diff options
Diffstat (limited to 'fs')
-rw-r--r-- | fs/Kconfig | 26 | ||||
-rw-r--r-- | fs/Makefile | 1 | ||||
-rw-r--r-- | fs/jffs/Makefile | 11 | ||||
-rw-r--r-- | fs/jffs/inode-v23.c | 1847 | ||||
-rw-r--r-- | fs/jffs/intrep.c | 3449 | ||||
-rw-r--r-- | fs/jffs/intrep.h | 58 | ||||
-rw-r--r-- | fs/jffs/jffs_fm.c | 798 | ||||
-rw-r--r-- | fs/jffs/jffs_fm.h | 149 | ||||
-rw-r--r-- | fs/jffs/jffs_proc.c | 261 | ||||
-rw-r--r-- | fs/jffs/jffs_proc.h | 28 |
10 files changed, 0 insertions, 6628 deletions
diff --git a/fs/Kconfig b/fs/Kconfig index a722b5a3f752..3c4886b849f5 100644 --- a/fs/Kconfig +++ b/fs/Kconfig | |||
@@ -1189,32 +1189,6 @@ config EFS_FS | |||
1189 | To compile the EFS file system support as a module, choose M here: the | 1189 | To compile the EFS file system support as a module, choose M here: the |
1190 | module will be called efs. | 1190 | module will be called efs. |
1191 | 1191 | ||
1192 | config JFFS_FS | ||
1193 | tristate "Journalling Flash File System (JFFS) support" | ||
1194 | depends on MTD && BLOCK && BROKEN | ||
1195 | help | ||
1196 | JFFS is the Journalling Flash File System developed by Axis | ||
1197 | Communications in Sweden, aimed at providing a crash/powerdown-safe | ||
1198 | file system for disk-less embedded devices. Further information is | ||
1199 | available at (<http://developer.axis.com/software/jffs/>). | ||
1200 | |||
1201 | NOTE: This filesystem is deprecated and is scheduled for removal in | ||
1202 | 2.6.21. See Documentation/feature-removal-schedule.txt | ||
1203 | |||
1204 | config JFFS_FS_VERBOSE | ||
1205 | int "JFFS debugging verbosity (0 = quiet, 3 = noisy)" | ||
1206 | depends on JFFS_FS | ||
1207 | default "0" | ||
1208 | help | ||
1209 | Determines the verbosity level of the JFFS debugging messages. | ||
1210 | |||
1211 | config JFFS_PROC_FS | ||
1212 | bool "JFFS stats available in /proc filesystem" | ||
1213 | depends on JFFS_FS && PROC_FS | ||
1214 | help | ||
1215 | Enabling this option will cause statistics from mounted JFFS file systems | ||
1216 | to be made available to the user in the /proc/fs/jffs/ directory. | ||
1217 | |||
1218 | config JFFS2_FS | 1192 | config JFFS2_FS |
1219 | tristate "Journalling Flash File System v2 (JFFS2) support" | 1193 | tristate "Journalling Flash File System v2 (JFFS2) support" |
1220 | select CRC32 | 1194 | select CRC32 |
diff --git a/fs/Makefile b/fs/Makefile index b9ffa63f77fc..9edf4112bee0 100644 --- a/fs/Makefile +++ b/fs/Makefile | |||
@@ -94,7 +94,6 @@ obj-$(CONFIG_HPFS_FS) += hpfs/ | |||
94 | obj-$(CONFIG_NTFS_FS) += ntfs/ | 94 | obj-$(CONFIG_NTFS_FS) += ntfs/ |
95 | obj-$(CONFIG_UFS_FS) += ufs/ | 95 | obj-$(CONFIG_UFS_FS) += ufs/ |
96 | obj-$(CONFIG_EFS_FS) += efs/ | 96 | obj-$(CONFIG_EFS_FS) += efs/ |
97 | obj-$(CONFIG_JFFS_FS) += jffs/ | ||
98 | obj-$(CONFIG_JFFS2_FS) += jffs2/ | 97 | obj-$(CONFIG_JFFS2_FS) += jffs2/ |
99 | obj-$(CONFIG_AFFS_FS) += affs/ | 98 | obj-$(CONFIG_AFFS_FS) += affs/ |
100 | obj-$(CONFIG_ROMFS_FS) += romfs/ | 99 | obj-$(CONFIG_ROMFS_FS) += romfs/ |
diff --git a/fs/jffs/Makefile b/fs/jffs/Makefile deleted file mode 100644 index 9c1c0bb59696..000000000000 --- a/fs/jffs/Makefile +++ /dev/null | |||
@@ -1,11 +0,0 @@ | |||
1 | # | ||
2 | # Makefile for the linux Journalling Flash FileSystem (JFFS) routines. | ||
3 | # | ||
4 | # $Id: Makefile,v 1.11 2001/09/25 20:59:41 dwmw2 Exp $ | ||
5 | # | ||
6 | |||
7 | obj-$(CONFIG_JFFS_FS) += jffs.o | ||
8 | |||
9 | jffs-y := jffs_fm.o intrep.o inode-v23.o | ||
10 | jffs-$(CONFIG_JFFS_PROC_FS) += jffs_proc.o | ||
11 | jffs-objs := $(jffs-y) | ||
diff --git a/fs/jffs/inode-v23.c b/fs/jffs/inode-v23.c deleted file mode 100644 index 9602b925da08..000000000000 --- a/fs/jffs/inode-v23.c +++ /dev/null | |||
@@ -1,1847 +0,0 @@ | |||
1 | /* | ||
2 | * JFFS -- Journalling Flash File System, Linux implementation. | ||
3 | * | ||
4 | * Copyright (C) 1999, 2000 Axis Communications AB. | ||
5 | * | ||
6 | * Created by Finn Hakansson <finn@axis.com>. | ||
7 | * | ||
8 | * This is free software; you can redistribute it and/or modify it | ||
9 | * under the terms of the GNU General Public License as published by | ||
10 | * the Free Software Foundation; either version 2 of the License, or | ||
11 | * (at your option) any later version. | ||
12 | * | ||
13 | * $Id: inode-v23.c,v 1.70 2001/10/02 09:16:02 dwmw2 Exp $ | ||
14 | * | ||
15 | * Ported to Linux 2.3.x and MTD: | ||
16 | * Copyright (C) 2000 Alexander Larsson (alex@cendio.se), Cendio Systems AB | ||
17 | * | ||
18 | * Copyright 2000, 2001 Red Hat, Inc. | ||
19 | */ | ||
20 | |||
21 | /* inode.c -- Contains the code that is called from the VFS. */ | ||
22 | |||
23 | /* TODO-ALEX: | ||
24 | * uid and gid are just 16 bit. | ||
25 | * jffs_file_write reads from user-space pointers without xx_from_user | ||
26 | * maybe other stuff do to. | ||
27 | */ | ||
28 | |||
29 | #include <linux/time.h> | ||
30 | |||
31 | #include <linux/module.h> | ||
32 | #include <linux/init.h> | ||
33 | #include <linux/types.h> | ||
34 | #include <linux/errno.h> | ||
35 | #include <linux/slab.h> | ||
36 | #include <linux/jffs.h> | ||
37 | #include <linux/fs.h> | ||
38 | #include <linux/smp_lock.h> | ||
39 | #include <linux/ioctl.h> | ||
40 | #include <linux/stat.h> | ||
41 | #include <linux/blkdev.h> | ||
42 | #include <linux/quotaops.h> | ||
43 | #include <linux/highmem.h> | ||
44 | #include <linux/vfs.h> | ||
45 | #include <linux/mutex.h> | ||
46 | #include <asm/byteorder.h> | ||
47 | #include <asm/uaccess.h> | ||
48 | |||
49 | #include "jffs_fm.h" | ||
50 | #include "intrep.h" | ||
51 | #ifdef CONFIG_JFFS_PROC_FS | ||
52 | #include "jffs_proc.h" | ||
53 | #endif | ||
54 | |||
55 | static int jffs_remove(struct inode *dir, struct dentry *dentry, int type); | ||
56 | |||
57 | static const struct super_operations jffs_ops; | ||
58 | static const struct file_operations jffs_file_operations; | ||
59 | static const struct inode_operations jffs_file_inode_operations; | ||
60 | static const struct file_operations jffs_dir_operations; | ||
61 | static const struct inode_operations jffs_dir_inode_operations; | ||
62 | static const struct address_space_operations jffs_address_operations; | ||
63 | |||
64 | struct kmem_cache *node_cache = NULL; | ||
65 | struct kmem_cache *fm_cache = NULL; | ||
66 | |||
67 | /* Called by the VFS at mount time to initialize the whole file system. */ | ||
68 | static int jffs_fill_super(struct super_block *sb, void *data, int silent) | ||
69 | { | ||
70 | struct inode *root_inode; | ||
71 | struct jffs_control *c; | ||
72 | |||
73 | sb->s_flags |= MS_NODIRATIME; | ||
74 | |||
75 | D1(printk(KERN_NOTICE "JFFS: Trying to mount device %s.\n", | ||
76 | sb->s_id)); | ||
77 | |||
78 | if (MAJOR(sb->s_dev) != MTD_BLOCK_MAJOR) { | ||
79 | printk(KERN_WARNING "JFFS: Trying to mount a " | ||
80 | "non-mtd device.\n"); | ||
81 | return -EINVAL; | ||
82 | } | ||
83 | |||
84 | sb->s_blocksize = PAGE_CACHE_SIZE; | ||
85 | sb->s_blocksize_bits = PAGE_CACHE_SHIFT; | ||
86 | sb->s_fs_info = (void *) 0; | ||
87 | sb->s_maxbytes = 0xFFFFFFFF; | ||
88 | |||
89 | /* Build the file system. */ | ||
90 | if (jffs_build_fs(sb) < 0) { | ||
91 | goto jffs_sb_err1; | ||
92 | } | ||
93 | |||
94 | /* | ||
95 | * set up enough so that we can read an inode | ||
96 | */ | ||
97 | sb->s_magic = JFFS_MAGIC_SB_BITMASK; | ||
98 | sb->s_op = &jffs_ops; | ||
99 | |||
100 | root_inode = iget(sb, JFFS_MIN_INO); | ||
101 | if (!root_inode) | ||
102 | goto jffs_sb_err2; | ||
103 | |||
104 | /* Get the root directory of this file system. */ | ||
105 | if (!(sb->s_root = d_alloc_root(root_inode))) { | ||
106 | goto jffs_sb_err3; | ||
107 | } | ||
108 | |||
109 | c = (struct jffs_control *) sb->s_fs_info; | ||
110 | |||
111 | #ifdef CONFIG_JFFS_PROC_FS | ||
112 | /* Set up the jffs proc file system. */ | ||
113 | if (jffs_register_jffs_proc_dir(MINOR(sb->s_dev), c) < 0) { | ||
114 | printk(KERN_WARNING "JFFS: Failed to initialize the JFFS " | ||
115 | "proc file system for device %s.\n", | ||
116 | sb->s_id); | ||
117 | } | ||
118 | #endif | ||
119 | |||
120 | /* Set the Garbage Collection thresholds */ | ||
121 | |||
122 | /* GC if free space goes below 5% of the total size */ | ||
123 | c->gc_minfree_threshold = c->fmc->flash_size / 20; | ||
124 | |||
125 | if (c->gc_minfree_threshold < c->fmc->sector_size) | ||
126 | c->gc_minfree_threshold = c->fmc->sector_size; | ||
127 | |||
128 | /* GC if dirty space exceeds 33% of the total size. */ | ||
129 | c->gc_maxdirty_threshold = c->fmc->flash_size / 3; | ||
130 | |||
131 | if (c->gc_maxdirty_threshold < c->fmc->sector_size) | ||
132 | c->gc_maxdirty_threshold = c->fmc->sector_size; | ||
133 | |||
134 | |||
135 | c->thread_pid = kernel_thread (jffs_garbage_collect_thread, | ||
136 | (void *) c, | ||
137 | CLONE_KERNEL); | ||
138 | D1(printk(KERN_NOTICE "JFFS: GC thread pid=%d.\n", (int) c->thread_pid)); | ||
139 | |||
140 | D1(printk(KERN_NOTICE "JFFS: Successfully mounted device %s.\n", | ||
141 | sb->s_id)); | ||
142 | return 0; | ||
143 | |||
144 | jffs_sb_err3: | ||
145 | iput(root_inode); | ||
146 | jffs_sb_err2: | ||
147 | jffs_cleanup_control((struct jffs_control *)sb->s_fs_info); | ||
148 | jffs_sb_err1: | ||
149 | printk(KERN_WARNING "JFFS: Failed to mount device %s.\n", | ||
150 | sb->s_id); | ||
151 | return -EINVAL; | ||
152 | } | ||
153 | |||
154 | |||
155 | /* This function is called when the file system is umounted. */ | ||
156 | static void | ||
157 | jffs_put_super(struct super_block *sb) | ||
158 | { | ||
159 | struct jffs_control *c = (struct jffs_control *) sb->s_fs_info; | ||
160 | |||
161 | D2(printk("jffs_put_super()\n")); | ||
162 | |||
163 | #ifdef CONFIG_JFFS_PROC_FS | ||
164 | jffs_unregister_jffs_proc_dir(c); | ||
165 | #endif | ||
166 | |||
167 | if (c->gc_task) { | ||
168 | D1(printk (KERN_NOTICE "jffs_put_super(): Telling gc thread to die.\n")); | ||
169 | send_sig(SIGKILL, c->gc_task, 1); | ||
170 | } | ||
171 | wait_for_completion(&c->gc_thread_comp); | ||
172 | |||
173 | D1(printk (KERN_NOTICE "jffs_put_super(): Successfully waited on thread.\n")); | ||
174 | |||
175 | jffs_cleanup_control((struct jffs_control *)sb->s_fs_info); | ||
176 | D1(printk(KERN_NOTICE "JFFS: Successfully unmounted device %s.\n", | ||
177 | sb->s_id)); | ||
178 | } | ||
179 | |||
180 | |||
181 | /* This function is called when user commands like chmod, chgrp and | ||
182 | chown are executed. System calls like trunc() results in a call | ||
183 | to this function. */ | ||
184 | static int | ||
185 | jffs_setattr(struct dentry *dentry, struct iattr *iattr) | ||
186 | { | ||
187 | struct inode *inode = dentry->d_inode; | ||
188 | struct jffs_raw_inode raw_inode; | ||
189 | struct jffs_control *c; | ||
190 | struct jffs_fmcontrol *fmc; | ||
191 | struct jffs_file *f; | ||
192 | struct jffs_node *new_node; | ||
193 | int update_all; | ||
194 | int res = 0; | ||
195 | int recoverable = 0; | ||
196 | |||
197 | lock_kernel(); | ||
198 | |||
199 | if ((res = inode_change_ok(inode, iattr))) | ||
200 | goto out; | ||
201 | |||
202 | c = (struct jffs_control *)inode->i_sb->s_fs_info; | ||
203 | fmc = c->fmc; | ||
204 | |||
205 | D3(printk (KERN_NOTICE "notify_change(): down biglock\n")); | ||
206 | mutex_lock(&fmc->biglock); | ||
207 | |||
208 | f = jffs_find_file(c, inode->i_ino); | ||
209 | |||
210 | ASSERT(if (!f) { | ||
211 | printk("jffs_setattr(): Invalid inode number: %lu\n", | ||
212 | inode->i_ino); | ||
213 | D3(printk (KERN_NOTICE "notify_change(): up biglock\n")); | ||
214 | mutex_unlock(&fmc->biglock); | ||
215 | res = -EINVAL; | ||
216 | goto out; | ||
217 | }); | ||
218 | |||
219 | D1(printk("***jffs_setattr(): file: \"%s\", ino: %u\n", | ||
220 | f->name, f->ino)); | ||
221 | |||
222 | update_all = iattr->ia_valid & ATTR_FORCE; | ||
223 | |||
224 | if ( (update_all || iattr->ia_valid & ATTR_SIZE) | ||
225 | && (iattr->ia_size + 128 < f->size) ) { | ||
226 | /* We're shrinking the file by more than 128 bytes. | ||
227 | We'll be able to GC and recover this space, so | ||
228 | allow it to go into the reserved space. */ | ||
229 | recoverable = 1; | ||
230 | } | ||
231 | |||
232 | if (!(new_node = jffs_alloc_node())) { | ||
233 | D(printk("jffs_setattr(): Allocation failed!\n")); | ||
234 | D3(printk (KERN_NOTICE "notify_change(): up biglock\n")); | ||
235 | mutex_unlock(&fmc->biglock); | ||
236 | res = -ENOMEM; | ||
237 | goto out; | ||
238 | } | ||
239 | |||
240 | new_node->data_offset = 0; | ||
241 | new_node->removed_size = 0; | ||
242 | raw_inode.magic = JFFS_MAGIC_BITMASK; | ||
243 | raw_inode.ino = f->ino; | ||
244 | raw_inode.pino = f->pino; | ||
245 | raw_inode.mode = f->mode; | ||
246 | raw_inode.uid = f->uid; | ||
247 | raw_inode.gid = f->gid; | ||
248 | raw_inode.atime = f->atime; | ||
249 | raw_inode.mtime = f->mtime; | ||
250 | raw_inode.ctime = f->ctime; | ||
251 | raw_inode.dsize = 0; | ||
252 | raw_inode.offset = 0; | ||
253 | raw_inode.rsize = 0; | ||
254 | raw_inode.dsize = 0; | ||
255 | raw_inode.nsize = f->nsize; | ||
256 | raw_inode.nlink = f->nlink; | ||
257 | raw_inode.spare = 0; | ||
258 | raw_inode.rename = 0; | ||
259 | raw_inode.deleted = 0; | ||
260 | |||
261 | if (update_all || iattr->ia_valid & ATTR_MODE) { | ||
262 | raw_inode.mode = iattr->ia_mode; | ||
263 | inode->i_mode = iattr->ia_mode; | ||
264 | } | ||
265 | if (update_all || iattr->ia_valid & ATTR_UID) { | ||
266 | raw_inode.uid = iattr->ia_uid; | ||
267 | inode->i_uid = iattr->ia_uid; | ||
268 | } | ||
269 | if (update_all || iattr->ia_valid & ATTR_GID) { | ||
270 | raw_inode.gid = iattr->ia_gid; | ||
271 | inode->i_gid = iattr->ia_gid; | ||
272 | } | ||
273 | if (update_all || iattr->ia_valid & ATTR_SIZE) { | ||
274 | int len; | ||
275 | D1(printk("jffs_notify_change(): Changing size " | ||
276 | "to %lu bytes!\n", (long)iattr->ia_size)); | ||
277 | raw_inode.offset = iattr->ia_size; | ||
278 | |||
279 | /* Calculate how many bytes need to be removed from | ||
280 | the end. */ | ||
281 | if (f->size < iattr->ia_size) { | ||
282 | len = 0; | ||
283 | } | ||
284 | else { | ||
285 | len = f->size - iattr->ia_size; | ||
286 | } | ||
287 | |||
288 | raw_inode.rsize = len; | ||
289 | |||
290 | /* The updated node will be a removal node, with | ||
291 | base at the new size and size of the nbr of bytes | ||
292 | to be removed. */ | ||
293 | new_node->data_offset = iattr->ia_size; | ||
294 | new_node->removed_size = len; | ||
295 | inode->i_size = iattr->ia_size; | ||
296 | inode->i_blocks = (inode->i_size + 511) >> 9; | ||
297 | |||
298 | if (len) { | ||
299 | invalidate_mapping_pages(inode->i_mapping, 0, -1); | ||
300 | } | ||
301 | inode->i_ctime = CURRENT_TIME_SEC; | ||
302 | inode->i_mtime = inode->i_ctime; | ||
303 | } | ||
304 | if (update_all || iattr->ia_valid & ATTR_ATIME) { | ||
305 | raw_inode.atime = iattr->ia_atime.tv_sec; | ||
306 | inode->i_atime = iattr->ia_atime; | ||
307 | } | ||
308 | if (update_all || iattr->ia_valid & ATTR_MTIME) { | ||
309 | raw_inode.mtime = iattr->ia_mtime.tv_sec; | ||
310 | inode->i_mtime = iattr->ia_mtime; | ||
311 | } | ||
312 | if (update_all || iattr->ia_valid & ATTR_CTIME) { | ||
313 | raw_inode.ctime = iattr->ia_ctime.tv_sec; | ||
314 | inode->i_ctime = iattr->ia_ctime; | ||
315 | } | ||
316 | |||
317 | /* Write this node to the flash. */ | ||
318 | if ((res = jffs_write_node(c, new_node, &raw_inode, f->name, NULL, recoverable, f)) < 0) { | ||
319 | D(printk("jffs_notify_change(): The write failed!\n")); | ||
320 | jffs_free_node(new_node); | ||
321 | D3(printk (KERN_NOTICE "n_c(): up biglock\n")); | ||
322 | mutex_unlock(&c->fmc->biglock); | ||
323 | goto out; | ||
324 | } | ||
325 | |||
326 | jffs_insert_node(c, f, &raw_inode, NULL, new_node); | ||
327 | |||
328 | mark_inode_dirty(inode); | ||
329 | D3(printk (KERN_NOTICE "n_c(): up biglock\n")); | ||
330 | mutex_unlock(&c->fmc->biglock); | ||
331 | out: | ||
332 | unlock_kernel(); | ||
333 | return res; | ||
334 | } /* jffs_notify_change() */ | ||
335 | |||
336 | |||
337 | static struct inode * | ||
338 | jffs_new_inode(const struct inode * dir, struct jffs_raw_inode *raw_inode, | ||
339 | int * err) | ||
340 | { | ||
341 | struct super_block * sb; | ||
342 | struct inode * inode; | ||
343 | struct jffs_control *c; | ||
344 | struct jffs_file *f; | ||
345 | |||
346 | sb = dir->i_sb; | ||
347 | inode = new_inode(sb); | ||
348 | if (!inode) { | ||
349 | *err = -ENOMEM; | ||
350 | return NULL; | ||
351 | } | ||
352 | |||
353 | c = (struct jffs_control *)sb->s_fs_info; | ||
354 | |||
355 | inode->i_ino = raw_inode->ino; | ||
356 | inode->i_mode = raw_inode->mode; | ||
357 | inode->i_nlink = raw_inode->nlink; | ||
358 | inode->i_uid = raw_inode->uid; | ||
359 | inode->i_gid = raw_inode->gid; | ||
360 | inode->i_size = raw_inode->dsize; | ||
361 | inode->i_atime.tv_sec = raw_inode->atime; | ||
362 | inode->i_mtime.tv_sec = raw_inode->mtime; | ||
363 | inode->i_ctime.tv_sec = raw_inode->ctime; | ||
364 | inode->i_ctime.tv_nsec = 0; | ||
365 | inode->i_mtime.tv_nsec = 0; | ||
366 | inode->i_atime.tv_nsec = 0; | ||
367 | inode->i_blocks = (inode->i_size + 511) >> 9; | ||
368 | |||
369 | f = jffs_find_file(c, raw_inode->ino); | ||
370 | |||
371 | inode->i_private = (void *)f; | ||
372 | insert_inode_hash(inode); | ||
373 | |||
374 | return inode; | ||
375 | } | ||
376 | |||
377 | /* Get statistics of the file system. */ | ||
378 | static int | ||
379 | jffs_statfs(struct dentry *dentry, struct kstatfs *buf) | ||
380 | { | ||
381 | struct jffs_control *c = (struct jffs_control *) dentry->d_sb->s_fs_info; | ||
382 | struct jffs_fmcontrol *fmc; | ||
383 | |||
384 | lock_kernel(); | ||
385 | |||
386 | fmc = c->fmc; | ||
387 | |||
388 | D2(printk("jffs_statfs()\n")); | ||
389 | |||
390 | buf->f_type = JFFS_MAGIC_SB_BITMASK; | ||
391 | buf->f_bsize = PAGE_CACHE_SIZE; | ||
392 | buf->f_blocks = (fmc->flash_size / PAGE_CACHE_SIZE) | ||
393 | - (fmc->min_free_size / PAGE_CACHE_SIZE); | ||
394 | buf->f_bfree = (jffs_free_size1(fmc) + jffs_free_size2(fmc) + | ||
395 | fmc->dirty_size - fmc->min_free_size) | ||
396 | >> PAGE_CACHE_SHIFT; | ||
397 | buf->f_bavail = buf->f_bfree; | ||
398 | |||
399 | /* Find out how many files there are in the filesystem. */ | ||
400 | buf->f_files = jffs_foreach_file(c, jffs_file_count); | ||
401 | buf->f_ffree = buf->f_bfree; | ||
402 | /* buf->f_fsid = 0; */ | ||
403 | buf->f_namelen = JFFS_MAX_NAME_LEN; | ||
404 | |||
405 | unlock_kernel(); | ||
406 | |||
407 | return 0; | ||
408 | } | ||
409 | |||
410 | |||
411 | /* Rename a file. */ | ||
412 | static int | ||
413 | jffs_rename(struct inode *old_dir, struct dentry *old_dentry, | ||
414 | struct inode *new_dir, struct dentry *new_dentry) | ||
415 | { | ||
416 | struct jffs_raw_inode raw_inode; | ||
417 | struct jffs_control *c; | ||
418 | struct jffs_file *old_dir_f; | ||
419 | struct jffs_file *new_dir_f; | ||
420 | struct jffs_file *del_f; | ||
421 | struct jffs_file *f; | ||
422 | struct jffs_node *node; | ||
423 | struct inode *inode; | ||
424 | int result = 0; | ||
425 | __u32 rename_data = 0; | ||
426 | |||
427 | D2(printk("***jffs_rename()\n")); | ||
428 | |||
429 | D(printk("jffs_rename(): old_dir: 0x%p, old name: 0x%p, " | ||
430 | "new_dir: 0x%p, new name: 0x%p\n", | ||
431 | old_dir, old_dentry->d_name.name, | ||
432 | new_dir, new_dentry->d_name.name)); | ||
433 | |||
434 | lock_kernel(); | ||
435 | c = (struct jffs_control *)old_dir->i_sb->s_fs_info; | ||
436 | ASSERT(if (!c) { | ||
437 | printk(KERN_ERR "jffs_rename(): The old_dir inode " | ||
438 | "didn't have a reference to a jffs_file struct\n"); | ||
439 | unlock_kernel(); | ||
440 | return -EIO; | ||
441 | }); | ||
442 | |||
443 | result = -ENOTDIR; | ||
444 | if (!(old_dir_f = old_dir->i_private)) { | ||
445 | D(printk("jffs_rename(): Old dir invalid.\n")); | ||
446 | goto jffs_rename_end; | ||
447 | } | ||
448 | |||
449 | /* Try to find the file to move. */ | ||
450 | result = -ENOENT; | ||
451 | if (!(f = jffs_find_child(old_dir_f, old_dentry->d_name.name, | ||
452 | old_dentry->d_name.len))) { | ||
453 | goto jffs_rename_end; | ||
454 | } | ||
455 | |||
456 | /* Find the new directory. */ | ||
457 | result = -ENOTDIR; | ||
458 | if (!(new_dir_f = new_dir->i_private)) { | ||
459 | D(printk("jffs_rename(): New dir invalid.\n")); | ||
460 | goto jffs_rename_end; | ||
461 | } | ||
462 | D3(printk (KERN_NOTICE "rename(): down biglock\n")); | ||
463 | mutex_lock(&c->fmc->biglock); | ||
464 | /* Create a node and initialize as much as needed. */ | ||
465 | result = -ENOMEM; | ||
466 | if (!(node = jffs_alloc_node())) { | ||
467 | D(printk("jffs_rename(): Allocation failed: node == 0\n")); | ||
468 | goto jffs_rename_end; | ||
469 | } | ||
470 | node->data_offset = 0; | ||
471 | node->removed_size = 0; | ||
472 | |||
473 | /* Initialize the raw inode. */ | ||
474 | raw_inode.magic = JFFS_MAGIC_BITMASK; | ||
475 | raw_inode.ino = f->ino; | ||
476 | raw_inode.pino = new_dir_f->ino; | ||
477 | /* raw_inode.version = f->highest_version + 1; */ | ||
478 | raw_inode.mode = f->mode; | ||
479 | raw_inode.uid = current->fsuid; | ||
480 | raw_inode.gid = current->fsgid; | ||
481 | #if 0 | ||
482 | raw_inode.uid = f->uid; | ||
483 | raw_inode.gid = f->gid; | ||
484 | #endif | ||
485 | raw_inode.atime = get_seconds(); | ||
486 | raw_inode.mtime = raw_inode.atime; | ||
487 | raw_inode.ctime = f->ctime; | ||
488 | raw_inode.offset = 0; | ||
489 | raw_inode.dsize = 0; | ||
490 | raw_inode.rsize = 0; | ||
491 | raw_inode.nsize = new_dentry->d_name.len; | ||
492 | raw_inode.nlink = f->nlink; | ||
493 | raw_inode.spare = 0; | ||
494 | raw_inode.rename = 0; | ||
495 | raw_inode.deleted = 0; | ||
496 | |||
497 | /* See if there already exists a file with the same name as | ||
498 | new_name. */ | ||
499 | if ((del_f = jffs_find_child(new_dir_f, new_dentry->d_name.name, | ||
500 | new_dentry->d_name.len))) { | ||
501 | raw_inode.rename = 1; | ||
502 | raw_inode.dsize = sizeof(__u32); | ||
503 | rename_data = del_f->ino; | ||
504 | } | ||
505 | |||
506 | /* Write the new node to the flash memory. */ | ||
507 | if ((result = jffs_write_node(c, node, &raw_inode, | ||
508 | new_dentry->d_name.name, | ||
509 | (unsigned char*)&rename_data, 0, f)) < 0) { | ||
510 | D(printk("jffs_rename(): Failed to write node to flash.\n")); | ||
511 | jffs_free_node(node); | ||
512 | goto jffs_rename_end; | ||
513 | } | ||
514 | raw_inode.dsize = 0; | ||
515 | |||
516 | if (raw_inode.rename) { | ||
517 | /* The file with the same name must be deleted. */ | ||
518 | //FIXME deadlock down(&c->fmc->gclock); | ||
519 | if ((result = jffs_remove(new_dir, new_dentry, | ||
520 | del_f->mode)) < 0) { | ||
521 | /* This is really bad. */ | ||
522 | printk(KERN_ERR "JFFS: An error occurred in " | ||
523 | "rename().\n"); | ||
524 | } | ||
525 | // up(&c->fmc->gclock); | ||
526 | } | ||
527 | |||
528 | if (old_dir_f != new_dir_f) { | ||
529 | /* Remove the file from its old position in the | ||
530 | filesystem tree. */ | ||
531 | jffs_unlink_file_from_tree(f); | ||
532 | } | ||
533 | |||
534 | /* Insert the new node into the file system. */ | ||
535 | if ((result = jffs_insert_node(c, f, &raw_inode, | ||
536 | new_dentry->d_name.name, node)) < 0) { | ||
537 | D(printk(KERN_ERR "jffs_rename(): jffs_insert_node() " | ||
538 | "failed!\n")); | ||
539 | } | ||
540 | |||
541 | if (old_dir_f != new_dir_f) { | ||
542 | /* Insert the file to its new position in the | ||
543 | file system. */ | ||
544 | jffs_insert_file_into_tree(f); | ||
545 | } | ||
546 | |||
547 | /* This is a kind of update of the inode we're about to make | ||
548 | here. This is what they do in ext2fs. Kind of. */ | ||
549 | if ((inode = iget(new_dir->i_sb, f->ino))) { | ||
550 | inode->i_ctime = CURRENT_TIME_SEC; | ||
551 | mark_inode_dirty(inode); | ||
552 | iput(inode); | ||
553 | } | ||
554 | |||
555 | jffs_rename_end: | ||
556 | D3(printk (KERN_NOTICE "rename(): up biglock\n")); | ||
557 | mutex_unlock(&c->fmc->biglock); | ||
558 | unlock_kernel(); | ||
559 | return result; | ||
560 | } /* jffs_rename() */ | ||
561 | |||
562 | |||
563 | /* Read the contents of a directory. Used by programs like `ls' | ||
564 | for instance. */ | ||
565 | static int | ||
566 | jffs_readdir(struct file *filp, void *dirent, filldir_t filldir) | ||
567 | { | ||
568 | struct jffs_file *f; | ||
569 | struct dentry *dentry = filp->f_path.dentry; | ||
570 | struct inode *inode = dentry->d_inode; | ||
571 | struct jffs_control *c = (struct jffs_control *)inode->i_sb->s_fs_info; | ||
572 | int j; | ||
573 | int ddino; | ||
574 | lock_kernel(); | ||
575 | D3(printk (KERN_NOTICE "readdir(): down biglock\n")); | ||
576 | mutex_lock(&c->fmc->biglock); | ||
577 | |||
578 | D2(printk("jffs_readdir(): inode: 0x%p, filp: 0x%p\n", inode, filp)); | ||
579 | if (filp->f_pos == 0) { | ||
580 | D3(printk("jffs_readdir(): \".\" %lu\n", inode->i_ino)); | ||
581 | if (filldir(dirent, ".", 1, filp->f_pos, inode->i_ino, DT_DIR) < 0) { | ||
582 | D3(printk (KERN_NOTICE "readdir(): up biglock\n")); | ||
583 | mutex_unlock(&c->fmc->biglock); | ||
584 | unlock_kernel(); | ||
585 | return 0; | ||
586 | } | ||
587 | filp->f_pos = 1; | ||
588 | } | ||
589 | if (filp->f_pos == 1) { | ||
590 | if (inode->i_ino == JFFS_MIN_INO) { | ||
591 | ddino = JFFS_MIN_INO; | ||
592 | } | ||
593 | else { | ||
594 | ddino = ((struct jffs_file *) | ||
595 | inode->i_private)->pino; | ||
596 | } | ||
597 | D3(printk("jffs_readdir(): \"..\" %u\n", ddino)); | ||
598 | if (filldir(dirent, "..", 2, filp->f_pos, ddino, DT_DIR) < 0) { | ||
599 | D3(printk (KERN_NOTICE "readdir(): up biglock\n")); | ||
600 | mutex_unlock(&c->fmc->biglock); | ||
601 | unlock_kernel(); | ||
602 | return 0; | ||
603 | } | ||
604 | filp->f_pos++; | ||
605 | } | ||
606 | f = ((struct jffs_file *)inode->i_private)->children; | ||
607 | |||
608 | j = 2; | ||
609 | while(f && (f->deleted || j++ < filp->f_pos )) { | ||
610 | f = f->sibling_next; | ||
611 | } | ||
612 | |||
613 | while (f) { | ||
614 | D3(printk("jffs_readdir(): \"%s\" ino: %u\n", | ||
615 | (f->name ? f->name : ""), f->ino)); | ||
616 | if (filldir(dirent, f->name, f->nsize, | ||
617 | filp->f_pos , f->ino, DT_UNKNOWN) < 0) { | ||
618 | D3(printk (KERN_NOTICE "readdir(): up biglock\n")); | ||
619 | mutex_unlock(&c->fmc->biglock); | ||
620 | unlock_kernel(); | ||
621 | return 0; | ||
622 | } | ||
623 | filp->f_pos++; | ||
624 | do { | ||
625 | f = f->sibling_next; | ||
626 | } while(f && f->deleted); | ||
627 | } | ||
628 | D3(printk (KERN_NOTICE "readdir(): up biglock\n")); | ||
629 | mutex_unlock(&c->fmc->biglock); | ||
630 | unlock_kernel(); | ||
631 | return filp->f_pos; | ||
632 | } /* jffs_readdir() */ | ||
633 | |||
634 | |||
635 | /* Find a file in a directory. If the file exists, return its | ||
636 | corresponding dentry. */ | ||
637 | static struct dentry * | ||
638 | jffs_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd) | ||
639 | { | ||
640 | struct jffs_file *d; | ||
641 | struct jffs_file *f; | ||
642 | struct jffs_control *c = (struct jffs_control *)dir->i_sb->s_fs_info; | ||
643 | int len; | ||
644 | int r = 0; | ||
645 | const char *name; | ||
646 | struct inode *inode = NULL; | ||
647 | |||
648 | len = dentry->d_name.len; | ||
649 | name = dentry->d_name.name; | ||
650 | |||
651 | lock_kernel(); | ||
652 | |||
653 | D3({ | ||
654 | char *s = kmalloc(len + 1, GFP_KERNEL); | ||
655 | memcpy(s, name, len); | ||
656 | s[len] = '\0'; | ||
657 | printk("jffs_lookup(): dir: 0x%p, name: \"%s\"\n", dir, s); | ||
658 | kfree(s); | ||
659 | }); | ||
660 | |||
661 | D3(printk (KERN_NOTICE "lookup(): down biglock\n")); | ||
662 | mutex_lock(&c->fmc->biglock); | ||
663 | |||
664 | r = -ENAMETOOLONG; | ||
665 | if (len > JFFS_MAX_NAME_LEN) { | ||
666 | goto jffs_lookup_end; | ||
667 | } | ||
668 | |||
669 | r = -EACCES; | ||
670 | if (!(d = (struct jffs_file *)dir->i_private)) { | ||
671 | D(printk("jffs_lookup(): No such inode! (%lu)\n", | ||
672 | dir->i_ino)); | ||
673 | goto jffs_lookup_end; | ||
674 | } | ||
675 | |||
676 | /* Get the corresponding inode to the file. */ | ||
677 | |||
678 | /* iget calls jffs_read_inode, so we need to drop the biglock | ||
679 | before calling iget. Unfortunately, the GC has a tendency | ||
680 | to sneak in here, because iget sometimes calls schedule (). | ||
681 | */ | ||
682 | |||
683 | if ((len == 1) && (name[0] == '.')) { | ||
684 | D3(printk (KERN_NOTICE "lookup(): up biglock\n")); | ||
685 | mutex_unlock(&c->fmc->biglock); | ||
686 | if (!(inode = iget(dir->i_sb, d->ino))) { | ||
687 | D(printk("jffs_lookup(): . iget() ==> NULL\n")); | ||
688 | goto jffs_lookup_end_no_biglock; | ||
689 | } | ||
690 | D3(printk (KERN_NOTICE "lookup(): down biglock\n")); | ||
691 | mutex_lock(&c->fmc->biglock); | ||
692 | } else if ((len == 2) && (name[0] == '.') && (name[1] == '.')) { | ||
693 | D3(printk (KERN_NOTICE "lookup(): up biglock\n")); | ||
694 | mutex_unlock(&c->fmc->biglock); | ||
695 | if (!(inode = iget(dir->i_sb, d->pino))) { | ||
696 | D(printk("jffs_lookup(): .. iget() ==> NULL\n")); | ||
697 | goto jffs_lookup_end_no_biglock; | ||
698 | } | ||
699 | D3(printk (KERN_NOTICE "lookup(): down biglock\n")); | ||
700 | mutex_lock(&c->fmc->biglock); | ||
701 | } else if ((f = jffs_find_child(d, name, len))) { | ||
702 | D3(printk (KERN_NOTICE "lookup(): up biglock\n")); | ||
703 | mutex_unlock(&c->fmc->biglock); | ||
704 | if (!(inode = iget(dir->i_sb, f->ino))) { | ||
705 | D(printk("jffs_lookup(): iget() ==> NULL\n")); | ||
706 | goto jffs_lookup_end_no_biglock; | ||
707 | } | ||
708 | D3(printk (KERN_NOTICE "lookup(): down biglock\n")); | ||
709 | mutex_lock(&c->fmc->biglock); | ||
710 | } else { | ||
711 | D3(printk("jffs_lookup(): Couldn't find the file. " | ||
712 | "f = 0x%p, name = \"%s\", d = 0x%p, d->ino = %u\n", | ||
713 | f, name, d, d->ino)); | ||
714 | inode = NULL; | ||
715 | } | ||
716 | |||
717 | d_add(dentry, inode); | ||
718 | D3(printk (KERN_NOTICE "lookup(): up biglock\n")); | ||
719 | mutex_unlock(&c->fmc->biglock); | ||
720 | unlock_kernel(); | ||
721 | return NULL; | ||
722 | |||
723 | jffs_lookup_end: | ||
724 | D3(printk (KERN_NOTICE "lookup(): up biglock\n")); | ||
725 | mutex_unlock(&c->fmc->biglock); | ||
726 | |||
727 | jffs_lookup_end_no_biglock: | ||
728 | unlock_kernel(); | ||
729 | return ERR_PTR(r); | ||
730 | } /* jffs_lookup() */ | ||
731 | |||
732 | |||
733 | /* Try to read a page of data from a file. */ | ||
734 | static int | ||
735 | jffs_do_readpage_nolock(struct file *file, struct page *page) | ||
736 | { | ||
737 | void *buf; | ||
738 | unsigned long read_len; | ||
739 | int result; | ||
740 | struct inode *inode = (struct inode*)page->mapping->host; | ||
