint64_t i_ioq_req_underflow : 1; | ||
1647 | uint64_t i_ioq_rep_overflow : 1; | ||
1648 | uint64_t i_ioq_req_overflow : 1; | ||
1649 | uint64_t i_iiq_rep_overflow : 1; | ||
1650 | uint64_t i_iiq_req_overflow : 1; | ||
1651 | uint64_t i_rsvd2 : 6; | ||
1652 | uint64_t i_ii_xn_rep_cred_over_under: 1; | ||
1653 | uint64_t i_ii_xn_req_cred_over_under: 1; | ||
1654 | uint64_t i_rsvd3 : 6; | ||
1655 | uint64_t i_ii_xn_invalid_cmd : 1; | ||
1656 | uint64_t i_xn_ii_invalid_cmd : 1; | ||
1657 | uint64_t i_rsvd4 : 30; | ||
1658 | } ii_iwel_fld_s; | ||
1659 | } ii_iwel_u_t; | ||
1660 | |||
1661 | /************************************************************************ | ||
1662 | * * | ||
1663 | * Controls the II wrapper. * | ||
1664 | * * | ||
1665 | ************************************************************************/ | ||
1666 | |||
1667 | typedef union ii_iwc_u { | ||
1668 | uint64_t ii_iwc_regval; | ||
1669 | struct { | ||
1670 | uint64_t i_dma_byte_swap : 1; | ||
1671 | uint64_t i_rsvd : 3; | ||
1672 | uint64_t i_cam_read_lines_reset : 1; | ||
1673 | uint64_t i_rsvd1 : 3; | ||
1674 | uint64_t i_ii_xn_cred_over_under_log: 1; | ||
1675 | uint64_t i_rsvd2 : 19; | ||
1676 | uint64_t i_xn_rep_iq_depth : 5; | ||
1677 | uint64_t i_rsvd3 : 3; | ||
1678 | uint64_t i_xn_req_iq_depth : 5; | ||
1679 | uint64_t i_rsvd4 : 3; | ||
1680 | uint64_t i_iiq_depth : 6; | ||
1681 | uint64_t i_rsvd5 : 12; | ||
1682 | uint64_t i_force_rep_cred : 1; | ||
1683 | uint64_t i_force_req_cred : 1; | ||
1684 | } ii_iwc_fld_s; | ||
1685 | } ii_iwc_u_t; | ||
1686 | |||
1687 | /************************************************************************ | ||
1688 | * * | ||
1689 | * Status in the II wrapper. * | ||
1690 | * * | ||
1691 | ************************************************************************/ | ||
1692 | |||
1693 | typedef union ii_iws_u { | ||
1694 | uint64_t ii_iws_regval; | ||
1695 | struct { | ||
1696 | uint64_t i_xn_rep_iq_credits : 5; | ||
1697 | uint64_t i_rsvd : 3; | ||
1698 | uint64_t i_xn_req_iq_credits : 5; | ||
1699 | uint64_t i_rsvd1 : 51; | ||
1700 | } ii_iws_fld_s; | ||
1701 | } ii_iws_u_t; | ||
1702 | |||
1703 | /************************************************************************ | ||
1704 | * * | ||
1705 | * Masks errors in the IWEL register. * | ||
1706 | * * | ||
1707 | ************************************************************************/ | ||
1708 | |||
1709 | typedef union ii_iweim_u { | ||
1710 | uint64_t ii_iweim_regval; | ||
1711 | struct { | ||
1712 | uint64_t i_intr_timed_out : 1; | ||
1713 | uint64_t i_rsvd : 7; | ||
1714 | uint64_t i_cam_overflow : 1; | ||
1715 | uint64_t i_cam_read_miss : 1; | ||
1716 | uint64_t i_rsvd1 : 2; | ||
1717 | uint64_t i_ioq_rep_underflow : 1; | ||
1718 | uint64_t i_ioq_req_underflow : 1; | ||
1719 | uint64_t i_ioq_rep_overflow : 1; | ||
1720 | uint64_t i_ioq_req_overflow : 1; | ||
1721 | uint64_t i_iiq_rep_overflow : 1; | ||
1722 | uint64_t i_iiq_req_overflow : 1; | ||
1723 | uint64_t i_rsvd2 : 6; | ||
1724 | uint64_t i_ii_xn_rep_cred_overflow : 1; | ||
1725 | uint64_t i_ii_xn_req_cred_overflow : 1; | ||
1726 | uint64_t i_rsvd3 : 6; | ||
1727 | uint64_t i_ii_xn_invalid_cmd : 1; | ||
1728 | uint64_t i_xn_ii_invalid_cmd : 1; | ||
1729 | uint64_t i_rsvd4 : 30; | ||
1730 | } ii_iweim_fld_s; | ||
1731 | } ii_iweim_u_t; | ||
1732 | |||
1733 | |||
1734 | /************************************************************************ | ||
1735 | * * | ||
1736 | * A write to this register causes a particular field in the * | ||
1737 | * corresponding widget's PRB entry to be adjusted up or down by 1. * | ||
1738 | * This counter should be used when recovering from error and reset * | ||
1739 | * conditions. Note that software would be capable of causing * | ||
1740 | * inadvertent overflow or underflow of these counters. * | ||
1741 | * * | ||
1742 | ************************************************************************/ | ||
1743 | |||
1744 | typedef union ii_ipca_u { | ||
1745 | uint64_t ii_ipca_regval; | ||
1746 | struct { | ||
1747 | uint64_t i_wid : 4; | ||
1748 | uint64_t i_adjust : 1; | ||
1749 | uint64_t i_rsvd_1 : 3; | ||
1750 | uint64_t i_field : 2; | ||
1751 | uint64_t i_rsvd : 54; | ||
1752 | } ii_ipca_fld_s; | ||
1753 | } ii_ipca_u_t; | ||
1754 | |||
1755 | |||
1756 | /************************************************************************ | ||
1757 | * * | ||
1758 | * There are 8 instances of this register. This register contains * | ||
1759 | * the information that the II has to remember once it has launched a * | ||
1760 | * PIO Read operation. The contents are used to form the correct * | ||
1761 | * Router Network packet and direct the Crosstalk reply to the * | ||
1762 | * appropriate processor. * | ||
1763 | * * | ||
1764 | ************************************************************************/ | ||
1765 | |||
1766 | |||
1767 | typedef union ii_iprte0a_u { | ||
1768 | uint64_t ii_iprte0a_regval; | ||
1769 | struct { | ||
1770 | uint64_t i_rsvd_1 : 54; | ||
1771 | uint64_t i_widget : 4; | ||
1772 | uint64_t i_to_cnt : 5; | ||
1773 | uint64_t i_vld : 1; | ||
1774 | } ii_iprte0a_fld_s; | ||
1775 | } ii_iprte0a_u_t; | ||
1776 | |||
1777 | |||
1778 | /************************************************************************ | ||
1779 | * * | ||
1780 | * There are 8 instances of this register. This register contains * | ||
1781 | * the information that the II has to remember once it has launched a * | ||
1782 | * PIO Read operation. The contents are used to form the correct * | ||
1783 | * Router Network packet and direct the Crosstalk reply to the * | ||
1784 | * appropriate processor. * | ||
1785 | * * | ||
1786 | ************************************************************************/ | ||
1787 | |||
1788 | typedef union ii_iprte1a_u { | ||
1789 | uint64_t ii_iprte1a_regval; | ||
1790 | struct { | ||
1791 | uint64_t i_rsvd_1 : 54; | ||
1792 | uint64_t i_widget : 4; | ||
1793 | uint64_t i_to_cnt : 5; | ||
1794 | uint64_t i_vld : 1; | ||
1795 | } ii_iprte1a_fld_s; | ||
1796 | } ii_iprte1a_u_t; | ||
1797 | |||
1798 | |||
1799 | /************************************************************************ | ||
1800 | * * | ||
1801 | * There are 8 instances of this register. This register contains * | ||
1802 | * the information that the II has to remember once it has launched a * | ||
1803 | * PIO Read operation. The contents are used to form the correct * | ||
1804 | * Router Network packet and direct the Crosstalk reply to the * | ||
1805 | * appropriate processor. * | ||
1806 | * * | ||
1807 | ************************************************************************/ | ||
1808 | |||
1809 | typedef union ii_iprte2a_u { | ||
1810 | uint64_t ii_iprte2a_regval; | ||
1811 | struct { | ||
1812 | uint64_t i_rsvd_1 : 54; | ||
1813 | uint64_t i_widget : 4; | ||
1814 | uint64_t i_to_cnt : 5; | ||
1815 | uint64_t i_vld : 1; | ||
1816 | } ii_iprte2a_fld_s; | ||
1817 | } ii_iprte2a_u_t; | ||
1818 | |||
1819 | |||
1820 | /************************************************************************ | ||
1821 | * * | ||
1822 | * There are 8 instances of this register. This register contains * | ||
1823 | * the information that the II has to remember once it has launched a * | ||
1824 | * PIO Read operation. The contents are used to form the correct * | ||
1825 | * Router Network packet and direct the Crosstalk reply to the * | ||
1826 | * appropriate processor. * | ||
1827 | * * | ||
1828 | ************************************************************************/ | ||
1829 | |||
1830 | typedef union ii_iprte3a_u { | ||
1831 | uint64_t ii_iprte3a_regval; | ||
1832 | struct { | ||
1833 | uint64_t i_rsvd_1 : 54; | ||
1834 | uint64_t i_widget : 4; | ||
1835 | uint64_t i_to_cnt : 5; | ||
1836 | uint64_t i_vld : 1; | ||
1837 | } ii_iprte3a_fld_s; | ||
1838 | } ii_iprte3a_u_t; | ||
1839 | |||
1840 | |||
1841 | /************************************************************************ | ||
1842 | * * | ||
1843 | * There are 8 instances of this register. This register contains * | ||
1844 | * the information that the II has to remember once it has launched a * | ||
1845 | * PIO Read operation. The contents are used to form the correct * | ||
1846 | * Router Network packet and direct the Crosstalk reply to the * | ||
1847 | * appropriate processor. * | ||
1848 | * * | ||
1849 | ************************************************************************/ | ||
1850 | |||
1851 | typedef union ii_iprte4a_u { | ||
1852 | uint64_t ii_iprte4a_regval; | ||
1853 | struct { | ||
1854 | uint64_t i_rsvd_1 : 54; | ||
1855 | uint64_t i_widget : 4; | ||
1856 | uint64_t i_to_cnt : 5; | ||
1857 | uint64_t i_vld : 1; | ||
1858 | } ii_iprte4a_fld_s; | ||
1859 | } ii_iprte4a_u_t; | ||
1860 | |||
1861 | |||
1862 | /************************************************************************ | ||
1863 | * * | ||
1864 | * There are 8 instances of this register. This register contains * | ||
1865 | * the information that the II has to remember once it has launched a * | ||
1866 | * PIO Read operation. The contents are used to form the correct * | ||
1867 | * Router Network packet and direct the Crosstalk reply to the * | ||
1868 | * appropriate processor. * | ||
1869 | * * | ||
1870 | ************************************************************************/ | ||
1871 | |||
1872 | typedef union ii_iprte5a_u { | ||
1873 | uint64_t ii_iprte5a_regval; | ||
1874 | struct { | ||
1875 | uint64_t i_rsvd_1 : 54; | ||
1876 | uint64_t i_widget : 4; | ||
1877 | uint64_t i_to_cnt : 5; | ||
1878 | uint64_t i_vld : 1; | ||
1879 | } ii_iprte5a_fld_s; | ||
1880 | } ii_iprte5a_u_t; | ||
1881 | |||
1882 | |||
1883 | /************************************************************************ | ||
1884 | * * | ||
1885 | * There are 8 instances of this register. This register contains * | ||
1886 | * the information that the II has to remember once it has launched a * | ||
1887 | * PIO Read operation. The contents are used to form the correct * | ||
1888 | * Router Network packet and direct the Crosstalk reply to the * | ||
1889 | * appropriate processor. * | ||
1890 | * * | ||
1891 | ************************************************************************/ | ||
1892 | |||
1893 | typedef union ii_iprte6a_u { | ||
1894 | uint64_t ii_iprte6a_regval; | ||
1895 | struct { | ||
1896 | uint64_t i_rsvd_1 : 54; | ||
1897 | uint64_t i_widget : 4; | ||
1898 | uint64_t i_to_cnt : 5; | ||
1899 | uint64_t i_vld : 1; | ||
1900 | } ii_iprte6a_fld_s; | ||
1901 | } ii_iprte6a_u_t; | ||
1902 | |||
1903 | |||
1904 | /************************************************************************ | ||
1905 | * * | ||
1906 | * There are 8 instances of this register. This register contains * | ||
1907 | * the information that the II has to remember once it has launched a * | ||
1908 | * PIO Read operation. The contents are used to form the correct * | ||
1909 | * Router Network packet and direct the Crosstalk reply to the * | ||
1910 | * appropriate processor. * | ||
1911 | * * | ||
1912 | ************************************************************************/ | ||
1913 | |||
1914 | typedef union ii_iprte7a_u { | ||
1915 | uint64_t ii_iprte7a_regval; | ||
1916 | struct { | ||
1917 | uint64_t i_rsvd_1 : 54; | ||
1918 | uint64_t i_widget : 4; | ||
1919 | uint64_t i_to_cnt : 5; | ||
1920 | uint64_t i_vld : 1; | ||
1921 | } ii_iprtea7_fld_s; | ||
1922 | } ii_iprte7a_u_t; | ||
1923 | |||
1924 | |||
1925 | |||
1926 | /************************************************************************ | ||
1927 | * * | ||
1928 | * There are 8 instances of this register. This register contains * | ||
1929 | * the information that the II has to remember once it has launched a * | ||
1930 | * PIO Read operation. The contents are used to form the correct * | ||
1931 | * Router Network packet and direct the Crosstalk reply to the * | ||
1932 | * appropriate processor. * | ||
1933 | * * | ||
1934 | ************************************************************************/ | ||
1935 | |||
1936 | |||
1937 | typedef union ii_iprte0b_u { | ||
1938 | uint64_t ii_iprte0b_regval; | ||
1939 | struct { | ||
1940 | uint64_t i_rsvd_1 : 3; | ||
1941 | uint64_t i_address : 47; | ||
1942 | uint64_t i_init : 3; | ||
1943 | uint64_t i_source : 11; | ||
1944 | } ii_iprte0b_fld_s; | ||
1945 | } ii_iprte0b_u_t; | ||
1946 | |||
1947 | |||
1948 | /************************************************************************ | ||
1949 | * * | ||
1950 | * There are 8 instances of this register. This register contains * | ||
1951 | * the information that the II has to remember once it has launched a * | ||
1952 | * PIO Read operation. The contents are used to form the correct * | ||
1953 | * Router Network packet and direct the Crosstalk reply to the * | ||
1954 | * appropriate processor. * | ||
1955 | * * | ||
1956 | ************************************************************************/ | ||
1957 | |||
1958 | typedef union ii_iprte1b_u { | ||
1959 | uint64_t ii_iprte1b_regval; | ||
1960 | struct { | ||
1961 | uint64_t i_rsvd_1 : 3; | ||
1962 | uint64_t i_address : 47; | ||
1963 | uint64_t i_init : 3; | ||
1964 | uint64_t i_source : 11; | ||
1965 | } ii_iprte1b_fld_s; | ||
1966 | } ii_iprte1b_u_t; | ||
1967 | |||
1968 | |||
1969 | /************************************************************************ | ||
1970 | * * | ||
1971 | * There are 8 instances of this register. This register contains * | ||
1972 | * the information that the II has to remember once it has launched a * | ||
1973 | * PIO Read operation. The contents are used to form the correct * | ||
1974 | * Router Network packet and direct the Crosstalk reply to the * | ||
1975 | * appropriate processor. * | ||
1976 | * * | ||
1977 | ************************************************************************/ | ||
1978 | |||
1979 | typedef union ii_iprte2b_u { | ||
1980 | uint64_t ii_iprte2b_regval; | ||
1981 | struct { | ||
1982 | uint64_t i_rsvd_1 : 3; | ||
1983 | uint64_t i_address : 47; | ||
1984 | uint64_t i_init : 3; | ||
1985 | uint64_t i_source : 11; | ||
1986 | } ii_iprte2b_fld_s; | ||
1987 | } ii_iprte2b_u_t; | ||
1988 | |||
1989 | |||
1990 | /************************************************************************ | ||
1991 | * * | ||
1992 | * There are 8 instances of this register. This register contains * | ||
1993 | * the information that the II has to remember once it has launched a * | ||
1994 | * PIO Read operation. The contents are used to form the correct * | ||
1995 | * Router Network packet and direct the Crosstalk reply to the * | ||
1996 | * appropriate processor. * | ||
1997 | * * | ||
1998 | ************************************************************************/ | ||
1999 | |||
2000 | typedef union ii_iprte3b_u { | ||
2001 | uint64_t ii_iprte3b_regval; | ||
2002 | struct { | ||
2003 | uint64_t i_rsvd_1 : 3; | ||
2004 | uint64_t i_address : 47; | ||
2005 | uint64_t i_init : 3; | ||
2006 | uint64_t i_source : 11; | ||
2007 | } ii_iprte3b_fld_s; | ||
2008 | } ii_iprte3b_u_t; | ||
2009 | |||
2010 | |||
2011 | /************************************************************************ | ||
2012 | * * | ||
2013 | * There are 8 instances of this register. This register contains * | ||
2014 | * the information that the II has to remember once it has launched a * | ||
2015 | * PIO Read operation. The contents are used to form the correct * | ||
2016 | * Router Network packet and direct the Crosstalk reply to the * | ||
2017 | * appropriate processor. * | ||
2018 | * * | ||
2019 | ************************************************************************/ | ||
2020 | |||
2021 | typedef union ii_iprte4b_u { | ||
2022 | uint64_t ii_iprte4b_regval; | ||
2023 | struct { | ||
2024 | uint64_t i_rsvd_1 : 3; | ||
2025 | uint64_t i_address : 47; | ||
2026 | uint64_t i_init : 3; | ||
2027 | uint64_t i_source : 11; | ||
2028 | } ii_iprte4b_fld_s; | ||
2029 | } ii_iprte4b_u_t; | ||
2030 | |||
2031 | |||
2032 | /************************************************************************ | ||
2033 | * * | ||
2034 | * There are 8 instances of this register. This register contains * | ||
2035 | * the information that the II has to remember once it has launched a * | ||
2036 | * PIO Read operation. The contents are used to form the correct * | ||
2037 | * Router Network packet and direct the Crosstalk reply to the * | ||
2038 | * appropriate processor. * | ||
2039 | * * | ||
2040 | ************************************************************************/ | ||
2041 | |||
2042 | typedef union ii_iprte5b_u { | ||
2043 | uint64_t ii_iprte5b_regval; | ||
2044 | struct { | ||
2045 | uint64_t i_rsvd_1 : 3; | ||
2046 | uint64_t i_address : 47; | ||
2047 | uint64_t i_init : 3; | ||
2048 | uint64_t i_source : 11; | ||
2049 | } ii_iprte5b_fld_s; | ||
2050 | } ii_iprte5b_u_t; | ||
2051 | |||
2052 | |||
2053 | /************************************************************************ | ||
2054 | * * | ||
2055 | * There are 8 instances of this register. This register contains * | ||
2056 | * the information that the II has to remember once it has launched a * | ||
2057 | * PIO Read operation. The contents are used to form the correct * | ||
2058 | * Router Network packet and direct the Crosstalk reply to the * | ||
