diff options
Diffstat (limited to 'fs/xfs/xfs_inode_item.c')
-rw-r--r-- | fs/xfs/xfs_inode_item.c | 1092 |
1 files changed, 1092 insertions, 0 deletions
diff --git a/fs/xfs/xfs_inode_item.c b/fs/xfs/xfs_inode_item.c new file mode 100644 index 000000000000..768cb1816b8e --- /dev/null +++ b/fs/xfs/xfs_inode_item.c | |||
@@ -0,0 +1,1092 @@ | |||
1 | /* | ||
2 | * Copyright (c) 2000-2002 Silicon Graphics, Inc. All Rights Reserved. | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or modify it | ||
5 | * under the terms of version 2 of the GNU General Public License as | ||
6 | * published by the Free Software Foundation. | ||
7 | * | ||
8 | * This program is distributed in the hope that it would be useful, but | ||
9 | * WITHOUT ANY WARRANTY; without even the implied warranty of | ||
10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. | ||
11 | * | ||
12 | * Further, this software is distributed without any warranty that it is | ||
13 | * free of the rightful claim of any third person regarding infringement | ||
14 | * or the like. Any license provided herein, whether implied or | ||
15 | * otherwise, applies only to this software file. Patent licenses, if | ||
16 | * any, provided herein do not apply to combinations of this program with | ||
17 | * other software, or any other product whatsoever. | ||
18 | * | ||
19 | * You should have received a copy of the GNU General Public License along | ||
20 | * with this program; if not, write the Free Software Foundation, Inc., 59 | ||
21 | * Temple Place - Suite 330, Boston MA 02111-1307, USA. | ||
22 | * | ||
23 | * Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy, | ||
24 | * Mountain View, CA 94043, or: | ||
25 | * | ||
26 | * http://www.sgi.com | ||
27 | * | ||
28 | * For further information regarding this notice, see: | ||
29 | * | ||
30 | * http://oss.sgi.com/projects/GenInfo/SGIGPLNoticeExplan/ | ||
31 | */ | ||
32 | |||
33 | /* | ||
34 | * This file contains the implementation of the xfs_inode_log_item. | ||
35 | * It contains the item operations used to manipulate the inode log | ||
36 | * items as well as utility routines used by the inode specific | ||
37 | * transaction routines. | ||
38 | */ | ||
39 | #include "xfs.h" | ||
40 | #include "xfs_macros.h" | ||
41 | #include "xfs_types.h" | ||
42 | #include "xfs_inum.h" | ||
43 | #include "xfs_log.h" | ||
44 | #include "xfs_trans.h" | ||
45 | #include "xfs_buf_item.h" | ||
46 | #include "xfs_sb.h" | ||
47 | #include "xfs_dir.h" | ||
48 | #include "xfs_dir2.h" | ||
49 | #include "xfs_dmapi.h" | ||
50 | #include "xfs_mount.h" | ||
51 | #include "xfs_trans_priv.h" | ||
52 | #include "xfs_ag.h" | ||
53 | #include "xfs_alloc_btree.h" | ||
54 | #include "xfs_bmap_btree.h" | ||
55 | #include "xfs_ialloc_btree.h" | ||
56 | #include "xfs_btree.h" | ||
57 | #include "xfs_ialloc.h" | ||
58 | #include "xfs_attr_sf.h" | ||
59 | #include "xfs_dir_sf.h" | ||
60 | #include "xfs_dir2_sf.h" | ||
61 | #include "xfs_dinode.h" | ||
62 | #include "xfs_inode_item.h" | ||
63 | #include "xfs_inode.h" | ||
64 | #include "xfs_rw.h" | ||
65 | |||
66 | |||
67 | kmem_zone_t *xfs_ili_zone; /* inode log item zone */ | ||
68 | |||
69 | /* | ||
70 | * This returns the number of iovecs needed to log the given inode item. | ||
71 | * | ||
72 | * We need one iovec for the inode log format structure, one for the | ||
73 | * inode core, and possibly one for the inode data/extents/b-tree root | ||
74 | * and one for the inode attribute data/extents/b-tree root. | ||
75 | */ | ||
76 | STATIC uint | ||
77 | xfs_inode_item_size( | ||
78 | xfs_inode_log_item_t *iip) | ||
79 | { | ||
80 | uint nvecs; | ||
81 | xfs_inode_t *ip; | ||
82 | |||
83 | ip = iip->ili_inode; | ||
84 | nvecs = 2; | ||
85 | |||
86 | /* | ||
87 | * Only log the data/extents/b-tree root if there is something | ||
88 | * left to log. | ||
89 | */ | ||
90 | iip->ili_format.ilf_fields |= XFS_ILOG_CORE; | ||
91 | |||
92 | switch (ip->i_d.di_format) { | ||
93 | case XFS_DINODE_FMT_EXTENTS: | ||
94 | iip->ili_format.ilf_fields &= | ||
95 | ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | | ||
96 | XFS_ILOG_DEV | XFS_ILOG_UUID); | ||
97 | if ((iip->ili_format.ilf_fields & XFS_ILOG_DEXT) && | ||
98 | (ip->i_d.di_nextents > 0) && | ||
99 | (ip->i_df.if_bytes > 0)) { | ||
100 | ASSERT(ip->i_df.if_u1.if_extents != NULL); | ||
101 | nvecs++; | ||
102 | } else { | ||
103 | iip->ili_format.ilf_fields &= ~XFS_ILOG_DEXT; | ||
104 | } | ||
105 | break; | ||
106 | |||
107 | case XFS_DINODE_FMT_BTREE: | ||
108 | ASSERT(ip->i_df.if_ext_max == | ||
109 | XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t)); | ||
110 | iip->ili_format.ilf_fields &= | ||
111 | ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | | ||
112 | XFS_ILOG_DEV | XFS_ILOG_UUID); | ||
113 | if ((iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) && | ||
114 | (ip->i_df.if_broot_bytes > 0)) { | ||
115 | ASSERT(ip->i_df.if_broot != NULL); | ||
116 | nvecs++; | ||
117 | } else { | ||
118 | ASSERT(!(iip->ili_format.ilf_fields & | ||
119 | XFS_ILOG_DBROOT)); | ||
120 | #ifdef XFS_TRANS_DEBUG | ||