741 | struct jffs_file *f = (struct jffs_file *)inode->i_private; | ||
742 | struct jffs_control *c = (struct jffs_control *)inode->i_sb->s_fs_info; | ||
743 | int r; | ||
744 | loff_t offset; | ||
745 | |||
746 | D2(printk("***jffs_readpage(): file = \"%s\", page->index = %lu\n", | ||
747 | (f->name ? f->name : ""), (long)page->index)); | ||
748 | |||
749 | get_page(page); | ||
750 | /* Don't SetPageLocked(page), should be locked already */ | ||
751 | ClearPageUptodate(page); | ||
752 | ClearPageError(page); | ||
753 | |||
754 | D3(printk (KERN_NOTICE "readpage(): down biglock\n")); | ||
755 | mutex_lock(&c->fmc->biglock); | ||
756 | |||
757 | read_len = 0; | ||
758 | result = 0; | ||
759 | offset = page_offset(page); | ||
760 | |||
761 | kmap(page); | ||
762 | buf = page_address(page); | ||
763 | if (offset < inode->i_size) { | ||
764 | read_len = min_t(long, inode->i_size - offset, PAGE_SIZE); | ||
765 | r = jffs_read_data(f, buf, offset, read_len); | ||
766 | if (r != read_len) { | ||
767 | result = -EIO; | ||
768 | D( | ||
769 | printk("***jffs_readpage(): Read error! " | ||
770 | "Wanted to read %lu bytes but only " | ||
771 | "read %d bytes.\n", read_len, r); | ||
772 | ); | ||
773 | } | ||
774 | |||
775 | } | ||
776 | |||
777 | /* This handles the case of partial or no read in above */ | ||
778 | if(read_len < PAGE_SIZE) | ||
779 | memset(buf + read_len, 0, PAGE_SIZE - read_len); | ||
780 | flush_dcache_page(page); | ||
781 | kunmap(page); | ||
782 | |||
783 | D3(printk (KERN_NOTICE "readpage(): up biglock\n")); | ||
784 | mutex_unlock(&c->fmc->biglock); | ||
785 | |||
786 | if (result) { | ||
787 | SetPageError(page); | ||
788 | }else { | ||
789 | SetPageUptodate(page); | ||
790 | } | ||
791 | |||
792 | page_cache_release(page); | ||
793 | |||
794 | D3(printk("jffs_readpage(): Leaving...\n")); | ||
795 | |||
796 | return result; | ||
797 | } /* jffs_do_readpage_nolock() */ | ||
798 | |||
799 | static int jffs_readpage(struct file *file, struct page *page) | ||
800 | { | ||
801 | int ret = jffs_do_readpage_nolock(file, page); | ||
802 | unlock_page(page); | ||
803 | return ret; | ||
804 | } | ||
805 | |||
806 | /* Create a new directory. */ | ||
807 | static int | ||
808 | jffs_mkdir(struct inode *dir, struct dentry *dentry, int mode) | ||
809 | { | ||
810 | struct jffs_raw_inode raw_inode; | ||
811 | struct jffs_control *c; | ||
812 | struct jffs_node *node; | ||
813 | struct jffs_file *dir_f; | ||
814 | struct inode *inode; | ||
815 | int dir_mode; | ||
816 | int result = 0; | ||
817 | int err; | ||
818 | |||
819 | D1({ | ||
820 | int len = dentry->d_name.len; | ||
821 | char *_name = kmalloc(len + 1, GFP_KERNEL); | ||
822 | memcpy(_name, dentry->d_name.name, len); | ||
823 | _name[len] = '\0'; | ||
824 | printk("***jffs_mkdir(): dir = 0x%p, name = \"%s\", " | ||
825 | "len = %d, mode = 0x%08x\n", dir, _name, len, mode); | ||
826 | kfree(_name); | ||
827 | }); | ||
828 | |||
829 | lock_kernel(); | ||
830 | dir_f = dir->i_private; | ||
831 | |||
832 | ASSERT(if (!dir_f) { | ||
833 | printk(KERN_ERR "jffs_mkdir(): No reference to a " | ||
834 | "jffs_file struct in inode.\n"); | ||
835 | unlock_kernel(); | ||
836 | return -EIO; | ||
837 | }); | ||
838 | |||
839 | c = dir_f->c; | ||
840 | D3(printk (KERN_NOTICE "mkdir(): down biglock\n")); | ||
841 | mutex_lock(&c->fmc->biglock); | ||
842 | |||
843 | dir_mode = S_IFDIR | (mode & (S_IRWXUGO|S_ISVTX) | ||
844 | & ~current->fs->umask); | ||
845 | if (dir->i_mode & S_ISGID) { | ||
846 | dir_mode |= S_ISGID; | ||
847 | } | ||
848 | |||
849 | /* Create a node and initialize it as much as needed. */ | ||
850 | if (!(node = jffs_alloc_node())) { | ||
851 | D(printk("jffs_mkdir(): Allocation failed: node == 0\n")); | ||
852 | result = -ENOMEM; | ||
853 | goto jffs_mkdir_end; | ||
854 | } | ||
855 | node->data_offset = 0; | ||
856 | node->removed_size = 0; | ||
857 | |||
858 | /* Initialize the raw inode. */ | ||
859 | raw_inode.magic = JFFS_MAGIC_BITMASK; | ||
860 | raw_inode.ino = c->next_ino++; | ||
861 | raw_inode.pino = dir_f->ino; | ||
862 | raw_inode.version = 1; | ||
863 | raw_inode.mode = dir_mode; | ||
864 | raw_inode.uid = current->fsuid; | ||
865 | raw_inode.gid = (dir->i_mode & S_ISGID) ? dir->i_gid : current->fsgid; | ||
866 | /* raw_inode.gid = current->fsgid; */ | ||
867 | raw_inode.atime = get_seconds(); | ||
868 | raw_inode.mtime = raw_inode.atime; | ||
869 | raw_inode.ctime = raw_inode.atime; | ||
870 | raw_inode.offset = 0; | ||
871 | raw_inode.dsize = 0; | ||
872 | raw_inode.rsize = 0; | ||
873 | raw_inode.nsize = dentry->d_name.len; | ||
874 | raw_inode.nlink = 1; | ||
875 | raw_inode.spare = 0; | ||
876 | raw_inode.rename = 0; | ||
877 | raw_inode.deleted = 0; | ||
878 | |||
879 | /* Write the new node to the flash. */ | ||
880 | if ((result = jffs_write_node(c, node, &raw_inode, | ||
881 | dentry->d_name.name, NULL, 0, NULL)) < 0) { | ||
882 | D(printk("jffs_mkdir(): jffs_write_node() failed.\n")); | ||
883 | jffs_free_node(node); | ||
884 | goto jffs_mkdir_end; | ||
885 | } | ||
886 | |||
887 | /* Insert the new node into the file system. */ | ||
888 | if ((result = jffs_insert_node(c, NULL, &raw_inode, dentry->d_name.name, | ||
889 | node)) < 0) { | ||
890 | goto jffs_mkdir_end; | ||
891 | } | ||
892 | |||
893 | inode = jffs_new_inode(dir, &raw_inode, &err); | ||
894 | if (inode == NULL) { | ||
895 | result = err; | ||
896 | goto jffs_mkdir_end; | ||
897 | } | ||
898 | |||
899 | inode->i_op = &jffs_dir_inode_operations; | ||
900 | inode->i_fop = &jffs_dir_operations; | ||
901 | |||
902 | mark_inode_dirty(dir); | ||
903 | d_instantiate(dentry, inode); | ||
904 | |||
905 | result = 0; | ||
906 | jffs_mkdir_end: | ||
907 | D3(printk (KERN_NOTICE "mkdir(): up biglock\n")); | ||
908 | mutex_unlock(&c->fmc->biglock); | ||
909 | unlock_kernel(); | ||
910 | return result; | ||
911 | } /* jffs_mkdir() */ | ||
912 | |||
913 | |||
914 | /* Remove a directory. */ | ||
915 | static int | ||
916 | jffs_rmdir(struct inode *dir, struct dentry *dentry) | ||
917 | { | ||
918 | struct jffs_control *c = (struct jffs_control *)dir->i_sb->s_fs_info; | ||
919 | int ret; | ||
920 | D3(printk("***jffs_rmdir()\n")); | ||
921 | D3(printk (KERN_NOTICE "rmdir(): down biglock\n")); | ||
922 | lock_kernel(); | ||
923 | mutex_lock(&c->fmc->biglock); | ||
924 | ret = jffs_remove(dir, dentry, S_IFDIR); | ||
925 | D3(printk (KERN_NOTICE "rmdir(): up biglock\n")); | ||
926 | mutex_unlock(&c->fmc->biglock); | ||
927 | unlock_kernel(); | ||
928 | return ret; | ||
929 | } | ||
930 | |||
931 | |||
932 | /* Remove any kind of file except for directories. */ | ||
933 | static int | ||
934 | jffs_unlink(struct inode *dir, struct dentry *dentry) | ||
935 | { | ||
936 | struct jffs_control *c = (struct jffs_control *)dir->i_sb->s_fs_info; | ||
937 | int ret; | ||
938 | |||
939 | lock_kernel(); | ||
940 | D3(printk("***jffs_unlink()\n")); | ||
941 | D3(printk (KERN_NOTICE "unlink(): down biglock\n")); | ||
942 | mutex_lock(&c->fmc->biglock); | ||
943 | ret = jffs_remove(dir, dentry, 0); | ||
944 | D3(printk (KERN_NOTICE "unlink(): up biglock\n")); | ||
945 | mutex_unlock(&c->fmc->biglock); | ||
946 | unlock_kernel(); | ||
947 | return ret; | ||
948 | } | ||
949 | |||
950 | |||
951 | /* Remove a JFFS entry, i.e. plain files, directories, etc. Here we | ||
952 | shouldn't test for free space on the device. */ | ||
953 | static int | ||
954 | jffs_remove(struct inode *dir, struct dentry *dentry, int type) | ||
955 | { | ||
956 | struct jffs_raw_inode raw_inode; | ||
957 | struct jffs_control *c; | ||
958 | struct jffs_file *dir_f; /* The file-to-remove's parent. */ | ||
959 | struct jffs_file *del_f; /* The file to remove. */ | ||
960 | struct jffs_node *del_node; | ||
961 | struct inode *inode = NULL; | ||
962 | int result = 0; | ||
963 | |||
964 | D1({ | ||
965 | int len = dentry->d_name.len; | ||
966 | const char *name = dentry->d_name.name; | ||
967 | char *_name = kmalloc(len + 1, GFP_KERNEL); | ||
968 | memcpy(_name, name, len); | ||
969 | _name[len] = '\0'; | ||
970 | printk("***jffs_remove(): file = \"%s\", ino = %ld\n", _name, dentry->d_inode->i_ino); | ||
971 | kfree(_name); | ||
972 | }); | ||
973 | |||
974 | dir_f = dir->i_private; | ||
975 | c = dir_f->c; | ||
976 | |||
977 | result = -ENOENT; | ||
978 | if (!(del_f = jffs_find_child(dir_f, dentry->d_name.name, | ||
979 | dentry->d_name.len))) { | ||
980 | D(printk("jffs_remove(): jffs_find_child() failed.\n")); | ||
981 | goto jffs_remove_end; | ||
982 | } | ||
983 | |||
984 | if (S_ISDIR(type)) { | ||
985 | struct jffs_file *child = del_f->children; | ||
986 | while(child) { | ||
987 | if( !child->deleted ) { | ||
988 | result = -ENOTEMPTY; | ||
989 | goto jffs_remove_end; | ||
990 | } | ||
991 | child = child->sibling_next; | ||
992 | } | ||
993 | } | ||
994 | else if (S_ISDIR(del_f->mode)) { | ||
995 | D(printk("jffs_remove(): node is a directory " | ||
996 | "but it shouldn't be.\n")); | ||
997 | result = -EPERM; | ||
998 | goto jffs_remove_end; | ||
999 | } | ||
1000 | |||
1001 | inode = dentry->d_inode; | ||
1002 | |||
1003 | result = -EIO; | ||
1004 | if (del_f->ino != inode->i_ino) | ||
1005 | goto jffs_remove_end; | ||
1006 | |||
1007 | if (!inode->i_nlink) { | ||
1008 | printk("Deleting nonexistent file inode: %lu, nlink: %d\n", | ||
1009 | inode->i_ino, inode->i_nlink); | ||
1010 | inode->i_nlink=1; | ||
1011 | } | ||
1012 | |||
1013 | /* Create a node for the deletion. */ | ||
1014 | result = -ENOMEM; | ||
1015 | if (!(del_node = jffs_alloc_node())) { | ||
1016 | D(printk("jffs_remove(): Allocation failed!\n")); | ||
1017 | goto jffs_remove_end; | ||
1018 | } | ||
1019 | del_node->data_offset = 0; | ||
1020 | del_node->removed_size = 0; | ||
1021 | |||
1022 | /* Initialize the raw inode. */ | ||
1023 | raw_inode.magic = JFFS_MAGIC_BITMASK; | ||
1024 | raw_inode.ino = del_f->ino; | ||
1025 | raw_inode.pino = del_f->pino; | ||
1026 | /* raw_inode.version = del_f->highest_version + 1; */ | ||
1027 | raw_inode.mode = del_f->mode; | ||
1028 | raw_inode.uid = current->fsuid; | ||
1029 | raw_inode.gid = current->fsgid; | ||
1030 | raw_inode.atime = get_seconds(); | ||
1031 | raw_inode.mtime = del_f->mtime; | ||
1032 | raw_inode.ctime = raw_inode.atime; | ||
1033 | raw_inode.offset = 0; | ||
1034 | raw_inode.dsize = 0; | ||
1035 | raw_inode.rsize = 0; | ||
1036 | raw_inode.nsize = 0; | ||
1037 | raw_inode.nlink = del_f->nlink; | ||
1038 | raw_inode.spare = 0; | ||
1039 | raw_inode.rename = 0; | ||
1040 | raw_inode.deleted = 1; | ||
1041 | |||
1042 | /* Write the new node to the flash memory. */ | ||
1043 | if (jffs_write_node(c, del_node, &raw_inode, NULL, NULL, 1, del_f) < 0) { | ||
1044 | jffs_free_node(del_node); | ||
1045 | result = -EIO; | ||
1046 | goto jffs_remove_end; | ||
1047 | } | ||
1048 | |||
1049 | /* Update the file. This operation will make the file disappear | ||
1050 | from the in-memory file system structures. */ | ||
1051 | jffs_insert_node(c, del_f, &raw_inode, NULL, del_node); | ||
1052 | |||
1053 | dir->i_ctime = dir->i_mtime = CURRENT_TIME_SEC; | ||
1054 | mark_inode_dirty(dir); | ||
1055 | inode->i_ctime = dir->i_ctime; | ||
1056 | inode_dec_link_count(inode); | ||
1057 | |||
1058 | d_delete(dentry); /* This also frees the inode */ | ||
1059 | |||
1060 | result = 0; | ||
1061 | jffs_remove_end: | ||
1062 | return result; | ||
1063 | } /* jffs_remove() */ | ||
1064 | |||
1065 | |||
1066 | static int | ||
1067 | jffs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t rdev) | ||
1068 | { | ||
1069 | struct jffs_raw_inode raw_inode; | ||
1070 | struct jffs_file *dir_f; | ||
1071 | struct jffs_node *node = NULL; | ||
1072 | struct jffs_control *c; | ||
1073 | struct inode *inode; | ||
1074 | int result = 0; | ||
1075 | u16 data = old_encode_dev(rdev); | ||
1076 | int err; | ||
1077 | |||
1078 | D1(printk("***jffs_mknod()\n")); | ||
1079 | |||
1080 | if (!old_valid_dev(rdev)) | ||
1081 | return -EINVAL; | ||
1082 | lock_kernel(); | ||
1083 | dir_f = dir->i_private; | ||
1084 | c = dir_f->c; | ||
1085 | |||
1086 | D3(printk (KERN_NOTICE "mknod(): down biglock\n")); | ||
1087 | mutex_lock(&c->fmc->biglock); | ||
1088 | |||
1089 | /* Create and initialize a new node. */ | ||
1090 | if (!(node = jffs_alloc_node())) { | ||
1091 | D(printk("jffs_mknod(): Allocation failed!\n")); | ||
1092 | result = -ENOMEM; | ||
1093 | goto jffs_mknod_err; | ||
1094 | } | ||
1095 | node->data_offset = 0; | ||
1096 | node->removed_size = 0; | ||
1097 | |||
1098 | /* Initialize the raw inode. */ | ||
1099 | raw_inode.magic = JFFS_MAGIC_BITMASK; | ||
1100 | raw_inode.ino = c->next_ino++; | ||
1101 | raw_inode.pino = dir_f->ino; | ||
1102 | raw_inode.version = 1; | ||
1103 | raw_inode.mode = mode; | ||
1104 | raw_inode.uid = current->fsuid; | ||
1105 | raw_inode.gid = (dir->i_mode & S_ISGID) ? dir->i_gid : current->fsgid; | ||
1106 | /* raw_inode.gid = current->fsgid; */ | ||
1107 | raw_inode.atime = get_seconds(); | ||
1108 | raw_inode.mtime = raw_inode.atime; | ||
1109 | raw_inode.ctime = raw_inode.atime; | ||
1110 | raw_inode.offset = 0; | ||
1111 | raw_inode.dsize = 2; | ||
1112 | raw_inode.rsize = 0; | ||
1113 | raw_inode.nsize = dentry->d_name.len; | ||
1114 | raw_inode.nlink = 1; | ||
1115 | raw_inode.spare = 0; | ||
1116 | raw_inode.rename = 0; | ||
1117 | raw_inode.deleted = 0; | ||
1118 | |||
1119 | /* Write the new node to the flash. */ | ||
1120 | if ((err = jffs_write_node(c, node, &raw_inode, dentry->d_name.name, | ||
1121 | (unsigned char *)&data, 0, NULL)) < 0) { | ||
1122 | D(printk("jffs_mknod(): jffs_write_node() failed.\n")); | ||
1123 | result = err; | ||
1124 | goto jffs_mknod_err; | ||
1125 | } | ||
1126 | |||
1127 | /* Insert the new node into the file system. */ | ||
1128 | if ((err = jffs_insert_node(c, NULL, &raw_inode, dentry->d_name.name, | ||
1129 | node)) < 0) { | ||
1130 | result = err; | ||
1131 | goto jffs_mknod_end; | ||
1132 | } | ||
1133 | |||
1134 | inode = jffs_new_inode(dir, &raw_inode, &err); | ||
1135 | if (inode == NULL) { | ||
1136 | result = err; | ||
1137 | goto jffs_mknod_end; | ||
1138 | } | ||
1139 | |||
1140 | init_special_inode(inode, mode, rdev); | ||
1141 | |||
1142 | d_instantiate(dentry, inode); | ||
1143 | |||
1144 | goto jffs_mknod_end; | ||
1145 | |||
1146 | jffs_mknod_err: | ||
1147 | if (node) { | ||
1148 | jffs_free_node(node); | ||
1149 | } | ||
1150 | |||
1151 | jffs_mknod_end: | ||
1152 | D3(printk (KERN_NOTICE "mknod(): up biglock\n")); | ||
1153 | mutex_unlock(&c->fmc->biglock); | ||
1154 | unlock_kernel(); | ||
1155 | return result; | ||
1156 | } /* jffs_mknod() */ | ||
1157 | |||
1158 | |||
1159 | static int | ||
1160 | jffs_symlink(struct inode *dir, struct dentry *dentry, const char *symname) | ||
1161 | { | ||
1162 | struct jffs_raw_inode raw_inode; | ||
1163 | struct jffs_control *c; | ||
1164 | struct jffs_file *dir_f; | ||
1165 | struct jffs_node *node; | ||
1166 | struct inode *inode; | ||
1167 | |||
1168 | int symname_len = strlen(symname); | ||
1169 | int err; | ||
1170 | |||
1171 | lock_kernel(); | ||
1172 | D1({ | ||
1173 | int len = dentry->d_name.len; | ||
1174 | char *_name = kmalloc(len + 1, GFP_KERNEL); | ||
1175 | char *_symname = kmalloc(symname_len + 1, GFP_KERNEL); | ||
1176 | memcpy(_name, dentry->d_name.name, len); | ||
1177 | _name[len] = '\0'; | ||
1178 | memcpy(_symname, symname, symname_len); | ||
1179 | _symname[symname_len] = '\0'; | ||
1180 | printk("***jffs_symlink(): dir = 0x%p, " | ||
1181 | "dentry->dname.name = \"%s\", " | ||
1182 | "symname = \"%s\"\n", dir, _name, _symname); | ||
1183 | kfree(_name); | ||
1184 | kfree(_symname); | ||
1185 | }); | ||
1186 | |||
1187 | dir_f = dir->i_private; | ||
1188 | ASSERT(if (!dir_f) { | ||
1189 | printk(KERN_ERR "jffs_symlink(): No reference to a " | ||
1190 | "jffs_file struct in inode.\n"); | ||
1191 | unlock_kernel(); | ||
1192 | return -EIO; | ||
1193 | }); | ||
1194 | |||
1195 | c = dir_f->c; | ||
1196 | |||
1197 | /* Create a node and initialize it as much as needed. */ | ||
1198 | if (!(node = jffs_alloc_node())) { | ||
1199 | D(printk("jffs_symlink(): Allocation failed: node = NULL\n")); | ||
1200 | unlock_kernel(); | ||
1201 | return -ENOMEM; | ||
1202 | } | ||
1203 | D3(printk (KERN_NOTICE "symlink(): down biglock\n")); | ||
1204 | mutex_lock(&c->fmc->biglock); | ||
1205 | |||
1206 | node->data_offset = 0; | ||
1207 | node->removed_size = 0; | ||
1208 | |||
1209 | /* Initialize the raw inode. */ | ||
1210 | raw_inode.magic = JFFS_MAGIC_BITMASK; | ||
1211 | raw_inode.ino = c->next_ino++; | ||
1212 | raw_inode.pino = dir_f->ino; | ||
1213 | raw_inode.version = 1; | ||
1214 | raw_inode.mode = S_IFLNK | S_IRWXUGO; | ||
1215 | raw_inode.uid = current->fsuid; | ||
1216 | raw_inode.gid = (dir->i_mode & S_ISGID) ? dir->i_gid : current->fsgid; | ||
1217 | raw_inode.atime = get_seconds(); | ||
1218 | raw_inode.mtime = raw_inode.atime; | ||
1219 | raw_inode.ctime = raw_inode.atime; | ||
1220 | raw_inode.offset = 0; | ||
1221 | raw_inode.dsize = symname_len; | ||
1222 | raw_inode.rsize = 0; | ||
1223 | raw_inode.nsize = dentry->d_name.len; | ||
1224 | raw_inode.nlink = 1; | ||
1225 | raw_inode.spare = 0; | ||
1226 | raw_inode.rename = 0; | ||
1227 | raw_inode.deleted = 0; | ||
1228 | |||
1229 | /* Write the new node to the flash. */ | ||
1230 | if ((err = jffs_write_node(c, node, &raw_inode, dentry->d_name.name, | ||
1231 | (const unsigned char *)symname, 0, NULL)) < 0) { | ||
1232 | D(printk("jffs_symlink(): jffs_write_node() failed.\n")); | ||
1233 | jffs_free_node(node); | ||
1234 | goto jffs_symlink_end; | ||
1235 | } | ||
1236 | |||
1237 | /* Insert the new node into the file system. */ | ||
1238 | if ((err = jffs_insert_node(c, NULL, &raw_inode, dentry->d_name.name, | ||
1239 | node)) < 0) { | ||
1240 | goto jffs_symlink_end; | ||
1241 | } | ||
1242 | |||
1243 | inode = jffs_new_inode(dir, &raw_inode, &err); | ||
1244 | if (inode == NULL) { | ||
1245 | goto jffs_symlink_end; | ||
1246 | } | ||
1247 | err = 0; | ||
1248 | inode->i_op = &page_symlink_inode_operations; | ||
1249 | inode->i_mapping->a_ops = &jffs_address_operations; | ||
1250 | |||
1251 | d_instantiate(dentry, inode); | ||
1252 | jffs_symlink_end: | ||
1253 | D3(printk (KERN_NOTICE "symlink(): up biglock\n")); | ||
1254 | mutex_unlock(&c->fmc->biglock); | ||
1255 | unlock_kernel(); | ||
1256 | return err; | ||
1257 | } /* jffs_symlink() */ | ||
1258 | |||
1259 | |||
1260 | /* Create an inode inside a JFFS directory (dir) and return it. | ||
1261 | * | ||
1262 | * By the time this is called, we already have created | ||
1263 | * the directory cache entry for the new file, but it | ||
1264 | * is so far negative - it has no inode. | ||
1265 | * | ||
1266 | * If the create succeeds, we fill in the inode information | ||
1267 | * with d_instantiate(). | ||
1268 | */ | ||
1269 | static int | ||
1270 | jffs_create(struct inode *dir, struct dentry *dentry, int mode, | ||
1271 | struct nameidata *nd) | ||
1272 | { | ||
1273 | struct jffs_raw_inode raw_inode; | ||
1274 | struct jffs_control *c; | ||
1275 | struct jffs_node *node; | ||
1276 | struct jffs_file *dir_f; /* JFFS representation of the directory. */ | ||
1277 | struct inode *inode; | ||
1278 | int err; | ||
1279 | |||
1280 | lock_kernel(); | ||
1281 | D1({ | ||
1282 | int len = dentry->d_name.len; | ||
1283 | char *s = kmalloc(len + 1, GFP_KERNEL); | ||
1284 | memcpy(s, dentry->d_name.name, len); | ||
1285 | s[len] = '\0'; | ||
1286 | printk("jffs_create(): dir: 0x%p, name: \"%s\"\n", dir, s); | ||
1287 | kfree(s); | ||
1288 | }); | ||
1289 | |||
1290 | dir_f = dir->i_private; | ||
1291 | ASSERT(if (!dir_f) { | ||
1292 | printk(KERN_ERR "jffs_create(): No reference to a " | ||
1293 | "jffs_file struct in inode.\n"); | ||
1294 | unlock_kernel(); | ||
1295 | return -EIO; | ||
1296 | }); | ||
1297 | |||
1298 | c = dir_f->c; | ||
1299 | |||
1300 | /* Create a node and initialize as much as needed. */ | ||
1301 | if (!(node = jffs_alloc_node())) { | ||
1302 | D(printk("jffs_create(): Allocation failed: node == 0\n")); | ||
1303 | unlock_kernel(); | ||
1304 | return -ENOMEM; | ||
1305 | } | ||
1306 | D3(printk (KERN_NOTICE "create(): down biglock\n")); | ||
1307 | mutex_lock(&c->fmc->biglock); | ||
1308 | |||
1309 | node->data_offset = 0; | ||
1310 | node->removed_size = 0; | ||
1311 | |||
1312 | /* Initialize the raw inode. */ | ||
1313 | raw_inode.magic = JFFS_MAGIC_BITMASK; | ||
1314 | raw_inode.ino = c->next_ino++; | ||
1315 | raw_inode.pino = dir_f->ino; | ||
1316 | raw_inode.version = 1; | ||
1317 | raw_inode.mode = mode; | ||
1318 | raw_inode.uid = current->fsuid; | ||
1319 | raw_inode.gid = (dir->i_mode & S_ISGID) ? dir->i_gid : current->fsgid; | ||
1320 | raw_inode.atime = get_seconds(); | ||
1321 | raw_inode.mtime = raw_inode.atime; | ||
1322 | raw_inode.ctime = raw_inode.atime; | ||
1323 | raw_inode.offset = 0; | ||
1324 | raw_inode.dsize = 0; | ||
1325 | raw_inode.rsize = 0; | ||
1326 | raw_inode.nsize = dentry->d_name.len; | ||
1327 | raw_inode.nlink = 1; | ||
1328 | raw_inode.spare = 0; | ||
1329 | raw_inode.rename = 0; | ||
1330 | raw_inode.deleted = 0; | ||
1331 | |||
1332 | /* Write the new node to the flash. */ | ||
1333 | if ((err = jffs_write_node(c, node, &raw_inode, | ||
1334 | dentry->d_name.name, NULL, 0, NULL)) < 0) { | ||
1335 | D(printk("jffs_create(): jffs_write_node() failed.\n")); | ||
1336 | jffs_free_node(node); | ||
1337 | goto jffs_create_end; | ||
1338 | } | ||
1339 | |||
1340 | /* Insert the new node into the file system. */ | ||
1341 | if ((err = jffs_insert_node(c, NULL, &raw_inode, dentry->d_name.name, | ||
1342 | node)) < 0) { | ||
1343 | goto jffs_create_end; | ||
1344 | } | ||
1345 | |||
1346 | /* Initialize an inode. */ | ||
1347 | inode = jffs_new_inode(dir, &raw_inode, &err); | ||
1348 | if (inode == NULL) { | ||
1349 | goto jffs_create_end; | ||
1350 | } | ||
1351 | err = 0; | ||
1352 | inode->i_op = &jffs_file_inode_operations; | ||
1353 | inode->i_fop = &jffs_file_operations; | ||
1354 | inode->i_mapping->a_ops = &jffs_address_operations; | ||
1355 | inode->i_mapping->nrpages = 0; | ||
1356 | |||
1357 | d_instantiate(dentry, inode); | ||
1358 | jffs_create_end: | ||
1359 | D3(printk (KERN_NOTICE "create(): up biglock\n")); | ||
1360 | mutex_unlock(&c->fmc->biglock); | ||
1361 | unlock_kernel(); | ||
1362 | return err; | ||
1363 | } /* jffs_create() */ | ||
1364 | |||
1365 | |||
1366 | /* Write, append or rewrite data to an existing file. */ | ||
1367 | static ssize_t | ||
1368 | jffs_file_write(struct file *filp, const char *buf, size_t count, | ||
1369 | loff_t *ppos) | ||
1370 | { | ||
1371 | struct jffs_raw_inode raw_inode; | ||
1372 | struct jffs_control *c; | ||
1373 | struct jffs_file *f; | ||
1374 | struct jffs_node *node; | ||
1375 | struct dentry *dentry = filp->f_path.dentry; | ||
1376 | struct inode *inode = dentry->d_inode; | ||
1377 | int recoverable = 0; | ||
1378 | size_t written = 0; | ||
1379 | __u32 thiscount = count; | ||
1380 | loff_t pos = *ppos; | ||
1381 | int err; | ||
1382 | |||
1383 | inode = filp->f_path.dentry->d_inode; | ||
1384 | |||
1385 | D2(printk("***jffs_file_write(): inode: 0x%p (ino: %lu), " | ||
1386 | "filp: 0x%p, buf: 0x%p, count: %d\n", | ||
1387 | inode, inode->i_ino, filp, buf, count)); | ||
1388 | |||
1389 | #if 0 | ||
1390 | if (inode->i_sb->s_flags & MS_RDONLY) { | ||
1391 | D(printk("jffs_file_write(): MS_RDONLY\n")); | ||
1392 | err = -EROFS; | ||
1393 | goto out_isem; | ||
1394 | } | ||
1395 | #endif | ||
1396 | err = -EINVAL; | ||
1397 | |||
1398 | if (!S_ISREG(inode->i_mode)) { | ||
1399 | D(printk("jffs_file_write(): inode->i_mode == 0x%08x\n", | ||
1400 | inode->i_mode)); | ||
1401 | goto out_isem; | ||
1402 | } | ||
1403 | |||
1404 | if (!(f = inode->i_private)) { | ||
1405 | D(printk("jffs_file_write(): inode->i_private = 0x%p\n", | ||
1406 | inode->i_private)); | ||
1407 | goto out_isem; | ||
1408 | } | ||
1409 | |||
1410 | c = f->c; | ||
1411 | |||
1412 | /* | ||
1413 | * This will never trigger with sane page sizes. leave it in | ||
1414 | * anyway, since I'm thinking about how to merge larger writes | ||
1415 | * (the current idea is to poke a thread that does the actual | ||
1416 | * I/O and starts by doing a mutex_lock(&inode->i_mutex). then we | ||
1417 | * would need to get the page cache pages and have a list of | ||
1418 | * I/O requests and do write-merging here. | ||
1419 | * -- prumpf | ||
1420 | */ | ||
1421 | thiscount = min(c->fmc->max_chunk_size - sizeof(struct jffs_raw_inode), count); | ||
1422 | |||
1423 | D3(printk (KERN_NOTICE "file_write(): down biglock\n")); | ||
1424 | mutex_lock(&c->fmc->biglock); | ||
1425 | |||
1426 | /* Urgh. POSIX says we can do short writes if we feel like it. | ||
1427 | * In practice, we can't. Nothing will cope. So we loop until | ||
1428 | * we're done. | ||
1429 | * | ||
1430 | * <_Anarchy_> posix and reality are not interconnected on this issue | ||
1431 | */ | ||
1432 | while (count) { | ||
1433 | /* Things are going to be written so we could allocate and | ||
1434 | initialize the necessary data structures now. */ | ||
1435 | if (!(node = jffs_alloc_node())) { | ||
1436 | D(printk("jffs_file_write(): node == 0\n")); | ||
1437 | err = -ENOMEM; | ||
1438 | goto out; | ||
1439 | } | ||
1440 | |||
1441 | node->data_offset = pos; | ||
1442 | node->removed_size = 0; | ||
1443 | |||
1444 | /* Initialize the raw inode. */ | ||
1445 | raw_inode.magic = JFFS_MAGIC_BITMASK; | ||
1446 | raw_inode.ino = f->ino; | ||
1447 | raw_inode.pino = f->pino; | ||
1448 | |||
1449 | raw_inode.mode = f->mode; | ||
1450 | |||
1451 | raw_inode.uid = f->uid; | ||
1452 | raw_inode.gid = f->gid; | ||
1453 | raw_inode.atime = get_seconds(); | ||
1454 | raw_inode.mtime = raw_inode.atime; | ||
1455 | raw_inode.ctime = f->ctime; | ||
1456 | raw_inode.offset = pos; | ||
1457 | raw_inode.dsize = thiscount; | ||
1458 | raw_inode.rsize = 0; | ||
1459 | raw_inode.nsize = f->nsize; | ||
1460 | raw_inode.nlink = f->nlink; | ||
1461 | raw_inode.spare = 0; | ||
1462 | raw_inode.rename = 0; | ||
1463 | raw_inode.deleted = 0; | ||
1464 | |||
1465 | if (pos < f->size) { | ||
1466 | node->removed_size = raw_inode.rsize = min(thiscount, (__u32)(f->size - pos)); | ||
1467 | |||
1468 | /* If this node is going entirely over the top of old data, | ||
1469 | we can allow it to go into the reserved space, because | ||
1470 | we know that GC can reclaim the space later. | ||
1471 | */ | ||
1472 | if (pos + thiscount < f->size) { | ||
1473 | /* If all the data we're overwriting are _real_, | ||
1474 | not just holes, then: | ||
1475 | recoverable = 1; | ||
1476 | */ | ||
1477 | } | ||
1478 | } | ||
1479 | |||
1480 | /* Write the new node to the flash. */ | ||
1481 | /* NOTE: We would be quite happy if jffs_write_node() wrote a | ||
1482 | smaller node than we were expecting. There's no need for it | ||
1483 | to waste the space at the end of the flash just because it's | ||
1484 | a little smaller than what we asked for. But that's a whole | ||
1485 | new can of worms which I'm not going to open this week. | ||
1486 | -- dwmw2. | ||
1487 | */ | ||
1488 | if ((err = jffs_write_node(c, node, &raw_inode, f->name, | ||
1489 | (const unsigned char *)buf, | ||
1490 | recoverable, f)) < 0) { | ||
1491 | D(printk("jffs_file_write(): jffs_write_node() failed.\n")); | ||
1492 | jffs_free_node(node); | ||
1493 | goto out; | ||
1494 | } | ||
1495 | |||
1496 | written += err; | ||
1497 | buf += err; | ||
1498 | count -= err; | ||
1499 | pos += err; | ||
1500 | |||
1501 | /* Insert the new node into the file system. */ | ||
1502 | if ((err = jffs_insert_node(c, f, &raw_inode, NULL, node)) < 0) { | ||
1503 | goto out; | ||
1504 | } | ||
1505 | |||
1506 | D3(printk("jffs_file_write(): new f_pos %ld.\n", (long)pos)); | ||
1507 | |||
1508 | thiscount = min(c->fmc->max_chunk_size - sizeof(struct jffs_raw_inode), count); | ||
1509 | } | ||
1510 | out: | ||
1511 | D3(printk (KERN_NOTICE "file_write(): up biglock\n")); | ||
1512 | mutex_unlock(&c->fmc->biglock); | ||
1513 | |||
1514 | /* Fix things in the real inode. */ | ||
1515 | if (pos > inode->i_size) { | ||
1516 | inode->i_size = pos; | ||
1517 | inode->i_blocks = (inode->i_size + 511) >> 9; | ||
1518 | } | ||
1519 | inode->i_ctime = inode->i_mtime = CURRENT_TIME_SEC; | ||
1520 | mark_inode_dirty(inode); | ||
1521 | invalidate_mapping_pages(inode->i_mapping, 0, -1); | ||
1522 | |||
1523 | out_isem: | ||
1524 | return err; | ||
1525 | } /* jffs_file_write() */ | ||
1526 | |||
1527 | static int | ||
1528 | jffs_prepare_write(struct file *filp, struct page *page, | ||
1529 | unsigned from, unsigned to) | ||
1530 | { | ||
1531 | /* FIXME: we should detect some error conditions here */ | ||
1532 | |||
1533 | /* Bugger that. We should make sure the page is uptodate */ | ||
1534 | if (!PageUptodate(page) && (from || to < PAGE_CACHE_SIZE)) | ||
1535 | return jffs_do_readpage_nolock(filp, page); | ||
1536 | |||
1537 | return 0; | ||
1538 | } /* jffs_prepare_write() */ | ||
1539 | |||
1540 | static int | ||
1541 | jffs_commit_write(struct file *filp, struct page *page, | ||
1542 | unsigned from, unsigned to) | ||
1543 | { | ||
1544 | void *addr = page_address(page) + from; | ||
1545 | /* XXX: PAGE_CACHE_SHIFT or PAGE_SHIFT */ | ||
1546 | loff_t pos = page_offset(page) + from; | ||
1547 | |||
1548 | return jffs_file_write(filp, addr, to-from, &pos); | ||
1549 | } /* jffs_commit_write() */ | ||
1550 | |||
1551 | /* This is our ioctl() routine. */ | ||
1552 | static int | ||
1553 | jffs_ioctl(struct inode *inode, struct file *filp, unsigned int cmd, | ||
1554 | unsigned long arg) | ||
1555 | { | ||
1556 | struct jffs_control *c; | ||
1557 | int ret = 0; | ||
1558 | |||
1559 | D2(printk("***jffs_ioctl(): cmd = 0x%08x, arg = 0x%08lx\n", | ||
1560 | cmd, arg)); | ||
1561 | |||
1562 | if (!(c = (struct jffs_control *)inode->i_sb->s_fs_info)) { | ||
1563 | printk(KERN_ERR "JFFS: Bad inode in ioctl() call. " | ||
1564 | "(cmd = 0x%08x)\n", cmd); | ||
1565 | return -EIO; | ||
1566 | } | ||
1567 | D3(printk (KERN_NOTICE "ioctl(): down biglock\n")); | ||
1568 | mutex_lock(&c->fmc->biglock); | ||
1569 | |||
1570 | switch (cmd) { | ||
1571 | case JFFS_PRINT_HASH: | ||
1572 | jffs_print_hash_table(c); | ||
1573 | break; | ||
1574 | case JFFS_PRINT_TREE: | ||
1575 | jffs_print_tree(c->root, 0); | ||
1576 | break; | ||
1577 | case JFFS_GET_STATUS: | ||
1578 | { | ||
1579 | struct jffs_flash_status fst; | ||
1580 | struct jffs_fmcontrol *fmc = c->fmc; | ||
1581 | printk("Flash status -- "); | ||
1582 | if (!access_ok(VERIFY_WRITE, | ||
1583 | (struct jffs_flash_status __user *)arg, | ||
