aboutsummaryrefslogtreecommitdiffstats
path: root/fs
diff options
context:
space:
mode:
Diffstat (limited to 'fs')
-rw-r--r--fs/ocfs2/stack_user.c184
1 files changed, 183 insertions, 1 deletions
diff --git a/fs/ocfs2/stack_user.c b/fs/ocfs2/stack_user.c
index 920eb1111b66..fdca5d3c7668 100644
--- a/fs/ocfs2/stack_user.c
+++ b/fs/ocfs2/stack_user.c
@@ -18,17 +18,199 @@
18 */ 18 */
19 19
20#include <linux/module.h> 20#include <linux/module.h>
21#include <linux/fs.h>
22#include <linux/miscdevice.h>
23#include <linux/mutex.h>
24#include <linux/reboot.h>
21 25
22#include "stackglue.h" 26#include "stackglue.h"
23 27
24 28
25static int __init user_stack_init(void) 29/*
30 * The control protocol starts with a handshake. Until the handshake
31 * is complete, the control device will fail all write(2)s.
32 *
33 * The handshake is simple. First, the client reads until EOF. Each line
34 * of output is a supported protocol tag. All protocol tags are a single
35 * character followed by a two hex digit version number. Currently the
36 * only things supported is T01, for "Text-base version 0x01". Next, the
37 * client writes the version they would like to use. If the version tag
38 * written is unknown, -EINVAL is returned. Once the negotiation is
39 * complete, the client can start sending messages.
40 */
41
42/*
43 * ocfs2_live_connection is refcounted because the filesystem and
44 * miscdevice sides can detach in different order. Let's just be safe.
45 */
46struct ocfs2_live_connection {
47 struct list_head oc_list;
48 struct ocfs2_cluster_connection *oc_conn;
49};
50
51static atomic_t ocfs2_control_opened;
52
53static LIST_HEAD(ocfs2_live_connection_list);
54static DEFINE_MUTEX(ocfs2_control_lock);
55
56static struct ocfs2_live_connection *ocfs2_connection_find(const char *name)
57{
58 size_t len = strlen(name);
59 struct ocfs2_live_connection *c;
60
61 BUG_ON(!mutex_is_locked(&ocfs2_control_lock));
62
63 list_for_each_entry(c, &ocfs2_live_connection_list, oc_list) {
64 if ((c->oc_conn->cc_namelen == len) &&
65 !strncmp(c->oc_conn->cc_name, name, len))
66 return c;
67 }
68
69 return c;
70}
71
72/*
73 * ocfs2_live_connection structures are created underneath the ocfs2
74 * mount path. Since the VFS prevents multiple calls to
75 * fill_super(), we can't get dupes here.
76 */
77static int ocfs2_live_connection_new(struct ocfs2_cluster_connection *conn,
78 struct ocfs2_live_connection **c_ret)
79{
80 int rc = 0;
81 struct ocfs2_live_connection *c;
82
83 c = kzalloc(sizeof(struct ocfs2_live_connection), GFP_KERNEL);
84 if (!c)
85 return -ENOMEM;
86
87 mutex_lock(&ocfs2_control_lock);
88 c->oc_conn = conn;
89
90 if (atomic_read(&ocfs2_control_opened))
91 list_add(&c->oc_list, &ocfs2_live_connection_list);
92 else {
93 printk(KERN_ERR
94 "ocfs2: Userspace control daemon is not present\n");
95 rc = -ESRCH;
96 }
97
98 mutex_unlock(&ocfs2_control_lock);
99
100 if (!rc)
101 *c_ret = c;
102 else
103 kfree(c);
104
105 return rc;
106}
107
108/*
109 * This function disconnects the cluster connection from ocfs2_control.
110 * Afterwards, userspace can't affect the cluster connection.
111 */
112static void ocfs2_live_connection_drop(struct ocfs2_live_connection *c)
113{
114 mutex_lock(&ocfs2_control_lock);
115 list_del_init(&c->oc_list);
116 c->oc_conn = NULL;
117 mutex_unlock(&ocfs2_control_lock);
118
119 kfree(c);
120}
121
122
123static ssize_t ocfs2_control_write(struct file *file,
124 const char __user *buf,
125 size_t count,
126 loff_t *ppos)
26{ 127{
27 return 0; 128 return 0;
28} 129}
29 130
131static ssize_t ocfs2_control_read(struct file *file,
132 char __user *buf,
133 size_t count,
134 loff_t *ppos)
135{
136 return 0;
137}
138
139static int ocfs2_control_release(struct inode *inode, struct file *file)
140{
141 if (atomic_dec_and_test(&ocfs2_control_opened)) {
142 mutex_lock(&ocfs2_control_lock);
143 if (!list_empty(&ocfs2_live_connection_list)) {
144 /* XXX: Do bad things! */
145 printk(KERN_ERR
146 "ocfs2: Unexpected release of ocfs2_control!\n"
147 " Loss of cluster connection requires "
148 "an emergency restart!\n");
149 emergency_restart();
150 }
151 mutex_unlock(&ocfs2_control_lock);
152 }
153
154 return 0;
155}
156
157static int ocfs2_control_open(struct inode *inode, struct file *file)
158{
159 atomic_inc(&ocfs2_control_opened);
160
161 return 0;
162}
163
164static const struct file_operations ocfs2_control_fops = {
165 .open = ocfs2_control_open,
166 .release = ocfs2_control_release,
167 .read = ocfs2_control_read,
168 .write = ocfs2_control_write,
169 .owner = THIS_MODULE,
170};
171
172struct miscdevice ocfs2_control_device = {
173 .minor = MISC_DYNAMIC_MINOR,
174 .name = "ocfs2_control",
175 .fops = &ocfs2_control_fops,
176};
177
178static int ocfs2_control_init(void)
179{
180 int rc;
181
182 atomic_set(&ocfs2_control_opened, 0);
183
184 rc = misc_register(&ocfs2_control_device);
185 if (rc)
186 printk(KERN_ERR
187 "ocfs2: Unable to register ocfs2_control device "
188 "(errno %d)\n",
189 -rc);
190
191 return rc;
192}
193
194static void ocfs2_control_exit(void)
195{
196 int rc;
197
198 rc = misc_deregister(&ocfs2_control_device);
199 if (rc)
200 printk(KERN_ERR
201 "ocfs2: Unable to deregister ocfs2_control device "
202 "(errno %d)\n",
203 -rc);
204}
205
206static int __init user_stack_init(void)
207{
208 return ocfs2_control_init();
209}
210
30static void __exit user_stack_exit(void) 211static void __exit user_stack_exit(void)
31{ 212{
213 ocfs2_control_exit();
32} 214}
33 215
34MODULE_AUTHOR("Oracle"); 216MODULE_AUTHOR("Oracle");