121 | if (iip->ili_root_size > 0) { | ||
122 | ASSERT(iip->ili_root_size == | ||
123 | ip->i_df.if_broot_bytes); | ||
124 | ASSERT(memcmp(iip->ili_orig_root, | ||
125 | ip->i_df.if_broot, | ||
126 | iip->ili_root_size) == 0); | ||
127 | } else { | ||
128 | ASSERT(ip->i_df.if_broot_bytes == 0); | ||
129 | } | ||
130 | #endif | ||
131 | iip->ili_format.ilf_fields &= ~XFS_ILOG_DBROOT; | ||
132 | } | ||
133 | break; | ||
134 | |||
135 | case XFS_DINODE_FMT_LOCAL: | ||
136 | iip->ili_format.ilf_fields &= | ||
137 | ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | | ||
138 | XFS_ILOG_DEV | XFS_ILOG_UUID); | ||
139 | if ((iip->ili_format.ilf_fields & XFS_ILOG_DDATA) && | ||
140 | (ip->i_df.if_bytes > 0)) { | ||
141 | ASSERT(ip->i_df.if_u1.if_data != NULL); | ||
142 | ASSERT(ip->i_d.di_size > 0); | ||
143 | nvecs++; | ||
144 | } else { | ||
145 | iip->ili_format.ilf_fields &= ~XFS_ILOG_DDATA; | ||
146 | } | ||
147 | break; | ||
148 | |||
149 | case XFS_DINODE_FMT_DEV: | ||
150 | iip->ili_format.ilf_fields &= | ||
151 | ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | | ||
152 | XFS_ILOG_DEXT | XFS_ILOG_UUID); | ||
153 | break; | ||
154 | |||
155 | case XFS_DINODE_FMT_UUID: | ||
156 | iip->ili_format.ilf_fields &= | ||
157 | ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | | ||
158 | XFS_ILOG_DEXT | XFS_ILOG_DEV); | ||
159 | break; | ||
160 | |||
161 | default: | ||
162 | ASSERT(0); | ||
163 | break; | ||
164 | } | ||
165 | |||
166 | /* | ||
167 | * If there are no attributes associated with this file, | ||
168 | * then there cannot be anything more to log. | ||
169 | * Clear all attribute-related log flags. | ||
170 | */ | ||
171 | if (!XFS_IFORK_Q(ip)) { | ||
172 | iip->ili_format.ilf_fields &= | ||
173 | ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT); | ||
174 | return nvecs; | ||
175 | } | ||
176 | |||
177 | /* | ||
178 | * Log any necessary attribute data. | ||
179 | */ | ||
180 | switch (ip->i_d.di_aformat) { | ||
181 | case XFS_DINODE_FMT_EXTENTS: | ||
182 | iip->ili_format.ilf_fields &= | ||
183 | ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT); | ||
184 | if ((iip->ili_format.ilf_fields & XFS_ILOG_AEXT) && | ||
185 | (ip->i_d.di_anextents > 0) && | ||
186 | (ip->i_afp->if_bytes > 0)) { | ||
187 | ASSERT(ip->i_afp->if_u1.if_extents != NULL); | ||
188 | nvecs++; | ||
189 | } else { | ||
190 | iip->ili_format.ilf_fields &= ~XFS_ILOG_AEXT; | ||
191 | } | ||
192 | break; | ||
193 | |||
194 | case XFS_DINODE_FMT_BTREE: | ||
195 | iip->ili_format.ilf_fields &= | ||
196 | ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT); | ||
197 | if ((iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) && | ||
198 | (ip->i_afp->if_broot_bytes > 0)) { | ||
199 | ASSERT(ip->i_afp->if_broot != NULL); | ||
200 | nvecs++; | ||
201 | } else { | ||
202 | iip->ili_format.ilf_fields &= ~XFS_ILOG_ABROOT; | ||
203 | } | ||
204 | break; | ||
205 | |||
206 | case XFS_DINODE_FMT_LOCAL: | ||
207 | iip->ili_format.ilf_fields &= | ||
208 | ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT); | ||
209 | if ((iip->ili_format.ilf_fields & XFS_ILOG_ADATA) && | ||
210 | (ip->i_afp->if_bytes > 0)) { | ||
211 | ASSERT(ip->i_afp->if_u1.if_data != NULL); | ||
212 | nvecs++; | ||
213 | } else { | ||
214 | iip->ili_format.ilf_fields &= ~XFS_ILOG_ADATA; | ||
215 | } | ||
216 | break; | ||
217 | |||
218 | default: | ||
219 | ASSERT(0); | ||
220 | break; | ||
221 | } | ||
222 | |||
223 | return nvecs; | ||
224 | } | ||
225 | |||
226 | /* | ||
227 | * This is called to fill in the vector of log iovecs for the | ||
228 | * given inode log item. It fills the first item with an inode | ||
229 | * log format structure, the second with the on-disk inode structure, | ||
230 | * and a possible third and/or fourth with the inode data/extents/b-tree | ||
231 | * root and inode attributes data/extents/b-tree root. | ||
232 | */ | ||
233 | STATIC void | ||
234 | xfs_inode_item_format( | ||
235 | xfs_inode_log_item_t *iip, | ||
236 | xfs_log_iovec_t *log_vector) | ||
237 | { | ||
238 | uint nvecs; | ||
239 | xfs_log_iovec_t *vecp; | ||
240 | xfs_inode_t *ip; | ||
241 | size_t data_bytes; | ||
242 | xfs_bmbt_rec_t *ext_buffer; | ||
243 | int nrecs; | ||
244 | xfs_mount_t *mp; | ||
245 | |||
246 | ip = iip->ili_inode; | ||
247 | vecp = log_vector; | ||
248 | |||
249 | vecp->i_addr = (xfs_caddr_t)&iip->ili_format; | ||
250 | vecp->i_len = sizeof(xfs_inode_log_format_t); | ||
251 | vecp++; | ||
252 | nvecs = 1; | ||
253 | |||
254 | /* | ||
255 | * Clear i_update_core if the timestamps (or any other | ||
256 | * non-transactional modification) need flushing/logging | ||
257 | * and we're about to log them with the rest of the core. | ||
258 | * | ||
259 | * This is the same logic as xfs_iflush() but this code can't | ||
260 | * run at the same time as xfs_iflush because we're in commit | ||
261 | * processing here and so we have the inode lock held in | ||
262 | * exclusive mode. Although it doesn't really matter | ||
263 | * for the timestamps if both routines were to grab the | ||
264 | * timestamps or not. That would be ok. | ||