1584 | sizeof(struct jffs_flash_status))) { | ||
1585 | D(printk("jffs_ioctl(): Bad arg in " | ||
1586 | "JFFS_GET_STATUS ioctl!\n")); | ||
1587 | ret = -EFAULT; | ||
1588 | break; | ||
1589 | } | ||
1590 | fst.size = fmc->flash_size; | ||
1591 | fst.used = fmc->used_size; | ||
1592 | fst.dirty = fmc->dirty_size; | ||
1593 | fst.begin = fmc->head->offset; | ||
1594 | fst.end = fmc->tail->offset + fmc->tail->size; | ||
1595 | printk("size: %d, used: %d, dirty: %d, " | ||
1596 | "begin: %d, end: %d\n", | ||
1597 | fst.size, fst.used, fst.dirty, | ||
1598 | fst.begin, fst.end); | ||
1599 | if (copy_to_user((struct jffs_flash_status __user *)arg, | ||
1600 | &fst, | ||
1601 | sizeof(struct jffs_flash_status))) { | ||
1602 | ret = -EFAULT; | ||
1603 | } | ||
1604 | } | ||
1605 | break; | ||
1606 | default: | ||
1607 | ret = -ENOTTY; | ||
1608 | } | ||
1609 | D3(printk (KERN_NOTICE "ioctl(): up biglock\n")); | ||
1610 | mutex_unlock(&c->fmc->biglock); | ||
1611 | return ret; | ||
1612 | } /* jffs_ioctl() */ | ||
1613 | |||
1614 | |||
1615 | static const struct address_space_operations jffs_address_operations = { | ||
1616 | .readpage = jffs_readpage, | ||
1617 | .prepare_write = jffs_prepare_write, | ||
1618 | .commit_write = jffs_commit_write, | ||
1619 | }; | ||
1620 | |||
1621 | static int jffs_fsync(struct file *f, struct dentry *d, int datasync) | ||
1622 | { | ||
1623 | /* We currently have O_SYNC operations at all times. | ||
1624 | Do nothing. | ||
1625 | */ | ||
1626 | return 0; | ||
1627 | } | ||
1628 | |||
1629 | |||
1630 | static const struct file_operations jffs_file_operations = | ||
1631 | { | ||
1632 | .open = generic_file_open, | ||
1633 | .llseek = generic_file_llseek, | ||
1634 | .read = do_sync_read, | ||
1635 | .aio_read = generic_file_aio_read, | ||
1636 | .write = do_sync_write, | ||
1637 | .aio_write = generic_file_aio_write, | ||
1638 | .ioctl = jffs_ioctl, | ||
1639 | .mmap = generic_file_readonly_mmap, | ||
1640 | .fsync = jffs_fsync, | ||
1641 | .sendfile = generic_file_sendfile, | ||
1642 | }; | ||
1643 | |||
1644 | |||
1645 | static const struct inode_operations jffs_file_inode_operations = | ||
1646 | { | ||
1647 | .lookup = jffs_lookup, /* lookup */ | ||
1648 | .setattr = jffs_setattr, | ||
1649 | }; | ||
1650 | |||
1651 | |||
1652 | static const struct file_operations jffs_dir_operations = | ||
1653 | { | ||
1654 | .readdir = jffs_readdir, | ||
1655 | }; | ||
1656 | |||
1657 | |||
1658 | static const struct inode_operations jffs_dir_inode_operations = | ||
1659 | { | ||
1660 | .create = jffs_create, | ||
1661 | .lookup = jffs_lookup, | ||
1662 | .unlink = jffs_unlink, | ||
1663 | .symlink = jffs_symlink, | ||
1664 | .mkdir = jffs_mkdir, | ||
1665 | .rmdir = jffs_rmdir, | ||
1666 | .mknod = jffs_mknod, | ||
1667 | .rename = jffs_rename, | ||
1668 | .setattr = jffs_setattr, | ||
1669 | }; | ||
1670 | |||
1671 | |||
1672 | /* Initialize an inode for the VFS. */ | ||
1673 | static void | ||
1674 | jffs_read_inode(struct inode *inode) | ||
1675 | { | ||
1676 | struct jffs_file *f; | ||
1677 | struct jffs_control *c; | ||
1678 | |||
1679 | D3(printk("jffs_read_inode(): inode->i_ino == %lu\n", inode->i_ino)); | ||
1680 | |||
1681 | if (!inode->i_sb) { | ||
1682 | D(printk("jffs_read_inode(): !inode->i_sb ==> " | ||
1683 | "No super block!\n")); | ||
1684 | return; | ||
1685 | } | ||
1686 | c = (struct jffs_control *)inode->i_sb->s_fs_info; | ||
1687 | D3(printk (KERN_NOTICE "read_inode(): down biglock\n")); | ||
1688 | mutex_lock(&c->fmc->biglock); | ||
1689 | if (!(f = jffs_find_file(c, inode->i_ino))) { | ||
1690 | D(printk("jffs_read_inode(): No such inode (%lu).\n", | ||
1691 | inode->i_ino)); | ||
1692 | D3(printk (KERN_NOTICE "read_inode(): up biglock\n")); | ||
1693 | mutex_unlock(&c->fmc->biglock); | ||
1694 | return; | ||
1695 | } | ||
1696 | inode->i_private = f; | ||
1697 | inode->i_mode = f->mode; | ||
1698 | inode->i_nlink = f->nlink; | ||
1699 | inode->i_uid = f->uid; | ||
1700 | inode->i_gid = f->gid; | ||
1701 | inode->i_size = f->size; | ||
1702 | inode->i_atime.tv_sec = f->atime; | ||
1703 | inode->i_mtime.tv_sec = f->mtime; | ||
1704 | inode->i_ctime.tv_sec = f->ctime; | ||
1705 | inode->i_atime.tv_nsec = | ||
1706 | inode->i_mtime.tv_nsec = | ||
1707 | inode->i_ctime.tv_nsec = 0; | ||
1708 | |||
1709 | inode->i_blocks = (inode->i_size + 511) >> 9; | ||
1710 | if (S_ISREG(inode->i_mode)) { | ||
1711 | inode->i_op = &jffs_file_inode_operations; | ||
1712 | inode->i_fop = &jffs_file_operations; | ||
1713 | inode->i_mapping->a_ops = &jffs_address_operations; | ||
1714 | } | ||
1715 | else if (S_ISDIR(inode->i_mode)) { | ||
1716 | inode->i_op = &jffs_dir_inode_operations; | ||
1717 | inode->i_fop = &jffs_dir_operations; | ||
1718 | } | ||
1719 | else if (S_ISLNK(inode->i_mode)) { | ||
1720 | inode->i_op = &page_symlink_inode_operations; | ||
1721 | inode->i_mapping->a_ops = &jffs_address_operations; | ||
1722 | } | ||
1723 | else { | ||
1724 | /* If the node is a device of some sort, then the number of | ||
1725 | the device should be read from the flash memory and then | ||
1726 | added to the inode's i_rdev member. */ | ||
1727 | u16 val; | ||
1728 | jffs_read_data(f, (char *)&val, 0, 2); | ||
1729 | init_special_inode(inode, inode->i_mode, | ||
1730 | old_decode_dev(val)); | ||
1731 | } | ||
1732 | |||
1733 | D3(printk (KERN_NOTICE "read_inode(): up biglock\n")); | ||
1734 | mutex_unlock(&c->fmc->biglock); | ||
1735 | } | ||
1736 | |||
1737 | |||
1738 | static void | ||
1739 | jffs_delete_inode(struct inode *inode) | ||
1740 | { | ||
1741 | struct jffs_file *f; | ||
1742 | struct jffs_control *c; | ||
1743 | D3(printk("jffs_delete_inode(): inode->i_ino == %lu\n", | ||
1744 | inode->i_ino)); | ||
1745 | |||
1746 | truncate_inode_pages(&inode->i_data, 0); | ||
1747 | lock_kernel(); | ||
1748 | inode->i_size = 0; | ||
1749 | inode->i_blocks = 0; | ||
1750 | inode->i_private = NULL; | ||
1751 | clear_inode(inode); | ||
1752 | if (inode->i_nlink == 0) { | ||
1753 | c = (struct jffs_control *) inode->i_sb->s_fs_info; | ||
1754 | f = (struct jffs_file *) jffs_find_file (c, inode->i_ino); | ||
1755 | jffs_possibly_delete_file(f); | ||
1756 | } | ||
1757 | |||
1758 | unlock_kernel(); | ||
1759 | } | ||
1760 | |||
1761 | |||
1762 | static void | ||
1763 | jffs_write_super(struct super_block *sb) | ||
1764 | { | ||
1765 | struct jffs_control *c = (struct jffs_control *)sb->s_fs_info; | ||
1766 | lock_kernel(); | ||
1767 | jffs_garbage_collect_trigger(c); | ||
1768 | unlock_kernel(); | ||
1769 | } | ||
1770 | |||
1771 | static int jffs_remount(struct super_block *sb, int *flags, char *data) | ||
1772 | { | ||
1773 | *flags |= MS_NODIRATIME; | ||
1774 | return 0; | ||
1775 | } | ||
1776 | |||
1777 | static const struct super_operations jffs_ops = | ||
1778 | { | ||
1779 | .read_inode = jffs_read_inode, | ||
1780 | .delete_inode = jffs_delete_inode, | ||
1781 | .put_super = jffs_put_super, | ||
1782 | .write_super = jffs_write_super, | ||
1783 | .statfs = jffs_statfs, | ||
1784 | .remount_fs = jffs_remount, | ||
1785 | }; | ||
1786 | |||
1787 | static int jffs_get_sb(struct file_system_type *fs_type, | ||
1788 | int flags, const char *dev_name, void *data, struct vfsmount *mnt) | ||
1789 | { | ||
1790 | return get_sb_bdev(fs_type, flags, dev_name, data, jffs_fill_super, | ||
1791 | mnt); | ||
1792 | } | ||
1793 | |||
1794 | static struct file_system_type jffs_fs_type = { | ||
1795 | .owner = THIS_MODULE, | ||
1796 | .name = "jffs", | ||
1797 | .get_sb = jffs_get_sb, | ||
1798 | .kill_sb = kill_block_super, | ||
1799 | .fs_flags = FS_REQUIRES_DEV, | ||
1800 | }; | ||
1801 | |||
1802 | static int __init | ||
1803 | init_jffs_fs(void) | ||
1804 | { | ||
1805 | printk(KERN_INFO "JFFS version " JFFS_VERSION_STRING | ||
1806 | ", (C) 1999, 2000 Axis Communications AB\n"); | ||
1807 | |||
1808 | #ifdef CONFIG_JFFS_PROC_FS | ||
1809 | jffs_proc_root = proc_mkdir("jffs", proc_root_fs); | ||
1810 | if (!jffs_proc_root) { | ||
1811 | printk(KERN_WARNING "cannot create /proc/jffs entry\n"); | ||
1812 | } | ||
1813 | #endif | ||
1814 | fm_cache = kmem_cache_create("jffs_fm", sizeof(struct jffs_fm), | ||
1815 | 0, | ||
1816 | SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD, | ||
1817 | NULL, NULL); | ||
1818 | if (!fm_cache) { | ||
1819 | return -ENOMEM; | ||
1820 | } | ||
1821 | |||
1822 | node_cache = kmem_cache_create("jffs_node",sizeof(struct jffs_node), | ||
1823 | 0, | ||
1824 | SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD, | ||
1825 | NULL, NULL); | ||
1826 | if (!node_cache) { | ||
1827 | kmem_cache_destroy(fm_cache); | ||
1828 | return -ENOMEM; | ||
1829 | } | ||
1830 | |||
1831 | return register_filesystem(&jffs_fs_type); | ||
1832 | } | ||
1833 | |||
1834 | static void __exit | ||
1835 | exit_jffs_fs(void) | ||
1836 | { | ||
1837 | unregister_filesystem(&jffs_fs_type); | ||
1838 | kmem_cache_destroy(fm_cache); | ||
1839 | kmem_cache_destroy(node_cache); | ||
1840 | } | ||
1841 | |||
1842 | module_init(init_jffs_fs) | ||
1843 | module_exit(exit_jffs_fs) | ||
1844 | |||
1845 | MODULE_DESCRIPTION("The Journalling Flash File System"); | ||
1846 | MODULE_AUTHOR("Axis Communications AB."); | ||
1847 | MODULE_LICENSE("GPL"); | ||
diff --git a/fs/jffs/intrep.c b/fs/jffs/intrep.c deleted file mode 100644 index 6dd18911b44c..000000000000 --- a/fs/jffs/intrep.c +++ /dev/null | |||
@@ -1,3449 +0,0 @@ | |||
1 | /* | ||
2 | * JFFS -- Journaling Flash File System, Linux implementation. | ||
3 | * | ||
4 | * Copyright (C) 1999, 2000 Axis Communications, Inc. | ||
5 | * | ||
6 | * Created by Finn Hakansson <finn@axis.com>. | ||
7 | * | ||
8 | * This is free software; you can redistribute it and/or modify it | ||
9 | * under the terms of the GNU General Public License as published by | ||
10 | * the Free Software Foundation; either version 2 of the License, or | ||
11 | * (at your option) any later version. | ||
12 | * | ||
13 | * $Id: intrep.c,v 1.102 2001/09/23 23:28:36 dwmw2 Exp $ | ||
14 | * | ||
15 | * Ported to Linux 2.3.x and MTD: | ||
16 | * Copyright (C) 2000 Alexander Larsson (alex@cendio.se), Cendio Systems AB | ||
17 | * | ||
18 | */ | ||
19 | |||
20 | /* This file contains the code for the internal structure of the | ||
21 | Journaling Flash File System, JFFS. */ | ||
22 | |||
23 | /* | ||
24 | * Todo list: | ||
25 | * | ||
26 | * memcpy_to_flash() and memcpy_from_flash() functions. | ||
27 | * | ||
28 | * Implementation of hard links. | ||
29 | * | ||
30 | * Organize the source code in a better way. Against the VFS we could | ||
31 | * have jffs_ext.c, and against the block device jffs_int.c. | ||
32 | * A better file-internal organization too. | ||
33 | * | ||
34 | * A better checksum algorithm. | ||
35 | * | ||
36 | * Consider endianness stuff. ntohl() etc. | ||
37 | * | ||
38 | * Are we handling the atime, mtime, ctime members of the inode right? | ||
39 | * | ||
40 | * Remove some duplicated code. Take a look at jffs_write_node() and | ||
41 | * jffs_rewrite_data() for instance. | ||
42 | * | ||
43 | * Implement more meaning of the nlink member in various data structures. | ||
44 | * nlink could be used in conjunction with hard links for instance. | ||
45 | * | ||
46 | * Better memory management. Allocate data structures in larger chunks | ||
47 | * if possible. | ||
48 | * | ||
49 | * If too much meta data is stored, a garbage collect should be issued. | ||
50 | * We have experienced problems with too much meta data with for instance | ||
51 | * log files. | ||
52 | * | ||
53 | * Improve the calls to jffs_ioctl(). We would like to retrieve more | ||
54 | * information to be able to debug (or to supervise) JFFS during run-time. | ||
55 | * | ||
56 | */ | ||
57 | |||
58 | #include <linux/types.h> | ||
59 | #include <linux/slab.h> | ||
60 | #include <linux/jffs.h> | ||
61 | #include <linux/fs.h> | ||
62 | #include <linux/stat.h> | ||
63 | #include <linux/pagemap.h> | ||
64 | #include <linux/mutex.h> | ||
65 | #include <asm/byteorder.h> | ||
66 | #include <linux/smp_lock.h> | ||
67 | #include <linux/time.h> | ||
68 | #include <linux/ctype.h> | ||
69 | #include <linux/freezer.h> | ||
70 | |||
71 | #include "intrep.h" | ||
72 | #include "jffs_fm.h" | ||
73 | |||
74 | long no_jffs_node = 0; | ||
75 | static long no_jffs_file = 0; | ||
76 | #if defined(JFFS_MEMORY_DEBUG) && JFFS_MEMORY_DEBUG | ||
77 | long no_jffs_control = 0; | ||
78 | long no_jffs_raw_inode = 0; | ||
79 | long no_jffs_node_ref = 0; | ||
80 | long no_jffs_fm = 0; | ||
81 | long no_jffs_fmcontrol = 0; | ||
82 | long no_hash = 0; | ||
83 | long no_name = 0; | ||
84 | #endif | ||
85 | |||
86 | static int jffs_scan_flash(struct jffs_control *c); | ||
87 | static int jffs_update_file(struct jffs_file *f, struct jffs_node *node); | ||
88 | static int jffs_build_file(struct jffs_file *f); | ||
89 | static int jffs_free_file(struct jffs_file *f); | ||
90 | static int jffs_free_node_list(struct jffs_file *f); | ||
91 | static int jffs_garbage_collect_now(struct jffs_control *c); | ||
92 | static int jffs_insert_file_into_hash(struct jffs_file *f); | ||
93 | static int jffs_remove_redundant_nodes(struct jffs_file *f); | ||
94 | |||
95 | /* Is there enough space on the flash? */ | ||
96 | static inline int JFFS_ENOUGH_SPACE(struct jffs_control *c, __u32 space) | ||
97 | { | ||
98 | struct jffs_fmcontrol *fmc = c->fmc; | ||
99 | |||
100 | while (1) { | ||
101 | if ((fmc->flash_size - (fmc->used_size + fmc->dirty_size)) | ||
102 | >= fmc->min_free_size + space) { | ||
103 | return 1; | ||
104 | } | ||
105 | if (fmc->dirty_size < fmc->sector_size) | ||
106 | return 0; | ||
107 | |||
108 | if (jffs_garbage_collect_now(c)) { | ||
109 | D1(printk("JFFS_ENOUGH_SPACE: jffs_garbage_collect_now() failed.\n")); | ||
110 | return 0; | ||
111 | } | ||
112 | } | ||
113 | } | ||
114 | |||
115 | #if CONFIG_JFFS_FS_VERBOSE > 0 | ||
116 | static __u8 | ||
117 | flash_read_u8(struct mtd_info *mtd, loff_t from) | ||
118 | { | ||
119 | size_t retlen; | ||
120 | __u8 ret; | ||
121 | int res; | ||
122 | |||
123 | res = MTD_READ(mtd, from, 1, &retlen, &ret); | ||
124 | if (retlen != 1) { | ||
125 | printk("Didn't read a byte in flash_read_u8(). Returned %d\n", res); | ||
126 | return 0; | ||
127 | } | ||
128 | |||
129 | return ret; | ||
130 | } | ||
131 | |||
132 | static void | ||
133 | jffs_hexdump(struct mtd_info *mtd, loff_t pos, int size) | ||
134 | { | ||
135 | char line[16]; | ||
136 | int j = 0; | ||
137 | |||
138 | while (size > 0) { | ||
139 | int i; | ||
140 | |||
141 | printk("%ld:", (long) pos); | ||
142 | for (j = 0; j < 16; j++) { | ||
143 | line[j] = flash_read_u8(mtd, pos++); | ||
144 | } | ||
145 | for (i = 0; i < j; i++) { | ||
146 | if (!(i & 1)) { | ||
147 | printk(" %.2x", line[i] & 0xff); | ||
148 | } | ||
149 | else { | ||
150 | printk("%.2x", line[i] & 0xff); | ||
151 | } | ||
152 | } | ||
153 | |||
154 | /* Print empty space */ | ||
155 | for (; i < 16; i++) { | ||
156 | if (!(i & 1)) { | ||
157 | printk(" "); | ||
158 | } | ||
159 | else { | ||
160 | printk(" "); | ||
161 | } | ||
162 | } | ||
163 | printk(" "); | ||
164 | |||
165 | for (i = 0; i < j; i++) { | ||
166 | if (isgraph(line[i])) { | ||
167 | printk("%c", line[i]); | ||
168 | } | ||
169 | else { | ||
170 | printk("."); | ||
171 | } | ||
172 | } | ||
173 | printk("\n"); | ||
174 | size -= 16; | ||
175 | } | ||
176 | } | ||
177 | |||
178 | /* Print the contents of a node. */ | ||
179 | static void | ||
180 | jffs_print_node(struct jffs_node *n) | ||
181 | { | ||
182 | D(printk("jffs_node: 0x%p\n", n)); | ||
183 | D(printk("{\n")); | ||
184 | D(printk(" 0x%08x, /* version */\n", n->version)); | ||
185 | D(printk(" 0x%08x, /* data_offset */\n", n->data_offset)); | ||
186 | D(printk(" 0x%08x, /* data_size */\n", n->data_size)); | ||
187 | D(printk(" 0x%08x, /* removed_size */\n", n->removed_size)); | ||
188 | D(printk(" 0x%08x, /* fm_offset */\n", n->fm_offset)); | ||
189 | D(printk(" 0x%02x, /* name_size */\n", n->name_size)); | ||
190 | D(printk(" 0x%p, /* fm, fm->offset: %u */\n", | ||
191 | n->fm, (n->fm ? n->fm->offset : 0))); | ||
192 | D(printk(" 0x%p, /* version_prev */\n", n->version_prev)); | ||
193 | D(printk(" 0x%p, /* version_next */\n", n->version_next)); | ||
194 | D(printk(" 0x%p, /* range_prev */\n", n->range_prev)); | ||
195 | D(printk(" 0x%p, /* range_next */\n", n->range_next)); | ||
196 | D(printk("}\n")); | ||
197 | } | ||
198 | |||
199 | #endif | ||
200 | |||
201 | /* Print the contents of a raw inode. */ | ||
202 | static void | ||
203 | jffs_print_raw_inode(struct jffs_raw_inode *raw_inode) | ||
204 | { | ||
205 | D(printk("jffs_raw_inode: inode number: %u\n", raw_inode->ino)); | ||
206 | D(printk("{\n")); | ||
207 | D(printk(" 0x%08x, /* magic */\n", raw_inode->magic)); | ||
208 | D(printk(" 0x%08x, /* ino */\n", raw_inode->ino)); | ||
209 | D(printk(" 0x%08x, /* pino */\n", raw_inode->pino)); | ||
210 | D(printk(" 0x%08x, /* version */\n", raw_inode->version)); | ||
211 | D(printk(" 0x%08x, /* mode */\n", raw_inode->mode)); | ||
212 | D(printk(" 0x%04x, /* uid */\n", raw_inode->uid)); | ||
213 | D(printk(" 0x%04x, /* gid */\n", raw_inode->gid)); | ||
214 | D(printk(" 0x%08x, /* atime */\n", raw_inode->atime)); | ||
215 | D(printk(" 0x%08x, /* mtime */\n", raw_inode->mtime)); | ||
216 | D(printk(" 0x%08x, /* ctime */\n", raw_inode->ctime)); | ||
217 | D(printk(" 0x%08x, /* offset */\n", raw_inode->offset)); | ||
218 | D(printk(" 0x%08x, /* dsize */\n", raw_inode->dsize)); | ||
219 | D(printk(" 0x%08x, /* rsize */\n", raw_inode->rsize)); | ||
220 | D(printk(" 0x%02x, /* nsize */\n", raw_inode->nsize)); | ||
221 | D(printk(" 0x%02x, /* nlink */\n", raw_inode->nlink)); | ||
222 | D(printk(" 0x%02x, /* spare */\n", | ||
223 | raw_inode->spare)); | ||
224 | D(printk(" %u, /* rename */\n", | ||
225 | raw_inode->rename)); | ||
226 | D(printk(" %u, /* deleted */\n", | ||
227 | raw_inode->deleted)); | ||
228 | D(printk(" 0x%02x, /* accurate */\n", | ||
229 | raw_inode->accurate)); | ||
230 | D(printk(" 0x%08x, /* dchksum */\n", raw_inode->dchksum)); | ||
231 | D(printk(" 0x%04x, /* nchksum */\n", raw_inode->nchksum)); | ||
232 | D(printk(" 0x%04x, /* chksum */\n", raw_inode->chksum)); | ||
233 | D(printk("}\n")); | ||
234 | } | ||
235 | |||
236 | #define flash_safe_acquire(arg) | ||
237 | #define flash_safe_release(arg) | ||
238 | |||
239 | |||
240 | static int | ||
241 | flash_safe_read(struct mtd_info *mtd, loff_t from, | ||
242 | u_char *buf, size_t count) | ||
243 | { | ||
244 | size_t retlen; | ||
245 | int res; | ||
246 | |||
247 | D3(printk(KERN_NOTICE "flash_safe_read(%p, %08x, %p, %08x)\n", | ||
248 | mtd, (unsigned int) from, buf, count)); | ||
249 | |||
250 | res = mtd->read(mtd, from, count, &retlen, buf); | ||
251 | if (retlen != count) { | ||
252 | panic("Didn't read all bytes in flash_safe_read(). Returned %d\n", res); | ||
253 | } | ||
254 | return res?res:retlen; | ||
255 | } | ||
256 | |||
257 | |||
258 | static __u32 | ||
259 | flash_read_u32(struct mtd_info *mtd, loff_t from) | ||
260 | { | ||
261 | size_t retlen; | ||
262 | __u32 ret; | ||
263 | int res; | ||
264 | |||
265 | res = mtd->read(mtd, from, 4, &retlen, (unsigned char *)&ret); | ||
266 | if (retlen != 4) { | ||
267 | printk("Didn't read all bytes in flash_read_u32(). Returned %d\n", res); | ||
268 | return 0; | ||
269 | } | ||
270 | |||
271 | return ret; | ||
272 | } | ||
273 | |||
274 | |||
275 | static int | ||
276 | flash_safe_write(struct mtd_info *mtd, loff_t to, | ||
277 | const u_char *buf, size_t count) | ||
278 | { | ||
279 | size_t retlen; | ||
280 | int res; | ||
281 | |||
282 | D3(printk(KERN_NOTICE "flash_safe_write(%p, %08x, %p, %08x)\n", | ||
283 | mtd, (unsigned int) to, buf, count)); | ||
284 | |||
285 | res = mtd->write(mtd, to, count, &retlen, buf); | ||
286 | if (retlen != count) { | ||
287 | printk("Didn't write all bytes in flash_safe_write(). Returned %d\n", res); | ||
288 | } | ||
289 | return res?res:retlen; | ||
290 | } | ||
291 | |||
292 | |||
293 | static int | ||
294 | flash_safe_writev(struct mtd_info *mtd, const struct kvec *vecs, | ||
295 | unsigned long iovec_cnt, loff_t to) | ||
296 | { | ||
297 | size_t retlen, retlen_a; | ||
298 | int i; | ||
299 | int res; | ||
300 | |||
301 | D3(printk(KERN_NOTICE "flash_safe_writev(%p, %08x, %p)\n", | ||
302 | mtd, (unsigned int) to, vecs)); | ||
303 | |||
304 | if (mtd->writev) { | ||
305 | res = mtd->writev(mtd, vecs, iovec_cnt, to, &retlen); | ||
306 | return res ? res : retlen; | ||
307 | } | ||
308 | /* Not implemented writev. Repeatedly use write - on the not so | ||
309 | unreasonable assumption that the mtd driver doesn't care how | ||
310 | many write cycles we use. */ | ||
311 | res=0; | ||
312 | retlen=0; | ||
313 | |||
314 | for (i=0; !res && i<iovec_cnt; i++) { | ||
315 | res = mtd->write(mtd, to, vecs[i].iov_len, &retlen_a, | ||
316 | vecs[i].iov_base); | ||
317 | if (retlen_a != vecs[i].iov_len) { | ||
318 | printk("Didn't write all bytes in flash_safe_writev(). Returned %d\n", res); | ||
319 | if (i != iovec_cnt-1) | ||
320 | return -EIO; | ||
321 | } | ||
322 | /* If res is non-zero, retlen_a is undefined, but we don't | ||
323 | care because in that case it's not going to be | ||
324 | returned anyway. | ||
325 | */ | ||
326 | to += retlen_a; | ||
327 | retlen += retlen_a; | ||
328 | } | ||
329 | return res?res:retlen; | ||
330 | } | ||
331 | |||
332 | |||
333 | static int | ||
334 | flash_memset(struct mtd_info *mtd, loff_t to, | ||
335 | const u_char c, size_t size) | ||
336 | { | ||
337 | static unsigned char pattern[64]; | ||
338 | int i; | ||
339 | |||
340 | /* fill up pattern */ | ||
341 | |||
342 | for(i = 0; i < 64; i++) | ||
343 | pattern[i] = c; | ||
344 | |||
345 | /* write as many 64-byte chunks as we can */ | ||
346 | |||
347 | while (size >= 64) { | ||
348 | flash_safe_write(mtd, to, pattern, 64); | ||
349 | size -= 64; | ||
350 | to += 64; | ||
351 | } | ||
352 | |||
353 | /* and the rest */ | ||
354 | |||
355 | if(size) | ||
356 | flash_safe_write(mtd, to, pattern, size); | ||
357 | |||
358 | return size; | ||
359 | } | ||
360 | |||
361 | |||
362 | static void | ||
363 | intrep_erase_callback(struct erase_info *done) | ||
364 | { | ||
365 | wait_queue_head_t *wait_q; | ||
366 | |||
367 | wait_q = (wait_queue_head_t *)done->priv; | ||
368 | |||
369 | wake_up(wait_q); | ||
370 | } | ||
371 | |||
372 | |||
373 | static int | ||
374 | flash_erase_region(struct mtd_info *mtd, loff_t start, | ||
375 | size_t size) | ||
376 | { | ||
377 | struct erase_info *erase; | ||
378 | DECLARE_WAITQUEUE(wait, current); | ||
379 | wait_queue_head_t wait_q; | ||
380 | |||
381 | erase = kmalloc(sizeof(struct erase_info), GFP_KERNEL); | ||
382 | if (!erase) | ||
383 | return -ENOMEM; | ||
384 | |||
385 | init_waitqueue_head(&wait_q); | ||
386 | |||
387 | erase->mtd = mtd; | ||
388 | erase->callback = intrep_erase_callback; | ||
389 | erase->addr = start; | ||
390 | erase->len = size; | ||
391 | erase->priv = (u_long)&wait_q; | ||
392 | |||
393 | /* FIXME: Use TASK_INTERRUPTIBLE and deal with being interrupted */ | ||
394 | set_current_state(TASK_UNINTERRUPTIBLE); | ||
395 | add_wait_queue(&wait_q, &wait); | ||
396 | |||
397 | if (mtd->erase(mtd, erase) < 0) { | ||
398 | set_current_state(TASK_RUNNING); | ||
399 | remove_wait_queue(&wait_q, &wait); | ||
400 | kfree(erase); | ||
401 | |||
402 | printk(KERN_WARNING "flash: erase of region [0x%lx, 0x%lx] " | ||
403 | "totally failed\n", (long)start, (long)start + size); | ||
404 | |||
405 | return -1; | ||
406 | } | ||
407 | |||
408 | schedule(); /* Wait for flash to finish. */ | ||
409 | remove_wait_queue(&wait_q, &wait); | ||
410 | |||
411 | kfree(erase); | ||
412 | |||
413 | return 0; | ||
414 | } | ||
415 | |||
416 | /* This routine calculates checksums in JFFS. */ | ||
417 | static __u32 | ||
418 | jffs_checksum(const void *data, int size) | ||
419 | { | ||
420 | __u32 sum = 0; | ||
421 | __u8 *ptr = (__u8 *)data; | ||
422 | while (size-- > 0) { | ||
423 | sum += *ptr++; | ||
424 | } | ||
425 | D3(printk(", result: 0x%08x\n", sum)); | ||
426 | return sum; | ||
427 | } | ||
428 | |||
429 | |||
430 | static int | ||
431 | jffs_checksum_flash(struct mtd_info *mtd, loff_t start, int size, __u32 *result) | ||
432 | { | ||
433 | __u32 sum = 0; | ||
434 | loff_t ptr = start; | ||
435 | __u8 *read_buf; | ||
436 | int i, length; | ||
437 | |||
438 | /* Allocate read buffer */ | ||
439 | read_buf = kmalloc(sizeof(__u8) * 4096, GFP_KERNEL); | ||
440 | if (!read_buf) { | ||
441 | printk(KERN_NOTICE "kmalloc failed in jffs_checksum_flash()\n"); | ||
442 | return -ENOMEM; | ||
443 | } | ||
444 | /* Loop until checksum done */ | ||
445 | while (size) { | ||
446 | /* Get amount of data to read */ | ||
447 | if (size < 4096) | ||
448 | length = size; | ||
449 | else | ||
450 | length = 4096; | ||
451 | |||
452 | /* Perform flash read */ | ||
453 | D3(printk(KERN_NOTICE "jffs_checksum_flash\n")); | ||
454 | flash_safe_read(mtd, ptr, &read_buf[0], length); | ||
455 | |||
456 | /* Compute checksum */ | ||
457 | for (i=0; i < length ; i++) | ||
458 | sum += read_buf[i]; | ||
459 | |||
460 | /* Update pointer and size */ | ||
461 | size -= length; | ||
462 | ptr += length; | ||
463 | } | ||
464 | |||
465 | /* Free read buffer */ | ||
466 | kfree(read_buf); | ||
467 | |||
468 | /* Return result */ | ||
469 | D3(printk("checksum result: 0x%08x\n", sum)); | ||
470 | *result = sum; | ||
471 | return 0; | ||
472 | } | ||
473 | |||
474 | static __inline__ void jffs_fm_write_lock(struct jffs_fmcontrol *fmc) | ||
475 | { | ||
476 | // down(&fmc->wlock); | ||
477 | } | ||
478 | |||
479 | static __inline__ void jffs_fm_write_unlock(struct jffs_fmcontrol *fmc) | ||
480 | { | ||
481 | // up(&fmc->wlock); | ||
482 | } | ||
483 | |||
484 | |||
485 | /* Create and initialize a new struct jffs_file. */ | ||
486 | static struct jffs_file * | ||
487 | jffs_create_file(struct jffs_control *c, | ||
488 | const struct jffs_raw_inode *raw_inode) | ||
489 | { | ||
490 | struct jffs_file *f; | ||
491 | |||
492 | if (!(f = kzalloc(sizeof(*f), GFP_KERNEL))) { | ||
493 | D(printk("jffs_create_file(): Failed!\n")); | ||
494 | return NULL; | ||
495 | } | ||
496 | no_jffs_file++; | ||
497 | f->ino = raw_inode->ino; | ||
498 | f->pino = raw_inode->pino; | ||
499 | f->nlink = raw_inode->nlink; | ||
500 | f->deleted = raw_inode->deleted; | ||
501 | f->c = c; | ||
502 | |||
503 | return f; | ||
504 | } | ||
505 | |||
506 | |||
507 | /* Build a control block for the file system. */ | ||
508 | static struct jffs_control * | ||
509 | jffs_create_control(struct super_block *sb) | ||
510 | { | ||
511 | struct jffs_control *c; | ||
512 | register int s = sizeof(struct jffs_control); | ||
513 | int i; | ||
514 | D(char *t = 0); | ||
515 | |||
516 | D2(printk("jffs_create_control()\n")); | ||
517 | |||
518 | if (!(c = kmalloc(s, GFP_KERNEL))) { | ||
519 | goto fail_control; | ||
520 | } | ||
521 | DJM(no_jffs_control++); | ||
522 | c->root = NULL; | ||
523 | c->gc_task = NULL; | ||
524 | c->hash_len = JFFS_HASH_SIZE; | ||
525 | s = sizeof(struct list_head) * c->hash_len; | ||
526 | if (!(c->hash = kmalloc(s, GFP_KERNEL))) { | ||
527 | goto fail_hash; | ||
528 | } | ||
529 | DJM(no_hash++); | ||
530 | for (i = 0; i < c->hash_len; i++) | ||
531 | INIT_LIST_HEAD(&c->hash[i]); | ||
532 | if (!(c->fmc = jffs_build_begin(c, MINOR(sb->s_dev)))) { | ||
533 | goto fail_fminit; | ||
534 | } | ||
535 | c->next_ino = JFFS_MIN_INO + 1; | ||
536 | c->delete_list = (struct jffs_delete_list *) 0; | ||
537 | return c; | ||
538 | |||
539 | fail_fminit: | ||
540 | D(t = "c->fmc"); | ||
541 | fail_hash: | ||
542 | kfree(c); | ||
543 | DJM(no_jffs_control--); | ||
544 | D(t = t ? t : "c->hash"); | ||
545 | fail_control: | ||
546 | D(t = t ? t : "control"); | ||
547 | D(printk("jffs_create_control(): Allocation failed: (%s)\n", t)); | ||
548 | return (struct jffs_control *)0; | ||
549 | } | ||
550 | |||
551 | |||
552 | /* Clean up all data structures associated with the file system. */ | ||
553 | void | ||
554 | jffs_cleanup_control(struct jffs_control *c) | ||
555 | { | ||
556 | D2(printk("jffs_cleanup_control()\n")); | ||
557 | |||
558 | if (!c) { | ||
559 | D(printk("jffs_cleanup_control(): c == NULL !!!\n")); | ||
560 | return; | ||
561 | } | ||
562 | |||
563 | while (c->delete_list) { | ||
564 | struct jffs_delete_list *delete_list_element; | ||
565 | delete_list_element = c->delete_list; | ||
566 | c->delete_list = c->delete_list->next; | ||
567 | kfree(delete_list_element); | ||
568 | } | ||
569 | |||
570 | /* Free all files and nodes. */ | ||
571 | if (c->hash) { | ||
572 | jffs_foreach_file(c, jffs_free_node_list); | ||
573 | jffs_foreach_file(c, jffs_free_file); | ||
574 | kfree(c->hash); | ||
575 | DJM(no_hash--); | ||
576 | } | ||
577 | jffs_cleanup_fmcontrol(c->fmc); | ||
578 | kfree(c); | ||
579 | DJM(no_jffs_control--); | ||
580 | D3(printk("jffs_cleanup_control(): Leaving...\n")); | ||
581 | } | ||
582 | |||
583 | |||
584 | /* This function adds a virtual root node to the in-RAM representation. | ||
585 | Called by jffs_build_fs(). */ | ||
586 | static int | ||
587 | jffs_add_virtual_root(struct jffs_control *c) | ||
588 | { | ||
589 | struct jffs_file *root; | ||
590 | struct jffs_node *node; | ||
591 | |||
592 | D2(printk("jffs_add_virtual_root(): " | ||
593 | "Creating a virtual root directory.\n")); | ||
594 | |||
595 | if (!(root = kzalloc(sizeof(struct jffs_file), GFP_KERNEL))) { | ||
596 | return -ENOMEM; | ||
597 | } | ||
598 | no_jffs_file++; | ||
599 | if (!(node = jffs_alloc_node())) { | ||
600 | kfree(root); | ||
601 | no_jffs_file--; | ||
602 | return -ENOMEM; | ||
603 | } | ||
604 | DJM(no_jffs_node++); | ||
605 | memset(node, 0, sizeof(struct jffs_node)); | ||
606 | node->ino = JFFS_MIN_INO; | ||
607 | root->ino = JFFS_MIN_INO; | ||
608 | root->mode = S_IFDIR | S_IRWXU | S_IRGRP | ||
609 | | S_IXGRP | S_IROTH | S_IXOTH; | ||
610 | root->atime = root->mtime = root->ctime = get_seconds(); | ||
611 | root->nlink = 1; | ||
612 | root->c = c; | ||
613 | root->version_head = root->version_tail = node; | ||
614 | jffs_insert_file_into_hash(root); | ||
615 | return 0; | ||
616 | } | ||
617 | |||
618 | |||
619 | /* This is where the file system is built and initialized. */ | ||
620 | int | ||
621 | jffs_build_fs(struct super_block *sb) | ||
622 | { | ||
623 | struct jffs_control *c; | ||
624 | int err = 0; | ||
625 | |||
626 | D2(printk("jffs_build_fs()\n")); | ||
627 | |||
628 | if (!(c = jffs_create_control(sb))) { | ||
629 | return -ENOMEM; | ||
630 | } | ||
631 | c->building_fs = 1; | ||
632 | c->sb = sb; | ||
633 | if ((err = jffs_scan_flash(c)) < 0) { | ||
