aboutsummaryrefslogtreecommitdiffstats
path: root/include/asm-arm/cacheflush.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/asm-arm/cacheflush.h')
-rw-r--r--include/asm-arm/cacheflush.h537
1 files changed, 0 insertions, 537 deletions
diff --git a/include/asm-arm/cacheflush.h b/include/asm-arm/cacheflush.h
deleted file mode 100644
index e68a1cbcc852..000000000000
--- a/include/asm-arm/cacheflush.h
+++ /dev/null
@@ -1,537 +0,0 @@
1/*
2 * linux/include/asm-arm/cacheflush.h
3 *
4 * Copyright (C) 1999-2002 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10#ifndef _ASMARM_CACHEFLUSH_H
11#define _ASMARM_CACHEFLUSH_H
12
13#include <linux/sched.h>
14#include <linux/mm.h>
15
16#include <asm/glue.h>
17#include <asm/shmparam.h>
18
19#define CACHE_COLOUR(vaddr) ((vaddr & (SHMLBA - 1)) >> PAGE_SHIFT)
20
21/*
22 * Cache Model
23 * ===========
24 */
25#undef _CACHE
26#undef MULTI_CACHE
27
28#if defined(CONFIG_CPU_CACHE_V3)
29# ifdef _CACHE
30# define MULTI_CACHE 1
31# else
32# define _CACHE v3
33# endif
34#endif
35
36#if defined(CONFIG_CPU_CACHE_V4)
37# ifdef _CACHE
38# define MULTI_CACHE 1
39# else
40# define _CACHE v4
41# endif
42#endif
43
44#if defined(CONFIG_CPU_ARM920T) || defined(CONFIG_CPU_ARM922T) || \
45 defined(CONFIG_CPU_ARM925T) || defined(CONFIG_CPU_ARM1020)
46# define MULTI_CACHE 1
47#endif
48
49#if defined(CONFIG_CPU_ARM926T)
50# ifdef _CACHE
51# define MULTI_CACHE 1
52# else
53# define _CACHE arm926
54# endif
55#endif
56
57#if defined(CONFIG_CPU_ARM940T)
58# ifdef _CACHE
59# define MULTI_CACHE 1
60# else
61# define _CACHE arm940
62# endif
63#endif
64
65#if defined(CONFIG_CPU_ARM946E)
66# ifdef _CACHE
67# define MULTI_CACHE 1
68# else
69# define _CACHE arm946
70# endif
71#endif
72
73#if defined(CONFIG_CPU_CACHE_V4WB)
74# ifdef _CACHE
75# define MULTI_CACHE 1
76# else
77# define _CACHE v4wb
78# endif
79#endif
80
81#if defined(CONFIG_CPU_XSCALE)
82# ifdef _CACHE
83# define MULTI_CACHE 1
84# else
85# define _CACHE xscale
86# endif
87#endif
88
89#if defined(CONFIG_CPU_XSC3)
90# ifdef _CACHE
91# define MULTI_CACHE 1
92# else
93# define _CACHE xsc3
94# endif
95#endif
96
97#if defined(CONFIG_CPU_FEROCEON)
98# define MULTI_CACHE 1
99#endif
100
101#if defined(CONFIG_CPU_V6)
102//# ifdef _CACHE
103# define MULTI_CACHE 1
104//# else
105//# define _CACHE v6
106//# endif
107#endif
108
109#if defined(CONFIG_CPU_V7)
110//# ifdef _CACHE
111# define MULTI_CACHE 1
112//# else
113//# define _CACHE v7
114//# endif
115#endif
116
117#if !defined(_CACHE) && !defined(MULTI_CACHE)
118#error Unknown cache maintainence model
119#endif
120
121/*
122 * This flag is used to indicate that the page pointed to by a pte
123 * is dirty and requires cleaning before returning it to the user.
124 */
125#define PG_dcache_dirty PG_arch_1
126
127/*
128 * MM Cache Management
129 * ===================
130 *
131 * The arch/arm/mm/cache-*.S and arch/arm/mm/proc-*.S files
132 * implement these methods.
