diff options
Diffstat (limited to 'include/asm-ia64/sn/shubio.h')
-rw-r--r-- | include/asm-ia64/sn/shubio.h | 3476 |
1 files changed, 3476 insertions, 0 deletions
diff --git a/include/asm-ia64/sn/shubio.h b/include/asm-ia64/sn/shubio.h new file mode 100644 index 000000000000..fbd880e6bb96 --- /dev/null +++ b/include/asm-ia64/sn/shubio.h | |||
@@ -0,0 +1,3476 @@ | |||
1 | /* | ||
2 | * This file is subject to the terms and conditions of the GNU General Public | ||
3 | * License. See the file "COPYING" in the main directory of this archive | ||
4 | * for more details. | ||
5 | * | ||
6 | * Copyright (C) 1992 - 1997, 2000-2004 Silicon Graphics, Inc. All rights reserved. | ||
7 | */ | ||
8 | |||
9 | #ifndef _ASM_IA64_SN_SHUBIO_H | ||
10 | #define _ASM_IA64_SN_SHUBIO_H | ||
11 | |||
12 | #define HUB_WIDGET_ID_MAX 0xf | ||
13 | #define IIO_NUM_ITTES 7 | ||
14 | #define HUB_NUM_BIG_WINDOW (IIO_NUM_ITTES - 1) | ||
15 | |||
16 | #define IIO_WID 0x00400000 /* Crosstalk Widget Identification */ | ||
17 | /* This register is also accessible from | ||
18 | * Crosstalk at address 0x0. */ | ||
19 | #define IIO_WSTAT 0x00400008 /* Crosstalk Widget Status */ | ||
20 | #define IIO_WCR 0x00400020 /* Crosstalk Widget Control Register */ | ||
21 | #define IIO_ILAPR 0x00400100 /* IO Local Access Protection Register */ | ||
22 | #define IIO_ILAPO 0x00400108 /* IO Local Access Protection Override */ | ||
23 | #define IIO_IOWA 0x00400110 /* IO Outbound Widget Access */ | ||
24 | #define IIO_IIWA 0x00400118 /* IO Inbound Widget Access */ | ||
25 | #define IIO_IIDEM 0x00400120 /* IO Inbound Device Error Mask */ | ||
26 | #define IIO_ILCSR 0x00400128 /* IO LLP Control and Status Register */ | ||
27 | #define IIO_ILLR 0x00400130 /* IO LLP Log Register */ | ||
28 | #define IIO_IIDSR 0x00400138 /* IO Interrupt Destination */ | ||
29 | |||
30 | #define IIO_IGFX0 0x00400140 /* IO Graphics Node-Widget Map 0 */ | ||
31 | #define IIO_IGFX1 0x00400148 /* IO Graphics Node-Widget Map 1 */ | ||
32 | |||
33 | #define IIO_ISCR0 0x00400150 /* IO Scratch Register 0 */ | ||
34 | #define IIO_ISCR1 0x00400158 /* IO Scratch Register 1 */ | ||
35 | |||
36 | #define IIO_ITTE1 0x00400160 /* IO Translation Table Entry 1 */ | ||
37 | #define IIO_ITTE2 0x00400168 /* IO Translation Table Entry 2 */ | ||
38 | #define IIO_ITTE3 0x00400170 /* IO Translation Table Entry 3 */ | ||
39 | #define IIO_ITTE4 0x00400178 /* IO Translation Table Entry 4 */ | ||
40 | #define IIO_ITTE5 0x00400180 /* IO Translation Table Entry 5 */ | ||
41 | #define IIO_ITTE6 0x00400188 /* IO Translation Table Entry 6 */ | ||
42 | #define IIO_ITTE7 0x00400190 /* IO Translation Table Entry 7 */ | ||
43 | |||
44 | #define IIO_IPRB0 0x00400198 /* IO PRB Entry 0 */ | ||
45 | #define IIO_IPRB8 0x004001A0 /* IO PRB Entry 8 */ | ||
46 | #define IIO_IPRB9 0x004001A8 /* IO PRB Entry 9 */ | ||
47 | #define IIO_IPRBA 0x004001B0 /* IO PRB Entry A */ | ||
48 | #define IIO_IPRBB 0x004001B8 /* IO PRB Entry B */ | ||
49 | #define IIO_IPRBC 0x004001C0 /* IO PRB Entry C */ | ||
50 | #define IIO_IPRBD 0x004001C8 /* IO PRB Entry D */ | ||
51 | #define IIO_IPRBE 0x004001D0 /* IO PRB Entry E */ | ||
52 | #define IIO_IPRBF 0x004001D8 /* IO PRB Entry F */ | ||
53 | |||
54 | #define IIO_IXCC 0x004001E0 /* IO Crosstalk Credit Count Timeout */ | ||
55 | #define IIO_IMEM 0x004001E8 /* IO Miscellaneous Error Mask */ | ||
56 | #define IIO_IXTT 0x004001F0 /* IO Crosstalk Timeout Threshold */ | ||
57 | #define IIO_IECLR 0x004001F8 /* IO Error Clear Register */ | ||
58 | #define IIO_IBCR 0x00400200 /* IO BTE Control Register */ | ||
59 | |||
60 | #define IIO_IXSM 0x00400208 /* IO Crosstalk Spurious Message */ | ||
61 | #define IIO_IXSS 0x00400210 /* IO Crosstalk Spurious Sideband */ | ||
62 | |||
63 | #define IIO_ILCT 0x00400218 /* IO LLP Channel Test */ | ||
64 | |||
65 | #define IIO_IIEPH1 0x00400220 /* IO Incoming Error Packet Header, Part 1 */ | ||
66 | #define IIO_IIEPH2 0x00400228 /* IO Incoming Error Packet Header, Part 2 */ | ||
67 | |||
68 | |||
69 | #define IIO_ISLAPR 0x00400230 /* IO SXB Local Access Protection Regster */ | ||
70 | #define IIO_ISLAPO 0x00400238 /* IO SXB Local Access Protection Override */ | ||
71 | |||
72 | #define IIO_IWI 0x00400240 /* IO Wrapper Interrupt Register */ | ||
73 | #define IIO_IWEL 0x00400248 /* IO Wrapper Error Log Register */ | ||
74 | #define IIO_IWC 0x00400250 /* IO Wrapper Control Register */ | ||
75 | #define IIO_IWS 0x00400258 /* IO Wrapper Status Register */ | ||
76 | #define IIO_IWEIM 0x00400260 /* IO Wrapper Error Interrupt Masking Register */ | ||
77 | |||
78 | #define IIO_IPCA 0x00400300 /* IO PRB Counter Adjust */ | ||
79 | |||
80 | #define IIO_IPRTE0_A 0x00400308 /* IO PIO Read Address Table Entry 0, Part A */ | ||
81 | #define IIO_IPRTE1_A 0x00400310 /* IO PIO Read Address Table Entry 1, Part A */ | ||
82 | #define IIO_IPRTE2_A 0x00400318 /* IO PIO Read Address Table Entry 2, Part A */ | ||
83 | #define IIO_IPRTE3_A 0x00400320 /* IO PIO Read Address Table Entry 3, Part A */ | ||
84 | #define IIO_IPRTE4_A 0x00400328 /* IO PIO Read Address Table Entry 4, Part A */ | ||
85 | #define IIO_IPRTE5_A 0x00400330 /* IO PIO Read Address Table Entry 5, Part A */ | ||
86 | #define IIO_IPRTE6_A 0x00400338 /* IO PIO Read Address Table Entry 6, Part A */ | ||
87 | #define IIO_IPRTE7_A 0x00400340 /* IO PIO Read Address Table Entry 7, Part A */ | ||
88 | |||
89 | #define IIO_IPRTE0_B 0x00400348 /* IO PIO Read Address Table Entry 0, Part B */ | ||
90 | #define IIO_IPRTE1_B 0x00400350 /* IO PIO Read Address Table Entry 1, Part B */ | ||
91 | #define IIO_IPRTE2_B 0x00400358 /* IO PIO Read Address Table Entry 2, Part B */ | ||
92 | #define IIO_IPRTE3_B 0x00400360 /* IO PIO Read Address Table Entry 3, Part B */ | ||
93 | #define IIO_IPRTE4_B 0x00400368 /* IO PIO Read Address Table Entry 4, Part B */ | ||
94 | #define IIO_IPRTE5_B 0x00400370 /* IO PIO Read Address Table Entry 5, Part B */ | ||
95 | #define IIO_IPRTE6_B 0x00400378 /* IO PIO Read Address Table Entry 6, Part B */ | ||
96 | #define IIO_IPRTE7_B 0x00400380 /* IO PIO Read Address Table Entry 7, Part B */ | ||
97 | |||
98 | #define IIO_IPDR 0x00400388 /* IO PIO Deallocation Register */ | ||
99 | #define IIO_ICDR 0x00400390 /* IO CRB Entry Deallocation Register */ | ||
100 | #define IIO_IFDR 0x00400398 /* IO IOQ FIFO Depth Register */ | ||
101 | #define IIO_IIAP 0x004003A0 /* IO IIQ Arbitration Parameters */ | ||
102 | #define IIO_ICMR 0x004003A8 /* IO CRB Management Register */ | ||
103 | #define IIO_ICCR 0x004003B0 /* IO CRB Control Register */ | ||
104 | #define IIO_ICTO 0x004003B8 /* IO CRB Timeout */ | ||
105 | #define IIO_ICTP 0x004003C0 /* IO CRB Timeout Prescalar */ | ||
106 | |||
107 | #define IIO_ICRB0_A 0x00400400 /* IO CRB Entry 0_A */ | ||
108 | #define IIO_ICRB0_B 0x00400408 /* IO CRB Entry 0_B */ | ||
109 | #define IIO_ICRB0_C 0x00400410 /* IO CRB Entry 0_C */ | ||
110 | #define IIO_ICRB0_D 0x00400418 /* IO CRB Entry 0_D */ | ||
111 | #define IIO_ICRB0_E 0x00400420 /* IO CRB Entry 0_E */ | ||
112 | |||
113 | #define IIO_ICRB1_A 0x00400430 /* IO CRB Entry 1_A */ | ||
114 | #define IIO_ICRB1_B 0x00400438 /* IO CRB Entry 1_B */ | ||
115 | #define IIO_ICRB1_C 0x00400440 /* IO CRB Entry 1_C */ | ||
116 | #define IIO_ICRB1_D 0x00400448 /* IO CRB Entry 1_D */ | ||
117 | #define IIO_ICRB1_E 0x00400450 /* IO CRB Entry 1_E */ | ||
118 | |||
119 | #define IIO_ICRB2_A 0x00400460 /* IO CRB Entry 2_A */ | ||
120 | #define IIO_ICRB2_B 0x00400468 /* IO CRB Entry 2_B */ | ||
121 | #define IIO_ICRB2_C 0x00400470 /* IO CRB Entry 2_C */ | ||
122 | #define IIO_ICRB2_D 0x00400478 /* IO CRB Entry 2_D */ | ||
123 | #define IIO_ICRB2_E 0x00400480 /* IO CRB Entry 2_E */ | ||
124 | |||
125 | #define IIO_ICRB3_A 0x00400490 /* IO CRB Entry 3_A */ | ||
126 | #define IIO_ICRB3_B 0x00400498 /* IO CRB Entry 3_B */ | ||
127 | #define IIO_ICRB3_C 0x004004a0 /* IO CRB Entry 3_C */ | ||
128 | #define IIO_ICRB3_D 0x004004a8 /* IO CRB Entry 3_D */ | ||
129 | #define IIO_ICRB3_E 0x004004b0 /* IO CRB Entry 3_E */ | ||
130 | |||
131 | #define IIO_ICRB4_A 0x004004c0 /* IO CRB Entry 4_A */ | ||
132 | #define IIO_ICRB4_B 0x004004c8 /* IO CRB Entry 4_B */ | ||
133 | #define IIO_ICRB4_C 0x004004d0 /* IO CRB Entry 4_C */ | ||
134 | #define IIO_ICRB4_D 0x004004d8 /* IO CRB Entry 4_D */ | ||
135 | #define IIO_ICRB4_E 0x004004e0 /* IO CRB Entry 4_E */ | ||
136 | |||
137 | #define IIO_ICRB5_A 0x004004f0 /* IO CRB Entry 5_A */ | ||
138 | #define IIO_ICRB5_B 0x004004f8 /* IO CRB Entry 5_B */ | ||
139 | #define IIO_ICRB5_C 0x00400500 /* IO CRB Entry 5_C */ | ||
140 | #define IIO_ICRB5_D 0x00400508 /* IO CRB Entry 5_D */ | ||
141 | #define IIO_ICRB5_E 0x00400510 /* IO CRB Entry 5_E */ | ||
142 | |||
143 | #define IIO_ICRB6_A 0x00400520 /* IO CRB Entry 6_A */ | ||
144 | #define IIO_ICRB6_B 0x00400528 /* IO CRB Entry 6_B */ | ||
145 | #define IIO_ICRB6_C 0x00400530 /* IO CRB Entry 6_C */ | ||
146 | #define IIO_ICRB6_D 0x00400538 /* IO CRB Entry 6_D */ | ||
147 | #define IIO_ICRB6_E 0x00400540 /* IO CRB Entry 6_E */ | ||
148 | |||
149 | #define IIO_ICRB7_A 0x00400550 /* IO CRB Entry 7_A */ | ||
150 | #define IIO_ICRB7_B 0x00400558 /* IO CRB Entry 7_B */ | ||
151 | #define IIO_ICRB7_C 0x00400560 /* IO CRB Entry 7_C */ | ||
152 | #define IIO_ICRB7_D 0x00400568 /* IO CRB Entry 7_D */ | ||
153 | #define IIO_ICRB7_E 0x00400570 /* IO CRB Entry 7_E */ | ||
154 | |||
155 | #define IIO_ICRB8_A 0x00400580 /* IO CRB Entry 8_A */ | ||
156 | #define IIO_ICRB8_B 0x00400588 /* IO CRB Entry 8_B */ | ||
157 | #define IIO_ICRB8_C 0x00400590 /* IO CRB Entry 8_C */ | ||
158 | #define IIO_ICRB8_D 0x00400598 /* IO CRB Entry 8_D */ | ||
159 | #define IIO_ICRB8_E 0x004005a0 /* IO CRB Entry 8_E */ | ||
160 | |||
161 | #define IIO_ICRB9_A 0x004005b0 /* IO CRB Entry 9_A */ | ||
162 | #define IIO_ICRB9_B 0x004005b8 /* IO CRB Entry 9_B */ | ||
163 | #define IIO_ICRB9_C 0x004005c0 /* IO CRB Entry 9_C */ | ||
164 | #define IIO_ICRB9_D 0x004005c8 /* IO CRB Entry 9_D */ | ||
165 | #define IIO_ICRB9_E 0x004005d0 /* IO CRB Entry 9_E */ | ||
166 | |||
167 | #define IIO_ICRBA_A 0x004005e0 /* IO CRB Entry A_A */ | ||
168 | #define IIO_ICRBA_B 0x004005e8 /* IO CRB Entry A_B */ | ||
169 | #define IIO_ICRBA_C 0x004005f0 /* IO CRB Entry A_C */ | ||
170 | #define IIO_ICRBA_D 0x004005f8 /* IO CRB Entry A_D */ | ||
171 | #define IIO_ICRBA_E 0x00400600 /* IO CRB Entry A_E */ | ||
172 | |||
173 | #define IIO_ICRBB_A 0x00400610 /* IO CRB Entry B_A */ | ||
174 | #define IIO_ICRBB_B 0x00400618 /* IO CRB Entry B_B */ | ||
175 | #define IIO_ICRBB_C 0x00400620 /* IO CRB Entry B_C */ | ||
176 | #define IIO_ICRBB_D 0x00400628 /* IO CRB Entry B_D */ | ||
177 | #define IIO_ICRBB_E 0x00400630 /* IO CRB Entry B_E */ | ||
178 | |||
179 | #define IIO_ICRBC_A 0x00400640 /* IO CRB Entry C_A */ | ||
180 | #define IIO_ICRBC_B 0x00400648 /* IO CRB Entry C_B */ | ||
181 | #define IIO_ICRBC_C 0x00400650 /* IO CRB Entry C_C */ | ||
182 | #define IIO_ICRBC_D 0x00400658 /* IO CRB Entry C_D */ | ||
183 | #define IIO_ICRBC_E 0x00400660 /* IO CRB Entry C_E */ | ||
184 | |||
185 | #define IIO_ICRBD_A 0x00400670 /* IO CRB Entry D_A */ | ||
186 | #define IIO_ICRBD_B 0x00400678 /* IO CRB Entry D_B */ | ||
187 | #define IIO_ICRBD_C 0x00400680 /* IO CRB Entry D_C */ | ||
188 | #define IIO_ICRBD_D 0x00400688 /* IO CRB Entry D_D */ | ||
189 | #define IIO_ICRBD_E 0x00400690 /* IO CRB Entry D_E */ | ||
190 | |||
191 | #define IIO_ICRBE_A 0x004006a0 /* IO CRB Entry E_A */ | ||
192 | #define IIO_ICRBE_B 0x004006a8 /* IO CRB Entry E_B */ | ||
193 | #define IIO_ICRBE_C 0x004006b0 /* IO CRB Entry E_C */ | ||
194 | #define IIO_ICRBE_D 0x004006b8 /* IO CRB Entry E_D */ | ||
195 | #define IIO_ICRBE_E 0x004006c0 /* IO CRB Entry E_E */ | ||
196 | |||
197 | #define IIO_ICSML 0x00400700 /* IO CRB Spurious Message Low */ | ||
198 | #define IIO_ICSMM 0x00400708 /* IO CRB Spurious Message Middle */ | ||
199 | #define IIO_ICSMH 0x00400710 /* IO CRB Spurious Message High */ | ||
200 | |||
201 | #define IIO_IDBSS 0x00400718 /* IO Debug Submenu Select */ | ||
202 | |||
203 | #define IIO_IBLS0 0x00410000 /* IO BTE Length Status 0 */ | ||
204 | #define IIO_IBSA0 0x00410008 /* IO BTE Source Address 0 */ | ||
205 | #define IIO_IBDA0 0x00410010 /* IO BTE Destination Address 0 */ | ||
206 | #define IIO_IBCT0 0x00410018 /* IO BTE Control Terminate 0 */ | ||
207 | #define IIO_IBNA0 0x00410020 /* IO BTE Notification Address 0 */ | ||
208 | #define IIO_IBIA0 0x00410028 /* IO BTE Interrupt Address 0 */ | ||
209 | #define IIO_IBLS1 0x00420000 /* IO BTE Length Status 1 */ | ||
210 | #define IIO_IBSA1 0x00420008 /* IO BTE Source Address 1 */ | ||
211 | #define IIO_IBDA1 0x00420010 /* IO BTE Destination Address 1 */ | ||
212 | #define IIO_IBCT1 0x00420018 /* IO BTE Control Terminate 1 */ | ||
213 | #define IIO_IBNA1 0x00420020 /* IO BTE Notification Address 1 */ | ||
214 | #define IIO_IBIA1 0x00420028 /* IO BTE Interrupt Address 1 */ | ||
215 | |||
216 | #define IIO_IPCR 0x00430000 /* IO Performance Control */ | ||
217 | #define IIO_IPPR 0x00430008 /* IO Performance Profiling */ | ||
218 | |||
219 | |||
220 | /************************************************************************ | ||
221 | * * | ||
222 | * Description: This register echoes some information from the * | ||
223 | * LB_REV_ID register. It is available through Crosstalk as described * | ||
224 | * above. The REV_NUM and MFG_NUM fields receive their values from * | ||
225 | * the REVISION and MANUFACTURER fields in the LB_REV_ID register. * | ||
226 | * The PART_NUM field's value is the Crosstalk device ID number that * | ||
227 | * Steve Miller assigned to the SHub chip. * | ||
228 | * * | ||
229 | ************************************************************************/ | ||
230 | |||
231 | typedef union ii_wid_u { | ||
232 | uint64_t ii_wid_regval; | ||
233 | struct { | ||
234 | uint64_t w_rsvd_1 : 1; | ||
235 | uint64_t w_mfg_num : 11; | ||
236 | uint64_t w_part_num : 16; | ||
237 | uint64_t w_rev_num : 4; | ||
238 | uint64_t w_rsvd : 32; | ||
239 | } ii_wid_fld_s; | ||
240 | } ii_wid_u_t; | ||
241 | |||
242 | |||
243 | /************************************************************************ | ||
244 | * * | ||
245 | * The fields in this register are set upon detection of an error * | ||
246 | * and cleared by various mechanisms, as explained in the * | ||
247 | * description. * | ||
248 | * * | ||
249 | ************************************************************************/ | ||
250 | |||
251 | typedef union ii_wstat_u { | ||
252 | uint64_t ii_wstat_regval; | ||
253 | struct { | ||
254 | uint64_t w_pending : 4; | ||
255 | uint64_t w_xt_crd_to : 1; | ||
256 | uint64_t w_xt_tail_to : 1; | ||
257 | uint64_t w_rsvd_3 : 3; | ||
258 | uint64_t w_tx_mx_rty : 1; | ||
259 | uint64_t w_rsvd_2 : 6; | ||
260 | uint64_t w_llp_tx_cnt : 8; | ||
261 | uint64_t w_rsvd_1 : 8; | ||
262 | uint64_t w_crazy : 1; | ||
263 | uint64_t w_rsvd : 31; | ||
264 | } ii_wstat_fld_s; | ||
265 | } ii_wstat_u_t; | ||
266 | |||
267 | |||
268 | /************************************************************************ | ||
269 | * * | ||
270 | * Description: This is a read-write enabled register. It controls * | ||
271 | * various aspects of the Crosstalk flow control. * | ||
272 | * * | ||
273 | ************************************************************************/ | ||
274 | |||
275 | typedef union ii_wcr_u { | ||
276 | uint64_t ii_wcr_regval; | ||
277 | struct { | ||
278 | uint64_t w_wid : 4; | ||
279 | uint64_t w_tag : 1; | ||
280 | uint64_t w_rsvd_1 : 8; | ||
281 | uint64_t w_dst_crd : 3; | ||
282 | uint64_t w_f_bad_pkt : 1; | ||
283 | uint64_t w_dir_con : 1; | ||
284 | uint64_t w_e_thresh : 5; | ||
285 | uint64_t w_rsvd : 41; | ||
286 | } ii_wcr_fld_s; | ||
287 | } ii_wcr_u_t; | ||
288 | |||
289 | |||
290 | /************************************************************************ | ||
291 | * * | ||
292 | * Description: This register's value is a bit vector that guards * | ||
293 | * access to local registers within the II as well as to external * | ||
294 | * Crosstalk widgets. Each bit in the register corresponds to a * | ||
295 | * particular region in the system; a region consists of one, two or * | ||
296 | * four nodes (depending on the value of the REGION_SIZE field in the * | ||
297 | * LB_REV_ID register, which is documented in Section 8.3.1.1). The * | ||
298 | * protection provided by this register applies to PIO read * | ||
299 | * operations as well as PIO write operations. The II will perform a * | ||
300 | * PIO read or write request only if the bit for the requestor's * | ||
301 | * region is set; otherwise, the II will not perform the requested * | ||
302 | * operation and will return an error response. When a PIO read or * | ||
303 | * write request targets an external Crosstalk widget, then not only * | ||
304 | * must the bit for the requestor's region be set in the ILAPR, but * | ||
305 | * also the target widget's bit in the IOWA register must be set in * | ||
306 | * order for the II to perform the requested operation; otherwise, * | ||
307 | * the II will return an error response. Hence, the protection * | ||
308 | * provided by the IOWA register supplements the protection provided * | ||
309 | * by the ILAPR for requests that target external Crosstalk widgets. * | ||
310 | * This register itself can be accessed only by the nodes whose * | ||
311 | * region ID bits are enabled in this same register. It can also be * | ||
312 | * accessed through the IAlias space by the local processors. * | ||
313 | * The reset value of this register allows access by all nodes. * | ||
314 | * * | ||
315 | ************************************************************************/ | ||
316 | |||
317 | typedef union ii_ilapr_u { | ||
318 | uint64_t ii_ilapr_regval; | ||
319 | struct { | ||
320 | uint64_t i_region : 64; | ||
321 | } ii_ilapr_fld_s; | ||
322 | } ii_ilapr_u_t; | ||
323 | |||
324 | |||
325 | |||
326 | |||
327 | /************************************************************************ | ||
328 | * * | ||
329 | * Description: A write to this register of the 64-bit value * | ||
330 | * "SGIrules" in ASCII, will cause the bit in the ILAPR register * | ||
331 | * corresponding to the region of the requestor to be set (allow * | ||
332 | * access). A write of any other value will be ignored. Access * | ||
333 | * protection for this register is "SGIrules". * | ||
334 | * This register can also be accessed through the IAlias space. * | ||
335 | * However, this access will not change the access permissions in the * | ||
336 | * ILAPR. * | ||
337 | * * | ||
338 | ************************************************************************/ | ||
339 | |||
340 | typedef union ii_ilapo_u { | ||
341 | uint64_t ii_ilapo_regval; | ||
342 | struct { | ||
343 | uint64_t i_io_ovrride : 64; | ||
344 | } ii_ilapo_fld_s; | ||
345 | } ii_ilapo_u_t; | ||
346 | |||
347 | |||
348 | |||
349 | /************************************************************************ | ||
350 | * * | ||
351 | * This register qualifies all the PIO and Graphics writes launched * | ||
352 | * from the SHUB towards a widget. * | ||
353 | * * | ||
354 | ************************************************************************/ | ||
355 | |||
356 | typedef union ii_iowa_u { | ||
357 | uint64_t ii_iowa_regval; | ||
358 | struct { | ||
359 | uint64_t i_w0_oac : 1; | ||
360 | uint64_t i_rsvd_1 : 7; | ||
361 | uint64_t i_wx_oac : 8; | ||
362 | uint64_t i_rsvd : 48; | ||
363 | } ii_iowa_fld_s; | ||
364 | } ii_iowa_u_t; | ||
365 | |||
366 | |||
367 | /************************************************************************ | ||
368 | * * | ||
369 | * Description: This register qualifies all the requests launched * | ||
370 | * from a widget towards the Shub. This register is intended to be * | ||
371 | * used by software in case of misbehaving widgets. * | ||
372 | * * | ||
373 | * * | ||
374 | ************************************************************************/ | ||
375 | |||
376 | typedef union ii_iiwa_u { | ||
377 | uint64_t ii_iiwa_regval; | ||
378 | struct { | ||
379 | uint64_t i_w0_iac : 1; | ||