2059 | * appropriate processor. * | ||
2060 | * * | ||
2061 | ************************************************************************/ | ||
2062 | |||
2063 | typedef union ii_iprte6b_u { | ||
2064 | uint64_t ii_iprte6b_regval; | ||
2065 | struct { | ||
2066 | uint64_t i_rsvd_1 : 3; | ||
2067 | uint64_t i_address : 47; | ||
2068 | uint64_t i_init : 3; | ||
2069 | uint64_t i_source : 11; | ||
2070 | |||
2071 | } ii_iprte6b_fld_s; | ||
2072 | } ii_iprte6b_u_t; | ||
2073 | |||
2074 | |||
2075 | /************************************************************************ | ||
2076 | * * | ||
2077 | * There are 8 instances of this register. This register contains * | ||
2078 | * the information that the II has to remember once it has launched a * | ||
2079 | * PIO Read operation. The contents are used to form the correct * | ||
2080 | * Router Network packet and direct the Crosstalk reply to the * | ||
2081 | * appropriate processor. * | ||
2082 | * * | ||
2083 | ************************************************************************/ | ||
2084 | |||
2085 | typedef union ii_iprte7b_u { | ||
2086 | uint64_t ii_iprte7b_regval; | ||
2087 | struct { | ||
2088 | uint64_t i_rsvd_1 : 3; | ||
2089 | uint64_t i_address : 47; | ||
2090 | uint64_t i_init : 3; | ||
2091 | uint64_t i_source : 11; | ||
2092 | } ii_iprte7b_fld_s; | ||
2093 | } ii_iprte7b_u_t; | ||
2094 | |||
2095 | |||
2096 | /************************************************************************ | ||
2097 | * * | ||
2098 | * Description: SHub II contains a feature which did not exist in * | ||
2099 | * the Hub which automatically cleans up after a Read Response * | ||
2100 | * timeout, including deallocation of the IPRTE and recovery of IBuf * | ||
2101 | * space. The inclusion of this register in SHub is for backward * | ||
2102 | * compatibility * | ||
2103 | * A write to this register causes an entry from the table of * | ||
2104 | * outstanding PIO Read Requests to be freed and returned to the * | ||
2105 | * stack of free entries. This register is used in handling the * | ||
2106 | * timeout errors that result in a PIO Reply never returning from * | ||
2107 | * Crosstalk. * | ||
2108 | * Note that this register does not affect the contents of the IPRTE * | ||
2109 | * registers. The Valid bits in those registers have to be * | ||
2110 | * specifically turned off by software. * | ||
2111 | * * | ||
2112 | ************************************************************************/ | ||
2113 | |||
2114 | typedef union ii_ipdr_u { | ||
2115 | uint64_t ii_ipdr_regval; | ||
2116 | struct { | ||
2117 | uint64_t i_te : 3; | ||
2118 | uint64_t i_rsvd_1 : 1; | ||
2119 | uint64_t i_pnd : 1; | ||
2120 | uint64_t i_init_rpcnt : 1; | ||
2121 | uint64_t i_rsvd : 58; | ||
2122 | } ii_ipdr_fld_s; | ||
2123 | } ii_ipdr_u_t; | ||
2124 | |||
2125 | |||
2126 | /************************************************************************ | ||
2127 | * * | ||
2128 | * A write to this register causes a CRB entry to be returned to the * | ||
2129 | * queue of free CRBs. The entry should have previously been cleared * | ||
2130 | * (mark bit) via backdoor access to the pertinent CRB entry. This * | ||
2131 | * register is used in the last step of handling the errors that are * | ||
2132 | * captured and marked in CRB entries. Briefly: 1) first error for * | ||
2133 | * DMA write from a particular device, and first error for a * | ||
2134 | * particular BTE stream, lead to a marked CRB entry, and processor * | ||
2135 | * interrupt, 2) software reads the error information captured in the * | ||
2136 | * CRB entry, and presumably takes some corrective action, 3) * | ||
2137 | * software clears the mark bit, and finally 4) software writes to * | ||
2138 | * the ICDR register to return the CRB entry to the list of free CRB * | ||
2139 | * entries. * | ||
2140 | * * | ||
2141 | ************************************************************************/ | ||
2142 | |||
2143 | typedef union ii_icdr_u { | ||
2144 | uint64_t ii_icdr_regval; | ||
2145 | struct { | ||
2146 | uint64_t i_crb_num : 4; | ||
2147 | uint64_t i_pnd : 1; | ||
2148 | uint64_t i_rsvd : 59; | ||
2149 | } ii_icdr_fld_s; | ||
2150 | } ii_icdr_u_t; | ||
2151 | |||
2152 | |||
2153 | /************************************************************************ | ||
2154 | * * | ||
2155 | * This register provides debug access to two FIFOs inside of II. * | ||
2156 | * Both IOQ_MAX* fields of this register contain the instantaneous * | ||
2157 | * depth (in units of the number of available entries) of the * | ||
2158 | * associated IOQ FIFO. A read of this register will return the * | ||
2159 | * number of free entries on each FIFO at the time of the read. So * | ||
2160 | * when a FIFO is idle, the associated field contains the maximum * | ||
2161 | * depth of the FIFO. This register is writable for debug reasons * | ||
2162 | * and is intended to be written with the maximum desired FIFO depth * | ||
2163 | * while the FIFO is idle. Software must assure that II is idle when * | ||
2164 | * this register is written. If there are any active entries in any * | ||
2165 | * of these FIFOs when this register is written, the results are * | ||
2166 | * undefined. * | ||
2167 | * * | ||
2168 | ************************************************************************/ | ||
2169 | |||
2170 | typedef union ii_ifdr_u { | ||
2171 | uint64_t ii_ifdr_regval; | ||
2172 | struct { | ||
2173 | uint64_t i_ioq_max_rq : 7; | ||
2174 | uint64_t i_set_ioq_rq : 1; | ||
2175 | uint64_t i_ioq_max_rp : 7; | ||
2176 | uint64_t i_set_ioq_rp : 1; | ||
2177 | uint64_t i_rsvd : 48; | ||
2178 | } ii_ifdr_fld_s; | ||
2179 | } ii_ifdr_u_t; | ||
2180 | |||
2181 | |||
2182 | /************************************************************************ | ||
2183 | * * | ||
2184 | * This register allows the II to become sluggish in removing * | ||
2185 | * messages from its inbound queue (IIQ). This will cause messages to * | ||
2186 | * back up in either virtual channel. Disabling the "molasses" mode * | ||
2187 | * subsequently allows the II to be tested under stress. In the * | ||
2188 | * sluggish ("Molasses") mode, the localized effects of congestion * | ||
2189 | * can be observed. * | ||
2190 | * * | ||
2191 | ************************************************************************/ | ||
2192 | |||
2193 | typedef union ii_iiap_u { | ||
2194 | uint64_t ii_iiap_regval; | ||
2195 | struct { | ||
2196 | uint64_t i_rq_mls : 6; | ||
2197 | uint64_t i_rsvd_1 : 2; | ||
2198 | uint64_t i_rp_mls : 6; | ||
2199 | uint64_t i_rsvd : 50; | ||
2200 | } ii_iiap_fld_s; | ||
2201 | } ii_iiap_u_t; | ||
2202 | |||
2203 | |||
2204 | /************************************************************************ | ||
2205 | * * | ||
2206 | * This register allows several parameters of CRB operation to be * | ||
2207 | * set. Note that writing to this register can have catastrophic side * | ||
2208 | * effects, if the CRB is not quiescent, i.e. if the CRB is * | ||
2209 | * processing protocol messages when the write occurs. * | ||
2210 | * * | ||
2211 | ************************************************************************/ | ||
2212 | |||
2213 | typedef union ii_icmr_u { | ||
2214 | uint64_t ii_icmr_regval; | ||
2215 | struct { | ||
2216 | uint64_t i_sp_msg : 1; | ||
2217 | uint64_t i_rd_hdr : 1; | ||
2218 | uint64_t i_rsvd_4 : 2; | ||
2219 | uint64_t i_c_cnt : 4; | ||
2220 | uint64_t i_rsvd_3 : 4; | ||
2221 | uint64_t i_clr_rqpd : 1; | ||
2222 | uint64_t i_clr_rppd : 1; | ||
2223 | uint64_t i_rsvd_2 : 2; | ||
2224 | uint64_t i_fc_cnt : 4; | ||
2225 | uint64_t i_crb_vld : 15; | ||
2226 | uint64_t i_crb_mark : 15; | ||
2227 | uint64_t i_rsvd_1 : 2; | ||
2228 | uint64_t i_precise : 1; | ||
2229 | uint64_t i_rsvd : 11; | ||
2230 | } ii_icmr_fld_s; | ||
2231 | } ii_icmr_u_t; | ||
2232 | |||
2233 | |||
2234 | /************************************************************************ | ||
2235 | * * | ||
2236 | * This register allows control of the table portion of the CRB * | ||
2237 | * logic via software. Control operations from this register have * | ||
2238 | * priority over all incoming Crosstalk or BTE requests. * | ||
2239 | * * | ||
2240 | ************************************************************************/ | ||
2241 | |||
2242 | typedef union ii_iccr_u { | ||
2243 | uint64_t ii_iccr_regval; | ||
2244 | struct { | ||
2245 | uint64_t i_crb_num : 4; | ||
2246 | uint64_t i_rsvd_1 : 4; | ||
2247 | uint64_t i_cmd : 8; | ||
2248 | uint64_t i_pending : 1; | ||
2249 | uint64_t i_rsvd : 47; | ||
2250 | } ii_iccr_fld_s; | ||
2251 | } ii_iccr_u_t; | ||
2252 | |||
2253 | |||
2254 | /************************************************************************ | ||
2255 | * * | ||
2256 | * This register allows the maximum timeout value to be programmed. * | ||
2257 | * * | ||
2258 | ************************************************************************/ | ||
2259 | |||
2260 | typedef union ii_icto_u { | ||
2261 | uint64_t ii_icto_regval; | ||
2262 | struct { | ||
2263 | uint64_t i_timeout : 8; | ||
2264 | uint64_t i_rsvd : 56; | ||
2265 | } ii_icto_fld_s; | ||
2266 | } ii_icto_u_t; | ||
2267 | |||
2268 | |||
2269 | /************************************************************************ | ||
2270 | * * | ||
2271 | * This register allows the timeout prescalar to be programmed. An * | ||
2272 | * internal counter is associated with this register. When the * | ||
2273 | * internal counter reaches the value of the PRESCALE field, the * | ||
2274 | * timer registers in all valid CRBs are incremented (CRBx_D[TIMEOUT] * | ||
2275 | * field). The internal counter resets to zero, and then continues * | ||
2276 | * counting. * | ||
2277 | * * | ||
2278 | ************************************************************************/ | ||
2279 | |||
2280 | typedef union ii_ictp_u { | ||
2281 | uint64_t ii_ictp_regval; | ||
2282 | struct { | ||
2283 | uint64_t i_prescale : 24; | ||
2284 | uint64_t i_rsvd : 40; | ||
2285 | } ii_ictp_fld_s; | ||
2286 | } ii_ictp_u_t; | ||
2287 | |||
2288 | |||
2289 | /************************************************************************ | ||
2290 | * * | ||
2291 | * Description: There are 15 CRB Entries (ICRB0 to ICRBE) that are * | ||
2292 | * used for Crosstalk operations (both cacheline and partial * | ||
2293 | * operations) or BTE/IO. Because the CRB entries are very wide, five * | ||
2294 | * registers (_A to _E) are required to read and write each entry. * | ||
2295 | * The CRB Entry registers can be conceptualized as rows and columns * | ||
2296 | * (illustrated in the table above). Each row contains the 4 * | ||
2297 | * registers required for a single CRB Entry. The first doubleword * | ||
2298 | * (column) for each entry is labeled A, and the second doubleword * | ||
2299 | * (higher address) is labeled B, the third doubleword is labeled C, * | ||
2300 | * the fourth doubleword is labeled D and the fifth doubleword is * | ||
2301 | * labeled E. All CRB entries have their addresses on a quarter * | ||
2302 | * cacheline aligned boundary. * | ||
2303 | * Upon reset, only the following fields are initialized: valid * | ||
2304 | * (VLD), priority count, timeout, timeout valid, and context valid. * | ||
2305 | * All other bits should be cleared by software before use (after * | ||
2306 | * recovering any potential error state from before the reset). * | ||
2307 | * The following four tables summarize the format for the four * | ||
2308 | * registers that are used for each ICRB# Entry. * | ||
2309 | * * | ||
2310 | ************************************************************************/ | ||
2311 | |||
2312 | typedef union ii_icrb0_a_u { | ||
2313 | uint64_t ii_icrb0_a_regval; | ||
2314 | struct { | ||
2315 | uint64_t ia_iow : 1; | ||
2316 | uint64_t ia_vld : 1; | ||
2317 | uint64_t ia_addr : 47; | ||
2318 | uint64_t ia_tnum : 5; | ||
2319 | uint64_t ia_sidn : 4; | ||
2320 | uint64_t ia_rsvd : 6; | ||
2321 | } ii_icrb0_a_fld_s; | ||
2322 | } ii_icrb0_a_u_t; | ||
2323 | |||
2324 | |||
2325 | /************************************************************************ | ||
2326 | * * | ||
2327 | * Description: There are 15 CRB Entries (ICRB0 to ICRBE) that are * | ||
2328 | * used for Crosstalk operations (both cacheline and partial * | ||
2329 | * operations) or BTE/IO. Because the CRB entries are very wide, five * | ||
2330 | * registers (_A to _E) are required to read and write each entry. * | ||
2331 | * * | ||
2332 | ************************************************************************/ | ||
2333 | |||
2334 | typedef union ii_icrb0_b_u { | ||
2335 | uint64_t ii_icrb0_b_regval; | ||
2336 | struct { | ||
2337 | uint64_t ib_xt_err : 1; | ||
2338 | uint64_t ib_mark : 1; | ||
2339 | uint64_t ib_ln_uce : 1; | ||
2340 | uint64_t ib_errcode : 3; | ||
2341 | uint64_t ib_error : 1; | ||
2342 | uint64_t ib_stall__bte_1 : 1; | ||
2343 | uint64_t ib_stall__bte_0 : 1; | ||
2344 | uint64_t ib_stall__intr : 1; | ||
2345 | uint64_t ib_stall_ib : 1; | ||
2346 | uint64_t ib_intvn : 1; | ||
2347 | uint64_t ib_wb : 1; | ||
2348 | uint64_t ib_hold : 1; | ||
2349 | uint64_t ib_ack : 1; | ||
2350 | uint64_t ib_resp : 1; | ||
2351 | uint64_t ib_ack_cnt : 11; | ||
2352 | uint64_t ib_rsvd : 7; | ||
2353 | uint64_t ib_exc : 5; | ||
2354 | uint64_t ib_init : 3; | ||
2355 | uint64_t ib_imsg : 8; | ||
2356 | uint64_t ib_imsgtype : 2; | ||
2357 | uint64_t ib_use_old : 1; | ||
2358 | uint64_t ib_rsvd_1 : 11; | ||
2359 | } ii_icrb0_b_fld_s; | ||
2360 | } ii_icrb0_b_u_t; | ||
2361 | |||
2362 | |||
2363 | /************************************************************************ | ||
2364 | * * | ||
2365 | * Description: There are 15 CRB Entries (ICRB0 to ICRBE) that are * | ||
2366 | * used for Crosstalk operations (both cacheline and partial * | ||
2367 | * operations) or BTE/IO. Because the CRB entries are very wide, five * | ||
2368 | * registers (_A to _E) are required to read and write each entry. * | ||
2369 | * * | ||
2370 | ************************************************************************/ | ||
2371 | |||
2372 | typedef union ii_icrb0_c_u { | ||
2373 | uint64_t ii_icrb0_c_regval; | ||
2374 | struct { | ||
2375 | uint64_t ic_source : 15; | ||
2376 | uint64_t ic_size : 2; | ||
2377 | uint64_t ic_ct : 1; | ||
2378 | uint64_t ic_bte_num : 1; | ||
2379 | uint64_t ic_gbr : 1; | ||
2380 | uint64_t ic_resprqd : 1; | ||
2381 | uint64_t ic_bo : 1; | ||
2382 | uint64_t ic_suppl : 15; | ||
2383 | uint64_t ic_rsvd : 27; | ||
2384 | } ii_icrb0_c_fld_s; | ||
2385 | } ii_icrb0_c_u_t; | ||
2386 | |||
2387 | |||
2388 | /************************************************************************ | ||
2389 | * * | ||
2390 | * Description: There are 15 CRB Entries (ICRB0 to ICRBE) that are * | ||
2391 | * used for Crosstalk operations (both cacheline and partial * | ||
2392 | * operations) or BTE/IO. Because the CRB entries are very wide, five * | ||
2393 | * registers (_A to _E) are required to read and write each entry. * | ||
2394 | * * | ||
2395 | ************************************************************************/ | ||
2396 | |||
2397 | typedef union ii_icrb0_d_u { | ||
2398 | uint64_t ii_icrb0_d_regval; | ||
2399 | struct { | ||
2400 | uint64_t id_pa_be : 43; | ||
2401 | uint64_t id_bte_op : 1; | ||
2402 | uint64_t id_pr_psc : 4; | ||
2403 | uint64_t id_pr_cnt : 4; | ||
2404 | uint64_t id_sleep : 1; | ||
2405 | uint64_t id_rsvd : 11; | ||
2406 | } ii_icrb0_d_fld_s; | ||
2407 | } ii_icrb0_d_u_t; | ||
2408 | |||
2409 | |||
2410 | /************************************************************************ | ||
2411 | * * | ||
2412 | * Description: There are 15 CRB Entries (ICRB0 to ICRBE) that are * | ||
2413 | * used for Crosstalk operations (both cacheline and partial * | ||
2414 | * operations) or BTE/IO. Because the CRB entries are very wide, five * | ||
2415 | * registers (_A to _E) are required to read and write each entry. * | ||
2416 | * * | ||
2417 | ************************************************************************/ | ||
2418 | |||
2419 | typedef union ii_icrb0_e_u { | ||
2420 | uint64_t ii_icrb0_e_regval; | ||
2421 | struct { | ||
2422 | uint64_t ie_timeout : 8; | ||
2423 | uint64_t ie_context : 15; | ||
2424 | uint64_t ie_rsvd : 1; | ||
2425 | uint64_t ie_tvld : 1; | ||
2426 | uint64_t ie_cvld : 1; | ||
2427 | uint64_t ie_rsvd_0 : 38; | ||
2428 | } ii_icrb0_e_fld_s; | ||
2429 | } ii_icrb0_e_u_t; | ||
2430 | |||
2431 | |||
2432 | /************************************************************************ | ||
2433 | * * | ||
2434 | * This register contains the lower 64 bits of the header of the * | ||
2435 | * spurious message captured by II. Valid when the SP_MSG bit in ICMR * | ||
2436 | * register is set. * | ||
2437 | * * | ||
2438 | ************************************************************************/ | ||
2439 | |||
2440 | typedef union ii_icsml_u { | ||
2441 | uint64_t ii_icsml_regval; | ||
2442 | struct { | ||
2443 | uint64_t i_tt_addr : 47; | ||
2444 | uint64_t i_newsuppl_ex : 14; | ||
2445 | uint64_t i_reserved : 2; | ||
2446 | uint64_t i_overflow : 1; | ||
2447 | } ii_icsml_fld_s; | ||
2448 | } ii_icsml_u_t; | ||
2449 | |||
2450 | |||
2451 | /************************************************************************ | ||
2452 | * * | ||