133 *
134 * Start addresses are inclusive and end addresses are exclusive;
135 * start addresses should be rounded down, end addresses up.
136 *
137 * See Documentation/cachetlb.txt for more information.
138 * Please note that the implementation of these, and the required
139 * effects are cache-type (VIVT/VIPT/PIPT) specific.
140 *
141 * flush_cache_kern_all()
142 *
143 * Unconditionally clean and invalidate the entire cache.
144 *
145 * flush_cache_user_mm(mm)
146 *
147 * Clean and invalidate all user space cache entries
148 * before a change of page tables.
149 *
150 * flush_cache_user_range(start, end, flags)
151 *
152 * Clean and invalidate a range of cache entries in the
153 * specified address space before a change of page tables.
154 * - start - user start address (inclusive, page aligned)
155 * - end - user end address (exclusive, page aligned)
156 * - flags - vma->vm_flags field
157 *
158 * coherent_kern_range(start, end)
159 *
160 * Ensure coherency between the Icache and the Dcache in the
161 * region described by start, end. If you have non-snooping
162 * Harvard caches, you need to implement this function.
163 * - start - virtual start address
164 * - end - virtual end address
165 *
166 * DMA Cache Coherency
167 * ===================
168 *
169 * dma_inv_range(start, end)
170 *
171 * Invalidate (discard) the specified virtual address range.
172 * May not write back any entries. If 'start' or 'end'
173 * are not cache line aligned, those lines must be written
174 * back.
175 * - start - virtual start address
176 * - end - virtual end address
177 *
178 * dma_clean_range(start, end)
179 *
180 * Clean (write back) the specified virtual address range.
181 * - start - virtual start address
182 * - end - virtual end address
183 *
184 * dma_flush_range(start, end)
185 *
186 * Clean and invalidate the specified virtual address range.
187 * - start - virtual start address
188 * - end - virtual end address
189 */
190
191struct cpu_cache_fns {
192 void (*flush_kern_all)(void);
193 void (*flush_user_all)(void);
194 void (*flush_user_range)(unsigned long, unsigned long, unsigned int);
195
196 void (*coherent_kern_range)(unsigned long, unsigned long);
197 void (*coherent_user_range)(unsigned long, unsigned long);
198 void (*flush_kern_dcache_page)(void *);
199
200 void (*dma_inv_range)(const void *, const void *);
201 void (*dma_clean_range)(const void *, const void *);
202 void (*dma_flush_range)(const void *, const void *);
203};
204
205struct outer_cache_fns {
206 void (*inv_range)(unsigned long, unsigned long);
207 void (*clean_range)(unsigned long, unsigned long);
208 void (*flush_range)(unsigned long, unsigned long);
209};
210
211/*
212 * Select the calling method
213 */
214#ifdef MULTI_CACHE
215
216extern struct cpu_cache_fns cpu_cache;
217
218#define __cpuc_flush_kern_all cpu_cache.flush_kern_all
219#define __cpuc_flush_user_all cpu_cache.flush_user_all
220#define __cpuc_flush_user_range cpu_cache.flush_user_range
221#define __cpuc_coherent_kern_range cpu_cache.coherent_kern_range
222#define __cpuc_coherent_user_range cpu_cache.coherent_user_range
223#define __cpuc_flush_dcache_page cpu_cache.flush_kern_dcache_page
224
225/*
226 * These are private to the dma-mapping API. Do not use directly.
227 * Their sole purpose is to ensure that data held in the cache
228 * is visible to DMA, or data written by DMA to system memory is
229 * visible to the CPU.
