diff options
Diffstat (limited to 'include/asm-alpha/pgtable.h')
-rw-r--r-- | include/asm-alpha/pgtable.h | 380 |
1 files changed, 0 insertions, 380 deletions
diff --git a/include/asm-alpha/pgtable.h b/include/asm-alpha/pgtable.h deleted file mode 100644 index 3f0c59f6d8aa..000000000000 --- a/include/asm-alpha/pgtable.h +++ /dev/null | |||
@@ -1,380 +0,0 @@ | |||
1 | #ifndef _ALPHA_PGTABLE_H | ||
2 | #define _ALPHA_PGTABLE_H | ||
3 | |||
4 | #include <asm-generic/4level-fixup.h> | ||
5 | |||
6 | /* | ||
7 | * This file contains the functions and defines necessary to modify and use | ||
8 | * the Alpha page table tree. | ||
9 | * | ||
10 | * This hopefully works with any standard Alpha page-size, as defined | ||
11 | * in <asm/page.h> (currently 8192). | ||
12 | */ | ||
13 | #include <linux/mmzone.h> | ||
14 | |||
15 | #include <asm/page.h> | ||
16 | #include <asm/processor.h> /* For TASK_SIZE */ | ||
17 | #include <asm/machvec.h> | ||
18 | |||
19 | struct mm_struct; | ||
20 | struct vm_area_struct; | ||
21 | |||
22 | /* Certain architectures need to do special things when PTEs | ||
23 | * within a page table are directly modified. Thus, the following | ||
24 | * hook is made available. | ||
25 | */ | ||
26 | #define set_pte(pteptr, pteval) ((*(pteptr)) = (pteval)) | ||
27 | #define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval) | ||
28 | |||
29 | /* PMD_SHIFT determines the size of the area a second-level page table can map */ | ||
30 | #define PMD_SHIFT (PAGE_SHIFT + (PAGE_SHIFT-3)) | ||
31 | #define PMD_SIZE (1UL << PMD_SHIFT) | ||
32 | #define PMD_MASK (~(PMD_SIZE-1)) | ||
33 | |||
34 | /* PGDIR_SHIFT determines what a third-level page table entry can map */ | ||
35 | #define PGDIR_SHIFT (PAGE_SHIFT + 2*(PAGE_SHIFT-3)) | ||
36 | #define PGDIR_SIZE (1UL << PGDIR_SHIFT) | ||
37 | #define PGDIR_MASK (~(PGDIR_SIZE-1)) | ||
38 | |||
39 | /* | ||
40 | * Entries per page directory level: the Alpha is three-level, with | ||
41 | * all levels having a one-page page table. | ||
42 | */ | ||
43 | #define PTRS_PER_PTE (1UL << (PAGE_SHIFT-3)) | ||
44 | #define PTRS_PER_PMD (1UL << (PAGE_SHIFT-3)) | ||
45 | #define PTRS_PER_PGD (1UL << (PAGE_SHIFT-3)) | ||
46 | #define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE) | ||
47 | #define FIRST_USER_ADDRESS 0 | ||
48 | |||
49 | /* Number of pointers that fit on a page: this will go away. */ | ||
50 | #define PTRS_PER_PAGE (1UL << (PAGE_SHIFT-3)) | ||
51 | |||
52 | #ifdef CONFIG_ALPHA_LARGE_VMALLOC | ||
53 | #define VMALLOC_START 0xfffffe0000000000 | ||
54 | #else | ||
55 | #define VMALLOC_START (-2*PGDIR_SIZE) | ||
56 | #endif | ||
57 | #define VMALLOC_END (-PGDIR_SIZE) | ||
58 | |||
59 | /* | ||
60 | * OSF/1 PAL-code-imposed page table bits | ||
61 | */ | ||
62 | #define _PAGE_VALID 0x0001 | ||
63 | #define _PAGE_FOR 0x0002 /* used for page protection (fault on read) */ | ||
64 | #define _PAGE_FOW 0x0004 /* used for page protection (fault on write) */ | ||