634 | if(err == -EAGAIN){ | ||
635 | /* scan_flash() wants us to try once more. A flipping | ||
636 | bits sector was detect in the middle of the scan flash. | ||
637 | Clean up old allocated memory before going in. | ||
638 | */ | ||
639 | D1(printk("jffs_build_fs: Cleaning up all control structures," | ||
640 | " reallocating them and trying mount again.\n")); | ||
641 | jffs_cleanup_control(c); | ||
642 | if (!(c = jffs_create_control(sb))) { | ||
643 | return -ENOMEM; | ||
644 | } | ||
645 | c->building_fs = 1; | ||
646 | c->sb = sb; | ||
647 | |||
648 | if ((err = jffs_scan_flash(c)) < 0) { | ||
649 | goto jffs_build_fs_fail; | ||
650 | } | ||
651 | }else{ | ||
652 | goto jffs_build_fs_fail; | ||
653 | } | ||
654 | } | ||
655 | |||
656 | /* Add a virtual root node if no one exists. */ | ||
657 | if (!jffs_find_file(c, JFFS_MIN_INO)) { | ||
658 | if ((err = jffs_add_virtual_root(c)) < 0) { | ||
659 | goto jffs_build_fs_fail; | ||
660 | } | ||
661 | } | ||
662 | |||
663 | while (c->delete_list) { | ||
664 | struct jffs_file *f; | ||
665 | struct jffs_delete_list *delete_list_element; | ||
666 | |||
667 | if ((f = jffs_find_file(c, c->delete_list->ino))) { | ||
668 | f->deleted = 1; | ||
669 | } | ||
670 | delete_list_element = c->delete_list; | ||
671 | c->delete_list = c->delete_list->next; | ||
672 | kfree(delete_list_element); | ||
673 | } | ||
674 | |||
675 | /* Remove deleted nodes. */ | ||
676 | if ((err = jffs_foreach_file(c, jffs_possibly_delete_file)) < 0) { | ||
677 | printk(KERN_ERR "JFFS: Failed to remove deleted nodes.\n"); | ||
678 | goto jffs_build_fs_fail; | ||
679 | } | ||
680 | /* Remove redundant nodes. (We are not interested in the | ||
681 | return value in this case.) */ | ||
682 | jffs_foreach_file(c, jffs_remove_redundant_nodes); | ||
683 | /* Try to build a tree from all the nodes. */ | ||
684 | if ((err = jffs_foreach_file(c, jffs_insert_file_into_tree)) < 0) { | ||
685 | printk("JFFS: Failed to build tree.\n"); | ||
686 | goto jffs_build_fs_fail; | ||
687 | } | ||
688 | /* Compute the sizes of all files in the filesystem. Adjust if | ||
689 | necessary. */ | ||
690 | if ((err = jffs_foreach_file(c, jffs_build_file)) < 0) { | ||
691 | printk("JFFS: Failed to build file system.\n"); | ||
692 | goto jffs_build_fs_fail; | ||
693 | } | ||
694 | sb->s_fs_info = (void *)c; | ||
695 | c->building_fs = 0; | ||
696 | |||
697 | D1(jffs_print_hash_table(c)); | ||
698 | D1(jffs_print_tree(c->root, 0)); | ||
699 | |||
700 | return 0; | ||
701 | |||
702 | jffs_build_fs_fail: | ||
703 | jffs_cleanup_control(c); | ||
704 | return err; | ||
705 | } /* jffs_build_fs() */ | ||
706 | |||
707 | |||
708 | /* | ||
709 | This checks for sectors that were being erased in their previous | ||
710 | lifetimes and for some reason or the other (power fail etc.), | ||
711 | the erase cycles never completed. | ||
712 | As the flash array would have reverted back to read status, | ||
713 | these sectors are detected by the symptom of the "flipping bits", | ||
714 | i.e. bits being read back differently from the same location in | ||
715 | flash if read multiple times. | ||
716 | The only solution to this is to re-erase the entire | ||
717 | sector. | ||
718 | Unfortunately detecting "flipping bits" is not a simple exercise | ||
719 | as a bit may be read back at 1 or 0 depending on the alignment | ||
720 | of the stars in the universe. | ||
721 | The level of confidence is in direct proportion to the number of | ||
722 | scans done. By power fail testing I (Vipin) have been able to | ||
723 | proove that reading twice is not enough. | ||
724 | Maybe 4 times? Change NUM_REREADS to a higher number if you want | ||
725 | a (even) higher degree of confidence in your mount process. | ||
726 | A higher number would of course slow down your mount. | ||
727 | */ | ||
728 | static int check_partly_erased_sectors(struct jffs_fmcontrol *fmc){ | ||
729 | |||
730 | #define NUM_REREADS 4 /* see note above */ | ||
731 | #define READ_AHEAD_BYTES 4096 /* must be a multiple of 4, | ||
732 | usually set to kernel page size */ | ||
733 | |||
734 | __u8 *read_buf1; | ||
735 | __u8 *read_buf2; | ||
736 | |||
737 | int err = 0; | ||
738 | int retlen; | ||
739 | int i; | ||
740 | int cnt; | ||
741 | __u32 offset; | ||
742 | loff_t pos = 0; | ||
743 | loff_t end = fmc->flash_size; | ||
744 | |||
745 | |||
746 | /* Allocate read buffers */ | ||
747 | read_buf1 = kmalloc(sizeof(__u8) * READ_AHEAD_BYTES, GFP_KERNEL); | ||
748 | if (!read_buf1) | ||
749 | return -ENOMEM; | ||
750 | |||
751 | read_buf2 = kmalloc(sizeof(__u8) * READ_AHEAD_BYTES, GFP_KERNEL); | ||
752 | if (!read_buf2) { | ||
753 | kfree(read_buf1); | ||
754 | return -ENOMEM; | ||
755 | } | ||
756 | |||
757 | CHECK_NEXT: | ||
758 | while(pos < end){ | ||
759 | |||
760 | D1(printk("check_partly_erased_sector():checking sector which contains" | ||
761 | " offset 0x%x for flipping bits..\n", (__u32)pos)); | ||
762 | |||
763 | retlen = flash_safe_read(fmc->mtd, pos, | ||
764 | &read_buf1[0], READ_AHEAD_BYTES); | ||
765 | retlen &= ~3; | ||
766 | |||
767 | for(cnt = 0; cnt < NUM_REREADS; cnt++){ | ||
768 | (void)flash_safe_read(fmc->mtd, pos, | ||
769 | &read_buf2[0], READ_AHEAD_BYTES); | ||
770 | |||
771 | for (i=0 ; i < retlen ; i+=4) { | ||
772 | /* buffers MUST match, double word for word! */ | ||
773 | if(*((__u32 *) &read_buf1[i]) != | ||
774 | *((__u32 *) &read_buf2[i]) | ||
775 | ){ | ||
776 | /* flipping bits detected, time to erase sector */ | ||
777 | /* This will help us log some statistics etc. */ | ||
778 | D1(printk("Flipping bits detected in re-read round:%i of %i\n", | ||
779 | cnt, NUM_REREADS)); | ||
780 | D1(printk("check_partly_erased_sectors:flipping bits detected" | ||
781 | " @offset:0x%x(0x%x!=0x%x)\n", | ||
782 | (__u32)pos+i, *((__u32 *) &read_buf1[i]), | ||
783 | *((__u32 *) &read_buf2[i]))); | ||
784 | |||
785 | /* calculate start of present sector */ | ||
786 | offset = (((__u32)pos+i)/(__u32)fmc->sector_size) * (__u32)fmc->sector_size; | ||
787 | |||
788 | D1(printk("check_partly_erased_sector():erasing sector starting 0x%x.\n", | ||
789 | offset)); | ||
790 | |||
791 | if (flash_erase_region(fmc->mtd, | ||
792 | offset, fmc->sector_size) < 0) { | ||
793 | printk(KERN_ERR "JFFS: Erase of flash failed. " | ||
794 | "offset = %u, erase_size = %d\n", | ||
795 | offset , fmc->sector_size); | ||
796 | |||
797 | err = -EIO; | ||
798 | goto returnBack; | ||
799 | |||
800 | }else{ | ||
801 | D1(printk("JFFS: Erase of flash sector @0x%x successful.\n", | ||
802 | offset)); | ||
803 | /* skip ahead to the next sector */ | ||
804 | pos = (((__u32)pos+i)/(__u32)fmc->sector_size) * (__u32)fmc->sector_size; | ||
805 | pos += fmc->sector_size; | ||
806 | goto CHECK_NEXT; | ||
807 | } | ||
808 | } | ||
809 | } | ||
810 | } | ||
811 | pos += READ_AHEAD_BYTES; | ||
812 | } | ||
813 | |||
814 | returnBack: | ||
815 | kfree(read_buf1); | ||
816 | kfree(read_buf2); | ||
817 | |||
818 | D2(printk("check_partly_erased_sector():Done checking all sectors till offset 0x%x for flipping bits.\n", | ||
819 | (__u32)pos)); | ||
820 | |||
821 | return err; | ||
822 | |||
823 | }/* end check_partly_erased_sectors() */ | ||
824 | |||
825 | |||
826 | |||
827 | /* Scan the whole flash memory in order to find all nodes in the | ||
828 | file systems. */ | ||
829 | static int | ||
830 | jffs_scan_flash(struct jffs_control *c) | ||
831 | { | ||
832 | char name[JFFS_MAX_NAME_LEN + 2]; | ||
833 | struct jffs_raw_inode raw_inode; | ||
834 | struct jffs_node *node = NULL; | ||
835 | struct jffs_fmcontrol *fmc = c->fmc; | ||
836 | __u32 checksum; | ||
837 | __u8 tmp_accurate; | ||
838 | __u16 tmp_chksum; | ||
839 | __u32 deleted_file; | ||
840 | loff_t pos = 0; | ||
841 | loff_t start; | ||
842 | loff_t test_start; | ||
843 | loff_t end = fmc->flash_size; | ||
844 | __u8 *read_buf; | ||
845 | int i, len, retlen; | ||
846 | __u32 offset; | ||
847 | |||
848 | __u32 free_chunk_size1; | ||
849 | __u32 free_chunk_size2; | ||
850 | |||
851 | |||
852 | #define NUMFREEALLOWED 2 /* 2 chunks of at least erase size space allowed */ | ||
853 | int num_free_space = 0; /* Flag err if more than TWO | ||
854 | free blocks found. This is NOT allowed | ||
855 | by the current jffs design. | ||
856 | */ | ||
857 | int num_free_spc_not_accp = 0; /* For debugging purposed keep count | ||
858 | of how much free space was rejected and | ||
859 | marked dirty | ||
860 | */ | ||
861 | |||
862 | D1(printk("jffs_scan_flash(): start pos = 0x%lx, end = 0x%lx\n", | ||
863 | (long)pos, (long)end)); | ||
864 | |||
865 | flash_safe_acquire(fmc->mtd); | ||
866 | |||
867 | /* | ||
868 | check and make sure that any sector does not suffer | ||
869 | from the "partly erased, bit flipping syndrome" (TM Vipin :) | ||
870 | If so, offending sectors will be erased. | ||
871 | */ | ||
872 | if(check_partly_erased_sectors(fmc) < 0){ | ||
873 | |||
874 | flash_safe_release(fmc->mtd); | ||
875 | return -EIO; /* bad, bad, bad error. Cannot continue.*/ | ||
876 | } | ||
877 | |||
878 | /* Allocate read buffer */ | ||
879 | read_buf = kmalloc(sizeof(__u8) * 4096, GFP_KERNEL); | ||
880 | if (!read_buf) { | ||
881 | flash_safe_release(fmc->mtd); | ||
882 | return -ENOMEM; | ||
883 | } | ||
884 | |||
885 | /* Start the scan. */ | ||
886 | while (pos < end) { | ||
887 | deleted_file = 0; | ||
888 | |||
889 | /* Remember the position from where we started this scan. */ | ||
890 | start = pos; | ||
891 | |||
892 | switch (flash_read_u32(fmc->mtd, pos)) { | ||
893 | case JFFS_EMPTY_BITMASK: | ||
894 | /* We have found 0xffffffff at this position. We have to | ||
895 | scan the rest of the flash till the end or till | ||
896 | something else than 0xffffffff is found. | ||
897 | Keep going till we do not find JFFS_EMPTY_BITMASK | ||
898 | anymore */ | ||
899 | |||
900 | D1(printk("jffs_scan_flash(): 0xffffffff at pos 0x%lx.\n", | ||
901 | (long)pos)); | ||
902 | |||
903 | while(pos < end){ | ||
904 | |||
905 | len = end - pos < 4096 ? end - pos : 4096; | ||
906 | |||
907 | retlen = flash_safe_read(fmc->mtd, pos, | ||
908 | &read_buf[0], len); | ||
909 | |||
910 | retlen &= ~3; | ||
911 | |||
912 | for (i=0 ; i < retlen ; i+=4, pos += 4) { | ||
913 | if(*((__u32 *) &read_buf[i]) != | ||
914 | JFFS_EMPTY_BITMASK) | ||
915 | break; | ||
916 | } | ||
917 | if (i == retlen) | ||
918 | continue; | ||
919 | else | ||
920 | break; | ||
921 | } | ||
922 | |||
923 | D1(printk("jffs_scan_flash():0xffffffff ended at pos 0x%lx.\n", | ||
924 | (long)pos)); | ||
925 | |||
926 | /* If some free space ends in the middle of a sector, | ||
927 | treat it as dirty rather than clean. | ||
928 | This is to handle the case where one thread | ||
929 | allocated space for a node, but didn't get to | ||
930 | actually _write_ it before power was lost, leaving | ||
931 | a gap in the log. Shifting all node writes into | ||
932 | a single kernel thread will fix the original problem. | ||
933 | */ | ||
934 | if ((__u32) pos % fmc->sector_size) { | ||
935 | /* If there was free space in previous | ||
936 | sectors, don't mark that dirty too - | ||
937 | only from the beginning of this sector | ||
938 | (or from start) | ||
939 | */ | ||
940 | |||
941 | test_start = pos & ~(fmc->sector_size-1); /* end of last sector */ | ||
942 | |||
943 | if (start < test_start) { | ||
944 | |||
945 | /* free space started in the previous sector! */ | ||
946 | |||
947 | if((num_free_space < NUMFREEALLOWED) && | ||
948 | ((unsigned int)(test_start - start) >= fmc->sector_size)){ | ||
949 | |||
950 | /* | ||
951 | Count it in if we are still under NUMFREEALLOWED *and* it is | ||
952 | at least 1 erase sector in length. This will keep us from | ||
953 | picking any little ole' space as "free". | ||
954 | */ | ||
955 | |||
956 | D1(printk("Reducing end of free space to 0x%x from 0x%x\n", | ||
957 | (unsigned int)test_start, (unsigned int)pos)); | ||
958 | |||
959 | D1(printk("Free space accepted: Starting 0x%x for 0x%x bytes\n", | ||
960 | (unsigned int) start, | ||
961 | (unsigned int)(test_start - start))); | ||
962 | |||
963 | /* below, space from "start" to "pos" will be marked dirty. */ | ||
964 | start = test_start; | ||
965 | |||
966 | /* Being in here means that we have found at least an entire | ||
967 | erase sector size of free space ending on a sector boundary. | ||
968 | Keep track of free spaces accepted. | ||
969 | */ | ||
970 | num_free_space++; | ||
971 | }else{ | ||
972 | num_free_spc_not_accp++; | ||
973 | D1(printk("Free space (#%i) found but *Not* accepted: Starting" | ||
974 | " 0x%x for 0x%x bytes\n", | ||
975 | num_free_spc_not_accp, (unsigned int)start, | ||
976 | (unsigned int)((unsigned int)(pos & ~(fmc->sector_size-1)) - (unsigned int)start))); | ||
977 | |||
978 | } | ||
979 | |||
980 | } | ||
981 | if((((__u32)(pos - start)) != 0)){ | ||
982 | |||
983 | D1(printk("Dirty space: Starting 0x%x for 0x%x bytes\n", | ||
984 | (unsigned int) start, (unsigned int) (pos - start))); | ||
985 | jffs_fmalloced(fmc, (__u32) start, | ||
986 | (__u32) (pos - start), NULL); | ||
987 | }else{ | ||
988 | /* "Flipping bits" detected. This means that our scan for them | ||
989 | did not catch this offset. See check_partly_erased_sectors() for | ||
990 | more info. | ||
991 | */ | ||
992 | |||
993 | D1(printk("jffs_scan_flash():wants to allocate dirty flash " | ||
994 | "space for 0 bytes.\n")); | ||
995 | D1(printk("jffs_scan_flash(): Flipping bits! We will free " | ||
996 | "all allocated memory, erase this sector and remount\n")); | ||
997 | |||
998 | /* calculate start of present sector */ | ||
999 | offset = (((__u32)pos)/(__u32)fmc->sector_size) * (__u32)fmc->sector_size; | ||
1000 | |||
1001 | D1(printk("jffs_scan_flash():erasing sector starting 0x%x.\n", | ||
1002 | offset)); | ||
1003 | |||
1004 | if (flash_erase_region(fmc->mtd, | ||
1005 | offset, fmc->sector_size) < 0) { | ||
1006 | printk(KERN_ERR "JFFS: Erase of flash failed. " | ||
1007 | "offset = %u, erase_size = %d\n", | ||
1008 | offset , fmc->sector_size); | ||
1009 | |||
1010 | flash_safe_release(fmc->mtd); | ||
1011 | kfree(read_buf); | ||
1012 | return -1; /* bad, bad, bad! */ | ||
1013 | |||
1014 | } | ||
1015 | flash_safe_release(fmc->mtd); | ||
1016 | kfree(read_buf); | ||
1017 | |||
1018 | return -EAGAIN; /* erased offending sector. Try mount one more time please. */ | ||
1019 | } | ||
1020 | }else{ | ||
1021 | /* Being in here means that we have found free space that ends on an erase sector | ||
1022 | boundary. | ||
1023 | Count it in if we are still under NUMFREEALLOWED *and* it is at least 1 erase | ||
1024 | sector in length. This will keep us from picking any little ole' space as "free". | ||
1025 | */ | ||
1026 | if((num_free_space < NUMFREEALLOWED) && | ||
1027 | ((unsigned int)(pos - start) >= fmc->sector_size)){ | ||
1028 | /* We really don't do anything to mark space as free, except *not* | ||
1029 | mark it dirty and just advance the "pos" location pointer. | ||
1030 | It will automatically be picked up as free space. | ||
1031 | */ | ||
1032 | num_free_space++; | ||
1033 | D1(printk("Free space accepted: Starting 0x%x for 0x%x bytes\n", | ||
1034 | (unsigned int) start, (unsigned int) (pos - start))); | ||
1035 | }else{ | ||
1036 | num_free_spc_not_accp++; | ||
1037 | D1(printk("Free space (#%i) found but *Not* accepted: Starting " | ||
1038 | "0x%x for 0x%x bytes\n", num_free_spc_not_accp, | ||
1039 | (unsigned int) start, | ||
1040 | (unsigned int) (pos - start))); | ||
1041 | |||
1042 | /* Mark this space as dirty. We already have our free space. */ | ||
1043 | D1(printk("Dirty space: Starting 0x%x for 0x%x bytes\n", | ||
1044 | (unsigned int) start, (unsigned int) (pos - start))); | ||
1045 | jffs_fmalloced(fmc, (__u32) start, | ||
1046 | (__u32) (pos - start), NULL); | ||
1047 | } | ||
1048 | |||
1049 | } | ||
1050 | if(num_free_space > NUMFREEALLOWED){ | ||
1051 | printk(KERN_WARNING "jffs_scan_flash(): Found free space " | ||
1052 | "number %i. Only %i free space is allowed.\n", | ||
1053 | num_free_space, NUMFREEALLOWED); | ||
1054 | } | ||
1055 | continue; | ||
1056 | |||
1057 | case JFFS_DIRTY_BITMASK: | ||
1058 | /* We have found 0x00000000 at this position. Scan as far | ||
1059 | as possible to find out how much is dirty. */ | ||
1060 | D1(printk("jffs_scan_flash(): 0x00000000 at pos 0x%lx.\n", | ||
1061 | (long)pos)); | ||
1062 | for (; pos < end | ||
1063 | && JFFS_DIRTY_BITMASK == flash_read_u32(fmc->mtd, pos); | ||
1064 | pos += 4); | ||
1065 | D1(printk("jffs_scan_flash(): 0x00 ended at " | ||
1066 | "pos 0x%lx.\n", (long)pos)); | ||
1067 | jffs_fmalloced(fmc, (__u32) start, | ||
1068 | (__u32) (pos - start), NULL); | ||
1069 | continue; | ||
1070 | |||
1071 | case JFFS_MAGIC_BITMASK: | ||
1072 | /* We have probably found a new raw inode. */ | ||
1073 | break; | ||
1074 | |||
1075 | default: | ||
1076 | bad_inode: | ||
1077 | /* We're f*cked. This is not solved yet. We have | ||
1078 | to scan for the magic pattern. */ | ||
1079 | D1(printk("*************** Dirty flash memory or " | ||
1080 | "bad inode: " | ||
1081 | "hexdump(pos = 0x%lx, len = 128):\n", | ||
1082 | (long)pos)); | ||
1083 | D1(jffs_hexdump(fmc->mtd, pos, 128)); | ||
1084 | |||
1085 | for (pos += 4; pos < end; pos += 4) { | ||
1086 | switch (flash_read_u32(fmc->mtd, pos)) { | ||
1087 | case JFFS_MAGIC_BITMASK: | ||
1088 | case JFFS_EMPTY_BITMASK: | ||
1089 | /* handle these in the main switch() loop */ | ||
1090 | goto cont_scan; | ||
1091 | |||
1092 | default: | ||
1093 | break; | ||
1094 | } | ||
1095 | } | ||
1096 | |||
1097 | cont_scan: | ||
1098 | /* First, mark as dirty the region | ||
1099 | which really does contain crap. */ | ||
1100 | jffs_fmalloced(fmc, (__u32) start, | ||
1101 | (__u32) (pos - start), | ||
1102 | NULL); | ||
1103 | |||
1104 | continue; | ||
1105 | }/* switch */ | ||
1106 | |||
1107 | /* We have found the beginning of an inode. Create a | ||
1108 | node for it unless there already is one available. */ | ||
1109 | if (!node) { | ||
1110 | if (!(node = jffs_alloc_node())) { | ||
1111 | /* Free read buffer */ | ||
1112 | kfree(read_buf); | ||
1113 | |||
1114 | /* Release the flash device */ | ||
1115 | flash_safe_release(fmc->mtd); | ||
1116 | |||
1117 | return -ENOMEM; | ||
1118 | } | ||
1119 | DJM(no_jffs_node++); | ||
1120 | } | ||
1121 | |||
1122 | /* Read the next raw inode. */ | ||
1123 | |||
1124 | flash_safe_read(fmc->mtd, pos, (u_char *) &raw_inode, | ||
1125 | sizeof(struct jffs_raw_inode)); | ||
1126 | |||
1127 | /* When we compute the checksum for the inode, we never | ||
1128 | count the 'accurate' or the 'checksum' fields. */ | ||
1129 | tmp_accurate = raw_inode.accurate; | ||
1130 | tmp_chksum = raw_inode.chksum; | ||
1131 | raw_inode.accurate = 0; | ||
1132 | raw_inode.chksum = 0; | ||
1133 | checksum = jffs_checksum(&raw_inode, | ||
1134 | sizeof(struct jffs_raw_inode)); | ||
1135 | raw_inode.accurate = tmp_accurate; | ||
1136 | raw_inode.chksum = tmp_chksum; | ||
1137 | |||
1138 | D3(printk("*** We have found this raw inode at pos 0x%lx " | ||
1139 | "on the flash:\n", (long)pos)); | ||
1140 | D3(jffs_print_raw_inode(&raw_inode)); | ||
1141 | |||
1142 | if (checksum != raw_inode.chksum) { | ||
1143 | D1(printk("jffs_scan_flash(): Bad checksum: " | ||
1144 | "checksum = %u, " | ||
1145 | "raw_inode.chksum = %u\n", | ||
1146 | checksum, raw_inode.chksum)); | ||
1147 | pos += sizeof(struct jffs_raw_inode); | ||
1148 | jffs_fmalloced(fmc, (__u32) start, | ||
1149 | (__u32) (pos - start), NULL); | ||
1150 | /* Reuse this unused struct jffs_node. */ | ||
1151 | continue; | ||
1152 | } | ||
1153 | |||
1154 | /* Check the raw inode read so far. Start with the | ||
1155 | maximum length of the filename. */ | ||
1156 | if (raw_inode.nsize > JFFS_MAX_NAME_LEN) { | ||
1157 | printk(KERN_WARNING "jffs_scan_flash: Found a " | ||
1158 | "JFFS node with name too large\n"); | ||
1159 | goto bad_inode; | ||
1160 | } | ||
1161 | |||
1162 | if (raw_inode.rename && raw_inode.dsize != sizeof(__u32)) { | ||
1163 | printk(KERN_WARNING "jffs_scan_flash: Found a " | ||
1164 | "rename node with dsize %u.\n", | ||
1165 | raw_inode.dsize); | ||
1166 | jffs_print_raw_inode(&raw_inode); | ||
1167 | goto bad_inode; | ||
1168 | } | ||
1169 | |||
1170 | /* The node's data segment should not exceed a | ||
1171 | certain length. */ | ||
1172 | if (raw_inode.dsize > fmc->max_chunk_size) { | ||
1173 | printk(KERN_WARNING "jffs_scan_flash: Found a " | ||
1174 | "JFFS node with dsize (0x%x) > max_chunk_size (0x%x)\n", | ||
1175 | raw_inode.dsize, fmc->max_chunk_size); | ||
1176 | goto bad_inode; | ||
1177 | } | ||
1178 | |||
1179 | pos += sizeof(struct jffs_raw_inode); | ||
1180 | |||
1181 | /* This shouldn't be necessary because a node that | ||
1182 | violates the flash boundaries shouldn't be written | ||
1183 | in the first place. */ | ||
1184 | if (pos >= end) { | ||
1185 | goto check_node; | ||
1186 | } | ||
1187 | |||
1188 | /* Read the name. */ | ||
1189 | *name = 0; | ||
1190 | if (raw_inode.nsize) { | ||
1191 | flash_safe_read(fmc->mtd, pos, name, raw_inode.nsize); | ||
1192 | name[raw_inode.nsize] = '\0'; | ||
1193 | pos += raw_inode.nsize | ||
1194 | + JFFS_GET_PAD_BYTES(raw_inode.nsize); | ||
1195 | D3(printk("name == \"%s\"\n", name)); | ||
1196 | checksum = jffs_checksum(name, raw_inode.nsize); | ||
1197 | if (checksum != raw_inode.nchksum) { | ||
1198 | D1(printk("jffs_scan_flash(): Bad checksum: " | ||
1199 | "checksum = %u, " | ||
1200 | "raw_inode.nchksum = %u\n", | ||
1201 | checksum, raw_inode.nchksum)); | ||
1202 | jffs_fmalloced(fmc, (__u32) start, | ||
1203 | (__u32) (pos - start), NULL); | ||
1204 | /* Reuse this unused struct jffs_node. */ | ||
1205 | continue; | ||
1206 | } | ||
1207 | if (pos >= end) { | ||
1208 | goto check_node; | ||
1209 | } | ||
1210 | } | ||
1211 | |||
1212 | /* Read the data, if it exists, in order to be sure it | ||
1213 | matches the checksum. */ | ||
1214 | if (raw_inode.dsize) { | ||
1215 | if (raw_inode.rename) { | ||
1216 | deleted_file = flash_read_u32(fmc->mtd, pos); | ||
1217 | } | ||
1218 | if (jffs_checksum_flash(fmc->mtd, pos, raw_inode.dsize, &checksum)) { | ||
1219 | printk("jffs_checksum_flash() failed to calculate a checksum\n"); | ||
1220 | jffs_fmalloced(fmc, (__u32) start, | ||
1221 | (__u32) (pos - start), NULL); | ||
1222 | /* Reuse this unused struct jffs_node. */ | ||
1223 | continue; | ||
1224 | } | ||
1225 | pos += raw_inode.dsize | ||
1226 | + JFFS_GET_PAD_BYTES(raw_inode.dsize); | ||
1227 | |||
1228 | if (checksum != raw_inode.dchksum) { | ||
1229 | D1(printk("jffs_scan_flash(): Bad checksum: " | ||
1230 | "checksum = %u, " | ||
1231 | "raw_inode.dchksum = %u\n", | ||
1232 | checksum, raw_inode.dchksum)); | ||
1233 | jffs_fmalloced(fmc, (__u32) start, | ||
1234 | (__u32) (pos - start), NULL); | ||
1235 | /* Reuse this unused struct jffs_node. */ | ||
1236 | continue; | ||
1237 | } | ||
1238 | } | ||
1239 | |||
1240 | check_node: | ||
1241 | |||
1242 | /* Remember the highest inode number in the whole file | ||
1243 | system. This information will be used when assigning | ||
1244 | new files new inode numbers. */ | ||
1245 | if (c->next_ino <= raw_inode.ino) { | ||
1246 | c->next_ino = raw_inode.ino + 1; | ||
1247 | } | ||
1248 | |||
1249 | if (raw_inode.accurate) { | ||
1250 | int err; | ||
1251 | node->data_offset = raw_inode.offset; | ||
1252 | node->data_size = raw_inode.dsize; | ||
1253 | node->removed_size = raw_inode.rsize; | ||
1254 | /* Compute the offset to the actual data in the | ||
1255 | on-flash node. */ | ||
1256 | node->fm_offset | ||
1257 | = sizeof(struct jffs_raw_inode) | ||
1258 | + raw_inode.nsize | ||
1259 | + JFFS_GET_PAD_BYTES(raw_inode.nsize); | ||
1260 | node->fm = jffs_fmalloced(fmc, (__u32) start, | ||
1261 | (__u32) (pos - start), | ||
1262 | node); | ||
1263 | if (!node->fm) { | ||
1264 | D(printk("jffs_scan_flash(): !node->fm\n")); | ||
1265 | jffs_free_node(node); | ||
1266 | DJM(no_jffs_node--); | ||
1267 | |||
1268 | /* Free read buffer */ | ||
1269 | kfree(read_buf); | ||
1270 | |||
1271 | /* Release the flash device */ | ||
1272 | flash_safe_release(fmc->mtd); | ||
1273 | |||
1274 | return -ENOMEM; | ||
1275 | } | ||
1276 | if ((err = jffs_insert_node(c, NULL, &raw_inode, | ||
1277 | name, node)) < 0) { | ||
1278 | printk("JFFS: Failed to handle raw inode. " | ||
1279 | "(err = %d)\n", err); | ||
1280 | break; | ||
1281 | } | ||
1282 | if (raw_inode.rename) { | ||
1283 | struct jffs_delete_list *dl | ||
1284 | = (struct jffs_delete_list *) | ||
1285 | kmalloc(sizeof(struct jffs_delete_list), | ||
1286 | GFP_KERNEL); | ||
1287 | if (!dl) { | ||
1288 | D(printk("jffs_scan_flash: !dl\n")); | ||
1289 | jffs_free_node(node); | ||
1290 | DJM(no_jffs_node--); | ||
1291 | |||
1292 | /* Release the flash device */ | ||
1293 | flash_safe_release(fmc->flash_part); | ||
1294 | |||
1295 | /* Free read buffer */ | ||
1296 | kfree(read_buf); | ||
1297 | |||
1298 | return -ENOMEM; | ||
1299 | } | ||
1300 | dl->ino = deleted_file; | ||
1301 | dl->next = c->delete_list; | ||
1302 | c->delete_list = dl; | ||
1303 | node->data_size = 0; | ||
1304 | } | ||
1305 | D3(jffs_print_node(node)); | ||
1306 | node = NULL; /* Don't free the node! */ | ||
1307 | } | ||
1308 | else { | ||
1309 | jffs_fmalloced(fmc, (__u32) start, | ||
1310 | (__u32) (pos - start), NULL); | ||
1311 | D3(printk("jffs_scan_flash(): Just found an obsolete " | ||
1312 | "raw_inode. Continuing the scan...\n")); | ||
1313 | /* Reuse this unused struct jffs_node. */ | ||
1314 | } | ||
1315 | } | ||
1316 | |||
1317 | if (node) { | ||
1318 | jffs_free_node(node); | ||
1319 | DJM(no_jffs_node--); | ||
1320 | } | ||
1321 | jffs_build_end(fmc); | ||
1322 | |||
1323 | /* Free read buffer */ | ||
1324 | kfree(read_buf); | ||
1325 | |||
1326 | if(!num_free_space){ | ||
1327 | printk(KERN_WARNING "jffs_scan_flash(): Did not find even a single " | ||
1328 | "chunk of free space. This is BAD!\n"); | ||
1329 | } | ||
1330 | |||
1331 | /* Return happy */ | ||
1332 | D3(printk("jffs_scan_flash(): Leaving...\n")); | ||
1333 | flash_safe_release(fmc->mtd); | ||
1334 | |||
1335 | /* This is to trap the "free size accounting screwed error. */ | ||
1336 | free_chunk_size1 = jffs_free_size1(fmc); | ||
1337 | free_chunk_size2 = jffs_free_size2(fmc); | ||
1338 | |||
1339 | if (free_chunk_size1 + free_chunk_size2 != fmc->free_size) { | ||
1340 | |||
1341 | printk(KERN_WARNING "jffs_scan_falsh():Free size accounting screwed\n"); | ||
1342 | printk(KERN_WARNING "jfffs_scan_flash():free_chunk_size1 == 0x%x, " | ||
1343 | "free_chunk_size2 == 0x%x, fmc->free_size == 0x%x\n", | ||
1344 | free_chunk_size1, free_chunk_size2, fmc->free_size); | ||
1345 | |||
1346 | return -1; /* Do NOT mount f/s so that we can inspect what happened. | ||
1347 | Mounting this screwed up f/s will screw us up anyway. | ||
1348 | */ | ||
1349 | } | ||
1350 | |||
1351 | return 0; /* as far as we are concerned, we are happy! */ | ||
1352 | } /* jffs_scan_flash() */ | ||
1353 | |||
1354 | |||
1355 | /* Insert any kind of node into the file system. Take care of data | ||
1356 | insertions and deletions. Also remove redundant information. The | ||
1357 | memory allocated for the `name' is regarded as "given away" in the | ||
1358 | caller's perspective. */ | ||
1359 | int | ||
1360 | jffs_insert_node(struct jffs_control *c, struct jffs_file *f, | ||
1361 | const struct jffs_raw_inode *raw_inode, | ||
1362 | const char *name, struct jffs_node *node) | ||
1363 | { | ||
1364 | int update_name = 0; | ||
1365 | int insert_into_tree = 0; | ||
1366 | |||
1367 | D2(printk("jffs_insert_node(): ino = %u, version = %u, " | ||
1368 | "name = \"%s\", deleted = %d\n", | ||
1369 | raw_inode->ino, raw_inode->version, | ||
1370 | ((name && *name) ? name : ""), raw_inode->deleted)); | ||
1371 | |||
1372 | /* If there doesn't exist an associated jffs_file, then | ||
1373 | create, initialize and insert one into the file system. */ | ||
1374 | if (!f && !(f = jffs_find_file(c, raw_inode->ino))) { | ||
1375 | if (!(f = jffs_create_file(c, raw_inode))) { | ||
1376 | return -ENOMEM; | ||
1377 | } | ||
1378 | jffs_insert_file_into_hash(f); | ||
1379 | insert_into_tree = 1; | ||
1380 | } | ||
1381 | node->ino = raw_inode->ino; | ||
1382 | node->version = raw_inode->version; | ||
1383 | node->data_size = raw_inode->dsize; | ||
1384 | node->fm_offset = sizeof(struct jffs_raw_inode) + raw_inode->nsize | ||
1385 | + JFFS_GET_PAD_BYTES(raw_inode->nsize); | ||
1386 | node->name_size = raw_inode->nsize; | ||
1387 | |||
1388 | /* Now insert the node at the correct position into the file's | ||
1389 | version list. */ | ||
1390 | if (!f->version_head) { | ||
1391 | /* This is the first node. */ | ||
1392 | f->version_head = node; | ||
1393 | f->version_tail = node; | ||
1394 | node->version_prev = NULL; | ||
1395 | node->version_next = NULL; | ||
1396 | f->highest_version = node->version; | ||
1397 | update_name = 1; | ||
1398 | f->mode = raw_inode->mode; | ||
1399 | f->uid = raw_inode->uid; | ||
1400 | f->gid = raw_inode->gid; | ||
1401 | f->atime = raw_inode->atime; | ||
1402 | f->mtime = raw_inode->mtime; | ||
1403 | f->ctime = raw_inode->ctime; | ||
1404 | } | ||
1405 | else if ((f->highest_version < node->version) | ||
1406 | || (node->version == 0)) { | ||
1407 | /* Insert at the end of the list. I.e. this node is the | ||
1408 | newest one so far. */ | ||
1409 | node->version_prev = f->version_tail; | ||
1410 | node->version_next = NULL; | ||
1411 | f->version_tail->version_next = node; | ||
1412 | f->version_tail = node; | ||
1413 | f->highest_version = node->version; | ||
1414 | update_name = 1; | ||
1415 | f->pino = raw_inode->pino; | ||
1416 | f->mode = raw_inode->mode; | ||
1417 | f->uid = raw_inode->uid; | ||
1418 | f->gid = raw_inode->gid; | ||
1419 | f->atime = raw_inode->atime; | ||
1420 | f->mtime = raw_inode->mtime; | ||
1421 | f->ctime = raw_inode->ctime; | ||
1422 | } | ||
1423 | else if (f->version_head->version > node->version) { | ||
1424 | /* Insert at the bottom of the list. */ | ||
1425 | node->version_prev = NULL; | ||
1426 | node->version_next = f->version_head; | ||
1427 | f->version_head->version_prev = node; | ||
1428 | f->version_head = node; | ||
1429 | if (!f->name) { | ||
1430 | update_name = 1; | ||
1431 | } | ||
1432 | } | ||
1433 | else { | ||
1434 | struct jffs_node *n; | ||
1435 | int newer_name = 0; | ||
1436 | /* Search for the insertion position starting from | ||
1437 | the tail (newest node). */ | ||
1438 | for (n = f->version_tail; n; n = n->version_prev) { | ||
1439 | if (n->version < node->version) { | ||
1440 | node->version_prev = n; | ||