2453 | * This register contains the middle 64 bits of the header of the * | ||
2454 | * spurious message captured by II. Valid when the SP_MSG bit in ICMR * | ||
2455 | * register is set. * | ||
2456 | * * | ||
2457 | ************************************************************************/ | ||
2458 | |||
2459 | typedef union ii_icsmm_u { | ||
2460 | uint64_t ii_icsmm_regval; | ||
2461 | struct { | ||
2462 | uint64_t i_tt_ack_cnt : 11; | ||
2463 | uint64_t i_reserved : 53; | ||
2464 | } ii_icsmm_fld_s; | ||
2465 | } ii_icsmm_u_t; | ||
2466 | |||
2467 | |||
2468 | /************************************************************************ | ||
2469 | * * | ||
2470 | * This register contains the microscopic state, all the inputs to * | ||
2471 | * the protocol table, captured with the spurious message. Valid when * | ||
2472 | * the SP_MSG bit in the ICMR register is set. * | ||
2473 | * * | ||
2474 | ************************************************************************/ | ||
2475 | |||
2476 | typedef union ii_icsmh_u { | ||
2477 | uint64_t ii_icsmh_regval; | ||
2478 | struct { | ||
2479 | uint64_t i_tt_vld : 1; | ||
2480 | uint64_t i_xerr : 1; | ||
2481 | uint64_t i_ft_cwact_o : 1; | ||
2482 | uint64_t i_ft_wact_o : 1; | ||
2483 | uint64_t i_ft_active_o : 1; | ||
2484 | uint64_t i_sync : 1; | ||
2485 | uint64_t i_mnusg : 1; | ||
2486 | uint64_t i_mnusz : 1; | ||
2487 | uint64_t i_plusz : 1; | ||
2488 | uint64_t i_plusg : 1; | ||
2489 | uint64_t i_tt_exc : 5; | ||
2490 | uint64_t i_tt_wb : 1; | ||
2491 | uint64_t i_tt_hold : 1; | ||
2492 | uint64_t i_tt_ack : 1; | ||
2493 | uint64_t i_tt_resp : 1; | ||
2494 | uint64_t i_tt_intvn : 1; | ||
2495 | uint64_t i_g_stall_bte1 : 1; | ||
2496 | uint64_t i_g_stall_bte0 : 1; | ||
2497 | uint64_t i_g_stall_il : 1; | ||
2498 | uint64_t i_g_stall_ib : 1; | ||
2499 | uint64_t i_tt_imsg : 8; | ||
2500 | uint64_t i_tt_imsgtype : 2; | ||
2501 | uint64_t i_tt_use_old : 1; | ||
2502 | uint64_t i_tt_respreqd : 1; | ||
2503 | uint64_t i_tt_bte_num : 1; | ||
2504 | uint64_t i_cbn : 1; | ||
2505 | uint64_t i_match : 1; | ||
2506 | uint64_t i_rpcnt_lt_34 : 1; | ||
2507 | uint64_t i_rpcnt_ge_34 : 1; | ||
2508 | uint64_t i_rpcnt_lt_18 : 1; | ||
2509 | uint64_t i_rpcnt_ge_18 : 1; | ||
2510 | uint64_t i_rpcnt_lt_2 : 1; | ||
2511 | uint64_t i_rpcnt_ge_2 : 1; | ||
2512 | uint64_t i_rqcnt_lt_18 : 1; | ||
2513 | uint64_t i_rqcnt_ge_18 : 1; | ||
2514 | uint64_t i_rqcnt_lt_2 : 1; | ||
2515 | uint64_t i_rqcnt_ge_2 : 1; | ||
2516 | uint64_t i_tt_device : 7; | ||
2517 | uint64_t i_tt_init : 3; | ||
2518 | uint64_t i_reserved : 5; | ||
2519 | } ii_icsmh_fld_s; | ||
2520 | } ii_icsmh_u_t; | ||
2521 | |||
2522 | |||
2523 | /************************************************************************ | ||
2524 | * * | ||
2525 | * The Shub DEBUG unit provides a 3-bit selection signal to the * | ||
2526 | * II core and a 3-bit selection signal to the fsbclk domain in the II * | ||
2527 | * wrapper. * | ||
2528 | * * | ||
2529 | ************************************************************************/ | ||
2530 | |||
2531 | typedef union ii_idbss_u { | ||
2532 | uint64_t ii_idbss_regval; | ||
2533 | struct { | ||
2534 | uint64_t i_iioclk_core_submenu : 3; | ||
2535 | uint64_t i_rsvd : 5; | ||
2536 | uint64_t i_fsbclk_wrapper_submenu : 3; | ||
2537 | uint64_t i_rsvd_1 : 5; | ||
2538 | uint64_t i_iioclk_menu : 5; | ||
2539 | uint64_t i_rsvd_2 : 43; | ||
2540 | } ii_idbss_fld_s; | ||
2541 | } ii_idbss_u_t; | ||
2542 | |||
2543 | |||
2544 | /************************************************************************ | ||
2545 | * * | ||
2546 | * Description: This register is used to set up the length for a * | ||
2547 | * transfer and then to monitor the progress of that transfer. This * | ||
2548 | * register needs to be initialized before a transfer is started. A * | ||
2549 | * legitimate write to this register will set the Busy bit, clear the * | ||
2550 | * Error bit, and initialize the length to the value desired. * | ||
2551 | * While the transfer is in progress, hardware will decrement the * | ||
2552 | * length field with each successful block that is copied. Once the * | ||
2553 | * transfer completes, hardware will clear the Busy bit. The length * | ||
2554 | * field will also contain the number of cache lines left to be * | ||
2555 | * transferred. * | ||
2556 | * * | ||
2557 | ************************************************************************/ | ||
2558 | |||
2559 | typedef union ii_ibls0_u { | ||
2560 | uint64_t ii_ibls0_regval; | ||
2561 | struct { | ||
2562 | uint64_t i_length : 16; | ||
2563 | uint64_t i_error : 1; | ||
2564 | uint64_t i_rsvd_1 : 3; | ||
2565 | uint64_t i_busy : 1; | ||
2566 | uint64_t i_rsvd : 43; | ||
2567 | } ii_ibls0_fld_s; | ||
2568 | } ii_ibls0_u_t; | ||
2569 | |||
2570 | |||
2571 | /************************************************************************ | ||
2572 | * * | ||
2573 | * This register should be loaded before a transfer is started. The * | ||
2574 | * address to be loaded in bits 39:0 is the 40-bit TRex+ physical * | ||
2575 | * address as described in Section 1.3, Figure2 and Figure3. Since * | ||
2576 | * the bottom 7 bits of the address are always taken to be zero, BTE * | ||
2577 | * transfers are always cacheline-aligned. * | ||
2578 | * * | ||
2579 | ************************************************************************/ | ||
2580 | |||
2581 | typedef union ii_ibsa0_u { | ||
2582 | uint64_t ii_ibsa0_regval; | ||
2583 | struct { | ||
2584 | uint64_t i_rsvd_1 : 7; | ||
2585 | uint64_t i_addr : 42; | ||
2586 | uint64_t i_rsvd : 15; | ||
2587 | } ii_ibsa0_fld_s; | ||
2588 | } ii_ibsa0_u_t; | ||
2589 | |||
2590 | |||
2591 | /************************************************************************ | ||
2592 | * * | ||
2593 | * This register should be loaded before a transfer is started. The * | ||
2594 | * address to be loaded in bits 39:0 is the 40-bit TRex+ physical * | ||
2595 | * address as described in Section 1.3, Figure2 and Figure3. Since * | ||
2596 | * the bottom 7 bits of the address are always taken to be zero, BTE * | ||
2597 | * transfers are always cacheline-aligned. * | ||
2598 | * * | ||
2599 | ************************************************************************/ | ||
2600 | |||
2601 | typedef union ii_ibda0_u { | ||
2602 | uint64_t ii_ibda0_regval; | ||
2603 | struct { | ||
2604 | uint64_t i_rsvd_1 : 7; | ||
2605 | uint64_t i_addr : 42; | ||
2606 | uint64_t i_rsvd : 15; | ||
2607 | } ii_ibda0_fld_s; | ||
2608 | } ii_ibda0_u_t; | ||
2609 | |||
2610 | |||
2611 | /************************************************************************ | ||
2612 | * * | ||
2613 | * Writing to this register sets up the attributes of the transfer * | ||
2614 | * and initiates the transfer operation. Reading this register has * | ||
2615 | * the side effect of terminating any transfer in progress. Note: * | ||
2616 | * stopping a transfer midstream could have an adverse impact on the * | ||
2617 | * other BTE. If a BTE stream has to be stopped (due to error * | ||
2618 | * handling for example), both BTE streams should be stopped and * | ||
2619 | * their transfers discarded. * | ||
2620 | * * | ||
2621 | ************************************************************************/ | ||
2622 | |||
2623 | typedef union ii_ibct0_u { | ||
2624 | uint64_t ii_ibct0_regval; | ||
2625 | struct { | ||
2626 | uint64_t i_zerofill : 1; | ||
2627 | uint64_t i_rsvd_2 : 3; | ||
2628 | uint64_t i_notify : 1; | ||
2629 | uint64_t i_rsvd_1 : 3; | ||
2630 | uint64_t i_poison : 1; | ||
2631 | uint64_t i_rsvd : 55; | ||
2632 | } ii_ibct0_fld_s; | ||
2633 | } ii_ibct0_u_t; | ||
2634 | |||
2635 | |||
2636 | /************************************************************************ | ||
2637 | * * | ||
2638 | * This register contains the address to which the WINV is sent. * | ||
2639 | * This address has to be cache line aligned. * | ||
2640 | * * | ||
2641 | ************************************************************************/ | ||
2642 | |||
2643 | typedef union ii_ibna0_u { | ||
2644 | uint64_t ii_ibna0_regval; | ||
2645 | struct { | ||
2646 | uint64_t i_rsvd_1 : 7; | ||
2647 | uint64_t i_addr : 42; | ||
2648 | uint64_t i_rsvd : 15; | ||
2649 | } ii_ibna0_fld_s; | ||
2650 | } ii_ibna0_u_t; | ||
2651 | |||
2652 | |||
2653 | /************************************************************************ | ||
2654 | * * | ||
2655 | * This register contains the programmable level as well as the node * | ||
2656 | * ID and PI unit of the processor to which the interrupt will be * | ||
2657 | * sent. * | ||
2658 | * * | ||
2659 | ************************************************************************/ | ||
2660 | |||
2661 | typedef union ii_ibia0_u { | ||
2662 | uint64_t ii_ibia0_regval; | ||
2663 | struct { | ||
2664 | uint64_t i_rsvd_2 : 1; | ||
2665 | uint64_t i_node_id : 11; | ||
2666 | uint64_t i_rsvd_1 : 4; | ||
2667 | uint64_t i_level : 7; | ||
2668 | uint64_t i_rsvd : 41; | ||
2669 | } ii_ibia0_fld_s; | ||
2670 | } ii_ibia0_u_t; | ||
2671 | |||
2672 | |||
2673 | /************************************************************************ | ||
2674 | * * | ||
2675 | * Description: This register is used to set up the length for a * | ||
2676 | * transfer and then to monitor the progress of that transfer. This * | ||
2677 | * register needs to be initialized before a transfer is started. A * | ||
2678 | * legitimate write to this register will set the Busy bit, clear the * | ||
2679 | * Error bit, and initialize the length to the value desired. * | ||
2680 | * While the transfer is in progress, hardware will decrement the * | ||
2681 | * length field with each successful block that is copied. Once the * | ||
2682 | * transfer completes, hardware will clear the Busy bit. The length * | ||
2683 | * field will also contain the number of cache lines left to be * | ||
2684 | * transferred. * | ||
2685 | * * | ||
2686 | ************************************************************************/ | ||
2687 | |||
2688 | typedef union ii_ibls1_u { | ||
2689 | uint64_t ii_ibls1_regval; | ||
2690 | struct { | ||
2691 | uint64_t i_length : 16; | ||
2692 | uint64_t i_error : 1; | ||
2693 | uint64_t i_rsvd_1 : 3; | ||
2694 | uint64_t i_busy : 1; | ||
2695 | uint64_t i_rsvd : 43; | ||
2696 | } ii_ibls1_fld_s; | ||
2697 | } ii_ibls1_u_t; | ||
2698 | |||
2699 | |||
2700 | /************************************************************************ | ||
2701 | * * | ||
2702 | * This register should be loaded before a transfer is started. The * | ||
2703 | * address to be loaded in bits 39:0 is the 40-bit TRex+ physical * | ||
2704 | * address as described in Section 1.3, Figure2 and Figure3. Since * | ||
2705 | * the bottom 7 bits of the address are always taken to be zero, BTE * | ||
2706 | * transfers are always cacheline-aligned. * | ||
2707 | * * | ||
2708 | ************************************************************************/ | ||
2709 | |||
2710 | typedef union ii_ibsa1_u { | ||
2711 | uint64_t ii_ibsa1_regval; | ||
2712 | struct { | ||
2713 | uint64_t i_rsvd_1 : 7; | ||
2714 | uint64_t i_addr : 33; | ||
2715 | uint64_t i_rsvd : 24; | ||
2716 | } ii_ibsa1_fld_s; | ||
2717 | } ii_ibsa1_u_t; | ||
2718 | |||
2719 | |||
2720 | /************************************************************************ | ||
2721 | * * | ||
2722 | * This register should be loaded before a transfer is started. The * | ||
2723 | * address to be loaded in bits 39:0 is the 40-bit TRex+ physical * | ||
2724 | * address as described in Section 1.3, Figure2 and Figure3. Since * | ||
2725 | * the bottom 7 bits of the address are always taken to be zero, BTE * | ||
2726 | * transfers are always cacheline-aligned. * | ||
2727 | * * | ||
2728 | ************************************************************************/ | ||
2729 | |||
2730 | typedef union ii_ibda1_u { | ||
2731 | uint64_t ii_ibda1_regval; | ||
2732 | struct { | ||
2733 | uint64_t i_rsvd_1 : 7; | ||
2734 | uint64_t i_addr : 33; | ||
2735 | uint64_t i_rsvd : 24; | ||
2736 | } ii_ibda1_fld_s; | ||
2737 | } ii_ibda1_u_t; | ||
2738 | |||
2739 | |||
2740 | /************************************************************************ | ||
2741 | * * | ||
2742 | * Writing to this register sets up the attributes of the transfer * | ||
2743 | * and initiates the transfer operation. Reading this register has * | ||
2744 | * the side effect of terminating any transfer in progress. Note: * | ||
2745 | * stopping a transfer midstream could have an adverse impact on the * | ||
2746 | * other BTE. If a BTE stream has to be stopped (due to error * | ||
2747 | * handling for example), both BTE streams should be stopped and * | ||
2748 | * their transfers discarded. * | ||
2749 | * * | ||
2750 | ************************************************************************/ | ||
2751 | |||
2752 | typedef union ii_ibct1_u { | ||
2753 | uint64_t ii_ibct1_regval; | ||
2754 | struct { | ||
2755 | uint64_t i_zerofill : 1; | ||
2756 | uint64_t i_rsvd_2 : 3; | ||
2757 | uint64_t i_notify : 1; | ||
2758 | uint64_t i_rsvd_1 : 3; | ||
2759 | uint64_t i_poison : 1; | ||
2760 | uint64_t i_rsvd : 55; | ||
2761 | } ii_ibct1_fld_s; | ||
2762 | } ii_ibct1_u_t; | ||
2763 | |||
2764 | |||
2765 | /************************************************************************ | ||
2766 | * * | ||
2767 | * This register contains the address to which the WINV is sent. * | ||
2768 | * This address has to be cache line aligned. * | ||
2769 | * * | ||
2770 | ************************************************************************/ | ||
2771 | |||
2772 | typedef union ii_ibna1_u { | ||
2773 | uint64_t ii_ibna1_regval; | ||
2774 | struct { | ||
2775 | uint64_t i_rsvd_1 : 7; | ||
2776 | uint64_t i_addr : 33; | ||
2777 | uint64_t i_rsvd : 24; | ||
2778 | } ii_ibna1_fld_s; | ||
2779 | } ii_ibna1_u_t; | ||
2780 | |||
2781 | |||
2782 | /************************************************************************ | ||
2783 | * * | ||
2784 | * This register contains the programmable level as well as the node * | ||
2785 | * ID and PI unit of the processor to which the interrupt will be * | ||
2786 | * sent. * | ||
2787 | * * | ||
2788 | ************************************************************************/ | ||
2789 | |||
2790 | typedef union ii_ibia1_u { | ||
2791 | uint64_t ii_ibia1_regval; | ||
2792 | struct { | ||
2793 | uint64_t i_pi_id : 1; | ||
2794 | uint64_t i_node_id : 8; | ||
2795 | uint64_t i_rsvd_1 : 7; | ||
2796 | uint64_t i_level : 7; | ||
2797 | uint64_t i_rsvd : 41; | ||
2798 | } ii_ibia1_fld_s; | ||
2799 | } ii_ibia1_u_t; | ||
2800 | |||
2801 | |||
2802 | /************************************************************************ | ||
2803 | * * | ||
2804 | * This register defines the resources that feed information into * | ||
2805 | * the two performance counters located in the IO Performance * | ||
2806 | * Profiling Register. There are 17 different quantities that can be * | ||
2807 | * measured. Given these 17 different options, the two performance * | ||
2808 | * counters have 15 of them in common; menu selections 0 through 0xE * | ||
2809 | * are identical for each performance counter. As for the other two * | ||
2810 | * options, one is available from one performance counter and the * | ||
2811 | * other is available from the other performance counter. Hence, the * | ||
2812 | * II supports all 17*16=272 possible combinations of quantities to * | ||
2813 | * measure. * | ||
2814 | * * | ||
2815 | ************************************************************************/ | ||
2816 | |||
2817 | typedef union ii_ipcr_u { | ||
2818 | uint64_t ii_ipcr_regval; | ||
2819 | struct { | ||
2820 | uint64_t i_ippr0_c : 4; | ||
2821 | uint64_t i_ippr1_c : 4; | ||
2822 | uint64_t i_icct : 8; | ||
2823 | uint64_t i_rsvd : 48; | ||
2824 | } ii_ipcr_fld_s; | ||
2825 | } ii_ipcr_u_t; | ||
2826 | |||
2827 | |||
2828 | /************************************************************************ | ||
2829 | * * | ||
2830 | * * | ||
2831 | * * | ||
2832 | ************************************************************************/ | ||
2833 | |||
2834 | typedef union ii_ippr_u { | ||
2835 | uint64_t ii_ippr_regval; | ||
2836 | struct { | ||
2837 | uint64_t i_ippr0 : 32; | ||
2838 | uint64_t i_ippr1 : 32; | ||
2839 | } ii_ippr_fld_s; | ||
2840 | } ii_ippr_u_t; | ||
2841 | |||
2842 | |||
2843 | |||
2844 | /************************************************************************** | ||
2845 | * * | ||
2846 | * The following defines which were not formed into structures are * | ||
2847 | * probably indentical to another register, and the name of the * | ||
2848 | * register is provided against each of these registers. This * | ||
2849 | * information needs to be checked carefully * | ||
2850 | * * | ||
2851 | * IIO_ICRB1_A IIO_ICRB0_A * | ||
2852 | * IIO_ICRB1_B IIO_ICRB0_B * | ||
2853 | * IIO_ICRB1_C IIO_ICRB0_C * | ||
2854 | * IIO_ICRB1_D IIO_ICRB0_D * | ||
2855 | * IIO_ICRB1_E IIO_ICRB0_E * | ||
2856 | * IIO_ICRB2_A IIO_ICRB0_A * | ||
2857 | * IIO_ICRB2_B IIO_ICRB0_B * | ||
2858 | * IIO_ICRB2_C IIO_ICRB0_C * | ||
2859 | * IIO_ICRB2_D IIO_ICRB0_D * | ||
2860 | * IIO_ICRB2_E IIO_ICRB0_E * | ||
2861 | * IIO_ICRB3_A IIO_ICRB0_A * | ||
2862 | * IIO_ICRB3_B IIO_ICRB0_B * | ||