65 | #define _PAGE_FOE 0x0008 /* used for page protection (fault on exec) */ | ||
66 | #define _PAGE_ASM 0x0010 | ||
67 | #define _PAGE_KRE 0x0100 /* xxx - see below on the "accessed" bit */ | ||
68 | #define _PAGE_URE 0x0200 /* xxx */ | ||
69 | #define _PAGE_KWE 0x1000 /* used to do the dirty bit in software */ | ||
70 | #define _PAGE_UWE 0x2000 /* used to do the dirty bit in software */ | ||
71 | |||
72 | /* .. and these are ours ... */ | ||
73 | #define _PAGE_DIRTY 0x20000 | ||
74 | #define _PAGE_ACCESSED 0x40000 | ||
75 | #define _PAGE_FILE 0x80000 /* set:pagecache, unset:swap */ | ||
76 | |||
77 | /* | ||
78 | * NOTE! The "accessed" bit isn't necessarily exact: it can be kept exactly | ||
79 | * by software (use the KRE/URE/KWE/UWE bits appropriately), but I'll fake it. | ||
80 | * Under Linux/AXP, the "accessed" bit just means "read", and I'll just use | ||
81 | * the KRE/URE bits to watch for it. That way we don't need to overload the | ||
82 | * KWE/UWE bits with both handling dirty and accessed. | ||
83 | * | ||
84 | * Note that the kernel uses the accessed bit just to check whether to page | ||
85 | * out a page or not, so it doesn't have to be exact anyway. | ||
86 | */ | ||
87 | |||
88 | #define __DIRTY_BITS (_PAGE_DIRTY | _PAGE_KWE | _PAGE_UWE) | ||
89 | #define __ACCESS_BITS (_PAGE_ACCESSED | _PAGE_KRE | _PAGE_URE) | ||
90 | |||
91 | #define _PFN_MASK 0xFFFFFFFF00000000UL | ||
92 | |||
93 | #define _PAGE_TABLE (_PAGE_VALID | __DIRTY_BITS | __ACCESS_BITS) | ||
94 | #define _PAGE_CHG_MASK (_PFN_MASK | __DIRTY_BITS | __ACCESS_BITS) | ||
95 | |||
96 | /* | ||
97 | * All the normal masks have the "page accessed" bits on, as any time they are used, | ||
98 | * the page is accessed. They are cleared only by the page-out routines | ||
99 | */ | ||
100 | #define PAGE_NONE __pgprot(_PAGE_VALID | __ACCESS_BITS | _PAGE_FOR | _PAGE_FOW | _PAGE_FOE) | ||
101 | #define PAGE_SHARED __pgprot(_PAGE_VALID | __ACCESS_BITS) | ||
102 | #define PAGE_COPY __pgprot(_PAGE_VALID | __ACCESS_BITS | _PAGE_FOW) | ||
103 | #define PAGE_READONLY __pgprot(_PAGE_VALID | __ACCESS_BITS | _PAGE_FOW) | ||
104 | #define PAGE_KERNEL __pgprot(_PAGE_VALID | _PAGE_ASM | _PAGE_KRE | _PAGE_KWE) | ||
105 | |||
106 | #define _PAGE_NORMAL(x) __pgprot(_PAGE_VALID | __ACCESS_BITS | (x)) | ||
107 | |||
108 | #define _PAGE_P(x) _PAGE_NORMAL((x) | (((x) & _PAGE_FOW)?0:_PAGE_FOW)) | ||
109 | #define _PAGE_S(x) _PAGE_NORMAL(x) | ||
110 | |||
111 | /* | ||
112 | * The hardware can handle write-only mappings, but as the Alpha | ||
113 | * architecture does byte-wide writes with a read-modify-write | ||
114 | * sequence, it's not practical to have write-without-read privs. | ||
115 | * Thus the "-w- -> rw-" and "-wx -> rwx" mapping here (and in | ||
116 | * arch/alpha/mm/fault.c) | ||
117 | */ | ||
118 | /* xwr */ | ||
119 | #define __P000 _PAGE_P(_PAGE_FOE | _PAGE_FOW | _PAGE_FOR) | ||
120 | #define __P001 _PAGE_P(_PAGE_FOE | _PAGE_FOW) | ||
121 | #define __P010 _PAGE_P(_PAGE_FOE) | ||
122 | #define __P011 _PAGE_P(_PAGE_FOE) | ||
