aboutsummaryrefslogtreecommitdiffstats
path: root/include/asm-i386/bitops.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/asm-i386/bitops.h')
-rw-r--r--include/asm-i386/bitops.h462
1 files changed, 462 insertions, 0 deletions
diff --git a/include/asm-i386/bitops.h b/include/asm-i386/bitops.h
new file mode 100644
index 000000000000..9db0b712d57a
--- /dev/null
+++ b/include/asm-i386/bitops.h
@@ -0,0 +1,462 @@
1#ifndef _I386_BITOPS_H
2#define _I386_BITOPS_H
3
4/*
5 * Copyright 1992, Linus Torvalds.
6 */
7
8#include <linux/config.h>
9#include <linux/compiler.h>
10
11/*
12 * These have to be done with inline assembly: that way the bit-setting
13 * is guaranteed to be atomic. All bit operations return 0 if the bit
14 * was cleared before the operation and != 0 if it was not.
15 *
16 * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
17 */
18
19#ifdef CONFIG_SMP
20#define LOCK_PREFIX "lock ; "
21#else
22#define LOCK_PREFIX ""
23#endif
24
25#define ADDR (*(volatile long *) addr)
26
27/**
28 * set_bit - Atomically set a bit in memory
29 * @nr: the bit to set
30 * @addr: the address to start counting from
31 *
32 * This function is atomic and may not be reordered. See __set_bit()
33 * if you do not require the atomic guarantees.
34 *
35 * Note: there are no guarantees that this function will not be reordered
36 * on non x86 architectures, so if you are writting portable code,
37 * make sure not to rely on its reordering guarantees.
38 *
39 * Note that @nr may be almost arbitrarily large; this function is not
40 * restricted to acting on a single-word quantity.
41 */
42static inline void set_bit(int nr, volatile unsigned long * addr)
43{
44 __asm__ __volatile__( LOCK_PREFIX
45 "btsl %1,%0"
46 :"=m" (ADDR)
47 :"Ir" (nr));
48}
49
50/**
51 * __set_bit - Set a bit in memory
52 * @nr: the bit to set
53 * @addr: the address to start counting from
54 *
55 * Unlike set_bit(), this function is non-atomic and may be reordered.
56 * If it's called on the same region of memory simultaneously, the effect
57 * may be that only one operation succeeds.
58 */
59static inline void __set_bit(int nr, volatile unsigned long * addr)
60{
61 __asm__(
62 "btsl %1,%0"
63 :"=m" (ADDR)
64 :"Ir" (nr));
65}
66
67/**
68 * clear_bit - Clears a bit in memory
69 * @nr: Bit to clear
70 * @addr: Address to start counting from
71 *
72 * clear_bit() is atomic and may not be reordered. However, it does
73 * not contain a memory barrier, so if it is used for locking purposes,
74 * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
75 * in order to ensure changes are visible on other processors.
76 */
77static inline void clear_bit(int nr, volatile unsigned long * addr)
78{
79 __asm__ __volatile__( LOCK_PREFIX
80 "btrl %1,%0"
81 :"=m" (ADDR)
82 :"Ir" (nr));
83}
84
85static inline void __clear_bit(int nr, volatile unsigned long * addr)
86{
87 __asm__ __volatile__(
88 "btrl %1,%0"
89 :"=m" (ADDR)
90 :"Ir" (nr));
91}
92#define smp_mb__before_clear_bit() barrier()
93#define smp_mb__after_clear_bit() barrier()
94
95/**
96 * __change_bit - Toggle a bit in memory
97 * @nr: the bit to change
98 * @addr: the address to start counting from
99 *
100 * Unlike change_bit(), this function is non-atomic and may be reordered.
101 * If it's called on the same region of memory simultaneously, the effect
102 * may be that only one operation succeeds.
103 */
104static inline void __change_bit(int nr, volatile unsigned long * addr)
105{
106 __asm__ __volatile__(
107 "btcl %1,%0"
108 :"=m" (ADDR)
109 :"Ir" (nr));
110}
111
112/**
113 * change_bit - Toggle a bit in memory
114 * @nr: Bit to change
115 * @addr: Address to start counting from
116 *
117 * change_bit() is atomic and may not be reordered. It may be
118 * reordered on other architectures than x86.