2863 | * IIO_ICRB3_C IIO_ICRB0_C * | ||
2864 | * IIO_ICRB3_D IIO_ICRB0_D * | ||
2865 | * IIO_ICRB3_E IIO_ICRB0_E * | ||
2866 | * IIO_ICRB4_A IIO_ICRB0_A * | ||
2867 | * IIO_ICRB4_B IIO_ICRB0_B * | ||
2868 | * IIO_ICRB4_C IIO_ICRB0_C * | ||
2869 | * IIO_ICRB4_D IIO_ICRB0_D * | ||
2870 | * IIO_ICRB4_E IIO_ICRB0_E * | ||
2871 | * IIO_ICRB5_A IIO_ICRB0_A * | ||
2872 | * IIO_ICRB5_B IIO_ICRB0_B * | ||
2873 | * IIO_ICRB5_C IIO_ICRB0_C * | ||
2874 | * IIO_ICRB5_D IIO_ICRB0_D * | ||
2875 | * IIO_ICRB5_E IIO_ICRB0_E * | ||
2876 | * IIO_ICRB6_A IIO_ICRB0_A * | ||
2877 | * IIO_ICRB6_B IIO_ICRB0_B * | ||
2878 | * IIO_ICRB6_C IIO_ICRB0_C * | ||
2879 | * IIO_ICRB6_D IIO_ICRB0_D * | ||
2880 | * IIO_ICRB6_E IIO_ICRB0_E * | ||
2881 | * IIO_ICRB7_A IIO_ICRB0_A * | ||
2882 | * IIO_ICRB7_B IIO_ICRB0_B * | ||
2883 | * IIO_ICRB7_C IIO_ICRB0_C * | ||
2884 | * IIO_ICRB7_D IIO_ICRB0_D * | ||
2885 | * IIO_ICRB7_E IIO_ICRB0_E * | ||
2886 | * IIO_ICRB8_A IIO_ICRB0_A * | ||
2887 | * IIO_ICRB8_B IIO_ICRB0_B * | ||
2888 | * IIO_ICRB8_C IIO_ICRB0_C * | ||
2889 | * IIO_ICRB8_D IIO_ICRB0_D * | ||
2890 | * IIO_ICRB8_E IIO_ICRB0_E * | ||
2891 | * IIO_ICRB9_A IIO_ICRB0_A * | ||
2892 | * IIO_ICRB9_B IIO_ICRB0_B * | ||
2893 | * IIO_ICRB9_C IIO_ICRB0_C * | ||
2894 | * IIO_ICRB9_D IIO_ICRB0_D * | ||
2895 | * IIO_ICRB9_E IIO_ICRB0_E * | ||
2896 | * IIO_ICRBA_A IIO_ICRB0_A * | ||
2897 | * IIO_ICRBA_B IIO_ICRB0_B * | ||
2898 | * IIO_ICRBA_C IIO_ICRB0_C * | ||
2899 | * IIO_ICRBA_D IIO_ICRB0_D * | ||
2900 | * IIO_ICRBA_E IIO_ICRB0_E * | ||
2901 | * IIO_ICRBB_A IIO_ICRB0_A * | ||
2902 | * IIO_ICRBB_B IIO_ICRB0_B * | ||
2903 | * IIO_ICRBB_C IIO_ICRB0_C * | ||
2904 | * IIO_ICRBB_D IIO_ICRB0_D * | ||
2905 | * IIO_ICRBB_E IIO_ICRB0_E * | ||
2906 | * IIO_ICRBC_A IIO_ICRB0_A * | ||
2907 | * IIO_ICRBC_B IIO_ICRB0_B * | ||
2908 | * IIO_ICRBC_C IIO_ICRB0_C * | ||
2909 | * IIO_ICRBC_D IIO_ICRB0_D * | ||
2910 | * IIO_ICRBC_E IIO_ICRB0_E * | ||
2911 | * IIO_ICRBD_A IIO_ICRB0_A * | ||
2912 | * IIO_ICRBD_B IIO_ICRB0_B * | ||
2913 | * IIO_ICRBD_C IIO_ICRB0_C * | ||
2914 | * IIO_ICRBD_D IIO_ICRB0_D * | ||
2915 | * IIO_ICRBD_E IIO_ICRB0_E * | ||
2916 | * IIO_ICRBE_A IIO_ICRB0_A * | ||
2917 | * IIO_ICRBE_B IIO_ICRB0_B * | ||
2918 | * IIO_ICRBE_C IIO_ICRB0_C * | ||
2919 | * IIO_ICRBE_D IIO_ICRB0_D * | ||
2920 | * IIO_ICRBE_E IIO_ICRB0_E * | ||
2921 | * * | ||
2922 | **************************************************************************/ | ||
2923 | |||
2924 | |||
2925 | /* | ||
2926 | * Slightly friendlier names for some common registers. | ||
2927 | */ | ||
2928 | #define IIO_WIDGET IIO_WID /* Widget identification */ | ||
2929 | #define IIO_WIDGET_STAT IIO_WSTAT /* Widget status register */ | ||
2930 | #define IIO_WIDGET_CTRL IIO_WCR /* Widget control register */ | ||
2931 | #define IIO_PROTECT IIO_ILAPR /* IO interface protection */ | ||
2932 | #define IIO_PROTECT_OVRRD IIO_ILAPO /* IO protect override */ | ||
2933 | #define IIO_OUTWIDGET_ACCESS IIO_IOWA /* Outbound widget access */ | ||
2934 | #define IIO_INWIDGET_ACCESS IIO_IIWA /* Inbound widget access */ | ||
2935 | #define IIO_INDEV_ERR_MASK IIO_IIDEM /* Inbound device error mask */ | ||
2936 | #define IIO_LLP_CSR IIO_ILCSR /* LLP control and status */ | ||
2937 | #define IIO_LLP_LOG IIO_ILLR /* LLP log */ | ||
2938 | #define IIO_XTALKCC_TOUT IIO_IXCC /* Xtalk credit count timeout*/ | ||
2939 | #define IIO_XTALKTT_TOUT IIO_IXTT /* Xtalk tail timeout */ | ||
2940 | #define IIO_IO_ERR_CLR IIO_IECLR /* IO error clear */ | ||
2941 | #define IIO_IGFX_0 IIO_IGFX0 | ||
2942 | #define IIO_IGFX_1 IIO_IGFX1 | ||
2943 | #define IIO_IBCT_0 IIO_IBCT0 | ||
2944 | #define IIO_IBCT_1 IIO_IBCT1 | ||
2945 | #define IIO_IBLS_0 IIO_IBLS0 | ||
2946 | #define IIO_IBLS_1 IIO_IBLS1 | ||
2947 | #define IIO_IBSA_0 IIO_IBSA0 | ||
2948 | #define IIO_IBSA_1 IIO_IBSA1 | ||
2949 | #define IIO_IBDA_0 IIO_IBDA0 | ||
2950 | #define IIO_IBDA_1 IIO_IBDA1 | ||
2951 | #define IIO_IBNA_0 IIO_IBNA0 | ||
2952 | #define IIO_IBNA_1 IIO_IBNA1 | ||
2953 | #define IIO_IBIA_0 IIO_IBIA0 | ||
2954 | #define IIO_IBIA_1 IIO_IBIA1 | ||
2955 | #define IIO_IOPRB_0 IIO_IPRB0 | ||
2956 | |||
2957 | #define IIO_PRTE_A(_x) (IIO_IPRTE0_A + (8 * (_x))) | ||
2958 | #define IIO_PRTE_B(_x) (IIO_IPRTE0_B + (8 * (_x))) | ||
2959 | #define IIO_NUM_PRTES 8 /* Total number of PRB table entries */ | ||
2960 | #define IIO_WIDPRTE_A(x) IIO_PRTE_A(((x) - 8)) /* widget ID to its PRTE num */ | ||
2961 | #define IIO_WIDPRTE_B(x) IIO_PRTE_B(((x) - 8)) /* widget ID to its PRTE num */ | ||
2962 | |||
2963 | #define IIO_NUM_IPRBS (9) | ||
2964 | |||
2965 | #define IIO_LLP_CSR_IS_UP 0x00002000 | ||
2966 | #define IIO_LLP_CSR_LLP_STAT_MASK 0x00003000 | ||
2967 | #define IIO_LLP_CSR_LLP_STAT_SHFT 12 | ||
2968 | |||
2969 | #define IIO_LLP_CB_MAX 0xffff /* in ILLR CB_CNT, Max Check Bit errors */ | ||
2970 | #define IIO_LLP_SN_MAX 0xffff /* in ILLR SN_CNT, Max Sequence Number errors */ | ||
2971 | |||
2972 | /* key to IIO_PROTECT_OVRRD */ | ||
2973 | #define IIO_PROTECT_OVRRD_KEY 0x53474972756c6573ull /* "SGIrules" */ | ||
2974 | |||
2975 | /* BTE register names */ | ||
2976 | #define IIO_BTE_STAT_0 IIO_IBLS_0 /* Also BTE length/status 0 */ | ||
2977 | #define IIO_BTE_SRC_0 IIO_IBSA_0 /* Also BTE source address 0 */ | ||
2978 | #define IIO_BTE_DEST_0 IIO_IBDA_0 /* Also BTE dest. address 0 */ | ||
2979 | #define IIO_BTE_CTRL_0 IIO_IBCT_0 /* Also BTE control/terminate 0 */ | ||
2980 | #define IIO_BTE_NOTIFY_0 IIO_IBNA_0 /* Also BTE notification 0 */ | ||
2981 | #define IIO_BTE_INT_0 IIO_IBIA_0 /* Also BTE interrupt 0 */ | ||
2982 | #define IIO_BTE_OFF_0 0 /* Base offset from BTE 0 regs. */ | ||
2983 | #define IIO_BTE_OFF_1 (IIO_IBLS_1 - IIO_IBLS_0) /* Offset from base to BTE 1 */ | ||
2984 | |||
2985 | /* BTE register offsets from base */ | ||
2986 | #define BTEOFF_STAT 0 | ||
2987 | #define BTEOFF_SRC (IIO_BTE_SRC_0 - IIO_BTE_STAT_0) | ||
2988 | #define BTEOFF_DEST (IIO_BTE_DEST_0 - IIO_BTE_STAT_0) | ||
2989 | #define BTEOFF_CTRL (IIO_BTE_CTRL_0 - IIO_BTE_STAT_0) | ||
2990 | #define BTEOFF_NOTIFY (IIO_BTE_NOTIFY_0 - IIO_BTE_STAT_0) | ||
2991 | #define BTEOFF_INT (IIO_BTE_INT_0 - IIO_BTE_STAT_0) | ||
2992 | |||
2993 | |||
2994 | /* names used in shub diags */ | ||
2995 | #define IIO_BASE_BTE0 IIO_IBLS_0 | ||
2996 | #define IIO_BASE_BTE1 IIO_IBLS_1 | ||
2997 | |||
2998 | /* | ||
2999 | * Macro which takes the widget number, and returns the | ||
3000 | * IO PRB address of that widget. | ||
3001 | * value _x is expected to be a widget number in the range | ||
3002 | * 0, 8 - 0xF | ||
3003 | */ | ||
3004 | #define IIO_IOPRB(_x) (IIO_IOPRB_0 + ( ( (_x) < HUB_WIDGET_ID_MIN ? \ | ||
3005 | (_x) : \ | ||
3006 | (_x) - (HUB_WIDGET_ID_MIN-1)) << 3) ) | ||
3007 | |||
3008 | |||
3009 | /* GFX Flow Control Node/Widget Register */ | ||
3010 | #define IIO_IGFX_W_NUM_BITS 4 /* size of widget num field */ | ||
3011 | #define IIO_IGFX_W_NUM_MASK ((1<<IIO_IGFX_W_NUM_BITS)-1) | ||
3012 | #define IIO_IGFX_W_NUM_SHIFT 0 | ||
3013 | #define IIO_IGFX_PI_NUM_BITS 1 /* size of PI num field */ | ||
3014 | #define IIO_IGFX_PI_NUM_MASK ((1<<IIO_IGFX_PI_NUM_BITS)-1) | ||
3015 | #define IIO_IGFX_PI_NUM_SHIFT 4 | ||
3016 | #define IIO_IGFX_N_NUM_BITS 8 /* size of node num field */ | ||
3017 | #define IIO_IGFX_N_NUM_MASK ((1<<IIO_IGFX_N_NUM_BITS)-1) | ||
3018 | #define IIO_IGFX_N_NUM_SHIFT 5 | ||
3019 | #define IIO_IGFX_P_NUM_BITS 1 /* size of processor num field */ | ||
3020 | #define IIO_IGFX_P_NUM_MASK ((1<<IIO_IGFX_P_NUM_BITS)-1) | ||
3021 | #define IIO_IGFX_P_NUM_SHIFT 16 | ||
3022 | #define IIO_IGFX_INIT(widget, pi, node, cpu) (\ | ||
3023 | (((widget) & IIO_IGFX_W_NUM_MASK) << IIO_IGFX_W_NUM_SHIFT) | \ | ||
3024 | (((pi) & IIO_IGFX_PI_NUM_MASK)<< IIO_IGFX_PI_NUM_SHIFT)| \ | ||
3025 | (((node) & IIO_IGFX_N_NUM_MASK) << IIO_IGFX_N_NUM_SHIFT) | \ | ||
3026 | (((cpu) & IIO_IGFX_P_NUM_MASK) << IIO_IGFX_P_NUM_SHIFT)) | ||
3027 | |||
3028 | |||
3029 | /* Scratch registers (all bits available) */ | ||
3030 | #define IIO_SCRATCH_REG0 IIO_ISCR0 | ||
3031 | #define IIO_SCRATCH_REG1 IIO_ISCR1 | ||
3032 | #define IIO_SCRATCH_MASK 0xffffffffffffffffUL | ||
3033 | |||
3034 | #define IIO_SCRATCH_BIT0_0 0x0000000000000001UL | ||
3035 | #define IIO_SCRATCH_BIT0_1 0x0000000000000002UL | ||
3036 | #define IIO_SCRATCH_BIT0_2 0x0000000000000004UL | ||
3037 | #define IIO_SCRATCH_BIT0_3 0x0000000000000008UL | ||
3038 | #define IIO_SCRATCH_BIT0_4 0x0000000000000010UL | ||
3039 | #define IIO_SCRATCH_BIT0_5 0x0000000000000020UL | ||
3040 | #define IIO_SCRATCH_BIT0_6 0x0000000000000040UL | ||
3041 | #define IIO_SCRATCH_BIT0_7 0x0000000000000080UL | ||
3042 | #define IIO_SCRATCH_BIT0_8 0x0000000000000100UL | ||
3043 | #define IIO_SCRATCH_BIT0_9 0x0000000000000200UL | ||
3044 | #define IIO_SCRATCH_BIT0_A 0x0000000000000400UL | ||
3045 | |||
3046 | #define IIO_SCRATCH_BIT1_0 0x0000000000000001UL | ||
3047 | #define IIO_SCRATCH_BIT1_1 0x0000000000000002UL | ||
3048 | /* IO Translation Table Entries */ | ||
3049 | #define IIO_NUM_ITTES 7 /* ITTEs numbered 0..6 */ | ||
3050 | /* Hw manuals number them 1..7! */ | ||
3051 | /* | ||
3052 | * IIO_IMEM Register fields. | ||
3053 | */ | ||
3054 | #define IIO_IMEM_W0ESD 0x1UL /* Widget 0 shut down due to error */ | ||
3055 | #define IIO_IMEM_B0ESD (1UL << 4) /* BTE 0 shut down due to error */ | ||
3056 | #define IIO_IMEM_B1ESD (1UL << 8) /* BTE 1 Shut down due to error */ | ||
3057 | |||
3058 | /* | ||
3059 | * As a permanent workaround for a bug in the PI side of the shub, we've | ||
3060 | * redefined big window 7 as small window 0. | ||
3061 | XXX does this still apply for SN1?? | ||
3062 | */ | ||
3063 | #define HUB_NUM_BIG_WINDOW (IIO_NUM_ITTES - 1) | ||
3064 | |||
3065 | /* | ||
3066 | * Use the top big window as a surrogate for the first small window | ||
3067 | */ | ||
3068 | #define SWIN0_BIGWIN HUB_NUM_BIG_WINDOW | ||
3069 | |||
3070 | #define ILCSR_WARM_RESET 0x100 | ||
3071 | |||
3072 | /* | ||
3073 | * CRB manipulation macros | ||
3074 | * The CRB macros are slightly complicated, since there are up to | ||
3075 | * four registers associated with each CRB entry. | ||
3076 | */ | ||
3077 | #define IIO_NUM_CRBS 15 /* Number of CRBs */ | ||
3078 | #define IIO_NUM_PC_CRBS 4 /* Number of partial cache CRBs */ | ||
3079 | #define IIO_ICRB_OFFSET 8 | ||
3080 | #define IIO_ICRB_0 IIO_ICRB0_A | ||
3081 | #define IIO_ICRB_ADDR_SHFT 2 /* Shift to get proper address */ | ||
3082 | /* XXX - This is now tuneable: | ||
3083 | #define IIO_FIRST_PC_ENTRY 12 | ||
3084 | */ | ||
3085 | |||
3086 | #define IIO_ICRB_A(_x) ((u64)(IIO_ICRB_0 + (6 * IIO_ICRB_OFFSET * (_x)))) | ||
3087 | #define IIO_ICRB_B(_x) ((u64)((char *)IIO_ICRB_A(_x) + 1*IIO_ICRB_OFFSET)) | ||
3088 | #define IIO_ICRB_C(_x) ((u64)((char *)IIO_ICRB_A(_x) + 2*IIO_ICRB_OFFSET)) | ||
3089 | #define IIO_ICRB_D(_x) ((u64)((char *)IIO_ICRB_A(_x) + 3*IIO_ICRB_OFFSET)) | ||
3090 | #define IIO_ICRB_E(_x) ((u64)((char *)IIO_ICRB_A(_x) + 4*IIO_ICRB_OFFSET)) | ||
3091 | |||
3092 | #define TNUM_TO_WIDGET_DEV(_tnum) (_tnum & 0x7) | ||
3093 | |||
3094 | /* | ||
3095 | * values for "ecode" field | ||
3096 | */ | ||
3097 | #define IIO_ICRB_ECODE_DERR 0 /* Directory error due to IIO access */ | ||
3098 | #define IIO_ICRB_ECODE_PERR 1 /* Poison error on IO access */ | ||
3099 | #define IIO_ICRB_ECODE_WERR 2 /* Write error by IIO access | ||
3100 | * e.g. WINV to a Read only line. */ | ||
3101 | #define IIO_ICRB_ECODE_AERR 3 /* Access error caused by IIO access */ | ||
3102 | #define IIO_ICRB_ECODE_PWERR 4 /* Error on partial write */ | ||
3103 | #define IIO_ICRB_ECODE_PRERR 5 /* Error on partial read */ | ||
3104 | #define IIO_ICRB_ECODE_TOUT 6 /* CRB timeout before deallocating */ | ||
3105 | #define IIO_ICRB_ECODE_XTERR 7 /* Incoming xtalk pkt had error bit */ | ||
3106 | |||
3107 | /* | ||
3108 | * Values for field imsgtype | ||
3109 | */ | ||
3110 | #define IIO_ICRB_IMSGT_XTALK 0 /* Incoming Meessage from Xtalk */ | ||
3111 | #define IIO_ICRB_IMSGT_BTE 1 /* Incoming message from BTE */ | ||
3112 | #define IIO_ICRB_IMSGT_SN1NET 2 /* Incoming message from SN1 net */ | ||
3113 | #define IIO_ICRB_IMSGT_CRB 3 /* Incoming message from CRB ??? */ | ||
3114 | |||
3115 | /* | ||
3116 | * values for field initiator. | ||
3117 | */ | ||
3118 | #define IIO_ICRB_INIT_XTALK 0 /* Message originated in xtalk */ | ||
3119 | #define IIO_ICRB_INIT_BTE0 0x1 /* Message originated in BTE 0 */ | ||
3120 | #define IIO_ICRB_INIT_SN1NET 0x2 /* Message originated in SN1net */ | ||
3121 | #define IIO_ICRB_INIT_CRB 0x3 /* Message originated in CRB ? */ | ||
3122 | #define IIO_ICRB_INIT_BTE1 0x5 /* MEssage originated in BTE 1 */ | ||
3123 | |||
3124 | /* | ||
3125 | * Number of credits Hub widget has while sending req/response to | ||
3126 | * xbow. | ||
3127 | * Value of 3 is required by Xbow 1.1 | ||
3128 | * We may be able to increase this to 4 with Xbow 1.2. | ||
3129 | */ | ||
3130 | #define HUBII_XBOW_CREDIT 3 | ||
3131 | #define HUBII_XBOW_REV2_CREDIT 4 | ||
3132 | |||
3133 | /* | ||
3134 | * Number of credits that xtalk devices should use when communicating | ||
3135 | * with a SHub (depth of SHub's queue). | ||
3136 | */ | ||
3137 | #define HUB_CREDIT 4 | ||
3138 | |||
3139 | /* | ||
3140 | * Some IIO_PRB fields | ||
3141 | */ | ||
3142 | #define IIO_PRB_MULTI_ERR (1LL << 63) | ||
3143 | #define IIO_PRB_SPUR_RD (1LL << 51) | ||
3144 | #define IIO_PRB_SPUR_WR (1LL << 50) | ||
3145 | #define IIO_PRB_RD_TO (1LL << 49) | ||
3146 | #define IIO_PRB_ERROR (1LL << 48) | ||
3147 | |||
3148 | /************************************************************************* | ||
3149 | |||
3150 | Some of the IIO field masks and shifts are defined here. | ||
3151 | This is in order to maintain compatibility in SN0 and SN1 code | ||
3152 | |||
3153 | **************************************************************************/ | ||
3154 | |||
3155 | /* | ||
3156 | * ICMR register fields | ||
3157 | * (Note: the IIO_ICMR_P_CNT and IIO_ICMR_PC_VLD from Hub are not | ||
3158 | * present in SHub) | ||
3159 | */ | ||
3160 | |||
3161 | #define IIO_ICMR_CRB_VLD_SHFT 20 | ||
3162 | #define IIO_ICMR_CRB_VLD_MASK (0x7fffUL << IIO_ICMR_CRB_VLD_SHFT) | ||
3163 | |||
3164 | #define IIO_ICMR_FC_CNT_SHFT 16 | ||
3165 | #define IIO_ICMR_FC_CNT_MASK (0xf << IIO_ICMR_FC_CNT_SHFT) | ||
3166 | |||
3167 | #define IIO_ICMR_C_CNT_SHFT 4 | ||
3168 | #define IIO_ICMR_C_CNT_MASK (0xf << IIO_ICMR_C_CNT_SHFT) | ||
3169 | |||
3170 | #define IIO_ICMR_PRECISE (1UL << 52) | ||
3171 | #define IIO_ICMR_CLR_RPPD (1UL << 13) | ||
3172 | #define IIO_ICMR_CLR_RQPD (1UL << 12) | ||
3173 | |||
3174 | /* | ||
3175 | * IIO PIO Deallocation register field masks : (IIO_IPDR) | ||
3176 | XXX present but not needed in bedrock? See the manual. | ||
3177 | */ | ||
3178 | #define IIO_IPDR_PND (1 << 4) | ||
3179 | |||
3180 | /* | ||
3181 | * IIO CRB deallocation register field masks: (IIO_ICDR) | ||
3182 | */ | ||
3183 | #define IIO_ICDR_PND (1 << 4) | ||
3184 | |||
3185 | /* | ||
3186 | * IO BTE Length/Status (IIO_IBLS) register bit field definitions | ||
3187 | */ | ||
3188 | #define IBLS_BUSY (0x1UL << 20) | ||
3189 | #define IBLS_ERROR_SHFT 16 | ||
3190 | #define IBLS_ERROR (0x1UL << IBLS_ERROR_SHFT) | ||
3191 | #define IBLS_LENGTH_MASK 0xffff | ||
3192 | |||
3193 | /* | ||
3194 | * IO BTE Control/Terminate register (IBCT) register bit field definitions | ||
3195 | */ | ||
3196 | #define IBCT_POISON (0x1UL << 8) | ||
3197 | #define IBCT_NOTIFY (0x1UL << 4) | ||
3198 | #define IBCT_ZFIL_MODE (0x1UL << 0) | ||
3199 | |||
3200 | /* | ||
3201 | * IIO Incoming Error Packet Header (IIO_IIEPH1/IIO_IIEPH2) | ||
3202 | */ | ||
3203 | #define IIEPH1_VALID (1UL << 44) | ||
3204 | #define IIEPH1_OVERRUN (1UL << 40) | ||
3205 | #define IIEPH1_ERR_TYPE_SHFT 32 | ||
3206 | #define IIEPH1_ERR_TYPE_MASK 0xf | ||
3207 | #define IIEPH1_SOURCE_SHFT 20 | ||
3208 | #define IIEPH1_SOURCE_MASK 11 | ||
3209 | #define IIEPH1_SUPPL_SHFT 8 | ||
3210 | #define IIEPH1_SUPPL_MASK 11 | ||
3211 | #define IIEPH1_CMD_SHFT 0 | ||
3212 | #define IIEPH1_CMD_MASK 7 | ||
3213 | |||
3214 | #define IIEPH2_TAIL (1UL << 40) | ||
3215 | #define IIEPH2_ADDRESS_SHFT 0 | ||
3216 | #define IIEPH2_ADDRESS_MASK 38 | ||
3217 | |||
3218 | #define IIEPH1_ERR_SHORT_REQ 2 | ||
3219 | #define IIEPH1_ERR_SHORT_REPLY 3 | ||
3220 | #define IIEPH1_ERR_LONG_REQ 4 | ||
3221 | #define IIEPH1_ERR_LONG_REPLY 5 | ||
3222 | |||
3223 | /* | ||
3224 | * IO Error Clear register bit field definitions | ||
3225 | */ | ||
3226 | #define IECLR_PI1_FWD_INT (1UL << 31) /* clear PI1_FORWARD_INT in iidsr */ | ||
3227 | #define IECLR_PI0_FWD_INT (1UL << 30) /* clear PI0_FORWARD_INT in iidsr */ | ||
3228 | #define IECLR_SPUR_RD_HDR (1UL << 29) /* clear valid bit in ixss reg */ | ||
3229 | #define IECLR_BTE1 (1UL << 18) /* clear bte error 1 */ | ||
3230 | #define IECLR_BTE0 (1UL << 17) /* clear bte error 0 */ | ||
3231 | #define IECLR_CRAZY (1UL << 16) /* clear crazy bit in wstat reg */ | ||
3232 | #define IECLR_PRB_F (1UL << 15) /* clear err bit in PRB_F reg */ | ||
3233 | #define IECLR_PRB_E (1UL << 14) /* clear err bit in PRB_E reg */ | ||
3234 | #define IECLR_PRB_D (1UL << 13) /* clear err bit in PRB_D reg */ | ||
3235 | #define IECLR_PRB_C (1UL << 12) /* clear err bit in PRB_C reg */ | ||
3236 | #define IECLR_PRB_B (1UL << 11) /* clear err bit in PRB_B reg */ | ||
