diff options
Diffstat (limited to 'include/asm-arm/bitops.h')
-rw-r--r-- | include/asm-arm/bitops.h | 340 |
1 files changed, 0 insertions, 340 deletions
diff --git a/include/asm-arm/bitops.h b/include/asm-arm/bitops.h deleted file mode 100644 index 9a1db20e032a..000000000000 --- a/include/asm-arm/bitops.h +++ /dev/null | |||
@@ -1,340 +0,0 @@ | |||
1 | /* | ||
2 | * Copyright 1995, Russell King. | ||
3 | * Various bits and pieces copyrights include: | ||
4 | * Linus Torvalds (test_bit). | ||
5 | * Big endian support: Copyright 2001, Nicolas Pitre | ||
6 | * reworked by rmk. | ||
7 | * | ||
8 | * bit 0 is the LSB of an "unsigned long" quantity. | ||
9 | * | ||
10 | * Please note that the code in this file should never be included | ||
11 | * from user space. Many of these are not implemented in assembler | ||
12 | * since they would be too costly. Also, they require privileged | ||
13 | * instructions (which are not available from user mode) to ensure | ||
14 | * that they are atomic. | ||
15 | */ | ||
16 | |||
17 | #ifndef __ASM_ARM_BITOPS_H | ||
18 | #define __ASM_ARM_BITOPS_H | ||
19 | |||
20 | #ifdef __KERNEL__ | ||
21 | |||
22 | #ifndef _LINUX_BITOPS_H | ||
23 | #error only <linux/bitops.h> can be included directly | ||
24 | #endif | ||
25 | |||
26 | #include <linux/compiler.h> | ||
27 | #include <asm/system.h> | ||
28 | |||
29 | #define smp_mb__before_clear_bit() mb() | ||
30 | #define smp_mb__after_clear_bit() mb() | ||
31 | |||
32 | /* | ||
33 | * These functions are the basis of our bit ops. | ||
34 | * | ||
35 | * First, the atomic bitops. These use native endian. | ||
36 | */ | ||
37 | static inline void ____atomic_set_bit(unsigned int bit, volatile unsigned long *p) | ||
38 | { | ||
39 | unsigned long flags; | ||
40 | unsigned long mask = 1UL << (bit & 31); | ||
41 | |||
42 | p += bit >> 5; | ||
43 | |||
44 | raw_local_irq_save(flags); | ||
45 | *p |= mask; | ||
46 | raw_local_irq_restore(flags); | ||
47 | } | ||
48 | |||
49 | static inline void ____atomic_clear_bit(unsigned int bit, volatile unsigned long *p) | ||
50 | { | ||
51 | unsigned long flags; | ||
52 | unsigned long mask = 1UL << (bit & 31); | ||
53 | |||
54 | p += bit >> 5; | ||
55 | |||
56 | raw_local_irq_save(flags); | ||
57 | *p &= ~mask; | ||
58 | raw_local_irq_restore(flags); | ||
59 | } | ||
60 | |||
61 | static inline void ____atomic_change_bit(unsigned int bit, volatile unsigned long *p) | ||
62 | { | ||
63 | unsigned long flags; | ||
64 | unsigned long mask = 1UL << (bit & 31); | ||
65 | |||
66 | p += bit >> 5; | ||
67 | |||
68 | raw_local_irq_save(flags); | ||
69 | *p ^= mask; | ||
70 | raw_local_irq_restore(flags); | ||
71 | } | ||
72 | |||
73 | static inline int | ||
74 | ____atomic_test_and_set_bit(unsigned int bit, volatile unsigned long *p) | ||
75 | { | ||
76 | unsigned long flags; | ||
77 | unsigned int res; | ||
78 | unsigned long mask = 1UL << (bit & 31); | ||
79 | |||
80 | p += bit >> 5; | ||
81 | |||
82 | raw_local_irq_save(flags); | ||
83 | res = *p; | ||
84 | *p = res | mask; | ||
85 | raw_local_irq_restore(flags); | ||
86 | |||
87 | return res & mask; | ||
88 | } | ||
89 | |||
90 | static inline int | ||
91 | ____atomic_test_and_clear_bit(unsigned int bit, volatile unsigned long *p) | ||
92 | { | ||
93 | unsigned long flags; | ||
94 | unsigned int res; | ||
95 | unsigned long mask = 1UL << (bit & 31); | ||