230 */
231#define dmac_inv_range cpu_cache.dma_inv_range
232#define dmac_clean_range cpu_cache.dma_clean_range
233#define dmac_flush_range cpu_cache.dma_flush_range
234
235#else
236
237#define __cpuc_flush_kern_all __glue(_CACHE,_flush_kern_cache_all)
238#define __cpuc_flush_user_all __glue(_CACHE,_flush_user_cache_all)
239#define __cpuc_flush_user_range __glue(_CACHE,_flush_user_cache_range)
240#define __cpuc_coherent_kern_range __glue(_CACHE,_coherent_kern_range)
241#define __cpuc_coherent_user_range __glue(_CACHE,_coherent_user_range)
242#define __cpuc_flush_dcache_page __glue(_CACHE,_flush_kern_dcache_page)
243
244extern void __cpuc_flush_kern_all(void);
245extern void __cpuc_flush_user_all(void);
246extern void __cpuc_flush_user_range(unsigned long, unsigned long, unsigned int);
247extern void __cpuc_coherent_kern_range(unsigned long, unsigned long);
248extern void __cpuc_coherent_user_range(unsigned long, unsigned long);
249extern void __cpuc_flush_dcache_page(void *);
250
251/*
252 * These are private to the dma-mapping API. Do not use directly.
253 * Their sole purpose is to ensure that data held in the cache
254 * is visible to DMA, or data written by DMA to system memory is
255 * visible to the CPU.
256 */
257#define dmac_inv_range __glue(_CACHE,_dma_inv_range)
258#define dmac_clean_range __glue(_CACHE,_dma_clean_range)
259#define dmac_flush_range __glue(_CACHE,_dma_flush_range)
260
261extern void dmac_inv_range(const void *, const void *);
262extern void dmac_clean_range(const void *, const void *);
263extern void dmac_flush_range(const void *, const void *);
264
265#endif
266
267#ifdef CONFIG_OUTER_CACHE
268
269extern struct outer_cache_fns outer_cache;
270
271static inline void outer_inv_range(unsigned long start, unsigned long end)
272{
273 if (outer_cache.inv_range)
274 outer_cache.inv_range(start, end);
275}
276static inline void outer_clean_range(unsigned long start, unsigned long end)
277{
278 if (outer_cache.clean_range)
279 outer_cache.clean_range(start, end);
280}
281static inline void outer_flush_range(unsigned long start, unsigned long end)
282{
283 if (outer_cache.flush_range)
284 outer_cache.flush_range(start, end);
285}
286
287#else
288
289static inline void outer_inv_range(unsigned long start, unsigned long end)
290{ }
291static inline void outer_clean_range(unsigned long start, unsigned long end)
292{ }
293static inline void outer_flush_range(unsigned long start, unsigned long end)
294{ }
295
296#endif
297
298/*
299 * flush_cache_vmap() is used when creating mappings (eg, via vmap,
300 * vmalloc, ioremap etc) in kernel space for pages. Since the
301 * direct-mappings of these pages may contain cached data, we need
302 * to do a full cache flush to ensure that writebacks don't corrupt
303 * data placed into these pages via the new mappings.
304 */
305#define flush_cache_vmap(start, end) flush_cache_all()
306#define flush_cache_vunmap(start, end) flush_cache_all()
307
308/*
309 * Copy user data from/to a page which is mapped into a different
310 * processes address space. Really, we want to allow our "user
311 * space" model to handle this.
312 */
313#define copy_to_user_page(vma, page, vaddr, dst, src, len) \
314 do { \
315 memcpy(dst, src, len); \
316 flush_ptrace_access(vma, page, vaddr, dst, len, 1);\
317 } while (0)
318
319#define copy_from_user_page(vma, page, vaddr, dst, src, len) \
320 do { \
321 memcpy(dst, src, len); \
322 } while (0)
323
324/*
325 * Convert calls to our calling convention.