3237 | #define IECLR_PRB_A (1UL << 10) /* clear err bit in PRB_A reg */ | ||
3238 | #define IECLR_PRB_9 (1UL << 9) /* clear err bit in PRB_9 reg */ | ||
3239 | #define IECLR_PRB_8 (1UL << 8) /* clear err bit in PRB_8 reg */ | ||
3240 | #define IECLR_PRB_0 (1UL << 0) /* clear err bit in PRB_0 reg */ | ||
3241 | |||
3242 | /* | ||
3243 | * IIO CRB control register Fields: IIO_ICCR | ||
3244 | */ | ||
3245 | #define IIO_ICCR_PENDING (0x10000) | ||
3246 | #define IIO_ICCR_CMD_MASK (0xFF) | ||
3247 | #define IIO_ICCR_CMD_SHFT (7) | ||
3248 | #define IIO_ICCR_CMD_NOP (0x0) /* No Op */ | ||
3249 | #define IIO_ICCR_CMD_WAKE (0x100) /* Reactivate CRB entry and process */ | ||
3250 | #define IIO_ICCR_CMD_TIMEOUT (0x200) /* Make CRB timeout & mark invalid */ | ||
3251 | #define IIO_ICCR_CMD_EJECT (0x400) /* Contents of entry written to memory | ||
3252 | * via a WB | ||
3253 | */ | ||
3254 | #define IIO_ICCR_CMD_FLUSH (0x800) | ||
3255 | |||
3256 | /* | ||
3257 | * | ||
3258 | * CRB Register description. | ||
3259 | * | ||
3260 | * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING | ||
3261 | * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING | ||
3262 | * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING | ||
3263 | * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING | ||
3264 | * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING | ||
3265 | * | ||
3266 | * Many of the fields in CRB are status bits used by hardware | ||
3267 | * for implementation of the protocol. It's very dangerous to | ||
3268 | * mess around with the CRB registers. | ||
3269 | * | ||
3270 | * It's OK to read the CRB registers and try to make sense out of the | ||
3271 | * fields in CRB. | ||
3272 | * | ||
3273 | * Updating CRB requires all activities in Hub IIO to be quiesced. | ||
3274 | * otherwise, a write to CRB could corrupt other CRB entries. | ||
3275 | * CRBs are here only as a back door peek to shub IIO's status. | ||
3276 | * Quiescing implies no dmas no PIOs | ||
3277 | * either directly from the cpu or from sn0net. | ||
3278 | * this is not something that can be done easily. So, AVOID updating | ||
3279 | * CRBs. | ||
3280 | */ | ||
3281 | |||
3282 | /* | ||
3283 | * Easy access macros for CRBs, all 5 registers (A-E) | ||
3284 | */ | ||
3285 | typedef ii_icrb0_a_u_t icrba_t; | ||
3286 | #define a_sidn ii_icrb0_a_fld_s.ia_sidn | ||
3287 | #define a_tnum ii_icrb0_a_fld_s.ia_tnum | ||
3288 | #define a_addr ii_icrb0_a_fld_s.ia_addr | ||
3289 | #define a_valid ii_icrb0_a_fld_s.ia_vld | ||
3290 | #define a_iow ii_icrb0_a_fld_s.ia_iow | ||
3291 | #define a_regvalue ii_icrb0_a_regval | ||
3292 | |||
3293 | typedef ii_icrb0_b_u_t icrbb_t; | ||
3294 | #define b_use_old ii_icrb0_b_fld_s.ib_use_old | ||
3295 | #define b_imsgtype ii_icrb0_b_fld_s.ib_imsgtype | ||
3296 | #define b_imsg ii_icrb0_b_fld_s.ib_imsg | ||
3297 | #define b_initiator ii_icrb0_b_fld_s.ib_init | ||
3298 | #define b_exc ii_icrb0_b_fld_s.ib_exc | ||
3299 | #define b_ackcnt ii_icrb0_b_fld_s.ib_ack_cnt | ||
3300 | #define b_resp ii_icrb0_b_fld_s.ib_resp | ||
3301 | #define b_ack ii_icrb0_b_fld_s.ib_ack | ||
3302 | #define b_hold ii_icrb0_b_fld_s.ib_hold | ||
3303 | #define b_wb ii_icrb0_b_fld_s.ib_wb | ||
3304 | #define b_intvn ii_icrb0_b_fld_s.ib_intvn | ||
3305 | #define b_stall_ib ii_icrb0_b_fld_s.ib_stall_ib | ||
3306 | #define b_stall_int ii_icrb0_b_fld_s.ib_stall__intr | ||
3307 | #define b_stall_bte_0 ii_icrb0_b_fld_s.ib_stall__bte_0 | ||
3308 | #define b_stall_bte_1 ii_icrb0_b_fld_s.ib_stall__bte_1 | ||
3309 | #define b_error ii_icrb0_b_fld_s.ib_error | ||
3310 | #define b_ecode ii_icrb0_b_fld_s.ib_errcode | ||
3311 | #define b_lnetuce ii_icrb0_b_fld_s.ib_ln_uce | ||
3312 | #define b_mark ii_icrb0_b_fld_s.ib_mark | ||
3313 | #define b_xerr ii_icrb0_b_fld_s.ib_xt_err | ||
3314 | #define b_regvalue ii_icrb0_b_regval | ||
3315 | |||
3316 | typedef ii_icrb0_c_u_t icrbc_t; | ||
3317 | #define c_suppl ii_icrb0_c_fld_s.ic_suppl | ||
3318 | #define c_barrop ii_icrb0_c_fld_s.ic_bo | ||
3319 | #define c_doresp ii_icrb0_c_fld_s.ic_resprqd | ||
3320 | #define c_gbr ii_icrb0_c_fld_s.ic_gbr | ||
3321 | #define c_btenum ii_icrb0_c_fld_s.ic_bte_num | ||
3322 | #define c_cohtrans ii_icrb0_c_fld_s.ic_ct | ||
3323 | #define c_xtsize ii_icrb0_c_fld_s.ic_size | ||
3324 | #define c_source ii_icrb0_c_fld_s.ic_source | ||
3325 | #define c_regvalue ii_icrb0_c_regval | ||
3326 | |||
3327 | |||
3328 | typedef ii_icrb0_d_u_t icrbd_t; | ||
3329 | #define d_sleep ii_icrb0_d_fld_s.id_sleep | ||
3330 | #define d_pricnt ii_icrb0_d_fld_s.id_pr_cnt | ||
3331 | #define d_pripsc ii_icrb0_d_fld_s.id_pr_psc | ||
3332 | #define d_bteop ii_icrb0_d_fld_s.id_bte_op | ||
3333 | #define d_bteaddr ii_icrb0_d_fld_s.id_pa_be /* ic_pa_be fld has 2 names*/ | ||
3334 | #define d_benable ii_icrb0_d_fld_s.id_pa_be /* ic_pa_be fld has 2 names*/ | ||
3335 | #define d_regvalue ii_icrb0_d_regval | ||
3336 | |||
3337 | typedef ii_icrb0_e_u_t icrbe_t; | ||
3338 | #define icrbe_ctxtvld ii_icrb0_e_fld_s.ie_cvld | ||
3339 | #define icrbe_toutvld ii_icrb0_e_fld_s.ie_tvld | ||
3340 | #define icrbe_context ii_icrb0_e_fld_s.ie_context | ||
3341 | #define icrbe_timeout ii_icrb0_e_fld_s.ie_timeout | ||
3342 | #define e_regvalue ii_icrb0_e_regval | ||
3343 | |||
3344 | |||
3345 | /* Number of widgets supported by shub */ | ||
3346 | #define HUB_NUM_WIDGET 9 | ||
3347 | #define HUB_WIDGET_ID_MIN 0x8 | ||
3348 | #define HUB_WIDGET_ID_MAX 0xf | ||
3349 | |||
3350 | #define HUB_WIDGET_PART_NUM 0xc120 | ||
3351 | #define MAX_HUBS_PER_XBOW 2 | ||
3352 | |||
3353 | /* A few more #defines for backwards compatibility */ | ||
3354 | #define iprb_t ii_iprb0_u_t | ||
3355 | #define iprb_regval ii_iprb0_regval | ||
3356 | #define iprb_mult_err ii_iprb0_fld_s.i_mult_err | ||
3357 | #define iprb_spur_rd ii_iprb0_fld_s.i_spur_rd | ||
3358 | #define iprb_spur_wr ii_iprb0_fld_s.i_spur_wr | ||
3359 | #define iprb_rd_to ii_iprb0_fld_s.i_rd_to | ||
3360 | #define iprb_ovflow ii_iprb0_fld_s.i_of_cnt | ||
3361 | #define iprb_error ii_iprb0_fld_s.i_error | ||
3362 | #define iprb_ff ii_iprb0_fld_s.i_f | ||
3363 | #define iprb_mode ii_iprb0_fld_s.i_m | ||
3364 | #define iprb_bnakctr ii_iprb0_fld_s.i_nb | ||
3365 | #define iprb_anakctr ii_iprb0_fld_s.i_na | ||
3366 | #define iprb_xtalkctr ii_iprb0_fld_s.i_c | ||
3367 | |||
3368 | #define LNK_STAT_WORKING 0x2 /* LLP is working */ | ||
3369 | |||
3370 | #define IIO_WSTAT_ECRAZY (1ULL << 32) /* Hub gone crazy */ | ||
3371 | #define IIO_WSTAT_TXRETRY (1ULL << 9) /* Hub Tx Retry timeout */ | ||
3372 | #define IIO_WSTAT_TXRETRY_MASK (0x7F) /* should be 0xFF?? */ | ||
3373 | #define IIO_WSTAT_TXRETRY_SHFT (16) | ||
3374 | #define IIO_WSTAT_TXRETRY_CNT(w) (((w) >> IIO_WSTAT_TXRETRY_SHFT) & \ | ||
3375 | IIO_WSTAT_TXRETRY_MASK) | ||
3376 | |||
3377 | /* Number of II perf. counters we can multiplex at once */ | ||
3378 | |||
3379 | #define IO_PERF_SETS 32 | ||
3380 | |||
3381 | /* Bit for the widget in inbound access register */ | ||
3382 | #define IIO_IIWA_WIDGET(_w) ((uint64_t)(1ULL << _w)) | ||
3383 | /* Bit for the widget in outbound access register */ | ||
3384 | #define IIO_IOWA_WIDGET(_w) ((uint64_t)(1ULL << _w)) | ||
3385 | |||
3386 | /* NOTE: The following define assumes that we are going to get | ||
3387 | * widget numbers from 8 thru F and the device numbers within | ||
3388 | * widget from 0 thru 7. | ||
3389 | */ | ||
3390 | #define IIO_IIDEM_WIDGETDEV_MASK(w, d) ((uint64_t)(1ULL << (8 * ((w) - 8) + (d)))) | ||
3391 | |||
3392 | /* IO Interrupt Destination Register */ | ||
3393 | #define IIO_IIDSR_SENT_SHIFT 28 | ||
3394 | #define IIO_IIDSR_SENT_MASK 0x30000000 | ||
3395 | #define IIO_IIDSR_ENB_SHIFT 24 | ||
3396 | #define IIO_IIDSR_ENB_MASK 0x01000000 | ||
3397 | #define IIO_IIDSR_NODE_SHIFT 9 | ||
3398 | #define IIO_IIDSR_NODE_MASK 0x000ff700 | ||
3399 | #define IIO_IIDSR_PI_ID_SHIFT 8 | ||
3400 | #define IIO_IIDSR_PI_ID_MASK 0x00000100 | ||
3401 | #define IIO_IIDSR_LVL_SHIFT 0 | ||
3402 | #define IIO_IIDSR_LVL_MASK 0x000000ff | ||
3403 | |||
3404 | /* Xtalk timeout threshhold register (IIO_IXTT) */ | ||
3405 | #define IXTT_RRSP_TO_SHFT 55 /* read response timeout */ | ||
3406 | #define IXTT_RRSP_TO_MASK (0x1FULL << IXTT_RRSP_TO_SHFT) | ||
3407 | #define IXTT_RRSP_PS_SHFT 32 /* read responsed TO prescalar */ | ||
3408 | #define IXTT_RRSP_PS_MASK (0x7FFFFFULL << IXTT_RRSP_PS_SHFT) | ||
3409 | #define IXTT_TAIL_TO_SHFT 0 /* tail timeout counter threshold */ | ||
3410 | #define IXTT_TAIL_TO_MASK (0x3FFFFFFULL << IXTT_TAIL_TO_SHFT) | ||
3411 | |||
3412 | /* | ||
3413 | * The IO LLP control status register and widget control register | ||
3414 | */ | ||
3415 | |||
3416 | typedef union hubii_wcr_u { | ||
3417 | uint64_t wcr_reg_value; | ||
3418 | struct { | ||
3419 | uint64_t wcr_widget_id: 4, /* LLP crossbar credit */ | ||
3420 | wcr_tag_mode: 1, /* Tag mode */ | ||
3421 | wcr_rsvd1: 8, /* Reserved */ | ||
3422 | wcr_xbar_crd: 3, /* LLP crossbar credit */ | ||
3423 | wcr_f_bad_pkt: 1, /* Force bad llp pkt enable */ | ||
3424 | wcr_dir_con: 1, /* widget direct connect */ | ||
3425 | wcr_e_thresh: 5, /* elasticity threshold */ | ||
3426 | wcr_rsvd: 41; /* unused */ | ||
3427 | } wcr_fields_s; | ||
3428 | } hubii_wcr_t; | ||
3429 | |||
3430 | #define iwcr_dir_con wcr_fields_s.wcr_dir_con | ||
3431 | |||
3432 | /* The structures below are defined to extract and modify the ii | ||
3433 | performance registers */ | ||
3434 | |||
3435 | /* io_perf_sel allows the caller to specify what tests will be | ||
3436 | performed */ | ||
3437 | |||
3438 | typedef union io_perf_sel { | ||
3439 | uint64_t perf_sel_reg; | ||
3440 | struct { | ||
3441 | uint64_t perf_ippr0 : 4, | ||
3442 | perf_ippr1 : 4, | ||
3443 | perf_icct : 8, | ||
3444 | perf_rsvd : 48; | ||
3445 | } perf_sel_bits; | ||
3446 | } io_perf_sel_t; | ||
3447 | |||
3448 | /* io_perf_cnt is to extract the count from the shub registers. Due to | ||
3449 | hardware problems there is only one counter, not two. */ | ||
3450 | |||
3451 | typedef union io_perf_cnt { | ||
3452 | uint64_t perf_cnt; | ||
3453 | struct { | ||
3454 | uint64_t perf_cnt : 20, | ||
3455 | perf_rsvd2 : 12, | ||
3456 | perf_rsvd1 : 32; | ||
3457 | } perf_cnt_bits; | ||
3458 | |||
3459 | } io_perf_cnt_t; | ||
3460 | |||
3461 | typedef union iprte_a { | ||
3462 | uint64_t entry; | ||
3463 | struct { | ||
3464 | uint64_t i_rsvd_1 : 3; | ||
3465 | uint64_t i_addr : 38; | ||
3466 | uint64_t i_init : 3; | ||
3467 | uint64_t i_source : 8; | ||
3468 | uint64_t i_rsvd : 2; | ||
3469 | uint64_t i_widget : 4; | ||
3470 | uint64_t i_to_cnt : 5; | ||
3471 | uint64_t i_vld : 1; | ||
3472 | } iprte_fields; | ||
3473 | } iprte_a_t; | ||
3474 | |||
3475 | #endif /* _ASM_IA64_SN_SHUBIO_H */ | ||
3476 | |||
diff --git a/include/asm-ia64/sn/simulator.h b/include/asm-ia64/sn/simulator.h new file mode 100644 index 000000000000..78eb4f869c8b --- /dev/null +++ b/include/asm-ia64/sn/simulator.h | |||
@@ -0,0 +1,27 @@ | |||
1 | /* | ||
2 | * This file is subject to the terms and conditions of the GNU General Public | ||
3 | * License. See the file "COPYING" in the main directory of this archive | ||
4 | * for more details. | ||
5 | * Copyright (C) 2000-2004 Silicon Graphics, Inc. All rights reserved. | ||
6 | */ | ||
7 | |||
8 | #ifndef _ASM_IA64_SN_SIMULATOR_H | ||
9 | #define _ASM_IA64_SN_SIMULATOR_H | ||
10 | |||
11 | #include <linux/config.h> | ||
12 | |||
13 | #ifdef CONFIG_IA64_SGI_SN_SIM | ||
14 | |||
15 | #define SNMAGIC 0xaeeeeeee8badbeefL | ||
16 | #define IS_RUNNING_ON_SIMULATOR() ({long sn; asm("mov %0=cpuid[%1]" : "=r"(sn) : "r"(2)); sn == SNMAGIC;}) | ||
17 | |||
18 | #define SIMULATOR_SLEEP() asm("nop.i 0x8beef") | ||
19 | |||
20 | #else | ||
21 | |||
22 | #define IS_RUNNING_ON_SIMULATOR() (0) | ||
23 | #define SIMULATOR_SLEEP() | ||
24 | |||
25 | #endif | ||
26 | |||
27 | #endif /* _ASM_IA64_SN_SIMULATOR_H */ | ||
diff --git a/include/asm-ia64/sn/sn2/sn_hwperf.h b/include/asm-ia64/sn/sn2/sn_hwperf.h new file mode 100644 index 000000000000..b0c4d6dd77ba --- /dev/null +++ b/include/asm-ia64/sn/sn2/sn_hwperf.h | |||
@@ -0,0 +1,226 @@ | |||
1 | /* | ||
2 | * This file is subject to the terms and conditions of the GNU General Public | ||
3 | * License. See the file "COPYING" in the main directory of this archive | ||
4 | * for more details. | ||
5 | * | ||
6 | * Copyright (C) 2004 Silicon Graphics, Inc. All rights reserved. | ||
7 | * | ||
8 | * Data types used by the SN_SAL_HWPERF_OP SAL call for monitoring | ||
9 | * SGI Altix node and router hardware | ||
10 | * | ||
11 | * Mark Goodwin <markgw@sgi.com> Mon Aug 30 12:23:46 EST 2004 | ||
12 | */ | ||
13 | |||
14 | #ifndef SN_HWPERF_H | ||
15 | #define SN_HWPERF_H | ||
16 | |||
17 | /* | ||
18 | * object structure. SN_HWPERF_ENUM_OBJECTS and SN_HWPERF_GET_CPU_INFO | ||
19 | * return an array of these. Do not change this without also | ||
20 | * changing the corresponding SAL code. | ||
21 | */ | ||
22 | #define SN_HWPERF_MAXSTRING 128 | ||
23 | struct sn_hwperf_object_info { | ||
24 | u32 id; | ||
25 | union { | ||
26 | struct { | ||
27 | u64 this_part:1; | ||
28 | u64 is_shared:1; | ||
29 | } fields; | ||
30 | struct { | ||
31 | u64 flags; | ||
32 | u64 reserved; | ||
33 | } b; | ||
34 | } f; | ||
35 | char name[SN_HWPERF_MAXSTRING]; | ||
36 | char location[SN_HWPERF_MAXSTRING]; | ||
37 | u32 ports; | ||
38 | }; | ||
39 | |||
40 | #define sn_hwp_this_part f.fields.this_part | ||
41 | #define sn_hwp_is_shared f.fields.is_shared | ||
42 | #define sn_hwp_flags f.b.flags | ||
43 | |||
44 | /* macros for object classification */ | ||
45 | #define SN_HWPERF_IS_NODE(x) ((x) && strstr((x)->name, "SHub")) | ||
46 | #define SN_HWPERF_IS_IONODE(x) ((x) && strstr((x)->name, "TIO")) | ||
47 | #define SN_HWPERF_IS_ROUTER(x) ((x) && strstr((x)->name, "Router")) | ||
48 | #define SN_HWPERF_IS_NL3ROUTER(x) ((x) && strstr((x)->name, "NL3Router")) | ||
49 | #define SN_HWPERF_FOREIGN(x) ((x) && !(x)->sn_hwp_this_part && !(x)->sn_hwp_is_shared) | ||
50 | #define SN_HWPERF_SAME_OBJTYPE(x,y) ((SN_HWPERF_IS_NODE(x) && SN_HWPERF_IS_NODE(y)) ||\ | ||
51 | (SN_HWPERF_IS_IONODE(x) && SN_HWPERF_IS_IONODE(y)) ||\ | ||
52 | (SN_HWPERF_IS_ROUTER(x) && SN_HWPERF_IS_ROUTER(y))) | ||
53 | |||
54 | /* numa port structure, SN_HWPERF_ENUM_PORTS returns an array of these */ | ||
55 | struct sn_hwperf_port_info { | ||
56 | u32 port; | ||
57 | u32 conn_id; | ||
58 | u32 conn_port; | ||
59 | }; | ||
60 | |||
61 | /* for HWPERF_{GET,SET}_MMRS */ | ||
62 | struct sn_hwperf_data { | ||
63 | u64 addr; | ||
64 | u64 data; | ||
65 | }; | ||
66 | |||
67 | /* user ioctl() argument, see below */ | ||
68 | struct sn_hwperf_ioctl_args { | ||
69 | u64 arg; /* argument, usually an object id */ | ||
70 | u64 sz; /* size of transfer */ | ||
71 | void *ptr; /* pointer to source/target */ | ||
72 | u32 v0; /* second return value */ | ||
73 | }; | ||
74 | |||
75 | /* | ||
76 | * For SN_HWPERF_{GET,SET}_MMRS and SN_HWPERF_OBJECT_DISTANCE, | ||
77 | * sn_hwperf_ioctl_args.arg can be used to specify a CPU on which | ||
78 | * to call SAL, and whether to use an interprocessor interrupt | ||
79 | * or task migration in order to do so. If the CPU specified is | ||
80 | * SN_HWPERF_ARG_ANY_CPU, then the current CPU will be used. | ||
81 | */ | ||
82 | #define SN_HWPERF_ARG_ANY_CPU 0x7fffffffUL | ||
83 | #define SN_HWPERF_ARG_CPU_MASK 0x7fffffff00000000ULL | ||
84 | #define SN_HWPERF_ARG_USE_IPI_MASK 0x8000000000000000ULL | ||
85 | #define SN_HWPERF_ARG_OBJID_MASK 0x00000000ffffffffULL | ||
86 | |||
87 | /* | ||
88 | * ioctl requests on the "sn_hwperf" misc device that call SAL. | ||
89 | */ | ||
90 | #define SN_HWPERF_OP_MEM_COPYIN 0x1000 | ||
91 | #define SN_HWPERF_OP_MEM_COPYOUT 0x2000 | ||
92 | #define SN_HWPERF_OP_MASK 0x0fff | ||
93 | |||
94 | /* | ||
95 | * Determine mem requirement. | ||
96 | * arg don't care | ||
97 | * sz 8 | ||
98 | * p pointer to u64 integer | ||
99 | */ | ||
100 | #define SN_HWPERF_GET_HEAPSIZE 1 | ||
101 | |||
102 | /* | ||
103 | * Install mem for SAL drvr | ||
104 | * arg don't care | ||
105 | * sz sizeof buffer pointed to by p | ||
106 | * p pointer to buffer for scratch area | ||
107 | */ | ||
108 | #define SN_HWPERF_INSTALL_HEAP 2 | ||
109 | |||
110 | /* | ||
111 | * Determine number of objects | ||
112 | * arg don't care | ||
113 | * sz 8 | ||
114 | * p pointer to u64 integer | ||
115 | */ | ||
116 | #define SN_HWPERF_OBJECT_COUNT (10|SN_HWPERF_OP_MEM_COPYOUT) | ||
117 | |||
118 | /* | ||
119 | * Determine object "distance", relative to a cpu. This operation can | ||
120 | * execute on a designated logical cpu number, using either an IPI or | ||
121 | * via task migration. If the cpu number is SN_HWPERF_ANY_CPU, then | ||
122 | * the current CPU is used. See the SN_HWPERF_ARG_* macros above. | ||
123 | * | ||
124 | * arg bitmap of IPI flag, cpu number and object id | ||
125 | * sz 8 | ||
126 | * p pointer to u64 integer | ||
127 | */ | ||
128 | #define SN_HWPERF_OBJECT_DISTANCE (11|SN_HWPERF_OP_MEM_COPYOUT) | ||
129 | |||
130 | /* | ||
131 | * Enumerate objects. Special case if sz == 8, returns the required | ||
132 | * buffer size. | ||
133 | * arg don't care | ||
134 | * sz sizeof buffer pointed to by p | ||
135 | * p pointer to array of struct sn_hwperf_object_info | ||
136 | */ | ||