1441 | node->version_next = n->version_next; | ||
1442 | node->version_next->version_prev = node; | ||
1443 | n->version_next = node; | ||
1444 | if (!newer_name) { | ||
1445 | update_name = 1; | ||
1446 | } | ||
1447 | break; | ||
1448 | } | ||
1449 | if (n->name_size) { | ||
1450 | newer_name = 1; | ||
1451 | } | ||
1452 | } | ||
1453 | } | ||
1454 | |||
1455 | /* Deletion is irreversible. If any 'deleted' node is ever | ||
1456 | written, the file is deleted */ | ||
1457 | if (raw_inode->deleted) | ||
1458 | f->deleted = raw_inode->deleted; | ||
1459 | |||
1460 | /* Perhaps update the name. */ | ||
1461 | if (raw_inode->nsize && update_name && name && *name && (name != f->name)) { | ||
1462 | if (f->name) { | ||
1463 | kfree(f->name); | ||
1464 | DJM(no_name--); | ||
1465 | } | ||
1466 | if (!(f->name = kmalloc(raw_inode->nsize + 1, | ||
1467 | GFP_KERNEL))) { | ||
1468 | return -ENOMEM; | ||
1469 | } | ||
1470 | DJM(no_name++); | ||
1471 | memcpy(f->name, name, raw_inode->nsize); | ||
1472 | f->name[raw_inode->nsize] = '\0'; | ||
1473 | f->nsize = raw_inode->nsize; | ||
1474 | D3(printk("jffs_insert_node(): Updated the name of " | ||
1475 | "the file to \"%s\".\n", name)); | ||
1476 | } | ||
1477 | |||
1478 | if (!c->building_fs) { | ||
1479 | D3(printk("jffs_insert_node(): ---------------------------" | ||
1480 | "------------------------------------------- 1\n")); | ||
1481 | if (insert_into_tree) { | ||
1482 | jffs_insert_file_into_tree(f); | ||
1483 | } | ||
1484 | /* Once upon a time, we would call jffs_possibly_delete_file() | ||
1485 | here. That causes an oops if someone's still got the file | ||
1486 | open, so now we only do it in jffs_delete_inode() | ||
1487 | -- dwmw2 | ||
1488 | */ | ||
1489 | if (node->data_size || node->removed_size) { | ||
1490 | jffs_update_file(f, node); | ||
1491 | } | ||
1492 | jffs_remove_redundant_nodes(f); | ||
1493 | |||
1494 | jffs_garbage_collect_trigger(c); | ||
1495 | |||
1496 | D3(printk("jffs_insert_node(): ---------------------------" | ||
1497 | "------------------------------------------- 2\n")); | ||
1498 | } | ||
1499 | |||
1500 | return 0; | ||
1501 | } /* jffs_insert_node() */ | ||
1502 | |||
1503 | |||
1504 | /* Unlink a jffs_node from the version list it is in. */ | ||
1505 | static inline void | ||
1506 | jffs_unlink_node_from_version_list(struct jffs_file *f, | ||
1507 | struct jffs_node *node) | ||
1508 | { | ||
1509 | if (node->version_prev) { | ||
1510 | node->version_prev->version_next = node->version_next; | ||
1511 | } else { | ||
1512 | f->version_head = node->version_next; | ||
1513 | } | ||
1514 | if (node->version_next) { | ||
1515 | node->version_next->version_prev = node->version_prev; | ||
1516 | } else { | ||
1517 | f->version_tail = node->version_prev; | ||
1518 | } | ||
1519 | } | ||
1520 | |||
1521 | |||
1522 | /* Unlink a jffs_node from the range list it is in. */ | ||
1523 | static inline void | ||
1524 | jffs_unlink_node_from_range_list(struct jffs_file *f, struct jffs_node *node) | ||
1525 | { | ||
1526 | if (node->range_prev) { | ||
1527 | node->range_prev->range_next = node->range_next; | ||
1528 | } | ||
1529 | else { | ||
1530 | f->range_head = node->range_next; | ||
1531 | } | ||
1532 | if (node->range_next) { | ||
1533 | node->range_next->range_prev = node->range_prev; | ||
1534 | } | ||
1535 | else { | ||
1536 | f->range_tail = node->range_prev; | ||
1537 | } | ||
1538 | } | ||
1539 | |||
1540 | |||
1541 | /* Function used by jffs_remove_redundant_nodes() below. This function | ||
1542 | classifies what kind of information a node adds to a file. */ | ||
1543 | static inline __u8 | ||
1544 | jffs_classify_node(struct jffs_node *node) | ||
1545 | { | ||
1546 | __u8 mod_type = JFFS_MODIFY_INODE; | ||
1547 | |||
1548 | if (node->name_size) { | ||
1549 | mod_type |= JFFS_MODIFY_NAME; | ||
1550 | } | ||
1551 | if (node->data_size || node->removed_size) { | ||
1552 | mod_type |= JFFS_MODIFY_DATA; | ||
1553 | } | ||
1554 | return mod_type; | ||
1555 | } | ||
1556 | |||
1557 | |||
1558 | /* Remove redundant nodes from a file. Mark the on-flash memory | ||
1559 | as dirty. */ | ||
1560 | static int | ||
1561 | jffs_remove_redundant_nodes(struct jffs_file *f) | ||
1562 | { | ||
1563 | struct jffs_node *newest_node; | ||
1564 | struct jffs_node *cur; | ||
1565 | struct jffs_node *prev; | ||
1566 | __u8 newest_type; | ||
1567 | __u8 mod_type; | ||
1568 | __u8 node_with_name_later = 0; | ||
1569 | |||
1570 | if (!(newest_node = f->version_tail)) { | ||
1571 | return 0; | ||
1572 | } | ||
1573 | |||
1574 | /* What does the `newest_node' modify? */ | ||
1575 | newest_type = jffs_classify_node(newest_node); | ||
1576 | node_with_name_later = newest_type & JFFS_MODIFY_NAME; | ||
1577 | |||
1578 | D3(printk("jffs_remove_redundant_nodes(): ino: %u, name: \"%s\", " | ||
1579 | "newest_type: %u\n", f->ino, (f->name ? f->name : ""), | ||
1580 | newest_type)); | ||
1581 | |||
1582 | /* Traverse the file's nodes and determine which of them that are | ||
1583 | superfluous. Yeah, this might look very complex at first | ||
1584 | glance but it is actually very simple. */ | ||
1585 | for (cur = newest_node->version_prev; cur; cur = prev) { | ||
1586 | prev = cur->version_prev; | ||
1587 | mod_type = jffs_classify_node(cur); | ||
1588 | if ((mod_type <= JFFS_MODIFY_INODE) | ||
1589 | || ((newest_type & JFFS_MODIFY_NAME) | ||
1590 | && (mod_type | ||
1591 | <= (JFFS_MODIFY_INODE + JFFS_MODIFY_NAME))) | ||
1592 | || (cur->data_size == 0 && cur->removed_size | ||
1593 | && !cur->version_prev && node_with_name_later)) { | ||
1594 | /* Yes, this node is redundant. Remove it. */ | ||
1595 | D2(printk("jffs_remove_redundant_nodes(): " | ||
1596 | "Removing node: ino: %u, version: %u, " | ||
1597 | "mod_type: %u\n", cur->ino, cur->version, | ||
1598 | mod_type)); | ||
1599 | jffs_unlink_node_from_version_list(f, cur); | ||
1600 | jffs_fmfree(f->c->fmc, cur->fm, cur); | ||
1601 | jffs_free_node(cur); | ||
1602 | DJM(no_jffs_node--); | ||
1603 | } | ||
1604 | else { | ||
1605 | node_with_name_later |= (mod_type & JFFS_MODIFY_NAME); | ||
1606 | } | ||
1607 | } | ||
1608 | |||
1609 | return 0; | ||
1610 | } | ||
1611 | |||
1612 | |||
1613 | /* Insert a file into the hash table. */ | ||
1614 | static int | ||
1615 | jffs_insert_file_into_hash(struct jffs_file *f) | ||
1616 | { | ||
1617 | int i = f->ino % f->c->hash_len; | ||
1618 | |||
1619 | D3(printk("jffs_insert_file_into_hash(): f->ino: %u\n", f->ino)); | ||
1620 | |||
1621 | list_add(&f->hash, &f->c->hash[i]); | ||
1622 | return 0; | ||
1623 | } | ||
1624 | |||
1625 | |||
1626 | /* Insert a file into the file system tree. */ | ||
1627 | int | ||
1628 | jffs_insert_file_into_tree(struct jffs_file *f) | ||
1629 | { | ||
1630 | struct jffs_file *parent; | ||
1631 | |||
1632 | D3(printk("jffs_insert_file_into_tree(): name: \"%s\"\n", | ||
1633 | (f->name ? f->name : ""))); | ||
1634 | |||
1635 | if (!(parent = jffs_find_file(f->c, f->pino))) { | ||
1636 | if (f->pino == 0) { | ||
1637 | f->c->root = f; | ||
1638 | f->parent = NULL; | ||
1639 | f->sibling_prev = NULL; | ||
1640 | f->sibling_next = NULL; | ||
1641 | return 0; | ||
1642 | } | ||
1643 | else { | ||
1644 | D1(printk("jffs_insert_file_into_tree(): Found " | ||
1645 | "inode with no parent and pino == %u\n", | ||
1646 | f->pino)); | ||
1647 | return -1; | ||
1648 | } | ||
1649 | } | ||
1650 | f->parent = parent; | ||
1651 | f->sibling_next = parent->children; | ||
1652 | if (f->sibling_next) { | ||
1653 | f->sibling_next->sibling_prev = f; | ||
1654 | } | ||
1655 | f->sibling_prev = NULL; | ||
1656 | parent->children = f; | ||
1657 | return 0; | ||
1658 | } | ||
1659 | |||
1660 | |||
1661 | /* Remove a file from the hash table. */ | ||
1662 | static int | ||
1663 | jffs_unlink_file_from_hash(struct jffs_file *f) | ||
1664 | { | ||
1665 | D3(printk("jffs_unlink_file_from_hash(): f: 0x%p, " | ||
1666 | "ino %u\n", f, f->ino)); | ||
1667 | |||
1668 | list_del(&f->hash); | ||
1669 | return 0; | ||
1670 | } | ||
1671 | |||
1672 | |||
1673 | /* Just remove the file from the parent's children. Don't free | ||
1674 | any memory. */ | ||
1675 | int | ||
1676 | jffs_unlink_file_from_tree(struct jffs_file *f) | ||
1677 | { | ||
1678 | D3(printk("jffs_unlink_file_from_tree(): ino: %d, pino: %d, name: " | ||
1679 | "\"%s\"\n", f->ino, f->pino, (f->name ? f->name : ""))); | ||
1680 | |||
1681 | if (f->sibling_prev) { | ||
1682 | f->sibling_prev->sibling_next = f->sibling_next; | ||
1683 | } | ||
1684 | else if (f->parent) { | ||
1685 | D3(printk("f->parent=%p\n", f->parent)); | ||
1686 | f->parent->children = f->sibling_next; | ||
1687 | } | ||
1688 | if (f->sibling_next) { | ||
1689 | f->sibling_next->sibling_prev = f->sibling_prev; | ||
1690 | } | ||
1691 | return 0; | ||
1692 | } | ||
1693 | |||
1694 | |||
1695 | /* Find a file with its inode number. */ | ||
1696 | struct jffs_file * | ||
1697 | jffs_find_file(struct jffs_control *c, __u32 ino) | ||
1698 | { | ||
1699 | struct jffs_file *f; | ||
1700 | int i = ino % c->hash_len; | ||
1701 | |||
1702 | D3(printk("jffs_find_file(): ino: %u\n", ino)); | ||
1703 | |||
1704 | list_for_each_entry(f, &c->hash[i], hash) { | ||
1705 | if (ino != f->ino) | ||
1706 | continue; | ||
1707 | D3(printk("jffs_find_file(): Found file with ino " | ||
1708 | "%u. (name: \"%s\")\n", | ||
1709 | ino, (f->name ? f->name : "")); | ||
1710 | ); | ||
1711 | return f; | ||
1712 | } | ||
1713 | D3(printk("jffs_find_file(): Didn't find file " | ||
1714 | "with ino %u.\n", ino); | ||
1715 | ); | ||
1716 | return NULL; | ||
1717 | } | ||
1718 | |||
1719 | |||
1720 | /* Find a file in a directory. We are comparing the names. */ | ||
1721 | struct jffs_file * | ||
1722 | jffs_find_child(struct jffs_file *dir, const char *name, int len) | ||
1723 | { | ||
1724 | struct jffs_file *f; | ||
1725 | |||
1726 | D3(printk("jffs_find_child()\n")); | ||
1727 | |||
1728 | for (f = dir->children; f; f = f->sibling_next) { | ||
1729 | if (!f->deleted && f->name | ||
1730 | && !strncmp(f->name, name, len) | ||
1731 | && f->name[len] == '\0') { | ||
1732 | break; | ||
1733 | } | ||
1734 | } | ||
1735 | |||
1736 | D3(if (f) { | ||
1737 | printk("jffs_find_child(): Found \"%s\".\n", f->name); | ||
1738 | } | ||
1739 | else { | ||
1740 | char *copy = kmalloc(len + 1, GFP_KERNEL); | ||
1741 | if (copy) { | ||
1742 | memcpy(copy, name, len); | ||
1743 | copy[len] = '\0'; | ||
1744 | } | ||
1745 | printk("jffs_find_child(): Didn't find the file \"%s\".\n", | ||
1746 | (copy ? copy : "")); | ||
1747 | kfree(copy); | ||
1748 | }); | ||
1749 | |||
1750 | return f; | ||
1751 | } | ||
1752 | |||
1753 | |||
1754 | /* Write a raw inode that takes up a certain amount of space in the flash | ||
1755 | memory. At the end of the flash device, there is often space that is | ||
1756 | impossible to use. At these times we want to mark this space as not | ||
1757 | used. In the cases when the amount of space is greater or equal than | ||
1758 | a struct jffs_raw_inode, we write a "dummy node" that takes up this | ||
1759 | space. The space after the raw inode, if it exists, is left as it is. | ||
1760 | Since this space after the raw inode contains JFFS_EMPTY_BITMASK bytes, | ||
1761 | we can compute the checksum of it; we don't have to manipulate it any | ||
1762 | further. | ||
1763 | |||
1764 | If the space left on the device is less than the size of a struct | ||
1765 | jffs_raw_inode, this space is filled with JFFS_DIRTY_BITMASK bytes. | ||
1766 | No raw inode is written this time. */ | ||
1767 | static int | ||
1768 | jffs_write_dummy_node(struct jffs_control *c, struct jffs_fm *dirty_fm) | ||
1769 | { | ||
1770 | struct jffs_fmcontrol *fmc = c->fmc; | ||
1771 | int err; | ||
1772 | |||
1773 | D1(printk("jffs_write_dummy_node(): dirty_fm->offset = 0x%08x, " | ||
1774 | "dirty_fm->size = %u\n", | ||
1775 | dirty_fm->offset, dirty_fm->size)); | ||
1776 | |||
1777 | if (dirty_fm->size >= sizeof(struct jffs_raw_inode)) { | ||
1778 | struct jffs_raw_inode raw_inode; | ||
1779 | memset(&raw_inode, 0, sizeof(struct jffs_raw_inode)); | ||
1780 | raw_inode.magic = JFFS_MAGIC_BITMASK; | ||
1781 | raw_inode.dsize = dirty_fm->size | ||
1782 | - sizeof(struct jffs_raw_inode); | ||
1783 | raw_inode.dchksum = raw_inode.dsize * 0xff; | ||
1784 | raw_inode.chksum | ||
1785 | = jffs_checksum(&raw_inode, sizeof(struct jffs_raw_inode)); | ||
1786 | |||
1787 | if ((err = flash_safe_write(fmc->mtd, | ||
1788 | dirty_fm->offset, | ||
1789 | (u_char *)&raw_inode, | ||
1790 | sizeof(struct jffs_raw_inode))) | ||
1791 | < 0) { | ||
1792 | printk(KERN_ERR "JFFS: jffs_write_dummy_node: " | ||
1793 | "flash_safe_write failed!\n"); | ||
1794 | return err; | ||
1795 | } | ||
1796 | } | ||
1797 | else { | ||
1798 | flash_safe_acquire(fmc->mtd); | ||
1799 | flash_memset(fmc->mtd, dirty_fm->offset, 0, dirty_fm->size); | ||
1800 | flash_safe_release(fmc->mtd); | ||
1801 | } | ||
1802 | |||
1803 | D3(printk("jffs_write_dummy_node(): Leaving...\n")); | ||
1804 | return 0; | ||
1805 | } | ||
1806 | |||
1807 | |||
1808 | /* Write a raw inode, possibly its name and possibly some data. */ | ||
1809 | int | ||
1810 | jffs_write_node(struct jffs_control *c, struct jffs_node *node, | ||
1811 | struct jffs_raw_inode *raw_inode, | ||
1812 | const char *name, const unsigned char *data, | ||
1813 | int recoverable, | ||
1814 | struct jffs_file *f) | ||
1815 | { | ||
1816 | struct jffs_fmcontrol *fmc = c->fmc; | ||
1817 | struct jffs_fm *fm; | ||
1818 | struct kvec node_iovec[4]; | ||
1819 | unsigned long iovec_cnt; | ||
1820 | |||
1821 | __u32 pos; | ||
1822 | int err; | ||
1823 | __u32 slack = 0; | ||
1824 | |||
1825 | __u32 total_name_size = raw_inode->nsize | ||
1826 | + JFFS_GET_PAD_BYTES(raw_inode->nsize); | ||
1827 | __u32 total_data_size = raw_inode->dsize | ||
1828 | + JFFS_GET_PAD_BYTES(raw_inode->dsize); | ||
1829 | __u32 total_size = sizeof(struct jffs_raw_inode) | ||
1830 | + total_name_size + total_data_size; | ||
1831 | |||
1832 | /* If this node isn't something that will eventually let | ||
1833 | GC free even more space, then don't allow it unless | ||
1834 | there's at least max_chunk_size space still available | ||
1835 | */ | ||
1836 | if (!recoverable) | ||
1837 | slack = fmc->max_chunk_size; | ||
1838 | |||
1839 | |||
1840 | /* Fire the retrorockets and shoot the fruiton torpedoes, sir! */ | ||
1841 | |||
1842 | ASSERT(if (!node) { | ||
1843 | printk("jffs_write_node(): node == NULL\n"); | ||
1844 | return -EINVAL; | ||
1845 | }); | ||
1846 | ASSERT(if (raw_inode && raw_inode->nsize && !name) { | ||
1847 | printk("*** jffs_write_node(): nsize = %u but name == NULL\n", | ||
1848 | raw_inode->nsize); | ||
1849 | return -EINVAL; | ||
1850 | }); | ||
1851 | |||
1852 | D1(printk("jffs_write_node(): filename = \"%s\", ino = %u, " | ||
1853 | "total_size = %u\n", | ||
1854 | (name ? name : ""), raw_inode->ino, | ||
1855 | total_size)); | ||
1856 | |||
1857 | jffs_fm_write_lock(fmc); | ||
1858 | |||
1859 | retry: | ||
1860 | fm = NULL; | ||
1861 | err = 0; | ||
1862 | while (!fm) { | ||
1863 | |||
1864 | /* Deadlocks suck. */ | ||
1865 | while(fmc->free_size < fmc->min_free_size + total_size + slack) { | ||
1866 | jffs_fm_write_unlock(fmc); | ||
1867 | if (!JFFS_ENOUGH_SPACE(c, total_size + slack)) | ||
1868 | return -ENOSPC; | ||
1869 | jffs_fm_write_lock(fmc); | ||
1870 | } | ||
1871 | |||
1872 | /* First try to allocate some flash memory. */ | ||
1873 | err = jffs_fmalloc(fmc, total_size, node, &fm); | ||
1874 | |||
1875 | if (err == -ENOSPC) { | ||
1876 | /* Just out of space. GC and try again */ | ||
1877 | if (fmc->dirty_size < fmc->sector_size) { | ||
1878 | D(printk("jffs_write_node(): jffs_fmalloc(0x%p, %u) " | ||
1879 | "failed, no dirty space to GC\n", fmc, | ||
1880 | total_size)); | ||
1881 | return err; | ||
1882 | } | ||
1883 | |||
1884 | D1(printk(KERN_INFO "jffs_write_node(): Calling jffs_garbage_collect_now()\n")); | ||
1885 | jffs_fm_write_unlock(fmc); | ||
1886 | if ((err = jffs_garbage_collect_now(c))) { | ||
1887 | D(printk("jffs_write_node(): jffs_garbage_collect_now() failed\n")); | ||
1888 | return err; | ||
1889 | } | ||
1890 | jffs_fm_write_lock(fmc); | ||
1891 | continue; | ||
1892 | } | ||
1893 | |||
1894 | if (err < 0) { | ||
1895 | jffs_fm_write_unlock(fmc); | ||
1896 | |||
1897 | D(printk("jffs_write_node(): jffs_fmalloc(0x%p, %u) " | ||
1898 | "failed!\n", fmc, total_size)); | ||
1899 | return err; | ||
1900 | } | ||
1901 | |||
1902 | if (!fm->nodes) { | ||
1903 | /* The jffs_fm struct that we got is not good enough. | ||
1904 | Make that space dirty and try again */ | ||
1905 | if ((err = jffs_write_dummy_node(c, fm)) < 0) { | ||
1906 | kfree(fm); | ||
1907 | DJM(no_jffs_fm--); | ||
1908 | jffs_fm_write_unlock(fmc); | ||
1909 | D(printk("jffs_write_node(): " | ||
1910 | "jffs_write_dummy_node(): Failed!\n")); | ||
1911 | return err; | ||
1912 | } | ||
1913 | fm = NULL; | ||
1914 | } | ||
1915 | } /* while(!fm) */ | ||
1916 | node->fm = fm; | ||
1917 | |||
1918 | ASSERT(if (fm->nodes == 0) { | ||
1919 | printk(KERN_ERR "jffs_write_node(): fm->nodes == 0\n"); | ||
1920 | }); | ||
1921 | |||
1922 | pos = node->fm->offset; | ||
1923 | |||
1924 | /* Increment the version number here. We can't let the caller | ||
1925 | set it beforehand, because we might have had to do GC on a node | ||
1926 | of this file - and we'd end up reusing version numbers. | ||
1927 | */ | ||
1928 | if (f) { | ||
1929 | raw_inode->version = f->highest_version + 1; | ||
1930 | D1(printk (KERN_NOTICE "jffs_write_node(): setting version of %s to %d\n", f->name, raw_inode->version)); | ||
1931 | |||
1932 | /* if the file was deleted, set the deleted bit in the raw inode */ | ||
1933 | if (f->deleted) | ||
1934 | raw_inode->deleted = 1; | ||
1935 | } | ||
1936 | |||
1937 | /* Compute the checksum for the data and name chunks. */ | ||
1938 | raw_inode->dchksum = jffs_checksum(data, raw_inode->dsize); | ||
1939 | raw_inode->nchksum = jffs_checksum(name, raw_inode->nsize); | ||
1940 | |||
1941 | /* The checksum is calculated without the chksum and accurate | ||
1942 | fields so set them to zero first. */ | ||
1943 | raw_inode->accurate = 0; | ||
1944 | raw_inode->chksum = 0; | ||
1945 | raw_inode->chksum = jffs_checksum(raw_inode, | ||
1946 | sizeof(struct jffs_raw_inode)); | ||
1947 | raw_inode->accurate = 0xff; | ||
1948 | |||
1949 | D3(printk("jffs_write_node(): About to write this raw inode to the " | ||
1950 | "flash at pos 0x%lx:\n", (long)pos)); | ||
1951 | D3(jffs_print_raw_inode(raw_inode)); | ||
1952 | |||
1953 | /* The actual raw JFFS node */ | ||
1954 | node_iovec[0].iov_base = (void *) raw_inode; | ||
1955 | node_iovec[0].iov_len = (size_t) sizeof(struct jffs_raw_inode); | ||
1956 | iovec_cnt = 1; | ||
1957 | |||
1958 | /* Get name and size if there is one */ | ||
1959 | if (raw_inode->nsize) { | ||
1960 | node_iovec[iovec_cnt].iov_base = (void *) name; | ||
1961 | node_iovec[iovec_cnt].iov_len = (size_t) raw_inode->nsize; | ||
1962 | iovec_cnt++; | ||
1963 | |||
1964 | if (JFFS_GET_PAD_BYTES(raw_inode->nsize)) { | ||
1965 | static unsigned char allff[3]={255,255,255}; | ||
1966 | /* Add some extra padding if necessary */ | ||
1967 | node_iovec[iovec_cnt].iov_base = allff; | ||
1968 | node_iovec[iovec_cnt].iov_len = | ||
1969 | JFFS_GET_PAD_BYTES(raw_inode->nsize); | ||
1970 | iovec_cnt++; | ||
1971 | } | ||
1972 | } | ||
1973 | |||
1974 | /* Get data and size if there is any */ | ||
1975 | if (raw_inode->dsize) { | ||
1976 | node_iovec[iovec_cnt].iov_base = (void *) data; | ||
1977 | node_iovec[iovec_cnt].iov_len = (size_t) raw_inode->dsize; | ||
1978 | iovec_cnt++; | ||
1979 | /* No need to pad this because we're not actually putting | ||
1980 | anything after it. | ||
1981 | */ | ||
1982 | } | ||
1983 | |||
1984 | if ((err = flash_safe_writev(fmc->mtd, node_iovec, iovec_cnt, | ||
1985 | pos)) < 0) { | ||
1986 | jffs_fmfree_partly(fmc, fm, 0); | ||
1987 | jffs_fm_write_unlock(fmc); | ||
1988 | printk(KERN_ERR "JFFS: jffs_write_node: Failed to write, " | ||
1989 | "requested %i, wrote %i\n", total_size, err); | ||
1990 | goto retry; | ||
1991 | } | ||
1992 | if (raw_inode->deleted) | ||
1993 | f->deleted = 1; | ||
1994 | |||
1995 | jffs_fm_write_unlock(fmc); | ||
1996 | D3(printk("jffs_write_node(): Leaving...\n")); | ||
1997 | return raw_inode->dsize; | ||
1998 | } /* jffs_write_node() */ | ||
1999 | |||
2000 | |||
2001 | /* Read data from the node and write it to the buffer. 'node_offset' | ||
2002 | is how much we have read from this particular node before and which | ||
2003 | shouldn't be read again. 'max_size' is how much space there is in | ||
2004 | the buffer. */ | ||
2005 | static int | ||
2006 | jffs_get_node_data(struct jffs_file *f, struct jffs_node *node, | ||
2007 | unsigned char *buf,__u32 node_offset, __u32 max_size) | ||
2008 | { | ||
2009 | struct jffs_fmcontrol *fmc = f->c->fmc; | ||
2010 | __u32 pos = node->fm->offset + node->fm_offset + node_offset; | ||
2011 | __u32 avail = node->data_size - node_offset; | ||
2012 | __u32 r; | ||
2013 | |||
2014 | D2(printk(" jffs_get_node_data(): file: \"%s\", ino: %u, " | ||
2015 | "version: %u, node_offset: %u\n", | ||
2016 | f->name, node->ino, node->version, node_offset)); | ||
2017 | |||
2018 | r = min(avail, max_size); | ||
2019 | D3(printk(KERN_NOTICE "jffs_get_node_data\n")); | ||
2020 | flash_safe_read(fmc->mtd, pos, buf, r); | ||
2021 | |||
2022 | D3(printk(" jffs_get_node_data(): Read %u byte%s.\n", | ||
2023 | r, (r == 1 ? "" : "s"))); | ||
2024 | |||
2025 | return r; | ||
2026 | } | ||
2027 | |||
2028 | |||
2029 | /* Read data from the file's nodes. Write the data to the buffer | ||
2030 | 'buf'. 'read_offset' tells how much data we should skip. */ | ||
2031 | int | ||
2032 | jffs_read_data(struct jffs_file *f, unsigned char *buf, __u32 read_offset, | ||
2033 | __u32 size) | ||
2034 | { | ||
2035 | struct jffs_node *node; | ||
2036 | __u32 read_data = 0; /* Total amount of read data. */ | ||
2037 | __u32 node_offset = 0; | ||
2038 | __u32 pos = 0; /* Number of bytes traversed. */ | ||
2039 | |||
2040 | D2(printk("jffs_read_data(): file = \"%s\", read_offset = %d, " | ||
2041 | "size = %u\n", | ||
2042 | (f->name ? f->name : ""), read_offset, size)); | ||
2043 | |||
2044 | if (read_offset >= f->size) { | ||
2045 | D(printk(" f->size: %d\n", f->size)); | ||
2046 | return 0; | ||
2047 | } | ||
2048 | |||
2049 | /* First find the node to read data from. */ | ||
2050 | node = f->range_head; | ||
2051 | while (pos <= read_offset) { | ||
2052 | node_offset = read_offset - pos; | ||
2053 | if (node_offset >= node->data_size) { | ||
2054 | pos += node->data_size; | ||
2055 | node = node->range_next; | ||
2056 | } | ||
2057 | else { | ||
2058 | break; | ||
2059 | } | ||
2060 | } | ||
2061 | |||
2062 | /* "Cats are living proof that not everything in nature | ||
2063 | has to be useful." | ||
2064 | - Garrison Keilor ('97) */ | ||
2065 | |||
2066 | /* Fill the buffer. */ | ||
2067 | while (node && (read_data < size)) { | ||
2068 | int r; | ||
2069 | if (!node->fm) { | ||
2070 | /* This node does not refer to real data. */ | ||
2071 | r = min(size - read_data, | ||
2072 | node->data_size - node_offset); | ||
2073 | memset(&buf[read_data], 0, r); | ||
2074 | } | ||
2075 | else if ((r = jffs_get_node_data(f, node, &buf[read_data], | ||
2076 | node_offset, | ||
2077 | size - read_data)) < 0) { | ||
2078 | return r; | ||
2079 | } | ||
2080 | read_data += r; | ||
2081 | node_offset = 0; | ||
2082 | node = node->range_next; | ||
2083 | } | ||
2084 | D3(printk(" jffs_read_data(): Read %u bytes.\n", read_data)); | ||
2085 | return read_data; | ||
2086 | } | ||
2087 | |||
2088 | |||
2089 | /* Used for traversing all nodes in the hash table. */ | ||
2090 | int | ||
2091 | jffs_foreach_file(struct jffs_control *c, int (*func)(struct jffs_file *)) | ||
2092 | { | ||
2093 | int pos; | ||
2094 | int r; | ||
2095 | int result = 0; | ||
2096 | |||
2097 | for (pos = 0; pos < c->hash_len; pos++) { | ||
2098 | struct jffs_file *f, *next; | ||
2099 | |||
2100 | /* We must do _safe, because 'func' might remove the | ||
2101 | current file 'f' from the list. */ | ||
2102 | list_for_each_entry_safe(f, next, &c->hash[pos], hash) { | ||
2103 | r = func(f); | ||
2104 | if (r < 0) | ||
2105 | return r; | ||
2106 | result += r; | ||
2107 | } | ||
2108 | } | ||
2109 | |||
2110 | return result; | ||
2111 | } | ||
2112 | |||
2113 | |||
2114 | /* Free all nodes associated with a file. */ | ||
2115 | static int | ||
2116 | jffs_free_node_list(struct jffs_file *f) | ||
2117 | { | ||
2118 | struct jffs_node *node; | ||
2119 | struct jffs_node *p; | ||
2120 | |||
2121 | D3(printk("jffs_free_node_list(): f #%u, \"%s\"\n", | ||
2122 | f->ino, (f->name ? f->name : ""))); | ||
2123 | node = f->version_head; | ||
2124 | while (node) { | ||
2125 | p = node; | ||
2126 | node = node->version_next; | ||
2127 | jffs_free_node(p); | ||
2128 | DJM(no_jffs_node--); | ||
2129 | } | ||
2130 | return 0; | ||
2131 | } | ||
2132 | |||
2133 | |||
2134 | /* Free a file and its name. */ | ||
2135 | static int | ||
2136 | jffs_free_file(struct jffs_file *f) | ||
2137 | { | ||
2138 | D3(printk("jffs_free_file: f #%u, \"%s\"\n", | ||
2139 | f->ino, (f->name ? f->name : ""))); | ||
2140 | |||
2141 | if (f->name) { | ||
2142 | kfree(f->name); | ||
2143 | DJM(no_name--); | ||
2144 | } | ||
2145 | kfree(f); | ||
2146 | no_jffs_file--; | ||
2147 | return 0; | ||
2148 | } | ||
2149 | |||
2150 | static long | ||
2151 | jffs_get_file_count(void) | ||
2152 | { | ||
2153 | return no_jffs_file; | ||
2154 | } | ||
2155 | |||
2156 | /* See if a file is deleted. If so, mark that file's nodes as obsolete. */ | ||
2157 | int | ||
2158 | jffs_possibly_delete_file(struct jffs_file *f) | ||
2159 | { | ||
2160 | struct jffs_node *n; | ||
2161 | |||
2162 | D3(printk("jffs_possibly_delete_file(): ino: %u\n", | ||
2163 | f->ino)); | ||
2164 | |||
2165 | ASSERT(if (!f) { | ||
2166 | printk(KERN_ERR "jffs_possibly_delete_file(): f == NULL\n"); | ||
2167 | return -1; | ||
2168 | }); | ||
2169 | |||
2170 | if (f->deleted) { | ||
2171 | /* First try to remove all older versions. Commence with | ||
2172 | the oldest node. */ | ||
2173 | for (n = f->version_head; n; n = n->version_next) { | ||
2174 | if (!n->fm) { | ||
2175 | continue; | ||
2176 | } | ||
2177 | if (jffs_fmfree(f->c->fmc, n->fm, n) < 0) { | ||
2178 | break; | ||
2179 | } | ||
2180 | } | ||
2181 | /* Unlink the file from the filesystem. */ | ||
2182 | if (!f->c->building_fs) { | ||
2183 | jffs_unlink_file_from_tree(f); | ||
2184 | } | ||
2185 | jffs_unlink_file_from_hash(f); | ||
2186 | jffs_free_node_list(f); | ||
2187 | jffs_free_file(f); | ||
2188 | } | ||
2189 | return 0; | ||
2190 | } | ||
2191 | |||
2192 | |||
2193 | /* Used in conjunction with jffs_foreach_file() to count the number | ||
2194 | of files in the file system. */ | ||
2195 | int | ||
2196 | jffs_file_count(struct jffs_file *f) | ||
2197 | { | ||
2198 | return 1; | ||
2199 | } | ||
2200 | |||
2201 | |||
2202 | /* Build up a file's range list from scratch by going through the | ||
2203 | version list. */ | ||
2204 | static int | ||
2205 | jffs_build_file(struct jffs_file *f) | ||
2206 | { | ||
2207 | struct jffs_node *n; | ||
2208 | |||
2209 | D3(printk("jffs_build_file(): ino: %u, name: \"%s\"\n", | ||
2210 | f->ino, (f->name ? f->name : ""))); | ||
2211 | |||
2212 | for (n = f->version_head; n; n = n->version_next) { | ||
2213 | jffs_update_file(f, n); | ||
2214 | } | ||
2215 | return 0; | ||
2216 | } | ||
2217 | |||
2218 | |||
2219 | /* Remove an amount of data from a file. If this amount of data is | ||
2220 | zero, that could mean that a node should be split in two parts. | ||
2221 | We remove or change the appropriate nodes in the lists. | ||
2222 | |||
2223 | Starting offset of area to be removed is node->data_offset, | ||
2224 | and the length of the area is in node->removed_size. */ | ||
2225 | static int | ||
2226 | jffs_delete_data(struct jffs_file *f, struct jffs_node *node) | ||
2227 | { | ||
2228 | struct jffs_node *n; | ||
2229 | __u32 offset = node->data_offset; | ||
2230 | __u32 remove_size = node->removed_size; | ||
2231 | |||
2232 | D3(printk("jffs_delete_data(): offset = %u, remove_size = %u\n", | ||
2233 | offset, remove_size)); | ||
2234 | |||
2235 | if (remove_size == 0 | ||
2236 | && f->range_tail | ||
2237 | && f->range_tail->data_offset + f->range_tail->data_size | ||
2238 | == offset) { | ||
2239 | /* A simple append; nothing to remove or no node to split. */ | ||
2240 | return 0; | ||
2241 | } | ||
2242 | |||
2243 | /* Find the node where we should begin the removal. */ | ||
2244 | for (n = f->range_head; n; n = n->range_next) { | ||
2245 | if (n->data_offset + n->data_size > offset) { | ||
2246 | break; | ||
2247 | } | ||
2248 | } | ||
2249 | if (!n) { | ||
2250 | /* If there's no data in the file there's no data to | ||
2251 | remove either. */ | ||
2252 | return 0; | ||
2253 | } | ||
2254 | |||
2255 | if (n->data_offset > offset) { | ||
2256 | /* XXX: Not implemented yet. */ | ||
2257 | printk(KERN_WARNING "JFFS: An unexpected situation " | ||
2258 | "occurred in jffs_delete_data.\n"); | ||
2259 | } | ||
2260 | else if (n->data_offset < offset) { | ||
2261 | /* See if the node has to be split into two parts. */ | ||
2262 | if (n->data_offset + n->data_size > offset + remove_size) { | ||
2263 | /* Do the split. */ | ||
2264 | struct jffs_node *new_node; | ||
2265 | D3(printk("jffs_delete_data(): Split node with " | ||
2266 | "version number %u.\n", n->version)); | ||
2267 | |||
2268 | if (!(new_node = jffs_alloc_node())) { | ||
2269 | D(printk("jffs_delete_data(): -ENOMEM\n")); | ||
2270 | return -ENOMEM; | ||
2271 | } | ||
2272 | DJM(no_jffs_node++); | ||
2273 | |||
2274 | new_node->ino = n->ino; | ||
2275 | new_node->version = n->version; | ||
2276 | new_node->data_offset = offset; | ||
2277 | new_node->data_size = n->data_size - (remove_size + (offset - n->data_offset)); | ||
2278 | new_node->fm_offset = n->fm_offset + (remove_size + (offset - n->data_offset)); | ||
2279 | new_node->name_size = n->name_size; | ||
2280 | new_node->fm = n->fm; | ||
2281 | new_node->version_prev = n; | ||
2282 | new_node->version_next = n->version_next; | ||
2283 | if (new_node->version_next) { | ||
2284 | new_node->version_next->version_prev | ||
2285 | = new_node; | ||
2286 | } | ||
2287 | else { | ||
2288 | f->version_tail = new_node; | ||
2289 | } | ||
2290 | n->version_next = new_node; | ||
2291 | new_node->range_prev = n; | ||
2292 | new_node->range_next = n->range_next; | ||
2293 | if (new_node->range_next) { | ||