380 | uint64_t i_rsvd_1 : 7; | ||
381 | uint64_t i_wx_iac : 8; | ||
382 | uint64_t i_rsvd : 48; | ||
383 | } ii_iiwa_fld_s; | ||
384 | } ii_iiwa_u_t; | ||
385 | |||
386 | |||
387 | |||
388 | /************************************************************************ | ||
389 | * * | ||
390 | * Description: This register qualifies all the operations launched * | ||
391 | * from a widget towards the SHub. It allows individual access * | ||
392 | * control for up to 8 devices per widget. A device refers to * | ||
393 | * individual DMA master hosted by a widget. * | ||
394 | * The bits in each field of this register are cleared by the Shub * | ||
395 | * upon detection of an error which requires the device to be * | ||
396 | * disabled. These fields assume that 0=TNUM=7 (i.e., Bridge-centric * | ||
397 | * Crosstalk). Whether or not a device has access rights to this * | ||
398 | * Shub is determined by an AND of the device enable bit in the * | ||
399 | * appropriate field of this register and the corresponding bit in * | ||
400 | * the Wx_IAC field (for the widget which this device belongs to). * | ||
401 | * The bits in this field are set by writing a 1 to them. Incoming * | ||
402 | * replies from Crosstalk are not subject to this access control * | ||
403 | * mechanism. * | ||
404 | * * | ||
405 | ************************************************************************/ | ||
406 | |||
407 | typedef union ii_iidem_u { | ||
408 | uint64_t ii_iidem_regval; | ||
409 | struct { | ||
410 | uint64_t i_w8_dxs : 8; | ||
411 | uint64_t i_w9_dxs : 8; | ||
412 | uint64_t i_wa_dxs : 8; | ||
413 | uint64_t i_wb_dxs : 8; | ||
414 | uint64_t i_wc_dxs : 8; | ||
415 | uint64_t i_wd_dxs : 8; | ||
416 | uint64_t i_we_dxs : 8; | ||
417 | uint64_t i_wf_dxs : 8; | ||
418 | } ii_iidem_fld_s; | ||
419 | } ii_iidem_u_t; | ||
420 | |||
421 | |||
422 | /************************************************************************ | ||
423 | * * | ||
424 | * This register contains the various programmable fields necessary * | ||
425 | * for controlling and observing the LLP signals. * | ||
426 | * * | ||
427 | ************************************************************************/ | ||
428 | |||
429 | typedef union ii_ilcsr_u { | ||
430 | uint64_t ii_ilcsr_regval; | ||
431 | struct { | ||
432 | uint64_t i_nullto : 6; | ||
433 | uint64_t i_rsvd_4 : 2; | ||
434 | uint64_t i_wrmrst : 1; | ||
435 | uint64_t i_rsvd_3 : 1; | ||
436 | uint64_t i_llp_en : 1; | ||
437 | uint64_t i_bm8 : 1; | ||
438 | uint64_t i_llp_stat : 2; | ||
439 | uint64_t i_remote_power : 1; | ||
440 | uint64_t i_rsvd_2 : 1; | ||
441 | uint64_t i_maxrtry : 10; | ||
442 | uint64_t i_d_avail_sel : 2; | ||
443 | uint64_t i_rsvd_1 : 4; | ||
444 | uint64_t i_maxbrst : 10; | ||
445 | uint64_t i_rsvd : 22; | ||
446 | |||
447 | } ii_ilcsr_fld_s; | ||
448 | } ii_ilcsr_u_t; | ||
449 | |||
450 | |||
451 | /************************************************************************ | ||
452 | * * | ||
453 | * This is simply a status registers that monitors the LLP error * | ||
454 | * rate. * | ||
455 | * * | ||
456 | ************************************************************************/ | ||
457 | |||
458 | typedef union ii_illr_u { | ||
459 | uint64_t ii_illr_regval; | ||
460 | struct { | ||
461 | uint64_t i_sn_cnt : 16; | ||
462 | uint64_t i_cb_cnt : 16; | ||
463 | uint64_t i_rsvd : 32; | ||
464 | } ii_illr_fld_s; | ||
465 | } ii_illr_u_t; | ||
466 | |||
467 | |||
468 | /************************************************************************ | ||
469 | * * | ||
470 | * Description: All II-detected non-BTE error interrupts are * | ||
471 | * specified via this register. * | ||
472 | * NOTE: The PI interrupt register address is hardcoded in the II. If * | ||
473 | * PI_ID==0, then the II sends an interrupt request (Duplonet PWRI * | ||
474 | * packet) to address offset 0x0180_0090 within the local register * | ||
475 | * address space of PI0 on the node specified by the NODE field. If * | ||
476 | * PI_ID==1, then the II sends the interrupt request to address * | ||
477 | * offset 0x01A0_0090 within the local register address space of PI1 * | ||
478 | * on the node specified by the NODE field. * | ||
479 | * * | ||
480 | ************************************************************************/ | ||
481 | |||
482 | typedef union ii_iidsr_u { | ||
483 | uint64_t ii_iidsr_regval; | ||
484 | struct { | ||
485 | uint64_t i_level : 8; | ||
486 | uint64_t i_pi_id : 1; | ||
487 | uint64_t i_node : 11; | ||
488 | uint64_t i_rsvd_3 : 4; | ||
489 | uint64_t i_enable : 1; | ||
490 | uint64_t i_rsvd_2 : 3; | ||
491 | uint64_t i_int_sent : 2; | ||
492 | uint64_t i_rsvd_1 : 2; | ||
493 | uint64_t i_pi0_forward_int : 1; | ||
494 | uint64_t i_pi1_forward_int : 1; | ||
495 | uint64_t i_rsvd : 30; | ||
496 | } ii_iidsr_fld_s; | ||
497 | } ii_iidsr_u_t; | ||
498 | |||
499 | |||
500 | |||
501 | /************************************************************************ | ||
502 | * * | ||
503 | * There are two instances of this register. This register is used * | ||
504 | * for matching up the incoming responses from the graphics widget to * | ||
505 | * the processor that initiated the graphics operation. The * | ||
506 | * write-responses are converted to graphics credits and returned to * | ||
507 | * the processor so that the processor interface can manage the flow * | ||
508 | * control. * | ||
509 | * * | ||
510 | ************************************************************************/ | ||
511 | |||
512 | typedef union ii_igfx0_u { | ||
513 | uint64_t ii_igfx0_regval; | ||
514 | struct { | ||
515 | uint64_t i_w_num : 4; | ||
516 | uint64_t i_pi_id : 1; | ||
517 | uint64_t i_n_num : 12; | ||
518 | uint64_t i_p_num : 1; | ||
519 | uint64_t i_rsvd : 46; | ||
520 | } ii_igfx0_fld_s; | ||
521 | } ii_igfx0_u_t; | ||
522 | |||
523 | |||
524 | /************************************************************************ | ||
525 | * * | ||
526 | * There are two instances of this register. This register is used * | ||
527 | * for matching up the incoming responses from the graphics widget to * | ||
528 | * the processor that initiated the graphics operation. The * | ||
529 | * write-responses are converted to graphics credits and returned to * | ||
530 | * the processor so that the processor interface can manage the flow * | ||
531 | * control. * | ||
532 | * * | ||
533 | ************************************************************************/ | ||
534 | |||
535 | typedef union ii_igfx1_u { | ||
536 | uint64_t ii_igfx1_regval; | ||
537 | struct { | ||
538 | uint64_t i_w_num : 4; | ||
539 | uint64_t i_pi_id : 1; | ||
540 | uint64_t i_n_num : 12; | ||
541 | uint64_t i_p_num : 1; | ||
542 | uint64_t i_rsvd : 46; | ||
543 | } ii_igfx1_fld_s; | ||
544 | } ii_igfx1_u_t; | ||
545 | |||
546 | |||
547 | /************************************************************************ | ||
548 | * * | ||
549 | * There are two instances of this registers. These registers are * | ||
550 | * used as scratch registers for software use. * | ||
551 | * * | ||
552 | ************************************************************************/ | ||
553 | |||
554 | typedef union ii_iscr0_u { | ||
555 | uint64_t ii_iscr0_regval; | ||
556 | struct { | ||
557 | uint64_t i_scratch : 64; | ||
558 | } ii_iscr0_fld_s; | ||
559 | } ii_iscr0_u_t; | ||
560 | |||
561 | |||
562 | |||
563 | /************************************************************************ | ||
564 | * * | ||
565 | * There are two instances of this registers. These registers are * | ||
566 | * used as scratch registers for software use. * | ||
567 | * * | ||
568 | ************************************************************************/ | ||
569 | |||
570 | typedef union ii_iscr1_u { | ||
571 | uint64_t ii_iscr1_regval; | ||
572 | struct { | ||
573 | uint64_t i_scratch : 64; | ||
574 | } ii_iscr1_fld_s; | ||
575 | } ii_iscr1_u_t; | ||
576 | |||
577 | |||
578 | /************************************************************************ | ||
579 | * * | ||
580 | * Description: There are seven instances of translation table entry * | ||
581 | * registers. Each register maps a Shub Big Window to a 48-bit * | ||
582 | * address on Crosstalk. * | ||
583 | * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window * | ||
584 | * number) are used to select one of these 7 registers. The Widget * | ||
585 | * number field is then derived from the W_NUM field for synthesizing * | ||
586 | * a Crosstalk packet. The 5 bits of OFFSET are concatenated with * | ||
587 | * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34] * | ||
588 | * are padded with zeros. Although the maximum Crosstalk space * | ||
589 | * addressable by the SHub is thus the lower 16 GBytes per widget * | ||
590 | * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this * | ||
591 | * space can be accessed. * | ||
592 | * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big * | ||
593 | * Window number) are used to select one of these 7 registers. The * | ||
594 | * Widget number field is then derived from the W_NUM field for * | ||
595 | * synthesizing a Crosstalk packet. The 5 bits of OFFSET are * | ||
596 | * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP * | ||
597 | * field is used as Crosstalk[47], and remainder of the Crosstalk * | ||
598 | * address bits (Crosstalk[46:34]) are always zero. While the maximum * | ||
599 | * Crosstalk space addressable by the Shub is thus the lower * | ||
600 | * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB> * | ||
601 | * of this space can be accessed. * | ||
602 | * * | ||
603 | ************************************************************************/ | ||
604 | |||
605 | typedef union ii_itte1_u { | ||
606 | uint64_t ii_itte1_regval; | ||
607 | struct { | ||
608 | uint64_t i_offset : 5; | ||
609 | uint64_t i_rsvd_1 : 3; | ||
610 | uint64_t i_w_num : 4; | ||
611 | uint64_t i_iosp : 1; | ||
612 | uint64_t i_rsvd : 51; | ||
613 | } ii_itte1_fld_s; | ||
614 | } ii_itte1_u_t; | ||
615 | |||
616 | |||
617 | /************************************************************************ | ||
618 | * * | ||
619 | * Description: There are seven instances of translation table entry * | ||
620 | * registers. Each register maps a Shub Big Window to a 48-bit * | ||
621 | * address on Crosstalk. * | ||
622 | * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window * | ||
623 | * number) are used to select one of these 7 registers. The Widget * | ||
624 | * number field is then derived from the W_NUM field for synthesizing * | ||
625 | * a Crosstalk packet. The 5 bits of OFFSET are concatenated with * | ||
626 | * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34] * | ||
627 | * are padded with zeros. Although the maximum Crosstalk space * | ||
628 | * addressable by the Shub is thus the lower 16 GBytes per widget * | ||
629 | * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this * | ||
630 | * space can be accessed. * | ||
631 | * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big * | ||
632 | * Window number) are used to select one of these 7 registers. The * | ||
633 | * Widget number field is then derived from the W_NUM field for * | ||
634 | * synthesizing a Crosstalk packet. The 5 bits of OFFSET are * | ||
635 | * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP * | ||
636 | * field is used as Crosstalk[47], and remainder of the Crosstalk * | ||
637 | * address bits (Crosstalk[46:34]) are always zero. While the maximum * | ||
638 | * Crosstalk space addressable by the Shub is thus the lower * | ||
639 | * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB> * | ||
640 | * of this space can be accessed. * | ||
641 | * * | ||
642 | ************************************************************************/ | ||
643 | |||
644 | typedef union ii_itte2_u { | ||
645 | uint64_t ii_itte2_regval; | ||
646 | struct { | ||
647 | uint64_t i_offset : 5; | ||
648 | uint64_t i_rsvd_1 : 3; | ||
649 | uint64_t i_w_num : 4; | ||
650 | uint64_t i_iosp : 1; | ||
651 | uint64_t i_rsvd : 51; | ||
652 | } ii_itte2_fld_s; | ||
653 | } ii_itte2_u_t; | ||
654 | |||
655 | |||
656 | /************************************************************************ | ||
657 | * * | ||
658 | * Description: There are seven instances of translation table entry * | ||
659 | * registers. Each register maps a Shub Big Window to a 48-bit * | ||
660 | * address on Crosstalk. * | ||
661 | * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window * | ||
662 | * number) are used to select one of these 7 registers. The Widget * | ||
663 | * number field is then derived from the W_NUM field for synthesizing * | ||
664 | * a Crosstalk packet. The 5 bits of OFFSET are concatenated with * | ||
665 | * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34] * | ||
666 | * are padded with zeros. Although the maximum Crosstalk space * | ||
667 | * addressable by the Shub is thus the lower 16 GBytes per widget * | ||
668 | * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this * | ||
669 | * space can be accessed. * | ||
670 | * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big * | ||
671 | * Window number) are used to select one of these 7 registers. The * | ||
672 | * Widget number field is then derived from the W_NUM field for * | ||
673 | * synthesizing a Crosstalk packet. The 5 bits of OFFSET are * | ||
674 | * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP * | ||
675 | * field is used as Crosstalk[47], and remainder of the Crosstalk * | ||
676 | * address bits (Crosstalk[46:34]) are always zero. While the maximum * | ||
677 | * Crosstalk space addressable by the SHub is thus the lower * | ||
678 | * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB> * | ||
679 | * of this space can be accessed. * | ||
680 | * * | ||
681 | ************************************************************************/ | ||
682 | |||
683 | typedef union ii_itte3_u { | ||
684 | uint64_t ii_itte3_regval; | ||
685 | struct { | ||
686 | uint64_t i_offset : 5; | ||
687 | uint64_t i_rsvd_1 : 3; | ||
688 | uint64_t i_w_num : 4; | ||
689 | uint64_t i_iosp : 1; | ||
690 | uint64_t i_rsvd : 51; | ||
691 | } ii_itte3_fld_s; | ||
692 | } ii_itte3_u_t; | ||
693 | |||
694 | |||
695 | /************************************************************************ | ||
696 | * * | ||
697 | * Description: There are seven instances of translation table entry * | ||
698 | * registers. Each register maps a SHub Big Window to a 48-bit * | ||
699 | * address on Crosstalk. * | ||
700 | * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window * | ||
701 | * number) are used to select one of these 7 registers. The Widget * | ||
702 | * number field is then derived from the W_NUM field for synthesizing * | ||
703 | * a Crosstalk packet. The 5 bits of OFFSET are concatenated with * | ||
704 | * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34] * | ||
705 | * are padded with zeros. Although the maximum Crosstalk space * | ||
706 | * addressable by the SHub is thus the lower 16 GBytes per widget * | ||
707 | * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this * | ||
708 | * space can be accessed. * | ||
709 | * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big * | ||
710 | * Window number) are used to select one of these 7 registers. The * | ||
711 | * Widget number field is then derived from the W_NUM field for * | ||
712 | * synthesizing a Crosstalk packet. The 5 bits of OFFSET are * | ||
713 | * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP * | ||
714 | * field is used as Crosstalk[47], and remainder of the Crosstalk * | ||
715 | * address bits (Crosstalk[46:34]) are always zero. While the maximum * | ||
716 | * Crosstalk space addressable by the SHub is thus the lower * | ||
717 | * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB> * | ||
718 | * of this space can be accessed. * | ||
719 | * * | ||
720 | ************************************************************************/ | ||
721 | |||
722 | typedef union ii_itte4_u { | ||
723 | uint64_t ii_itte4_regval; | ||
724 | struct { | ||
725 | uint64_t i_offset : 5; | ||
726 | uint64_t i_rsvd_1 : 3; | ||
727 | uint64_t i_w_num : 4; | ||
728 | uint64_t i_iosp : 1; | ||
729 | uint64_t i_rsvd : 51; | ||
730 | } ii_itte4_fld_s; | ||
731 | } ii_itte4_u_t; | ||
732 | |||
733 | |||
734 | /************************************************************************ | ||
735 | * * | ||
736 | * Description: There are seven instances of translation table entry * | ||
737 | * registers. Each register maps a SHub Big Window to a 48-bit * | ||
738 | * address on Crosstalk. * | ||
739 | * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window * | ||
740 | * number) are used to select one of these 7 registers. The Widget * | ||
741 | * number field is then derived from the W_NUM field for synthesizing * | ||
742 | * a Crosstalk packet. The 5 bits of OFFSET are concatenated with * | ||
743 | * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34] * | ||
744 | * are padded with zeros. Although the maximum Crosstalk space * | ||
745 | * addressable by the Shub is thus the lower 16 GBytes per widget * | ||
746 | * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this * | ||
747 | * space can be accessed. * | ||
748 | * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big * | ||
749 | * Window number) are used to select one of these 7 registers. The * | ||
750 | * Widget number field is then derived from the W_NUM field for * | ||
751 | * synthesizing a Crosstalk packet. The 5 bits of OFFSET are * | ||
752 | * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP * | ||
753 | * field is used as Crosstalk[47], and remainder of the Crosstalk * | ||
754 | * address bits (Crosstalk[46:34]) are always zero. While the maximum * | ||
755 | * Crosstalk space addressable by the Shub is thus the lower * | ||
756 | * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB> * | ||
757 | * of this space can be accessed. * | ||
758 | * * | ||
759 | ************************************************************************/ | ||
760 | |||
761 | typedef union ii_itte5_u { | ||
762 | uint64_t ii_itte5_regval; | ||
763 | struct { | ||
764 | uint64_t i_offset : 5; | ||
765 | uint64_t i_rsvd_1 : 3; | ||
766 | uint64_t i_w_num : 4; | ||
767 | uint64_t i_iosp : 1; | ||
768 | uint64_t i_rsvd : 51; | ||
769 | } ii_itte5_fld_s; | ||
770 | } ii_itte5_u_t; | ||
771 | |||
772 | |||
773 | /************************************************************************ | ||
774 | * * | ||
775 | * Description: There are seven instances of translation table entry * | ||
776 | * registers. Each register maps a Shub Big Window to a 48-bit * | ||
777 | * address on Crosstalk. * | ||
778 | * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window * | ||
779 | * number) are used to select one of these 7 registers. The Widget * | ||
780 | * number field is then derived from the W_NUM field for synthesizing * | ||
781 | * a Crosstalk packet. The 5 bits of OFFSET are concatenated with * | ||
782 | * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34] * | ||
783 | * are padded with zeros. Although the maximum Crosstalk space * | ||
784 | * addressable by the Shub is thus the lower 16 GBytes per widget * | ||
785 | * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this * | ||
786 | * space can be accessed. * | ||
787 | * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big * | ||
788 | * Window number) are used to select one of these 7 registers. The * | ||
789 | * Widget number field is then derived from the W_NUM field for * | ||
790 | * synthesizing a Crosstalk packet. The 5 bits of OFFSET are * | ||
791 | * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP * | ||
792 | * field is used as Crosstalk[47], and remainder of the Crosstalk * | ||
793 | * address bits (Crosstalk[46:34]) are always zero. While the maximum * | ||
794 | * Crosstalk space addressable by the Shub is thus the lower * | ||
795 | * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB> * | ||
796 | * of this space can be accessed. * | ||
797 | * * | ||