137 | #define SN_HWPERF_ENUM_OBJECTS (12|SN_HWPERF_OP_MEM_COPYOUT) | ||
138 | |||
139 | /* | ||
140 | * Enumerate NumaLink ports for an object. Special case if sz == 8, | ||
141 | * returns the required buffer size. | ||
142 | * arg object id | ||
143 | * sz sizeof buffer pointed to by p | ||
144 | * p pointer to array of struct sn_hwperf_port_info | ||
145 | */ | ||
146 | #define SN_HWPERF_ENUM_PORTS (13|SN_HWPERF_OP_MEM_COPYOUT) | ||
147 | |||
148 | /* | ||
149 | * SET/GET memory mapped registers. These operations can execute | ||
150 | * on a designated logical cpu number, using either an IPI or via | ||
151 | * task migration. If the cpu number is SN_HWPERF_ANY_CPU, then | ||
152 | * the current CPU is used. See the SN_HWPERF_ARG_* macros above. | ||
153 | * | ||
154 | * arg bitmap of ipi flag, cpu number and object id | ||
155 | * sz sizeof buffer pointed to by p | ||
156 | * p pointer to array of struct sn_hwperf_data | ||
157 | */ | ||
158 | #define SN_HWPERF_SET_MMRS (14|SN_HWPERF_OP_MEM_COPYIN) | ||
159 | #define SN_HWPERF_GET_MMRS (15|SN_HWPERF_OP_MEM_COPYOUT| \ | ||
160 | SN_HWPERF_OP_MEM_COPYIN) | ||
161 | /* | ||
162 | * Lock a shared object | ||
163 | * arg object id | ||
164 | * sz don't care | ||
165 | * p don't care | ||
166 | */ | ||
167 | #define SN_HWPERF_ACQUIRE 16 | ||
168 | |||
169 | /* | ||
170 | * Unlock a shared object | ||
171 | * arg object id | ||
172 | * sz don't care | ||
173 | * p don't care | ||
174 | */ | ||
175 | #define SN_HWPERF_RELEASE 17 | ||
176 | |||
177 | /* | ||
178 | * Break a lock on a shared object | ||
179 | * arg object id | ||
180 | * sz don't care | ||
181 | * p don't care | ||
182 | */ | ||
183 | #define SN_HWPERF_FORCE_RELEASE 18 | ||
184 | |||
185 | /* | ||
186 | * ioctl requests on "sn_hwperf" that do not call SAL | ||
187 | */ | ||
188 | |||
189 | /* | ||
190 | * get cpu info as an array of hwperf_object_info_t. | ||
191 | * id is logical CPU number, name is description, location | ||
192 | * is geoid (e.g. 001c04#1c). Special case if sz == 8, | ||
193 | * returns the required buffer size. | ||
194 | * | ||
195 | * arg don't care | ||
196 | * sz sizeof buffer pointed to by p | ||
197 | * p pointer to array of struct sn_hwperf_object_info | ||
198 | */ | ||
199 | #define SN_HWPERF_GET_CPU_INFO (100|SN_HWPERF_OP_MEM_COPYOUT) | ||
200 | |||
201 | /* | ||
202 | * Given an object id, return it's node number (aka cnode). | ||
203 | * arg object id | ||
204 | * sz 8 | ||
205 | * p pointer to u64 integer | ||
206 | */ | ||
207 | #define SN_HWPERF_GET_OBJ_NODE (101|SN_HWPERF_OP_MEM_COPYOUT) | ||
208 | |||
209 | /* | ||
210 | * Given a node number (cnode), return it's nasid. | ||
211 | * arg ordinal node number (aka cnodeid) | ||
212 | * sz 8 | ||
213 | * p pointer to u64 integer | ||
214 | */ | ||
215 | #define SN_HWPERF_GET_NODE_NASID (102|SN_HWPERF_OP_MEM_COPYOUT) | ||
216 | |||
217 | /* return codes */ | ||
218 | #define SN_HWPERF_OP_OK 0 | ||
219 | #define SN_HWPERF_OP_NOMEM 1 | ||
220 | #define SN_HWPERF_OP_NO_PERM 2 | ||
221 | #define SN_HWPERF_OP_IO_ERROR 3 | ||
222 | #define SN_HWPERF_OP_BUSY 4 | ||
223 | #define SN_HWPERF_OP_RECONFIGURE 253 | ||
224 | #define SN_HWPERF_OP_INVAL 254 | ||
225 | |||
226 | #endif /* SN_HWPERF_H */ | ||
diff --git a/include/asm-ia64/sn/sn_cpuid.h b/include/asm-ia64/sn/sn_cpuid.h new file mode 100644 index 000000000000..685435af170d --- /dev/null +++ b/include/asm-ia64/sn/sn_cpuid.h | |||
@@ -0,0 +1,144 @@ | |||
1 | /* | ||
2 | * | ||
3 | * This file is subject to the terms and conditions of the GNU General Public | ||
4 | * License. See the file "COPYING" in the main directory of this archive | ||
5 | * for more details. | ||
6 | * | ||
7 | * Copyright (C) 2000-2004 Silicon Graphics, Inc. All rights reserved. | ||
8 | */ | ||
9 | |||
10 | |||
11 | #ifndef _ASM_IA64_SN_SN_CPUID_H | ||
12 | #define _ASM_IA64_SN_SN_CPUID_H | ||
13 | |||
14 | #include <linux/config.h> | ||
15 | #include <linux/smp.h> | ||
16 | #include <asm/sn/addrs.h> | ||
17 | #include <asm/sn/pda.h> | ||
18 | #include <asm/intrinsics.h> | ||
19 | |||
20 | |||
21 | /* | ||
22 | * Functions for converting between cpuids, nodeids and NASIDs. | ||
23 | * | ||
24 | * These are for SGI platforms only. | ||
25 | * | ||
26 | */ | ||
27 | |||
28 | |||
29 | |||
30 | |||
31 | /* | ||
32 | * Definitions of terms (these definitions are for IA64 ONLY. Other architectures | ||
33 | * use cpuid/cpunum quite defferently): | ||
34 | * | ||
35 | * CPUID - a number in range of 0..NR_CPUS-1 that uniquely identifies | ||
36 | * the cpu. The value cpuid has no significance on IA64 other than | ||
37 | * the boot cpu is 0. | ||
38 | * smp_processor_id() returns the cpuid of the current cpu. | ||
39 | * | ||
40 | * CPU_PHYSICAL_ID (also known as HARD_PROCESSOR_ID) | ||
41 | * This is the same as 31:24 of the processor LID register | ||
42 | * hard_smp_processor_id()- cpu_physical_id of current processor | ||
43 | * cpu_physical_id(cpuid) - convert a <cpuid> to a <physical_cpuid> | ||
44 | * cpu_logical_id(phy_id) - convert a <physical_cpuid> to a <cpuid> | ||
45 | * * not real efficient - don't use in perf critical code | ||
46 | * | ||
47 | * SLICE - a number in the range of 0 - 3 (typically) that represents the | ||
48 | * cpu number on a brick. | ||
49 | * | ||
50 | * SUBNODE - (almost obsolete) the number of the FSB that a cpu is | ||
51 | * connected to. This is also the same as the PI number. Usually 0 or 1. | ||
52 | * | ||
53 | * NOTE!!!: the value of the bits in the cpu physical id (SAPICid or LID) of a cpu has no | ||
54 | * significance. The SAPIC id (LID) is a 16-bit cookie that has meaning only to the PROM. | ||
55 | * | ||
56 | * | ||
57 | * The macros convert between cpu physical ids & slice/nasid/cnodeid. | ||
58 | * These terms are described below: | ||
59 | * | ||
60 | * | ||
61 | * Brick | ||
62 | * ----- ----- ----- ----- CPU | ||
63 | * | 0 | | 1 | | 0 | | 1 | SLICE | ||
64 | * ----- ----- ----- ----- | ||
65 | * | | | | | ||
66 | * | | | | | ||
67 | * 0 | | 2 0 | | 2 FSB SLOT | ||
68 | * ------- ------- | ||
69 | * | | | ||
70 | * | | | ||
71 | * | | | ||
72 | * ------------ ------------- | ||
73 | * | | | | | ||
74 | * | SHUB | | SHUB | NASID (0..MAX_NASIDS) | ||
75 | * | |----- | | CNODEID (0..num_compact_nodes-1) | ||
76 | * | | | | | ||
77 | * | | | | | ||
78 | * ------------ ------------- | ||
79 | * | | | ||
80 | * | ||
81 | * | ||
82 | */ | ||
83 | |||
84 | #ifndef CONFIG_SMP | ||
85 | #define cpu_physical_id(cpuid) ((ia64_getreg(_IA64_REG_CR_LID) >> 16) & 0xffff) | ||
86 | #endif | ||
87 | |||
88 | |||
89 | #define get_node_number(addr) NASID_GET(addr) | ||
90 | |||
91 | /* | ||
92 | * NOTE: on non-MP systems, only cpuid 0 exists | ||
93 | */ | ||
94 | |||
95 | extern short physical_node_map[]; /* indexed by nasid to get cnode */ | ||
96 | |||
97 | /* | ||
98 | * Macros for retrieving info about current cpu | ||
99 | */ | ||
100 | #define get_nasid() (nodepda->phys_cpuid[smp_processor_id()].nasid) | ||
101 | #define get_subnode() (nodepda->phys_cpuid[smp_processor_id()].subnode) | ||
102 | #define get_slice() (nodepda->phys_cpuid[smp_processor_id()].slice) | ||
103 | #define get_cnode() (nodepda->phys_cpuid[smp_processor_id()].cnode) | ||
104 | #define get_sapicid() ((ia64_getreg(_IA64_REG_CR_LID) >> 16) & 0xffff) | ||
105 | |||
106 | /* | ||
107 | * Macros for retrieving info about an arbitrary cpu | ||
108 | * cpuid - logical cpu id | ||
109 | */ | ||
110 | #define cpuid_to_nasid(cpuid) (nodepda->phys_cpuid[cpuid].nasid) | ||
111 | #define cpuid_to_subnode(cpuid) (nodepda->phys_cpuid[cpuid].subnode) | ||
112 | #define cpuid_to_slice(cpuid) (nodepda->phys_cpuid[cpuid].slice) | ||
113 | #define cpuid_to_cnodeid(cpuid) (physical_node_map[cpuid_to_nasid(cpuid)]) | ||
114 | |||
115 | |||
116 | /* | ||
117 | * Dont use the following in performance critical code. They require scans | ||
118 | * of potentially large tables. | ||
119 | */ | ||
120 | extern int nasid_slice_to_cpuid(int, int); | ||
121 | #define nasid_slice_to_cpu_physical_id(nasid, slice) \ | ||
122 | cpu_physical_id(nasid_slice_to_cpuid(nasid, slice)) | ||
123 | |||
124 | /* | ||
125 | * cnodeid_to_nasid - convert a cnodeid to a NASID | ||
126 | * Macro relies on pg_data for a node being on the node itself. | ||
127 | * Just extract the NASID from the pointer. | ||
128 | * | ||
129 | */ | ||
130 | #define cnodeid_to_nasid(cnodeid) pda->cnodeid_to_nasid_table[cnodeid] | ||
131 | |||
132 | /* | ||
133 | * nasid_to_cnodeid - convert a NASID to a cnodeid | ||
134 | */ | ||
135 | #define nasid_to_cnodeid(nasid) (physical_node_map[nasid]) | ||
136 | |||
137 | /* | ||
138 | * partition_coherence_id - get the coherence ID of the current partition | ||
139 | */ | ||
140 | extern u8 sn_coherency_id; | ||
141 | #define partition_coherence_id() (sn_coherency_id) | ||
142 | |||
143 | #endif /* _ASM_IA64_SN_SN_CPUID_H */ | ||
144 | |||
diff --git a/include/asm-ia64/sn/sn_fru.h b/include/asm-ia64/sn/sn_fru.h new file mode 100644 index 000000000000..8c21ac3f0156 --- /dev/null +++ b/include/asm-ia64/sn/sn_fru.h | |||
@@ -0,0 +1,44 @@ | |||
1 | /* | ||
2 | * This file is subject to the terms and conditions of the GNU General Public | ||
3 | * License. See the file "COPYING" in the main directory of this archive | ||
4 | * for more details. | ||
5 | * | ||
6 | * Copyright (C) 1992-1997,1999-2004 Silicon Graphics, Inc. All rights reserved. | ||
7 | */ | ||
8 | #ifndef _ASM_IA64_SN_SN_FRU_H | ||
9 | #define _ASM_IA64_SN_SN_FRU_H | ||
10 | |||
11 | #define MAX_DIMMS 8 /* max # of dimm banks */ | ||
12 | #define MAX_PCIDEV 8 /* max # of pci devices on a pci bus */ | ||
13 | |||
14 | typedef unsigned char confidence_t; | ||
15 | |||
16 | typedef struct kf_mem_s { | ||
17 | confidence_t km_confidence; /* confidence level that the memory is bad | ||
18 | * is this necessary ? | ||
19 | */ | ||
20 | confidence_t km_dimm[MAX_DIMMS]; | ||
21 | /* confidence level that dimm[i] is bad | ||
22 | *I think this is the right number | ||
23 | */ | ||
24 | |||
25 | } kf_mem_t; | ||
26 | |||
27 | typedef struct kf_cpu_s { | ||
28 | confidence_t kc_confidence; /* confidence level that cpu is bad */ | ||
29 | confidence_t kc_icache; /* confidence level that instr. cache is bad */ | ||
30 | confidence_t kc_dcache; /* confidence level that data cache is bad */ | ||
31 | confidence_t kc_scache; /* confidence level that sec. cache is bad */ | ||
32 | confidence_t kc_sysbus; /* confidence level that sysad/cmd/state bus is bad */ | ||
33 | } kf_cpu_t; | ||
34 | |||
35 | |||
36 | typedef struct kf_pci_bus_s { | ||
37 | confidence_t kpb_belief; /* confidence level that the pci bus is bad */ | ||
38 | confidence_t kpb_pcidev_belief[MAX_PCIDEV]; | ||
39 | /* confidence level that the pci dev is bad */ | ||
40 | } kf_pci_bus_t; | ||
41 | |||
42 | |||
43 | #endif /* _ASM_IA64_SN_SN_FRU_H */ | ||
44 | |||
diff --git a/include/asm-ia64/sn/sn_sal.h b/include/asm-ia64/sn/sn_sal.h new file mode 100644 index 000000000000..88c31b53dc09 --- /dev/null +++ b/include/asm-ia64/sn/sn_sal.h | |||
@@ -0,0 +1,1015 @@ | |||
1 | #ifndef _ASM_IA64_SN_SN_SAL_H | ||
2 | #define _ASM_IA64_SN_SN_SAL_H | ||
3 | |||
4 | /* | ||
5 | * System Abstraction Layer definitions for IA64 | ||
6 | * | ||
7 | * This file is subject to the terms and conditions of the GNU General Public | ||
8 | * License. See the file "COPYING" in the main directory of this archive | ||
9 | * for more details. | ||
10 | * | ||
11 | * Copyright (c) 2000-2004 Silicon Graphics, Inc. All rights reserved. | ||
12 | */ | ||
13 | |||
14 | |||
15 | #include <linux/config.h> | ||
16 | #include <asm/sal.h> | ||
17 | #include <asm/sn/sn_cpuid.h> | ||
18 | #include <asm/sn/arch.h> | ||
19 | #include <asm/sn/geo.h> | ||
20 | #include <asm/sn/nodepda.h> | ||
21 | #include <asm/sn/shub_mmr.h> | ||
22 | |||
23 | // SGI Specific Calls | ||
24 | #define SN_SAL_POD_MODE 0x02000001 | ||
25 | #define SN_SAL_SYSTEM_RESET 0x02000002 | ||
26 | #define SN_SAL_PROBE 0x02000003 | ||
27 | #define SN_SAL_GET_MASTER_NASID 0x02000004 | ||
28 | #define SN_SAL_GET_KLCONFIG_ADDR 0x02000005 | ||
29 | #define SN_SAL_LOG_CE 0x02000006 | ||
30 | #define SN_SAL_REGISTER_CE 0x02000007 | ||
31 | #define SN_SAL_GET_PARTITION_ADDR 0x02000009 | ||
32 | #define SN_SAL_XP_ADDR_REGION 0x0200000f | ||
33 | #define SN_SAL_NO_FAULT_ZONE_VIRTUAL 0x02000010 | ||
34 | #define SN_SAL_NO_FAULT_ZONE_PHYSICAL 0x02000011 | ||
35 | #define SN_SAL_PRINT_ERROR 0x02000012 | ||
36 | #define SN_SAL_SET_ERROR_HANDLING_FEATURES 0x0200001a // reentrant | ||
37 | #define SN_SAL_GET_FIT_COMPT 0x0200001b // reentrant | ||
38 | #define SN_SAL_GET_SN_INFO 0x0200001c | ||
39 | #define SN_SAL_GET_SAPIC_INFO 0x0200001d | ||
40 | #define SN_SAL_CONSOLE_PUTC 0x02000021 | ||
41 | #define SN_SAL_CONSOLE_GETC 0x02000022 | ||
42 | #define SN_SAL_CONSOLE_PUTS 0x02000023 | ||
43 | #define SN_SAL_CONSOLE_GETS 0x02000024 | ||
44 | #define SN_SAL_CONSOLE_GETS_TIMEOUT 0x02000025 | ||
45 | #define SN_SAL_CONSOLE_POLL 0x02000026 | ||
46 | #define SN_SAL_CONSOLE_INTR 0x02000027 | ||
47 | #define SN_SAL_CONSOLE_PUTB 0x02000028 | ||
48 | #define SN_SAL_CONSOLE_XMIT_CHARS 0x0200002a | ||
49 | #define SN_SAL_CONSOLE_READC 0x0200002b | ||
50 | #define SN_SAL_SYSCTL_MODID_GET 0x02000031 | ||
51 | #define SN_SAL_SYSCTL_GET 0x02000032 | ||
52 | #define SN_SAL_SYSCTL_IOBRICK_MODULE_GET 0x02000033 | ||
53 | #define SN_SAL_SYSCTL_IO_PORTSPEED_GET 0x02000035 | ||
54 | #define SN_SAL_SYSCTL_SLAB_GET 0x02000036 | ||
55 | #define SN_SAL_BUS_CONFIG 0x02000037 | ||
56 | #define SN_SAL_SYS_SERIAL_GET 0x02000038 | ||
57 | #define SN_SAL_PARTITION_SERIAL_GET 0x02000039 | ||
58 | #define SN_SAL_SYSCTL_PARTITION_GET 0x0200003a | ||
59 | #define SN_SAL_SYSTEM_POWER_DOWN 0x0200003b | ||
60 | #define SN_SAL_GET_MASTER_BASEIO_NASID 0x0200003c | ||
61 | #define SN_SAL_COHERENCE 0x0200003d | ||
62 | #define SN_SAL_MEMPROTECT 0x0200003e | ||
63 | #define SN_SAL_SYSCTL_FRU_CAPTURE 0x0200003f | ||
64 | |||
65 | #define SN_SAL_SYSCTL_IOBRICK_PCI_OP 0x02000042 // reentrant | ||
66 | #define SN_SAL_IROUTER_OP 0x02000043 | ||
67 | #define SN_SAL_IOIF_INTERRUPT 0x0200004a | ||
68 | #define SN_SAL_HWPERF_OP 0x02000050 // lock | ||
69 | #define SN_SAL_IOIF_ERROR_INTERRUPT 0x02000051 | ||
70 | |||
71 | #define SN_SAL_IOIF_SLOT_ENABLE 0x02000053 | ||
72 | #define SN_SAL_IOIF_SLOT_DISABLE 0x02000054 | ||
73 | #define SN_SAL_IOIF_GET_HUBDEV_INFO 0x02000055 | ||
74 | #define SN_SAL_IOIF_GET_PCIBUS_INFO 0x02000056 | ||
75 | #define SN_SAL_IOIF_GET_PCIDEV_INFO 0x02000057 | ||
76 | #define SN_SAL_IOIF_GET_WIDGET_DMAFLUSH_LIST 0x02000058 | ||
77 | |||
78 | #define SN_SAL_HUB_ERROR_INTERRUPT 0x02000060 | ||
79 | |||
80 | |||
81 | /* | ||
82 | * Service-specific constants | ||
83 | */ | ||
84 | |||
85 | /* Console interrupt manipulation */ | ||
86 | /* action codes */ | ||
87 | #define SAL_CONSOLE_INTR_OFF 0 /* turn the interrupt off */ | ||
88 | #define SAL_CONSOLE_INTR_ON 1 /* turn the interrupt on */ | ||
89 | #define SAL_CONSOLE_INTR_STATUS 2 /* retrieve the interrupt status */ | ||
90 | /* interrupt specification & status return codes */ | ||
91 | #define SAL_CONSOLE_INTR_XMIT 1 /* output interrupt */ | ||
92 | #define SAL_CONSOLE_INTR_RECV 2 /* input interrupt */ | ||
93 | |||
94 | /* interrupt handling */ | ||
95 | #define SAL_INTR_ALLOC 1 | ||
96 | #define SAL_INTR_FREE 2 | ||
97 | |||
98 | /* | ||
99 | * IRouter (i.e. generalized system controller) operations | ||
100 | */ | ||
101 | #define SAL_IROUTER_OPEN 0 /* open a subchannel */ | ||
102 | #define SAL_IROUTER_CLOSE 1 /* close a subchannel */ | ||
103 | #define SAL_IROUTER_SEND 2 /* send part of an IRouter packet */ | ||
104 | #define SAL_IROUTER_RECV 3 /* receive part of an IRouter packet */ | ||
105 | #define SAL_IROUTER_INTR_STATUS 4 /* check the interrupt status for | ||
106 | * an open subchannel | ||
107 | */ | ||
108 | #define SAL_IROUTER_INTR_ON 5 /* enable an interrupt */ | ||
109 | #define SAL_IROUTER_INTR_OFF 6 /* disable an interrupt */ | ||
110 | #define SAL_IROUTER_INIT 7 /* initialize IRouter driver */ | ||
111 | |||
112 | /* IRouter interrupt mask bits */ | ||
113 | #define SAL_IROUTER_INTR_XMIT SAL_CONSOLE_INTR_XMIT | ||
114 | #define SAL_IROUTER_INTR_RECV SAL_CONSOLE_INTR_RECV | ||
115 | |||
116 | |||
117 | /* | ||
118 | * SAL Error Codes | ||
119 | */ | ||
120 | #define SALRET_MORE_PASSES 1 | ||
121 | #define SALRET_OK 0 | ||
122 | #define SALRET_NOT_IMPLEMENTED (-1) | ||
123 | #define SALRET_INVALID_ARG (-2) | ||
124 | #define SALRET_ERROR (-3) | ||
125 | |||
126 | |||
127 | /** | ||
128 | * sn_sal_rev_major - get the major SGI SAL revision number | ||
129 | * | ||
130 | * The SGI PROM stores its version in sal_[ab]_rev_(major|minor). | ||
131 | * This routine simply extracts the major value from the | ||
132 | * @ia64_sal_systab structure constructed by ia64_sal_init(). | ||
133 | */ | ||
134 | static inline int | ||
135 | sn_sal_rev_major(void) | ||
136 | { | ||
137 | struct ia64_sal_systab *systab = efi.sal_systab; | ||
138 | |||
139 | return (int)systab->sal_b_rev_major; | ||
140 | } | ||
141 | |||
142 | /** | ||
143 | * sn_sal_rev_minor - get the minor SGI SAL revision number | ||
144 | * | ||
145 | * The SGI PROM stores its version in sal_[ab]_rev_(major|minor). | ||
146 | * This routine simply extracts the minor value from the | ||
