aboutsummaryrefslogtreecommitdiffstats
path: root/include/asm-i386/bitops.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/asm-i386/bitops.h')
-rw-r--r--include/asm-i386/bitops.h423
1 files changed, 0 insertions, 423 deletions
diff --git a/include/asm-i386/bitops.h b/include/asm-i386/bitops.h
deleted file mode 100644
index a20fe9822f60..000000000000
--- a/include/asm-i386/bitops.h
+++ /dev/null
@@ -1,423 +0,0 @@
1#ifndef _I386_BITOPS_H
2#define _I386_BITOPS_H
3
4/*
5 * Copyright 1992, Linus Torvalds.
6 */
7
8#include <linux/compiler.h>
9#include <asm/alternative.h>
10
11/*
12 * These have to be done with inline assembly: that way the bit-setting
13 * is guaranteed to be atomic. All bit operations return 0 if the bit
14 * was cleared before the operation and != 0 if it was not.
15 *
16 * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
17 */
18
19#define ADDR (*(volatile long *) addr)
20
21/**
22 * set_bit - Atomically set a bit in memory
23 * @nr: the bit to set
24 * @addr: the address to start counting from
25 *
26 * This function is atomic and may not be reordered. See __set_bit()
27 * if you do not require the atomic guarantees.
28 *
29 * Note: there are no guarantees that this function will not be reordered
30 * on non x86 architectures, so if you are writing portable code,
31 * make sure not to rely on its reordering guarantees.
32 *
33 * Note that @nr may be almost arbitrarily large; this function is not
34 * restricted to acting on a single-word quantity.
35 */
36static inline void set_bit(int nr, volatile unsigned long * addr)
37{
38 __asm__ __volatile__( LOCK_PREFIX
39 "btsl %1,%0"
40 :"+m" (ADDR)
41 :"Ir" (nr));
42}
43
44/**
45 * __set_bit - Set a bit in memory
46 * @nr: the bit to set
47 * @addr: the address to start counting from
48 *
49 * Unlike set_bit(), this function is non-atomic and may be reordered.
50 * If it's called on the same region of memory simultaneously, the effect
51 * may be that only one operation succeeds.
52 */
53static inline void __set_bit(int nr, volatile unsigned long * addr)
54{
55 __asm__(
56 "btsl %1,%0"
57 :"+m" (ADDR)
58 :"Ir" (nr));
59}
60
61/**
62 * clear_bit - Clears a bit in memory
63 * @nr: Bit to clear
64 * @addr: Address to start counting from
65 *
66 * clear_bit() is atomic and may not be reordered. However, it does
67 * not contain a memory barrier, so if it is used for locking purposes,
68 * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
69 * in order to ensure changes are visible on other processors.
70 */
71static inline void clear_bit(int nr, volatile unsigned long * addr)
72{
73 __asm__ __volatile__( LOCK_PREFIX
74 "btrl %1,%0"
75 :"+m" (ADDR)
76 :"Ir" (nr));
77}
78
79static inline void __clear_bit(int nr, volatile unsigned long * addr)
80{
81 __asm__ __volatile__(
82 "btrl %1,%0"
83 :"+m" (ADDR)
84 :"Ir" (nr));
85}
86#define smp_mb__before_clear_bit() barrier()
87#define smp_mb__after_clear_bit() barrier()
88
89/**
90 * __change_bit - Toggle a bit in memory
91 * @nr: the bit to change
92 * @addr: the address to start counting from
93 *
94 * Unlike change_bit(), this function is non-atomic and may be reordered.
95 * If it's called on the same region of memory simultaneously, the effect
96 * may be that only one operation succeeds.
97 */
98static inline void __change_bit(int nr, volatile unsigned long * addr)
99{
100 __asm__ __volatile__(
101 "btcl %1,%0"
102 :"+m" (ADDR)
103 :"Ir" (nr));
104}
105
106/**
107 * change_bit - Toggle a bit in memory
108 * @nr: Bit to change
109 * @addr: Address to start counting from
110 *
111 * change_bit() is atomic and may not be reordered. It may be
112 * reordered on other architectures than x86.
113 * Note that @nr may be almost arbitrarily large; this function is not
114 * restricted to acting on a single-word quantity.
115 */
116static inline void change_bit(int nr, volatile unsigned long * addr)
117{
118 __asm__ __volatile__( LOCK_PREFIX
119 "btcl %1,%0"
120 :"+m" (ADDR)
121 :"Ir" (nr));
122}
123
124/**
125 * test_and_set_bit - Set a bit and return its old value
126 * @nr: Bit to set
127 * @addr: Address to count from
128 *
129 * This operation is atomic and cannot be reordered.