326 */
327#define flush_cache_all() __cpuc_flush_kern_all()
328#ifndef CONFIG_CPU_CACHE_VIPT
329static inline void flush_cache_mm(struct mm_struct *mm)
330{
331 if (cpu_isset(smp_processor_id(), mm->cpu_vm_mask))
332 __cpuc_flush_user_all();
333}
334
335static inline void
336flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
337{
338 if (cpu_isset(smp_processor_id(), vma->vm_mm->cpu_vm_mask))
339 __cpuc_flush_user_range(start & PAGE_MASK, PAGE_ALIGN(end),
340 vma->vm_flags);
341}
342
343static inline void
344flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn)
345{
346 if (cpu_isset(smp_processor_id(), vma->vm_mm->cpu_vm_mask)) {
347 unsigned long addr = user_addr & PAGE_MASK;
348 __cpuc_flush_user_range(addr, addr + PAGE_SIZE, vma->vm_flags);
349 }
350}
351
352static inline void
353flush_ptrace_access(struct vm_area_struct *vma, struct page *page,
354 unsigned long uaddr, void *kaddr,
355 unsigned long len, int write)
356{
357 if (cpu_isset(smp_processor_id(), vma->vm_mm->cpu_vm_mask)) {
358 unsigned long addr = (unsigned long)kaddr;
359 __cpuc_coherent_kern_range(addr, addr + len);
360 }
361}
362#else
363extern void flush_cache_mm(struct mm_struct *mm);
364extern void flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
365extern void flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn);
366extern void flush_ptrace_access(struct vm_area_struct *vma, struct page *page,
367 unsigned long uaddr, void *kaddr,
368 unsigned long len, int write);
369#endif
370
371#define flush_cache_dup_mm(mm) flush_cache_mm(mm)
372
373/*
374 * flush_cache_user_range is used when we want to ensure that the
375 * Harvard caches are synchronised for the user space address range.
376 * This is used for the ARM private sys_cacheflush system call.
377 */
378#define flush_cache_user_range(vma,start,end) \
379 __cpuc_coherent_user_range((start) & PAGE_MASK, PAGE_ALIGN(end))
380
381/*
382 * Perform necessary cache operations to ensure that data previously
383 * stored within this range of addresses can be executed by the CPU.
384 */
385#define flush_icache_range(s,e) __cpuc_coherent_kern_range(s,e)
386
387/*
388 * Perform necessary cache operations to ensure that the TLB will
389 * see data written in the specified area.
390 */
391#define clean_dcache_area(start,size) cpu_dcache_clean_area(start, size)
392
393/*
394 * flush_dcache_page is used when the kernel has written to the page
395 * cache page at virtual address page->virtual.
396 *
397 * If this page isn't mapped (ie, page_mapping == NULL), or it might
398 * have userspace mappings, then we _must_ always clean + invalidate
399 * the dcache entries associated with the kernel mapping.
400 *
401 * Otherwise we can defer the operation, and clean the cache when we are
402 * about to change to user space. This is the same method as used on SPARC64.
403 * See update_mmu_cache for the user space part.
404 */
405extern void flush_dcache_page(struct page *);
406
407extern void __flush_dcache_page(struct address_space *mapping, struct page *page);
408
409static inline void __flush_icache_all(void)
410{
411 asm("mcr p15, 0, %0, c7, c5, 0 @ invalidate I-cache\n"
412 :
413 : "r" (0));
414}
415
416#define ARCH_HAS_FLUSH_ANON_PAGE
417static inline void flush_anon_page(struct vm_area_struct *vma,
418 struct page *page, unsigned long vmaddr)
419{
420 extern void __flush_anon_page(struct vm_area_struct *vma,
421 struct page *, unsigned long);
422 if (PageAnon(page))
423 __flush_anon_page(vma, page, vmaddr);
424}
425
426#define flush_dcache_mmap_lock(mapping) \
427 spin_lock_irq(&(mapping)->tree_lock)
428#define flush_dcache_mmap_unlock(mapping) \
429 spin_unlock_irq(&(mapping)->tree_lock)
430
431#define flush_icache_user_range(vma,page,addr,len) \
432 flush_dcache_page(page)
433
434/*
435 * We don't appear to need to do anything here. In fact, if we did, we'd
436 * duplicate cache flushing elsewhere performed by flush_dcache_page().