2294 | new_node->range_next->range_prev = new_node; | ||
2295 | } | ||
2296 | else { | ||
2297 | f->range_tail = new_node; | ||
2298 | } | ||
2299 | /* A very interesting can of worms. */ | ||
2300 | n->range_next = new_node; | ||
2301 | n->data_size = offset - n->data_offset; | ||
2302 | if (new_node->fm) | ||
2303 | jffs_add_node(new_node); | ||
2304 | else { | ||
2305 | D1(printk(KERN_WARNING "jffs_delete_data(): Splitting an empty node (file hold).\n!")); | ||
2306 | D1(printk(KERN_WARNING "FIXME: Did dwmw2 do the right thing here?\n")); | ||
2307 | } | ||
2308 | n = new_node->range_next; | ||
2309 | remove_size = 0; | ||
2310 | } | ||
2311 | else { | ||
2312 | /* No. No need to split the node. Just remove | ||
2313 | the end of the node. */ | ||
2314 | int r = min(n->data_offset + n->data_size | ||
2315 | - offset, remove_size); | ||
2316 | n->data_size -= r; | ||
2317 | remove_size -= r; | ||
2318 | n = n->range_next; | ||
2319 | } | ||
2320 | } | ||
2321 | |||
2322 | /* Remove as many nodes as necessary. */ | ||
2323 | while (n && remove_size) { | ||
2324 | if (n->data_size <= remove_size) { | ||
2325 | struct jffs_node *p = n; | ||
2326 | remove_size -= n->data_size; | ||
2327 | n = n->range_next; | ||
2328 | D3(printk("jffs_delete_data(): Removing node: " | ||
2329 | "ino: %u, version: %u%s\n", | ||
2330 | p->ino, p->version, | ||
2331 | (p->fm ? "" : " (virtual)"))); | ||
2332 | if (p->fm) { | ||
2333 | jffs_fmfree(f->c->fmc, p->fm, p); | ||
2334 | } | ||
2335 | jffs_unlink_node_from_range_list(f, p); | ||
2336 | jffs_unlink_node_from_version_list(f, p); | ||
2337 | jffs_free_node(p); | ||
2338 | DJM(no_jffs_node--); | ||
2339 | } | ||
2340 | else { | ||
2341 | n->data_size -= remove_size; | ||
2342 | n->fm_offset += remove_size; | ||
2343 | n->data_offset -= (node->removed_size - remove_size); | ||
2344 | n = n->range_next; | ||
2345 | break; | ||
2346 | } | ||
2347 | } | ||
2348 | |||
2349 | /* Adjust the following nodes' information about offsets etc. */ | ||
2350 | while (n && node->removed_size) { | ||
2351 | n->data_offset -= node->removed_size; | ||
2352 | n = n->range_next; | ||
2353 | } | ||
2354 | |||
2355 | if (node->removed_size > (f->size - node->data_offset)) { | ||
2356 | /* It's possible that the removed_size is in fact | ||
2357 | * greater than the amount of data we actually thought | ||
2358 | * were present in the first place - some of the nodes | ||
2359 | * which this node originally obsoleted may already have | ||
2360 | * been deleted from the flash by subsequent garbage | ||
2361 | * collection. | ||
2362 | * | ||
2363 | * If this is the case, don't let f->size go negative. | ||
2364 | * Bad things would happen :) | ||
2365 | */ | ||
2366 | f->size = node->data_offset; | ||
2367 | } else { | ||
2368 | f->size -= node->removed_size; | ||
2369 | } | ||
2370 | D3(printk("jffs_delete_data(): f->size = %d\n", f->size)); | ||
2371 | return 0; | ||
2372 | } /* jffs_delete_data() */ | ||
2373 | |||
2374 | |||
2375 | /* Insert some data into a file. Prior to the call to this function, | ||
2376 | jffs_delete_data should be called. */ | ||
2377 | static int | ||
2378 | jffs_insert_data(struct jffs_file *f, struct jffs_node *node) | ||
2379 | { | ||
2380 | D3(printk("jffs_insert_data(): node->data_offset = %u, " | ||
2381 | "node->data_size = %u, f->size = %u\n", | ||
2382 | node->data_offset, node->data_size, f->size)); | ||
2383 | |||
2384 | /* Find the position where we should insert data. */ | ||
2385 | retry: | ||
2386 | if (node->data_offset == f->size) { | ||
2387 | /* A simple append. This is the most common operation. */ | ||
2388 | node->range_next = NULL; | ||
2389 | node->range_prev = f->range_tail; | ||
2390 | if (node->range_prev) { | ||
2391 | node->range_prev->range_next = node; | ||
2392 | } | ||
2393 | f->range_tail = node; | ||
2394 | f->size += node->data_size; | ||
2395 | if (!f->range_head) { | ||
2396 | f->range_head = node; | ||
2397 | } | ||
2398 | } | ||
2399 | else if (node->data_offset < f->size) { | ||
2400 | /* Trying to insert data into the middle of the file. This | ||
2401 | means no problem because jffs_delete_data() has already | ||
2402 | prepared the range list for us. */ | ||
2403 | struct jffs_node *n; | ||
2404 | |||
2405 | /* Find the correct place for the insertion and then insert | ||
2406 | the node. */ | ||
2407 | for (n = f->range_head; n; n = n->range_next) { | ||
2408 | D2(printk("Cool stuff's happening!\n")); | ||
2409 | |||
2410 | if (n->data_offset == node->data_offset) { | ||
2411 | node->range_prev = n->range_prev; | ||
2412 | if (node->range_prev) { | ||
2413 | node->range_prev->range_next = node; | ||
2414 | } | ||
2415 | else { | ||
2416 | f->range_head = node; | ||
2417 | } | ||
2418 | node->range_next = n; | ||
2419 | n->range_prev = node; | ||
2420 | break; | ||
2421 | } | ||
2422 | ASSERT(else if (n->data_offset + n->data_size > | ||
2423 | node->data_offset) { | ||
2424 | printk(KERN_ERR "jffs_insert_data(): " | ||
2425 | "Couldn't find a place to insert " | ||
2426 | "the data!\n"); | ||
2427 | return -1; | ||
2428 | }); | ||
2429 | } | ||
2430 | |||
2431 | /* Adjust later nodes' offsets etc. */ | ||
2432 | n = node->range_next; | ||
2433 | while (n) { | ||
2434 | n->data_offset += node->data_size; | ||
2435 | n = n->range_next; | ||
2436 | } | ||
2437 | f->size += node->data_size; | ||
2438 | } | ||
2439 | else if (node->data_offset > f->size) { | ||
2440 | /* Okay. This is tricky. This means that we want to insert | ||
2441 | data at a place that is beyond the limits of the file as | ||
2442 | it is constructed right now. This is actually a common | ||
2443 | event that for instance could occur during the mounting | ||
2444 | of the file system if a large file have been truncated, | ||
2445 | rewritten and then only partially garbage collected. */ | ||
2446 | |||
2447 | struct jffs_node *n; | ||
2448 | |||
2449 | /* We need a place holder for the data that is missing in | ||
2450 | front of this insertion. This "virtual node" will not | ||
2451 | be associated with any space on the flash device. */ | ||
2452 | struct jffs_node *virtual_node; | ||
2453 | if (!(virtual_node = jffs_alloc_node())) { | ||
2454 | return -ENOMEM; | ||
2455 | } | ||
2456 | |||
2457 | D(printk("jffs_insert_data: Inserting a virtual node.\n")); | ||
2458 | D(printk(" node->data_offset = %u\n", node->data_offset)); | ||
2459 | D(printk(" f->size = %u\n", f->size)); | ||
2460 | |||
2461 | virtual_node->ino = node->ino; | ||
2462 | virtual_node->version = node->version; | ||
2463 | virtual_node->removed_size = 0; | ||
2464 | virtual_node->fm_offset = 0; | ||
2465 | virtual_node->name_size = 0; | ||
2466 | virtual_node->fm = NULL; /* This is a virtual data holder. */ | ||
2467 | virtual_node->version_prev = NULL; | ||
2468 | virtual_node->version_next = NULL; | ||
2469 | virtual_node->range_next = NULL; | ||
2470 | |||
2471 | /* Are there any data at all in the file yet? */ | ||
2472 | if (f->range_head) { | ||
2473 | virtual_node->data_offset | ||
2474 | = f->range_tail->data_offset | ||
2475 | + f->range_tail->data_size; | ||
2476 | virtual_node->data_size | ||
2477 | = node->data_offset - virtual_node->data_offset; | ||
2478 | virtual_node->range_prev = f->range_tail; | ||
2479 | f->range_tail->range_next = virtual_node; | ||
2480 | } | ||
2481 | else { | ||
2482 | virtual_node->data_offset = 0; | ||
2483 | virtual_node->data_size = node->data_offset; | ||
2484 | virtual_node->range_prev = NULL; | ||
2485 | f->range_head = virtual_node; | ||
2486 | } | ||
2487 | |||
2488 | f->range_tail = virtual_node; | ||
2489 | f->size += virtual_node->data_size; | ||
2490 | |||
2491 | /* Insert this virtual node in the version list as well. */ | ||
2492 | for (n = f->version_head; n ; n = n->version_next) { | ||
2493 | if (n->version == virtual_node->version) { | ||
2494 | virtual_node->version_prev = n->version_prev; | ||
2495 | n->version_prev = virtual_node; | ||
2496 | if (virtual_node->version_prev) { | ||
2497 | virtual_node->version_prev | ||
2498 | ->version_next = virtual_node; | ||
2499 | } | ||
2500 | else { | ||
2501 | f->version_head = virtual_node; | ||
2502 | } | ||
2503 | virtual_node->version_next = n; | ||
2504 | break; | ||
2505 | } | ||
2506 | } | ||
2507 | |||
2508 | D(jffs_print_node(virtual_node)); | ||
2509 | |||
2510 | /* Make a new try to insert the node. */ | ||
2511 | goto retry; | ||
2512 | } | ||
2513 | |||
2514 | D3(printk("jffs_insert_data(): f->size = %d\n", f->size)); | ||
2515 | return 0; | ||
2516 | } | ||
2517 | |||
2518 | |||
2519 | /* A new node (with data) has been added to the file and now the range | ||
2520 | list has to be modified. */ | ||
2521 | static int | ||
2522 | jffs_update_file(struct jffs_file *f, struct jffs_node *node) | ||
2523 | { | ||
2524 | int err; | ||
2525 | |||
2526 | D3(printk("jffs_update_file(): ino: %u, version: %u\n", | ||
2527 | f->ino, node->version)); | ||
2528 | |||
2529 | if (node->data_size == 0) { | ||
2530 | if (node->removed_size == 0) { | ||
2531 | /* data_offset == X */ | ||
2532 | /* data_size == 0 */ | ||
2533 | /* remove_size == 0 */ | ||
2534 | } | ||
2535 | else { | ||
2536 | /* data_offset == X */ | ||
2537 | /* data_size == 0 */ | ||
2538 | /* remove_size != 0 */ | ||
2539 | if ((err = jffs_delete_data(f, node)) < 0) { | ||
2540 | return err; | ||
2541 | } | ||
2542 | } | ||
2543 | } | ||
2544 | else { | ||
2545 | /* data_offset == X */ | ||
2546 | /* data_size != 0 */ | ||
2547 | /* remove_size == Y */ | ||
2548 | if ((err = jffs_delete_data(f, node)) < 0) { | ||
2549 | return err; | ||
2550 | } | ||
2551 | if ((err = jffs_insert_data(f, node)) < 0) { | ||
2552 | return err; | ||
2553 | } | ||
2554 | } | ||
2555 | return 0; | ||
2556 | } | ||
2557 | |||
2558 | /* Print the contents of a file. */ | ||
2559 | #if 0 | ||
2560 | int | ||
2561 | jffs_print_file(struct jffs_file *f) | ||
2562 | { | ||
2563 | D(int i); | ||
2564 | D(printk("jffs_file: 0x%p\n", f)); | ||
2565 | D(printk("{\n")); | ||
2566 | D(printk(" 0x%08x, /* ino */\n", f->ino)); | ||
2567 | D(printk(" 0x%08x, /* pino */\n", f->pino)); | ||
2568 | D(printk(" 0x%08x, /* mode */\n", f->mode)); | ||
2569 | D(printk(" 0x%04x, /* uid */\n", f->uid)); | ||
2570 | D(printk(" 0x%04x, /* gid */\n", f->gid)); | ||
2571 | D(printk(" 0x%08x, /* atime */\n", f->atime)); | ||
2572 | D(printk(" 0x%08x, /* mtime */\n", f->mtime)); | ||
2573 | D(printk(" 0x%08x, /* ctime */\n", f->ctime)); | ||
2574 | D(printk(" 0x%02x, /* nsize */\n", f->nsize)); | ||
2575 | D(printk(" 0x%02x, /* nlink */\n", f->nlink)); | ||
2576 | D(printk(" 0x%02x, /* deleted */\n", f->deleted)); | ||
2577 | D(printk(" \"%s\", ", (f->name ? f->name : ""))); | ||
2578 | D(for (i = strlen(f->name ? f->name : ""); i < 8; ++i) { | ||
2579 | printk(" "); | ||
2580 | }); | ||
2581 | D(printk("/* name */\n")); | ||
2582 | D(printk(" 0x%08x, /* size */\n", f->size)); | ||
2583 | D(printk(" 0x%08x, /* highest_version */\n", | ||
2584 | f->highest_version)); | ||
2585 | D(printk(" 0x%p, /* c */\n", f->c)); | ||
2586 | D(printk(" 0x%p, /* parent */\n", f->parent)); | ||
2587 | D(printk(" 0x%p, /* children */\n", f->children)); | ||
2588 | D(printk(" 0x%p, /* sibling_prev */\n", f->sibling_prev)); | ||
2589 | D(printk(" 0x%p, /* sibling_next */\n", f->sibling_next)); | ||
2590 | D(printk(" 0x%p, /* hash_prev */\n", f->hash.prev)); | ||
2591 | D(printk(" 0x%p, /* hash_next */\n", f->hash.next)); | ||
2592 | D(printk(" 0x%p, /* range_head */\n", f->range_head)); | ||
2593 | D(printk(" 0x%p, /* range_tail */\n", f->range_tail)); | ||
2594 | D(printk(" 0x%p, /* version_head */\n", f->version_head)); | ||
2595 | D(printk(" 0x%p, /* version_tail */\n", f->version_tail)); | ||
2596 | D(printk("}\n")); | ||
2597 | return 0; | ||
2598 | } | ||
2599 | #endif /* 0 */ | ||
2600 | |||
2601 | void | ||
2602 | jffs_print_hash_table(struct jffs_control *c) | ||
2603 | { | ||
2604 | int i; | ||
2605 | |||
2606 | printk("JFFS: Dumping the file system's hash table...\n"); | ||
2607 | for (i = 0; i < c->hash_len; i++) { | ||
2608 | struct jffs_file *f; | ||
2609 | list_for_each_entry(f, &c->hash[i], hash) { | ||
2610 | printk("*** c->hash[%u]: \"%s\" " | ||
2611 | "(ino: %u, pino: %u)\n", | ||
2612 | i, (f->name ? f->name : ""), | ||
2613 | f->ino, f->pino); | ||
2614 | } | ||
2615 | } | ||
2616 | } | ||
2617 | |||
2618 | |||
2619 | void | ||
2620 | jffs_print_tree(struct jffs_file *first_file, int indent) | ||
2621 | { | ||
2622 | struct jffs_file *f; | ||
2623 | char *space; | ||
2624 | int dir; | ||
2625 | |||
2626 | if (!first_file) { | ||
2627 | return; | ||
2628 | } | ||
2629 | |||
2630 | if (!(space = kmalloc(indent + 1, GFP_KERNEL))) { | ||
2631 | printk("jffs_print_tree(): Out of memory!\n"); | ||
2632 | return; | ||
2633 | } | ||
2634 | |||
2635 | memset(space, ' ', indent); | ||
2636 | space[indent] = '\0'; | ||
2637 | |||
2638 | for (f = first_file; f; f = f->sibling_next) { | ||
2639 | dir = S_ISDIR(f->mode); | ||
2640 | printk("%s%s%s (ino: %u, highest_version: %u, size: %u)\n", | ||
2641 | space, (f->name ? f->name : ""), (dir ? "/" : ""), | ||
2642 | f->ino, f->highest_version, f->size); | ||
2643 | if (dir) { | ||
2644 | jffs_print_tree(f->children, indent + 2); | ||
2645 | } | ||
2646 | } | ||
2647 | |||
2648 | kfree(space); | ||
2649 | } | ||
2650 | |||
2651 | |||
2652 | #if defined(JFFS_MEMORY_DEBUG) && JFFS_MEMORY_DEBUG | ||
2653 | void | ||
2654 | jffs_print_memory_allocation_statistics(void) | ||
2655 | { | ||
2656 | static long printout; | ||
2657 | printk("________ Memory printout #%ld ________\n", ++printout); | ||
2658 | printk("no_jffs_file = %ld\n", no_jffs_file); | ||
2659 | printk("no_jffs_node = %ld\n", no_jffs_node); | ||
2660 | printk("no_jffs_control = %ld\n", no_jffs_control); | ||
2661 | printk("no_jffs_raw_inode = %ld\n", no_jffs_raw_inode); | ||
2662 | printk("no_jffs_node_ref = %ld\n", no_jffs_node_ref); | ||
2663 | printk("no_jffs_fm = %ld\n", no_jffs_fm); | ||
2664 | printk("no_jffs_fmcontrol = %ld\n", no_jffs_fmcontrol); | ||
2665 | printk("no_hash = %ld\n", no_hash); | ||
2666 | printk("no_name = %ld\n", no_name); | ||
2667 | printk("\n"); | ||
2668 | } | ||
2669 | #endif | ||
2670 | |||
2671 | |||
2672 | /* Rewrite `size' bytes, and begin at `node'. */ | ||
2673 | static int | ||
2674 | jffs_rewrite_data(struct jffs_file *f, struct jffs_node *node, __u32 size) | ||
2675 | { | ||
2676 | struct jffs_control *c = f->c; | ||
2677 | struct jffs_fmcontrol *fmc = c->fmc; | ||
2678 | struct jffs_raw_inode raw_inode; | ||
2679 | struct jffs_node *new_node; | ||
2680 | struct jffs_fm *fm; | ||
2681 | __u32 pos; | ||
2682 | __u32 pos_dchksum; | ||
2683 | __u32 total_name_size; | ||
2684 | __u32 total_data_size; | ||
2685 | __u32 total_size; | ||
2686 | int err; | ||
2687 | |||
2688 | D1(printk("***jffs_rewrite_data(): node: %u, name: \"%s\", size: %u\n", | ||
2689 | f->ino, (f->name ? f->name : "(null)"), size)); | ||
2690 | |||
2691 | /* Create and initialize the new node. */ | ||
2692 | if (!(new_node = jffs_alloc_node())) { | ||
2693 | D(printk("jffs_rewrite_data(): " | ||
2694 | "Failed to allocate node.\n")); | ||
2695 | return -ENOMEM; | ||
2696 | } | ||
2697 | DJM(no_jffs_node++); | ||
2698 | new_node->data_offset = node->data_offset; | ||
2699 | new_node->removed_size = size; | ||
2700 | total_name_size = JFFS_PAD(f->nsize); | ||
2701 | total_data_size = JFFS_PAD(size); | ||
2702 | total_size = sizeof(struct jffs_raw_inode) | ||
2703 | + total_name_size + total_data_size; | ||
2704 | new_node->fm_offset = sizeof(struct jffs_raw_inode) | ||
2705 | + total_name_size; | ||
2706 | |||
2707 | retry: | ||
2708 | jffs_fm_write_lock(fmc); | ||
2709 | err = 0; | ||
2710 | |||
2711 | if ((err = jffs_fmalloc(fmc, total_size, new_node, &fm)) < 0) { | ||
2712 | DJM(no_jffs_node--); | ||
2713 | jffs_fm_write_unlock(fmc); | ||
2714 | D(printk("jffs_rewrite_data(): Failed to allocate fm.\n")); | ||
2715 | jffs_free_node(new_node); | ||
2716 | return err; | ||
2717 | } | ||
2718 | else if (!fm->nodes) { | ||
2719 | /* The jffs_fm struct that we got is not big enough. */ | ||
2720 | /* This should never happen, because we deal with this case | ||
2721 | in jffs_garbage_collect_next().*/ | ||
2722 | printk(KERN_WARNING "jffs_rewrite_data(): Allocated node is too small (%d bytes of %d)\n", fm->size, total_size); | ||
2723 | if ((err = jffs_write_dummy_node(c, fm)) < 0) { | ||
2724 | D(printk("jffs_rewrite_data(): " | ||
2725 | "jffs_write_dummy_node() Failed!\n")); | ||
2726 | } else { | ||
2727 | err = -ENOSPC; | ||
2728 | } | ||
2729 | DJM(no_jffs_fm--); | ||
2730 | jffs_fm_write_unlock(fmc); | ||
2731 | kfree(fm); | ||
2732 | |||
2733 | return err; | ||
2734 | } | ||
2735 | new_node->fm = fm; | ||
2736 | |||
2737 | /* Initialize the raw inode. */ | ||
2738 | raw_inode.magic = JFFS_MAGIC_BITMASK; | ||
2739 | raw_inode.ino = f->ino; | ||
2740 | raw_inode.pino = f->pino; | ||
2741 | raw_inode.version = f->highest_version + 1; | ||
2742 | raw_inode.mode = f->mode; | ||
2743 | raw_inode.uid = f->uid; | ||
2744 | raw_inode.gid = f->gid; | ||
2745 | raw_inode.atime = f->atime; | ||
2746 | raw_inode.mtime = f->mtime; | ||
2747 | raw_inode.ctime = f->ctime; | ||
2748 | raw_inode.offset = node->data_offset; | ||
2749 | raw_inode.dsize = size; | ||
2750 | raw_inode.rsize = size; | ||
2751 | raw_inode.nsize = f->nsize; | ||
2752 | raw_inode.nlink = f->nlink; | ||
2753 | raw_inode.spare = 0; | ||
2754 | raw_inode.rename = 0; | ||
2755 | raw_inode.deleted = f->deleted; | ||
2756 | raw_inode.accurate = 0xff; | ||
2757 | raw_inode.dchksum = 0; | ||
2758 | raw_inode.nchksum = 0; | ||
2759 | |||
2760 | pos = new_node->fm->offset; | ||
2761 | pos_dchksum = pos +JFFS_RAW_INODE_DCHKSUM_OFFSET; | ||
2762 | |||
2763 | D3(printk("jffs_rewrite_data(): Writing this raw inode " | ||
2764 | "to pos 0x%ul.\n", pos)); | ||
2765 | D3(jffs_print_raw_inode(&raw_inode)); | ||
2766 | |||
2767 | if ((err = flash_safe_write(fmc->mtd, pos, | ||
2768 | (u_char *) &raw_inode, | ||
2769 | sizeof(struct jffs_raw_inode) | ||
2770 | - sizeof(__u32) | ||
2771 | - sizeof(__u16) - sizeof(__u16))) < 0) { | ||
2772 | jffs_fmfree_partly(fmc, fm, | ||
2773 | total_name_size + total_data_size); | ||
2774 | jffs_fm_write_unlock(fmc); | ||
2775 | printk(KERN_ERR "JFFS: jffs_rewrite_data: Write error during " | ||
2776 | "rewrite. (raw inode)\n"); | ||
2777 | printk(KERN_ERR "JFFS: jffs_rewrite_data: Now retrying " | ||
2778 | "rewrite. (raw inode)\n"); | ||
2779 | goto retry; | ||
2780 | } | ||
2781 | pos += sizeof(struct jffs_raw_inode); | ||
2782 | |||
2783 | /* Write the name to the flash memory. */ | ||
2784 | if (f->nsize) { | ||
2785 | D3(printk("jffs_rewrite_data(): Writing name \"%s\" to " | ||
2786 | "pos 0x%ul.\n", f->name, (unsigned int) pos)); | ||
2787 | if ((err = flash_safe_write(fmc->mtd, pos, | ||
2788 | (u_char *)f->name, | ||
2789 | f->nsize)) < 0) { | ||
2790 | jffs_fmfree_partly(fmc, fm, total_data_size); | ||
2791 | jffs_fm_write_unlock(fmc); | ||
2792 | printk(KERN_ERR "JFFS: jffs_rewrite_data: Write " | ||
2793 | "error during rewrite. (name)\n"); | ||
2794 | printk(KERN_ERR "JFFS: jffs_rewrite_data: Now retrying " | ||
2795 | "rewrite. (name)\n"); | ||
2796 | goto retry; | ||
2797 | } | ||
2798 | pos += total_name_size; | ||
2799 | raw_inode.nchksum = jffs_checksum(f->name, f->nsize); | ||
2800 | } | ||
2801 | |||
2802 | /* Write the data. */ | ||
2803 | if (size) { | ||
2804 | int r; | ||
2805 | unsigned char *page; | ||
2806 | __u32 offset = node->data_offset; | ||
2807 | |||
2808 | if (!(page = (unsigned char *)__get_free_page(GFP_KERNEL))) { | ||
2809 | jffs_fmfree_partly(fmc, fm, 0); | ||
2810 | return -1; | ||
2811 | } | ||
2812 | |||
2813 | while (size) { | ||
2814 | __u32 s = min(size, (__u32)PAGE_SIZE); | ||
2815 | if ((r = jffs_read_data(f, (char *)page, | ||
2816 | offset, s)) < s) { | ||
2817 | free_page((unsigned long)page); | ||
2818 | jffs_fmfree_partly(fmc, fm, 0); | ||
2819 | jffs_fm_write_unlock(fmc); | ||
2820 | printk(KERN_ERR "JFFS: jffs_rewrite_data: " | ||
2821 | "jffs_read_data() " | ||
2822 | "failed! (r = %d)\n", r); | ||
2823 | return -1; | ||
2824 | } | ||
2825 | if ((err = flash_safe_write(fmc->mtd, | ||
2826 | pos, page, r)) < 0) { | ||
2827 | free_page((unsigned long)page); | ||
2828 | jffs_fmfree_partly(fmc, fm, 0); | ||
2829 | jffs_fm_write_unlock(fmc); | ||
2830 | printk(KERN_ERR "JFFS: jffs_rewrite_data: " | ||
2831 | "Write error during rewrite. " | ||
2832 | "(data)\n"); | ||
2833 | goto retry; | ||
2834 | } | ||
2835 | pos += r; | ||
2836 | size -= r; | ||
2837 | offset += r; | ||
2838 | raw_inode.dchksum += jffs_checksum(page, r); | ||
2839 | } | ||
2840 | |||
2841 | free_page((unsigned long)page); | ||
2842 | } | ||
2843 | |||
2844 | raw_inode.accurate = 0; | ||
2845 | raw_inode.chksum = jffs_checksum(&raw_inode, | ||
2846 | sizeof(struct jffs_raw_inode) | ||
2847 | - sizeof(__u16)); | ||
2848 | |||
2849 | /* Add the checksum. */ | ||
2850 | if ((err | ||
2851 | = flash_safe_write(fmc->mtd, pos_dchksum, | ||
2852 | &((u_char *) | ||
2853 | &raw_inode)[JFFS_RAW_INODE_DCHKSUM_OFFSET], | ||
2854 | sizeof(__u32) + sizeof(__u16) | ||
2855 | + sizeof(__u16))) < 0) { | ||
2856 | jffs_fmfree_partly(fmc, fm, 0); | ||
2857 | jffs_fm_write_unlock(fmc); | ||
2858 | printk(KERN_ERR "JFFS: jffs_rewrite_data: Write error during " | ||
2859 | "rewrite. (checksum)\n"); | ||
2860 | goto retry; | ||
2861 | } | ||
2862 | |||
2863 | /* Now make the file system aware of the newly written node. */ | ||
2864 | jffs_insert_node(c, f, &raw_inode, f->name, new_node); | ||
2865 | jffs_fm_write_unlock(fmc); | ||
2866 | |||
2867 | D3(printk("jffs_rewrite_data(): Leaving...\n")); | ||
2868 | return 0; | ||
2869 | } /* jffs_rewrite_data() */ | ||
2870 | |||
2871 | |||
2872 | /* jffs_garbage_collect_next implements one step in the garbage collect | ||
2873 | process and is often called multiple times at each occasion of a | ||
2874 | garbage collect. */ | ||
2875 | |||
2876 | static int | ||
2877 | jffs_garbage_collect_next(struct jffs_control *c) | ||
2878 | { | ||
2879 | struct jffs_fmcontrol *fmc = c->fmc; | ||
2880 | struct jffs_node *node; | ||
2881 | struct jffs_file *f; | ||
2882 | int err = 0; | ||
2883 | __u32 size; | ||
2884 | __u32 data_size; | ||
2885 | __u32 total_name_size; | ||
2886 | __u32 extra_available; | ||
2887 | __u32 space_needed; | ||
2888 | __u32 free_chunk_size1 = jffs_free_size1(fmc); | ||
2889 | D2(__u32 free_chunk_size2 = jffs_free_size2(fmc)); | ||
2890 | |||
2891 | /* Get the oldest node in the flash. */ | ||
2892 | node = jffs_get_oldest_node(fmc); | ||
2893 | ASSERT(if (!node) { | ||
2894 | printk(KERN_ERR "JFFS: jffs_garbage_collect_next: " | ||
2895 | "No oldest node found!\n"); | ||
2896 | err = -1; | ||
2897 | goto jffs_garbage_collect_next_end; | ||
2898 | |||
2899 | |||
2900 | }); | ||
2901 | |||
2902 | /* Find its corresponding file too. */ | ||
2903 | f = jffs_find_file(c, node->ino); | ||
2904 | |||
2905 | if (!f) { | ||
2906 | printk (KERN_ERR "JFFS: jffs_garbage_collect_next: " | ||
2907 | "No file to garbage collect! " | ||
2908 | "(ino = 0x%08x)\n", node->ino); | ||
2909 | /* FIXME: Free the offending node and recover. */ | ||
2910 | err = -1; | ||
2911 | goto jffs_garbage_collect_next_end; | ||
2912 | } | ||
2913 | |||
2914 | /* We always write out the name. Theoretically, we don't need | ||
2915 | to, but for now it's easier - because otherwise we'd have | ||
2916 | to keep track of how many times the current name exists on | ||
2917 | the flash and make sure it never reaches zero. | ||
2918 | |||
2919 | The current approach means that would be possible to cause | ||
2920 | the GC to end up eating its tail by writing lots of nodes | ||
2921 | with no name for it to garbage-collect. Hence the change in | ||
2922 | inode.c to write names with _every_ node. | ||
2923 | |||
2924 | It sucks, but it _should_ work. | ||
2925 | */ | ||
2926 | total_name_size = JFFS_PAD(f->nsize); | ||
2927 | |||
2928 | D1(printk("jffs_garbage_collect_next(): \"%s\", " | ||
2929 | "ino: %u, version: %u, location 0x%x, dsize %u\n", | ||
2930 | (f->name ? f->name : ""), node->ino, node->version, | ||
2931 | node->fm->offset, node->data_size)); | ||
2932 | |||
2933 | /* Compute how many data it's possible to rewrite at the moment. */ | ||
2934 | data_size = f->size - node->data_offset; | ||
2935 | |||
2936 | /* And from that, the total size of the chunk we want to write */ | ||
2937 | size = sizeof(struct jffs_raw_inode) + total_name_size | ||
2938 | + data_size + JFFS_GET_PAD_BYTES(data_size); | ||
2939 | |||
2940 | /* If that's more than max_chunk_size, reduce it accordingly */ | ||
2941 | if (size > fmc->max_chunk_size) { | ||
2942 | size = fmc->max_chunk_size; | ||
2943 | data_size = size - sizeof(struct jffs_raw_inode) | ||
2944 | - total_name_size; | ||
2945 | } | ||
2946 | |||
2947 | /* If we're asking to take up more space than free_chunk_size1 | ||
2948 | but we _could_ fit in it, shrink accordingly. | ||
2949 | */ | ||
2950 | if (size > free_chunk_size1) { | ||
2951 | |||
2952 | if (free_chunk_size1 < | ||
2953 | (sizeof(struct jffs_raw_inode) + total_name_size + BLOCK_SIZE)){ | ||
2954 | /* The space left is too small to be of any | ||
2955 | use really. */ | ||
2956 | struct jffs_fm *dirty_fm | ||
2957 | = jffs_fmalloced(fmc, | ||
2958 | fmc->tail->offset + fmc->tail->size, | ||
2959 | free_chunk_size1, NULL); | ||
2960 | if (!dirty_fm) { | ||
2961 | printk(KERN_ERR "JFFS: " | ||
2962 | "jffs_garbage_collect_next: " | ||
2963 | "Failed to allocate `dirty' " | ||
2964 | "flash memory!\n"); | ||
2965 | err = -1; | ||
2966 | goto jffs_garbage_collect_next_end; | ||
2967 | } | ||
2968 | D1(printk("Dirtying end of flash - too small\n")); | ||
2969 | jffs_write_dummy_node(c, dirty_fm); | ||
2970 | err = 0; | ||
2971 | goto jffs_garbage_collect_next_end; | ||
2972 | } | ||
2973 | D1(printk("Reducing size of new node from %d to %d to avoid " | ||
2974 | " exceeding free_chunk_size1\n", | ||
2975 | size, free_chunk_size1)); | ||
2976 | |||
2977 | size = free_chunk_size1; | ||
2978 | data_size = size - sizeof(struct jffs_raw_inode) | ||
2979 | - total_name_size; | ||
2980 | } | ||
2981 | |||
2982 | |||
2983 | /* Calculate the amount of space needed to hold the nodes | ||
2984 | which are remaining in the tail */ | ||
2985 | space_needed = fmc->min_free_size - (node->fm->offset % fmc->sector_size); | ||
2986 | |||
2987 | /* From that, calculate how much 'extra' space we can use to | ||
2988 | increase the size of the node we're writing from the size | ||
2989 | of the node we're obsoleting | ||
2990 | */ | ||
2991 | if (space_needed > fmc->free_size) { | ||
2992 | /* If we've gone below min_free_size for some reason, | ||
2993 | don't fuck up. This is why we have | ||
2994 | min_free_size > sector_size. Whinge about it though, | ||
2995 | just so I can convince myself my maths is right. | ||
2996 | */ | ||
2997 | D1(printk(KERN_WARNING "jffs_garbage_collect_next(): " | ||
2998 | "space_needed %d exceeded free_size %d\n", | ||
2999 | space_needed, fmc->free_size)); | ||
3000 | extra_available = 0; | ||
3001 | } else { | ||
3002 | extra_available = fmc->free_size - space_needed; | ||
3003 | } | ||
3004 | |||
3005 | /* Check that we don't use up any more 'extra' space than | ||
3006 | what's available */ | ||
3007 | if (size > JFFS_PAD(node->data_size) + total_name_size + | ||
3008 | sizeof(struct jffs_raw_inode) + extra_available) { | ||
3009 | D1(printk("Reducing size of new node from %d to %ld to avoid " | ||
3010 | "catching our tail\n", size, | ||
3011 | (long) (JFFS_PAD(node->data_size) + JFFS_PAD(node->name_size) + | ||
3012 | sizeof(struct jffs_raw_inode) + extra_available))); | ||
3013 | D1(printk("space_needed = %d, extra_available = %d\n", | ||
3014 | space_needed, extra_available)); | ||
3015 | |||
3016 | size = JFFS_PAD(node->data_size) + total_name_size + | ||
3017 | sizeof(struct jffs_raw_inode) + extra_available; | ||
3018 | data_size = size - sizeof(struct jffs_raw_inode) | ||
3019 | - total_name_size; | ||
3020 | }; | ||
3021 | |||
3022 | D2(printk(" total_name_size: %u\n", total_name_size)); | ||
3023 | D2(printk(" data_size: %u\n", data_size)); | ||
3024 | D2(printk(" size: %u\n", size)); | ||
3025 | D2(printk(" f->nsize: %u\n", f->nsize)); | ||
3026 | D2(printk(" f->size: %u\n", f->size)); | ||
3027 | D2(printk(" node->data_offset: %u\n", node->data_offset)); | ||
3028 | D2(printk(" free_chunk_size1: %u\n", free_chunk_size1)); | ||
3029 | D2(printk(" free_chunk_size2: %u\n", free_chunk_size2)); | ||
3030 | D2(printk(" node->fm->offset: 0x%08x\n", node->fm->offset)); | ||
3031 | |||
3032 | if ((err = jffs_rewrite_data(f, node, data_size))) { | ||
3033 | printk(KERN_WARNING "jffs_rewrite_data() failed: %d\n", err); | ||
3034 | return err; | ||
3035 | } | ||
3036 | |||
3037 | jffs_garbage_collect_next_end: | ||
3038 | D3(printk("jffs_garbage_collect_next: Leaving...\n")); | ||
3039 | return err; | ||
3040 | } /* jffs_garbage_collect_next */ | ||
3041 | |||
3042 | |||
3043 | /* If an obsolete node is partly going to be erased due to garbage | ||
3044 | collection, the part that isn't going to be erased must be filled | ||
3045 | with zeroes so that the scan of the flash will work smoothly next | ||
3046 | time. (The data in the file could for instance be a JFFS image | ||
3047 | which could cause enormous confusion during a scan of the flash | ||
3048 | device if we didn't do this.) | ||
3049 | There are two phases in this procedure: First, the clearing of | ||
3050 | the name and data parts of the node. Second, possibly also clearing | ||
3051 | a part of the raw inode as well. If the box is power cycled during | ||
3052 | the first phase, only the checksum of this node-to-be-cleared-at- | ||
3053 | the-end will be wrong. If the box is power cycled during, or after, | ||
3054 | the clearing of the raw inode, the information like the length of | ||
3055 | the name and data parts are zeroed. The next time the box is | ||
3056 | powered up, the scanning algorithm manages this faulty data too | ||
3057 | because: | ||
3058 | |||
3059 | - The checksum is invalid and thus the raw inode must be discarded | ||
3060 | in any case. | ||
3061 | - If the lengths of the data part or the name part are zeroed, the | ||
3062 | scanning just continues after the raw inode. But after the inode | ||
3063 | the scanning procedure just finds zeroes which is the same as | ||
3064 | dirt. | ||
3065 | |||
3066 | So, in the end, this could never fail. :-) Even if it does fail, | ||
3067 | the scanning algorithm should manage that too. */ | ||