130 * It may be reordered on other architectures than x86.
131 * It also implies a memory barrier.
132 */
133static inline int test_and_set_bit(int nr, volatile unsigned long * addr)
134{
135 int oldbit;
136
137 __asm__ __volatile__( LOCK_PREFIX
138 "btsl %2,%1\n\tsbbl %0,%0"
139 :"=r" (oldbit),"+m" (ADDR)
140 :"Ir" (nr) : "memory");
141 return oldbit;
142}
143
144/**
145 * __test_and_set_bit - Set a bit and return its old value
146 * @nr: Bit to set
147 * @addr: Address to count from
148 *
149 * This operation is non-atomic and can be reordered.
150 * If two examples of this operation race, one can appear to succeed
151 * but actually fail. You must protect multiple accesses with a lock.
152 */
153static inline int __test_and_set_bit(int nr, volatile unsigned long * addr)
154{
155 int oldbit;
156
157 __asm__(
158 "btsl %2,%1\n\tsbbl %0,%0"
159 :"=r" (oldbit),"+m" (ADDR)
160 :"Ir" (nr));
161 return oldbit;
162}
163
164/**
165 * test_and_clear_bit - Clear a bit and return its old value
166 * @nr: Bit to clear
167 * @addr: Address to count from
168 *
169 * This operation is atomic and cannot be reordered.
170 * It can be reorderdered on other architectures other than x86.
171 * It also implies a memory barrier.
172 */
173static inline int test_and_clear_bit(int nr, volatile unsigned long * addr)
174{
175 int oldbit;
176
177 __asm__ __volatile__( LOCK_PREFIX
178 "btrl %2,%1\n\tsbbl %0,%0"
179 :"=r" (oldbit),"+m" (ADDR)
180 :"Ir" (nr) : "memory");
181 return oldbit;
182}
183
184/**
185 * __test_and_clear_bit - Clear a bit and return its old value
186 * @nr: Bit to clear
187 * @addr: Address to count from
188 *
189 * This operation is non-atomic and can be reordered.
190 * If two examples of this operation race, one can appear to succeed
191 * but actually fail. You must protect multiple accesses with a lock.
192 */
193static inline int __test_and_clear_bit(int nr, volatile unsigned long *addr)
194{
195 int oldbit;
196
197 __asm__(
198 "btrl %2,%1\n\tsbbl %0,%0"
199 :"=r" (oldbit),"+m" (ADDR)
200 :"Ir" (nr));
201 return oldbit;
202}
203
204/* WARNING: non atomic and it can be reordered! */
205static inline int __test_and_change_bit(int nr, volatile unsigned long *addr)
206{
207 int oldbit;
208
209 __asm__ __volatile__(
210 "btcl %2,%1\n\tsbbl %0,%0"
211 :"=r" (oldbit),"+m" (ADDR)
212 :"Ir" (nr) : "memory");
213 return oldbit;
214}
215
216/**
217 * test_and_change_bit - Change a bit and return its old value
218 * @nr: Bit to change
219 * @addr: Address to count from
220 *
221 * This operation is atomic and cannot be reordered.
222 * It also implies a memory barrier.
223 */
224static inline int test_and_change_bit(int nr, volatile unsigned long* addr)
225{
226 int oldbit;
227
228 __asm__ __volatile__( LOCK_PREFIX
229 "btcl %2,%1\n\tsbbl %0,%0"
230 :"=r" (oldbit),"+m" (ADDR)
231 :"Ir" (nr) : "memory");
232 return oldbit;
233}
234
235#if 0 /* Fool kernel-doc since it doesn't do macros yet */
236/**
237 * test_bit - Determine whether a bit is set
238 * @nr: bit number to test
239 * @addr: Address to start counting from
240 */
241static int test_bit(int nr, const volatile void * addr);
242#endif
243
244static __always_inline int constant_test_bit(int nr, const volatile unsigned long *addr)
245{
246 return ((1UL << (nr & 31)) & (addr[nr >> 5])) != 0;
247}
248
249static inline int variable_test_bit(int nr, const volatile unsigned long * addr)
250{
251 int oldbit;
252
253 __asm__ __volatile__(
254 "btl %2,%1\n\tsbbl %0,%0"
255 :"=r" (oldbit)
256 :"m" (ADDR),"Ir" (nr));
257 return oldbit;
258}
259
260#define test_bit(nr,addr) \
261(__builtin_constant_p(nr) ? \
262 constant_test_bit((nr),(addr)) : \
263 variable_test_bit((nr),(addr)))
264
265#undef ADDR
266
267/**
268 * find_first_zero_bit - find the first zero bit in a memory region
269 * @addr: The address to start the search at
270 * @size: The maximum size to search
271 *
272 * Returns the bit-number of the first zero bit, not the number of the byte
273 * containing a bit.