123 | #define __P100 _PAGE_P(_PAGE_FOW | _PAGE_FOR) | ||
124 | #define __P101 _PAGE_P(_PAGE_FOW) | ||
125 | #define __P110 _PAGE_P(0) | ||
126 | #define __P111 _PAGE_P(0) | ||
127 | |||
128 | #define __S000 _PAGE_S(_PAGE_FOE | _PAGE_FOW | _PAGE_FOR) | ||
129 | #define __S001 _PAGE_S(_PAGE_FOE | _PAGE_FOW) | ||
130 | #define __S010 _PAGE_S(_PAGE_FOE) | ||
131 | #define __S011 _PAGE_S(_PAGE_FOE) | ||
132 | #define __S100 _PAGE_S(_PAGE_FOW | _PAGE_FOR) | ||
133 | #define __S101 _PAGE_S(_PAGE_FOW) | ||
134 | #define __S110 _PAGE_S(0) | ||
135 | #define __S111 _PAGE_S(0) | ||
136 | |||
137 | /* | ||
138 | * pgprot_noncached() is only for infiniband pci support, and a real | ||
139 | * implementation for RAM would be more complicated. | ||
140 | */ | ||
141 | #define pgprot_noncached(prot) (prot) | ||
142 | |||
143 | /* | ||
144 | * BAD_PAGETABLE is used when we need a bogus page-table, while | ||
145 | * BAD_PAGE is used for a bogus page. | ||
146 | * | ||
147 | * ZERO_PAGE is a global shared page that is always zero: used | ||
148 | * for zero-mapped memory areas etc.. | ||
149 | */ | ||
150 | extern pte_t __bad_page(void); | ||
151 | extern pmd_t * __bad_pagetable(void); | ||
152 | |||
153 | extern unsigned long __zero_page(void); | ||
154 | |||
155 | #define BAD_PAGETABLE __bad_pagetable() | ||
156 | #define BAD_PAGE __bad_page() | ||
157 | #define ZERO_PAGE(vaddr) (virt_to_page(ZERO_PGE)) | ||
158 | |||
159 | /* number of bits that fit into a memory pointer */ | ||
160 | #define BITS_PER_PTR (8*sizeof(unsigned long)) | ||
161 | |||
162 | /* to align the pointer to a pointer address */ | ||
163 | #define PTR_MASK (~(sizeof(void*)-1)) | ||
164 | |||
165 | /* sizeof(void*)==1<<SIZEOF_PTR_LOG2 */ | ||
166 | #define SIZEOF_PTR_LOG2 3 | ||
167 | |||
168 | /* to find an entry in a page-table */ | ||
169 | #define PAGE_PTR(address) \ | ||
170 | ((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK) | ||
171 | |||
172 | /* | ||
173 | * On certain platforms whose physical address space can overlap KSEG, | ||
174 | * namely EV6 and above, we must re-twiddle the physaddr to restore the | ||
175 | * correct high-order bits. | ||
176 | * | ||
177 | * This is extremely confusing until you realize that this is actually | ||
178 | * just working around a userspace bug. The X server was intending to | ||
179 | * provide the physical address but instead provided the KSEG address. | ||
180 | * Or tried to, except it's not representable. | ||
181 | * | ||
182 | * On Tsunami there's nothing meaningful at 0x40000000000, so this is | ||
183 | * a safe thing to do. Come the first core logic that does put something | ||
184 | * in this area -- memory or whathaveyou -- then this hack will have | ||
185 | * to go away. So be prepared! | ||
186 | */ | ||
187 | |||
188 | #if defined(CONFIG_ALPHA_GENERIC) && defined(USE_48_BIT_KSEG) | ||
189 | #error "EV6-only feature in a generic kernel" | ||
190 | #endif | ||
191 | #if defined(CONFIG_ALPHA_GENERIC) || \ | ||