798 | ************************************************************************/ | ||
799 | |||
800 | typedef union ii_itte6_u { | ||
801 | uint64_t ii_itte6_regval; | ||
802 | struct { | ||
803 | uint64_t i_offset : 5; | ||
804 | uint64_t i_rsvd_1 : 3; | ||
805 | uint64_t i_w_num : 4; | ||
806 | uint64_t i_iosp : 1; | ||
807 | uint64_t i_rsvd : 51; | ||
808 | } ii_itte6_fld_s; | ||
809 | } ii_itte6_u_t; | ||
810 | |||
811 | |||
812 | /************************************************************************ | ||
813 | * * | ||
814 | * Description: There are seven instances of translation table entry * | ||
815 | * registers. Each register maps a Shub Big Window to a 48-bit * | ||
816 | * address on Crosstalk. * | ||
817 | * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window * | ||
818 | * number) are used to select one of these 7 registers. The Widget * | ||
819 | * number field is then derived from the W_NUM field for synthesizing * | ||
820 | * a Crosstalk packet. The 5 bits of OFFSET are concatenated with * | ||
821 | * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34] * | ||
822 | * are padded with zeros. Although the maximum Crosstalk space * | ||
823 | * addressable by the Shub is thus the lower 16 GBytes per widget * | ||
824 | * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this * | ||
825 | * space can be accessed. * | ||
826 | * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big * | ||
827 | * Window number) are used to select one of these 7 registers. The * | ||
828 | * Widget number field is then derived from the W_NUM field for * | ||
829 | * synthesizing a Crosstalk packet. The 5 bits of OFFSET are * | ||
830 | * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP * | ||
831 | * field is used as Crosstalk[47], and remainder of the Crosstalk * | ||
832 | * address bits (Crosstalk[46:34]) are always zero. While the maximum * | ||
833 | * Crosstalk space addressable by the SHub is thus the lower * | ||
834 | * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB> * | ||
835 | * of this space can be accessed. * | ||
836 | * * | ||
837 | ************************************************************************/ | ||
838 | |||
839 | typedef union ii_itte7_u { | ||
840 | uint64_t ii_itte7_regval; | ||
841 | struct { | ||
842 | uint64_t i_offset : 5; | ||
843 | uint64_t i_rsvd_1 : 3; | ||
844 | uint64_t i_w_num : 4; | ||
845 | uint64_t i_iosp : 1; | ||
846 | uint64_t i_rsvd : 51; | ||
847 | } ii_itte7_fld_s; | ||
848 | } ii_itte7_u_t; | ||
849 | |||
850 | |||
851 | /************************************************************************ | ||
852 | * * | ||
853 | * Description: There are 9 instances of this register, one per * | ||
854 | * actual widget in this implementation of SHub and Crossbow. * | ||
855 | * Note: Crossbow only has ports for Widgets 8 through F, widget 0 * | ||
856 | * refers to Crossbow's internal space. * | ||
857 | * This register contains the state elements per widget that are * | ||
858 | * necessary to manage the PIO flow control on Crosstalk and on the * | ||
859 | * Router Network. See the PIO Flow Control chapter for a complete * | ||
860 | * description of this register * | ||
861 | * The SPUR_WR bit requires some explanation. When this register is * | ||
862 | * written, the new value of the C field is captured in an internal * | ||
863 | * register so the hardware can remember what the programmer wrote * | ||
864 | * into the credit counter. The SPUR_WR bit sets whenever the C field * | ||
865 | * increments above this stored value, which indicates that there * | ||
866 | * have been more responses received than requests sent. The SPUR_WR * | ||
867 | * bit cannot be cleared until a value is written to the IPRBx * | ||
868 | * register; the write will correct the C field and capture its new * | ||
869 | * value in the internal register. Even if IECLR[E_PRB_x] is set, the * | ||
870 | * SPUR_WR bit will persist if IPRBx hasn't yet been written. * | ||
871 | * . * | ||
872 | * * | ||
873 | ************************************************************************/ | ||
874 | |||
875 | typedef union ii_iprb0_u { | ||
876 | uint64_t ii_iprb0_regval; | ||
877 | struct { | ||
878 | uint64_t i_c : 8; | ||
879 | uint64_t i_na : 14; | ||
880 | uint64_t i_rsvd_2 : 2; | ||
881 | uint64_t i_nb : 14; | ||
882 | uint64_t i_rsvd_1 : 2; | ||
883 | uint64_t i_m : 2; | ||
884 | uint64_t i_f : 1; | ||
885 | uint64_t i_of_cnt : 5; | ||
886 | uint64_t i_error : 1; | ||
887 | uint64_t i_rd_to : 1; | ||
888 | uint64_t i_spur_wr : 1; | ||
889 | uint64_t i_spur_rd : 1; | ||
890 | uint64_t i_rsvd : 11; | ||
891 | uint64_t i_mult_err : 1; | ||
892 | } ii_iprb0_fld_s; | ||
893 | } ii_iprb0_u_t; | ||
894 | |||
895 | |||
896 | /************************************************************************ | ||
897 | * * | ||
898 | * Description: There are 9 instances of this register, one per * | ||
899 | * actual widget in this implementation of SHub and Crossbow. * | ||
900 | * Note: Crossbow only has ports for Widgets 8 through F, widget 0 * | ||
901 | * refers to Crossbow's internal space. * | ||
902 | * This register contains the state elements per widget that are * | ||
903 | * necessary to manage the PIO flow control on Crosstalk and on the * | ||
904 | * Router Network. See the PIO Flow Control chapter for a complete * | ||
905 | * description of this register * | ||
906 | * The SPUR_WR bit requires some explanation. When this register is * | ||
907 | * written, the new value of the C field is captured in an internal * | ||
908 | * register so the hardware can remember what the programmer wrote * | ||
909 | * into the credit counter. The SPUR_WR bit sets whenever the C field * | ||
910 | * increments above this stored value, which indicates that there * | ||
911 | * have been more responses received than requests sent. The SPUR_WR * | ||
912 | * bit cannot be cleared until a value is written to the IPRBx * | ||
913 | * register; the write will correct the C field and capture its new * | ||
914 | * value in the internal register. Even if IECLR[E_PRB_x] is set, the * | ||
915 | * SPUR_WR bit will persist if IPRBx hasn't yet been written. * | ||
916 | * . * | ||
917 | * * | ||
918 | ************************************************************************/ | ||
919 | |||
920 | typedef union ii_iprb8_u { | ||
921 | uint64_t ii_iprb8_regval; | ||
922 | struct { | ||
923 | uint64_t i_c : 8; | ||
924 | uint64_t i_na : 14; | ||
925 | uint64_t i_rsvd_2 : 2; | ||
926 | uint64_t i_nb : 14; | ||
927 | uint64_t i_rsvd_1 : 2; | ||
928 | uint64_t i_m : 2; | ||
929 | uint64_t i_f : 1; | ||
930 | uint64_t i_of_cnt : 5; | ||
931 | uint64_t i_error : 1; | ||
932 | uint64_t i_rd_to : 1; | ||
933 | uint64_t i_spur_wr : 1; | ||
934 | uint64_t i_spur_rd : 1; | ||
935 | uint64_t i_rsvd : 11; | ||
936 | uint64_t i_mult_err : 1; | ||
937 | } ii_iprb8_fld_s; | ||
938 | } ii_iprb8_u_t; | ||
939 | |||
940 | |||
941 | /************************************************************************ | ||
942 | * * | ||
943 | * Description: There are 9 instances of this register, one per * | ||
944 | * actual widget in this implementation of SHub and Crossbow. * | ||
945 | * Note: Crossbow only has ports for Widgets 8 through F, widget 0 * | ||
946 | * refers to Crossbow's internal space. * | ||
947 | * This register contains the state elements per widget that are * | ||
948 | * necessary to manage the PIO flow control on Crosstalk and on the * | ||
949 | * Router Network. See the PIO Flow Control chapter for a complete * | ||
950 | * description of this register * | ||
951 | * The SPUR_WR bit requires some explanation. When this register is * | ||
952 | * written, the new value of the C field is captured in an internal * | ||
953 | * register so the hardware can remember what the programmer wrote * | ||
954 | * into the credit counter. The SPUR_WR bit sets whenever the C field * | ||
955 | * increments above this stored value, which indicates that there * | ||
956 | * have been more responses received than requests sent. The SPUR_WR * | ||
957 | * bit cannot be cleared until a value is written to the IPRBx * | ||
958 | * register; the write will correct the C field and capture its new * | ||
959 | * value in the internal register. Even if IECLR[E_PRB_x] is set, the * | ||
960 | * SPUR_WR bit will persist if IPRBx hasn't yet been written. * | ||
961 | * . * | ||
962 | * * | ||
963 | ************************************************************************/ | ||
964 | |||
965 | typedef union ii_iprb9_u { | ||
966 | uint64_t ii_iprb9_regval; | ||
967 | struct { | ||
968 | uint64_t i_c : 8; | ||
969 | uint64_t i_na : 14; | ||
970 | uint64_t i_rsvd_2 : 2; | ||
971 | uint64_t i_nb : 14; | ||
972 | uint64_t i_rsvd_1 : 2; | ||
973 | uint64_t i_m : 2; | ||
974 | uint64_t i_f : 1; | ||
975 | uint64_t i_of_cnt : 5; | ||
976 | uint64_t i_error : 1; | ||
977 | uint64_t i_rd_to : 1; | ||
978 | uint64_t i_spur_wr : 1; | ||
979 | uint64_t i_spur_rd : 1; | ||
980 | uint64_t i_rsvd : 11; | ||
981 | uint64_t i_mult_err : 1; | ||
982 | } ii_iprb9_fld_s; | ||
983 | } ii_iprb9_u_t; | ||
984 | |||
985 | |||
986 | /************************************************************************ | ||
987 | * * | ||
988 | * Description: There are 9 instances of this register, one per * | ||
989 | * actual widget in this implementation of SHub and Crossbow. * | ||
990 | * Note: Crossbow only has ports for Widgets 8 through F, widget 0 * | ||
991 | * refers to Crossbow's internal space. * | ||
992 | * This register contains the state elements per widget that are * | ||
993 | * necessary to manage the PIO flow control on Crosstalk and on the * | ||
994 | * Router Network. See the PIO Flow Control chapter for a complete * | ||
995 | * description of this register * | ||
996 | * The SPUR_WR bit requires some explanation. When this register is * | ||
997 | * written, the new value of the C field is captured in an internal * | ||
998 | * register so the hardware can remember what the programmer wrote * | ||
999 | * into the credit counter. The SPUR_WR bit sets whenever the C field * | ||
1000 | * increments above this stored value, which indicates that there * | ||
1001 | * have been more responses received than requests sent. The SPUR_WR * | ||
1002 | * bit cannot be cleared until a value is written to the IPRBx * | ||
1003 | * register; the write will correct the C field and capture its new * | ||
1004 | * value in the internal register. Even if IECLR[E_PRB_x] is set, the * | ||
1005 | * SPUR_WR bit will persist if IPRBx hasn't yet been written. * | ||
1006 | * * | ||
1007 | * * | ||
1008 | ************************************************************************/ | ||
1009 | |||
1010 | typedef union ii_iprba_u { | ||
1011 | uint64_t ii_iprba_regval; | ||
1012 | struct { | ||
1013 | uint64_t i_c : 8; | ||
1014 | uint64_t i_na : 14; | ||
1015 | uint64_t i_rsvd_2 : 2; | ||
1016 | uint64_t i_nb : 14; | ||
1017 | uint64_t i_rsvd_1 : 2; | ||
1018 | uint64_t i_m : 2; | ||
1019 | uint64_t i_f : 1; | ||
1020 | uint64_t i_of_cnt : 5; | ||
1021 | uint64_t i_error : 1; | ||
1022 | uint64_t i_rd_to : 1; | ||
1023 | uint64_t i_spur_wr : 1; | ||
1024 | uint64_t i_spur_rd : 1; | ||
1025 | uint64_t i_rsvd : 11; | ||
1026 | uint64_t i_mult_err : 1; | ||
1027 | } ii_iprba_fld_s; | ||
1028 | } ii_iprba_u_t; | ||
1029 | |||
1030 | |||
1031 | /************************************************************************ | ||
1032 | * * | ||
1033 | * Description: There are 9 instances of this register, one per * | ||
1034 | * actual widget in this implementation of SHub and Crossbow. * | ||
1035 | * Note: Crossbow only has ports for Widgets 8 through F, widget 0 * | ||
1036 | * refers to Crossbow's internal space. * | ||
1037 | * This register contains the state elements per widget that are * | ||
1038 | * necessary to manage the PIO flow control on Crosstalk and on the * | ||
1039 | * Router Network. See the PIO Flow Control chapter for a complete * | ||
1040 | * description of this register * | ||
1041 | * The SPUR_WR bit requires some explanation. When this register is * | ||
1042 | * written, the new value of the C field is captured in an internal * | ||
1043 | * register so the hardware can remember what the programmer wrote * | ||
1044 | * into the credit counter. The SPUR_WR bit sets whenever the C field * | ||
1045 | * increments above this stored value, which indicates that there * | ||
1046 | * have been more responses received than requests sent. The SPUR_WR * | ||
1047 | * bit cannot be cleared until a value is written to the IPRBx * | ||
1048 | * register; the write will correct the C field and capture its new * | ||
1049 | * value in the internal register. Even if IECLR[E_PRB_x] is set, the * | ||
1050 | * SPUR_WR bit will persist if IPRBx hasn't yet been written. * | ||
1051 | * . * | ||
1052 | * * | ||
1053 | ************************************************************************/ | ||
1054 | |||
1055 | typedef union ii_iprbb_u { | ||
1056 | uint64_t ii_iprbb_regval; | ||
1057 | struct { | ||
1058 | uint64_t i_c : 8; | ||
1059 | uint64_t i_na : 14; | ||
1060 | uint64_t i_rsvd_2 : 2; | ||
1061 | uint64_t i_nb : 14; | ||
1062 | uint64_t i_rsvd_1 : 2; | ||
1063 | uint64_t i_m : 2; | ||
1064 | uint64_t i_f : 1; | ||
1065 | uint64_t i_of_cnt : 5; | ||
1066 | uint64_t i_error : 1; | ||
1067 | uint64_t i_rd_to : 1; | ||
1068 | uint64_t i_spur_wr : 1; | ||
1069 | uint64_t i_spur_rd : 1; | ||
1070 | uint64_t i_rsvd : 11; | ||
1071 | uint64_t i_mult_err : 1; | ||
1072 | } ii_iprbb_fld_s; | ||
1073 | } ii_iprbb_u_t; | ||
1074 | |||
1075 | |||
1076 | /************************************************************************ | ||
1077 | * * | ||
1078 | * Description: There are 9 instances of this register, one per * | ||
1079 | * actual widget in this implementation of SHub and Crossbow. * | ||
1080 | * Note: Crossbow only has ports for Widgets 8 through F, widget 0 * | ||
1081 | * refers to Crossbow's internal space. * | ||
1082 | * This register contains the state elements per widget that are * | ||
1083 | * necessary to manage the PIO flow control on Crosstalk and on the * | ||
1084 | * Router Network. See the PIO Flow Control chapter for a complete * | ||
1085 | * description of this register * | ||
1086 | * The SPUR_WR bit requires some explanation. When this register is * | ||
1087 | * written, the new value of the C field is captured in an internal * | ||
1088 | * register so the hardware can remember what the programmer wrote * | ||
1089 | * into the credit counter. The SPUR_WR bit sets whenever the C field * | ||
1090 | * increments above this stored value, which indicates that there * | ||
1091 | * have been more responses received than requests sent. The SPUR_WR * | ||
1092 | * bit cannot be cleared until a value is written to the IPRBx * | ||
1093 | * register; the write will correct the C field and capture its new * | ||
1094 | * value in the internal register. Even if IECLR[E_PRB_x] is set, the * | ||
1095 | * SPUR_WR bit will persist if IPRBx hasn't yet been written. * | ||
1096 | * . * | ||
1097 | * * | ||
1098 | ************************************************************************/ | ||
1099 | |||
1100 | typedef union ii_iprbc_u { | ||
1101 | uint64_t ii_iprbc_regval; | ||
1102 | struct { | ||
1103 | uint64_t i_c : 8; | ||
1104 | uint64_t i_na : 14; | ||
1105 | uint64_t i_rsvd_2 : 2; | ||
1106 | uint64_t i_nb : 14; | ||
1107 | uint64_t i_rsvd_1 : 2; | ||
1108 | uint64_t i_m : 2; | ||
1109 | uint64_t i_f : 1; | ||
1110 | uint64_t i_of_cnt : 5; | ||
1111 | uint64_t i_error : 1; | ||
1112 | uint64_t i_rd_to : 1; | ||
1113 | uint64_t i_spur_wr : 1; | ||
1114 | uint64_t i_spur_rd : 1; | ||
1115 | uint64_t i_rsvd : 11; | ||
1116 | uint64_t i_mult_err : 1; | ||
1117 | } ii_iprbc_fld_s; | ||
1118 | } ii_iprbc_u_t; | ||
1119 | |||
1120 | |||
1121 | /************************************************************************ | ||
1122 | * * | ||
1123 | * Description: There are 9 instances of this register, one per * | ||
1124 | * actual widget in this implementation of SHub and Crossbow. * | ||
1125 | * Note: Crossbow only has ports for Widgets 8 through F, widget 0 * | ||
1126 | * refers to Crossbow's internal space. * | ||
1127 | * This register contains the state elements per widget that are * | ||
1128 | * necessary to manage the PIO flow control on Crosstalk and on the * | ||
1129 | * Router Network. See the PIO Flow Control chapter for a complete * | ||
1130 | * description of this register * | ||
1131 | * The SPUR_WR bit requires some explanation. When this register is * | ||
1132 | * written, the new value of the C field is captured in an internal * | ||
1133 | * register so the hardware can remember what the programmer wrote * | ||
1134 | * into the credit counter. The SPUR_WR bit sets whenever the C field * | ||
1135 | * increments above this stored value, which indicates that there * | ||
1136 | * have been more responses received than requests sent. The SPUR_WR * | ||
1137 | * bit cannot be cleared until a value is written to the IPRBx * | ||
1138 | * register; the write will correct the C field and capture its new * | ||
1139 | * value in the internal register. Even if IECLR[E_PRB_x] is set, the * | ||
1140 | * SPUR_WR bit will persist if IPRBx hasn't yet been written. * | ||
1141 | * . * | ||
1142 | * * | ||
1143 | ************************************************************************/ | ||
1144 | |||
1145 | typedef union ii_iprbd_u { | ||
1146 | uint64_t ii_iprbd_regval; | ||
1147 | struct { | ||
1148 | uint64_t i_c : 8; | ||
1149 | uint64_t i_na : 14; | ||
1150 | uint64_t i_rsvd_2 : 2; | ||
1151 | uint64_t i_nb : 14; | ||
1152 | uint64_t i_rsvd_1 : 2; | ||
1153 | uint64_t i_m : 2; | ||
1154 | uint64_t i_f : 1; | ||
1155 | uint64_t i_of_cnt : 5; | ||
1156 | uint64_t i_error : 1; | ||
1157 | uint64_t i_rd_to : 1; | ||
1158 | uint64_t i_spur_wr : 1; | ||
1159 | uint64_t i_spur_rd : 1; | ||
1160 | uint64_t i_rsvd : 11; | ||
1161 | uint64_t i_mult_err : 1; | ||
1162 | } ii_iprbd_fld_s; | ||
1163 | } ii_iprbd_u_t; | ||
1164 | |||
1165 | |||
1166 | /************************************************************************ | ||
1167 | * * | ||
1168 | * Description: There are 9 instances of this register, one per * | ||
1169 | * actual widget in this implementation of SHub and Crossbow. * | ||
1170 | * Note: Crossbow only has ports for Widgets 8 through F, widget 0 * | ||
1171 | * refers to Crossbow's internal space. * | ||
1172 | * This register contains the state elements per widget that are * | ||
1173 | * necessary to manage the PIO flow control on Crosstalk and on the * | ||
1174 | * Router Network. See the PIO Flow Control chapter for a complete * | ||
1175 | * description of this register * | ||
1176 | * The SPUR_WR bit requires some explanation. When this register is * | ||
1177 | * written, the new value of the C field is captured in an internal * | ||
1178 | * register so the hardware can remember what the programmer wrote * | ||
1179 | * into the credit counter. The SPUR_WR bit sets whenever the C field * | ||
1180 | * increments above this stored value, which indicates that there * | ||
1181 | * have been more responses received than requests sent. The SPUR_WR * | ||
1182 | * bit cannot be cleared until a value is written to the IPRBx * | ||
1183 | * register; the write will correct the C field and capture its new * | ||
1184 | * value in the internal register. Even if IECLR[E_PRB_x] is set, the * | ||
1185 | * SPUR_WR bit will persist if IPRBx hasn't yet been written. * | ||
1186 | * . * | ||
1187 | * * | ||
1188 | ************************************************************************/ | ||
1189 | |||
1190 | typedef union ii_iprbe_u { | ||
1191 | uint64_t ii_iprbe_regval; | ||
1192 | struct { | ||
1193 | uint64_t i_c : 8; | ||
1194 | uint64_t i_na : 14; | ||
1195 | uint64_t i_rsvd_2 : 2; | ||
1196 | uint64_t i_nb : 14; | ||
1197 | uint64_t i_rsvd_1 : 2; | ||
1198 | uint64_t i_m : 2; | ||
1199 | uint64_t i_f : 1; | ||
1200 | uint64_t i_of_cnt : 5; | ||
1201 | uint64_t i_error : 1; | ||