265 | * | ||
266 | * We clear i_update_core before copying out the data. | ||
267 | * This is for coordination with our timestamp updates | ||
268 | * that don't hold the inode lock. They will always | ||
269 | * update the timestamps BEFORE setting i_update_core, | ||
270 | * so if we clear i_update_core after they set it we | ||
271 | * are guaranteed to see their updates to the timestamps | ||
272 | * either here. Likewise, if they set it after we clear it | ||
273 | * here, we'll see it either on the next commit of this | ||
274 | * inode or the next time the inode gets flushed via | ||
275 | * xfs_iflush(). This depends on strongly ordered memory | ||
276 | * semantics, but we have that. We use the SYNCHRONIZE | ||
277 | * macro to make sure that the compiler does not reorder | ||
278 | * the i_update_core access below the data copy below. | ||
279 | */ | ||
280 | if (ip->i_update_core) { | ||
281 | ip->i_update_core = 0; | ||
282 | SYNCHRONIZE(); | ||
283 | } | ||
284 | |||
285 | /* | ||
286 | * We don't have to worry about re-ordering here because | ||
287 | * the update_size field is protected by the inode lock | ||
288 | * and we have that held in exclusive mode. | ||
289 | */ | ||
290 | if (ip->i_update_size) | ||
291 | ip->i_update_size = 0; | ||
292 | |||
293 | vecp->i_addr = (xfs_caddr_t)&ip->i_d; | ||
294 | vecp->i_len = sizeof(xfs_dinode_core_t); | ||
295 | vecp++; | ||
296 | nvecs++; | ||
297 | iip->ili_format.ilf_fields |= XFS_ILOG_CORE; | ||
298 | |||
299 | /* | ||
300 | * If this is really an old format inode, then we need to | ||
301 | * log it as such. This means that we have to copy the link | ||
302 | * count from the new field to the old. We don't have to worry | ||
303 | * about the new fields, because nothing trusts them as long as | ||
304 | * the old inode version number is there. If the superblock already | ||
305 | * has a new version number, then we don't bother converting back. | ||
306 | */ | ||
307 | mp = ip->i_mount; | ||
308 | ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 || | ||
309 | XFS_SB_VERSION_HASNLINK(&mp->m_sb)); | ||
310 | if (ip->i_d.di_version == XFS_DINODE_VERSION_1) { | ||
311 | if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) { | ||
312 | /* | ||
313 | * Convert it back. | ||
314 | */ | ||
315 | ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1); | ||
316 | ip->i_d.di_onlink = ip->i_d.di_nlink; | ||
317 | } else { | ||
318 | /* | ||
319 | * The superblock version has already been bumped, | ||
320 | * so just make the conversion to the new inode | ||
321 | * format permanent. | ||
322 | */ | ||
323 | ip->i_d.di_version = XFS_DINODE_VERSION_2; | ||
324 | ip->i_d.di_onlink = 0; | ||
325 | memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); | ||
326 | } | ||
327 | } | ||
328 | |||
329 | switch (ip->i_d.di_format) { | ||
330 | case XFS_DINODE_FMT_EXTENTS: | ||
331 | ASSERT(!(iip->ili_format.ilf_fields & | ||
332 | (XFS_ILOG_DDATA | XFS_ILOG_DBROOT | | ||
333 | XFS_ILOG_DEV | XFS_ILOG_UUID))); | ||
334 | if (iip->ili_format.ilf_fields & XFS_ILOG_DEXT) { | ||
335 | ASSERT(ip->i_df.if_bytes > 0); | ||
336 | ASSERT(ip->i_df.if_u1.if_extents != NULL); | ||
337 | ASSERT(ip->i_d.di_nextents > 0); | ||
338 | ASSERT(iip->ili_extents_buf == NULL); | ||
339 | nrecs = ip->i_df.if_bytes / | ||
340 | (uint)sizeof(xfs_bmbt_rec_t); | ||
341 | ASSERT(nrecs > 0); | ||
342 | #if __BYTE_ORDER == __BIG_ENDIAN | ||
343 | if (nrecs == ip->i_d.di_nextents) { | ||
344 | /* | ||
345 | * There are no delayed allocation | ||
346 | * extents, so just point to the | ||
347 | * real extents array. | ||
348 | */ | ||
349 | vecp->i_addr = | ||
350 | (char *)(ip->i_df.if_u1.if_extents); | ||
351 | vecp->i_len = ip->i_df.if_bytes; | ||
352 | } else | ||
353 | #endif | ||
354 | { | ||
355 | /* | ||
356 | * There are delayed allocation extents | ||
357 | * in the inode, or we need to convert | ||
358 | * the extents to on disk format. | ||
359 | * Use xfs_iextents_copy() | ||
360 | * to copy only the real extents into | ||
361 | * a separate buffer. We'll free the | ||
362 | * buffer in the unlock routine. | ||
363 | */ | ||
364 | ext_buffer = kmem_alloc(ip->i_df.if_bytes, | ||
365 | KM_SLEEP); | ||
366 | iip->ili_extents_buf = ext_buffer; | ||
367 | vecp->i_addr = (xfs_caddr_t)ext_buffer; | ||
368 | vecp->i_len = xfs_iextents_copy(ip, ext_buffer, | ||
369 | XFS_DATA_FORK); | ||
370 | } | ||
371 | ASSERT(vecp->i_len <= ip->i_df.if_bytes); | ||
372 | iip->ili_format.ilf_dsize = vecp->i_len; | ||
373 | vecp++; | ||
374 | nvecs++; | ||
375 | } | ||
376 | break; | ||
377 | |||
378 | case XFS_DINODE_FMT_BTREE: | ||
379 | ASSERT(!(iip->ili_format.ilf_fields & | ||
380 | (XFS_ILOG_DDATA | XFS_ILOG_DEXT | | ||
381 | XFS_ILOG_DEV | XFS_ILOG_UUID))); | ||
382 | if (iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) { | ||
383 | ASSERT(ip->i_df.if_broot_bytes > 0); | ||
384 | ASSERT(ip->i_df.if_broot != NULL); | ||
385 | vecp->i_addr = (xfs_caddr_t)ip->i_df.if_broot; | ||
386 | vecp->i_len = ip->i_df.if_broot_bytes; | ||
387 | vecp++; | ||
388 | nvecs++; | ||