3068 | |||
3069 | static int | ||
3070 | jffs_clear_end_of_node(struct jffs_control *c, __u32 erase_size) | ||
3071 | { | ||
3072 | struct jffs_fm *fm; | ||
3073 | struct jffs_fmcontrol *fmc = c->fmc; | ||
3074 | __u32 zero_offset; | ||
3075 | __u32 zero_size; | ||
3076 | __u32 zero_offset_data; | ||
3077 | __u32 zero_size_data; | ||
3078 | __u32 cutting_raw_inode = 0; | ||
3079 | |||
3080 | if (!(fm = jffs_cut_node(fmc, erase_size))) { | ||
3081 | D3(printk("jffs_clear_end_of_node(): fm == NULL\n")); | ||
3082 | return 0; | ||
3083 | } | ||
3084 | |||
3085 | /* Where and how much shall we clear? */ | ||
3086 | zero_offset = fmc->head->offset + erase_size; | ||
3087 | zero_size = fm->offset + fm->size - zero_offset; | ||
3088 | |||
3089 | /* Do we have to clear the raw_inode explicitly? */ | ||
3090 | if (fm->size - zero_size < sizeof(struct jffs_raw_inode)) { | ||
3091 | cutting_raw_inode = sizeof(struct jffs_raw_inode) | ||
3092 | - (fm->size - zero_size); | ||
3093 | } | ||
3094 | |||
3095 | /* First, clear the name and data fields. */ | ||
3096 | zero_offset_data = zero_offset + cutting_raw_inode; | ||
3097 | zero_size_data = zero_size - cutting_raw_inode; | ||
3098 | flash_safe_acquire(fmc->mtd); | ||
3099 | flash_memset(fmc->mtd, zero_offset_data, 0, zero_size_data); | ||
3100 | flash_safe_release(fmc->mtd); | ||
3101 | |||
3102 | /* Should we clear a part of the raw inode? */ | ||
3103 | if (cutting_raw_inode) { | ||
3104 | /* I guess it is ok to clear the raw inode in this order. */ | ||
3105 | flash_safe_acquire(fmc->mtd); | ||
3106 | flash_memset(fmc->mtd, zero_offset, 0, | ||
3107 | cutting_raw_inode); | ||
3108 | flash_safe_release(fmc->mtd); | ||
3109 | } | ||
3110 | |||
3111 | return 0; | ||
3112 | } /* jffs_clear_end_of_node() */ | ||
3113 | |||
3114 | /* Try to erase as much as possible of the dirt in the flash memory. */ | ||
3115 | static long | ||
3116 | jffs_try_to_erase(struct jffs_control *c) | ||
3117 | { | ||
3118 | struct jffs_fmcontrol *fmc = c->fmc; | ||
3119 | long erase_size; | ||
3120 | int err; | ||
3121 | __u32 offset; | ||
3122 | |||
3123 | D3(printk("jffs_try_to_erase()\n")); | ||
3124 | |||
3125 | erase_size = jffs_erasable_size(fmc); | ||
3126 | |||
3127 | D2(printk("jffs_try_to_erase(): erase_size = %ld\n", erase_size)); | ||
3128 | |||
3129 | if (erase_size == 0) { | ||
3130 | return 0; | ||
3131 | } | ||
3132 | else if (erase_size < 0) { | ||
3133 | printk(KERN_ERR "JFFS: jffs_try_to_erase: " | ||
3134 | "jffs_erasable_size returned %ld.\n", erase_size); | ||
3135 | return erase_size; | ||
3136 | } | ||
3137 | |||
3138 | if ((err = jffs_clear_end_of_node(c, erase_size)) < 0) { | ||
3139 | printk(KERN_ERR "JFFS: jffs_try_to_erase: " | ||
3140 | "Clearing of node failed.\n"); | ||
3141 | return err; | ||
3142 | } | ||
3143 | |||
3144 | offset = fmc->head->offset; | ||
3145 | |||
3146 | /* Now, let's try to do the erase. */ | ||
3147 | if ((err = flash_erase_region(fmc->mtd, | ||
3148 | offset, erase_size)) < 0) { | ||
3149 | printk(KERN_ERR "JFFS: Erase of flash failed. " | ||
3150 | "offset = %u, erase_size = %ld\n", | ||
3151 | offset, erase_size); | ||
3152 | /* XXX: Here we should allocate this area as dirty | ||
3153 | with jffs_fmalloced or something similar. Now | ||
3154 | we just report the error. */ | ||
3155 | return err; | ||
3156 | } | ||
3157 | |||
3158 | #if 0 | ||
3159 | /* Check if the erased sectors really got erased. */ | ||
3160 | { | ||
3161 | __u32 pos; | ||
3162 | __u32 end; | ||
3163 | |||
3164 | pos = (__u32)flash_get_direct_pointer(to_kdev_t(c->sb->s_dev), offset); | ||
3165 | end = pos + erase_size; | ||
3166 | |||
3167 | D2(printk("JFFS: Checking erased sector(s)...\n")); | ||
3168 | |||
3169 | flash_safe_acquire(fmc->mtd); | ||
3170 | |||
3171 | for (; pos < end; pos += 4) { | ||
3172 | if (*(__u32 *)pos != JFFS_EMPTY_BITMASK) { | ||
3173 | printk("JFFS: Erase failed! pos = 0x%lx\n", | ||
3174 | (long)pos); | ||
3175 | jffs_hexdump(fmc->mtd, pos, | ||
3176 | jffs_min(256, end - pos)); | ||
3177 | err = -1; | ||
3178 | break; | ||
3179 | } | ||
3180 | } | ||
3181 | |||
3182 | flash_safe_release(fmc->mtd); | ||
3183 | |||
3184 | if (!err) { | ||
3185 | D2(printk("JFFS: Erase succeeded.\n")); | ||
3186 | } | ||
3187 | else { | ||
3188 | /* XXX: Here we should allocate the memory | ||
3189 | with jffs_fmalloced() in order to prevent | ||
3190 | JFFS from using this area accidentally. */ | ||
3191 | return err; | ||
3192 | } | ||
3193 | } | ||
3194 | #endif | ||
3195 | |||
3196 | /* Update the flash memory data structures. */ | ||
3197 | jffs_sync_erase(fmc, erase_size); | ||
3198 | |||
3199 | return erase_size; | ||
3200 | } | ||
3201 | |||
3202 | |||
3203 | /* There are different criteria that should trigger a garbage collect: | ||
3204 | |||
3205 | 1. There is too much dirt in the memory. | ||
3206 | 2. The free space is becoming small. | ||
3207 | 3. There are many versions of a node. | ||
3208 | |||
3209 | The garbage collect should always be done in a manner that guarantees | ||
3210 | that future garbage collects cannot be locked. E.g. Rewritten chunks | ||
3211 | should not be too large (span more than one sector in the flash memory | ||
3212 | for exemple). Of course there is a limit on how intelligent this garbage | ||
3213 | collection can be. */ | ||
3214 | |||
3215 | |||
3216 | static int | ||
3217 | jffs_garbage_collect_now(struct jffs_control *c) | ||
3218 | { | ||
3219 | struct jffs_fmcontrol *fmc = c->fmc; | ||
3220 | long erased = 0; | ||
3221 | int result = 0; | ||
3222 | D1(int i = 1); | ||
3223 | D2(printk("***jffs_garbage_collect_now(): fmc->dirty_size = %u, fmc->free_size = 0x%x\n, fcs1=0x%x, fcs2=0x%x", | ||
3224 | fmc->dirty_size, fmc->free_size, jffs_free_size1(fmc), jffs_free_size2(fmc))); | ||
3225 | D2(jffs_print_fmcontrol(fmc)); | ||
3226 | |||
3227 | // down(&fmc->gclock); | ||
3228 | |||
3229 | /* If it is possible to garbage collect, do so. */ | ||
3230 | |||
3231 | while (erased == 0) { | ||
3232 | D1(printk("***jffs_garbage_collect_now(): round #%u, " | ||
3233 | "fmc->dirty_size = %u\n", i++, fmc->dirty_size)); | ||
3234 | D2(jffs_print_fmcontrol(fmc)); | ||
3235 | |||
3236 | if ((erased = jffs_try_to_erase(c)) < 0) { | ||
3237 | printk(KERN_WARNING "JFFS: Error in " | ||
3238 | "garbage collector.\n"); | ||
3239 | result = erased; | ||
3240 | goto gc_end; | ||
3241 | } | ||
3242 | if (erased) | ||
3243 | break; | ||
3244 | |||
3245 | if (fmc->free_size == 0) { | ||
3246 | /* Argh */ | ||
3247 | printk(KERN_ERR "jffs_garbage_collect_now(): free_size == 0. This is BAD.\n"); | ||
3248 | result = -ENOSPC; | ||
3249 | break; | ||
3250 | } | ||
3251 | |||
3252 | if (fmc->dirty_size < fmc->sector_size) { | ||
3253 | /* Actually, we _may_ have been able to free some, | ||
3254 | * if there are many overlapping nodes which aren't | ||
3255 | * actually marked dirty because they still have | ||
3256 | * some valid data in each. | ||
3257 | */ | ||
3258 | result = -ENOSPC; | ||
3259 | break; | ||
3260 | } | ||
3261 | |||
3262 | /* Let's dare to make a garbage collect. */ | ||
3263 | if ((result = jffs_garbage_collect_next(c)) < 0) { | ||
3264 | printk(KERN_ERR "JFFS: Something " | ||
3265 | "has gone seriously wrong " | ||
3266 | "with a garbage collect.\n"); | ||
3267 | goto gc_end; | ||
3268 | } | ||
3269 | |||
3270 | D1(printk(" jffs_garbage_collect_now(): erased: %ld\n", erased)); | ||
3271 | DJM(jffs_print_memory_allocation_statistics()); | ||
3272 | } | ||
3273 | |||
3274 | gc_end: | ||
3275 | // up(&fmc->gclock); | ||
3276 | |||
3277 | D3(printk(" jffs_garbage_collect_now(): Leaving...\n")); | ||
3278 | D1(if (erased) { | ||
3279 | printk("jffs_g_c_now(): erased = %ld\n", erased); | ||
3280 | jffs_print_fmcontrol(fmc); | ||
3281 | }); | ||
3282 | |||
3283 | if (!erased && !result) | ||
3284 | return -ENOSPC; | ||
3285 | |||
3286 | return result; | ||
3287 | } /* jffs_garbage_collect_now() */ | ||
3288 | |||
3289 | |||
3290 | /* Determine if it is reasonable to start garbage collection. | ||
3291 | We start a gc pass if either: | ||
3292 | - The number of free bytes < MIN_FREE_BYTES && at least one | ||
3293 | block is dirty, OR | ||
3294 | - The number of dirty bytes > MAX_DIRTY_BYTES | ||
3295 | */ | ||
3296 | static inline int thread_should_wake (struct jffs_control *c) | ||
3297 | { | ||
3298 | D1(printk (KERN_NOTICE "thread_should_wake(): free=%d, dirty=%d, blocksize=%d.\n", | ||
3299 | c->fmc->free_size, c->fmc->dirty_size, c->fmc->sector_size)); | ||
3300 | |||
3301 | /* If there's not enough dirty space to free a block, there's no point. */ | ||
3302 | if (c->fmc->dirty_size < c->fmc->sector_size) { | ||
3303 | D2(printk(KERN_NOTICE "thread_should_wake(): Not waking. Insufficient dirty space\n")); | ||
3304 | return 0; | ||
3305 | } | ||
3306 | #if 1 | ||
3307 | /* If there is too much RAM used by the various structures, GC */ | ||
3308 | if (jffs_get_node_inuse() > (c->fmc->used_size/c->fmc->max_chunk_size * 5 + jffs_get_file_count() * 2 + 50)) { | ||
3309 | /* FIXME: Provide proof that this test can be satisfied. We | ||
3310 | don't want a filesystem doing endless GC just because this | ||
3311 | condition cannot ever be false. | ||
3312 | */ | ||
3313 | D2(printk(KERN_NOTICE "thread_should_wake(): Waking due to number of nodes\n")); | ||
3314 | return 1; | ||
3315 | } | ||
3316 | #endif | ||
3317 | /* If there are fewer free bytes than the threshold, GC */ | ||
3318 | if (c->fmc->free_size < c->gc_minfree_threshold) { | ||
3319 | D2(printk(KERN_NOTICE "thread_should_wake(): Waking due to insufficent free space\n")); | ||
3320 | return 1; | ||
3321 | } | ||
3322 | /* If there are more dirty bytes than the threshold, GC */ | ||
3323 | if (c->fmc->dirty_size > c->gc_maxdirty_threshold) { | ||
3324 | D2(printk(KERN_NOTICE "thread_should_wake(): Waking due to excessive dirty space\n")); | ||
3325 | return 1; | ||
3326 | } | ||
3327 | /* FIXME: What about the "There are many versions of a node" condition? */ | ||
3328 | |||
3329 | return 0; | ||
3330 | } | ||
3331 | |||
3332 | |||
3333 | void jffs_garbage_collect_trigger(struct jffs_control *c) | ||
3334 | { | ||
3335 | /* NOTE: We rely on the fact that we have the BKL here. | ||
3336 | * Otherwise, the gc_task could go away between the check | ||
3337 | * and the wake_up_process() | ||
3338 | */ | ||
3339 | if (c->gc_task && thread_should_wake(c)) | ||
3340 | send_sig(SIGHUP, c->gc_task, 1); | ||
3341 | } | ||
3342 | |||
3343 | |||
3344 | /* Kernel threads take (void *) as arguments. Thus we pass | ||
3345 | the jffs_control data as a (void *) and then cast it. */ | ||
3346 | int | ||
3347 | jffs_garbage_collect_thread(void *ptr) | ||
3348 | { | ||
3349 | struct jffs_control *c = (struct jffs_control *) ptr; | ||
3350 | struct jffs_fmcontrol *fmc = c->fmc; | ||
3351 | long erased; | ||
3352 | int result = 0; | ||
3353 | D1(int i = 1); | ||
3354 | |||
3355 | daemonize("jffs_gcd"); | ||
3356 | |||
3357 | c->gc_task = current; | ||
3358 | |||
3359 | lock_kernel(); | ||
3360 | init_completion(&c->gc_thread_comp); /* barrier */ | ||
3361 | spin_lock_irq(¤t->sighand->siglock); | ||
3362 | siginitsetinv (¤t->blocked, sigmask(SIGHUP) | sigmask(SIGKILL) | sigmask(SIGSTOP) | sigmask(SIGCONT)); | ||
3363 | recalc_sigpending(); | ||
3364 | spin_unlock_irq(¤t->sighand->siglock); | ||
3365 | |||
3366 | D1(printk (KERN_NOTICE "jffs_garbage_collect_thread(): Starting infinite loop.\n")); | ||
3367 | |||
3368 | for (;;) { | ||
3369 | |||
3370 | /* See if we need to start gc. If we don't, go to sleep. | ||
3371 | |||
3372 | Current implementation is a BAD THING(tm). If we try | ||
3373 | to unmount the FS, the unmount operation will sleep waiting | ||
3374 | for this thread to exit. We need to arrange to send it a | ||
3375 | sig before the umount process sleeps. | ||
3376 | */ | ||
3377 | |||
3378 | if (!thread_should_wake(c)) | ||
3379 | set_current_state (TASK_INTERRUPTIBLE); | ||
3380 | |||
3381 | schedule(); /* Yes, we do this even if we want to go | ||
3382 | on immediately - we're a low priority | ||
3383 | background task. */ | ||
3384 | |||
3385 | /* Put_super will send a SIGKILL and then wait on the sem. | ||
3386 | */ | ||
3387 | while (signal_pending(current)) { | ||
3388 | siginfo_t info; | ||
3389 | unsigned long signr = 0; | ||
3390 | |||
3391 | if (try_to_freeze()) | ||
3392 | continue; | ||
3393 | |||
3394 | spin_lock_irq(¤t->sighand->siglock); | ||
3395 | signr = dequeue_signal(current, ¤t->blocked, &info); | ||
3396 | spin_unlock_irq(¤t->sighand->siglock); | ||
3397 | |||
3398 | switch(signr) { | ||
3399 | case SIGSTOP: | ||
3400 | D1(printk("jffs_garbage_collect_thread(): SIGSTOP received.\n")); | ||
3401 | set_current_state(TASK_STOPPED); | ||
3402 | schedule(); | ||
3403 | break; | ||
3404 | |||
3405 | case SIGKILL: | ||
3406 | D1(printk("jffs_garbage_collect_thread(): SIGKILL received.\n")); | ||
3407 | c->gc_task = NULL; | ||
3408 | complete_and_exit(&c->gc_thread_comp, 0); | ||
3409 | } | ||
3410 | } | ||
3411 | |||
3412 | |||
3413 | D1(printk (KERN_NOTICE "jffs_garbage_collect_thread(): collecting.\n")); | ||
3414 | |||
3415 | D3(printk (KERN_NOTICE "g_c_thread(): down biglock\n")); | ||
3416 | mutex_lock(&fmc->biglock); | ||
3417 | |||
3418 | D1(printk("***jffs_garbage_collect_thread(): round #%u, " | ||
3419 | "fmc->dirty_size = %u\n", i++, fmc->dirty_size)); | ||
3420 | D2(jffs_print_fmcontrol(fmc)); | ||
3421 | |||
3422 | if ((erased = jffs_try_to_erase(c)) < 0) { | ||
3423 | printk(KERN_WARNING "JFFS: Error in " | ||
3424 | "garbage collector: %ld.\n", erased); | ||
3425 | } | ||
3426 | |||
3427 | if (erased) | ||
3428 | goto gc_end; | ||
3429 | |||
3430 | if (fmc->free_size == 0) { | ||
3431 | /* Argh. Might as well commit suicide. */ | ||
3432 | printk(KERN_ERR "jffs_garbage_collect_thread(): free_size == 0. This is BAD.\n"); | ||
3433 | send_sig(SIGQUIT, c->gc_task, 1); | ||
3434 | // panic() | ||
3435 | goto gc_end; | ||
3436 | } | ||
3437 | |||
3438 | /* Let's dare to make a garbage collect. */ | ||
3439 | if ((result = jffs_garbage_collect_next(c)) < 0) { | ||
3440 | printk(KERN_ERR "JFFS: Something " | ||
3441 | "has gone seriously wrong " | ||
3442 | "with a garbage collect: %d\n", result); | ||
3443 | } | ||
3444 | |||
3445 | gc_end: | ||
3446 | D3(printk (KERN_NOTICE "g_c_thread(): up biglock\n")); | ||
3447 | mutex_unlock(&fmc->biglock); | ||
3448 | } /* for (;;) */ | ||
3449 | } /* jffs_garbage_collect_thread() */ | ||
diff --git a/fs/jffs/intrep.h b/fs/jffs/intrep.h deleted file mode 100644 index 5c7abe0e2695..000000000000 --- a/fs/jffs/intrep.h +++ /dev/null | |||
@@ -1,58 +0,0 @@ | |||
1 | /* | ||
2 | * JFFS -- Journaling Flash File System, Linux implementation. | ||
3 | * | ||
4 | * Copyright (C) 1999, 2000 Axis Communications AB. | ||
5 | * | ||
6 | * Created by Finn Hakansson <finn@axis.com>. | ||
7 | * | ||
8 | * This is free software; you can redistribute it and/or modify it | ||
9 | * under the terms of the GNU General Public License as published by | ||
10 | * the Free Software Foundation; either version 2 of the License, or | ||
11 | * (at your option) any later version. | ||
12 | * | ||
13 | * $Id: intrep.h,v 1.14 2001/09/23 23:28:37 dwmw2 Exp $ | ||
14 | * | ||
15 | */ | ||
16 | |||
17 | #ifndef __LINUX_JFFS_INTREP_H__ | ||
18 | #define __LINUX_JFFS_INTREP_H__ | ||
19 | #include "jffs_fm.h" | ||
20 | struct jffs_node *jffs_alloc_node(void); | ||
21 | void jffs_free_node(struct jffs_node *n); | ||
22 | int jffs_get_node_inuse(void); | ||
23 | |||
24 | void jffs_cleanup_control(struct jffs_control *c); | ||
25 | int jffs_build_fs(struct super_block *sb); | ||
26 | |||
27 | int jffs_insert_node(struct jffs_control *c, struct jffs_file *f, | ||
28 | const struct jffs_raw_inode *raw_inode, | ||
29 | const char *name, struct jffs_node *node); | ||
30 | struct jffs_file *jffs_find_file(struct jffs_control *c, __u32 ino); | ||
31 | struct jffs_file *jffs_find_child(struct jffs_file *dir, const char *name, int len); | ||
32 | |||
33 | void jffs_free_node(struct jffs_node *node); | ||
34 | |||
35 | int jffs_foreach_file(struct jffs_control *c, int (*func)(struct jffs_file *)); | ||
36 | int jffs_possibly_delete_file(struct jffs_file *f); | ||
37 | int jffs_insert_file_into_tree(struct jffs_file *f); | ||
38 | int jffs_unlink_file_from_tree(struct jffs_file *f); | ||
39 | int jffs_file_count(struct jffs_file *f); | ||
40 | |||
41 | int jffs_write_node(struct jffs_control *c, struct jffs_node *node, | ||
42 | struct jffs_raw_inode *raw_inode, | ||
43 | const char *name, const unsigned char *buf, | ||
44 | int recoverable, struct jffs_file *f); | ||
45 | int jffs_read_data(struct jffs_file *f, unsigned char *buf, __u32 read_offset, __u32 size); | ||
46 | |||
47 | /* Garbage collection stuff. */ | ||
48 | int jffs_garbage_collect_thread(void *c); | ||
49 | void jffs_garbage_collect_trigger(struct jffs_control *c); | ||
50 | |||
51 | /* For debugging purposes. */ | ||
52 | #if 0 | ||
53 | int jffs_print_file(struct jffs_file *f); | ||
54 | #endif /* 0 */ | ||
55 | void jffs_print_hash_table(struct jffs_control *c); | ||
56 | void jffs_print_tree(struct jffs_file *first_file, int indent); | ||
57 | |||
58 | #endif /* __LINUX_JFFS_INTREP_H__ */ | ||
diff --git a/fs/jffs/jffs_fm.c b/fs/jffs/jffs_fm.c deleted file mode 100644 index 5a95fbdd6fdb..000000000000 --- a/fs/jffs/jffs_fm.c +++ /dev/null | |||
@@ -1,798 +0,0 @@ | |||
1 | /* | ||
2 | * JFFS -- Journaling Flash File System, Linux implementation. | ||
3 | * | ||
4 | * Copyright (C) 1999, 2000 Axis Communications AB. | ||
5 | * | ||
6 | * Created by Finn Hakansson <finn@axis.com>. | ||
7 | * | ||
8 | * This is free software; you can redistribute it and/or modify it | ||
9 | * under the terms of the GNU General Public License as published by | ||
10 | * the Free Software Foundation; either version 2 of the License, or | ||
11 | * (at your option) any later version. | ||
12 | * | ||
13 | * $Id: jffs_fm.c,v 1.27 2001/09/20 12:29:47 dwmw2 Exp $ | ||
14 | * | ||
15 | * Ported to Linux 2.3.x and MTD: | ||
16 | * Copyright (C) 2000 Alexander Larsson (alex@cendio.se), Cendio Systems AB | ||
17 | * | ||
18 | */ | ||
19 | #include <linux/slab.h> | ||
20 | #include <linux/err.h> | ||
21 | #include <linux/blkdev.h> | ||
22 | #include <linux/jffs.h> | ||
23 | #include "jffs_fm.h" | ||
24 | #include "intrep.h" | ||
25 | |||
26 | #if defined(JFFS_MARK_OBSOLETE) && JFFS_MARK_OBSOLETE | ||
27 | static int jffs_mark_obsolete(struct jffs_fmcontrol *fmc, __u32 fm_offset); | ||
28 | #endif | ||
29 | |||
30 | static struct jffs_fm *jffs_alloc_fm(void); | ||
31 | static void jffs_free_fm(struct jffs_fm *n); | ||
32 | |||
33 | extern struct kmem_cache *fm_cache; | ||
34 | extern struct kmem_cache *node_cache; | ||
35 | |||
36 | #if CONFIG_JFFS_FS_VERBOSE > 0 | ||
37 | void | ||
38 | jffs_print_fmcontrol(struct jffs_fmcontrol *fmc) | ||
39 | { | ||
40 | D(printk("struct jffs_fmcontrol: 0x%p\n", fmc)); | ||
41 | D(printk("{\n")); | ||
42 | D(printk(" %u, /* flash_size */\n", fmc->flash_size)); | ||
43 | D(printk(" %u, /* used_size */\n", fmc->used_size)); | ||
44 | D(printk(" %u, /* dirty_size */\n", fmc->dirty_size)); | ||
45 | D(printk(" %u, /* free_size */\n", fmc->free_size)); | ||
46 | D(printk(" %u, /* sector_size */\n", fmc->sector_size)); | ||
47 | D(printk(" %u, /* min_free_size */\n", fmc->min_free_size)); | ||
48 | D(printk(" %u, /* max_chunk_size */\n", fmc->max_chunk_size)); | ||
49 | D(printk(" 0x%p, /* mtd */\n", fmc->mtd)); | ||
50 | D(printk(" 0x%p, /* head */ " | ||
51 | "(head->offset = 0x%08x)\n", | ||
52 | fmc->head, (fmc->head ? fmc->head->offset : 0))); | ||
53 | D(printk(" 0x%p, /* tail */ " | ||
54 | "(tail->offset + tail->size = 0x%08x)\n", | ||
55 | fmc->tail, | ||
56 | (fmc->tail ? fmc->tail->offset + fmc->tail->size : 0))); | ||
57 | D(printk(" 0x%p, /* head_extra */\n", fmc->head_extra)); | ||
58 | D(printk(" 0x%p, /* tail_extra */\n", fmc->tail_extra)); | ||
59 | D(printk("}\n")); | ||
60 | } | ||
61 | #endif /* CONFIG_JFFS_FS_VERBOSE > 0 */ | ||
62 | |||
63 | #if CONFIG_JFFS_FS_VERBOSE > 2 | ||
64 | static void | ||
65 | jffs_print_fm(struct jffs_fm *fm) | ||
66 | { | ||
67 | D(printk("struct jffs_fm: 0x%p\n", fm)); | ||
68 | D(printk("{\n")); | ||
69 | D(printk(" 0x%08x, /* offset */\n", fm->offset)); | ||
70 | D(printk(" %u, /* size */\n", fm->size)); | ||
71 | D(printk(" 0x%p, /* prev */\n", fm->prev)); | ||
72 | D(printk(" 0x%p, /* next */\n", fm->next)); | ||
73 | D(printk(" 0x%p, /* nodes */\n", fm->nodes)); | ||
74 | D(printk("}\n")); | ||
75 | } | ||
76 | #endif /* CONFIG_JFFS_FS_VERBOSE > 2 */ | ||
77 | |||
78 | #if 0 | ||
79 | void | ||
80 | jffs_print_node_ref(struct jffs_node_ref *ref) | ||
81 | { | ||
82 | D(printk("struct jffs_node_ref: 0x%p\n", ref)); | ||
83 | D(printk("{\n")); | ||
84 | D(printk(" 0x%p, /* node */\n", ref->node)); | ||
85 | D(printk(" 0x%p, /* next */\n", ref->next)); | ||
86 | D(printk("}\n")); | ||
87 | } | ||
88 | #endif /* 0 */ | ||
89 | |||
90 | /* This function creates a new shiny flash memory control structure. */ | ||
91 | struct jffs_fmcontrol * | ||
92 | jffs_build_begin(struct jffs_control *c, int unit) | ||
93 | { | ||
94 | struct jffs_fmcontrol *fmc; | ||
95 | struct mtd_info *mtd; | ||
96 | |||
97 | D3(printk("jffs_build_begin()\n")); | ||
98 | fmc = kmalloc(sizeof(*fmc), GFP_KERNEL); | ||
99 | if (!fmc) { | ||
100 | D(printk("jffs_build_begin(): Allocation of " | ||
101 | "struct jffs_fmcontrol failed!\n")); | ||
102 | return (struct jffs_fmcontrol *)0; | ||
103 | } | ||
104 | DJM(no_jffs_fmcontrol++); | ||
105 | |||
106 | mtd = get_mtd_device(NULL, unit); | ||
107 | |||
108 | if (IS_ERR(mtd)) { | ||
109 | kfree(fmc); | ||
110 | DJM(no_jffs_fmcontrol--); | ||
111 | return NULL; | ||
112 | } | ||
113 | |||
114 | /* Retrieve the size of the flash memory. */ | ||
115 | fmc->flash_size = mtd->size; | ||
116 | D3(printk(" fmc->flash_size = %d bytes\n", fmc->flash_size)); | ||
117 | |||
118 | fmc->used_size = 0; | ||
119 | fmc->dirty_size = 0; | ||
120 | fmc->free_size = mtd->size; | ||
121 | fmc->sector_size = mtd->erasesize; | ||
122 | fmc->max_chunk_size = fmc->sector_size >> 1; | ||
123 | /* min_free_size: | ||
124 | 1 sector, obviously. | ||
125 | + 1 x max_chunk_size, for when a nodes overlaps the end of a sector | ||
126 | + 1 x max_chunk_size again, which ought to be enough to handle | ||
127 | the case where a rename causes a name to grow, and GC has | ||
128 | to write out larger nodes than the ones it's obsoleting. | ||
129 | We should fix it so it doesn't have to write the name | ||
130 | _every_ time. Later. | ||
131 | + another 2 sectors because people keep getting GC stuck and | ||
132 | we don't know why. This scares me - I want formal proof | ||
133 | of correctness of whatever number we put here. dwmw2. | ||
134 | */ | ||
135 | fmc->min_free_size = fmc->sector_size << 2; | ||
136 | fmc->mtd = mtd; | ||
137 | fmc->c = c; | ||
138 | fmc->head = NULL; | ||
139 | fmc->tail = NULL; | ||
140 | fmc->head_extra = NULL; | ||
141 | fmc->tail_extra = NULL; | ||
142 | mutex_init(&fmc->biglock); | ||
143 | return fmc; | ||
144 | } | ||
145 | |||
146 | |||
147 | /* When the flash memory scan has completed, this function should be called | ||
148 | before use of the control structure. */ | ||
149 | void | ||
150 | jffs_build_end(struct jffs_fmcontrol *fmc) | ||
151 | { | ||
152 | D3(printk("jffs_build_end()\n")); | ||
153 | |||
154 | if (!fmc->head) { | ||
155 | fmc->head = fmc->head_extra; | ||
156 | fmc->tail = fmc->tail_extra; | ||
157 | } | ||
158 | else if (fmc->head_extra) { | ||
159 | fmc->tail_extra->next = fmc->head; | ||
160 | fmc->head->prev = fmc->tail_extra; | ||
161 | fmc->head = fmc->head_extra; | ||
162 | } | ||
163 | fmc->head_extra = NULL; /* These two instructions should be omitted. */ | ||
164 | fmc->tail_extra = NULL; | ||
165 | D3(jffs_print_fmcontrol(fmc)); | ||
166 | } | ||
167 | |||
168 | |||
169 | /* Call this function when the file system is unmounted. This function | ||
170 | frees all memory used by this module. */ | ||
171 | void | ||
172 | jffs_cleanup_fmcontrol(struct jffs_fmcontrol *fmc) | ||
173 | { | ||
174 | if (fmc) { | ||
175 | struct jffs_fm *next = fmc->head; | ||
176 | while (next) { | ||
177 | struct jffs_fm *cur = next; | ||
178 | next = next->next; | ||
179 | jffs_free_fm(cur); | ||
180 | } | ||
181 | put_mtd_device(fmc->mtd); | ||
182 | kfree(fmc); | ||
183 | DJM(no_jffs_fmcontrol--); | ||
184 | } | ||
185 | } | ||
186 | |||
187 | |||
188 | /* This function returns the size of the first chunk of free space on the | ||
189 | flash memory. This function will return something nonzero if the flash | ||
190 | memory contains any free space. */ | ||
191 | __u32 | ||
192 | jffs_free_size1(struct jffs_fmcontrol *fmc) | ||
193 | { | ||
194 | __u32 head; | ||
195 | __u32 tail; | ||
196 | __u32 end = fmc->flash_size; | ||
197 | |||
198 | if (!fmc->head) { | ||
199 | /* There is nothing on the flash. */ | ||
200 | return fmc->flash_size; | ||
201 | } | ||
202 | |||
203 | /* Compute the beginning and ending of the contents of the flash. */ | ||
204 | head = fmc->head->offset; | ||
205 | tail = fmc->tail->offset + fmc->tail->size; | ||
206 | if (tail == end) { | ||
207 | tail = 0; | ||
208 | } | ||
209 | ASSERT(else if (tail > end) { | ||
210 | printk(KERN_WARNING "jffs_free_size1(): tail > end\n"); | ||
211 | tail = 0; | ||
212 | }); | ||
213 | |||
214 | if (head <= tail) { | ||
215 | return end - tail; | ||
216 | } | ||
217 | else { | ||
218 | return head - tail; | ||
219 | } | ||
220 | } | ||
221 | |||
222 | /* This function will return something nonzero in case there are two free | ||
223 | areas on the flash. Like this: | ||
224 | |||
225 | +----------------+------------------+----------------+ | ||
226 | | FREE 1 | USED / DIRTY | FREE 2 | | ||
227 | +----------------+------------------+----------------+ | ||
228 | fmc->head -----^ | ||
229 | fmc->tail ------------------------^ | ||
230 | |||
231 | The value returned, will be the size of the first empty area on the | ||
232 | flash, in this case marked "FREE 1". */ | ||
233 | __u32 | ||
234 | jffs_free_size2(struct jffs_fmcontrol *fmc) | ||
235 | { | ||
236 | if (fmc->head) { | ||
237 | __u32 head = fmc->head->offset; | ||
238 | __u32 tail = fmc->tail->offset + fmc->tail->size; | ||
239 | if (tail == fmc->flash_size) { | ||
240 | tail = 0; | ||
241 | } | ||
242 | |||
243 | if (tail >= head) { | ||
244 | return head; | ||
245 | } | ||
246 | } | ||
247 | return 0; | ||
248 | } | ||
249 | |||
250 | |||
251 | /* Allocate a chunk of flash memory. If there is enough space on the | ||
252 | device, a reference to the associated node is stored in the jffs_fm | ||
253 | struct. */ | ||
254 | int | ||
255 | jffs_fmalloc(struct jffs_fmcontrol *fmc, __u32 size, struct jffs_node *node, | ||
256 | struct jffs_fm **result) | ||
257 | { | ||
258 | struct jffs_fm *fm; | ||
259 | __u32 free_chunk_size1; | ||
260 | __u32 free_chunk_size2; | ||
261 | |||
262 | D2(printk("jffs_fmalloc(): fmc = 0x%p, size = %d, " | ||
263 | "node = 0x%p\n", fmc, size, node)); | ||
264 | |||
265 | *result = NULL; | ||
266 | |||
267 | if (!(fm = jffs_alloc_fm())) { | ||
268 | D(printk("jffs_fmalloc(): kmalloc() failed! (fm)\n")); | ||
269 | return -ENOMEM; | ||
270 | } | ||
271 | |||
272 | free_chunk_size1 = jffs_free_size1(fmc); | ||
273 | free_chunk_size2 = jffs_free_size2(fmc); | ||
274 | if (free_chunk_size1 + free_chunk_size2 != fmc->free_size) { | ||
275 | printk(KERN_WARNING "Free size accounting screwed\n"); | ||
276 | printk(KERN_WARNING "free_chunk_size1 == 0x%x, free_chunk_size2 == 0x%x, fmc->free_size == 0x%x\n", free_chunk_size1, free_chunk_size2, fmc->free_size); | ||
277 | } | ||
278 | |||
279 | D3(printk("jffs_fmalloc(): free_chunk_size1 = %u, " | ||
280 | "free_chunk_size2 = %u\n", | ||
281 | free_chunk_size1, free_chunk_size2)); | ||
282 | |||
283 | if (size <= free_chunk_size1) { | ||
284 | if (!(fm->nodes = (struct jffs_node_ref *) | ||
285 | kmalloc(sizeof(struct jffs_node_ref), | ||
286 | GFP_KERNEL))) { | ||
287 | D(printk("jffs_fmalloc(): kmalloc() failed! " | ||
288 | "(node_ref)\n")); | ||
289 | jffs_free_fm(fm); | ||
290 | return -ENOMEM; | ||
291 | } | ||
292 | DJM(no_jffs_node_ref++); | ||
293 | fm->nodes->node = node; | ||
294 | fm->nodes->next = NULL; | ||
295 | if (fmc->tail) { | ||
296 | fm->offset = fmc->tail->offset + fmc->tail->size; | ||
297 | if (fm->offset == fmc->flash_size) { | ||
298 | fm->offset = 0; | ||
299 | } | ||
300 | ASSERT(else if (fm->offset > fmc->flash_size) { | ||
301 | printk(KERN_WARNING "jffs_fmalloc(): " | ||
302 | "offset > flash_end\n"); | ||
303 | fm->offset = 0; | ||
304 | }); | ||
305 | } | ||
306 | else { | ||
307 | /* There don't have to be files in the file | ||
308 | system yet. */ | ||
309 | fm->offset = 0; | ||
310 | } | ||
311 | fm->size = size; | ||
312 | fmc->free_size -= size; | ||
313 | fmc->used_size += size; | ||
314 | } | ||
315 | else if (size > free_chunk_size2) { | ||
316 | printk(KERN_WARNING "JFFS: Tried to allocate a too " | ||
317 | "large flash memory chunk. (size = %u)\n", size); | ||
318 | jffs_free_fm(fm); | ||
319 | return -ENOSPC; | ||
320 | } | ||
321 | else { | ||
322 | fm->offset = fmc->tail->offset + fmc->tail->size; | ||
323 | fm->size = free_chunk_size1; | ||
324 | fm->nodes = NULL; | ||
325 | fmc->free_size -= fm->size; | ||
326 | fmc->dirty_size += fm->size; /* Changed by simonk. This seemingly fixes a | ||
327 | bug that caused infinite garbage collection. | ||
328 | It previously set fmc->dirty_size to size (which is the | ||
329 | size of the requested chunk). | ||
330 | */ | ||
331 | } | ||
332 | |||
333 | fm->next = NULL; | ||
334 | if (!fmc->head) { | ||
335 | fm->prev = NULL; | ||
336 | fmc->head = fm; | ||
337 | fmc->tail = fm; | ||
338 | } | ||
339 | else { | ||
340 | fm->prev = fmc->tail; | ||
341 | fmc->tail->next = fm; | ||
342 | fmc->tail = fm; | ||
343 | } | ||
344 | |||
345 | D3(jffs_print_fmcontrol(fmc)); | ||
346 | D3(jffs_print_fm(fm)); | ||
347 | *result = fm; | ||
348 | return 0; | ||
349 | } | ||
350 | |||
351 | |||
352 | /* The on-flash space is not needed anymore by the passed node. Remove | ||
353 | the reference to the node from the node list. If the data chunk in | ||
354 | the flash memory isn't used by any more nodes anymore (fm->nodes == 0), | ||
355 | then mark that chunk as dirty. */ | ||
356 | int | ||
357 | jffs_fmfree(struct jffs_fmcontrol *fmc, struct jffs_fm *fm, struct jffs_node *node) | ||
358 | { | ||
359 | struct jffs_node_ref *ref; | ||
360 | struct jffs_node_ref *prev; | ||