1202 | uint64_t i_rd_to : 1; | ||
1203 | uint64_t i_spur_wr : 1; | ||
1204 | uint64_t i_spur_rd : 1; | ||
1205 | uint64_t i_rsvd : 11; | ||
1206 | uint64_t i_mult_err : 1; | ||
1207 | } ii_iprbe_fld_s; | ||
1208 | } ii_iprbe_u_t; | ||
1209 | |||
1210 | |||
1211 | /************************************************************************ | ||
1212 | * * | ||
1213 | * Description: There are 9 instances of this register, one per * | ||
1214 | * actual widget in this implementation of Shub and Crossbow. * | ||
1215 | * Note: Crossbow only has ports for Widgets 8 through F, widget 0 * | ||
1216 | * refers to Crossbow's internal space. * | ||
1217 | * This register contains the state elements per widget that are * | ||
1218 | * necessary to manage the PIO flow control on Crosstalk and on the * | ||
1219 | * Router Network. See the PIO Flow Control chapter for a complete * | ||
1220 | * description of this register * | ||
1221 | * The SPUR_WR bit requires some explanation. When this register is * | ||
1222 | * written, the new value of the C field is captured in an internal * | ||
1223 | * register so the hardware can remember what the programmer wrote * | ||
1224 | * into the credit counter. The SPUR_WR bit sets whenever the C field * | ||
1225 | * increments above this stored value, which indicates that there * | ||
1226 | * have been more responses received than requests sent. The SPUR_WR * | ||
1227 | * bit cannot be cleared until a value is written to the IPRBx * | ||
1228 | * register; the write will correct the C field and capture its new * | ||
1229 | * value in the internal register. Even if IECLR[E_PRB_x] is set, the * | ||
1230 | * SPUR_WR bit will persist if IPRBx hasn't yet been written. * | ||
1231 | * . * | ||
1232 | * * | ||
1233 | ************************************************************************/ | ||
1234 | |||
1235 | typedef union ii_iprbf_u { | ||
1236 | uint64_t ii_iprbf_regval; | ||
1237 | struct { | ||
1238 | uint64_t i_c : 8; | ||
1239 | uint64_t i_na : 14; | ||
1240 | uint64_t i_rsvd_2 : 2; | ||
1241 | uint64_t i_nb : 14; | ||
1242 | uint64_t i_rsvd_1 : 2; | ||
1243 | uint64_t i_m : 2; | ||
1244 | uint64_t i_f : 1; | ||
1245 | uint64_t i_of_cnt : 5; | ||
1246 | uint64_t i_error : 1; | ||
1247 | uint64_t i_rd_to : 1; | ||
1248 | uint64_t i_spur_wr : 1; | ||
1249 | uint64_t i_spur_rd : 1; | ||
1250 | uint64_t i_rsvd : 11; | ||
1251 | uint64_t i_mult_err : 1; | ||
1252 | } ii_iprbe_fld_s; | ||
1253 | } ii_iprbf_u_t; | ||
1254 | |||
1255 | |||
1256 | /************************************************************************ | ||
1257 | * * | ||
1258 | * This register specifies the timeout value to use for monitoring * | ||
1259 | * Crosstalk credits which are used outbound to Crosstalk. An * | ||
1260 | * internal counter called the Crosstalk Credit Timeout Counter * | ||
1261 | * increments every 128 II clocks. The counter starts counting * | ||
1262 | * anytime the credit count drops below a threshold, and resets to * | ||
1263 | * zero (stops counting) anytime the credit count is at or above the * | ||
1264 | * threshold. The threshold is 1 credit in direct connect mode and 2 * | ||
1265 | * in Crossbow connect mode. When the internal Crosstalk Credit * | ||
1266 | * Timeout Counter reaches the value programmed in this register, a * | ||
1267 | * Crosstalk Credit Timeout has occurred. The internal counter is not * | ||
1268 | * readable from software, and stops counting at its maximum value, * | ||
1269 | * so it cannot cause more than one interrupt. * | ||
1270 | * * | ||
1271 | ************************************************************************/ | ||
1272 | |||
1273 | typedef union ii_ixcc_u { | ||
1274 | uint64_t ii_ixcc_regval; | ||
1275 | struct { | ||
1276 | uint64_t i_time_out : 26; | ||
1277 | uint64_t i_rsvd : 38; | ||
1278 | } ii_ixcc_fld_s; | ||
1279 | } ii_ixcc_u_t; | ||
1280 | |||
1281 | |||
1282 | /************************************************************************ | ||
1283 | * * | ||
1284 | * Description: This register qualifies all the PIO and DMA * | ||
1285 | * operations launched from widget 0 towards the SHub. In * | ||
1286 | * addition, it also qualifies accesses by the BTE streams. * | ||
1287 | * The bits in each field of this register are cleared by the SHub * | ||
1288 | * upon detection of an error which requires widget 0 or the BTE * | ||
1289 | * streams to be terminated. Whether or not widget x has access * | ||
1290 | * rights to this SHub is determined by an AND of the device * | ||
1291 | * enable bit in the appropriate field of this register and bit 0 in * | ||
1292 | * the Wx_IAC field. The bits in this field are set by writing a 1 to * | ||
1293 | * them. Incoming replies from Crosstalk are not subject to this * | ||
1294 | * access control mechanism. * | ||
1295 | * * | ||
1296 | ************************************************************************/ | ||
1297 | |||
1298 | typedef union ii_imem_u { | ||
1299 | uint64_t ii_imem_regval; | ||
1300 | struct { | ||
1301 | uint64_t i_w0_esd : 1; | ||
1302 | uint64_t i_rsvd_3 : 3; | ||
1303 | uint64_t i_b0_esd : 1; | ||
1304 | uint64_t i_rsvd_2 : 3; | ||
1305 | uint64_t i_b1_esd : 1; | ||
1306 | uint64_t i_rsvd_1 : 3; | ||
1307 | uint64_t i_clr_precise : 1; | ||
1308 | uint64_t i_rsvd : 51; | ||
1309 | } ii_imem_fld_s; | ||
1310 | } ii_imem_u_t; | ||
1311 | |||
1312 | |||
1313 | |||
1314 | /************************************************************************ | ||
1315 | * * | ||
1316 | * Description: This register specifies the timeout value to use for * | ||
1317 | * monitoring Crosstalk tail flits coming into the Shub in the * | ||
1318 | * TAIL_TO field. An internal counter associated with this register * | ||
1319 | * is incremented every 128 II internal clocks (7 bits). The counter * | ||
1320 | * starts counting anytime a header micropacket is received and stops * | ||
1321 | * counting (and resets to zero) any time a micropacket with a Tail * | ||
1322 | * bit is received. Once the counter reaches the threshold value * | ||
1323 | * programmed in this register, it generates an interrupt to the * | ||
1324 | * processor that is programmed into the IIDSR. The counter saturates * | ||
1325 | * (does not roll over) at its maximum value, so it cannot cause * | ||
1326 | * another interrupt until after it is cleared. * | ||
1327 | * The register also contains the Read Response Timeout values. The * | ||
1328 | * Prescalar is 23 bits, and counts II clocks. An internal counter * | ||
1329 | * increments on every II clock and when it reaches the value in the * | ||
1330 | * Prescalar field, all IPRTE registers with their valid bits set * | ||
1331 | * have their Read Response timers bumped. Whenever any of them match * | ||
1332 | * the value in the RRSP_TO field, a Read Response Timeout has * | ||
1333 | * occurred, and error handling occurs as described in the Error * | ||
1334 | * Handling section of this document. * | ||
1335 | * * | ||
1336 | ************************************************************************/ | ||
1337 | |||
1338 | typedef union ii_ixtt_u { | ||
1339 | uint64_t ii_ixtt_regval; | ||
1340 | struct { | ||
1341 | uint64_t i_tail_to : 26; | ||
1342 | uint64_t i_rsvd_1 : 6; | ||
1343 | uint64_t i_rrsp_ps : 23; | ||
1344 | uint64_t i_rrsp_to : 5; | ||
1345 | uint64_t i_rsvd : 4; | ||
1346 | } ii_ixtt_fld_s; | ||
1347 | } ii_ixtt_u_t; | ||
1348 | |||
1349 | |||
1350 | /************************************************************************ | ||
1351 | * * | ||
1352 | * Writing a 1 to the fields of this register clears the appropriate * | ||
1353 | * error bits in other areas of SHub. Note that when the * | ||
1354 | * E_PRB_x bits are used to clear error bits in PRB registers, * | ||
1355 | * SPUR_RD and SPUR_WR may persist, because they require additional * | ||
1356 | * action to clear them. See the IPRBx and IXSS Register * | ||
1357 | * specifications. * | ||
1358 | * * | ||
1359 | ************************************************************************/ | ||
1360 | |||
1361 | typedef union ii_ieclr_u { | ||
1362 | uint64_t ii_ieclr_regval; | ||
1363 | struct { | ||
1364 | uint64_t i_e_prb_0 : 1; | ||
1365 | uint64_t i_rsvd : 7; | ||
1366 | uint64_t i_e_prb_8 : 1; | ||
1367 | uint64_t i_e_prb_9 : 1; | ||
1368 | uint64_t i_e_prb_a : 1; | ||
1369 | uint64_t i_e_prb_b : 1; | ||
1370 | uint64_t i_e_prb_c : 1; | ||
1371 | uint64_t i_e_prb_d : 1; | ||
1372 | uint64_t i_e_prb_e : 1; | ||
1373 | uint64_t i_e_prb_f : 1; | ||
1374 | uint64_t i_e_crazy : 1; | ||
1375 | uint64_t i_e_bte_0 : 1; | ||
1376 | uint64_t i_e_bte_1 : 1; | ||
1377 | uint64_t i_reserved_1 : 10; | ||
1378 | uint64_t i_spur_rd_hdr : 1; | ||
1379 | uint64_t i_cam_intr_to : 1; | ||
1380 | uint64_t i_cam_overflow : 1; | ||
1381 | uint64_t i_cam_read_miss : 1; | ||
1382 | uint64_t i_ioq_rep_underflow : 1; | ||
1383 | uint64_t i_ioq_req_underflow : 1; | ||
1384 | uint64_t i_ioq_rep_overflow : 1; | ||
1385 | uint64_t i_ioq_req_overflow : 1; | ||
1386 | uint64_t i_iiq_rep_overflow : 1; | ||
1387 | uint64_t i_iiq_req_overflow : 1; | ||
1388 | uint64_t i_ii_xn_rep_cred_overflow : 1; | ||
1389 | uint64_t i_ii_xn_req_cred_overflow : 1; | ||
1390 | uint64_t i_ii_xn_invalid_cmd : 1; | ||
1391 | uint64_t i_xn_ii_invalid_cmd : 1; | ||
1392 | uint64_t i_reserved_2 : 21; | ||
1393 | } ii_ieclr_fld_s; | ||
1394 | } ii_ieclr_u_t; | ||
1395 | |||
1396 | |||
1397 | /************************************************************************ | ||
1398 | * * | ||
1399 | * This register controls both BTEs. SOFT_RESET is intended for * | ||
1400 | * recovery after an error. COUNT controls the total number of CRBs * | ||
1401 | * that both BTEs (combined) can use, which affects total BTE * | ||
1402 | * bandwidth. * | ||
1403 | * * | ||
1404 | ************************************************************************/ | ||
1405 | |||
1406 | typedef union ii_ibcr_u { | ||
1407 | uint64_t ii_ibcr_regval; | ||
1408 | struct { | ||
1409 | uint64_t i_count : 4; | ||
1410 | uint64_t i_rsvd_1 : 4; | ||
1411 | uint64_t i_soft_reset : 1; | ||
1412 | uint64_t i_rsvd : 55; | ||
1413 | } ii_ibcr_fld_s; | ||
1414 | } ii_ibcr_u_t; | ||
1415 | |||
1416 | |||
1417 | /************************************************************************ | ||
1418 | * * | ||
1419 | * This register contains the header of a spurious read response * | ||
1420 | * received from Crosstalk. A spurious read response is defined as a * | ||
1421 | * read response received by II from a widget for which (1) the SIDN * | ||
1422 | * has a value between 1 and 7, inclusive (II never sends requests to * | ||
1423 | * these widgets (2) there is no valid IPRTE register which * | ||
1424 | * corresponds to the TNUM, or (3) the widget indicated in SIDN is * | ||
1425 | * not the same as the widget recorded in the IPRTE register * | ||
1426 | * referenced by the TNUM. If this condition is true, and if the * | ||
1427 | * IXSS[VALID] bit is clear, then the header of the spurious read * | ||
1428 | * response is capture in IXSM and IXSS, and IXSS[VALID] is set. The * | ||
1429 | * errant header is thereby captured, and no further spurious read * | ||
1430 | * respones are captured until IXSS[VALID] is cleared by setting the * | ||
1431 | * appropriate bit in IECLR.Everytime a spurious read response is * | ||
1432 | * detected, the SPUR_RD bit of the PRB corresponding to the incoming * | ||
1433 | * message's SIDN field is set. This always happens, regarless of * | ||
1434 | * whether a header is captured. The programmer should check * | ||
1435 | * IXSM[SIDN] to determine which widget sent the spurious response, * | ||
1436 | * because there may be more than one SPUR_RD bit set in the PRB * | ||
1437 | * registers. The widget indicated by IXSM[SIDN] was the first * | ||
1438 | * spurious read response to be received since the last time * | ||
1439 | * IXSS[VALID] was clear. The SPUR_RD bit of the corresponding PRB * | ||
1440 | * will be set. Any SPUR_RD bits in any other PRB registers indicate * | ||
1441 | * spurious messages from other widets which were detected after the * | ||
1442 | * header was captured.. * | ||
1443 | * * | ||
1444 | ************************************************************************/ | ||
1445 | |||
1446 | typedef union ii_ixsm_u { | ||
1447 | uint64_t ii_ixsm_regval; | ||
1448 | struct { | ||
1449 | uint64_t i_byte_en : 32; | ||
1450 | uint64_t i_reserved : 1; | ||
1451 | uint64_t i_tag : 3; | ||
1452 | uint64_t i_alt_pactyp : 4; | ||
1453 | uint64_t i_bo : 1; | ||
1454 | uint64_t i_error : 1; | ||
1455 | uint64_t i_vbpm : 1; | ||
1456 | uint64_t i_gbr : 1; | ||
1457 | uint64_t i_ds : 2; | ||
1458 | uint64_t i_ct : 1; | ||
1459 | uint64_t i_tnum : 5; | ||
1460 | uint64_t i_pactyp : 4; | ||
1461 | uint64_t i_sidn : 4; | ||
1462 | uint64_t i_didn : 4; | ||
1463 | } ii_ixsm_fld_s; | ||
1464 | } ii_ixsm_u_t; | ||
1465 | |||
1466 | |||
1467 | /************************************************************************ | ||
1468 | * * | ||
1469 | * This register contains the sideband bits of a spurious read * | ||
1470 | * response received from Crosstalk. * | ||
1471 | * * | ||
1472 | ************************************************************************/ | ||
1473 | |||
1474 | typedef union ii_ixss_u { | ||
1475 | uint64_t ii_ixss_regval; | ||
1476 | struct { | ||
1477 | uint64_t i_sideband : 8; | ||
1478 | uint64_t i_rsvd : 55; | ||
1479 | uint64_t i_valid : 1; | ||
1480 | } ii_ixss_fld_s; | ||
1481 | } ii_ixss_u_t; | ||
1482 | |||
1483 | |||
1484 | /************************************************************************ | ||
1485 | * * | ||
1486 | * This register enables software to access the II LLP's test port. * | ||
1487 | * Refer to the LLP 2.5 documentation for an explanation of the test * | ||
1488 | * port. Software can write to this register to program the values * | ||
1489 | * for the control fields (TestErrCapture, TestClear, TestFlit, * | ||
1490 | * TestMask and TestSeed). Similarly, software can read from this * | ||
1491 | * register to obtain the values of the test port's status outputs * | ||
1492 | * (TestCBerr, TestValid and TestData). * | ||
1493 | * * | ||
1494 | ************************************************************************/ | ||
1495 | |||
1496 | typedef union ii_ilct_u { | ||
1497 | uint64_t ii_ilct_regval; | ||
1498 | struct { | ||
1499 | uint64_t i_test_seed : 20; | ||
1500 | uint64_t i_test_mask : 8; | ||
1501 | uint64_t i_test_data : 20; | ||
1502 | uint64_t i_test_valid : 1; | ||
1503 | uint64_t i_test_cberr : 1; | ||
1504 | uint64_t i_test_flit : 3; | ||
1505 | uint64_t i_test_clear : 1; | ||
1506 | uint64_t i_test_err_capture : 1; | ||
1507 | uint64_t i_rsvd : 9; | ||
1508 | } ii_ilct_fld_s; | ||
1509 | } ii_ilct_u_t; | ||
1510 | |||
1511 | |||
1512 | /************************************************************************ | ||
1513 | * * | ||
1514 | * If the II detects an illegal incoming Duplonet packet (request or * | ||
1515 | * reply) when VALID==0 in the IIEPH1 register, then it saves the * | ||
1516 | * contents of the packet's header flit in the IIEPH1 and IIEPH2 * | ||
1517 | * registers, sets the VALID bit in IIEPH1, clears the OVERRUN bit, * | ||
1518 | * and assigns a value to the ERR_TYPE field which indicates the * | ||
1519 | * specific nature of the error. The II recognizes four different * | ||
1520 | * types of errors: short request packets (ERR_TYPE==2), short reply * | ||
1521 | * packets (ERR_TYPE==3), long request packets (ERR_TYPE==4) and long * | ||
1522 | * reply packets (ERR_TYPE==5). The encodings for these types of * | ||
1523 | * errors were chosen to be consistent with the same types of errors * | ||
1524 | * indicated by the ERR_TYPE field in the LB_ERROR_HDR1 register (in * | ||
1525 | * the LB unit). If the II detects an illegal incoming Duplonet * | ||
1526 | * packet when VALID==1 in the IIEPH1 register, then it merely sets * | ||
1527 | * the OVERRUN bit to indicate that a subsequent error has happened, * | ||
1528 | * and does nothing further. * | ||
1529 | * * | ||
1530 | ************************************************************************/ | ||
1531 | |||
1532 | typedef union ii_iieph1_u { | ||
1533 | uint64_t ii_iieph1_regval; | ||
1534 | struct { | ||
1535 | uint64_t i_command : 7; | ||
1536 | uint64_t i_rsvd_5 : 1; | ||
1537 | uint64_t i_suppl : 14; | ||
1538 | uint64_t i_rsvd_4 : 1; | ||
1539 | uint64_t i_source : 14; | ||
1540 | uint64_t i_rsvd_3 : 1; | ||
1541 | uint64_t i_err_type : 4; | ||
1542 | uint64_t i_rsvd_2 : 4; | ||
1543 | uint64_t i_overrun : 1; | ||
1544 | uint64_t i_rsvd_1 : 3; | ||
1545 | uint64_t i_valid : 1; | ||
1546 | uint64_t i_rsvd : 13; | ||
1547 | } ii_iieph1_fld_s; | ||
1548 | } ii_iieph1_u_t; | ||
1549 | |||
1550 | |||
1551 | /************************************************************************ | ||
1552 | * * | ||
1553 | * This register holds the Address field from the header flit of an * | ||
1554 | * incoming erroneous Duplonet packet, along with the tail bit which * | ||
1555 | * accompanied this header flit. This register is essentially an * | ||
1556 | * extension of IIEPH1. Two registers were necessary because the 64 * | ||
1557 | * bits available in only a single register were insufficient to * | ||
1558 | * capture the entire header flit of an erroneous packet. * | ||
1559 | * * | ||
1560 | ************************************************************************/ | ||
1561 | |||
1562 | typedef union ii_iieph2_u { | ||
1563 | uint64_t ii_iieph2_regval; | ||
1564 | struct { | ||
1565 | uint64_t i_rsvd_0 : 3; | ||
1566 | uint64_t i_address : 47; | ||
1567 | uint64_t i_rsvd_1 : 10; | ||
1568 | uint64_t i_tail : 1; | ||
1569 | uint64_t i_rsvd : 3; | ||
1570 | } ii_iieph2_fld_s; | ||
1571 | } ii_iieph2_u_t; | ||
1572 | |||
1573 | |||
1574 | /******************************/ | ||
1575 | |||
1576 | |||
1577 | |||
1578 | /************************************************************************ | ||
1579 | * * | ||
1580 | * This register's value is a bit vector that guards access from SXBs * | ||
1581 | * to local registers within the II as well as to external Crosstalk * | ||
1582 | * widgets * | ||
1583 | * * | ||
1584 | ************************************************************************/ | ||
1585 | |||
1586 | typedef union ii_islapr_u { | ||
1587 | uint64_t ii_islapr_regval; | ||
1588 | struct { | ||
1589 | uint64_t i_region : 64; | ||
1590 | } ii_islapr_fld_s; | ||
1591 | } ii_islapr_u_t; | ||
1592 | |||
1593 | |||
1594 | /************************************************************************ | ||
1595 | * * | ||
1596 | * A write to this register of the 56-bit value "Pup+Bun" will cause * | ||
1597 | * the bit in the ISLAPR register corresponding to the region of the * | ||
1598 | * requestor to be set (access allowed). ( | ||
1599 | * * | ||
1600 | ************************************************************************/ | ||
1601 | |||
1602 | typedef union ii_islapo_u { | ||
1603 | uint64_t ii_islapo_regval; | ||
1604 | struct { | ||
1605 | uint64_t i_io_sbx_ovrride : 56; | ||
1606 | uint64_t i_rsvd : 8; | ||
1607 | } ii_islapo_fld_s; | ||
1608 | } ii_islapo_u_t; | ||
1609 | |||
1610 | /************************************************************************ | ||
1611 | * * | ||
1612 | * Determines how long the wrapper will wait aftr an interrupt is * | ||
1613 | * initially issued from the II before it times out the outstanding * | ||
1614 | * interrupt and drops it from the interrupt queue. * | ||
1615 | * * | ||
1616 | ************************************************************************/ | ||
1617 | |||
1618 | typedef union ii_iwi_u { | ||
1619 | uint64_t ii_iwi_regval; | ||
1620 | struct { | ||
1621 | uint64_t i_prescale : 24; | ||
1622 | uint64_t i_rsvd : 8; | ||
1623 | uint64_t i_timeout : 8; | ||
1624 | uint64_t i_rsvd1 : 8; | ||
1625 | uint64_t i_intrpt_retry_period : 8; | ||
1626 | uint64_t i_rsvd2 : 8; | ||
1627 | } ii_iwi_fld_s; | ||
1628 | } ii_iwi_u_t; | ||
1629 | |||
1630 | /************************************************************************ | ||