437 */
438#define flush_icache_page(vma,page) do { } while (0)
439
440static inline void flush_ioremap_region(unsigned long phys, void __iomem *virt,
441 unsigned offset, size_t size)
442{
443 const void *start = (void __force *)virt + offset;
444 dmac_inv_range(start, start + size);
445}
446
447#define __cacheid_present(val) (val != read_cpuid(CPUID_ID))
448#define __cacheid_type_v7(val) ((val & (7 << 29)) == (4 << 29))
449
450#define __cacheid_vivt_prev7(val) ((val & (15 << 25)) != (14 << 25))
451#define __cacheid_vipt_prev7(val) ((val & (15 << 25)) == (14 << 25))
452#define __cacheid_vipt_nonaliasing_prev7(val) ((val & (15 << 25 | 1 << 23)) == (14 << 25))
453#define __cacheid_vipt_aliasing_prev7(val) ((val & (15 << 25 | 1 << 23)) == (14 << 25 | 1 << 23))
454
455#define __cacheid_vivt(val) (__cacheid_type_v7(val) ? 0 : __cacheid_vivt_prev7(val))
456#define __cacheid_vipt(val) (__cacheid_type_v7(val) ? 1 : __cacheid_vipt_prev7(val))
457#define __cacheid_vipt_nonaliasing(val) (__cacheid_type_v7(val) ? 1 : __cacheid_vipt_nonaliasing_prev7(val))
458#define __cacheid_vipt_aliasing(val) (__cacheid_type_v7(val) ? 0 : __cacheid_vipt_aliasing_prev7(val))
459#define __cacheid_vivt_asid_tagged_instr(val) (__cacheid_type_v7(val) ? ((val & (3 << 14)) == (1 << 14)) : 0)
460
461#if defined(CONFIG_CPU_CACHE_VIVT) && !defined(CONFIG_CPU_CACHE_VIPT)
462/*
463 * VIVT caches only
464 */
465#define cache_is_vivt() 1
466#define cache_is_vipt() 0
467#define cache_is_vipt_nonaliasing() 0
468#define cache_is_vipt_aliasing() 0
469#define icache_is_vivt_asid_tagged() 0
470
471#elif !defined(CONFIG_CPU_CACHE_VIVT) && defined(CONFIG_CPU_CACHE_VIPT)
472/*
473 * VIPT caches only
474 */
475#define cache_is_vivt() 0
476#define cache_is_vipt() 1
477#define cache_is_vipt_nonaliasing() \
478 ({ \
479 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \
480 __cacheid_vipt_nonaliasing(__val); \
481 })
482
483#define cache_is_vipt_aliasing() \
484 ({ \
485 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \
486 __cacheid_vipt_aliasing(__val); \
487 })
488
489#define icache_is_vivt_asid_tagged() \
490 ({ \
491 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \
492 __cacheid_vivt_asid_tagged_instr(__val); \
493 })
494
495#else
496/*
497 * VIVT or VIPT caches. Note that this is unreliable since ARM926
498 * and V6 CPUs satisfy the "(val & (15 << 25)) == (14 << 25)" test.
499 * There's no way to tell from the CacheType register what type (!)
500 * the cache is.
501 */
502#define cache_is_vivt() \
503 ({ \
504 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \
505 (!__cacheid_present(__val)) || __cacheid_vivt(__val); \
506 })
507
508#define cache_is_vipt() \
509 ({ \
510 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \
511 __cacheid_present(__val) && __cacheid_vipt(__val); \
512 })
513
514#define cache_is_vipt_nonaliasing() \
515 ({ \
516 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \
517 __cacheid_present(__val) && \
518 __cacheid_vipt_nonaliasing(__val); \
519 })
520
521#define cache_is_vipt_aliasing() \
522 ({ \
523 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \
524 __cacheid_present(__val) && \
525 __cacheid_vipt_aliasing(__val); \
526 })
527
528#define icache_is_vivt_asid_tagged() \
529 ({ \
530 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \
531 __cacheid_present(__val) && \
532 __cacheid_vivt_asid_tagged_instr(__val); \
533 })
534
535#endif
536
537#endif