389 | iip->ili_format.ilf_dsize = ip->i_df.if_broot_bytes; | ||
390 | } | ||
391 | break; | ||
392 | |||
393 | case XFS_DINODE_FMT_LOCAL: | ||
394 | ASSERT(!(iip->ili_format.ilf_fields & | ||
395 | (XFS_ILOG_DBROOT | XFS_ILOG_DEXT | | ||
396 | XFS_ILOG_DEV | XFS_ILOG_UUID))); | ||
397 | if (iip->ili_format.ilf_fields & XFS_ILOG_DDATA) { | ||
398 | ASSERT(ip->i_df.if_bytes > 0); | ||
399 | ASSERT(ip->i_df.if_u1.if_data != NULL); | ||
400 | ASSERT(ip->i_d.di_size > 0); | ||
401 | |||
402 | vecp->i_addr = (xfs_caddr_t)ip->i_df.if_u1.if_data; | ||
403 | /* | ||
404 | * Round i_bytes up to a word boundary. | ||
405 | * The underlying memory is guaranteed to | ||
406 | * to be there by xfs_idata_realloc(). | ||
407 | */ | ||
408 | data_bytes = roundup(ip->i_df.if_bytes, 4); | ||
409 | ASSERT((ip->i_df.if_real_bytes == 0) || | ||
410 | (ip->i_df.if_real_bytes == data_bytes)); | ||
411 | vecp->i_len = (int)data_bytes; | ||
412 | vecp++; | ||
413 | nvecs++; | ||
414 | iip->ili_format.ilf_dsize = (unsigned)data_bytes; | ||
415 | } | ||
416 | break; | ||
417 | |||
418 | case XFS_DINODE_FMT_DEV: | ||
419 | ASSERT(!(iip->ili_format.ilf_fields & | ||
420 | (XFS_ILOG_DBROOT | XFS_ILOG_DEXT | | ||
421 | XFS_ILOG_DDATA | XFS_ILOG_UUID))); | ||
422 | if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) { | ||
423 | iip->ili_format.ilf_u.ilfu_rdev = | ||
424 | ip->i_df.if_u2.if_rdev; | ||
425 | } | ||
426 | break; | ||
427 | |||
428 | case XFS_DINODE_FMT_UUID: | ||
429 | ASSERT(!(iip->ili_format.ilf_fields & | ||
430 | (XFS_ILOG_DBROOT | XFS_ILOG_DEXT | | ||
431 | XFS_ILOG_DDATA | XFS_ILOG_DEV))); | ||
432 | if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) { | ||
433 | iip->ili_format.ilf_u.ilfu_uuid = | ||
434 | ip->i_df.if_u2.if_uuid; | ||
435 | } | ||
436 | break; | ||
437 | |||
438 | default: | ||
439 | ASSERT(0); | ||
440 | break; | ||
441 | } | ||
442 | |||
443 | /* | ||
444 | * If there are no attributes associated with the file, | ||
445 | * then we're done. | ||
446 | * Assert that no attribute-related log flags are set. | ||
447 | */ | ||
448 | if (!XFS_IFORK_Q(ip)) { | ||
449 | ASSERT(nvecs == iip->ili_item.li_desc->lid_size); | ||
450 | iip->ili_format.ilf_size = nvecs; | ||
451 | ASSERT(!(iip->ili_format.ilf_fields & | ||
452 | (XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT))); | ||
453 | return; | ||
454 | } | ||
455 | |||
456 | switch (ip->i_d.di_aformat) { | ||
457 | case XFS_DINODE_FMT_EXTENTS: | ||
458 | ASSERT(!(iip->ili_format.ilf_fields & | ||
459 | (XFS_ILOG_ADATA | XFS_ILOG_ABROOT))); | ||
460 | if (iip->ili_format.ilf_fields & XFS_ILOG_AEXT) { | ||
461 | ASSERT(ip->i_afp->if_bytes > 0); | ||
462 | ASSERT(ip->i_afp->if_u1.if_extents != NULL); | ||
463 | ASSERT(ip->i_d.di_anextents > 0); | ||
464 | #ifdef DEBUG | ||
465 | nrecs = ip->i_afp->if_bytes / | ||
466 | (uint)sizeof(xfs_bmbt_rec_t); | ||
467 | #endif | ||
468 | ASSERT(nrecs > 0); | ||
469 | ASSERT(nrecs == ip->i_d.di_anextents); | ||
470 | #if __BYTE_ORDER == __BIG_ENDIAN | ||
471 | /* | ||
472 | * There are not delayed allocation extents | ||
473 | * for attributes, so just point at the array. | ||
474 | */ | ||
475 | vecp->i_addr = (char *)(ip->i_afp->if_u1.if_extents); | ||
476 | vecp->i_len = ip->i_afp->if_bytes; | ||
477 | #else | ||
478 | ASSERT(iip->ili_aextents_buf == NULL); | ||
479 | /* | ||
480 | * Need to endian flip before logging | ||
481 | */ | ||
482 | ext_buffer = kmem_alloc(ip->i_afp->if_bytes, | ||
483 | KM_SLEEP); | ||
484 | iip->ili_aextents_buf = ext_buffer; | ||
485 | vecp->i_addr = (xfs_caddr_t)ext_buffer; | ||
486 | vecp->i_len = xfs_iextents_copy(ip, ext_buffer, | ||
487 | XFS_ATTR_FORK); | ||
488 | #endif | ||
489 | iip->ili_format.ilf_asize = vecp->i_len; | ||
490 | vecp++; | ||
491 | nvecs++; | ||
492 | } | ||
493 | break; | ||
494 | |||
495 | case XFS_DINODE_FMT_BTREE: | ||
496 | ASSERT(!(iip->ili_format.ilf_fields & | ||
497 | (XFS_ILOG_ADATA | XFS_ILOG_AEXT))); | ||
498 | if (iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) { | ||
499 | ASSERT(ip->i_afp->if_broot_bytes > 0); | ||
500 | ASSERT(ip->i_afp->if_broot != NULL); | ||
501 | vecp->i_addr = (xfs_caddr_t)ip->i_afp->if_broot; | ||
502 | vecp->i_len = ip->i_afp->if_broot_bytes; | ||
503 | vecp++; | ||
504 | nvecs++; | ||
505 | iip->ili_format.ilf_asize = ip->i_afp->if_broot_bytes; | ||
506 | } | ||
507 | break; | ||
508 | |||
509 | case XFS_DINODE_FMT_LOCAL: | ||
510 | ASSERT(!(iip->ili_format.ilf_fields & | ||
511 | (XFS_ILOG_ABROOT | XFS_ILOG_AEXT))); | ||
512 | if (iip->ili_format.ilf_fields & XFS_ILOG_ADATA) { | ||
513 | ASSERT(ip->i_afp->if_bytes > 0); | ||
514 | ASSERT(ip->i_afp->if_u1.if_data != NULL); | ||
515 | |||
516 | vecp->i_addr = (xfs_caddr_t)ip->i_afp->if_u1.if_data; | ||
517 | /* | ||
518 | * Round i_bytes up to a word boundary. | ||
519 | * The underlying memory is guaranteed to | ||
520 | * to be there by xfs_idata_realloc(). | ||
521 | */ | ||
522 | data_bytes = roundup(ip->i_afp->if_bytes, 4); | ||
523 | ASSERT((ip->i_afp->if_real_bytes == 0) || | ||
524 | (ip->i_afp->if_real_bytes == data_bytes)); | ||