1631 | * * | ||
1632 | * Log errors which have occurred in the II wrapper. The errors are * | ||
1633 | * cleared by writing to the IECLR register. * | ||
1634 | * * | ||
1635 | ************************************************************************/ | ||
1636 | |||
1637 | typedef union ii_iwel_u { | ||
1638 | uint64_t ii_iwel_regval; | ||
1639 | struct { | ||
1640 | uint64_t i_intr_timed_out : 1; | ||
1641 | uint64_t i_rsvd : 7; | ||
1642 | uint64_t i_cam_overflow : 1; | ||
1643 | uint64_t i_cam_read_miss : 1; | ||
1644 | uint64_t i_rsvd1 : 2; | ||
1645 | uint64_t i_ioq_rep_underflow : 1; | ||
1646 | uint64_t i_ioq_req_underflow : 1; | ||
1647 | uint64_t i_ioq_rep_overflow : 1; | ||
1648 | uint64_t i_ioq_req_overflow : 1; | ||
1649 | uint64_t i_iiq_rep_overflow : 1; | ||
1650 | uint64_t i_iiq_req_overflow : 1; | ||
1651 | uint64_t i_rsvd2 : 6; | ||
1652 | uint64_t i_ii_xn_rep_cred_over_under: 1; | ||
1653 | uint64_t i_ii_xn_req_cred_over_under: 1; | ||
1654 | uint64_t i_rsvd3 : 6; | ||
1655 | uint64_t i_ii_xn_invalid_cmd : 1; | ||
1656 | uint64_t i_xn_ii_invalid_cmd : 1; | ||
1657 | uint64_t i_rsvd4 : 30; | ||
1658 | } ii_iwel_fld_s; | ||
1659 | } ii_iwel_u_t; | ||
1660 | |||
1661 | /************************************************************************ | ||
1662 | * * | ||
1663 | * Controls the II wrapper. * | ||
1664 | * * | ||
1665 | ************************************************************************/ | ||
1666 | |||
1667 | typedef union ii_iwc_u { | ||
1668 | uint64_t ii_iwc_regval; | ||
1669 | struct { | ||
1670 | uint64_t i_dma_byte_swap : 1; | ||
1671 | uint64_t i_rsvd : 3; | ||
1672 | uint64_t i_cam_read_lines_reset : 1; | ||
1673 | uint64_t i_rsvd1 : 3; | ||
1674 | uint64_t i_ii_xn_cred_over_under_log: 1; | ||
1675 | uint64_t i_rsvd2 : 19; | ||
1676 | uint64_t i_xn_rep_iq_depth : 5; | ||
1677 | uint64_t i_rsvd3 : 3; | ||
1678 | uint64_t i_xn_req_iq_depth : 5; | ||
1679 | uint64_t i_rsvd4 : 3; | ||
1680 | uint64_t i_iiq_depth : 6; | ||
1681 | uint64_t i_rsvd5 : 12; | ||
1682 | uint64_t i_force_rep_cred : 1; | ||
1683 | uint64_t i_force_req_cred : 1; | ||
1684 | } ii_iwc_fld_s; | ||
1685 | } ii_iwc_u_t; | ||
1686 | |||
1687 | /************************************************************************ | ||
1688 | * * | ||
1689 | * Status in the II wrapper. * | ||
1690 | * * | ||
1691 | ************************************************************************/ | ||
1692 | |||
1693 | typedef union ii_iws_u { | ||
1694 | uint64_t ii_iws_regval; | ||
1695 | struct { | ||
1696 | uint64_t i_xn_rep_iq_credits : 5; | ||
1697 | uint64_t i_rsvd : 3; | ||
1698 | uint64_t i_xn_req_iq_credits : 5; | ||
1699 | uint64_t i_rsvd1 : 51; | ||
1700 | } ii_iws_fld_s; | ||
1701 | } ii_iws_u_t; | ||
1702 | |||
1703 | /************************************************************************ | ||
1704 | * * | ||
1705 | * Masks errors in the IWEL register. * | ||
1706 | * * | ||
1707 | ************************************************************************/ | ||
1708 | |||
1709 | typedef union ii_iweim_u { | ||
1710 | uint64_t ii_iweim_regval; | ||
1711 | struct { | ||
1712 | uint64_t i_intr_timed_out : 1; | ||
1713 | uint64_t i_rsvd : 7; | ||
1714 | uint64_t i_cam_overflow : 1; | ||
1715 | uint64_t i_cam_read_miss : 1; | ||
1716 | uint64_t i_rsvd1 : 2; | ||
1717 | uint64_t i_ioq_rep_underflow : 1; | ||
1718 | uint64_t i_ioq_req_underflow : 1; | ||
1719 | uint64_t i_ioq_rep_overflow : 1; | ||
1720 | uint64_t i_ioq_req_overflow : 1; | ||
1721 | uint64_t i_iiq_rep_overflow : 1; | ||
1722 | uint64_t i_iiq_req_overflow : 1; | ||
1723 | uint64_t i_rsvd2 : 6; | ||
1724 | uint64_t i_ii_xn_rep_cred_overflow : 1; | ||
1725 | uint64_t i_ii_xn_req_cred_overflow : 1; | ||
1726 | uint64_t i_rsvd3 : 6; | ||
1727 | uint64_t i_ii_xn_invalid_cmd : 1; | ||
1728 | uint64_t i_xn_ii_invalid_cmd : 1; | ||
1729 | uint64_t i_rsvd4 : 30; | ||
1730 | } ii_iweim_fld_s; | ||
1731 | } ii_iweim_u_t; | ||
1732 | |||
1733 | |||
1734 | /************************************************************************ | ||
1735 | * * | ||
1736 | * A write to this register causes a particular field in the * | ||
1737 | * corresponding widget's PRB entry to be adjusted up or down by 1. * | ||
1738 | * This counter should be used when recovering from error and reset * | ||
1739 | * conditions. Note that software would be capable of causing * | ||
1740 | * inadvertent overflow or underflow of these counters. * | ||
1741 | * * | ||
1742 | ************************************************************************/ | ||
1743 | |||
1744 | typedef union ii_ipca_u { | ||
1745 | uint64_t ii_ipca_regval; | ||
1746 | struct { | ||
1747 | uint64_t i_wid : 4; | ||
1748 | uint64_t i_adjust : 1; | ||
1749 | uint64_t i_rsvd_1 : 3; | ||
1750 | uint64_t i_field : 2; | ||
1751 | uint64_t i_rsvd : 54; | ||
1752 | } ii_ipca_fld_s; | ||
1753 | } ii_ipca_u_t; | ||
1754 | |||
1755 | |||
1756 | /************************************************************************ | ||
1757 | * * | ||
1758 | * There are 8 instances of this register. This register contains * | ||
1759 | * the information that the II has to remember once it has launched a * | ||
1760 | * PIO Read operation. The contents are used to form the correct * | ||
1761 | * Router Network packet and direct the Crosstalk reply to the * | ||
1762 | * appropriate processor. * | ||
1763 | * * | ||
1764 | ************************************************************************/ | ||
1765 | |||
1766 | |||
1767 | typedef union ii_iprte0a_u { | ||
1768 | uint64_t ii_iprte0a_regval; | ||
1769 | struct { | ||
1770 | uint64_t i_rsvd_1 : 54; | ||
1771 | uint64_t i_widget : 4; | ||
1772 | uint64_t i_to_cnt : 5; | ||
1773 | uint64_t i_vld : 1; | ||
1774 | } ii_iprte0a_fld_s; | ||
1775 | } ii_iprte0a_u_t; | ||
1776 | |||
1777 | |||
1778 | /************************************************************************ | ||
1779 | * * | ||
1780 | * There are 8 instances of this register. This register contains * | ||
1781 | * the information that the II has to remember once it has launched a * | ||
1782 | * PIO Read operation. The contents are used to form the correct * | ||
1783 | * Router Network packet and direct the Crosstalk reply to the * | ||
1784 | * appropriate processor. * | ||
1785 | * * | ||
1786 | ************************************************************************/ | ||
1787 | |||
1788 | typedef union ii_iprte1a_u { | ||
1789 | uint64_t ii_iprte1a_regval; | ||
1790 | struct { | ||
1791 | uint64_t i_rsvd_1 : 54; | ||
1792 | uint64_t i_widget : 4; | ||
1793 | uint64_t i_to_cnt : 5; | ||
1794 | uint64_t i_vld : 1; | ||
1795 | } ii_iprte1a_fld_s; | ||
1796 | } ii_iprte1a_u_t; | ||
1797 | |||
1798 | |||
1799 | /************************************************************************ | ||
1800 | * * | ||
1801 | * There are 8 instances of this register. This register contains * | ||
1802 | * the information that the II has to remember once it has launched a * | ||
1803 | * PIO Read operation. The contents are used to form the correct * | ||
1804 | * Router Network packet and direct the Crosstalk reply to the * | ||
1805 | * appropriate processor. * | ||
1806 | * * | ||
1807 | ************************************************************************/ | ||
1808 | |||
1809 | typedef union ii_iprte2a_u { | ||
1810 | uint64_t ii_iprte2a_regval; | ||
1811 | struct { | ||
1812 | uint64_t i_rsvd_1 : 54; | ||
1813 | uint64_t i_widget : 4; | ||
1814 | uint64_t i_to_cnt : 5; | ||
1815 | uint64_t i_vld : 1; | ||
1816 | } ii_iprte2a_fld_s; | ||
1817 | } ii_iprte2a_u_t; | ||
1818 | |||
1819 | |||
1820 | /************************************************************************ | ||
1821 | * * | ||
1822 | * There are 8 instances of this register. This register contains * | ||
1823 | * the information that the II has to remember once it has launched a * | ||
1824 | * PIO Read operation. The contents are used to form the correct * | ||
1825 | * Router Network packet and direct the Crosstalk reply to the * | ||
1826 | * appropriate processor. * | ||
1827 | * * | ||
1828 | ************************************************************************/ | ||
1829 | |||
1830 | typedef union ii_iprte3a_u { | ||
1831 | uint64_t ii_iprte3a_regval; | ||
1832 | struct { | ||
1833 | uint64_t i_rsvd_1 : 54; | ||
1834 | uint64_t i_widget : 4; | ||
1835 | uint64_t i_to_cnt : 5; | ||
1836 | uint64_t i_vld : 1; | ||
1837 | } ii_iprte3a_fld_s; | ||
1838 | } ii_iprte3a_u_t; | ||
1839 | |||
1840 | |||
1841 | /************************************************************************ | ||
1842 | * * | ||
1843 | * There are 8 instances of this register. This register contains * | ||
1844 | * the information that the II has to remember once it has launched a * | ||
1845 | * PIO Read operation. The contents are used to form the correct * | ||
1846 | * Router Network packet and direct the Crosstalk reply to the * | ||
1847 | * appropriate processor. * | ||
1848 | * * | ||
1849 | ************************************************************************/ | ||
1850 | |||
1851 | typedef union ii_iprte4a_u { | ||
1852 | uint64_t ii_iprte4a_regval; | ||
1853 | struct { | ||
1854 | uint64_t i_rsvd_1 : 54; | ||
1855 | uint64_t i_widget : 4; | ||
1856 | uint64_t i_to_cnt : 5; | ||
1857 | uint64_t i_vld : 1; | ||
1858 | } ii_iprte4a_fld_s; | ||
1859 | } ii_iprte4a_u_t; | ||
1860 | |||
1861 | |||
1862 | /************************************************************************ | ||
1863 | * * | ||
1864 | * There are 8 instances of this register. This register contains * | ||
1865 | * the information that the II has to remember once it has launched a * | ||
1866 | * PIO Read operation. The contents are used to form the correct * | ||
1867 | * Router Network packet and direct the Crosstalk reply to the * | ||
1868 | * appropriate processor. * | ||
1869 | * * | ||
1870 | ************************************************************************/ | ||
1871 | |||
1872 | typedef union ii_iprte5a_u { | ||
1873 | uint64_t ii_iprte5a_regval; | ||
1874 | struct { | ||
1875 | uint64_t i_rsvd_1 : 54; | ||
1876 | uint64_t i_widget : 4; | ||
1877 | uint64_t i_to_cnt : 5; | ||
1878 | uint64_t i_vld : 1; | ||
1879 | } ii_iprte5a_fld_s; | ||
1880 | } ii_iprte5a_u_t; | ||
1881 | |||
1882 | |||
1883 | /************************************************************************ | ||
1884 | * * | ||
1885 | * There are 8 instances of this register. This register contains * | ||
1886 | * the information that the II has to remember once it has launched a * | ||
1887 | * PIO Read operation. The contents are used to form the correct * | ||
1888 | * Router Network packet and direct the Crosstalk reply to the * | ||
1889 | * appropriate processor. * | ||
1890 | * * | ||
1891 | ************************************************************************/ | ||
1892 | |||
1893 | typedef union ii_iprte6a_u { | ||
1894 | uint64_t ii_iprte6a_regval; | ||
1895 | struct { | ||
1896 | uint64_t i_rsvd_1 : 54; | ||
1897 | uint64_t i_widget : 4; | ||
1898 | uint64_t i_to_cnt : 5; | ||
1899 | uint64_t i_vld : 1; | ||
1900 | } ii_iprte6a_fld_s; | ||
1901 | } ii_iprte6a_u_t; | ||
1902 | |||
1903 | |||
1904 | /************************************************************************ | ||
1905 | * * | ||
1906 | * There are 8 instances of this register. This register contains * | ||
1907 | * the information that the II has to remember once it has launched a * | ||
1908 | * PIO Read operation. The contents are used to form the correct * | ||
1909 | * Router Network packet and direct the Crosstalk reply to the * | ||
1910 | * appropriate processor. * | ||
1911 | * * | ||
1912 | ************************************************************************/ | ||
1913 | |||
1914 | typedef union ii_iprte7a_u { | ||
1915 | uint64_t ii_iprte7a_regval; | ||
1916 | struct { | ||
1917 | uint64_t i_rsvd_1 : 54; | ||
1918 | uint64_t i_widget : 4; | ||
1919 | uint64_t i_to_cnt : 5; | ||
1920 | uint64_t i_vld : 1; | ||
1921 | } ii_iprtea7_fld_s; | ||
1922 | } ii_iprte7a_u_t; | ||
1923 | |||
1924 | |||
1925 | |||
1926 | /************************************************************************ | ||
1927 | * * | ||
1928 | * There are 8 instances of this register. This register contains * | ||
1929 | * the information that the II has to remember once it has launched a * | ||
1930 | * PIO Read operation. The contents are used to form the correct * | ||
1931 | * Router Network packet and direct the Crosstalk reply to the * | ||
1932 | * appropriate processor. * | ||
1933 | * * | ||
1934 | ************************************************************************/ | ||
1935 | |||
1936 | |||
1937 | typedef union ii_iprte0b_u { | ||
1938 | uint64_t ii_iprte0b_regval; | ||
1939 | struct { | ||
1940 | uint64_t i_rsvd_1 : 3; | ||
1941 | uint64_t i_address : 47; | ||
1942 | uint64_t i_init : 3; | ||
1943 | uint64_t i_source : 11; | ||
1944 | } ii_iprte0b_fld_s; | ||
1945 | } ii_iprte0b_u_t; | ||
1946 | |||
1947 | |||
1948 | /************************************************************************ | ||
1949 | * * | ||
1950 | * There are 8 instances of this register. This register contains * | ||
1951 | * the information that the II has to remember once it has launched a * | ||
1952 | * PIO Read operation. The contents are used to form the correct * | ||
1953 | * Router Network packet and direct the Crosstalk reply to the * | ||
1954 | * appropriate processor. * | ||
1955 | * * | ||
1956 | ************************************************************************/ | ||
1957 | |||
1958 | typedef union ii_iprte1b_u { | ||
1959 | uint64_t ii_iprte1b_regval; | ||
1960 | struct { | ||
1961 | uint64_t i_rsvd_1 : 3; | ||
1962 | uint64_t i_address : 47; | ||
1963 | uint64_t i_init : 3; | ||
1964 | uint64_t i_source : 11; | ||
1965 | } ii_iprte1b_fld_s; | ||
1966 | } ii_iprte1b_u_t; | ||
1967 | |||
1968 | |||
1969 | /************************************************************************ | ||
1970 | * * | ||
1971 | * There are 8 instances of this register. This register contains * | ||
1972 | * the information that the II has to remember once it has launched a * | ||
1973 | * PIO Read operation. The contents are used to form the correct * | ||
1974 | * Router Network packet and direct the Crosstalk reply to the * | ||
1975 | * appropriate processor. * | ||
1976 | * * | ||
1977 | ************************************************************************/ | ||
1978 | |||
1979 | typedef union ii_iprte2b_u { | ||
1980 | uint64_t ii_iprte2b_regval; | ||
1981 | struct { | ||
1982 | uint64_t i_rsvd_1 : 3; | ||
1983 | uint64_t i_address : 47; | ||
1984 | uint64_t i_init : 3; | ||
1985 | uint64_t i_source : 11; | ||
1986 | } ii_iprte2b_fld_s; | ||
1987 | } ii_iprte2b_u_t; | ||
1988 | |||
1989 | |||
1990 | /************************************************************************ | ||
1991 | * * | ||
1992 | * There are 8 instances of this register. This register contains * | ||
1993 | * the information that the II has to remember once it has launched a * | ||
1994 | * PIO Read operation. The contents are used to form the correct * | ||
1995 | * Router Network packet and direct the Crosstalk reply to the * | ||
1996 | * appropriate processor. * | ||
1997 | * * | ||
1998 | ************************************************************************/ | ||
1999 | |||
2000 | typedef union ii_iprte3b_u { | ||
2001 | uint64_t ii_iprte3b_regval; | ||
2002 | struct { | ||
2003 | uint64_t i_rsvd_1 : 3; | ||
2004 | uint64_t i_address : 47; | ||
2005 | uint64_t i_init : 3; | ||
2006 | uint64_t i_source : 11; | ||
2007 | } ii_iprte3b_fld_s; | ||
2008 | } ii_iprte3b_u_t; | ||
2009 | |||
2010 | |||
2011 | /************************************************************************ | ||
2012 | * * | ||
2013 | * There are 8 instances of this register. This register contains * | ||
2014 | * the information that the II has to remember once it has launched a * | ||
2015 | * PIO Read operation. The contents are used to form the correct * | ||
2016 | * Router Network packet and direct the Crosstalk reply to the * | ||
2017 | * appropriate processor. * | ||
2018 | * * | ||
2019 | ************************************************************************/ | ||
2020 | |||
2021 | typedef union ii_iprte4b_u { | ||
2022 | uint64_t ii_iprte4b_regval; | ||
2023 | struct { | ||
2024 | uint64_t i_rsvd_1 : 3; | ||
2025 | uint64_t i_address : 47; | ||
2026 | uint64_t i_init : 3; | ||
2027 | uint64_t i_source : 11; | ||
2028 | } ii_iprte4b_fld_s; | ||
2029 | } ii_iprte4b_u_t; | ||
2030 | |||
2031 | |||
2032 | /************************************************************************ | ||
2033 | * * | ||
2034 | * There are 8 instances of this register. This register contains * | ||
2035 | * the information that the II has to remember once it has launched a * | ||
2036 | * PIO Read operation. The contents are used to form the correct * | ||
2037 | * Router Network packet and direct the Crosstalk reply to the * | ||
2038 | * appropriate processor. * | ||
2039 | * * | ||
2040 | ************************************************************************/ | ||
2041 | |||
2042 | typedef union ii_iprte5b_u { | ||
2043 | uint64_t ii_iprte5b_regval; | ||
2044 | struct { | ||
2045 | uint64_t i_rsvd_1 : 3; | ||
2046 | uint64_t i_address : 47; | ||
2047 | uint64_t i_init : 3; | ||
2048 | uint64_t i_source : 11; | ||
2049 | } ii_iprte5b_fld_s; | ||
2050 | } ii_iprte5b_u_t; | ||
2051 | |||
2052 | |||
2053 | /************************************************************************ | ||
2054 | * * | ||
2055 | * There are 8 instances of this register. This register contains * | ||
2056 | * the information that the II has to remember once it has launched a * | ||
2057 | * PIO Read operation. The contents are used to form the correct * | ||
2058 | * Router Network packet and direct the Crosstalk reply to the * | ||
2059 | * appropriate processor. * | ||
2060 | * * | ||
2061 | ************************************************************************/ | ||
2062 | |||
2063 | typedef union ii_iprte6b_u { | ||
2064 | uint64_t ii_iprte6b_regval; | ||
2065 | struct { | ||
2066 | uint64_t i_rsvd_1 : 3; | ||
2067 | uint64_t i_address : 47; | ||
2068 | uint64_t i_init : 3; | ||
2069 | uint64_t i_source : 11; | ||
2070 | |||
2071 | } ii_iprte6b_fld_s; | ||
2072 | } ii_iprte6b_u_t; | ||
2073 | |||
2074 | |||
2075 | /************************************************************************ | ||
2076 | * * | ||
2077 | * There are 8 instances of this register. This register contains * | ||
2078 | * the information that the II has to remember once it has launched a * | ||
2079 | * PIO Read operation. The contents are used to form the correct * | ||
2080 | * Router Network packet and direct the Crosstalk reply to the * | ||
2081 | * appropriate processor. * | ||
2082 | * * | ||
2083 | ************************************************************************/ | ||
2084 | |||
2085 | typedef union ii_iprte7b_u { | ||
2086 | uint64_t ii_iprte7b_regval; | ||
2087 | struct { | ||
2088 | uint64_t i_rsvd_1 : 3; | ||
2089 | uint64_t i_address : 47; | ||
2090 | uint64_t i_init : 3; | ||
2091 | uint64_t i_source : 11; | ||
2092 | } ii_iprte7b_fld_s; | ||
2093 | } ii_iprte7b_u_t; | ||
2094 | |||
2095 | |||
2096 | /************************************************************************ | ||
2097 | * * | ||
2098 | * Description: SHub II contains a feature which did not exist in * | ||
2099 | * the Hub which automatically cleans up after a Read Response * | ||
2100 | * timeout, including deallocation of the IPRTE and recovery of IBuf * | ||
2101 | * space. The inclusion of this register in SHub is for backward * | ||
2102 | * compatibility * | ||
2103 | * A write to this register causes an entry from the table of * | ||
2104 | * outstanding PIO Read Requests to be freed and returned to the * | ||
2105 | * stack of free entries. This register is used in handling the * | ||
2106 | * timeout errors that result in a PIO Reply never returning from * | ||
2107 | * Crosstalk. * | ||