119 * Note that @nr may be almost arbitrarily large; this function is not
120 * restricted to acting on a single-word quantity.
121 */
122static inline void change_bit(int nr, volatile unsigned long * addr)
123{
124 __asm__ __volatile__( LOCK_PREFIX
125 "btcl %1,%0"
126 :"=m" (ADDR)
127 :"Ir" (nr));
128}
129
130/**
131 * test_and_set_bit - Set a bit and return its old value
132 * @nr: Bit to set
133 * @addr: Address to count from
134 *
135 * This operation is atomic and cannot be reordered.
136 * It may be reordered on other architectures than x86.
137 * It also implies a memory barrier.
138 */
139static inline int test_and_set_bit(int nr, volatile unsigned long * addr)
140{
141 int oldbit;
142
143 __asm__ __volatile__( LOCK_PREFIX
144 "btsl %2,%1\n\tsbbl %0,%0"
145 :"=r" (oldbit),"=m" (ADDR)
146 :"Ir" (nr) : "memory");
147 return oldbit;
148}
149
150/**
151 * __test_and_set_bit - Set a bit and return its old value
152 * @nr: Bit to set
153 * @addr: Address to count from
154 *
155 * This operation is non-atomic and can be reordered.
156 * If two examples of this operation race, one can appear to succeed
157 * but actually fail. You must protect multiple accesses with a lock.
158 */
159static inline int __test_and_set_bit(int nr, volatile unsigned long * addr)
160{
161 int oldbit;
162
163 __asm__(
164 "btsl %2,%1\n\tsbbl %0,%0"
165 :"=r" (oldbit),"=m" (ADDR)
166 :"Ir" (nr));
167 return oldbit;
168}
169
170/**
171 * test_and_clear_bit - Clear a bit and return its old value
172 * @nr: Bit to clear
173 * @addr: Address to count from
174 *
175 * This operation is atomic and cannot be reordered.
176 * It can be reorderdered on other architectures other than x86.
177 * It also implies a memory barrier.
178 */
179static inline int test_and_clear_bit(int nr, volatile unsigned long * addr)
180{
181 int oldbit;
182
183 __asm__ __volatile__( LOCK_PREFIX
184 "btrl %2,%1\n\tsbbl %0,%0"
185 :"=r" (oldbit),"=m" (ADDR)
186 :"Ir" (nr) : "memory");
187 return oldbit;
188}
189
190/**
191 * __test_and_clear_bit - Clear a bit and return its old value
192 * @nr: Bit to clear
193 * @addr: Address to count from
194 *
195 * This operation is non-atomic and can be reordered.
196 * If two examples of this operation race, one can appear to succeed
197 * but actually fail. You must protect multiple accesses with a lock.
198 */
199static inline int __test_and_clear_bit(int nr, volatile unsigned long *addr)
200{
201 int oldbit;
202
203 __asm__(
204 "btrl %2,%1\n\tsbbl %0,%0"
205 :"=r" (oldbit),"=m" (ADDR)
206 :"Ir" (nr));
207 return oldbit;
208}
209
210/* WARNING: non atomic and it can be reordered! */
211static inline int __test_and_change_bit(int nr, volatile unsigned long *addr)
212{
213 int oldbit;
214
215 __asm__ __volatile__(
216 "btcl %2,%1\n\tsbbl %0,%0"
217 :"=r" (oldbit),"=m" (ADDR)
218 :"Ir" (nr) : "memory");
219 return oldbit;
220}
221
222/**
223 * test_and_change_bit - Change a bit and return its old value
224 * @nr: Bit to change
225 * @addr: Address to count from
226 *
227 * This operation is atomic and cannot be reordered.
228 * It also implies a memory barrier.