274 */
275static inline int find_first_zero_bit(const unsigned long *addr, unsigned size)
276{
277 int d0, d1, d2;
278 int res;
279
280 if (!size)
281 return 0;
282 /* This looks at memory. Mark it volatile to tell gcc not to move it around */
283 __asm__ __volatile__(
284 "movl $-1,%%eax\n\t"
285 "xorl %%edx,%%edx\n\t"
286 "repe; scasl\n\t"
287 "je 1f\n\t"
288 "xorl -4(%%edi),%%eax\n\t"
289 "subl $4,%%edi\n\t"
290 "bsfl %%eax,%%edx\n"
291 "1:\tsubl %%ebx,%%edi\n\t"
292 "shll $3,%%edi\n\t"
293 "addl %%edi,%%edx"
294 :"=d" (res), "=&c" (d0), "=&D" (d1), "=&a" (d2)
295 :"1" ((size + 31) >> 5), "2" (addr), "b" (addr) : "memory");
296 return res;
297}
298
299/**
300 * find_next_zero_bit - find the first zero bit in a memory region
301 * @addr: The address to base the search on
302 * @offset: The bitnumber to start searching at
303 * @size: The maximum size to search
304 */
305int find_next_zero_bit(const unsigned long *addr, int size, int offset);
306
307/**
308 * __ffs - find first bit in word.
309 * @word: The word to search
310 *
311 * Undefined if no bit exists, so code should check against 0 first.
312 */
313static inline unsigned long __ffs(unsigned long word)
314{
315 __asm__("bsfl %1,%0"
316 :"=r" (word)
317 :"rm" (word));
318 return word;
319}
320
321/**
322 * find_first_bit - find the first set bit in a memory region
323 * @addr: The address to start the search at
324 * @size: The maximum size to search
325 *
326 * Returns the bit-number of the first set bit, not the number of the byte
327 * containing a bit.
328 */
329static inline unsigned find_first_bit(const unsigned long *addr, unsigned size)
330{
331 unsigned x = 0;
332
333 while (x < size) {
334 unsigned long val = *addr++;
335 if (val)
336 return __ffs(val) + x;
337 x += (sizeof(*addr)<<3);
338 }
339 return x;
340}
341
342/**
343 * find_next_bit - find the first set bit in a memory region
344 * @addr: The address to base the search on
345 * @offset: The bitnumber to start searching at
346 * @size: The maximum size to search
347 */
348int find_next_bit(const unsigned long *addr, int size, int offset);
349
350/**
351 * ffz - find first zero in word.
352 * @word: The word to search
353 *
354 * Undefined if no zero exists, so code should check against ~0UL first.
355 */
356static inline unsigned long ffz(unsigned long word)
357{
358 __asm__("bsfl %1,%0"
359 :"=r" (word)
360 :"r" (~word));
361 return word;
362}
363
364#ifdef __KERNEL__
365
366#include <asm-generic/bitops/sched.h>
367
368/**
369 * ffs - find first bit set
370 * @x: the word to search
371 *
372 * This is defined the same way as
373 * the libc and compiler builtin ffs routines, therefore
374 * differs in spirit from the above ffz() (man ffs).
375 */
376static inline int ffs(int x)
377{
378 int r;
379
380 __asm__("bsfl %1,%0\n\t"
381 "jnz 1f\n\t"
382 "movl $-1,%0\n"
383 "1:" : "=r" (r) : "rm" (x));
384 return r+1;
385}
386
387/**
388 * fls - find last bit set
389 * @x: the word to search
390 *
391 * This is defined the same way as ffs().
392 */
393static inline int fls(int x)
394{
395 int r;
396
397 __asm__("bsrl %1,%0\n\t"
398 "jnz 1f\n\t"
399 "movl $-1,%0\n"
400 "1:" : "=r" (r) : "rm" (x));
401 return r+1;
402}
403
404#include <asm-generic/bitops/hweight.h>
405
406#endif /* __KERNEL__ */
407
408#include <asm-generic/bitops/fls64.h>
409
410#ifdef __KERNEL__
411
412#include <asm-generic/bitops/ext2-non-atomic.h>
413
414#define ext2_set_bit_atomic(lock,nr,addr) \
415 test_and_set_bit((nr),(unsigned long*)addr)
416#define ext2_clear_bit_atomic(lock,nr, addr) \
417 test_and_clear_bit((nr),(unsigned long*)addr)
418
419#include <asm-generic/bitops/minix.h>
420
421#endif /* __KERNEL__ */
422
423#endif /* _I386_BITOPS_H */