2108 | * Note that this register does not affect the contents of the IPRTE * | ||
2109 | * registers. The Valid bits in those registers have to be * | ||
2110 | * specifically turned off by software. * | ||
2111 | * * | ||
2112 | ************************************************************************/ | ||
2113 | |||
2114 | typedef union ii_ipdr_u { | ||
2115 | uint64_t ii_ipdr_regval; | ||
2116 | struct { | ||
2117 | uint64_t i_te : 3; | ||
2118 | uint64_t i_rsvd_1 : 1; | ||
2119 | uint64_t i_pnd : 1; | ||
2120 | uint64_t i_init_rpcnt : 1; | ||
2121 | uint64_t i_rsvd : 58; | ||
2122 | } ii_ipdr_fld_s; | ||
2123 | } ii_ipdr_u_t; | ||
2124 | |||
2125 | |||
2126 | /************************************************************************ | ||
2127 | * * | ||
2128 | * A write to this register causes a CRB entry to be returned to the * | ||
2129 | * queue of free CRBs. The entry should have previously been cleared * | ||
2130 | * (mark bit) via backdoor access to the pertinent CRB entry. This * | ||
2131 | * register is used in the last step of handling the errors that are * | ||
2132 | * captured and marked in CRB entries. Briefly: 1) first error for * | ||
2133 | * DMA write from a particular device, and first error for a * | ||
2134 | * particular BTE stream, lead to a marked CRB entry, and processor * | ||
2135 | * interrupt, 2) software reads the error information captured in the * | ||
2136 | * CRB entry, and presumably takes some corrective action, 3) * | ||
2137 | * software clears the mark bit, and finally 4) software writes to * | ||
2138 | * the ICDR register to return the CRB entry to the list of free CRB * | ||
2139 | * entries. * | ||
2140 | * * | ||
2141 | ************************************************************************/ | ||
2142 | |||
2143 | typedef union ii_icdr_u { | ||
2144 | uint64_t ii_icdr_regval; | ||
2145 | struct { | ||
2146 | uint64_t i_crb_num : 4; | ||
2147 | uint64_t i_pnd : 1; | ||
2148 | uint64_t i_rsvd : 59; | ||
2149 | } ii_icdr_fld_s; | ||
2150 | } ii_icdr_u_t; | ||
2151 | |||
2152 | |||
2153 | /************************************************************************ | ||
2154 | * * | ||
2155 | * This register provides debug access to two FIFOs inside of II. * | ||
2156 | * Both IOQ_MAX* fields of this register contain the instantaneous * | ||
2157 | * depth (in units of the number of available entries) of the * | ||
2158 | * associated IOQ FIFO. A read of this register will return the * | ||
2159 | * number of free entries on each FIFO at the time of the read. So * | ||
2160 | * when a FIFO is idle, the associated field contains the maximum * | ||
2161 | * depth of the FIFO. This register is writable for debug reasons * | ||
2162 | * and is intended to be written with the maximum desired FIFO depth * | ||
2163 | * while the FIFO is idle. Software must assure that II is idle when * | ||
2164 | * this register is written. If there are any active entries in any * | ||
2165 | * of these FIFOs when this register is written, the results are * | ||
2166 | * undefined. * | ||
2167 | * * | ||
2168 | ************************************************************************/ | ||
2169 | |||
2170 | typedef union ii_ifdr_u { | ||
2171 | uint64_t ii_ifdr_regval; | ||
2172 | struct { | ||
2173 | uint64_t i_ioq_max_rq : 7; | ||
2174 | uint64_t i_set_ioq_rq : 1; | ||
2175 | uint64_t i_ioq_max_rp : 7; | ||
2176 | uint64_t i_set_ioq_rp : 1; | ||
2177 | uint64_t i_rsvd : 48; | ||
2178 | } ii_ifdr_fld_s; | ||
2179 | } ii_ifdr_u_t; | ||
2180 | |||
2181 | |||
2182 | /************************************************************************ | ||
2183 | * * | ||
2184 | * This register allows the II to become sluggish in removing * | ||
2185 | * messages from its inbound queue (IIQ). This will cause messages to * | ||
2186 | * back up in either virtual channel. Disabling the "molasses" mode * | ||
2187 | * subsequently allows the II to be tested under stress. In the * | ||
2188 | * sluggish ("Molasses") mode, the localized effects of congestion * | ||
2189 | * can be observed. * | ||
2190 | * * | ||
2191 | ************************************************************************/ | ||
2192 | |||
2193 | typedef union ii_iiap_u { | ||
2194 | uint64_t ii_iiap_regval; | ||
2195 | struct { | ||
2196 | uint64_t i_rq_mls : 6; | ||
2197 | uint64_t i_rsvd_1 : 2; | ||
2198 | uint64_t i_rp_mls : 6; | ||
2199 | uint64_t i_rsvd : 50; | ||
2200 | } ii_iiap_fld_s; | ||
2201 | } ii_iiap_u_t; | ||
2202 | |||
2203 | |||
2204 | /************************************************************************ | ||
2205 | * * | ||
2206 | * This register allows several parameters of CRB operation to be * | ||
2207 | * set. Note that writing to this register can have catastrophic side * | ||
2208 | * effects, if the CRB is not quiescent, i.e. if the CRB is * | ||
2209 | * processing protocol messages when the write occurs. * | ||
2210 | * * | ||
2211 | ************************************************************************/ | ||
2212 | |||
2213 | typedef union ii_icmr_u { | ||
2214 | uint64_t ii_icmr_regval; | ||
2215 | struct { | ||
2216 | uint64_t i_sp_msg : 1; | ||
2217 | uint64_t i_rd_hdr : 1; | ||
2218 | uint64_t i_rsvd_4 : 2; | ||
2219 | uint64_t i_c_cnt : 4; | ||
2220 | uint64_t i_rsvd_3 : 4; | ||
2221 | uint64_t i_clr_rqpd : 1; | ||
2222 | uint64_t i_clr_rppd : 1; | ||
2223 | uint64_t i_rsvd_2 : 2; | ||
2224 | uint64_t i_fc_cnt : 4; | ||
2225 | uint64_t i_crb_vld : 15; | ||
2226 | uint64_t i_crb_mark : 15; | ||
2227 | uint64_t i_rsvd_1 : 2; | ||
2228 | uint64_t i_precise : 1; | ||
2229 | uint64_t i_rsvd : 11; | ||
2230 | } ii_icmr_fld_s; | ||
2231 | } ii_icmr_u_t; | ||
2232 | |||
2233 | |||
2234 | /************************************************************************ | ||
2235 | * * | ||
2236 | * This register allows control of the table portion of the CRB * | ||
2237 | * logic via software. Control operations from this register have * | ||
2238 | * priority over all incoming Crosstalk or BTE requests. * | ||
2239 | * * | ||
2240 | ************************************************************************/ | ||
2241 | |||
2242 | typedef union ii_iccr_u { | ||
2243 | uint64_t ii_iccr_regval; | ||
2244 | struct { | ||
2245 | uint64_t i_crb_num : 4; | ||
2246 | uint64_t i_rsvd_1 : 4; | ||
2247 | uint64_t i_cmd : 8; | ||
2248 | uint64_t i_pending : 1; | ||
2249 | uint64_t i_rsvd : 47; | ||
2250 | } ii_iccr_fld_s; | ||
2251 | } ii_iccr_u_t; | ||
2252 | |||
2253 | |||
2254 | /************************************************************************ | ||
2255 | * * | ||
2256 | * This register allows the maximum timeout value to be programmed. * | ||
2257 | * * | ||
2258 | ************************************************************************/ | ||
2259 | |||
2260 | typedef union ii_icto_u { | ||
2261 | uint64_t ii_icto_regval; | ||
2262 | struct { | ||
2263 | uint64_t i_timeout : 8; | ||
2264 | uint64_t i_rsvd : 56; | ||
2265 | } ii_icto_fld_s; | ||
2266 | } ii_icto_u_t; | ||
2267 | |||
2268 | |||
2269 | /************************************************************************ | ||
2270 | * * | ||
2271 | * This register allows the timeout prescalar to be programmed. An * | ||
2272 | * internal counter is associated with this register. When the * | ||
2273 | * internal counter reaches the value of the PRESCALE field, the * | ||
2274 | * timer registers in all valid CRBs are incremented (CRBx_D[TIMEOUT] * | ||
2275 | * field). The internal counter resets to zero, and then continues * | ||
2276 | * counting. * | ||
2277 | * * | ||
2278 | ************************************************************************/ | ||
2279 | |||
2280 | typedef union ii_ictp_u { | ||
2281 | uint64_t ii_ictp_regval; | ||
2282 | struct { | ||
2283 | uint64_t i_prescale : 24; | ||
2284 | uint64_t i_rsvd : 40; | ||
2285 | } ii_ictp_fld_s; | ||
2286 | } ii_ictp_u_t; | ||
2287 | |||
2288 | |||
2289 | /************************************************************************ | ||
2290 | * * | ||
2291 | * Description: There are 15 CRB Entries (ICRB0 to ICRBE) that are * | ||
2292 | * used for Crosstalk operations (both cacheline and partial * | ||
2293 | * operations) or BTE/IO. Because the CRB entries are very wide, five * | ||
2294 | * registers (_A to _E) are required to read and write each entry. * | ||
2295 | * The CRB Entry registers can be conceptualized as rows and columns * | ||
2296 | * (illustrated in the table above). Each row contains the 4 * | ||
2297 | * registers required for a single CRB Entry. The first doubleword * | ||
2298 | * (column) for each entry is labeled A, and the second doubleword * | ||
2299 | * (higher address) is labeled B, the third doubleword is labeled C, * | ||
2300 | * the fourth doubleword is labeled D and the fifth doubleword is * | ||
2301 | * labeled E. All CRB entries have their addresses on a quarter * | ||
2302 | * cacheline aligned boundary. * | ||
2303 | * Upon reset, only the following fields are initialized: valid * | ||
2304 | * (VLD), priority count, timeout, timeout valid, and context valid. * | ||
2305 | * All other bits should be cleared by software before use (after * | ||
2306 | * recovering any potential error state from before the reset). * | ||
2307 | * The following four tables summarize the format for the four * | ||
2308 | * registers that are used for each ICRB# Entry. * | ||
2309 | * * | ||
2310 | ************************************************************************/ | ||
2311 | |||
2312 | typedef union ii_icrb0_a_u { | ||
2313 | uint64_t ii_icrb0_a_regval; | ||
2314 | struct { | ||
2315 | uint64_t ia_iow : 1; | ||
2316 | uint64_t ia_vld : 1; | ||
2317 | uint64_t ia_addr : 47; | ||
2318 | uint64_t ia_tnum : 5; | ||
2319 | uint64_t ia_sidn : 4; | ||
2320 | uint64_t ia_rsvd : 6; | ||
2321 | } ii_icrb0_a_fld_s; | ||
2322 | } ii_icrb0_a_u_t; | ||
2323 | |||
2324 | |||
2325 | /************************************************************************ | ||
2326 | * * | ||
2327 | * Description: There are 15 CRB Entries (ICRB0 to ICRBE) that are * | ||
2328 | * used for Crosstalk operations (both cacheline and partial * | ||
2329 | * operations) or BTE/IO. Because the CRB entries are very wide, five * | ||
2330 | * registers (_A to _E) are required to read and write each entry. * | ||
2331 | * * | ||
2332 | ************************************************************************/ | ||
2333 | |||
2334 | typedef union ii_icrb0_b_u { | ||
2335 | uint64_t ii_icrb0_b_regval; | ||
2336 | struct { | ||
2337 | uint64_t ib_xt_err : 1; | ||
2338 | uint64_t ib_mark : 1; | ||
2339 | uint64_t ib_ln_uce : 1; | ||
2340 | uint64_t ib_errcode : 3; | ||
2341 | uint64_t ib_error : 1; | ||
2342 | uint64_t ib_stall__bte_1 : 1; | ||
2343 | uint64_t ib_stall__bte_0 : 1; | ||
2344 | uint64_t ib_stall__intr : 1; | ||
2345 | uint64_t ib_stall_ib : 1; | ||
2346 | uint64_t ib_intvn : 1; | ||
2347 | uint64_t ib_wb : 1; | ||
2348 | uint64_t ib_hold : 1; | ||
2349 | uint64_t ib_ack : 1; | ||
2350 | uint64_t ib_resp : 1; | ||
2351 | uint64_t ib_ack_cnt : 11; | ||
2352 | uint64_t ib_rsvd : 7; | ||
2353 | uint64_t ib_exc : 5; | ||
2354 | uint64_t ib_init : 3; | ||
2355 | uint64_t ib_imsg : 8; | ||
2356 | uint64_t ib_imsgtype : 2; | ||
2357 | uint64_t ib_use_old : 1; | ||
2358 | uint64_t ib_rsvd_1 : 11; | ||
2359 | } ii_icrb0_b_fld_s; | ||
2360 | } ii_icrb0_b_u_t; | ||
2361 | |||
2362 | |||
2363 | /************************************************************************ | ||
2364 | * * | ||
2365 | * Description: There are 15 CRB Entries (ICRB0 to ICRBE) that are * | ||
2366 | * used for Crosstalk operations (both cacheline and partial * | ||
2367 | * operations) or BTE/IO. Because the CRB entries are very wide, five * | ||
2368 | * registers (_A to _E) are required to read and write each entry. * | ||
2369 | * * | ||
2370 | ************************************************************************/ | ||
2371 | |||
2372 | typedef union ii_icrb0_c_u { | ||
2373 | uint64_t ii_icrb0_c_regval; | ||
2374 | struct { | ||
2375 | uint64_t ic_source : 15; | ||
2376 | uint64_t ic_size : 2; | ||
2377 | uint64_t ic_ct : 1; | ||
2378 | uint64_t ic_bte_num : 1; | ||
2379 | uint64_t ic_gbr : 1; | ||
2380 | uint64_t ic_resprqd : 1; | ||
2381 | uint64_t ic_bo : 1; | ||
2382 | uint64_t ic_suppl : 15; | ||
2383 | uint64_t ic_rsvd : 27; | ||
2384 | } ii_icrb0_c_fld_s; | ||
2385 | } ii_icrb0_c_u_t; | ||
2386 | |||
2387 | |||
2388 | /************************************************************************ | ||
2389 | * * | ||
2390 | * Description: There are 15 CRB Entries (ICRB0 to ICRBE) that are * | ||
2391 | * used for Crosstalk operations (both cacheline and partial * | ||
2392 | * operations) or BTE/IO. Because the CRB entries are very wide, five * | ||
2393 | * registers (_A to _E) are required to read and write each entry. * | ||
2394 | * * | ||
2395 | ************************************************************************/ | ||
2396 | |||
2397 | typedef union ii_icrb0_d_u { | ||
2398 | uint64_t ii_icrb0_d_regval; | ||
2399 | struct { | ||
2400 | uint64_t id_pa_be : 43; | ||
2401 | uint64_t id_bte_op : 1; | ||
2402 | uint64_t id_pr_psc : 4; | ||
2403 | uint64_t id_pr_cnt : 4; | ||
2404 | uint64_t id_sleep : 1; | ||
2405 | uint64_t id_rsvd : 11; | ||
2406 | } ii_icrb0_d_fld_s; | ||
2407 | } ii_icrb0_d_u_t; | ||
2408 | |||
2409 | |||
2410 | /************************************************************************ | ||
2411 | * * | ||
2412 | * Description: There are 15 CRB Entries (ICRB0 to ICRBE) that are * | ||
2413 | * used for Crosstalk operations (both cacheline and partial * | ||
2414 | * operations) or BTE/IO. Because the CRB entries are very wide, five * | ||
2415 | * registers (_A to _E) are required to read and write each entry. * | ||
2416 | * * | ||
2417 | ************************************************************************/ | ||
2418 | |||
2419 | typedef union ii_icrb0_e_u { | ||
2420 | uint64_t ii_icrb0_e_regval; | ||
2421 | struct { | ||
2422 | uint64_t ie_timeout : 8; | ||
2423 | uint64_t ie_context : 15; | ||
2424 | uint64_t ie_rsvd : 1; | ||
2425 | uint64_t ie_tvld : 1; | ||
2426 | uint64_t ie_cvld : 1; | ||
2427 | uint64_t ie_rsvd_0 : 38; | ||
2428 | } ii_icrb0_e_fld_s; | ||
2429 | } ii_icrb0_e_u_t; | ||
2430 | |||
2431 | |||
2432 | /************************************************************************ | ||
2433 | * * | ||
2434 | * This register contains the lower 64 bits of the header of the * | ||
2435 | * spurious message captured by II. Valid when the SP_MSG bit in ICMR * | ||
2436 | * register is set. * | ||
2437 | * * | ||
2438 | ************************************************************************/ | ||
2439 | |||
2440 | typedef union ii_icsml_u { | ||
2441 | uint64_t ii_icsml_regval; | ||
2442 | struct { | ||
2443 | uint64_t i_tt_addr : 47; | ||
2444 | uint64_t i_newsuppl_ex : 14; | ||
2445 | uint64_t i_reserved : 2; | ||
2446 | uint64_t i_overflow : 1; | ||
2447 | } ii_icsml_fld_s; | ||
2448 | } ii_icsml_u_t; | ||
2449 | |||
2450 | |||
2451 | /************************************************************************ | ||
2452 | * * | ||
2453 | * This register contains the middle 64 bits of the header of the * | ||
2454 | * spurious message captured by II. Valid when the SP_MSG bit in ICMR * | ||
2455 | * register is set. * | ||
2456 | * * | ||
2457 | ************************************************************************/ | ||
2458 | |||
2459 | typedef union ii_icsmm_u { | ||
2460 | uint64_t ii_icsmm_regval; | ||
2461 | struct { | ||
2462 | uint64_t i_tt_ack_cnt : 11; | ||
2463 | uint64_t i_reserved : 53; | ||
2464 | } ii_icsmm_fld_s; | ||
2465 | } ii_icsmm_u_t; | ||
2466 | |||
2467 | |||
2468 | /************************************************************************ | ||
2469 | * * | ||
2470 | * This register contains the microscopic state, all the inputs to * | ||
2471 | * the protocol table, captured with the spurious message. Valid when * | ||
2472 | * the SP_MSG bit in the ICMR register is set. * | ||
2473 | * * | ||
2474 | ************************************************************************/ | ||
2475 | |||
2476 | typedef union ii_icsmh_u { | ||
2477 | uint64_t ii_icsmh_regval; | ||
2478 | struct { | ||
2479 | uint64_t i_tt_vld : 1; | ||
2480 | uint64_t i_xerr : 1; | ||
2481 | uint64_t i_ft_cwact_o : 1; | ||
2482 | uint64_t i_ft_wact_o : 1; | ||
2483 | uint64_t i_ft_active_o : 1; | ||
2484 | uint64_t i_sync : 1; | ||
2485 | uint64_t i_mnusg : 1; | ||
2486 | uint64_t i_mnusz : 1; | ||
2487 | uint64_t i_plusz : 1; | ||
2488 | uint64_t i_plusg : 1; | ||
2489 | uint64_t i_tt_exc : 5; | ||
2490 | uint64_t i_tt_wb : 1; | ||
2491 | uint64_t i_tt_hold : 1; | ||
2492 | uint64_t i_tt_ack : 1; | ||
2493 | uint64_t i_tt_resp : 1; | ||
2494 | uint64_t i_tt_intvn : 1; | ||
2495 | uint64_t i_g_stall_bte1 : 1; | ||
2496 | uint64_t i_g_stall_bte0 : 1; | ||
2497 | uint64_t i_g_stall_il : 1; | ||
2498 | uint64_t i_g_stall_ib : 1; | ||
2499 | uint64_t i_tt_imsg : 8; | ||
2500 | uint64_t i_tt_imsgtype : 2; | ||
2501 | uint64_t i_tt_use_old : 1; | ||
2502 | uint64_t i_tt_respreqd : 1; | ||
2503 | uint64_t i_tt_bte_num : 1; | ||
2504 | uint64_t i_cbn : 1; | ||
2505 | uint64_t i_match : 1; | ||
2506 | uint64_t i_rpcnt_lt_34 : 1; | ||
2507 | uint64_t i_rpcnt_ge_34 : 1; | ||
2508 | uint64_t i_rpcnt_lt_18 : 1; | ||
2509 | uint64_t i_rpcnt_ge_18 : 1; | ||
2510 | uint64_t i_rpcnt_lt_2 : 1; | ||
2511 | uint64_t i_rpcnt_ge_2 : 1; | ||
2512 | uint64_t i_rqcnt_lt_18 : 1; | ||
2513 | uint64_t i_rqcnt_ge_18 : 1; | ||
2514 | uint64_t i_rqcnt_lt_2 : 1; | ||
2515 | uint64_t i_rqcnt_ge_2 : 1; | ||
2516 | uint64_t i_tt_device : 7; | ||
2517 | uint64_t i_tt_init : 3; | ||
2518 | uint64_t i_reserved : 5; | ||
2519 | } ii_icsmh_fld_s; | ||
2520 | } ii_icsmh_u_t; | ||
2521 | |||
2522 | |||
2523 | /************************************************************************ | ||
2524 | * * | ||
2525 | * The Shub DEBUG unit provides a 3-bit selection signal to the * | ||
2526 | * II core and a 3-bit selection signal to the fsbclk domain in the II * | ||
2527 | * wrapper. * | ||
2528 | * * | ||
2529 | ************************************************************************/ | ||
2530 | |||
2531 | typedef union ii_idbss_u { | ||
2532 | uint64_t ii_idbss_regval; | ||
2533 | struct { | ||
2534 | uint64_t i_iioclk_core_submenu : 3; | ||
2535 | uint64_t i_rsvd : 5; | ||
2536 | uint64_t i_fsbclk_wrapper_submenu : 3; | ||
2537 | uint64_t i_rsvd_1 : 5; | ||
2538 | uint64_t i_iioclk_menu : 5; | ||
2539 | uint64_t i_rsvd_2 : 43; | ||
2540 | } ii_idbss_fld_s; | ||
2541 | } ii_idbss_u_t; | ||
2542 | |||
2543 | |||
2544 | /************************************************************************ | ||
2545 | * * | ||
2546 | * Description: This register is used to set up the length for a * | ||
2547 | * transfer and then to monitor the progress of that transfer. This * | ||
2548 | * register needs to be initialized before a transfer is started. A * | ||
2549 | * legitimate write to this register will set the Busy bit, clear the * | ||
2550 | * Error bit, and initialize the length to the value desired. * | ||
2551 | * While the transfer is in progress, hardware will decrement the * | ||
2552 | * length field with each successful block that is copied. Once the * | ||
2553 | * transfer completes, hardware will clear the Busy bit. The length * | ||
2554 | * field will also contain the number of cache lines left to be * | ||
2555 | * transferred. * | ||
2556 | * * | ||
2557 | ************************************************************************/ | ||
2558 | |||
2559 | typedef union ii_ibls0_u { | ||
2560 | uint64_t ii_ibls0_regval; | ||
2561 | struct { | ||
2562 | uint64_t i_length : 16; | ||
2563 | uint64_t i_error : 1; | ||
2564 | uint64_t i_rsvd_1 : 3; | ||
2565 | uint64_t i_busy : 1; | ||
2566 | uint64_t i_rsvd : 43; | ||
2567 | } ii_ibls0_fld_s; | ||
2568 | } ii_ibls0_u_t; | ||
2569 | |||
2570 | |||
2571 | /************************************************************************ | ||
2572 | * * | ||
2573 | * This register should be loaded before a transfer is started. The * | ||
2574 | * address to be loaded in bits 39:0 is the 40-bit TRex+ physical * | ||