96 | |||
97 | p += bit >> 5; | ||
98 | |||
99 | raw_local_irq_save(flags); | ||
100 | res = *p; | ||
101 | *p = res & ~mask; | ||
102 | raw_local_irq_restore(flags); | ||
103 | |||
104 | return res & mask; | ||
105 | } | ||
106 | |||
107 | static inline int | ||
108 | ____atomic_test_and_change_bit(unsigned int bit, volatile unsigned long *p) | ||
109 | { | ||
110 | unsigned long flags; | ||
111 | unsigned int res; | ||
112 | unsigned long mask = 1UL << (bit & 31); | ||
113 | |||
114 | p += bit >> 5; | ||
115 | |||
116 | raw_local_irq_save(flags); | ||
117 | res = *p; | ||
118 | *p = res ^ mask; | ||
119 | raw_local_irq_restore(flags); | ||
120 | |||
121 | return res & mask; | ||
122 | } | ||
123 | |||
124 | #include <asm-generic/bitops/non-atomic.h> | ||
125 | |||
126 | /* | ||
127 | * A note about Endian-ness. | ||
128 | * ------------------------- | ||
129 | * | ||
130 | * When the ARM is put into big endian mode via CR15, the processor | ||
131 | * merely swaps the order of bytes within words, thus: | ||
132 | * | ||
133 | * ------------ physical data bus bits ----------- | ||
134 | * D31 ... D24 D23 ... D16 D15 ... D8 D7 ... D0 | ||
135 | * little byte 3 byte 2 byte 1 byte 0 | ||
136 | * big byte 0 byte 1 byte 2 byte 3 | ||
137 | * | ||
138 | * This means that reading a 32-bit word at address 0 returns the same | ||
139 | * value irrespective of the endian mode bit. | ||
140 | * | ||
141 | * Peripheral devices should be connected with the data bus reversed in | ||
142 | * "Big Endian" mode. ARM Application Note 61 is applicable, and is | ||
143 | * available from http://www.arm.com/. | ||
144 | * | ||
145 | * The following assumes that the data bus connectivity for big endian | ||
146 | * mode has been followed. | ||
147 | * | ||
148 | * Note that bit 0 is defined to be 32-bit word bit 0, not byte 0 bit 0. | ||
149 | */ | ||
150 | |||
151 | /* | ||
152 | * Little endian assembly bitops. nr = 0 -> byte 0 bit 0. | ||
153 | */ | ||
154 | extern void _set_bit_le(int nr, volatile unsigned long * p); | ||
155 | extern void _clear_bit_le(int nr, volatile unsigned long * p); | ||
156 | extern void _change_bit_le(int nr, volatile unsigned long * p); | ||
157 | extern int _test_and_set_bit_le(int nr, volatile unsigned long * p); | ||
158 | extern int _test_and_clear_bit_le(int nr, volatile unsigned long * p); | ||
159 | extern int _test_and_change_bit_le(int nr, volatile unsigned long * p); | ||
160 | extern int _find_first_zero_bit_le(const void * p, unsigned size); | ||
161 | extern int _find_next_zero_bit_le(const void * p, int size, int offset); | ||
162 | extern int _find_first_bit_le(const unsigned long *p, unsigned size); | ||
163 | extern int _find_next_bit_le(const unsigned long *p, int size, int offset); | ||
164 | |||
165 | /* | ||
166 | * Big endian assembly bitops. nr = 0 -> byte 3 bit 0. | ||
167 | */ | ||
168 | extern void _set_bit_be(int nr, volatile unsigned long * p); | ||
169 | extern void _clear_bit_be(int nr, volatile unsigned long * p); | ||
170 | extern void _change_bit_be(int nr, volatile unsigned long * p); | ||
171 | extern int _test_and_set_bit_be(int nr, volatile unsigned long * p); | ||
172 | extern int _test_and_clear_bit_be(int nr, volatile unsigned long * p); | ||
173 | extern int _test_and_change_bit_be(int nr, volatile unsigned long * p); | ||