525 | vecp->i_len = (int)data_bytes; | ||
526 | vecp++; | ||
527 | nvecs++; | ||
528 | iip->ili_format.ilf_asize = (unsigned)data_bytes; | ||
529 | } | ||
530 | break; | ||
531 | |||
532 | default: | ||
533 | ASSERT(0); | ||
534 | break; | ||
535 | } | ||
536 | |||
537 | ASSERT(nvecs == iip->ili_item.li_desc->lid_size); | ||
538 | iip->ili_format.ilf_size = nvecs; | ||
539 | } | ||
540 | |||
541 | |||
542 | /* | ||
543 | * This is called to pin the inode associated with the inode log | ||
544 | * item in memory so it cannot be written out. Do this by calling | ||
545 | * xfs_ipin() to bump the pin count in the inode while holding the | ||
546 | * inode pin lock. | ||
547 | */ | ||
548 | STATIC void | ||
549 | xfs_inode_item_pin( | ||
550 | xfs_inode_log_item_t *iip) | ||
551 | { | ||
552 | ASSERT(ismrlocked(&(iip->ili_inode->i_lock), MR_UPDATE)); | ||
553 | xfs_ipin(iip->ili_inode); | ||
554 | } | ||
555 | |||
556 | |||
557 | /* | ||
558 | * This is called to unpin the inode associated with the inode log | ||
559 | * item which was previously pinned with a call to xfs_inode_item_pin(). | ||
560 | * Just call xfs_iunpin() on the inode to do this. | ||
561 | */ | ||
562 | /* ARGSUSED */ | ||
563 | STATIC void | ||
564 | xfs_inode_item_unpin( | ||
565 | xfs_inode_log_item_t *iip, | ||
566 | int stale) | ||
567 | { | ||
568 | xfs_iunpin(iip->ili_inode); | ||
569 | } | ||
570 | |||
571 | /* ARGSUSED */ | ||
572 | STATIC void | ||
573 | xfs_inode_item_unpin_remove( | ||
574 | xfs_inode_log_item_t *iip, | ||
575 | xfs_trans_t *tp) | ||
576 | { | ||
577 | xfs_iunpin(iip->ili_inode); | ||
578 | } | ||
579 | |||
580 | /* | ||
581 | * This is called to attempt to lock the inode associated with this | ||
582 | * inode log item, in preparation for the push routine which does the actual | ||
583 | * iflush. Don't sleep on the inode lock or the flush lock. | ||
584 | * | ||
585 | * If the flush lock is already held, indicating that the inode has | ||
586 | * been or is in the process of being flushed, then (ideally) we'd like to | ||
587 | * see if the inode's buffer is still incore, and if so give it a nudge. | ||
588 | * We delay doing so until the pushbuf routine, though, to avoid holding | ||
589 | * the AIL lock across a call to the blackhole which is the buffercache. | ||
590 | * Also we don't want to sleep in any device strategy routines, which can happen | ||
591 | * if we do the subsequent bawrite in here. | ||
592 | */ | ||
593 | STATIC uint | ||
594 | xfs_inode_item_trylock( | ||
595 | xfs_inode_log_item_t *iip) | ||
596 | { | ||
597 | register xfs_inode_t *ip; | ||
598 | |||
599 | ip = iip->ili_inode; | ||
600 | |||
601 | if (xfs_ipincount(ip) > 0) { | ||
602 | return XFS_ITEM_PINNED; | ||
603 | } | ||
604 | |||
605 | if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) { | ||
606 | return XFS_ITEM_LOCKED; | ||
607 | } | ||
608 | |||
609 | if (!xfs_iflock_nowait(ip)) { | ||
610 | /* | ||
611 | * If someone else isn't already trying to push the inode | ||
612 | * buffer, we get to do it. | ||
613 | */ | ||
614 | if (iip->ili_pushbuf_flag == 0) { | ||
615 | iip->ili_pushbuf_flag = 1; | ||
616 | #ifdef DEBUG | ||
617 | iip->ili_push_owner = get_thread_id(); | ||
618 | #endif | ||
619 | /* | ||
620 | * Inode is left locked in shared mode. | ||
621 | * Pushbuf routine gets to unlock it. | ||
622 | */ | ||
623 | return XFS_ITEM_PUSHBUF; | ||
624 | } else { | ||
625 | /* | ||
626 | * We hold the AIL_LOCK, so we must specify the | ||
627 | * NONOTIFY flag so that we won't double trip. | ||
628 | */ | ||
629 | xfs_iunlock(ip, XFS_ILOCK_SHARED|XFS_IUNLOCK_NONOTIFY); | ||
630 | return XFS_ITEM_FLUSHING; | ||
631 | } | ||
632 | /* NOTREACHED */ | ||
633 | } | ||
634 | |||
635 | /* Stale items should force out the iclog */ | ||
636 | if (ip->i_flags & XFS_ISTALE) { | ||
637 | xfs_ifunlock(ip); | ||
638 | xfs_iunlock(ip, XFS_ILOCK_SHARED|XFS_IUNLOCK_NONOTIFY); | ||
639 | return XFS_ITEM_PINNED; | ||
640 | } | ||
641 | |||
642 | #ifdef DEBUG | ||
643 | if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) { | ||
644 | ASSERT(iip->ili_format.ilf_fields != 0); | ||
645 | ASSERT(iip->ili_logged == 0); | ||
646 | ASSERT(iip->ili_item.li_flags & XFS_LI_IN_AIL); | ||
647 | } | ||
648 | #endif | ||
649 | return XFS_ITEM_SUCCESS; | ||
650 | } | ||
651 | |||
652 | /* | ||
653 | * Unlock the inode associated with the inode log item. | ||
654 | * Clear the fields of the inode and inode log item that | ||
655 | * are specific to the current transaction. If the | ||
656 | * hold flags is set, do not unlock the inode. | ||
657 | */ | ||
658 | STATIC void | ||
659 | xfs_inode_item_unlock( | ||
660 | xfs_inode_log_item_t *iip) | ||
661 | { | ||
662 | uint hold; | ||
663 | uint iolocked; | ||
664 | uint lock_flags; | ||
665 | xfs_inode_t *ip; | ||
666 | |||
667 | ASSERT(iip != NULL); | ||
668 | ASSERT(iip->ili_inode->i_itemp != NULL); | ||
669 | ASSERT(ismrlocked(&(iip->ili_inode->i_lock), MR_UPDATE)); | ||
670 | ASSERT((!(iip->ili_inode->i_itemp->ili_flags & | ||
671 | XFS_ILI_IOLOCKED_EXCL)) || | ||
672 | ismrlocked(&(iip->ili_inode->i_iolock), MR_UPDATE)); | ||