2575 | * address as described in Section 1.3, Figure2 and Figure3. Since * | ||
2576 | * the bottom 7 bits of the address are always taken to be zero, BTE * | ||
2577 | * transfers are always cacheline-aligned. * | ||
2578 | * * | ||
2579 | ************************************************************************/ | ||
2580 | |||
2581 | typedef union ii_ibsa0_u { | ||
2582 | uint64_t ii_ibsa0_regval; | ||
2583 | struct { | ||
2584 | uint64_t i_rsvd_1 : 7; | ||
2585 | uint64_t i_addr : 42; | ||
2586 | uint64_t i_rsvd : 15; | ||
2587 | } ii_ibsa0_fld_s; | ||
2588 | } ii_ibsa0_u_t; | ||
2589 | |||
2590 | |||
2591 | /************************************************************************ | ||
2592 | * * | ||
2593 | * This register should be loaded before a transfer is started. The * | ||
2594 | * address to be loaded in bits 39:0 is the 40-bit TRex+ physical * | ||
2595 | * address as described in Section 1.3, Figure2 and Figure3. Since * | ||
2596 | * the bottom 7 bits of the address are always taken to be zero, BTE * | ||
2597 | * transfers are always cacheline-aligned. * | ||
2598 | * * | ||
2599 | ************************************************************************/ | ||
2600 | |||
2601 | typedef union ii_ibda0_u { | ||
2602 | uint64_t ii_ibda0_regval; | ||
2603 | struct { | ||
2604 | uint64_t i_rsvd_1 : 7; | ||
2605 | uint64_t i_addr : 42; | ||
2606 | uint64_t i_rsvd : 15; | ||
2607 | } ii_ibda0_fld_s; | ||
2608 | } ii_ibda0_u_t; | ||
2609 | |||
2610 | |||
2611 | /************************************************************************ | ||
2612 | * * | ||
2613 | * Writing to this register sets up the attributes of the transfer * | ||
2614 | * and initiates the transfer operation. Reading this register has * | ||
2615 | * the side effect of terminating any transfer in progress. Note: * | ||
2616 | * stopping a transfer midstream could have an adverse impact on the * | ||
2617 | * other BTE. If a BTE stream has to be stopped (due to error * | ||
2618 | * handling for example), both BTE streams should be stopped and * | ||
2619 | * their transfers discarded. * | ||
2620 | * * | ||
2621 | ************************************************************************/ | ||
2622 | |||
2623 | typedef union ii_ibct0_u { | ||
2624 | uint64_t ii_ibct0_regval; | ||
2625 | struct { | ||
2626 | uint64_t i_zerofill : 1; | ||
2627 | uint64_t i_rsvd_2 : 3; | ||
2628 | uint64_t i_notify : 1; | ||
2629 | uint64_t i_rsvd_1 : 3; | ||
2630 | uint64_t i_poison : 1; | ||
2631 | uint64_t i_rsvd : 55; | ||
2632 | } ii_ibct0_fld_s; | ||
2633 | } ii_ibct0_u_t; | ||
2634 | |||
2635 | |||
2636 | /************************************************************************ | ||
2637 | * * | ||
2638 | * This register contains the address to which the WINV is sent. * | ||
2639 | * This address has to be cache line aligned. * | ||
2640 | * * | ||
2641 | ************************************************************************/ | ||
2642 | |||
2643 | typedef union ii_ibna0_u { | ||
2644 | uint64_t ii_ibna0_regval; | ||
2645 | struct { | ||
2646 | uint64_t i_rsvd_1 : 7; | ||
2647 | uint64_t i_addr : 42; | ||
2648 | uint64_t i_rsvd : 15; | ||
2649 | } ii_ibna0_fld_s; | ||
2650 | } ii_ibna0_u_t; | ||
2651 | |||
2652 | |||
2653 | /************************************************************************ | ||
2654 | * * | ||
2655 | * This register contains the programmable level as well as the node * | ||
2656 | * ID and PI unit of the processor to which the interrupt will be * | ||
2657 | * sent. * | ||
2658 | * * | ||
2659 | ************************************************************************/ | ||
2660 | |||
2661 | typedef union ii_ibia0_u { | ||
2662 | uint64_t ii_ibia0_regval; | ||
2663 | struct { | ||
2664 | uint64_t i_rsvd_2 : 1; | ||
2665 | uint64_t i_node_id : 11; | ||
2666 | uint64_t i_rsvd_1 : 4; | ||
2667 | uint64_t i_level : 7; | ||
2668 | uint64_t i_rsvd : 41; | ||
2669 | } ii_ibia0_fld_s; | ||
2670 | } ii_ibia0_u_t; | ||
2671 | |||
2672 | |||
2673 | /************************************************************************ | ||
2674 | * * | ||
2675 | * Description: This register is used to set up the length for a * | ||
2676 | * transfer and then to monitor the progress of that transfer. This * | ||
2677 | * register needs to be initialized before a transfer is started. A * | ||
2678 | * legitimate write to this register will set the Busy bit, clear the * | ||
2679 | * Error bit, and initialize the length to the value desired. * | ||
2680 | * While the transfer is in progress, hardware will decrement the * | ||
2681 | * length field with each successful block that is copied. Once the * | ||
2682 | * transfer completes, hardware will clear the Busy bit. The length * | ||
2683 | * field will also contain the number of cache lines left to be * | ||
2684 | * transferred. * | ||
2685 | * * | ||
2686 | ************************************************************************/ | ||
2687 | |||
2688 | typedef union ii_ibls1_u { | ||
2689 | uint64_t ii_ibls1_regval; | ||
2690 | struct { | ||
2691 | uint64_t i_length : 16; | ||
2692 | uint64_t i_error : 1; | ||
2693 | uint64_t i_rsvd_1 : 3; | ||
2694 | uint64_t i_busy : 1; | ||
2695 | uint64_t i_rsvd : 43; | ||
2696 | } ii_ibls1_fld_s; | ||
2697 | } ii_ibls1_u_t; | ||
2698 | |||
2699 | |||
2700 | /************************************************************************ | ||
2701 | * * | ||
2702 | * This register should be loaded before a transfer is started. The * | ||
2703 | * address to be loaded in bits 39:0 is the 40-bit TRex+ physical * | ||
2704 | * address as described in Section 1.3, Figure2 and Figure3. Since * | ||
2705 | * the bottom 7 bits of the address are always taken to be zero, BTE * | ||
2706 | * transfers are always cacheline-aligned. * | ||
2707 | * * | ||
2708 | ************************************************************************/ | ||
2709 | |||
2710 | typedef union ii_ibsa1_u { | ||
2711 | uint64_t ii_ibsa1_regval; | ||
2712 | struct { | ||
2713 | uint64_t i_rsvd_1 : 7; | ||
2714 | uint64_t i_addr : 33; | ||
2715 | uint64_t i_rsvd : 24; | ||
2716 | } ii_ibsa1_fld_s; | ||
2717 | } ii_ibsa1_u_t; | ||
2718 | |||
2719 | |||
2720 | /************************************************************************ | ||
2721 | * * | ||
2722 | * This register should be loaded before a transfer is started. The * | ||
2723 | * address to be loaded in bits 39:0 is the 40-bit TRex+ physical * | ||
2724 | * address as described in Section 1.3, Figure2 and Figure3. Since * | ||
2725 | * the bottom 7 bits of the address are always taken to be zero, BTE * | ||
2726 | * transfers are always cacheline-aligned. * | ||
2727 | * * | ||
2728 | ************************************************************************/ | ||
2729 | |||
2730 | typedef union ii_ibda1_u { | ||
2731 | uint64_t ii_ibda1_regval; | ||
2732 | struct { | ||
2733 | uint64_t i_rsvd_1 : 7; | ||
2734 | uint64_t i_addr : 33; | ||
2735 | uint64_t i_rsvd : 24; | ||
2736 | } ii_ibda1_fld_s; | ||
2737 | } ii_ibda1_u_t; | ||
2738 | |||
2739 | |||
2740 | /************************************************************************ | ||
2741 | * * | ||
2742 | * Writing to this register sets up the attributes of the transfer * | ||
2743 | * and initiates the transfer operation. Reading this register has * | ||
2744 | * the side effect of terminating any transfer in progress. Note: * | ||
2745 | * stopping a transfer midstream could have an adverse impact on the * | ||
2746 | * other BTE. If a BTE stream has to be stopped (due to error * | ||
2747 | * handling for example), both BTE streams should be stopped and * | ||
2748 | * their transfers discarded. * | ||
2749 | * * | ||
2750 | ************************************************************************/ | ||
2751 | |||
2752 | typedef union ii_ibct1_u { | ||
2753 | uint64_t ii_ibct1_regval; | ||
2754 | struct { | ||
2755 | uint64_t i_zerofill : 1; | ||
2756 | uint64_t i_rsvd_2 : 3; | ||
2757 | uint64_t i_notify : 1; | ||
2758 | uint64_t i_rsvd_1 : 3; | ||
2759 | uint64_t i_poison : 1; | ||
2760 | uint64_t i_rsvd : 55; | ||
2761 | } ii_ibct1_fld_s; | ||
2762 | } ii_ibct1_u_t; | ||
2763 | |||
2764 | |||
2765 | /************************************************************************ | ||
2766 | * * | ||
2767 | * This register contains the address to which the WINV is sent. * | ||
2768 | * This address has to be cache line aligned. * | ||
2769 | * * | ||
2770 | ************************************************************************/ | ||
2771 | |||
2772 | typedef union ii_ibna1_u { | ||
2773 | uint64_t ii_ibna1_regval; | ||
2774 | struct { | ||
2775 | uint64_t i_rsvd_1 : 7; | ||
2776 | uint64_t i_addr : 33; | ||
2777 | uint64_t i_rsvd : 24; | ||
2778 | } ii_ibna1_fld_s; | ||
2779 | } ii_ibna1_u_t; | ||
2780 | |||
2781 | |||
2782 | /************************************************************************ | ||
2783 | * * | ||
2784 | * This register contains the programmable level as well as the node * | ||
2785 | * ID and PI unit of the processor to which the interrupt will be * | ||
2786 | * sent. * | ||
2787 | * * | ||
2788 | ************************************************************************/ | ||
2789 | |||
2790 | typedef union ii_ibia1_u { | ||
2791 | uint64_t ii_ibia1_regval; | ||
2792 | struct { | ||
2793 | uint64_t i_pi_id : 1; | ||
2794 | uint64_t i_node_id : 8; | ||
2795 | uint64_t i_rsvd_1 : 7; | ||
2796 | uint64_t i_level : 7; | ||
2797 | uint64_t i_rsvd : 41; | ||
2798 | } ii_ibia1_fld_s; | ||
2799 | } ii_ibia1_u_t; | ||
2800 | |||
2801 | |||
2802 | /************************************************************************ | ||
2803 | * * | ||
2804 | * This register defines the resources that feed information into * | ||
2805 | * the two performance counters located in the IO Performance * | ||
2806 | * Profiling Register. There are 17 different quantities that can be * | ||
2807 | * measured. Given these 17 different options, the two performance * | ||
2808 | * counters have 15 of them in common; menu selections 0 through 0xE * | ||
2809 | * are identical for each performance counter. As for the other two * | ||
2810 | * options, one is available from one performance counter and the * | ||
2811 | * other is available from the other performance counter. Hence, the * | ||
2812 | * II supports all 17*16=272 possible combinations of quantities to * | ||
2813 | * measure. * | ||
2814 | * * | ||
2815 | ************************************************************************/ | ||
2816 | |||
2817 | typedef union ii_ipcr_u { | ||
2818 | uint64_t ii_ipcr_regval; | ||
2819 | struct { | ||
2820 | uint64_t i_ippr0_c : 4; | ||
2821 | uint64_t i_ippr1_c : 4; | ||
2822 | uint64_t i_icct : 8; | ||
2823 | uint64_t i_rsvd : 48; | ||
2824 | } ii_ipcr_fld_s; | ||
2825 | } ii_ipcr_u_t; | ||
2826 | |||
2827 | |||
2828 | /************************************************************************ | ||
2829 | * * | ||
2830 | * * | ||
2831 | * * | ||
2832 | ************************************************************************/ | ||
2833 | |||
2834 | typedef union ii_ippr_u { | ||
2835 | uint64_t ii_ippr_regval; | ||
2836 | struct { | ||
2837 | uint64_t i_ippr0 : 32; | ||
2838 | uint64_t i_ippr1 : 32; | ||
2839 | } ii_ippr_fld_s; | ||
2840 | } ii_ippr_u_t; | ||
2841 | |||
2842 | |||
2843 | |||
2844 | /************************************************************************** | ||
2845 | * * | ||
2846 | * The following defines which were not formed into structures are * | ||
2847 | * probably indentical to another register, and the name of the * | ||
2848 | * register is provided against each of these registers. This * | ||
2849 | * information needs to be checked carefully * | ||
2850 | * * | ||
2851 | * IIO_ICRB1_A IIO_ICRB0_A * | ||
2852 | * IIO_ICRB1_B IIO_ICRB0_B * | ||
2853 | * IIO_ICRB1_C IIO_ICRB0_C * | ||
2854 | * IIO_ICRB1_D IIO_ICRB0_D * | ||
2855 | * IIO_ICRB1_E IIO_ICRB0_E * | ||
2856 | * IIO_ICRB2_A IIO_ICRB0_A * | ||
2857 | * IIO_ICRB2_B IIO_ICRB0_B * | ||
2858 | * IIO_ICRB2_C IIO_ICRB0_C * | ||
2859 | * IIO_ICRB2_D IIO_ICRB0_D * | ||
2860 | * IIO_ICRB2_E IIO_ICRB0_E * | ||
2861 | * IIO_ICRB3_A IIO_ICRB0_A * | ||
2862 | * IIO_ICRB3_B IIO_ICRB0_B * | ||
2863 | * IIO_ICRB3_C IIO_ICRB0_C * | ||
2864 | * IIO_ICRB3_D IIO_ICRB0_D * | ||
2865 | * IIO_ICRB3_E IIO_ICRB0_E * | ||
2866 | * IIO_ICRB4_A IIO_ICRB0_A * | ||
2867 | * IIO_ICRB4_B IIO_ICRB0_B * | ||
2868 | * IIO_ICRB4_C IIO_ICRB0_C * | ||
2869 | * IIO_ICRB4_D IIO_ICRB0_D * | ||
2870 | * IIO_ICRB4_E IIO_ICRB0_E * | ||
2871 | * IIO_ICRB5_A IIO_ICRB0_A * | ||
2872 | * IIO_ICRB5_B IIO_ICRB0_B * | ||
2873 | * IIO_ICRB5_C IIO_ICRB0_C * | ||
2874 | * IIO_ICRB5_D IIO_ICRB0_D * | ||
2875 | * IIO_ICRB5_E IIO_ICRB0_E * | ||
2876 | * IIO_ICRB6_A IIO_ICRB0_A * | ||
2877 | * IIO_ICRB6_B IIO_ICRB0_B * | ||
2878 | * IIO_ICRB6_C IIO_ICRB0_C * | ||
2879 | * IIO_ICRB6_D IIO_ICRB0_D * | ||
2880 | * IIO_ICRB6_E IIO_ICRB0_E * | ||
2881 | * IIO_ICRB7_A IIO_ICRB0_A * | ||
2882 | * IIO_ICRB7_B IIO_ICRB0_B * | ||
2883 | * IIO_ICRB7_C IIO_ICRB0_C * | ||
2884 | * IIO_ICRB7_D IIO_ICRB0_D * | ||
2885 | * IIO_ICRB7_E IIO_ICRB0_E * | ||
2886 | * IIO_ICRB8_A IIO_ICRB0_A * | ||
2887 | * IIO_ICRB8_B IIO_ICRB0_B * | ||
2888 | * IIO_ICRB8_C IIO_ICRB0_C * | ||
2889 | * IIO_ICRB8_D IIO_ICRB0_D * | ||
2890 | * IIO_ICRB8_E IIO_ICRB0_E * | ||
2891 | * IIO_ICRB9_A IIO_ICRB0_A * | ||
2892 | * IIO_ICRB9_B IIO_ICRB0_B * | ||
2893 | * IIO_ICRB9_C IIO_ICRB0_C * | ||
2894 | * IIO_ICRB9_D IIO_ICRB0_D * | ||
2895 | * IIO_ICRB9_E IIO_ICRB0_E * | ||
2896 | * IIO_ICRBA_A IIO_ICRB0_A * | ||
2897 | * IIO_ICRBA_B IIO_ICRB0_B * | ||
2898 | * IIO_ICRBA_C IIO_ICRB0_C * | ||
2899 | * IIO_ICRBA_D IIO_ICRB0_D * | ||
2900 | * IIO_ICRBA_E IIO_ICRB0_E * | ||
2901 | * IIO_ICRBB_A IIO_ICRB0_A * | ||
2902 | * IIO_ICRBB_B IIO_ICRB0_B * | ||
2903 | * IIO_ICRBB_C IIO_ICRB0_C * | ||
2904 | * IIO_ICRBB_D IIO_ICRB0_D * | ||
2905 | * IIO_ICRBB_E IIO_ICRB0_E * | ||
2906 | * IIO_ICRBC_A IIO_ICRB0_A * | ||
2907 | * IIO_ICRBC_B IIO_ICRB0_B * | ||
2908 | * IIO_ICRBC_C IIO_ICRB0_C * | ||
2909 | * IIO_ICRBC_D IIO_ICRB0_D * | ||
2910 | * IIO_ICRBC_E IIO_ICRB0_E * | ||
2911 | * IIO_ICRBD_A IIO_ICRB0_A * | ||
2912 | * IIO_ICRBD_B IIO_ICRB0_B * | ||
2913 | * IIO_ICRBD_C IIO_ICRB0_C * | ||
2914 | * IIO_ICRBD_D IIO_ICRB0_D * | ||
2915 | * IIO_ICRBD_E IIO_ICRB0_E * | ||
2916 | * IIO_ICRBE_A IIO_ICRB0_A * | ||
2917 | * IIO_ICRBE_B IIO_ICRB0_B * | ||
2918 | * IIO_ICRBE_C IIO_ICRB0_C * | ||
2919 | * IIO_ICRBE_D IIO_ICRB0_D * | ||
2920 | * IIO_ICRBE_E IIO_ICRB0_E * | ||
2921 | * * | ||
2922 | **************************************************************************/ | ||
2923 | |||
2924 | |||
2925 | /* | ||
2926 | * Slightly friendlier names for some common registers. | ||
2927 | */ | ||
2928 | #define IIO_WIDGET IIO_WID /* Widget identification */ | ||
2929 | #define IIO_WIDGET_STAT IIO_WSTAT /* Widget status register */ | ||
2930 | #define IIO_WIDGET_CTRL IIO_WCR /* Widget control register */ | ||
2931 | #define IIO_PROTECT IIO_ILAPR /* IO interface protection */ | ||
2932 | #define IIO_PROTECT_OVRRD IIO_ILAPO /* IO protect override */ | ||
2933 | #define IIO_OUTWIDGET_ACCESS IIO_IOWA /* Outbound widget access */ | ||
2934 | #define IIO_INWIDGET_ACCESS IIO_IIWA /* Inbound widget access */ | ||
2935 | #define IIO_INDEV_ERR_MASK IIO_IIDEM /* Inbound device error mask */ | ||
2936 | #define IIO_LLP_CSR IIO_ILCSR /* LLP control and status */ | ||
2937 | #define IIO_LLP_LOG IIO_ILLR /* LLP log */ | ||
2938 | #define IIO_XTALKCC_TOUT IIO_IXCC /* Xtalk credit count timeout*/ | ||
2939 | #define IIO_XTALKTT_TOUT IIO_IXTT /* Xtalk tail timeout */ | ||
2940 | #define IIO_IO_ERR_CLR IIO_IECLR /* IO error clear */ | ||
2941 | #define IIO_IGFX_0 IIO_IGFX0 | ||
2942 | #define IIO_IGFX_1 IIO_IGFX1 | ||
2943 | #define IIO_IBCT_0 IIO_IBCT0 | ||
2944 | #define IIO_IBCT_1 IIO_IBCT1 | ||
2945 | #define IIO_IBLS_0 IIO_IBLS0 | ||
2946 | #define IIO_IBLS_1 IIO_IBLS1 | ||
2947 | #define IIO_IBSA_0 IIO_IBSA0 | ||
2948 | #define IIO_IBSA_1 IIO_IBSA1 | ||
2949 | #define IIO_IBDA_0 IIO_IBDA0 | ||
2950 | #define IIO_IBDA_1 IIO_IBDA1 | ||
2951 | #define IIO_IBNA_0 IIO_IBNA0 | ||
2952 | #define IIO_IBNA_1 IIO_IBNA1 | ||
2953 | #define IIO_IBIA_0 IIO_IBIA0 | ||
2954 | #define IIO_IBIA_1 IIO_IBIA1 | ||
2955 | #define IIO_IOPRB_0 IIO_IPRB0 | ||
2956 | |||
2957 | #define IIO_PRTE_A(_x) (IIO_IPRTE0_A + (8 * (_x))) | ||
2958 | #define IIO_PRTE_B(_x) (IIO_IPRTE0_B + (8 * (_x))) | ||
2959 | #define IIO_NUM_PRTES 8 /* Total number of PRB table entries */ | ||
2960 | #define IIO_WIDPRTE_A(x) IIO_PRTE_A(((x) - 8)) /* widget ID to its PRTE num */ | ||
2961 | #define IIO_WIDPRTE_B(x) IIO_PRTE_B(((x) - 8)) /* widget ID to its PRTE num */ | ||
2962 | |||
2963 | #define IIO_NUM_IPRBS (9) | ||
2964 | |||
2965 | #define IIO_LLP_CSR_IS_UP 0x00002000 | ||
2966 | #define IIO_LLP_CSR_LLP_STAT_MASK 0x00003000 | ||
2967 | #define IIO_LLP_CSR_LLP_STAT_SHFT 12 | ||
2968 | |||
2969 | #define IIO_LLP_CB_MAX 0xffff /* in ILLR CB_CNT, Max Check Bit errors */ | ||
2970 | #define IIO_LLP_SN_MAX 0xffff /* in ILLR SN_CNT, Max Sequence Number errors */ | ||
2971 | |||
2972 | /* key to IIO_PROTECT_OVRRD */ | ||
2973 | #define IIO_PROTECT_OVRRD_KEY 0x53474972756c6573ull /* "SGIrules" */ | ||
2974 | |||
2975 | /* BTE register names */ | ||
2976 | #define IIO_BTE_STAT_0 IIO_IBLS_0 /* Also BTE length/status 0 */ | ||
2977 | #define IIO_BTE_SRC_0 IIO_IBSA_0 /* Also BTE source address 0 */ | ||
2978 | #define IIO_BTE_DEST_0 IIO_IBDA_0 /* Also BTE dest. address 0 */ | ||
2979 | #define IIO_BTE_CTRL_0 IIO_IBCT_0 /* Also BTE control/terminate 0 */ | ||
2980 | #define IIO_BTE_NOTIFY_0 IIO_IBNA_0 /* Also BTE notification 0 */ | ||
2981 | #define IIO_BTE_INT_0 IIO_IBIA_0 /* Also BTE interrupt 0 */ | ||
2982 | #define IIO_BTE_OFF_0 0 /* Base offset from BTE 0 regs. */ | ||
2983 | #define IIO_BTE_OFF_1 (IIO_IBLS_1 - IIO_IBLS_0) /* Offset from base to BTE 1 */ | ||
2984 | |||
2985 | /* BTE register offsets from base */ | ||
2986 | #define BTEOFF_STAT 0 | ||
2987 | #define BTEOFF_SRC (IIO_BTE_SRC_0 - IIO_BTE_STAT_0) | ||
2988 | #define BTEOFF_DEST (IIO_BTE_DEST_0 - IIO_BTE_STAT_0) | ||
2989 | #define BTEOFF_CTRL (IIO_BTE_CTRL_0 - IIO_BTE_STAT_0) | ||
2990 | #define BTEOFF_NOTIFY (IIO_BTE_NOTIFY_0 - IIO_BTE_STAT_0) | ||
2991 | #define BTEOFF_INT (IIO_BTE_INT_0 - IIO_BTE_STAT_0) | ||
2992 | |||
2993 | |||
2994 | /* names used in shub diags */ | ||
2995 | #define IIO_BASE_BTE0 IIO_IBLS_0 | ||
2996 | #define IIO_BASE_BTE1 IIO_IBLS_1 | ||
2997 | |||
2998 | /* | ||
2999 | * Macro which takes the widget number, and returns the | ||
3000 | * IO PRB address of that widget. | ||
3001 | * value _x is expected to be a widget number in the range | ||
3002 | * 0, 8 - 0xF | ||
3003 | */ | ||
3004 | #define IIO_IOPRB(_x) (IIO_IOPRB_0 + ( ( (_x) < HUB_WIDGET_ID_MIN ? \ | ||
3005 | (_x) : \ | ||
3006 | (_x) - (HUB_WIDGET_ID_MIN-1)) << 3) ) | ||
3007 | |||
3008 | |||
3009 | /* GFX Flow Control Node/Widget Register */ | ||
3010 | #define IIO_IGFX_W_NUM_BITS 4 /* size of widget num field */ | ||
3011 | #define IIO_IGFX_W_NUM_MASK ((1<<IIO_IGFX_W_NUM_BITS)-1) | ||
3012 | #define IIO_IGFX_W_NUM_SHIFT 0 | ||
3013 | #define IIO_IGFX_PI_NUM_BITS 1 /* size of PI num field */ | ||
3014 | #define IIO_IGFX_PI_NUM_MASK ((1<<IIO_IGFX_PI_NUM_BITS)-1) | ||
3015 | #define IIO_IGFX_PI_NUM_SHIFT 4 | ||
3016 | #define IIO_IGFX_N_NUM_BITS 8 /* size of node num field */ | ||
3017 | #define IIO_IGFX_N_NUM_MASK ((1<<IIO_IGFX_N_NUM_BITS)-1) | ||
3018 | #define IIO_IGFX_N_NUM_SHIFT 5 | ||
3019 | #define IIO_IGFX_P_NUM_BITS 1 /* size of processor num field */ | ||
3020 | #define IIO_IGFX_P_NUM_MASK ((1<<IIO_IGFX_P_NUM_BITS)-1) | ||
3021 | #define IIO_IGFX_P_NUM_SHIFT 16 | ||
3022 | #define IIO_IGFX_INIT(widget, pi, node, cpu) (\ | ||
3023 | (((widget) & IIO_IGFX_W_NUM_MASK) << IIO_IGFX_W_NUM_SHIFT) | \ | ||
3024 | (((pi) & IIO_IGFX_PI_NUM_MASK)<< IIO_IGFX_PI_NUM_SHIFT)| \ | ||
3025 | (((node) & IIO_IGFX_N_NUM_MASK) << IIO_IGFX_N_NUM_SHIFT) | \ | ||
3026 | (((cpu) & IIO_IGFX_P_NUM_MASK) << IIO_IGFX_P_NUM_SHIFT)) | ||
3027 | |||
3028 | |||