174 | extern int _find_first_zero_bit_be(const void * p, unsigned size); | ||
175 | extern int _find_next_zero_bit_be(const void * p, int size, int offset); | ||
176 | extern int _find_first_bit_be(const unsigned long *p, unsigned size); | ||
177 | extern int _find_next_bit_be(const unsigned long *p, int size, int offset); | ||
178 | |||
179 | #ifndef CONFIG_SMP | ||
180 | /* | ||
181 | * The __* form of bitops are non-atomic and may be reordered. | ||
182 | */ | ||
183 | #define ATOMIC_BITOP_LE(name,nr,p) \ | ||
184 | (__builtin_constant_p(nr) ? \ | ||
185 | ____atomic_##name(nr, p) : \ | ||
186 | _##name##_le(nr,p)) | ||
187 | |||
188 | #define ATOMIC_BITOP_BE(name,nr,p) \ | ||
189 | (__builtin_constant_p(nr) ? \ | ||
190 | ____atomic_##name(nr, p) : \ | ||
191 | _##name##_be(nr,p)) | ||
192 | #else | ||
193 | #define ATOMIC_BITOP_LE(name,nr,p) _##name##_le(nr,p) | ||
194 | #define ATOMIC_BITOP_BE(name,nr,p) _##name##_be(nr,p) | ||
195 | #endif | ||
196 | |||
197 | #define NONATOMIC_BITOP(name,nr,p) \ | ||
198 | (____nonatomic_##name(nr, p)) | ||
199 | |||
200 | #ifndef __ARMEB__ | ||
201 | /* | ||
202 | * These are the little endian, atomic definitions. | ||
203 | */ | ||
204 | #define set_bit(nr,p) ATOMIC_BITOP_LE(set_bit,nr,p) | ||
205 | #define clear_bit(nr,p) ATOMIC_BITOP_LE(clear_bit,nr,p) | ||
206 | #define change_bit(nr,p) ATOMIC_BITOP_LE(change_bit,nr,p) | ||
207 | #define test_and_set_bit(nr,p) ATOMIC_BITOP_LE(test_and_set_bit,nr,p) | ||
208 | #define test_and_clear_bit(nr,p) ATOMIC_BITOP_LE(test_and_clear_bit,nr,p) | ||
209 | #define test_and_change_bit(nr,p) ATOMIC_BITOP_LE(test_and_change_bit,nr,p) | ||
210 | #define find_first_zero_bit(p,sz) _find_first_zero_bit_le(p,sz) | ||
211 | #define find_next_zero_bit(p,sz,off) _find_next_zero_bit_le(p,sz,off) | ||
212 | #define find_first_bit(p,sz) _find_first_bit_le(p,sz) | ||
213 | #define find_next_bit(p,sz,off) _find_next_bit_le(p,sz,off) | ||
214 | |||
215 | #define WORD_BITOFF_TO_LE(x) ((x)) | ||
216 | |||
217 | #else | ||
218 | |||
219 | /* | ||
220 | * These are the big endian, atomic definitions. | ||
221 | */ | ||
222 | #define set_bit(nr,p) ATOMIC_BITOP_BE(set_bit,nr,p) | ||
223 | #define clear_bit(nr,p) ATOMIC_BITOP_BE(clear_bit,nr,p) | ||
224 | #define change_bit(nr,p) ATOMIC_BITOP_BE(change_bit,nr,p) | ||
225 | #define test_and_set_bit(nr,p) ATOMIC_BITOP_BE(test_and_set_bit,nr,p) | ||
226 | #define test_and_clear_bit(nr,p) ATOMIC_BITOP_BE(test_and_clear_bit,nr,p) | ||
227 | #define test_and_change_bit(nr,p) ATOMIC_BITOP_BE(test_and_change_bit,nr,p) | ||
228 | #define find_first_zero_bit(p,sz) _find_first_zero_bit_be(p,sz) | ||
229 | #define find_next_zero_bit(p,sz,off) _find_next_zero_bit_be(p,sz,off) | ||
230 | #define find_first_bit(p,sz) _find_first_bit_be(p,sz) | ||
231 | #define find_next_bit(p,sz,off) _find_next_bit_be(p,sz,off) | ||
232 | |||
233 | #define WORD_BITOFF_TO_LE(x) ((x) ^ 0x18) | ||
234 | |||
235 | #endif | ||
236 | |||
237 | #if __LINUX_ARM_ARCH__ < 5 | ||
238 | |||
239 | #include <asm-generic/bitops/ffz.h> | ||
240 | #include <asm-generic/bitops/__ffs.h> | ||
241 | #include <asm-generic/bitops/fls.h> | ||
242 | #include <asm-generic/bitops/ffs.h> | ||
243 | |||
244 | #else | ||
245 | |||
246 | static inline int constant_fls(int x) | ||
247 | { | ||
248 | int r = 32; | ||
249 | |||
250 | if (!x) | ||