673 | ASSERT((!(iip->ili_inode->i_itemp->ili_flags & | ||
674 | XFS_ILI_IOLOCKED_SHARED)) || | ||
675 | ismrlocked(&(iip->ili_inode->i_iolock), MR_ACCESS)); | ||
676 | /* | ||
677 | * Clear the transaction pointer in the inode. | ||
678 | */ | ||
679 | ip = iip->ili_inode; | ||
680 | ip->i_transp = NULL; | ||
681 | |||
682 | /* | ||
683 | * If the inode needed a separate buffer with which to log | ||
684 | * its extents, then free it now. | ||
685 | */ | ||
686 | if (iip->ili_extents_buf != NULL) { | ||
687 | ASSERT(ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS); | ||
688 | ASSERT(ip->i_d.di_nextents > 0); | ||
689 | ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_DEXT); | ||
690 | ASSERT(ip->i_df.if_bytes > 0); | ||
691 | kmem_free(iip->ili_extents_buf, ip->i_df.if_bytes); | ||
692 | iip->ili_extents_buf = NULL; | ||
693 | } | ||
694 | if (iip->ili_aextents_buf != NULL) { | ||
695 | ASSERT(ip->i_d.di_aformat == XFS_DINODE_FMT_EXTENTS); | ||
696 | ASSERT(ip->i_d.di_anextents > 0); | ||
697 | ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_AEXT); | ||
698 | ASSERT(ip->i_afp->if_bytes > 0); | ||
699 | kmem_free(iip->ili_aextents_buf, ip->i_afp->if_bytes); | ||
700 | iip->ili_aextents_buf = NULL; | ||
701 | } | ||
702 | |||
703 | /* | ||
704 | * Figure out if we should unlock the inode or not. | ||
705 | */ | ||
706 | hold = iip->ili_flags & XFS_ILI_HOLD; | ||
707 | |||
708 | /* | ||
709 | * Before clearing out the flags, remember whether we | ||
710 | * are holding the inode's IO lock. | ||
711 | */ | ||
712 | iolocked = iip->ili_flags & XFS_ILI_IOLOCKED_ANY; | ||
713 | |||
714 | /* | ||
715 | * Clear out the fields of the inode log item particular | ||
716 | * to the current transaction. | ||
717 | */ | ||
718 | iip->ili_ilock_recur = 0; | ||
719 | iip->ili_iolock_recur = 0; | ||
720 | iip->ili_flags = 0; | ||
721 | |||
722 | /* | ||
723 | * Unlock the inode if XFS_ILI_HOLD was not set. | ||
724 | */ | ||
725 | if (!hold) { | ||
726 | lock_flags = XFS_ILOCK_EXCL; | ||
727 | if (iolocked & XFS_ILI_IOLOCKED_EXCL) { | ||
728 | lock_flags |= XFS_IOLOCK_EXCL; | ||
729 | } else if (iolocked & XFS_ILI_IOLOCKED_SHARED) { | ||
730 | lock_flags |= XFS_IOLOCK_SHARED; | ||
731 | } | ||
732 | xfs_iput(iip->ili_inode, lock_flags); | ||
733 | } | ||
734 | } | ||
735 | |||
736 | /* | ||
737 | * This is called to find out where the oldest active copy of the | ||
738 | * inode log item in the on disk log resides now that the last log | ||
739 | * write of it completed at the given lsn. Since we always re-log | ||
740 | * all dirty data in an inode, the latest copy in the on disk log | ||
741 | * is the only one that matters. Therefore, simply return the | ||
742 | * given lsn. | ||
743 | */ | ||
744 | /*ARGSUSED*/ | ||
745 | STATIC xfs_lsn_t | ||
746 | xfs_inode_item_committed( | ||
747 | xfs_inode_log_item_t *iip, | ||
748 | xfs_lsn_t lsn) | ||
749 | { | ||
750 | return (lsn); | ||
751 | } | ||
752 | |||
753 | /* | ||
754 | * The transaction with the inode locked has aborted. The inode | ||
755 | * must not be dirty within the transaction (unless we're forcibly | ||
756 | * shutting down). We simply unlock just as if the transaction | ||
757 | * had been cancelled. | ||
758 | */ | ||
759 | STATIC void | ||
760 | xfs_inode_item_abort( | ||
761 | xfs_inode_log_item_t *iip) | ||
762 | { | ||
763 | xfs_inode_item_unlock(iip); | ||
764 | return; | ||
765 | } | ||
766 | |||
767 | |||
768 | /* | ||
769 | * This gets called by xfs_trans_push_ail(), when IOP_TRYLOCK | ||
770 | * failed to get the inode flush lock but did get the inode locked SHARED. | ||
771 | * Here we're trying to see if the inode buffer is incore, and if so whether it's | ||
772 | * marked delayed write. If that's the case, we'll initiate a bawrite on that | ||
773 | * buffer to expedite the process. | ||
774 | * | ||
775 | * We aren't holding the AIL_LOCK (or the flush lock) when this gets called, | ||
776 | * so it is inherently race-y. | ||
777 | */ | ||
778 | STATIC void | ||
779 | xfs_inode_item_pushbuf( | ||
780 | xfs_inode_log_item_t *iip) | ||
781 | { | ||
782 | xfs_inode_t *ip; | ||
783 | xfs_mount_t *mp; | ||
784 | xfs_buf_t *bp; | ||
785 | uint dopush; | ||
786 | |||
787 | ip = iip->ili_inode; | ||
788 | |||
789 | ASSERT(ismrlocked(&(ip->i_lock), MR_ACCESS)); | ||
790 | |||
791 | /* | ||
792 | * The ili_pushbuf_flag keeps others from | ||
793 | * trying to duplicate our effort. | ||
794 | */ | ||
795 | ASSERT(iip->ili_pushbuf_flag != 0); | ||
796 | ASSERT(iip->ili_push_owner == get_thread_id()); | ||
797 | |||
798 | /* | ||
799 | * If flushlock isn't locked anymore, chances are that the | ||
800 | * inode flush completed and the inode was taken off the AIL. | ||
801 | * So, just get out. | ||
802 | */ | ||
803 | if ((valusema(&(ip->i_flock)) > 0) || | ||
804 | ((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0)) { | ||
805 | iip->ili_pushbuf_flag = 0; | ||
806 | xfs_iunlock(ip, XFS_ILOCK_SHARED); | ||
807 | return; | ||
808 | } | ||
809 | |||
810 | mp = ip->i_mount; | ||