229 */
230static inline int test_and_change_bit(int nr, volatile unsigned long* addr)
231{
232 int oldbit;
233
234 __asm__ __volatile__( LOCK_PREFIX
235 "btcl %2,%1\n\tsbbl %0,%0"
236 :"=r" (oldbit),"=m" (ADDR)
237 :"Ir" (nr) : "memory");
238 return oldbit;
239}
240
241#if 0 /* Fool kernel-doc since it doesn't do macros yet */
242/**
243 * test_bit - Determine whether a bit is set
244 * @nr: bit number to test
245 * @addr: Address to start counting from
246 */
247static int test_bit(int nr, const volatile void * addr);
248#endif
249
250static inline int constant_test_bit(int nr, const volatile unsigned long *addr)
251{
252 return ((1UL << (nr & 31)) & (addr[nr >> 5])) != 0;
253}
254
255static inline int variable_test_bit(int nr, const volatile unsigned long * addr)
256{
257 int oldbit;
258
259 __asm__ __volatile__(
260 "btl %2,%1\n\tsbbl %0,%0"
261 :"=r" (oldbit)
262 :"m" (ADDR),"Ir" (nr));
263 return oldbit;
264}
265
266#define test_bit(nr,addr) \
267(__builtin_constant_p(nr) ? \
268 constant_test_bit((nr),(addr)) : \
269 variable_test_bit((nr),(addr)))
270
271#undef ADDR
272
273/**
274 * find_first_zero_bit - find the first zero bit in a memory region
275 * @addr: The address to start the search at
276 * @size: The maximum size to search
277 *
278 * Returns the bit-number of the first zero bit, not the number of the byte
279 * containing a bit.
280 */
281static inline int find_first_zero_bit(const unsigned long *addr, unsigned size)
282{
283 int d0, d1, d2;
284 int res;
285
286 if (!size)
287 return 0;
288 /* This looks at memory. Mark it volatile to tell gcc not to move it around */
289 __asm__ __volatile__(
290 "movl $-1,%%eax\n\t"
291 "xorl %%edx,%%edx\n\t"
292 "repe; scasl\n\t"
293 "je 1f\n\t"
294 "xorl -4(%%edi),%%eax\n\t"
295 "subl $4,%%edi\n\t"
296 "bsfl %%eax,%%edx\n"
297 "1:\tsubl %%ebx,%%edi\n\t"
298 "shll $3,%%edi\n\t"
299 "addl %%edi,%%edx"
300 :"=d" (res), "=&c" (d0), "=&D" (d1), "=&a" (d2)
301 :"1" ((size + 31) >> 5), "2" (addr), "b" (addr) : "memory");
302 return res;
303}
304
305/**
306 * find_next_zero_bit - find the first zero bit in a memory region
307 * @addr: The address to base the search on
308 * @offset: The bitnumber to start searching at
309 * @size: The maximum size to search
310 */
311int find_next_zero_bit(const unsigned long *addr, int size, int offset);
312
313/**
314 * find_first_bit - find the first set bit in a memory region
315 * @addr: The address to start the search at
316 * @size: The maximum size to search
317 *
318 * Returns the bit-number of the first set bit, not the number of the byte
319 * containing a bit.
320 */
321static inline int find_first_bit(const unsigned long *addr, unsigned size)
322{
323 int d0, d1;
324 int res;
325
326 /* This looks at memory. Mark it volatile to tell gcc not to move it around */
327 __asm__ __volatile__(
328 "xorl %%eax,%%eax\n\t"
329 "repe; scasl\n\t"
330 "jz 1f\n\t"
331 "leal -4(%%edi),%%edi\n\t"
332 "bsfl (%%edi),%%eax\n"
333 "1:\tsubl %%ebx,%%edi\n\t"
334 "shll $3,%%edi\n\t"
335 "addl %%edi,%%eax"
336 :"=a" (res), "=&c" (d0), "=&D" (d1)
337 :"1" ((size + 31) >> 5), "2" (addr), "b" (addr) : "memory");
338 return res;
339}
340
341/**
342 * find_next_bit - find the first set bit in a memory region
343 * @addr: The address to base the search on
344 * @offset: The bitnumber to start searching at
345 * @size: The maximum size to search
346 */
347int find_next_bit(const unsigned long *addr, int size, int offset);
348
349/**
350 * ffz - find first zero in word.