251 | return 0; | ||
252 | if (!(x & 0xffff0000u)) { | ||
253 | x <<= 16; | ||
254 | r -= 16; | ||
255 | } | ||
256 | if (!(x & 0xff000000u)) { | ||
257 | x <<= 8; | ||
258 | r -= 8; | ||
259 | } | ||
260 | if (!(x & 0xf0000000u)) { | ||
261 | x <<= 4; | ||
262 | r -= 4; | ||
263 | } | ||
264 | if (!(x & 0xc0000000u)) { | ||
265 | x <<= 2; | ||
266 | r -= 2; | ||
267 | } | ||
268 | if (!(x & 0x80000000u)) { | ||
269 | x <<= 1; | ||
270 | r -= 1; | ||
271 | } | ||
272 | return r; | ||
273 | } | ||
274 | |||
275 | /* | ||
276 | * On ARMv5 and above those functions can be implemented around | ||
277 | * the clz instruction for much better code efficiency. | ||
278 | */ | ||
279 | |||
280 | #define __fls(x) \ | ||
281 | ( __builtin_constant_p(x) ? constant_fls(x) : \ | ||
282 | ({ int __r; asm("clz\t%0, %1" : "=r"(__r) : "r"(x) : "cc"); 32-__r; }) ) | ||
283 | |||
284 | /* Implement fls() in C so that 64-bit args are suitably truncated */ | ||
285 | static inline int fls(int x) | ||
286 | { | ||
287 | return __fls(x); | ||
288 | } | ||
289 | |||
290 | #define ffs(x) ({ unsigned long __t = (x); fls(__t & -__t); }) | ||
291 | #define __ffs(x) (ffs(x) - 1) | ||
292 | #define ffz(x) __ffs( ~(x) ) | ||
293 | |||
294 | #endif | ||
295 | |||
296 | #include <asm-generic/bitops/fls64.h> | ||
297 | |||
298 | #include <asm-generic/bitops/sched.h> | ||
299 | #include <asm-generic/bitops/hweight.h> | ||
300 | #include <asm-generic/bitops/lock.h> | ||
301 | |||
302 | /* | ||
303 | * Ext2 is defined to use little-endian byte ordering. | ||
304 | * These do not need to be atomic. | ||
305 | */ | ||
306 | #define ext2_set_bit(nr,p) \ | ||
307 | __test_and_set_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p)) | ||
308 | #define ext2_set_bit_atomic(lock,nr,p) \ | ||
309 | test_and_set_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p)) | ||
310 | #define ext2_clear_bit(nr,p) \ | ||
311 | __test_and_clear_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p)) | ||
312 | #define ext2_clear_bit_atomic(lock,nr,p) \ | ||
313 | test_and_clear_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p)) | ||
314 | #define ext2_test_bit(nr,p) \ | ||
315 | test_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p)) | ||
316 | #define ext2_find_first_zero_bit(p,sz) \ | ||
317 | _find_first_zero_bit_le(p,sz) | ||
318 | #define ext2_find_next_zero_bit(p,sz,off) \ | ||
319 | _find_next_zero_bit_le(p,sz,off) | ||
320 | #define ext2_find_next_bit(p, sz, off) \ | ||
321 | _find_next_bit_le(p, sz, off) | ||
322 | |||
323 | /* | ||
324 | * Minix is defined to use little-endian byte ordering. | ||
325 | * These do not need to be atomic. | ||
326 | */ | ||
327 | #define minix_set_bit(nr,p) \ | ||
328 | __set_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p)) | ||
329 | #define minix_test_bit(nr,p) \ | ||
330 | test_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p)) | ||
331 | #define minix_test_and_set_bit(nr,p) \ | ||
332 | __test_and_set_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p)) | ||
333 | #define minix_test_and_clear_bit(nr,p) \ | ||
334 | __test_and_clear_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p)) | ||
335 | #define minix_find_first_zero_bit(p,sz) \ | ||
336 | _find_first_zero_bit_le(p,sz) | ||
337 | |||
338 | #endif /* __KERNEL__ */ | ||
339 | |||
340 | #endif /* _ARM_BITOPS_H */ | ||