192 | (defined(CONFIG_ALPHA_EV6) && !defined(USE_48_BIT_KSEG)) | ||
193 | #define KSEG_PFN (0xc0000000000UL >> PAGE_SHIFT) | ||
194 | #define PHYS_TWIDDLE(pfn) \ | ||
195 | ((((pfn) & KSEG_PFN) == (0x40000000000UL >> PAGE_SHIFT)) \ | ||
196 | ? ((pfn) ^= KSEG_PFN) : (pfn)) | ||
197 | #else | ||
198 | #define PHYS_TWIDDLE(pfn) (pfn) | ||
199 | #endif | ||
200 | |||
201 | /* | ||
202 | * Conversion functions: convert a page and protection to a page entry, | ||
203 | * and a page entry and page directory to the page they refer to. | ||
204 | */ | ||
205 | #ifndef CONFIG_DISCONTIGMEM | ||
206 | #define page_to_pa(page) (((page) - mem_map) << PAGE_SHIFT) | ||
207 | |||
208 | #define pte_pfn(pte) (pte_val(pte) >> 32) | ||
209 | #define pte_page(pte) pfn_to_page(pte_pfn(pte)) | ||
210 | #define mk_pte(page, pgprot) \ | ||
211 | ({ \ | ||
212 | pte_t pte; \ | ||
213 | \ | ||
214 | pte_val(pte) = (page_to_pfn(page) << 32) | pgprot_val(pgprot); \ | ||
215 | pte; \ | ||
216 | }) | ||
217 | #endif | ||
218 | |||
219 | extern inline pte_t pfn_pte(unsigned long physpfn, pgprot_t pgprot) | ||
220 | { pte_t pte; pte_val(pte) = (PHYS_TWIDDLE(physpfn) << 32) | pgprot_val(pgprot); return pte; } | ||
221 | |||
222 | extern inline pte_t pte_modify(pte_t pte, pgprot_t newprot) | ||
223 | { pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); return pte; } | ||
224 | |||
225 | extern inline void pmd_set(pmd_t * pmdp, pte_t * ptep) | ||
226 | { pmd_val(*pmdp) = _PAGE_TABLE | ((((unsigned long) ptep) - PAGE_OFFSET) << (32-PAGE_SHIFT)); } | ||
227 | |||
228 | extern inline void pgd_set(pgd_t * pgdp, pmd_t * pmdp) | ||
229 | { pgd_val(*pgdp) = _PAGE_TABLE | ((((unsigned long) pmdp) - PAGE_OFFSET) << (32-PAGE_SHIFT)); } | ||
230 | |||
231 | |||
232 | extern inline unsigned long | ||
233 | pmd_page_vaddr(pmd_t pmd) | ||
234 | { | ||
235 | return ((pmd_val(pmd) & _PFN_MASK) >> (32-PAGE_SHIFT)) + PAGE_OFFSET; | ||
236 | } | ||
237 | |||
238 | #ifndef CONFIG_DISCONTIGMEM | ||
239 | #define pmd_page(pmd) (mem_map + ((pmd_val(pmd) & _PFN_MASK) >> 32)) | ||
240 | #define pgd_page(pgd) (mem_map + ((pgd_val(pgd) & _PFN_MASK) >> 32)) | ||
241 | #endif | ||
242 | |||
243 | extern inline unsigned long pgd_page_vaddr(pgd_t pgd) | ||
244 | { return PAGE_OFFSET + ((pgd_val(pgd) & _PFN_MASK) >> (32-PAGE_SHIFT)); } | ||
245 | |||
246 | extern inline int pte_none(pte_t pte) { return !pte_val(pte); } | ||
247 | extern inline int pte_present(pte_t pte) { return pte_val(pte) & _PAGE_VALID; } | ||
248 | extern inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) | ||
249 | { | ||
250 | pte_val(*ptep) = 0; | ||
251 | } | ||
252 | |||
253 | extern inline int pmd_none(pmd_t pmd) { return !pmd_val(pmd); } | ||
254 | extern inline int pmd_bad(pmd_t pmd) { return (pmd_val(pmd) & ~_PFN_MASK) != _PAGE_TABLE; } | ||
255 | extern inline int pmd_present(pmd_t pmd) { return pmd_val(pmd) & _PAGE_VALID; } | ||
256 | extern inline void pmd_clear(pmd_t * pmdp) { pmd_val(*pmdp) = 0; } | ||