361 | ASSERT(int del = 0); | ||
362 | |||
363 | D2(printk("jffs_fmfree(): node->ino = %u, node->version = %u\n", | ||
364 | node->ino, node->version)); | ||
365 | |||
366 | ASSERT(if (!fmc || !fm || !fm->nodes) { | ||
367 | printk(KERN_ERR "jffs_fmfree(): fmc: 0x%p, fm: 0x%p, " | ||
368 | "fm->nodes: 0x%p\n", | ||
369 | fmc, fm, (fm ? fm->nodes : NULL)); | ||
370 | return -1; | ||
371 | }); | ||
372 | |||
373 | /* Find the reference to the node that is going to be removed | ||
374 | and remove it. */ | ||
375 | for (ref = fm->nodes, prev = NULL; ref; ref = ref->next) { | ||
376 | if (ref->node == node) { | ||
377 | if (prev) { | ||
378 | prev->next = ref->next; | ||
379 | } | ||
380 | else { | ||
381 | fm->nodes = ref->next; | ||
382 | } | ||
383 | kfree(ref); | ||
384 | DJM(no_jffs_node_ref--); | ||
385 | ASSERT(del = 1); | ||
386 | break; | ||
387 | } | ||
388 | prev = ref; | ||
389 | } | ||
390 | |||
391 | /* If the data chunk in the flash memory isn't used anymore | ||
392 | just mark it as obsolete. */ | ||
393 | if (!fm->nodes) { | ||
394 | /* No node uses this chunk so let's remove it. */ | ||
395 | fmc->used_size -= fm->size; | ||
396 | fmc->dirty_size += fm->size; | ||
397 | #if defined(JFFS_MARK_OBSOLETE) && JFFS_MARK_OBSOLETE | ||
398 | if (jffs_mark_obsolete(fmc, fm->offset) < 0) { | ||
399 | D1(printk("jffs_fmfree(): Failed to mark an on-flash " | ||
400 | "node obsolete!\n")); | ||
401 | return -1; | ||
402 | } | ||
403 | #endif | ||
404 | } | ||
405 | |||
406 | ASSERT(if (!del) { | ||
407 | printk(KERN_WARNING "***jffs_fmfree(): " | ||
408 | "Didn't delete any node reference!\n"); | ||
409 | }); | ||
410 | |||
411 | return 0; | ||
412 | } | ||
413 | |||
414 | |||
415 | /* This allocation function is used during the initialization of | ||
416 | the file system. */ | ||
417 | struct jffs_fm * | ||
418 | jffs_fmalloced(struct jffs_fmcontrol *fmc, __u32 offset, __u32 size, | ||
419 | struct jffs_node *node) | ||
420 | { | ||
421 | struct jffs_fm *fm; | ||
422 | |||
423 | D3(printk("jffs_fmalloced()\n")); | ||
424 | |||
425 | if (!(fm = jffs_alloc_fm())) { | ||
426 | D(printk("jffs_fmalloced(0x%p, %u, %u, 0x%p): failed!\n", | ||
427 | fmc, offset, size, node)); | ||
428 | return NULL; | ||
429 | } | ||
430 | fm->offset = offset; | ||
431 | fm->size = size; | ||
432 | fm->prev = NULL; | ||
433 | fm->next = NULL; | ||
434 | fm->nodes = NULL; | ||
435 | if (node) { | ||
436 | /* `node' exists and it should be associated with the | ||
437 | jffs_fm structure `fm'. */ | ||
438 | if (!(fm->nodes = (struct jffs_node_ref *) | ||
439 | kmalloc(sizeof(struct jffs_node_ref), | ||
440 | GFP_KERNEL))) { | ||
441 | D(printk("jffs_fmalloced(): !fm->nodes\n")); | ||
442 | jffs_free_fm(fm); | ||
443 | return NULL; | ||
444 | } | ||
445 | DJM(no_jffs_node_ref++); | ||
446 | fm->nodes->node = node; | ||
447 | fm->nodes->next = NULL; | ||
448 | fmc->used_size += size; | ||
449 | fmc->free_size -= size; | ||
450 | } | ||
451 | else { | ||
452 | /* If there is no node, then this is just a chunk of dirt. */ | ||
453 | fmc->dirty_size += size; | ||
454 | fmc->free_size -= size; | ||
455 | } | ||
456 | |||
457 | if (fmc->head_extra) { | ||
458 | fm->prev = fmc->tail_extra; | ||
459 | fmc->tail_extra->next = fm; | ||
460 | fmc->tail_extra = fm; | ||
461 | } | ||
462 | else if (!fmc->head) { | ||
463 | fmc->head = fm; | ||
464 | fmc->tail = fm; | ||
465 | } | ||
466 | else if (fmc->tail->offset + fmc->tail->size < offset) { | ||
467 | fmc->head_extra = fm; | ||
468 | fmc->tail_extra = fm; | ||
469 | } | ||
470 | else { | ||
471 | fm->prev = fmc->tail; | ||
472 | fmc->tail->next = fm; | ||
473 | fmc->tail = fm; | ||
474 | } | ||
475 | D3(jffs_print_fmcontrol(fmc)); | ||
476 | D3(jffs_print_fm(fm)); | ||
477 | return fm; | ||
478 | } | ||
479 | |||
480 | |||
481 | /* Add a new node to an already existing jffs_fm struct. */ | ||
482 | int | ||
483 | jffs_add_node(struct jffs_node *node) | ||
484 | { | ||
485 | struct jffs_node_ref *ref; | ||
486 | |||
487 | D3(printk("jffs_add_node(): ino = %u\n", node->ino)); | ||
488 | |||
489 | ref = kmalloc(sizeof(*ref), GFP_KERNEL); | ||
490 | if (!ref) | ||
491 | return -ENOMEM; | ||
492 | |||
493 | DJM(no_jffs_node_ref++); | ||
494 | ref->node = node; | ||
495 | ref->next = node->fm->nodes; | ||
496 | node->fm->nodes = ref; | ||
497 | return 0; | ||
498 | } | ||
499 | |||
500 | |||
501 | /* Free a part of some allocated space. */ | ||
502 | void | ||
503 | jffs_fmfree_partly(struct jffs_fmcontrol *fmc, struct jffs_fm *fm, __u32 size) | ||
504 | { | ||
505 | D1(printk("***jffs_fmfree_partly(): fm = 0x%p, fm->nodes = 0x%p, " | ||
506 | "fm->nodes->node->ino = %u, size = %u\n", | ||
507 | fm, (fm ? fm->nodes : 0), | ||
508 | (!fm ? 0 : (!fm->nodes ? 0 : fm->nodes->node->ino)), size)); | ||
509 | |||
510 | if (fm->nodes) { | ||
511 | kfree(fm->nodes); | ||
512 | DJM(no_jffs_node_ref--); | ||
513 | fm->nodes = NULL; | ||
514 | } | ||
515 | fmc->used_size -= fm->size; | ||
516 | if (fm == fmc->tail) { | ||
517 | fm->size -= size; | ||
518 | fmc->free_size += size; | ||
519 | } | ||
520 | fmc->dirty_size += fm->size; | ||
521 | } | ||
522 | |||
523 | |||
524 | /* Find the jffs_fm struct that contains the end of the data chunk that | ||
525 | begins at the logical beginning of the flash memory and spans `size' | ||
526 | bytes. If we want to erase a sector of the flash memory, we use this | ||
527 | function to find where the sector limit cuts a chunk of data. */ | ||
528 | struct jffs_fm * | ||
529 | jffs_cut_node(struct jffs_fmcontrol *fmc, __u32 size) | ||
530 | { | ||
531 | struct jffs_fm *fm; | ||
532 | __u32 pos = 0; | ||
533 | |||
534 | if (size == 0) { | ||
535 | return NULL; | ||
536 | } | ||
537 | |||
538 | ASSERT(if (!fmc) { | ||
539 | printk(KERN_ERR "jffs_cut_node(): fmc == NULL\n"); | ||
540 | return NULL; | ||
541 | }); | ||
542 | |||
543 | fm = fmc->head; | ||
544 | |||
545 | while (fm) { | ||
546 | pos += fm->size; | ||
547 | if (pos < size) { | ||
548 | fm = fm->next; | ||
549 | } | ||
550 | else if (pos > size) { | ||
551 | break; | ||
552 | } | ||
553 | else { | ||
554 | fm = NULL; | ||
555 | break; | ||
556 | } | ||
557 | } | ||
558 | |||
559 | return fm; | ||
560 | } | ||
561 | |||
562 | |||
563 | /* Move the head of the fmc structures and delete the obsolete parts. */ | ||
564 | void | ||
565 | jffs_sync_erase(struct jffs_fmcontrol *fmc, int erased_size) | ||
566 | { | ||
567 | struct jffs_fm *fm; | ||
568 | struct jffs_fm *del; | ||
569 | |||
570 | ASSERT(if (!fmc) { | ||
571 | printk(KERN_ERR "jffs_sync_erase(): fmc == NULL\n"); | ||
572 | return; | ||
573 | }); | ||
574 | |||
575 | fmc->dirty_size -= erased_size; | ||
576 | fmc->free_size += erased_size; | ||
577 | |||
578 | for (fm = fmc->head; fm && (erased_size > 0);) { | ||
579 | if (erased_size >= fm->size) { | ||
580 | erased_size -= fm->size; | ||
581 | del = fm; | ||
582 | fm = fm->next; | ||
583 | fm->prev = NULL; | ||
584 | fmc->head = fm; | ||
585 | jffs_free_fm(del); | ||
586 | } | ||
587 | else { | ||
588 | fm->size -= erased_size; | ||
589 | fm->offset += erased_size; | ||
590 | break; | ||
591 | } | ||
592 | } | ||
593 | } | ||
594 | |||
595 | |||
596 | /* Return the oldest used node in the flash memory. */ | ||
597 | struct jffs_node * | ||
598 | jffs_get_oldest_node(struct jffs_fmcontrol *fmc) | ||
599 | { | ||
600 | struct jffs_fm *fm; | ||
601 | struct jffs_node_ref *nref; | ||
602 | struct jffs_node *node = NULL; | ||
603 | |||
604 | ASSERT(if (!fmc) { | ||
605 | printk(KERN_ERR "jffs_get_oldest_node(): fmc == NULL\n"); | ||
606 | return NULL; | ||
607 | }); | ||
608 | |||
609 | for (fm = fmc->head; fm && !fm->nodes; fm = fm->next); | ||
610 | |||
611 | if (!fm) { | ||
612 | return NULL; | ||
613 | } | ||
614 | |||
615 | /* The oldest node is the last one in the reference list. This list | ||
616 | shouldn't be too long; just one or perhaps two elements. */ | ||
617 | for (nref = fm->nodes; nref; nref = nref->next) { | ||
618 | node = nref->node; | ||
619 | } | ||
620 | |||
621 | D2(printk("jffs_get_oldest_node(): ino = %u, version = %u\n", | ||
622 | (node ? node->ino : 0), (node ? node->version : 0))); | ||
623 | |||
624 | return node; | ||
625 | } | ||
626 | |||
627 | |||
628 | #if defined(JFFS_MARK_OBSOLETE) && JFFS_MARK_OBSOLETE | ||
629 | |||
630 | /* Mark an on-flash node as obsolete. | ||
631 | |||
632 | Note that this is just an optimization that isn't necessary for the | ||
633 | filesystem to work. */ | ||
634 | |||
635 | static int | ||
636 | jffs_mark_obsolete(struct jffs_fmcontrol *fmc, __u32 fm_offset) | ||
637 | { | ||
638 | /* The `accurate_pos' holds the position of the accurate byte | ||
639 | in the jffs_raw_inode structure that we are going to mark | ||
640 | as obsolete. */ | ||
641 | __u32 accurate_pos = fm_offset + JFFS_RAW_INODE_ACCURATE_OFFSET; | ||
642 | unsigned char zero = 0x00; | ||
643 | size_t len; | ||
644 | |||
645 | D3(printk("jffs_mark_obsolete(): accurate_pos = %u\n", accurate_pos)); | ||
646 | ASSERT(if (!fmc) { | ||
647 | printk(KERN_ERR "jffs_mark_obsolete(): fmc == NULL\n"); | ||
648 | return -1; | ||
649 | }); | ||
650 | |||
651 | /* Write 0x00 to the raw inode's accurate member. Don't care | ||
652 | about the return value. */ | ||
653 | MTD_WRITE(fmc->mtd, accurate_pos, 1, &len, &zero); | ||
654 | return 0; | ||
655 | } | ||
656 | |||
657 | #endif /* JFFS_MARK_OBSOLETE */ | ||
658 | |||
659 | /* check if it's possible to erase the wanted range, and if not, return | ||
660 | * the range that IS erasable, or a negative error code. | ||
661 | */ | ||
662 | static long | ||
663 | jffs_flash_erasable_size(struct mtd_info *mtd, __u32 offset, __u32 size) | ||
664 | { | ||
665 | u_long ssize; | ||
666 | |||
667 | /* assume that sector size for a partition is constant even | ||
668 | * if it spans more than one chip (you usually put the same | ||
669 | * type of chips in a system) | ||
670 | */ | ||
671 | |||
672 | ssize = mtd->erasesize; | ||
673 | |||
674 | if (offset % ssize) { | ||
675 | printk(KERN_WARNING "jffs_flash_erasable_size() given non-aligned offset %x (erasesize %lx)\n", offset, ssize); | ||
676 | /* The offset is not sector size aligned. */ | ||
677 | return -1; | ||
678 | } | ||
679 | else if (offset > mtd->size) { | ||
680 | printk(KERN_WARNING "jffs_flash_erasable_size given offset off the end of device (%x > %x)\n", offset, mtd->size); | ||
681 | return -2; | ||
682 | } | ||
683 | else if (offset + size > mtd->size) { | ||
684 | printk(KERN_WARNING "jffs_flash_erasable_size() given length which runs off the end of device (ofs %x + len %x = %x, > %x)\n", offset,size, offset+size, mtd->size); | ||
685 | return -3; | ||
686 | } | ||
687 | |||
688 | return (size / ssize) * ssize; | ||
689 | } | ||
690 | |||
691 | |||
692 | /* How much dirty flash memory is possible to erase at the moment? */ | ||
693 | long | ||
694 | jffs_erasable_size(struct jffs_fmcontrol *fmc) | ||
695 | { | ||
696 | struct jffs_fm *fm; | ||
697 | __u32 size = 0; | ||
698 | long ret; | ||
699 | |||
700 | ASSERT(if (!fmc) { | ||
701 | printk(KERN_ERR "jffs_erasable_size(): fmc = NULL\n"); | ||
702 | return -1; | ||
703 | }); | ||
704 | |||
705 | if (!fmc->head) { | ||
706 | /* The flash memory is totally empty. No nodes. No dirt. | ||
707 | Just return. */ | ||
708 | return 0; | ||
709 | } | ||
710 | |||
711 | /* Calculate how much space that is dirty. */ | ||
712 | for (fm = fmc->head; fm && !fm->nodes; fm = fm->next) { | ||
713 | if (size && fm->offset == 0) { | ||
714 | /* We have reached the beginning of the flash. */ | ||
715 | break; | ||
716 | } | ||
717 | size += fm->size; | ||
718 | } | ||
719 | |||
720 | /* Someone's signature contained this: | ||
721 | There's a fine line between fishing and just standing on | ||
722 | the shore like an idiot... */ | ||
723 | ret = jffs_flash_erasable_size(fmc->mtd, fmc->head->offset, size); | ||
724 | |||
725 | ASSERT(if (ret < 0) { | ||
726 | printk("jffs_erasable_size: flash_erasable_size() " | ||
727 | "returned something less than zero (%ld).\n", ret); | ||
728 | printk("jffs_erasable_size: offset = 0x%08x\n", | ||
729 | fmc->head->offset); | ||
730 | }); | ||
731 | |||
732 | /* If there is dirt on the flash (which is the reason to why | ||
733 | this function was called in the first place) but no space is | ||
734 | possible to erase right now, the initial part of the list of | ||
735 | jffs_fm structs, that hold place for dirty space, could perhaps | ||
736 | be shortened. The list's initial "dirty" elements are merged | ||
737 | into just one large dirty jffs_fm struct. This operation must | ||
738 | only be performed if nothing is possible to erase. Otherwise, | ||
739 | jffs_clear_end_of_node() won't work as expected. */ | ||
740 | if (ret == 0) { | ||
741 | struct jffs_fm *head = fmc->head; | ||
742 | struct jffs_fm *del; | ||
743 | /* While there are two dirty nodes beside each other.*/ | ||
744 | while (head->nodes == 0 | ||
745 | && head->next | ||
746 | && head->next->nodes == 0) { | ||
747 | del = head->next; | ||
748 | head->size += del->size; | ||
749 | head->next = del->next; | ||
750 | if (del->next) { | ||
751 | del->next->prev = head; | ||
752 | } | ||
753 | jffs_free_fm(del); | ||
754 | } | ||
755 | } | ||
756 | |||
757 | return (ret >= 0 ? ret : 0); | ||
758 | } | ||
759 | |||
760 | static struct jffs_fm *jffs_alloc_fm(void) | ||
761 | { | ||
762 | struct jffs_fm *fm; | ||
763 | |||
764 | fm = kmem_cache_alloc(fm_cache,GFP_KERNEL); | ||
765 | DJM(if (fm) no_jffs_fm++;); | ||
766 | |||
767 | return fm; | ||
768 | } | ||
769 | |||
770 | static void jffs_free_fm(struct jffs_fm *n) | ||
771 | { | ||
772 | kmem_cache_free(fm_cache,n); | ||
773 | DJM(no_jffs_fm--); | ||
774 | } | ||
775 | |||
776 | |||
777 | |||
778 | struct jffs_node *jffs_alloc_node(void) | ||
779 | { | ||
780 | struct jffs_node *n; | ||
781 | |||
782 | n = (struct jffs_node *)kmem_cache_alloc(node_cache,GFP_KERNEL); | ||
783 | if(n != NULL) | ||
784 | no_jffs_node++; | ||
785 | return n; | ||
786 | } | ||
787 | |||
788 | void jffs_free_node(struct jffs_node *n) | ||
789 | { | ||
790 | kmem_cache_free(node_cache,n); | ||
791 | no_jffs_node--; | ||
792 | } | ||
793 | |||
794 | |||
795 | int jffs_get_node_inuse(void) | ||
796 | { | ||
797 | return no_jffs_node; | ||
798 | } | ||
diff --git a/fs/jffs/jffs_fm.h b/fs/jffs/jffs_fm.h deleted file mode 100644 index 9ee6ad29eff5..000000000000 --- a/fs/jffs/jffs_fm.h +++ /dev/null | |||
@@ -1,149 +0,0 @@ | |||
1 | /* | ||
2 | * JFFS -- Journaling Flash File System, Linux implementation. | ||
3 | * | ||
4 | * Copyright (C) 1999, 2000 Axis Communications AB. | ||
5 | * | ||
6 | * Created by Finn Hakansson <finn@axis.com>. | ||
7 | * | ||
8 | * This is free software; you can redistribute it and/or modify it | ||
9 | * under the terms of the GNU General Public License as published by | ||
10 | * the Free Software Foundation; either version 2 of the License, or | ||
11 | * (at your option) any later version. | ||
12 | * | ||
13 | * $Id: jffs_fm.h,v 1.13 2001/01/11 12:03:25 dwmw2 Exp $ | ||
14 | * | ||
15 | * Ported to Linux 2.3.x and MTD: | ||
16 | * Copyright (C) 2000 Alexander Larsson (alex@cendio.se), Cendio Systems AB | ||
17 | * | ||
18 | */ | ||
19 | |||
20 | #ifndef __LINUX_JFFS_FM_H__ | ||
21 | #define __LINUX_JFFS_FM_H__ | ||
22 | |||
23 | #include <linux/types.h> | ||
24 | #include <linux/jffs.h> | ||
25 | #include <linux/mtd/mtd.h> | ||
26 | #include <linux/mutex.h> | ||
27 | |||
28 | /* The alignment between two nodes in the flash memory. */ | ||
29 | #define JFFS_ALIGN_SIZE 4 | ||
30 | |||
31 | /* Mark the on-flash space as obsolete when appropriate. */ | ||
32 | #define JFFS_MARK_OBSOLETE 0 | ||
33 | |||
34 | #ifndef CONFIG_JFFS_FS_VERBOSE | ||
35 | #define CONFIG_JFFS_FS_VERBOSE 1 | ||
36 | #endif | ||
37 | |||
38 | #if CONFIG_JFFS_FS_VERBOSE > 0 | ||
39 | #define D(x) x | ||
40 | #define D1(x) D(x) | ||
41 | #else | ||
42 | #define D(x) | ||
43 | #define D1(x) | ||
44 | #endif | ||
45 | |||
46 | #if CONFIG_JFFS_FS_VERBOSE > 1 | ||
47 | #define D2(x) D(x) | ||
48 | #else | ||
49 | #define D2(x) | ||
50 | #endif | ||
51 | |||
52 | #if CONFIG_JFFS_FS_VERBOSE > 2 | ||
53 | #define D3(x) D(x) | ||
54 | #else | ||
55 | #define D3(x) | ||
56 | #endif | ||
57 | |||
58 | #define ASSERT(x) x | ||
59 | |||
60 | /* How many padding bytes should be inserted between two chunks of data | ||
61 | on the flash? */ | ||
62 | #define JFFS_GET_PAD_BYTES(size) ( (JFFS_ALIGN_SIZE-1) & -(__u32)(size) ) | ||
63 | #define JFFS_PAD(size) ( (size + (JFFS_ALIGN_SIZE-1)) & ~(JFFS_ALIGN_SIZE-1) ) | ||
64 | |||
65 | |||
66 | |||
67 | struct jffs_node_ref | ||
68 | { | ||
69 | struct jffs_node *node; | ||
70 | struct jffs_node_ref *next; | ||
71 | }; | ||
72 | |||
73 | |||
74 | /* The struct jffs_fm represents a chunk of data in the flash memory. */ | ||
75 | struct jffs_fm | ||
76 | { | ||
77 | __u32 offset; | ||
78 | __u32 size; | ||
79 | struct jffs_fm *prev; | ||
80 | struct jffs_fm *next; | ||
81 | struct jffs_node_ref *nodes; /* USED if != 0. */ | ||
82 | }; | ||
83 | |||
84 | struct jffs_fmcontrol | ||
85 | { | ||
86 | __u32 flash_size; | ||
87 | __u32 used_size; | ||
88 | __u32 dirty_size; | ||
89 | __u32 free_size; | ||
90 | __u32 sector_size; | ||
91 | __u32 min_free_size; /* The minimum free space needed to be able | ||
92 | to perform garbage collections. */ | ||
93 | __u32 max_chunk_size; /* The maximum size of a chunk of data. */ | ||
94 | struct mtd_info *mtd; | ||
95 | struct jffs_control *c; | ||
96 | struct jffs_fm *head; | ||
97 | struct jffs_fm *tail; | ||
98 | struct jffs_fm *head_extra; | ||
99 | struct jffs_fm *tail_extra; | ||
100 | struct mutex biglock; | ||
101 | }; | ||
102 | |||
103 | /* Notice the two members head_extra and tail_extra in the jffs_control | ||
104 | structure above. Those are only used during the scanning of the flash | ||
105 | memory; while the file system is being built. If the data in the flash | ||
106 | memory is organized like | ||
107 | |||
108 | +----------------+------------------+----------------+ | ||
109 | | USED / DIRTY | FREE | USED / DIRTY | | ||
110 | +----------------+------------------+----------------+ | ||
111 | |||
112 | then the scan is split in two parts. The first scanned part of the | ||
113 | flash memory is organized through the members head and tail. The | ||
114 | second scanned part is organized with head_extra and tail_extra. When | ||
115 | the scan is completed, the two lists are merged together. The jffs_fm | ||
116 | struct that head_extra references is the logical beginning of the | ||
117 | flash memory so it will be referenced by the head member. */ | ||
118 | |||
119 | |||
120 | |||
121 | struct jffs_fmcontrol *jffs_build_begin(struct jffs_control *c, int unit); | ||
122 | void jffs_build_end(struct jffs_fmcontrol *fmc); | ||
123 | void jffs_cleanup_fmcontrol(struct jffs_fmcontrol *fmc); | ||
124 | |||
125 | int jffs_fmalloc(struct jffs_fmcontrol *fmc, __u32 size, | ||
126 | struct jffs_node *node, struct jffs_fm **result); | ||
127 | int jffs_fmfree(struct jffs_fmcontrol *fmc, struct jffs_fm *fm, | ||
128 | struct jffs_node *node); | ||
129 | |||
130 | __u32 jffs_free_size1(struct jffs_fmcontrol *fmc); | ||
131 | __u32 jffs_free_size2(struct jffs_fmcontrol *fmc); | ||
132 | void jffs_sync_erase(struct jffs_fmcontrol *fmc, int erased_size); | ||
133 | struct jffs_fm *jffs_cut_node(struct jffs_fmcontrol *fmc, __u32 size); | ||
134 | struct jffs_node *jffs_get_oldest_node(struct jffs_fmcontrol *fmc); | ||
135 | long jffs_erasable_size(struct jffs_fmcontrol *fmc); | ||
136 | struct jffs_fm *jffs_fmalloced(struct jffs_fmcontrol *fmc, __u32 offset, | ||
137 | __u32 size, struct jffs_node *node); | ||
138 | int jffs_add_node(struct jffs_node *node); | ||
139 | void jffs_fmfree_partly(struct jffs_fmcontrol *fmc, struct jffs_fm *fm, | ||
140 | __u32 size); | ||
141 | |||
142 | #if CONFIG_JFFS_FS_VERBOSE > 0 | ||
143 | void jffs_print_fmcontrol(struct jffs_fmcontrol *fmc); | ||
144 | #endif | ||
145 | #if 0 | ||
146 | void jffs_print_node_ref(struct jffs_node_ref *ref); | ||
147 | #endif /* 0 */ | ||
148 | |||
149 | #endif /* __LINUX_JFFS_FM_H__ */ | ||
diff --git a/fs/jffs/jffs_proc.c b/fs/jffs/jffs_proc.c deleted file mode 100644 index 9bdd99a557c2..000000000000 --- a/fs/jffs/jffs_proc.c +++ /dev/null | |||
@@ -1,261 +0,0 @@ | |||
1 | /* | ||
2 | * JFFS -- Journaling Flash File System, Linux implementation. | ||
3 | * | ||
4 | * Copyright (C) 2000 Axis Communications AB. | ||
5 | * | ||
6 | * Created by Simon Kagstrom <simonk@axis.com>. | ||
7 | * | ||
8 | * $Id: jffs_proc.c,v 1.5 2001/06/02 14:34:55 dwmw2 Exp $ | ||
9 | * | ||
10 | * This is free software; you can redistribute it and/or modify it | ||
11 | * under the terms of the GNU General Public License as published by | ||
12 | * the Free Software Foundation; either version 2 of the License, or | ||
13 | * (at your option) any later version. | ||
14 | * | ||
15 | * Overview: | ||
16 | * This file defines JFFS partition entries in the proc file system. | ||
17 | * | ||
18 | * TODO: | ||
19 | * Create some more proc files for different kinds of info, i.e. statistics | ||
20 | * about written and read bytes, number of calls to different routines, | ||
21 | * reports about failures. | ||
22 | */ | ||
23 | |||
24 | #include <linux/errno.h> | ||
25 | #include <linux/fs.h> | ||
26 | #include <linux/jffs.h> | ||
27 | #include <linux/slab.h> | ||
28 | #include <linux/proc_fs.h> | ||
29 | #include <linux/time.h> | ||
30 | #include <linux/types.h> | ||
31 | #include "jffs_fm.h" | ||
32 | #include "jffs_proc.h" | ||
33 | |||
34 | /* | ||
35 | * Structure for a JFFS partition in the system | ||
36 | */ | ||
37 | struct jffs_partition_dir { | ||
38 | struct jffs_control *c; | ||
39 | struct proc_dir_entry *part_root; | ||
40 | struct proc_dir_entry *part_info; | ||
41 | struct proc_dir_entry *part_layout; | ||
42 | struct jffs_partition_dir *next; | ||
43 | }; | ||
44 | |||
45 | /* | ||
46 | * Structure for top-level entry in '/proc/fs' directory | ||
47 | */ | ||
48 | struct proc_dir_entry *jffs_proc_root; | ||
49 | |||
50 | /* | ||
51 | * Linked list of 'jffs_partition_dirs' to help us track | ||
52 | * the mounted JFFS partitions in the system | ||
53 | */ | ||
54 | static struct jffs_partition_dir *jffs_part_dirs; | ||
55 | |||
56 | /* | ||
57 | * Read functions for entries | ||
58 | */ | ||
59 | static int jffs_proc_info_read(char *page, char **start, off_t off, | ||
60 | int count, int *eof, void *data); | ||
61 | static int jffs_proc_layout_read (char *page, char **start, off_t off, | ||
62 | int count, int *eof, void *data); | ||
63 | |||
64 | |||
65 | /* | ||
66 | * Register a JFFS partition directory (called upon mount) | ||
67 | */ | ||
68 | int jffs_register_jffs_proc_dir(int mtd, struct jffs_control *c) | ||
69 | { | ||
70 | struct jffs_partition_dir *part_dir; | ||
71 | struct proc_dir_entry *part_info = NULL; | ||
72 | struct proc_dir_entry *part_layout = NULL; | ||
73 | struct proc_dir_entry *part_root = NULL; | ||
74 | char name[10]; | ||
75 | |||
76 | sprintf(name, "%d", mtd); | ||
77 | /* Allocate structure for local JFFS partition table */ | ||
78 | part_dir = (struct jffs_partition_dir *) | ||
79 | kmalloc(sizeof (struct jffs_partition_dir), GFP_KERNEL); | ||
80 | if (!part_dir) | ||
81 | goto out; | ||
82 | |||
83 | /* Create entry for this partition */ | ||
84 | part_root = proc_mkdir(name, jffs_proc_root); | ||
85 | if (!part_root) | ||
86 | goto out1; | ||
87 | |||
88 | /* Create entry for 'info' file */ | ||
89 | part_info = create_proc_entry ("info", 0, part_root); | ||
90 | if (!part_info) | ||
91 | goto out2; | ||
92 | part_info->read_proc = jffs_proc_info_read; | ||
93 | part_info->data = (void *) c; | ||
94 | |||
95 | /* Create entry for 'layout' file */ | ||
96 | part_layout = create_proc_entry ("layout", 0, part_root); | ||
97 | if (!part_layout) | ||
98 | goto out3; | ||
99 | part_layout->read_proc = jffs_proc_layout_read; | ||
100 | part_layout->data = (void *) c; | ||
101 | |||
102 | /* Fill in structure for table and insert in the list */ | ||
103 | part_dir->c = c; | ||
104 | part_dir->part_root = part_root; | ||
105 | part_dir->part_info = part_info; | ||
106 | part_dir->part_layout = part_layout; | ||
107 | part_dir->next = jffs_part_dirs; | ||
108 | jffs_part_dirs = part_dir; | ||
109 | |||
110 | /* Return happy */ | ||
111 | return 0; | ||
112 | |||
113 | out3: | ||
114 | remove_proc_entry("info", part_root); | ||
115 | out2: | ||
116 | remove_proc_entry(name, jffs_proc_root); | ||
117 | out1: | ||
118 | kfree(part_dir); | ||
119 | out: | ||
120 | return -ENOMEM; | ||
121 | } | ||
122 | |||
123 | |||
124 | /* | ||
125 | * Unregister a JFFS partition directory (called at umount) | ||
126 | */ | ||
127 | int jffs_unregister_jffs_proc_dir(struct jffs_control *c) | ||
128 | { | ||
129 | struct jffs_partition_dir *part_dir = jffs_part_dirs; | ||
130 | struct jffs_partition_dir *prev_part_dir = NULL; | ||
131 | |||
132 | while (part_dir) { | ||
133 | if (part_dir->c == c) { | ||
134 | /* Remove entries for partition */ | ||
135 | remove_proc_entry (part_dir->part_info->name, | ||
136 | part_dir->part_root); | ||
137 | remove_proc_entry (part_dir->part_layout->name, | ||
138 | part_dir->part_root); | ||
139 | remove_proc_entry (part_dir->part_root->name, | ||
140 | jffs_proc_root); | ||
141 | |||
142 | /* Remove entry from list */ | ||
143 | if (prev_part_dir) | ||
144 | prev_part_dir->next = part_dir->next; | ||
145 | else | ||
146 | jffs_part_dirs = part_dir->next; | ||
147 | |||
148 | /* | ||
149 | * Check to see if this is the last one | ||
150 | * and remove the entry from '/proc/fs' | ||
151 | * if it is. | ||
152 | */ | ||
153 | if (jffs_part_dirs == part_dir->next) | ||
154 | remove_proc_entry ("jffs", proc_root_fs); | ||
155 | |||
156 | /* Free memory for entry */ | ||
157 | kfree(part_dir); | ||
158 | |||
159 | /* Return happy */ | ||
160 | return 0; | ||
161 | } | ||
162 | |||
163 | /* Move to next entry */ | ||
164 | prev_part_dir = part_dir; | ||
165 | part_dir = part_dir->next; | ||
166 | } | ||
167 | |||
168 | /* Return unhappy */ | ||
169 | return -1; | ||
170 | } | ||
171 | |||
172 | |||
173 | /* | ||
174 | * Read a JFFS partition's `info' file | ||
175 | */ | ||
176 | static int jffs_proc_info_read (char *page, char **start, off_t off, | ||
177 | int count, int *eof, void *data) | ||
178 | { | ||
179 | struct jffs_control *c = (struct jffs_control *) data; | ||
180 | int len = 0; | ||
181 | |||
182 | /* Get information on the parition */ | ||
183 | len += sprintf (page, | ||
184 | "partition size: %08lX (%u)\n" | ||
185 | "sector size: %08lX (%u)\n" | ||
186 | "used size: %08lX (%u)\n" | ||
187 | "dirty size: %08lX (%u)\n" | ||
188 | "free size: %08lX (%u)\n\n", | ||
189 | (unsigned long) c->fmc->flash_size, c->fmc->flash_size, | ||
190 | (unsigned long) c->fmc->sector_size, c->fmc->sector_size, | ||
191 | (unsigned long) c->fmc->used_size, c->fmc->used_size, | ||
192 | (unsigned long) c->fmc->dirty_size, c->fmc->dirty_size, | ||
193 | (unsigned long) (c->fmc->flash_size - | ||
194 | (c->fmc->used_size + c->fmc->dirty_size)), | ||
195 | c->fmc->flash_size - (c->fmc->used_size + c->fmc->dirty_size)); | ||
196 | |||
197 | /* We're done */ | ||
198 | *eof = 1; | ||
199 | |||
200 | /* Return length */ | ||
201 | return len; | ||
202 | } | ||
203 | |||
204 | |||
205 | /* | ||
206 | * Read a JFFS partition's `layout' file | ||
207 | */ | ||
208 | static int jffs_proc_layout_read (char *page, char **start, off_t off, | ||
209 | int count, int *eof, void *data) | ||
210 | { | ||
211 | struct jffs_control *c = (struct jffs_control *) data; | ||
212 | struct jffs_fm *fm = NULL; | ||
213 | struct jffs_fm *last_fm = NULL; | ||
214 | int len = 0; | ||
215 | |||
216 | /* Get the first item in the list */ | ||
217 | fm = c->fmc->head; | ||
218 | |||
219 | /* Print free space */ | ||
220 | if (fm && fm->offset) { | ||
221 | len += sprintf (page, "00000000 %08lX free\n", | ||
222 | (unsigned long) fm->offset); | ||
223 | } | ||
224 | |||
225 | /* Loop through all of the flash control structures */ | ||
226 | while (fm && (len < (off + count))) { | ||
227 | if (fm->nodes) { | ||
228 | len += sprintf (page + len, | ||
229 | "%08lX %08lX ino=%08lX, ver=%08lX\n", | ||
230 | (unsigned long) fm->offset, | ||
231 | (unsigned long) fm->size, | ||
232 | (unsigned long) fm->nodes->node->ino, | ||
233 | (unsigned long) fm->nodes->node->version); | ||
234 | } | ||
235 | else { | ||
236 | len += sprintf (page + len, | ||
237 | "%08lX %08lX dirty\n", | ||
238 | (unsigned long) fm->offset, | ||
239 | (unsigned long) fm->size); | ||
240 | } | ||
241 | last_fm = fm; | ||
242 | fm = fm->next; | ||
243 | } | ||
244 | |||
245 | /* Print free space */ | ||
246 | if ((len < (off + count)) && last_fm | ||
247 | && (last_fm->offset < c->fmc->flash_size)) { | ||
248 | len += sprintf (page + len, | ||
249 | "%08lX %08lX free\n", | ||
250 | (unsigned long) last_fm->offset + | ||
251 | last_fm->size, | ||
252 | (unsigned long) (c->fmc->flash_size - | ||
253 | (last_fm->offset + last_fm->size))); | ||
254 | } | ||
255 | |||
256 | /* We're done */ | ||
257 | *eof = 1; | ||
258 | |||
259 | /* Return length */ | ||
260 | return len; | ||
261 | } | ||
diff --git a/fs/jffs/jffs_proc.h b/fs/jffs/jffs_proc.h deleted file mode 100644 index 39a1c5d162b0..000000000000 --- a/fs/jffs/jffs_proc.h +++ /dev/null | |||
@@ -1,28 +0,0 @@ | |||
1 | /* | ||
2 | * JFFS -- Journaling Flash File System, Linux implementation. | ||
3 | * | ||
4 | * Copyright (C) 2000 Axis Communications AB. | ||
5 | * | ||
6 | * Created by Simon Kagstrom <simonk@axis.com>. | ||
7 | * | ||
8 | * This is free software; you can redistribute it and/or modify it | ||
9 | * under the terms of the GNU General Public License as published by | ||
10 | * the Free Software Foundation; either version 2 of the License, or | ||
11 | * (at your option) any later version. | ||
12 | * | ||
13 | * $Id: jffs_proc.h,v 1.2 2000/11/15 22:04:12 sjhill Exp $ | ||
14 | */ | ||
15 | |||
16 | /* jffs_proc.h defines a structure for inclusion in the proc-file system. */ | ||
17 | #ifndef __LINUX_JFFS_PROC_H__ | ||
18 | #define __LINUX_JFFS_PROC_H__ | ||
19 | |||
20 | #include <linux/proc_fs.h> | ||
21 | |||
22 | /* The proc_dir_entry for jffs (defined in jffs_proc.c). */ | ||
23 | extern struct proc_dir_entry *jffs_proc_root; | ||
24 | |||
25 | int jffs_register_jffs_proc_dir(int mtd, struct jffs_control *c); | ||
26 | int jffs_unregister_jffs_proc_dir(struct jffs_control *c); | ||
27 | |||
28 | #endif /* __LINUX_JFFS_PROC_H__ */ | ||