811 | bp = xfs_incore(mp->m_ddev_targp, iip->ili_format.ilf_blkno, | ||
812 | iip->ili_format.ilf_len, XFS_INCORE_TRYLOCK); | ||
813 | |||
814 | if (bp != NULL) { | ||
815 | if (XFS_BUF_ISDELAYWRITE(bp)) { | ||
816 | /* | ||
817 | * We were racing with iflush because we don't hold | ||
818 | * the AIL_LOCK or the flush lock. However, at this point, | ||
819 | * we have the buffer, and we know that it's dirty. | ||
820 | * So, it's possible that iflush raced with us, and | ||
821 | * this item is already taken off the AIL. | ||
822 | * If not, we can flush it async. | ||
823 | */ | ||
824 | dopush = ((iip->ili_item.li_flags & XFS_LI_IN_AIL) && | ||
825 | (valusema(&(ip->i_flock)) <= 0)); | ||
826 | iip->ili_pushbuf_flag = 0; | ||
827 | xfs_iunlock(ip, XFS_ILOCK_SHARED); | ||
828 | xfs_buftrace("INODE ITEM PUSH", bp); | ||
829 | if (XFS_BUF_ISPINNED(bp)) { | ||
830 | xfs_log_force(mp, (xfs_lsn_t)0, | ||
831 | XFS_LOG_FORCE); | ||
832 | } | ||
833 | if (dopush) { | ||
834 | xfs_bawrite(mp, bp); | ||
835 | } else { | ||
836 | xfs_buf_relse(bp); | ||
837 | } | ||
838 | } else { | ||
839 | iip->ili_pushbuf_flag = 0; | ||
840 | xfs_iunlock(ip, XFS_ILOCK_SHARED); | ||
841 | xfs_buf_relse(bp); | ||
842 | } | ||
843 | return; | ||
844 | } | ||
845 | /* | ||
846 | * We have to be careful about resetting pushbuf flag too early (above). | ||
847 | * Even though in theory we can do it as soon as we have the buflock, | ||
848 | * we don't want others to be doing work needlessly. They'll come to | ||
849 | * this function thinking that pushing the buffer is their | ||
850 | * responsibility only to find that the buffer is still locked by | ||
851 | * another doing the same thing | ||
852 | */ | ||
853 | iip->ili_pushbuf_flag = 0; | ||
854 | xfs_iunlock(ip, XFS_ILOCK_SHARED); | ||
855 | return; | ||
856 | } | ||
857 | |||
858 | |||
859 | /* | ||
860 | * This is called to asynchronously write the inode associated with this | ||
861 | * inode log item out to disk. The inode will already have been locked by | ||
862 | * a successful call to xfs_inode_item_trylock(). | ||
863 | */ | ||
864 | STATIC void | ||
865 | xfs_inode_item_push( | ||
866 | xfs_inode_log_item_t *iip) | ||
867 | { | ||
868 | xfs_inode_t *ip; | ||
869 | |||
870 | ip = iip->ili_inode; | ||
871 | |||
872 | ASSERT(ismrlocked(&(ip->i_lock), MR_ACCESS)); | ||
873 | ASSERT(valusema(&(ip->i_flock)) <= 0); | ||
874 | /* | ||
875 | * Since we were able to lock the inode's flush lock and | ||
876 | * we found it on the AIL, the inode must be dirty. This | ||
877 | * is because the inode is removed from the AIL while still | ||
878 | * holding the flush lock in xfs_iflush_done(). Thus, if | ||
879 | * we found it in the AIL and were able to obtain the flush | ||
880 | * lock without sleeping, then there must not have been | ||
881 | * anyone in the process of flushing the inode. | ||
882 | */ | ||
883 | ASSERT(XFS_FORCED_SHUTDOWN(ip->i_mount) || | ||
884 | iip->ili_format.ilf_fields != 0); | ||
885 | |||
886 | /* | ||
887 | * Write out the inode. The completion routine ('iflush_done') will | ||
888 | * pull it from the AIL, mark it clean, unlock the flush lock. | ||
889 | */ | ||
890 | (void) xfs_iflush(ip, XFS_IFLUSH_ASYNC); | ||
891 | xfs_iunlock(ip, XFS_ILOCK_SHARED); | ||
892 | |||
893 | return; | ||
894 | } | ||
895 | |||
896 | /* | ||
897 | * XXX rcc - this one really has to do something. Probably needs | ||
898 | * to stamp in a new field in the incore inode. | ||
899 | */ | ||
900 | /* ARGSUSED */ | ||
901 | STATIC void | ||
902 | xfs_inode_item_committing( | ||
903 | xfs_inode_log_item_t *iip, | ||
904 | xfs_lsn_t lsn) | ||
905 | { | ||
906 | iip->ili_last_lsn = lsn; | ||
907 | return; | ||
908 | } | ||
909 | |||
910 | /* | ||
911 | * This is the ops vector shared by all buf log items. | ||
912 | */ | ||
913 | struct xfs_item_ops xfs_inode_item_ops = { | ||
914 | .iop_size = (uint(*)(xfs_log_item_t*))xfs_inode_item_size, | ||
915 | .iop_format = (void(*)(xfs_log_item_t*, xfs_log_iovec_t*)) | ||
916 | xfs_inode_item_format, | ||
917 | .iop_pin = (void(*)(xfs_log_item_t*))xfs_inode_item_pin, | ||
918 | .iop_unpin = (void(*)(xfs_log_item_t*, int))xfs_inode_item_unpin, | ||
919 | .iop_unpin_remove = (void(*)(xfs_log_item_t*, xfs_trans_t*)) | ||
920 | xfs_inode_item_unpin_remove, | ||
921 | .iop_trylock = (uint(*)(xfs_log_item_t*))xfs_inode_item_trylock, | ||
922 | .iop_unlock = (void(*)(xfs_log_item_t*))xfs_inode_item_unlock, | ||
923 | .iop_committed = (xfs_lsn_t(*)(xfs_log_item_t*, xfs_lsn_t)) | ||
924 | xfs_inode_item_committed, | ||
925 | .iop_push = (void(*)(xfs_log_item_t*))xfs_inode_item_push, | ||
926 | .iop_abort = (void(*)(xfs_log_item_t*))xfs_inode_item_abort, | ||
927 | .iop_pushbuf = (void(*)(xfs_log_item_t*))xfs_inode_item_pushbuf, | ||
928 | .iop_committing = (void(*)(xfs_log_item_t*, xfs_lsn_t)) | ||
929 | xfs_inode_item_committing | ||
930 | }; | ||
931 | |||
932 | |||
933 | /* | ||
934 | * Initialize the inode log item for a newly allocated (in-core) inode. | ||
935 | */ | ||
936 | void | ||
937 | xfs_inode_item_init( | ||
938 | xfs_inode_t *ip, | ||
939 | xfs_mount_t *mp) | ||