3029 | /* Scratch registers (all bits available) */ | ||
3030 | #define IIO_SCRATCH_REG0 IIO_ISCR0 | ||
3031 | #define IIO_SCRATCH_REG1 IIO_ISCR1 | ||
3032 | #define IIO_SCRATCH_MASK 0xffffffffffffffffUL | ||
3033 | |||
3034 | #define IIO_SCRATCH_BIT0_0 0x0000000000000001UL | ||
3035 | #define IIO_SCRATCH_BIT0_1 0x0000000000000002UL | ||
3036 | #define IIO_SCRATCH_BIT0_2 0x0000000000000004UL | ||
3037 | #define IIO_SCRATCH_BIT0_3 0x0000000000000008UL | ||
3038 | #define IIO_SCRATCH_BIT0_4 0x0000000000000010UL | ||
3039 | #define IIO_SCRATCH_BIT0_5 0x0000000000000020UL | ||
3040 | #define IIO_SCRATCH_BIT0_6 0x0000000000000040UL | ||
3041 | #define IIO_SCRATCH_BIT0_7 0x0000000000000080UL | ||
3042 | #define IIO_SCRATCH_BIT0_8 0x0000000000000100UL | ||
3043 | #define IIO_SCRATCH_BIT0_9 0x0000000000000200UL | ||
3044 | #define IIO_SCRATCH_BIT0_A 0x0000000000000400UL | ||
3045 | |||
3046 | #define IIO_SCRATCH_BIT1_0 0x0000000000000001UL | ||
3047 | #define IIO_SCRATCH_BIT1_1 0x0000000000000002UL | ||
3048 | /* IO Translation Table Entries */ | ||
3049 | #define IIO_NUM_ITTES 7 /* ITTEs numbered 0..6 */ | ||
3050 | /* Hw manuals number them 1..7! */ | ||
3051 | /* | ||
3052 | * IIO_IMEM Register fields. | ||
3053 | */ | ||
3054 | #define IIO_IMEM_W0ESD 0x1UL /* Widget 0 shut down due to error */ | ||
3055 | #define IIO_IMEM_B0ESD (1UL << 4) /* BTE 0 shut down due to error */ | ||
3056 | #define IIO_IMEM_B1ESD (1UL << 8) /* BTE 1 Shut down due to error */ | ||
3057 | |||
3058 | /* | ||
3059 | * As a permanent workaround for a bug in the PI side of the shub, we've | ||
3060 | * redefined big window 7 as small window 0. | ||
3061 | XXX does this still apply for SN1?? | ||
3062 | */ | ||
3063 | #define HUB_NUM_BIG_WINDOW (IIO_NUM_ITTES - 1) | ||
3064 | |||
3065 | /* | ||
3066 | * Use the top big window as a surrogate for the first small window | ||
3067 | */ | ||
3068 | #define SWIN0_BIGWIN HUB_NUM_BIG_WINDOW | ||
3069 | |||
3070 | #define ILCSR_WARM_RESET 0x100 | ||
3071 | |||
3072 | /* | ||
3073 | * CRB manipulation macros | ||
3074 | * The CRB macros are slightly complicated, since there are up to | ||
3075 | * four registers associated with each CRB entry. | ||
3076 | */ | ||
3077 | #define IIO_NUM_CRBS 15 /* Number of CRBs */ | ||
3078 | #define IIO_NUM_PC_CRBS 4 /* Number of partial cache CRBs */ | ||
3079 | #define IIO_ICRB_OFFSET 8 | ||
3080 | #define IIO_ICRB_0 IIO_ICRB0_A | ||
3081 | #define IIO_ICRB_ADDR_SHFT 2 /* Shift to get proper address */ | ||
3082 | /* XXX - This is now tuneable: | ||
3083 | #define IIO_FIRST_PC_ENTRY 12 | ||
3084 | */ | ||
3085 | |||
3086 | #define IIO_ICRB_A(_x) ((u64)(IIO_ICRB_0 + (6 * IIO_ICRB_OFFSET * (_x)))) | ||
3087 | #define IIO_ICRB_B(_x) ((u64)((char *)IIO_ICRB_A(_x) + 1*IIO_ICRB_OFFSET)) | ||
3088 | #define IIO_ICRB_C(_x) ((u64)((char *)IIO_ICRB_A(_x) + 2*IIO_ICRB_OFFSET)) | ||
3089 | #define IIO_ICRB_D(_x) ((u64)((char *)IIO_ICRB_A(_x) + 3*IIO_ICRB_OFFSET)) | ||
3090 | #define IIO_ICRB_E(_x) ((u64)((char *)IIO_ICRB_A(_x) + 4*IIO_ICRB_OFFSET)) | ||
3091 | |||
3092 | #define TNUM_TO_WIDGET_DEV(_tnum) (_tnum & 0x7) | ||
3093 | |||
3094 | /* | ||
3095 | * values for "ecode" field | ||
3096 | */ | ||
3097 | #define IIO_ICRB_ECODE_DERR 0 /* Directory error due to IIO access */ | ||
3098 | #define IIO_ICRB_ECODE_PERR 1 /* Poison error on IO access */ | ||
3099 | #define IIO_ICRB_ECODE_WERR 2 /* Write error by IIO access | ||
3100 | * e.g. WINV to a Read only line. */ | ||
3101 | #define IIO_ICRB_ECODE_AERR 3 /* Access error caused by IIO access */ | ||
3102 | #define IIO_ICRB_ECODE_PWERR 4 /* Error on partial write */ | ||
3103 | #define IIO_ICRB_ECODE_PRERR 5 /* Error on partial read */ | ||
3104 | #define IIO_ICRB_ECODE_TOUT 6 /* CRB timeout before deallocating */ | ||
3105 | #define IIO_ICRB_ECODE_XTERR 7 /* Incoming xtalk pkt had error bit */ | ||
3106 | |||
3107 | /* | ||
3108 | * Values for field imsgtype | ||
3109 | */ | ||
3110 | #define IIO_ICRB_IMSGT_XTALK 0 /* Incoming Meessage from Xtalk */ | ||
3111 | #define IIO_ICRB_IMSGT_BTE 1 /* Incoming message from BTE */ | ||
3112 | #define IIO_ICRB_IMSGT_SN1NET 2 /* Incoming message from SN1 net */ | ||
3113 | #define IIO_ICRB_IMSGT_CRB 3 /* Incoming message from CRB ??? */ | ||
3114 | |||
3115 | /* | ||
3116 | * values for field initiator. | ||
3117 | */ | ||
3118 | #define IIO_ICRB_INIT_XTALK 0 /* Message originated in xtalk */ | ||
3119 | #define IIO_ICRB_INIT_BTE0 0x1 /* Message originated in BTE 0 */ | ||
3120 | #define IIO_ICRB_INIT_SN1NET 0x2 /* Message originated in SN1net */ | ||
3121 | #define IIO_ICRB_INIT_CRB 0x3 /* Message originated in CRB ? */ | ||
3122 | #define IIO_ICRB_INIT_BTE1 0x5 /* MEssage originated in BTE 1 */ | ||
3123 | |||
3124 | /* | ||
3125 | * Number of credits Hub widget has while sending req/response to | ||
3126 | * xbow. | ||
3127 | * Value of 3 is required by Xbow 1.1 | ||
3128 | * We may be able to increase this to 4 with Xbow 1.2. | ||
3129 | */ | ||
3130 | #define HUBII_XBOW_CREDIT 3 | ||
3131 | #define HUBII_XBOW_REV2_CREDIT 4 | ||
3132 | |||
3133 | /* | ||
3134 | * Number of credits that xtalk devices should use when communicating | ||
3135 | * with a SHub (depth of SHub's queue). | ||
3136 | */ | ||
3137 | #define HUB_CREDIT 4 | ||
3138 | |||
3139 | /* | ||
3140 | * Some IIO_PRB fields | ||
3141 | */ | ||
3142 | #define IIO_PRB_MULTI_ERR (1LL << 63) | ||
3143 | #define IIO_PRB_SPUR_RD (1LL << 51) | ||
3144 | #define IIO_PRB_SPUR_WR (1LL << 50) | ||
3145 | #define IIO_PRB_RD_TO (1LL << 49) | ||
3146 | #define IIO_PRB_ERROR (1LL << 48) | ||
3147 | |||
3148 | /************************************************************************* | ||
3149 | |||
3150 | Some of the IIO field masks and shifts are defined here. | ||
3151 | This is in order to maintain compatibility in SN0 and SN1 code | ||
3152 | |||
3153 | **************************************************************************/ | ||
3154 | |||
3155 | /* | ||
3156 | * ICMR register fields | ||
3157 | * (Note: the IIO_ICMR_P_CNT and IIO_ICMR_PC_VLD from Hub are not | ||
3158 | * present in SHub) | ||
3159 | */ | ||
3160 | |||
3161 | #define IIO_ICMR_CRB_VLD_SHFT 20 | ||
3162 | #define IIO_ICMR_CRB_VLD_MASK (0x7fffUL << IIO_ICMR_CRB_VLD_SHFT) | ||
3163 | |||
3164 | #define IIO_ICMR_FC_CNT_SHFT 16 | ||
3165 | #define IIO_ICMR_FC_CNT_MASK (0xf << IIO_ICMR_FC_CNT_SHFT) | ||
3166 | |||
3167 | #define IIO_ICMR_C_CNT_SHFT 4 | ||
3168 | #define IIO_ICMR_C_CNT_MASK (0xf << IIO_ICMR_C_CNT_SHFT) | ||
3169 | |||
3170 | #define IIO_ICMR_PRECISE (1UL << 52) | ||
3171 | #define IIO_ICMR_CLR_RPPD (1UL << 13) | ||
3172 | #define IIO_ICMR_CLR_RQPD (1UL << 12) | ||
3173 | |||
3174 | /* | ||
3175 | * IIO PIO Deallocation register field masks : (IIO_IPDR) | ||
3176 | XXX present but not needed in bedrock? See the manual. | ||
3177 | */ | ||
3178 | #define IIO_IPDR_PND (1 << 4) | ||
3179 | |||
3180 | /* | ||
3181 | * IIO CRB deallocation register field masks: (IIO_ICDR) | ||
3182 | */ | ||
3183 | #define IIO_ICDR_PND (1 << 4) | ||
3184 | |||
3185 | /* | ||
3186 | * IO BTE Length/Status (IIO_IBLS) register bit field definitions | ||
3187 | */ | ||
3188 | #define IBLS_BUSY (0x1UL << 20) | ||
3189 | #define IBLS_ERROR_SHFT 16 | ||
3190 | #define IBLS_ERROR (0x1UL << IBLS_ERROR_SHFT) | ||
3191 | #define IBLS_LENGTH_MASK 0xffff | ||
3192 | |||
3193 | /* | ||
3194 | * IO BTE Control/Terminate register (IBCT) register bit field definitions | ||
3195 | */ | ||
3196 | #define IBCT_POISON (0x1UL << 8) | ||
3197 | #define IBCT_NOTIFY (0x1UL << 4) | ||
3198 | #define IBCT_ZFIL_MODE (0x1UL << 0) | ||
3199 | |||
3200 | /* | ||
3201 | * IIO Incoming Error Packet Header (IIO_IIEPH1/IIO_IIEPH2) | ||
3202 | */ | ||
3203 | #define IIEPH1_VALID (1UL << 44) | ||
3204 | #define IIEPH1_OVERRUN (1UL << 40) | ||
3205 | #define IIEPH1_ERR_TYPE_SHFT 32 | ||
3206 | #define IIEPH1_ERR_TYPE_MASK 0xf | ||
3207 | #define IIEPH1_SOURCE_SHFT 20 | ||
3208 | #define IIEPH1_SOURCE_MASK 11 | ||
3209 | #define IIEPH1_SUPPL_SHFT 8 | ||
3210 | #define IIEPH1_SUPPL_MASK 11 | ||
3211 | #define IIEPH1_CMD_SHFT 0 | ||
3212 | #define IIEPH1_CMD_MASK 7 | ||
3213 | |||
3214 | #define IIEPH2_TAIL (1UL << 40) | ||
3215 | #define IIEPH2_ADDRESS_SHFT 0 | ||
3216 | #define IIEPH2_ADDRESS_MASK 38 | ||
3217 | |||
3218 | #define IIEPH1_ERR_SHORT_REQ 2 | ||
3219 | #define IIEPH1_ERR_SHORT_REPLY 3 | ||
3220 | #define IIEPH1_ERR_LONG_REQ 4 | ||
3221 | #define IIEPH1_ERR_LONG_REPLY 5 | ||
3222 | |||
3223 | /* | ||
3224 | * IO Error Clear register bit field definitions | ||
3225 | */ | ||
3226 | #define IECLR_PI1_FWD_INT (1UL << 31) /* clear PI1_FORWARD_INT in iidsr */ | ||
3227 | #define IECLR_PI0_FWD_INT (1UL << 30) /* clear PI0_FORWARD_INT in iidsr */ | ||
3228 | #define IECLR_SPUR_RD_HDR (1UL << 29) /* clear valid bit in ixss reg */ | ||
3229 | #define IECLR_BTE1 (1UL << 18) /* clear bte error 1 */ | ||
3230 | #define IECLR_BTE0 (1UL << 17) /* clear bte error 0 */ | ||
3231 | #define IECLR_CRAZY (1UL << 16) /* clear crazy bit in wstat reg */ | ||
3232 | #define IECLR_PRB_F (1UL << 15) /* clear err bit in PRB_F reg */ | ||
3233 | #define IECLR_PRB_E (1UL << 14) /* clear err bit in PRB_E reg */ | ||
3234 | #define IECLR_PRB_D (1UL << 13) /* clear err bit in PRB_D reg */ | ||
3235 | #define IECLR_PRB_C (1UL << 12) /* clear err bit in PRB_C reg */ | ||
3236 | #define IECLR_PRB_B (1UL << 11) /* clear err bit in PRB_B reg */ | ||
3237 | #define IECLR_PRB_A (1UL << 10) /* clear err bit in PRB_A reg */ | ||
3238 | #define IECLR_PRB_9 (1UL << 9) /* clear err bit in PRB_9 reg */ | ||
3239 | #define IECLR_PRB_8 (1UL << 8) /* clear err bit in PRB_8 reg */ | ||
3240 | #define IECLR_PRB_0 (1UL << 0) /* clear err bit in PRB_0 reg */ | ||
3241 | |||
3242 | /* | ||
3243 | * IIO CRB control register Fields: IIO_ICCR | ||
3244 | */ | ||
3245 | #define IIO_ICCR_PENDING (0x10000) | ||
3246 | #define IIO_ICCR_CMD_MASK (0xFF) | ||
3247 | #define IIO_ICCR_CMD_SHFT (7) | ||
3248 | #define IIO_ICCR_CMD_NOP (0x0) /* No Op */ | ||
3249 | #define IIO_ICCR_CMD_WAKE (0x100) /* Reactivate CRB entry and process */ | ||
3250 | #define IIO_ICCR_CMD_TIMEOUT (0x200) /* Make CRB timeout & mark invalid */ | ||
3251 | #define IIO_ICCR_CMD_EJECT (0x400) /* Contents of entry written to memory | ||
3252 | * via a WB | ||
3253 | */ | ||
3254 | #define IIO_ICCR_CMD_FLUSH (0x800) | ||
3255 | |||
3256 | /* | ||
3257 | * | ||
3258 | * CRB Register description. | ||
3259 | * | ||
3260 | * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING | ||
3261 | * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING | ||
3262 | * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING | ||
3263 | * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING | ||
3264 | * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING | ||
3265 | * | ||
3266 | * Many of the fields in CRB are status bits used by hardware | ||
3267 | * for implementation of the protocol. It's very dangerous to | ||
3268 | * mess around with the CRB registers. | ||
3269 | * | ||
3270 | * It's OK to read the CRB registers and try to make sense out of the | ||
3271 | * fields in CRB. | ||
3272 | * | ||
3273 | * Updating CRB requires all activities in Hub IIO to be quiesced. | ||
3274 | * otherwise, a write to CRB could corrupt other CRB entries. | ||
3275 | * CRBs are here only as a back door peek to shub IIO's status. | ||
3276 | * Quiescing implies no dmas no PIOs | ||
3277 | * either directly from the cpu or from sn0net. | ||
3278 | * this is not something that can be done easily. So, AVOID updating | ||
3279 | * CRBs. | ||
3280 | */ | ||
3281 | |||
3282 | /* | ||
3283 | * Easy access macros for CRBs, all 5 registers (A-E) | ||
3284 | */ | ||
3285 | typedef ii_icrb0_a_u_t icrba_t; | ||
3286 | #define a_sidn ii_icrb0_a_fld_s.ia_sidn | ||
3287 | #define a_tnum ii_icrb0_a_fld_s.ia_tnum | ||
3288 | #define a_addr ii_icrb0_a_fld_s.ia_addr | ||
3289 | #define a_valid ii_icrb0_a_fld_s.ia_vld | ||
3290 | #define a_iow ii_icrb0_a_fld_s.ia_iow | ||
3291 | #define a_regvalue ii_icrb0_a_regval | ||
3292 | |||
3293 | typedef ii_icrb0_b_u_t icrbb_t; | ||
3294 | #define b_use_old ii_icrb0_b_fld_s.ib_use_old | ||
3295 | #define b_imsgtype ii_icrb0_b_fld_s.ib_imsgtype | ||
3296 | #define b_imsg ii_icrb0_b_fld_s.ib_imsg | ||
3297 | #define b_initiator ii_icrb0_b_fld_s.ib_init | ||
3298 | #define b_exc ii_icrb0_b_fld_s.ib_exc | ||
3299 | #define b_ackcnt ii_icrb0_b_fld_s.ib_ack_cnt | ||
3300 | #define b_resp ii_icrb0_b_fld_s.ib_resp | ||
3301 | #define b_ack ii_icrb0_b_fld_s.ib_ack | ||
3302 | #define b_hold ii_icrb0_b_fld_s.ib_hold | ||
3303 | #define b_wb ii_icrb0_b_fld_s.ib_wb | ||
3304 | #define b_intvn ii_icrb0_b_fld_s.ib_intvn | ||
3305 | #define b_stall_ib ii_icrb0_b_fld_s.ib_stall_ib | ||
3306 | #define b_stall_int ii_icrb0_b_fld_s.ib_stall__intr | ||
3307 | #define b_stall_bte_0 ii_icrb0_b_fld_s.ib_stall__bte_0 | ||
3308 | #define b_stall_bte_1 ii_icrb0_b_fld_s.ib_stall__bte_1 | ||
3309 | #define b_error ii_icrb0_b_fld_s.ib_error | ||
3310 | #define b_ecode ii_icrb0_b_fld_s.ib_errcode | ||
3311 | #define b_lnetuce ii_icrb0_b_fld_s.ib_ln_uce | ||
3312 | #define b_mark ii_icrb0_b_fld_s.ib_mark | ||
3313 | #define b_xerr ii_icrb0_b_fld_s.ib_xt_err | ||
3314 | #define b_regvalue ii_icrb0_b_regval | ||
3315 | |||
3316 | typedef ii_icrb0_c_u_t icrbc_t; | ||
3317 | #define c_suppl ii_icrb0_c_fld_s.ic_suppl | ||
3318 | #define c_barrop ii_icrb0_c_fld_s.ic_bo | ||
3319 | #define c_doresp ii_icrb0_c_fld_s.ic_resprqd | ||
3320 | #define c_gbr ii_icrb0_c_fld_s.ic_gbr | ||
3321 | #define c_btenum ii_icrb0_c_fld_s.ic_bte_num | ||
3322 | #define c_cohtrans ii_icrb0_c_fld_s.ic_ct | ||
3323 | #define c_xtsize ii_icrb0_c_fld_s.ic_size | ||
3324 | #define c_source ii_icrb0_c_fld_s.ic_source | ||
3325 | #define c_regvalue ii_icrb0_c_regval | ||
3326 | |||
3327 | |||
3328 | typedef ii_icrb0_d_u_t icrbd_t; | ||
3329 | #define d_sleep ii_icrb0_d_fld_s.id_sleep | ||
3330 | #define d_pricnt ii_icrb0_d_fld_s.id_pr_cnt | ||
3331 | #define d_pripsc ii_icrb0_d_fld_s.id_pr_psc | ||
3332 | #define d_bteop ii_icrb0_d_fld_s.id_bte_op | ||
3333 | #define d_bteaddr ii_icrb0_d_fld_s.id_pa_be /* ic_pa_be fld has 2 names*/ | ||
3334 | #define d_benable ii_icrb0_d_fld_s.id_pa_be /* ic_pa_be fld has 2 names*/ | ||
3335 | #define d_regvalue ii_icrb0_d_regval | ||
3336 | |||
3337 | typedef ii_icrb0_e_u_t icrbe_t; | ||
3338 | #define icrbe_ctxtvld ii_icrb0_e_fld_s.ie_cvld | ||
3339 | #define icrbe_toutvld ii_icrb0_e_fld_s.ie_tvld | ||
3340 | #define icrbe_context ii_icrb0_e_fld_s.ie_context | ||
3341 | #define icrbe_timeout ii_icrb0_e_fld_s.ie_timeout | ||
3342 | #define e_regvalue ii_icrb0_e_regval | ||
3343 | |||
3344 | |||
3345 | /* Number of widgets supported by shub */ | ||
3346 | #define HUB_NUM_WIDGET 9 | ||
3347 | #define HUB_WIDGET_ID_MIN 0x8 | ||
3348 | #define HUB_WIDGET_ID_MAX 0xf | ||
3349 | |||
3350 | #define HUB_WIDGET_PART_NUM 0xc120 | ||
3351 | #define MAX_HUBS_PER_XBOW 2 | ||
3352 | |||
3353 | /* A few more #defines for backwards compatibility */ | ||
3354 | #define iprb_t ii_iprb0_u_t | ||
3355 | #define iprb_regval ii_iprb0_regval | ||
3356 | #define iprb_mult_err ii_iprb0_fld_s.i_mult_err | ||
3357 | #define iprb_spur_rd ii_iprb0_fld_s.i_spur_rd | ||
3358 | #define iprb_spur_wr ii_iprb0_fld_s.i_spur_wr | ||
3359 | #define iprb_rd_to ii_iprb0_fld_s.i_rd_to | ||
3360 | #define iprb_ovflow ii_iprb0_fld_s.i_of_cnt | ||
3361 | #define iprb_error ii_iprb0_fld_s.i_error | ||
3362 | #define iprb_ff ii_iprb0_fld_s.i_f | ||
3363 | #define iprb_mode ii_iprb0_fld_s.i_m | ||
3364 | #define iprb_bnakctr ii_iprb0_fld_s.i_nb | ||
3365 | #define iprb_anakctr ii_iprb0_fld_s.i_na | ||
3366 | #define iprb_xtalkctr ii_iprb0_fld_s.i_c | ||
3367 | |||
3368 | #define LNK_STAT_WORKING 0x2 /* LLP is working */ | ||
3369 | |||
3370 | #define IIO_WSTAT_ECRAZY (1ULL << 32) /* Hub gone crazy */ | ||
3371 | #define IIO_WSTAT_TXRETRY (1ULL << 9) /* Hub Tx Retry timeout */ | ||
3372 | #define IIO_WSTAT_TXRETRY_MASK (0x7F) /* should be 0xFF?? */ | ||
3373 | #define IIO_WSTAT_TXRETRY_SHFT (16) | ||
3374 | #define IIO_WSTAT_TXRETRY_CNT(w) (((w) >> IIO_WSTAT_TXRETRY_SHFT) & \ | ||
3375 | IIO_WSTAT_TXRETRY_MASK) | ||
3376 | |||
3377 | /* Number of II perf. counters we can multiplex at once */ | ||
3378 | |||
3379 | #define IO_PERF_SETS 32 | ||
3380 | |||
3381 | /* Bit for the widget in inbound access register */ | ||
3382 | #define IIO_IIWA_WIDGET(_w) ((uint64_t)(1ULL << _w)) | ||
3383 | /* Bit for the widget in outbound access register */ | ||
3384 | #define IIO_IOWA_WIDGET(_w) ((uint64_t)(1ULL << _w)) | ||
3385 | |||
3386 | /* NOTE: The following define assumes that we are going to get | ||
3387 | * widget numbers from 8 thru F and the device numbers within | ||
3388 | * widget from 0 thru 7. | ||
3389 | */ | ||
3390 | #define IIO_IIDEM_WIDGETDEV_MASK(w, d) ((uint64_t)(1ULL << (8 * ((w) - 8) + (d)))) | ||
3391 | |||
3392 | /* IO Interrupt Destination Register */ | ||
3393 | #define IIO_IIDSR_SENT_SHIFT 28 | ||
3394 | #define IIO_IIDSR_SENT_MASK 0x30000000 | ||
3395 | #define IIO_IIDSR_ENB_SHIFT 24 | ||
3396 | #define IIO_IIDSR_ENB_MASK 0x01000000 | ||
3397 | #define IIO_IIDSR_NODE_SHIFT 9 | ||
3398 | #define IIO_IIDSR_NODE_MASK 0x000ff700 | ||
3399 | #define IIO_IIDSR_PI_ID_SHIFT 8 | ||
3400 | #define IIO_IIDSR_PI_ID_MASK 0x00000100 | ||
3401 | #define IIO_IIDSR_LVL_SHIFT 0 | ||
3402 | #define IIO_IIDSR_LVL_MASK 0x000000ff | ||
3403 | |||
3404 | /* Xtalk timeout threshhold register (IIO_IXTT) */ | ||
3405 | #define IXTT_RRSP_TO_SHFT 55 /* read response timeout */ | ||
3406 | #define IXTT_RRSP_TO_MASK (0x1FULL << IXTT_RRSP_TO_SHFT) | ||
3407 | #define IXTT_RRSP_PS_SHFT 32 /* read responsed TO prescalar */ | ||
3408 | #define IXTT_RRSP_PS_MASK (0x7FFFFFULL << IXTT_RRSP_PS_SHFT) | ||
3409 | #define IXTT_TAIL_TO_SHFT 0 /* tail timeout counter threshold */ | ||
3410 | #define IXTT_TAIL_TO_MASK (0x3FFFFFFULL << IXTT_TAIL_TO_SHFT) | ||
3411 | |||
3412 | /* | ||
3413 | * The IO LLP control status register and widget control register | ||
3414 | */ | ||
3415 | |||
3416 | typedef union hubii_wcr_u { | ||
3417 | uint64_t wcr_reg_value; | ||
3418 | struct { | ||
3419 | uint64_t wcr_widget_id: 4, /* LLP crossbar credit */ | ||
3420 | wcr_tag_mode: 1, /* Tag mode */ | ||
3421 | wcr_rsvd1: 8, /* Reserved */ | ||
3422 | wcr_xbar_crd: 3, /* LLP crossbar credit */ | ||
3423 | wcr_f_bad_pkt: 1, /* Force bad llp pkt enable */ | ||
3424 | wcr_dir_con: 1, /* widget direct connect */ | ||
3425 | wcr_e_thresh: 5, /* elasticity threshold */ | ||
3426 | wcr_rsvd: 41; /* unused */ | ||
3427 | } wcr_fields_s; | ||
3428 | } hubii_wcr_t; | ||
3429 | |||
3430 | #define iwcr_dir_con wcr_fields_s.wcr_dir_con | ||
3431 | |||
3432 | /* The structures below are defined to extract and modify the ii | ||
3433 | performance registers */ | ||
3434 | |||
3435 | /* io_perf_sel allows the caller to specify what tests will be | ||
3436 | performed */ | ||
3437 | |||
3438 | typedef union io_perf_sel { | ||
3439 | uint64_t perf_sel_reg; | ||
3440 | struct { | ||
3441 | uint64_t perf_ippr0 : 4, | ||
3442 | perf_ippr1 : 4, | ||
3443 | perf_icct : 8, | ||
3444 | perf_rsvd : 48; | ||
3445 | } perf_sel_bits; | ||
3446 | } io_perf_sel_t; | ||
3447 | |||
3448 | /* io_perf_cnt is to extract the count from the shub registers. Due to | ||
3449 | hardware problems there is only one counter, not two. */ | ||
3450 | |||
3451 | typedef union io_perf_cnt { | ||
3452 | uint64_t perf_cnt; | ||
3453 | struct { | ||
3454 | uint64_t perf_cnt : 20, | ||
3455 | perf_rsvd2 : 12, | ||
3456 | perf_rsvd1 : 32; | ||
3457 | } perf_cnt_bits; | ||
3458 | |||
3459 | } io_perf_cnt_t; | ||
3460 | |||
3461 | typedef union iprte_a { | ||
3462 | uint64_t entry; | ||
3463 | struct { | ||
3464 | uint64_t i_rsvd_1 : 3; | ||
3465 | uint64_t i_addr : 38; | ||
3466 | uint64_t i_init : 3; | ||
3467 | uint64_t i_source : 8; | ||
3468 | uint64_t i_rsvd : 2; | ||
3469 | uint64_t i_widget : 4; | ||
3470 | uint64_t i_to_cnt : 5; | ||
3471 | uint64_t i_vld : 1; | ||
3472 | } iprte_fields; | ||
3473 | } iprte_a_t; | ||
3474 | |||
3475 | #endif /* _ASM_IA64_SN_SHUBIO_H */ | ||
3476 | |||