147 | * @ia64_sal_systab structure constructed by ia64_sal_init(). | ||
148 | */ | ||
149 | static inline int | ||
150 | sn_sal_rev_minor(void) | ||
151 | { | ||
152 | struct ia64_sal_systab *systab = efi.sal_systab; | ||
153 | |||
154 | return (int)systab->sal_b_rev_minor; | ||
155 | } | ||
156 | |||
157 | /* | ||
158 | * Specify the minimum PROM revsion required for this kernel. | ||
159 | * Note that they're stored in hex format... | ||
160 | */ | ||
161 | #define SN_SAL_MIN_MAJOR 0x4 /* SN2 kernels need at least PROM 4.0 */ | ||
162 | #define SN_SAL_MIN_MINOR 0x0 | ||
163 | |||
164 | /* | ||
165 | * Returns the master console nasid, if the call fails, return an illegal | ||
166 | * value. | ||
167 | */ | ||
168 | static inline u64 | ||
169 | ia64_sn_get_console_nasid(void) | ||
170 | { | ||
171 | struct ia64_sal_retval ret_stuff; | ||
172 | |||
173 | ret_stuff.status = 0; | ||
174 | ret_stuff.v0 = 0; | ||
175 | ret_stuff.v1 = 0; | ||
176 | ret_stuff.v2 = 0; | ||
177 | SAL_CALL(ret_stuff, SN_SAL_GET_MASTER_NASID, 0, 0, 0, 0, 0, 0, 0); | ||
178 | |||
179 | if (ret_stuff.status < 0) | ||
180 | return ret_stuff.status; | ||
181 | |||
182 | /* Master console nasid is in 'v0' */ | ||
183 | return ret_stuff.v0; | ||
184 | } | ||
185 | |||
186 | /* | ||
187 | * Returns the master baseio nasid, if the call fails, return an illegal | ||
188 | * value. | ||
189 | */ | ||
190 | static inline u64 | ||
191 | ia64_sn_get_master_baseio_nasid(void) | ||
192 | { | ||
193 | struct ia64_sal_retval ret_stuff; | ||
194 | |||
195 | ret_stuff.status = 0; | ||
196 | ret_stuff.v0 = 0; | ||
197 | ret_stuff.v1 = 0; | ||
198 | ret_stuff.v2 = 0; | ||
199 | SAL_CALL(ret_stuff, SN_SAL_GET_MASTER_BASEIO_NASID, 0, 0, 0, 0, 0, 0, 0); | ||
200 | |||
201 | if (ret_stuff.status < 0) | ||
202 | return ret_stuff.status; | ||
203 | |||
204 | /* Master baseio nasid is in 'v0' */ | ||
205 | return ret_stuff.v0; | ||
206 | } | ||
207 | |||
208 | static inline char * | ||
209 | ia64_sn_get_klconfig_addr(nasid_t nasid) | ||
210 | { | ||
211 | struct ia64_sal_retval ret_stuff; | ||
212 | int cnodeid; | ||
213 | |||
214 | cnodeid = nasid_to_cnodeid(nasid); | ||
215 | ret_stuff.status = 0; | ||
216 | ret_stuff.v0 = 0; | ||
217 | ret_stuff.v1 = 0; | ||
218 | ret_stuff.v2 = 0; | ||
219 | SAL_CALL(ret_stuff, SN_SAL_GET_KLCONFIG_ADDR, (u64)nasid, 0, 0, 0, 0, 0, 0); | ||
220 | |||
221 | /* | ||
222 | * We should panic if a valid cnode nasid does not produce | ||
223 | * a klconfig address. | ||
224 | */ | ||
225 | if (ret_stuff.status != 0) { | ||
226 | panic("ia64_sn_get_klconfig_addr: Returned error %lx\n", ret_stuff.status); | ||
227 | } | ||
228 | return ret_stuff.v0 ? __va(ret_stuff.v0) : NULL; | ||
229 | } | ||
230 | |||
231 | /* | ||
232 | * Returns the next console character. | ||
233 | */ | ||
234 | static inline u64 | ||
235 | ia64_sn_console_getc(int *ch) | ||
236 | { | ||
237 | struct ia64_sal_retval ret_stuff; | ||
238 | |||
239 | ret_stuff.status = 0; | ||
240 | ret_stuff.v0 = 0; | ||
241 | ret_stuff.v1 = 0; | ||
242 | ret_stuff.v2 = 0; | ||
243 | SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_GETC, 0, 0, 0, 0, 0, 0, 0); | ||
244 | |||
245 | /* character is in 'v0' */ | ||
246 | *ch = (int)ret_stuff.v0; | ||
247 | |||
248 | return ret_stuff.status; | ||
249 | } | ||
250 | |||
251 | /* | ||
252 | * Read a character from the SAL console device, after a previous interrupt | ||
253 | * or poll operation has given us to know that a character is available | ||
254 | * to be read. | ||
255 | */ | ||
256 | static inline u64 | ||
257 | ia64_sn_console_readc(void) | ||
258 | { | ||
259 | struct ia64_sal_retval ret_stuff; | ||
260 | |||
261 | ret_stuff.status = 0; | ||
262 | ret_stuff.v0 = 0; | ||
263 | ret_stuff.v1 = 0; | ||
264 | ret_stuff.v2 = 0; | ||
265 | SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_READC, 0, 0, 0, 0, 0, 0, 0); | ||
266 | |||
267 | /* character is in 'v0' */ | ||
268 | return ret_stuff.v0; | ||
269 | } | ||
270 | |||
271 | /* | ||
272 | * Sends the given character to the console. | ||
273 | */ | ||
274 | static inline u64 | ||
275 | ia64_sn_console_putc(char ch) | ||
276 | { | ||
277 | struct ia64_sal_retval ret_stuff; | ||
278 | |||
279 | ret_stuff.status = 0; | ||
280 | ret_stuff.v0 = 0; | ||
281 | ret_stuff.v1 = 0; | ||
282 | ret_stuff.v2 = 0; | ||
283 | SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_PUTC, (uint64_t)ch, 0, 0, 0, 0, 0, 0); | ||
284 | |||
285 | return ret_stuff.status; | ||
286 | } | ||
287 | |||
288 | /* | ||
289 | * Sends the given buffer to the console. | ||
290 | */ | ||
291 | static inline u64 | ||
292 | ia64_sn_console_putb(const char *buf, int len) | ||
293 | { | ||
294 | struct ia64_sal_retval ret_stuff; | ||
295 | |||
296 | ret_stuff.status = 0; | ||
297 | ret_stuff.v0 = 0; | ||
298 | ret_stuff.v1 = 0; | ||
299 | ret_stuff.v2 = 0; | ||
300 | SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_PUTB, (uint64_t)buf, (uint64_t)len, 0, 0, 0, 0, 0); | ||
301 | |||
302 | if ( ret_stuff.status == 0 ) { | ||
303 | return ret_stuff.v0; | ||
304 | } | ||
305 | return (u64)0; | ||
306 | } | ||
307 | |||
308 | /* | ||
309 | * Print a platform error record | ||
310 | */ | ||
311 | static inline u64 | ||
312 | ia64_sn_plat_specific_err_print(int (*hook)(const char*, ...), char *rec) | ||
313 | { | ||
314 | struct ia64_sal_retval ret_stuff; | ||
315 | |||
316 | ret_stuff.status = 0; | ||
317 | ret_stuff.v0 = 0; | ||
318 | ret_stuff.v1 = 0; | ||
319 | ret_stuff.v2 = 0; | ||
320 | SAL_CALL_REENTRANT(ret_stuff, SN_SAL_PRINT_ERROR, (uint64_t)hook, (uint64_t)rec, 0, 0, 0, 0, 0); | ||
321 | |||
322 | return ret_stuff.status; | ||
323 | } | ||
324 | |||
325 | /* | ||
326 | * Check for Platform errors | ||
327 | */ | ||
328 | static inline u64 | ||
329 | ia64_sn_plat_cpei_handler(void) | ||
330 | { | ||
331 | struct ia64_sal_retval ret_stuff; | ||
332 | |||
333 | ret_stuff.status = 0; | ||
334 | ret_stuff.v0 = 0; | ||
335 | ret_stuff.v1 = 0; | ||
336 | ret_stuff.v2 = 0; | ||
337 | SAL_CALL_NOLOCK(ret_stuff, SN_SAL_LOG_CE, 0, 0, 0, 0, 0, 0, 0); | ||
338 | |||
339 | return ret_stuff.status; | ||
340 | } | ||
341 | |||
342 | /* | ||
343 | * Checks for console input. | ||
344 | */ | ||
345 | static inline u64 | ||
346 | ia64_sn_console_check(int *result) | ||
347 | { | ||
348 | struct ia64_sal_retval ret_stuff; | ||
349 | |||
350 | ret_stuff.status = 0; | ||
351 | ret_stuff.v0 = 0; | ||
352 | ret_stuff.v1 = 0; | ||
353 | ret_stuff.v2 = 0; | ||
354 | SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_POLL, 0, 0, 0, 0, 0, 0, 0); | ||
355 | |||
356 | /* result is in 'v0' */ | ||
357 | *result = (int)ret_stuff.v0; | ||
358 | |||
359 | return ret_stuff.status; | ||
360 | } | ||
361 | |||
362 | /* | ||
363 | * Checks console interrupt status | ||
364 | */ | ||
365 | static inline u64 | ||
366 | ia64_sn_console_intr_status(void) | ||
367 | { | ||
368 | struct ia64_sal_retval ret_stuff; | ||
369 | |||
370 | ret_stuff.status = 0; | ||
371 | ret_stuff.v0 = 0; | ||
372 | ret_stuff.v1 = 0; | ||
373 | ret_stuff.v2 = 0; | ||
374 | SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_INTR, | ||
375 | 0, SAL_CONSOLE_INTR_STATUS, | ||
376 | 0, 0, 0, 0, 0); | ||
377 | |||
378 | if (ret_stuff.status == 0) { | ||
379 | return ret_stuff.v0; | ||
380 | } | ||
381 | |||
382 | return 0; | ||
383 | } | ||
384 | |||
385 | /* | ||
386 | * Enable an interrupt on the SAL console device. | ||
387 | */ | ||
388 | static inline void | ||
389 | ia64_sn_console_intr_enable(uint64_t intr) | ||
390 | { | ||
391 | struct ia64_sal_retval ret_stuff; | ||
392 | |||
393 | ret_stuff.status = 0; | ||
394 | ret_stuff.v0 = 0; | ||
395 | ret_stuff.v1 = 0; | ||
396 | ret_stuff.v2 = 0; | ||
397 | SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_INTR, | ||
398 | intr, SAL_CONSOLE_INTR_ON, | ||
399 | 0, 0, 0, 0, 0); | ||
400 | } | ||
401 | |||
402 | /* | ||
403 | * Disable an interrupt on the SAL console device. | ||
404 | */ | ||
405 | static inline void | ||
406 | ia64_sn_console_intr_disable(uint64_t intr) | ||
407 | { | ||
408 | struct ia64_sal_retval ret_stuff; | ||
409 | |||
410 | ret_stuff.status = 0; | ||
411 | ret_stuff.v0 = 0; | ||
412 | ret_stuff.v1 = 0; | ||
413 | ret_stuff.v2 = 0; | ||
414 | SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_INTR, | ||
415 | intr, SAL_CONSOLE_INTR_OFF, | ||
416 | 0, 0, 0, 0, 0); | ||
417 | } | ||
418 | |||
419 | /* | ||
420 | * Sends a character buffer to the console asynchronously. | ||
421 | */ | ||
422 | static inline u64 | ||
423 | ia64_sn_console_xmit_chars(char *buf, int len) | ||
424 | { | ||
425 | struct ia64_sal_retval ret_stuff; | ||
426 | |||
427 | ret_stuff.status = 0; | ||
428 | ret_stuff.v0 = 0; | ||
429 | ret_stuff.v1 = 0; | ||
430 | ret_stuff.v2 = 0; | ||
431 | SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_XMIT_CHARS, | ||
432 | (uint64_t)buf, (uint64_t)len, | ||
433 | 0, 0, 0, 0, 0); | ||
434 | |||
435 | if (ret_stuff.status == 0) { | ||
436 | return ret_stuff.v0; | ||
437 | } | ||
438 | |||
439 | return 0; | ||
440 | } | ||
441 | |||
442 | /* | ||
443 | * Returns the iobrick module Id | ||
444 | */ | ||
445 | static inline u64 | ||
446 | ia64_sn_sysctl_iobrick_module_get(nasid_t nasid, int *result) | ||
447 | { | ||
448 | struct ia64_sal_retval ret_stuff; | ||
449 | |||
450 | ret_stuff.status = 0; | ||
451 | ret_stuff.v0 = 0; | ||
452 | ret_stuff.v1 = 0; | ||
453 | ret_stuff.v2 = 0; | ||
454 | SAL_CALL_NOLOCK(ret_stuff, SN_SAL_SYSCTL_IOBRICK_MODULE_GET, nasid, 0, 0, 0, 0, 0, 0); | ||
455 | |||
456 | /* result is in 'v0' */ | ||
457 | *result = (int)ret_stuff.v0; | ||
458 | |||
459 | return ret_stuff.status; | ||
460 | } | ||
461 | |||
462 | /** | ||
463 | * ia64_sn_pod_mode - call the SN_SAL_POD_MODE function | ||
464 | * | ||
465 | * SN_SAL_POD_MODE actually takes an argument, but it's always | ||
466 | * 0 when we call it from the kernel, so we don't have to expose | ||
467 | * it to the caller. | ||
468 | */ | ||
469 | static inline u64 | ||
470 | ia64_sn_pod_mode(void) | ||
471 | { | ||
472 | struct ia64_sal_retval isrv; | ||
473 | SAL_CALL(isrv, SN_SAL_POD_MODE, 0, 0, 0, 0, 0, 0, 0); | ||
474 | if (isrv.status) | ||
475 | return 0; | ||
476 | return isrv.v0; | ||
477 | } | ||
478 | |||
479 | /** | ||
480 | * ia64_sn_probe_mem - read from memory safely | ||
481 | * @addr: address to probe | ||
482 | * @size: number bytes to read (1,2,4,8) | ||
483 | * @data_ptr: address to store value read by probe (-1 returned if probe fails) | ||
484 | * | ||
485 | * Call into the SAL to do a memory read. If the read generates a machine | ||
486 | * check, this routine will recover gracefully and return -1 to the caller. | ||
487 | * @addr is usually a kernel virtual address in uncached space (i.e. the | ||
488 | * address starts with 0xc), but if called in physical mode, @addr should | ||
489 | * be a physical address. | ||
490 | * | ||
491 | * Return values: | ||
492 | * 0 - probe successful | ||
493 | * 1 - probe failed (generated MCA) | ||
494 | * 2 - Bad arg | ||
495 | * <0 - PAL error | ||
496 | */ | ||
497 | static inline u64 | ||
498 | ia64_sn_probe_mem(long addr, long size, void *data_ptr) | ||
499 | { | ||
500 | struct ia64_sal_retval isrv; | ||
501 | |||
502 | SAL_CALL(isrv, SN_SAL_PROBE, addr, size, 0, 0, 0, 0, 0); | ||
503 | |||
504 | if (data_ptr) { | ||
505 | switch (size) { | ||
506 | case 1: | ||
507 | *((u8*)data_ptr) = (u8)isrv.v0; | ||
508 | break; | ||
509 | case 2: | ||
510 | *((u16*)data_ptr) = (u16)isrv.v0; | ||
511 | break; | ||
512 | case 4: | ||
513 | *((u32*)data_ptr) = (u32)isrv.v0; | ||
514 | break; | ||
515 | case 8: | ||
516 | *((u64*)data_ptr) = (u64)isrv.v0; | ||
517 | break; | ||
518 | default: | ||
519 | isrv.status = 2; | ||
520 | } | ||
521 | } | ||
522 | return isrv.status; | ||
523 | } | ||
524 | |||
525 | /* | ||
526 | * Retrieve the system serial number as an ASCII string. | ||
527 | */ | ||
528 | static inline u64 | ||
529 | ia64_sn_sys_serial_get(char *buf) | ||
530 | { | ||
531 | struct ia64_sal_retval ret_stuff; | ||
532 | SAL_CALL_NOLOCK(ret_stuff, SN_SAL_SYS_SERIAL_GET, buf, 0, 0, 0, 0, 0, 0); | ||
533 | return ret_stuff.status; | ||
534 | } | ||
535 | |||
536 | extern char sn_system_serial_number_string[]; | ||
537 | extern u64 sn_partition_serial_number; | ||
538 | |||
539 | static inline char * | ||
540 | sn_system_serial_number(void) { | ||
541 | if (sn_system_serial_number_string[0]) { | ||
542 | return(sn_system_serial_number_string); | ||
543 | } else { | ||
544 | ia64_sn_sys_serial_get(sn_system_serial_number_string); | ||
545 | return(sn_system_serial_number_string); | ||
546 | } | ||
547 | } | ||
548 | |||
549 | |||
550 | /* | ||
551 | * Returns a unique id number for this system and partition (suitable for | ||
552 | * use with license managers), based in part on the system serial number. | ||
553 | */ | ||
554 | static inline u64 | ||
555 | ia64_sn_partition_serial_get(void) | ||
556 | { | ||
557 | struct ia64_sal_retval ret_stuff; | ||
558 | SAL_CALL(ret_stuff, SN_SAL_PARTITION_SERIAL_GET, 0, 0, 0, 0, 0, 0, 0); | ||
559 | if (ret_stuff.status != 0) | ||
560 | return 0; | ||
561 | return ret_stuff.v0; | ||
562 | } | ||
563 | |||
564 | static inline u64 | ||
565 | sn_partition_serial_number_val(void) { | ||
566 | if (sn_partition_serial_number) { | ||
567 | return(sn_partition_serial_number); | ||
568 | } else { | ||
569 | return(sn_partition_serial_number = ia64_sn_partition_serial_get()); | ||
570 | } | ||
571 | } | ||
572 | |||
573 | /* | ||
574 | * Returns the partition id of the nasid passed in as an argument, | ||
575 | * or INVALID_PARTID if the partition id cannot be retrieved. | ||
576 | */ | ||
577 | static inline partid_t | ||
578 | ia64_sn_sysctl_partition_get(nasid_t nasid) | ||
579 | { | ||
580 | struct ia64_sal_retval ret_stuff; | ||
581 | SAL_CALL(ret_stuff, SN_SAL_SYSCTL_PARTITION_GET, nasid, | ||
582 | 0, 0, 0, 0, 0, 0); | ||
583 | if (ret_stuff.status != 0) | ||
584 | return INVALID_PARTID; | ||
585 | return ((partid_t)ret_stuff.v0); | ||
586 | } | ||
587 | |||
588 | /* | ||
589 | * Returns the partition id of the current processor. | ||
590 | */ | ||
591 | |||
592 | extern partid_t sn_partid; | ||
593 | |||
594 | static inline partid_t | ||
595 | sn_local_partid(void) { | ||
596 | if (sn_partid < 0) { | ||
597 | return (sn_partid = ia64_sn_sysctl_partition_get(cpuid_to_nasid(smp_processor_id()))); | ||
598 | } else { | ||
599 | return sn_partid; | ||
600 | } | ||
601 | } | ||
602 | |||
603 | /* | ||
604 | * Register or unregister a physical address range being referenced across | ||
605 | * a partition boundary for which certain SAL errors should be scanned for, | ||
606 | * cleaned up and ignored. This is of value for kernel partitioning code only. | ||
607 | * Values for the operation argument: | ||
608 | * 1 = register this address range with SAL | ||
609 | * 0 = unregister this address range with SAL | ||
610 | * | ||
611 | * SAL maintains a reference count on an address range in case it is registered | ||
612 | * multiple times. | ||
613 | * | ||
614 | * On success, returns the reference count of the address range after the SAL | ||
615 | * call has performed the current registration/unregistration. Returns a | ||
616 | * negative value if an error occurred. | ||
617 | */ | ||
618 | static inline int | ||
619 | sn_register_xp_addr_region(u64 paddr, u64 len, int operation) | ||
620 | { | ||
621 | struct ia64_sal_retval ret_stuff; | ||
622 | SAL_CALL(ret_stuff, SN_SAL_XP_ADDR_REGION, paddr, len, (u64)operation, | ||
623 | 0, 0, 0, 0); | ||
624 | return ret_stuff.status; | ||
625 | } | ||
626 | |||
627 | /* | ||
628 | * Register or unregister an instruction range for which SAL errors should | ||
629 | * be ignored. If an error occurs while in the registered range, SAL jumps | ||
630 | * to return_addr after ignoring the error. Values for the operation argument: | ||
631 | * 1 = register this instruction range with SAL | ||
632 | * 0 = unregister this instruction range with SAL | ||
633 | * | ||
634 | * Returns 0 on success, or a negative value if an error occurred. | ||
635 | */ | ||
636 | static inline int | ||
637 | sn_register_nofault_code(u64 start_addr, u64 end_addr, u64 return_addr, | ||
638 | int virtual, int operation) | ||
639 | { | ||
640 | struct ia64_sal_retval ret_stuff; | ||
641 | u64 call; | ||
642 | if (virtual) { | ||
643 | call = SN_SAL_NO_FAULT_ZONE_VIRTUAL; | ||
644 | } else { | ||
645 | call = SN_SAL_NO_FAULT_ZONE_PHYSICAL; | ||
646 | } | ||
647 | SAL_CALL(ret_stuff, call, start_addr, end_addr, return_addr, (u64)1, | ||
648 | 0, 0, 0); | ||
649 | return ret_stuff.status; | ||
650 | } | ||
651 | |||
652 | /* | ||
653 | * Change or query the coherence domain for this partition. Each cpu-based | ||
654 | * nasid is represented by a bit in an array of 64-bit words: | ||
655 | * 0 = not in this partition's coherency domain | ||
656 | * 1 = in this partition's coherency domain | ||
657 | * | ||
658 | * It is not possible for the local system's nasids to be removed from | ||
659 | * the coherency domain. Purpose of the domain arguments: | ||
660 | * new_domain = set the coherence domain to the given nasids | ||
661 | * old_domain = return the current coherence domain | ||
662 | * | ||