940 | { | ||
941 | xfs_inode_log_item_t *iip; | ||
942 | |||
943 | ASSERT(ip->i_itemp == NULL); | ||
944 | iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP); | ||
945 | |||
946 | iip->ili_item.li_type = XFS_LI_INODE; | ||
947 | iip->ili_item.li_ops = &xfs_inode_item_ops; | ||
948 | iip->ili_item.li_mountp = mp; | ||
949 | iip->ili_inode = ip; | ||
950 | |||
951 | /* | ||
952 | We have zeroed memory. No need ... | ||
953 | iip->ili_extents_buf = NULL; | ||
954 | iip->ili_pushbuf_flag = 0; | ||
955 | */ | ||
956 | |||
957 | iip->ili_format.ilf_type = XFS_LI_INODE; | ||
958 | iip->ili_format.ilf_ino = ip->i_ino; | ||
959 | iip->ili_format.ilf_blkno = ip->i_blkno; | ||
960 | iip->ili_format.ilf_len = ip->i_len; | ||
961 | iip->ili_format.ilf_boffset = ip->i_boffset; | ||
962 | } | ||
963 | |||
964 | /* | ||
965 | * Free the inode log item and any memory hanging off of it. | ||
966 | */ | ||
967 | void | ||
968 | xfs_inode_item_destroy( | ||
969 | xfs_inode_t *ip) | ||
970 | { | ||
971 | #ifdef XFS_TRANS_DEBUG | ||
972 | if (ip->i_itemp->ili_root_size != 0) { | ||
973 | kmem_free(ip->i_itemp->ili_orig_root, | ||
974 | ip->i_itemp->ili_root_size); | ||
975 | } | ||
976 | #endif | ||
977 | kmem_zone_free(xfs_ili_zone, ip->i_itemp); | ||
978 | } | ||
979 | |||
980 | |||
981 | /* | ||
982 | * This is the inode flushing I/O completion routine. It is called | ||
983 | * from interrupt level when the buffer containing the inode is | ||
984 | * flushed to disk. It is responsible for removing the inode item | ||
985 | * from the AIL if it has not been re-logged, and unlocking the inode's | ||
986 | * flush lock. | ||
987 | */ | ||
988 | /*ARGSUSED*/ | ||
989 | void | ||
990 | xfs_iflush_done( | ||
991 | xfs_buf_t *bp, | ||
992 | xfs_inode_log_item_t *iip) | ||
993 | { | ||
994 | xfs_inode_t *ip; | ||
995 | SPLDECL(s); | ||
996 | |||
997 | ip = iip->ili_inode; | ||
998 | |||
999 | /* | ||
1000 | * We only want to pull the item from the AIL if it is | ||
1001 | * actually there and its location in the log has not | ||
1002 | * changed since we started the flush. Thus, we only bother | ||
1003 | * if the ili_logged flag is set and the inode's lsn has not | ||
1004 | * changed. First we check the lsn outside | ||
1005 | * the lock since it's cheaper, and then we recheck while | ||
1006 | * holding the lock before removing the inode from the AIL. | ||
1007 | */ | ||
1008 | if (iip->ili_logged && | ||
1009 | (iip->ili_item.li_lsn == iip->ili_flush_lsn)) { | ||
1010 | AIL_LOCK(ip->i_mount, s); | ||
1011 | if (iip->ili_item.li_lsn == iip->ili_flush_lsn) { | ||
1012 | /* | ||
1013 | * xfs_trans_delete_ail() drops the AIL lock. | ||
1014 | */ | ||
1015 | xfs_trans_delete_ail(ip->i_mount, | ||
1016 | (xfs_log_item_t*)iip, s); | ||
1017 | } else { | ||
1018 | AIL_UNLOCK(ip->i_mount, s); | ||
1019 | } | ||
1020 | } | ||
1021 | |||
1022 | iip->ili_logged = 0; | ||
1023 | |||
1024 | /* | ||
1025 | * Clear the ili_last_fields bits now that we know that the | ||
1026 | * data corresponding to them is safely on disk. | ||
1027 | */ | ||
1028 | iip->ili_last_fields = 0; | ||
1029 | |||
1030 | /* | ||
1031 | * Release the inode's flush lock since we're done with it. | ||
1032 | */ | ||
1033 | xfs_ifunlock(ip); | ||
1034 | |||
1035 | return; | ||
1036 | } | ||
1037 | |||
1038 | /* | ||
1039 | * This is the inode flushing abort routine. It is called | ||
1040 | * from xfs_iflush when the filesystem is shutting down to clean | ||
1041 | * up the inode state. | ||
1042 | * It is responsible for removing the inode item | ||
1043 | * from the AIL if it has not been re-logged, and unlocking the inode's | ||
1044 | * flush lock. | ||
1045 | */ | ||
1046 | void | ||
1047 | xfs_iflush_abort( | ||
1048 | xfs_inode_t *ip) | ||
1049 | { | ||
1050 | xfs_inode_log_item_t *iip; | ||
1051 | xfs_mount_t *mp; | ||
1052 | SPLDECL(s); | ||
1053 | |||
1054 | iip = ip->i_itemp; | ||
1055 | mp = ip->i_mount; | ||
1056 | if (iip) { | ||
1057 | if (iip->ili_item.li_flags & XFS_LI_IN_AIL) { | ||
1058 | AIL_LOCK(mp, s); | ||
1059 | if (iip->ili_item.li_flags & XFS_LI_IN_AIL) { | ||
1060 | /* | ||
1061 | * xfs_trans_delete_ail() drops the AIL lock. | ||
1062 | */ | ||
1063 | xfs_trans_delete_ail(mp, (xfs_log_item_t *)iip, | ||
1064 | s); | ||
1065 | } else | ||
1066 | AIL_UNLOCK(mp, s); | ||
1067 | } | ||
1068 | iip->ili_logged = 0; | ||
1069 | /* | ||
1070 | * Clear the ili_last_fields bits now that we know that the | ||
1071 | * data corresponding to them is safely on disk. | ||
1072 | */ | ||
1073 | iip->ili_last_fields = 0; | ||
1074 | /* | ||
1075 | * Clear the inode logging fields so no more flushes are | ||
1076 | * attempted. | ||
1077 | */ | ||
1078 | iip->ili_format.ilf_fields = 0; | ||
1079 | } | ||
1080 | /* | ||
1081 | * Release the inode's flush lock since we're done with it. | ||
1082 | */ | ||
1083 | xfs_ifunlock(ip); | ||
1084 | } | ||
1085 | |||
1086 | void | ||
1087 | xfs_istale_done( | ||
1088 | xfs_buf_t *bp, | ||
1089 | xfs_inode_log_item_t *iip) | ||
1090 | { | ||
1091 | xfs_iflush_abort(iip->ili_inode); | ||
1092 | } | ||