257 | |||
258 | extern inline int pgd_none(pgd_t pgd) { return !pgd_val(pgd); } | ||
259 | extern inline int pgd_bad(pgd_t pgd) { return (pgd_val(pgd) & ~_PFN_MASK) != _PAGE_TABLE; } | ||
260 | extern inline int pgd_present(pgd_t pgd) { return pgd_val(pgd) & _PAGE_VALID; } | ||
261 | extern inline void pgd_clear(pgd_t * pgdp) { pgd_val(*pgdp) = 0; } | ||
262 | |||
263 | /* | ||
264 | * The following only work if pte_present() is true. | ||
265 | * Undefined behaviour if not.. | ||
266 | */ | ||
267 | extern inline int pte_write(pte_t pte) { return !(pte_val(pte) & _PAGE_FOW); } | ||
268 | extern inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; } | ||
269 | extern inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; } | ||
270 | extern inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE; } | ||
271 | extern inline int pte_special(pte_t pte) { return 0; } | ||
272 | |||
273 | extern inline pte_t pte_wrprotect(pte_t pte) { pte_val(pte) |= _PAGE_FOW; return pte; } | ||
274 | extern inline pte_t pte_mkclean(pte_t pte) { pte_val(pte) &= ~(__DIRTY_BITS); return pte; } | ||
275 | extern inline pte_t pte_mkold(pte_t pte) { pte_val(pte) &= ~(__ACCESS_BITS); return pte; } | ||
276 | extern inline pte_t pte_mkwrite(pte_t pte) { pte_val(pte) &= ~_PAGE_FOW; return pte; } | ||
277 | extern inline pte_t pte_mkdirty(pte_t pte) { pte_val(pte) |= __DIRTY_BITS; return pte; } | ||
278 | extern inline pte_t pte_mkyoung(pte_t pte) { pte_val(pte) |= __ACCESS_BITS; return pte; } | ||
279 | extern inline pte_t pte_mkspecial(pte_t pte) { return pte; } | ||
280 | |||
281 | #define PAGE_DIR_OFFSET(tsk,address) pgd_offset((tsk),(address)) | ||
282 | |||
283 | /* to find an entry in a kernel page-table-directory */ | ||
284 | #define pgd_offset_k(address) pgd_offset(&init_mm, (address)) | ||
285 | |||
286 | /* to find an entry in a page-table-directory. */ | ||
287 | #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1)) | ||
288 | #define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address)) | ||
289 | |||
290 | /* | ||
291 | * The smp_read_barrier_depends() in the following functions are required to | ||
292 | * order the load of *dir (the pointer in the top level page table) with any | ||
293 | * subsequent load of the returned pmd_t *ret (ret is data dependent on *dir). | ||
294 | * | ||
295 | * If this ordering is not enforced, the CPU might load an older value of | ||
296 | * *ret, which may be uninitialized data. See mm/memory.c:__pte_alloc for | ||
297 | * more details. | ||
298 | * | ||
299 | * Note that we never change the mm->pgd pointer after the task is running, so | ||
300 | * pgd_offset does not require such a barrier. | ||
301 | */ | ||
302 | |||
303 | /* Find an entry in the second-level page table.. */ | ||
304 | extern inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address) | ||
305 | { | ||
306 | pmd_t *ret = (pmd_t *) pgd_page_vaddr(*dir) + ((address >> PMD_SHIFT) & (PTRS_PER_PAGE - 1)); | ||