351 * @word: The word to search
352 *
353 * Undefined if no zero exists, so code should check against ~0UL first.
354 */
355static inline unsigned long ffz(unsigned long word)
356{
357 __asm__("bsfl %1,%0"
358 :"=r" (word)
359 :"r" (~word));
360 return word;
361}
362
363/**
364 * __ffs - find first bit in word.
365 * @word: The word to search
366 *
367 * Undefined if no bit exists, so code should check against 0 first.
368 */
369static inline unsigned long __ffs(unsigned long word)
370{
371 __asm__("bsfl %1,%0"
372 :"=r" (word)
373 :"rm" (word));
374 return word;
375}
376
377/*
378 * fls: find last bit set.
379 */
380
381#define fls(x) generic_fls(x)
382
383#ifdef __KERNEL__
384
385/*
386 * Every architecture must define this function. It's the fastest
387 * way of searching a 140-bit bitmap where the first 100 bits are
388 * unlikely to be set. It's guaranteed that at least one of the 140
389 * bits is cleared.
390 */
391static inline int sched_find_first_bit(const unsigned long *b)
392{
393 if (unlikely(b[0]))
394 return __ffs(b[0]);
395 if (unlikely(b[1]))
396 return __ffs(b[1]) + 32;
397 if (unlikely(b[2]))
398 return __ffs(b[2]) + 64;
399 if (b[3])
400 return __ffs(b[3]) + 96;
401 return __ffs(b[4]) + 128;
402}
403
404/**
405 * ffs - find first bit set
406 * @x: the word to search
407 *
408 * This is defined the same way as
409 * the libc and compiler builtin ffs routines, therefore
410 * differs in spirit from the above ffz (man ffs).
411 */
412static inline int ffs(int x)
413{
414 int r;
415
416 __asm__("bsfl %1,%0\n\t"
417 "jnz 1f\n\t"
418 "movl $-1,%0\n"
419 "1:" : "=r" (r) : "rm" (x));
420 return r+1;
421}
422
423/**
424 * hweightN - returns the hamming weight of a N-bit word
425 * @x: the word to weigh
426 *
427 * The Hamming Weight of a number is the total number of bits set in it.
428 */
429
430#define hweight32(x) generic_hweight32(x)
431#define hweight16(x) generic_hweight16(x)
432#define hweight8(x) generic_hweight8(x)
433
434#endif /* __KERNEL__ */
435
436#ifdef __KERNEL__
437
438#define ext2_set_bit(nr,addr) \
439 __test_and_set_bit((nr),(unsigned long*)addr)
440#define ext2_set_bit_atomic(lock,nr,addr) \
441 test_and_set_bit((nr),(unsigned long*)addr)
442#define ext2_clear_bit(nr, addr) \
443 __test_and_clear_bit((nr),(unsigned long*)addr)
444#define ext2_clear_bit_atomic(lock,nr, addr) \
445 test_and_clear_bit((nr),(unsigned long*)addr)
446#define ext2_test_bit(nr, addr) test_bit((nr),(unsigned long*)addr)
447#define ext2_find_first_zero_bit(addr, size) \
448 find_first_zero_bit((unsigned long*)addr, size)
449#define ext2_find_next_zero_bit(addr, size, off) \
450 find_next_zero_bit((unsigned long*)addr, size, off)
451
452/* Bitmap functions for the minix filesystem. */
453#define minix_test_and_set_bit(nr,addr) __test_and_set_bit(nr,(void*)addr)
454#define minix_set_bit(nr,addr) __set_bit(nr,(void*)addr)
455#define minix_test_and_clear_bit(nr,addr) __test_and_clear_bit(nr,(void*)addr)
456#define minix_test_bit(nr,addr) test_bit(nr,(void*)addr)
457#define minix_find_first_zero_bit(addr,size) \
458 find_first_zero_bit((void*)addr,size)
459
460#endif /* __KERNEL__ */
461
462#endif /* _I386_BITOPS_H */