663 | * Returns 0 on success, or a negative value if an error occurred. | ||
664 | */ | ||
665 | static inline int | ||
666 | sn_change_coherence(u64 *new_domain, u64 *old_domain) | ||
667 | { | ||
668 | struct ia64_sal_retval ret_stuff; | ||
669 | SAL_CALL(ret_stuff, SN_SAL_COHERENCE, new_domain, old_domain, 0, 0, | ||
670 | 0, 0, 0); | ||
671 | return ret_stuff.status; | ||
672 | } | ||
673 | |||
674 | /* | ||
675 | * Change memory access protections for a physical address range. | ||
676 | * nasid_array is not used on Altix, but may be in future architectures. | ||
677 | * Available memory protection access classes are defined after the function. | ||
678 | */ | ||
679 | static inline int | ||
680 | sn_change_memprotect(u64 paddr, u64 len, u64 perms, u64 *nasid_array) | ||
681 | { | ||
682 | struct ia64_sal_retval ret_stuff; | ||
683 | int cnodeid; | ||
684 | unsigned long irq_flags; | ||
685 | |||
686 | cnodeid = nasid_to_cnodeid(get_node_number(paddr)); | ||
687 | // spin_lock(&NODEPDA(cnodeid)->bist_lock); | ||
688 | local_irq_save(irq_flags); | ||
689 | SAL_CALL_NOLOCK(ret_stuff, SN_SAL_MEMPROTECT, paddr, len, nasid_array, | ||
690 | perms, 0, 0, 0); | ||
691 | local_irq_restore(irq_flags); | ||
692 | // spin_unlock(&NODEPDA(cnodeid)->bist_lock); | ||
693 | return ret_stuff.status; | ||
694 | } | ||
695 | #define SN_MEMPROT_ACCESS_CLASS_0 0x14a080 | ||
696 | #define SN_MEMPROT_ACCESS_CLASS_1 0x2520c2 | ||
697 | #define SN_MEMPROT_ACCESS_CLASS_2 0x14a1ca | ||
698 | #define SN_MEMPROT_ACCESS_CLASS_3 0x14a290 | ||
699 | #define SN_MEMPROT_ACCESS_CLASS_6 0x084080 | ||
700 | #define SN_MEMPROT_ACCESS_CLASS_7 0x021080 | ||
701 | |||
702 | /* | ||
703 | * Turns off system power. | ||
704 | */ | ||
705 | static inline void | ||
706 | ia64_sn_power_down(void) | ||
707 | { | ||
708 | struct ia64_sal_retval ret_stuff; | ||
709 | SAL_CALL(ret_stuff, SN_SAL_SYSTEM_POWER_DOWN, 0, 0, 0, 0, 0, 0, 0); | ||
710 | while(1); | ||
711 | /* never returns */ | ||
712 | } | ||
713 | |||
714 | /** | ||
715 | * ia64_sn_fru_capture - tell the system controller to capture hw state | ||
716 | * | ||
717 | * This routine will call the SAL which will tell the system controller(s) | ||
718 | * to capture hw mmr information from each SHub in the system. | ||
719 | */ | ||
720 | static inline u64 | ||
721 | ia64_sn_fru_capture(void) | ||
722 | { | ||
723 | struct ia64_sal_retval isrv; | ||
724 | SAL_CALL(isrv, SN_SAL_SYSCTL_FRU_CAPTURE, 0, 0, 0, 0, 0, 0, 0); | ||
725 | if (isrv.status) | ||
726 | return 0; | ||
727 | return isrv.v0; | ||
728 | } | ||
729 | |||
730 | /* | ||
731 | * Performs an operation on a PCI bus or slot -- power up, power down | ||
732 | * or reset. | ||
733 | */ | ||
734 | static inline u64 | ||
735 | ia64_sn_sysctl_iobrick_pci_op(nasid_t n, u64 connection_type, | ||
736 | u64 bus, char slot, | ||
737 | u64 action) | ||
738 | { | ||
739 | struct ia64_sal_retval rv = {0, 0, 0, 0}; | ||
740 | |||
741 | SAL_CALL_NOLOCK(rv, SN_SAL_SYSCTL_IOBRICK_PCI_OP, connection_type, n, action, | ||
742 | bus, (u64) slot, 0, 0); | ||
743 | if (rv.status) | ||
744 | return rv.v0; | ||
745 | return 0; | ||
746 | } | ||
747 | |||
748 | |||
749 | /* | ||
750 | * Open a subchannel for sending arbitrary data to the system | ||
751 | * controller network via the system controller device associated with | ||
752 | * 'nasid'. Return the subchannel number or a negative error code. | ||
753 | */ | ||
754 | static inline int | ||
755 | ia64_sn_irtr_open(nasid_t nasid) | ||
756 | { | ||
757 | struct ia64_sal_retval rv; | ||
758 | SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_OPEN, nasid, | ||
759 | 0, 0, 0, 0, 0); | ||
760 | return (int) rv.v0; | ||
761 | } | ||
762 | |||
763 | /* | ||
764 | * Close system controller subchannel 'subch' previously opened on 'nasid'. | ||
765 | */ | ||
766 | static inline int | ||
767 | ia64_sn_irtr_close(nasid_t nasid, int subch) | ||
768 | { | ||
769 | struct ia64_sal_retval rv; | ||
770 | SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_CLOSE, | ||
771 | (u64) nasid, (u64) subch, 0, 0, 0, 0); | ||
772 | return (int) rv.status; | ||
773 | } | ||
774 | |||
775 | /* | ||
776 | * Read data from system controller associated with 'nasid' on | ||
777 | * subchannel 'subch'. The buffer to be filled is pointed to by | ||
778 | * 'buf', and its capacity is in the integer pointed to by 'len'. The | ||
779 | * referent of 'len' is set to the number of bytes read by the SAL | ||
780 | * call. The return value is either SALRET_OK (for bytes read) or | ||
781 | * SALRET_ERROR (for error or "no data available"). | ||
782 | */ | ||
783 | static inline int | ||
784 | ia64_sn_irtr_recv(nasid_t nasid, int subch, char *buf, int *len) | ||
785 | { | ||
786 | struct ia64_sal_retval rv; | ||
787 | SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_RECV, | ||
788 | (u64) nasid, (u64) subch, (u64) buf, (u64) len, | ||
789 | 0, 0); | ||
790 | return (int) rv.status; | ||
791 | } | ||
792 | |||
793 | /* | ||
794 | * Write data to the system controller network via the system | ||
795 | * controller associated with 'nasid' on suchannel 'subch'. The | ||
796 | * buffer to be written out is pointed to by 'buf', and 'len' is the | ||
797 | * number of bytes to be written. The return value is either the | ||
798 | * number of bytes written (which could be zero) or a negative error | ||
799 | * code. | ||
800 | */ | ||
801 | static inline int | ||
802 | ia64_sn_irtr_send(nasid_t nasid, int subch, char *buf, int len) | ||
803 | { | ||
804 | struct ia64_sal_retval rv; | ||
805 | SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_SEND, | ||
806 | (u64) nasid, (u64) subch, (u64) buf, (u64) len, | ||
807 | 0, 0); | ||
808 | return (int) rv.v0; | ||
809 | } | ||
810 | |||
811 | /* | ||
812 | * Check whether any interrupts are pending for the system controller | ||
813 | * associated with 'nasid' and its subchannel 'subch'. The return | ||
814 | * value is a mask of pending interrupts (SAL_IROUTER_INTR_XMIT and/or | ||
815 | * SAL_IROUTER_INTR_RECV). | ||
816 | */ | ||
817 | static inline int | ||
818 | ia64_sn_irtr_intr(nasid_t nasid, int subch) | ||
819 | { | ||
820 | struct ia64_sal_retval rv; | ||
821 | SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_INTR_STATUS, | ||
822 | (u64) nasid, (u64) subch, 0, 0, 0, 0); | ||
823 | return (int) rv.v0; | ||
824 | } | ||
825 | |||
826 | /* | ||
827 | * Enable the interrupt indicated by the intr parameter (either | ||
828 | * SAL_IROUTER_INTR_XMIT or SAL_IROUTER_INTR_RECV). | ||
829 | */ | ||
830 | static inline int | ||
831 | ia64_sn_irtr_intr_enable(nasid_t nasid, int subch, u64 intr) | ||
832 | { | ||
833 | struct ia64_sal_retval rv; | ||
834 | SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_INTR_ON, | ||
835 | (u64) nasid, (u64) subch, intr, 0, 0, 0); | ||
836 | return (int) rv.v0; | ||
837 | } | ||
838 | |||
839 | /* | ||
840 | * Disable the interrupt indicated by the intr parameter (either | ||
841 | * SAL_IROUTER_INTR_XMIT or SAL_IROUTER_INTR_RECV). | ||
842 | */ | ||
843 | static inline int | ||
844 | ia64_sn_irtr_intr_disable(nasid_t nasid, int subch, u64 intr) | ||
845 | { | ||
846 | struct ia64_sal_retval rv; | ||
847 | SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_INTR_OFF, | ||
848 | (u64) nasid, (u64) subch, intr, 0, 0, 0); | ||
849 | return (int) rv.v0; | ||
850 | } | ||
851 | |||
852 | /** | ||
853 | * ia64_sn_get_fit_compt - read a FIT entry from the PROM header | ||
854 | * @nasid: NASID of node to read | ||
855 | * @index: FIT entry index to be retrieved (0..n) | ||
856 | * @fitentry: 16 byte buffer where FIT entry will be stored. | ||
857 | * @banbuf: optional buffer for retrieving banner | ||
858 | * @banlen: length of banner buffer | ||
859 | * | ||
860 | * Access to the physical PROM chips needs to be serialized since reads and | ||
861 | * writes can't occur at the same time, so we need to call into the SAL when | ||
862 | * we want to look at the FIT entries on the chips. | ||
863 | * | ||
864 | * Returns: | ||
865 | * %SALRET_OK if ok | ||
866 | * %SALRET_INVALID_ARG if index too big | ||
867 | * %SALRET_NOT_IMPLEMENTED if running on older PROM | ||
868 | * ??? if nasid invalid OR banner buffer not large enough | ||
869 | */ | ||
870 | static inline int | ||
871 | ia64_sn_get_fit_compt(u64 nasid, u64 index, void *fitentry, void *banbuf, | ||
872 | u64 banlen) | ||
873 | { | ||
874 | struct ia64_sal_retval rv; | ||
875 | SAL_CALL_NOLOCK(rv, SN_SAL_GET_FIT_COMPT, nasid, index, fitentry, | ||
876 | banbuf, banlen, 0, 0); | ||
877 | return (int) rv.status; | ||
878 | } | ||
879 | |||
880 | /* | ||
881 | * Initialize the SAL components of the system controller | ||
882 | * communication driver; specifically pass in a sizable buffer that | ||
883 | * can be used for allocation of subchannel queues as new subchannels | ||
884 | * are opened. "buf" points to the buffer, and "len" specifies its | ||
885 | * length. | ||
886 | */ | ||
887 | static inline int | ||
888 | ia64_sn_irtr_init(nasid_t nasid, void *buf, int len) | ||
889 | { | ||
890 | struct ia64_sal_retval rv; | ||
891 | SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_INIT, | ||
892 | (u64) nasid, (u64) buf, (u64) len, 0, 0, 0); | ||
893 | return (int) rv.status; | ||
894 | } | ||
895 | |||
896 | /* | ||
897 | * Returns the nasid, subnode & slice corresponding to a SAPIC ID | ||
898 | * | ||
899 | * In: | ||
900 | * arg0 - SN_SAL_GET_SAPIC_INFO | ||
901 | * arg1 - sapicid (lid >> 16) | ||
902 | * Out: | ||
903 | * v0 - nasid | ||
904 | * v1 - subnode | ||
905 | * v2 - slice | ||
906 | */ | ||
907 | static inline u64 | ||
908 | ia64_sn_get_sapic_info(int sapicid, int *nasid, int *subnode, int *slice) | ||
909 | { | ||
910 | struct ia64_sal_retval ret_stuff; | ||
911 | |||
912 | ret_stuff.status = 0; | ||
913 | ret_stuff.v0 = 0; | ||
914 | ret_stuff.v1 = 0; | ||
915 | ret_stuff.v2 = 0; | ||
916 | SAL_CALL_NOLOCK(ret_stuff, SN_SAL_GET_SAPIC_INFO, sapicid, 0, 0, 0, 0, 0, 0); | ||
917 | |||
918 | /***** BEGIN HACK - temp til old proms no longer supported ********/ | ||
919 | if (ret_stuff.status == SALRET_NOT_IMPLEMENTED) { | ||
920 | if (nasid) *nasid = sapicid & 0xfff; | ||
921 | if (subnode) *subnode = (sapicid >> 13) & 1; | ||
922 | if (slice) *slice = (sapicid >> 12) & 3; | ||
923 | return 0; | ||
924 | } | ||
925 | /***** END HACK *******/ | ||
926 | |||
927 | if (ret_stuff.status < 0) | ||
928 | return ret_stuff.status; | ||
929 | |||
930 | if (nasid) *nasid = (int) ret_stuff.v0; | ||
931 | if (subnode) *subnode = (int) ret_stuff.v1; | ||
932 | if (slice) *slice = (int) ret_stuff.v2; | ||
933 | return 0; | ||
934 | } | ||
935 | |||
936 | /* | ||
937 | * Returns information about the HUB/SHUB. | ||
938 | * In: | ||
939 | * arg0 - SN_SAL_GET_SN_INFO | ||
940 | * arg1 - 0 (other values reserved for future use) | ||
941 | * Out: | ||
942 | * v0 | ||
943 | * [7:0] - shub type (0=shub1, 1=shub2) | ||
944 | * [15:8] - Log2 max number of nodes in entire system (includes | ||
945 | * C-bricks, I-bricks, etc) | ||
946 | * [23:16] - Log2 of nodes per sharing domain | ||
947 | * [31:24] - partition ID | ||
948 | * [39:32] - coherency_id | ||
949 | * [47:40] - regionsize | ||
950 | * v1 | ||
951 | * [15:0] - nasid mask (ex., 0x7ff for 11 bit nasid) | ||
952 | * [23:15] - bit position of low nasid bit | ||
953 | */ | ||
954 | static inline u64 | ||
955 | ia64_sn_get_sn_info(int fc, u8 *shubtype, u16 *nasid_bitmask, u8 *nasid_shift, | ||
956 | u8 *systemsize, u8 *sharing_domain_size, u8 *partid, u8 *coher, u8 *reg) | ||
957 | { | ||
958 | struct ia64_sal_retval ret_stuff; | ||
959 | |||
960 | ret_stuff.status = 0; | ||
961 | ret_stuff.v0 = 0; | ||
962 | ret_stuff.v1 = 0; | ||
963 | ret_stuff.v2 = 0; | ||
964 | SAL_CALL_NOLOCK(ret_stuff, SN_SAL_GET_SN_INFO, fc, 0, 0, 0, 0, 0, 0); | ||
965 | |||
966 | /***** BEGIN HACK - temp til old proms no longer supported ********/ | ||
967 | if (ret_stuff.status == SALRET_NOT_IMPLEMENTED) { | ||
968 | int nasid = get_sapicid() & 0xfff;; | ||
969 | #define SH_SHUB_ID_NODES_PER_BIT_MASK 0x001f000000000000UL | ||
970 | #define SH_SHUB_ID_NODES_PER_BIT_SHFT 48 | ||
971 | if (shubtype) *shubtype = 0; | ||
972 | if (nasid_bitmask) *nasid_bitmask = 0x7ff; | ||
973 | if (nasid_shift) *nasid_shift = 38; | ||
974 | if (systemsize) *systemsize = 11; | ||
975 | if (sharing_domain_size) *sharing_domain_size = 9; | ||
976 | if (partid) *partid = ia64_sn_sysctl_partition_get(nasid); | ||
977 | if (coher) *coher = nasid >> 9; | ||
978 | if (reg) *reg = (HUB_L((u64 *) LOCAL_MMR_ADDR(SH1_SHUB_ID)) & SH_SHUB_ID_NODES_PER_BIT_MASK) >> | ||
979 | SH_SHUB_ID_NODES_PER_BIT_SHFT; | ||
980 | return 0; | ||
981 | } | ||
982 | /***** END HACK *******/ | ||
983 | |||
984 | if (ret_stuff.status < 0) | ||
985 | return ret_stuff.status; | ||
986 | |||
987 | if (shubtype) *shubtype = ret_stuff.v0 & 0xff; | ||
988 | if (systemsize) *systemsize = (ret_stuff.v0 >> 8) & 0xff; | ||
989 | if (sharing_domain_size) *sharing_domain_size = (ret_stuff.v0 >> 16) & 0xff; | ||
990 | if (partid) *partid = (ret_stuff.v0 >> 24) & 0xff; | ||
991 | if (coher) *coher = (ret_stuff.v0 >> 32) & 0xff; | ||
992 | if (reg) *reg = (ret_stuff.v0 >> 40) & 0xff; | ||
993 | if (nasid_bitmask) *nasid_bitmask = (ret_stuff.v1 & 0xffff); | ||
994 | if (nasid_shift) *nasid_shift = (ret_stuff.v1 >> 16) & 0xff; | ||
995 | return 0; | ||
996 | } | ||
997 | |||
998 | /* | ||
999 | * This is the access point to the Altix PROM hardware performance | ||
1000 | * and status monitoring interface. For info on using this, see | ||
1001 | * include/asm-ia64/sn/sn2/sn_hwperf.h | ||
1002 | */ | ||
1003 | static inline int | ||
1004 | ia64_sn_hwperf_op(nasid_t nasid, u64 opcode, u64 a0, u64 a1, u64 a2, | ||
1005 | u64 a3, u64 a4, int *v0) | ||
1006 | { | ||
1007 | struct ia64_sal_retval rv; | ||
1008 | SAL_CALL_NOLOCK(rv, SN_SAL_HWPERF_OP, (u64)nasid, | ||
1009 | opcode, a0, a1, a2, a3, a4); | ||
1010 | if (v0) | ||
1011 | *v0 = (int) rv.v0; | ||
1012 | return (int) rv.status; | ||
1013 | } | ||
1014 | |||
1015 | #endif /* _ASM_IA64_SN_SN_SAL_H */ | ||
diff --git a/include/asm-ia64/sn/sndrv.h b/include/asm-ia64/sn/sndrv.h new file mode 100644 index 000000000000..aa00d42cde32 --- /dev/null +++ b/include/asm-ia64/sn/sndrv.h | |||
@@ -0,0 +1,47 @@ | |||
1 | /* | ||
2 | * This file is subject to the terms and conditions of the GNU General Public | ||
3 | * License. See the file "COPYING" in the main directory of this archive | ||
4 | * for more details. | ||
5 | * | ||
6 | * Copyright (c) 2002-2004 Silicon Graphics, Inc. All Rights Reserved. | ||
7 | */ | ||
8 | |||
9 | #ifndef _ASM_IA64_SN_SNDRV_H | ||
10 | #define _ASM_IA64_SN_SNDRV_H | ||
11 | |||
12 | /* ioctl commands */ | ||
13 | #define SNDRV_GET_ROUTERINFO 1 | ||
14 | #define SNDRV_GET_INFOSIZE 2 | ||
15 | #define SNDRV_GET_HUBINFO 3 | ||
16 | #define SNDRV_GET_FLASHLOGSIZE 4 | ||
17 | #define SNDRV_SET_FLASHSYNC 5 | ||
18 | #define SNDRV_GET_FLASHLOGDATA 6 | ||
19 | #define SNDRV_GET_FLASHLOGALL 7 | ||
20 | |||
21 | #define SNDRV_SET_HISTOGRAM_TYPE 14 | ||
22 | |||
23 | #define SNDRV_ELSC_COMMAND 19 | ||
24 | #define SNDRV_CLEAR_LOG 20 | ||
25 | #define SNDRV_INIT_LOG 21 | ||
26 | #define SNDRV_GET_PIMM_PSC 22 | ||
27 | #define SNDRV_SET_PARTITION 23 | ||
28 | #define SNDRV_GET_PARTITION 24 | ||
29 | |||
30 | /* see synergy_perf_ioctl() */ | ||
31 | #define SNDRV_GET_SYNERGY_VERSION 30 | ||
32 | #define SNDRV_GET_SYNERGY_STATUS 31 | ||
33 | #define SNDRV_GET_SYNERGYINFO 32 | ||
34 | #define SNDRV_SYNERGY_APPEND 33 | ||
35 | #define SNDRV_SYNERGY_ENABLE 34 | ||
36 | #define SNDRV_SYNERGY_FREQ 35 | ||
37 | |||
38 | /* Devices */ | ||
39 | #define SNDRV_UKNOWN_DEVICE -1 | ||
40 | #define SNDRV_ROUTER_DEVICE 1 | ||
41 | #define SNDRV_HUB_DEVICE 2 | ||
42 | #define SNDRV_ELSC_NVRAM_DEVICE 3 | ||
43 | #define SNDRV_ELSC_CONTROLLER_DEVICE 4 | ||
44 | #define SNDRV_SYSCTL_SUBCH 5 | ||
45 | #define SNDRV_SYNERGY_DEVICE 6 | ||
46 | |||
47 | #endif /* _ASM_IA64_SN_SNDRV_H */ | ||
diff --git a/include/asm-ia64/sn/types.h b/include/asm-ia64/sn/types.h new file mode 100644 index 000000000000..586ed47cae9c --- /dev/null +++ b/include/asm-ia64/sn/types.h | |||
@@ -0,0 +1,25 @@ | |||
1 | /* | ||
2 | * This file is subject to the terms and conditions of the GNU General Public | ||
3 | * License. See the file "COPYING" in the main directory of this archive | ||
4 | * for more details. | ||
5 | * | ||
6 | * Copyright (C) 1999,2001-2003 Silicon Graphics, Inc. All Rights Reserved. | ||
7 | * Copyright (C) 1999 by Ralf Baechle | ||
8 | */ | ||
9 | #ifndef _ASM_IA64_SN_TYPES_H | ||
10 | #define _ASM_IA64_SN_TYPES_H | ||
11 | |||
12 | #include <linux/types.h> | ||
13 | |||
14 | typedef unsigned long cpuid_t; | ||
15 | typedef signed short nasid_t; /* node id in numa-as-id space */ | ||
16 | typedef signed char partid_t; /* partition ID type */ | ||
17 | typedef unsigned int moduleid_t; /* user-visible module number type */ | ||
18 | typedef unsigned int cmoduleid_t; /* kernel compact module id type */ | ||
19 | typedef signed char slabid_t; | ||
20 | typedef u64 nic_t; | ||
21 | typedef unsigned long iopaddr_t; | ||
22 | typedef unsigned long paddr_t; | ||
23 | typedef short cnodeid_t; | ||
24 | |||
25 | #endif /* _ASM_IA64_SN_TYPES_H */ | ||