307 | smp_read_barrier_depends(); /* see above */ | ||
308 | return ret; | ||
309 | } | ||
310 | |||
311 | /* Find an entry in the third-level page table.. */ | ||
312 | extern inline pte_t * pte_offset_kernel(pmd_t * dir, unsigned long address) | ||
313 | { | ||
314 | pte_t *ret = (pte_t *) pmd_page_vaddr(*dir) | ||
315 | + ((address >> PAGE_SHIFT) & (PTRS_PER_PAGE - 1)); | ||
316 | smp_read_barrier_depends(); /* see above */ | ||
317 | return ret; | ||
318 | } | ||
319 | |||
320 | #define pte_offset_map(dir,addr) pte_offset_kernel((dir),(addr)) | ||
321 | #define pte_offset_map_nested(dir,addr) pte_offset_kernel((dir),(addr)) | ||
322 | #define pte_unmap(pte) do { } while (0) | ||
323 | #define pte_unmap_nested(pte) do { } while (0) | ||
324 | |||
325 | extern pgd_t swapper_pg_dir[1024]; | ||
326 | |||
327 | /* | ||
328 | * The Alpha doesn't have any external MMU info: the kernel page | ||
329 | * tables contain all the necessary information. | ||
330 | */ | ||
331 | extern inline void update_mmu_cache(struct vm_area_struct * vma, | ||
332 | unsigned long address, pte_t pte) | ||
333 | { | ||
334 | } | ||
335 | |||
336 | /* | ||
337 | * Non-present pages: high 24 bits are offset, next 8 bits type, | ||
338 | * low 32 bits zero. | ||
339 | */ | ||
340 | extern inline pte_t mk_swap_pte(unsigned long type, unsigned long offset) | ||
341 | { pte_t pte; pte_val(pte) = (type << 32) | (offset << 40); return pte; } | ||
342 | |||
343 | #define __swp_type(x) (((x).val >> 32) & 0xff) | ||
344 | #define __swp_offset(x) ((x).val >> 40) | ||
345 | #define __swp_entry(type, off) ((swp_entry_t) { pte_val(mk_swap_pte((type), (off))) }) | ||
346 | #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) | ||
347 | #define __swp_entry_to_pte(x) ((pte_t) { (x).val }) | ||
348 | |||
349 | #define pte_to_pgoff(pte) (pte_val(pte) >> 32) | ||
350 | #define pgoff_to_pte(off) ((pte_t) { ((off) << 32) | _PAGE_FILE }) | ||
351 | |||
352 | #define PTE_FILE_MAX_BITS 32 | ||
353 | |||
354 | #ifndef CONFIG_DISCONTIGMEM | ||
355 | #define kern_addr_valid(addr) (1) | ||
356 | #endif | ||
357 | |||
358 | #define io_remap_pfn_range(vma, start, pfn, size, prot) \ | ||
359 | remap_pfn_range(vma, start, pfn, size, prot) | ||
360 | |||
361 | #define pte_ERROR(e) \ | ||
362 | printk("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e)) | ||
363 | #define pmd_ERROR(e) \ | ||
364 | printk("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e)) | ||
365 | #define pgd_ERROR(e) \ | ||
366 | printk("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e)) | ||
367 | |||
368 | extern void paging_init(void); | ||
369 | |||
370 | #include <asm-generic/pgtable.h> | ||
371 | |||
372 | /* | ||
373 | * No page table caches to initialise | ||
374 | */ | ||
375 | #define pgtable_cache_init() do { } while (0) | ||
376 | |||
377 | /* We have our own get_unmapped_area to cope with ADDR_LIMIT_32BIT. */ | ||
378 | #define HAVE_ARCH_UNMAPPED_AREA | ||
379 | |||
380 | #endif /* _ALPHA_PGTABLE_H */ | ||