aboutsummaryrefslogtreecommitdiffstats
path: root/fs/xfs/xfs_extfree_item.c
diff options
context:
space:
mode:
Diffstat (limited to 'fs/xfs/xfs_extfree_item.c')
-rw-r--r--fs/xfs/xfs_extfree_item.c278
1 files changed, 116 insertions, 162 deletions
diff --git a/fs/xfs/xfs_extfree_item.c b/fs/xfs/xfs_extfree_item.c
index 409fe81585fd..a55e687bf562 100644
--- a/fs/xfs/xfs_extfree_item.c
+++ b/fs/xfs/xfs_extfree_item.c
@@ -24,7 +24,6 @@
24#include "xfs_buf_item.h" 24#include "xfs_buf_item.h"
25#include "xfs_sb.h" 25#include "xfs_sb.h"
26#include "xfs_ag.h" 26#include "xfs_ag.h"
27#include "xfs_dmapi.h"
28#include "xfs_mount.h" 27#include "xfs_mount.h"
29#include "xfs_trans_priv.h" 28#include "xfs_trans_priv.h"
30#include "xfs_extfree_item.h" 29#include "xfs_extfree_item.h"
@@ -33,18 +32,19 @@
33kmem_zone_t *xfs_efi_zone; 32kmem_zone_t *xfs_efi_zone;
34kmem_zone_t *xfs_efd_zone; 33kmem_zone_t *xfs_efd_zone;
35 34
36STATIC void xfs_efi_item_unlock(xfs_efi_log_item_t *); 35static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip)
36{
37 return container_of(lip, struct xfs_efi_log_item, efi_item);
38}
37 39
38void 40void
39xfs_efi_item_free(xfs_efi_log_item_t *efip) 41xfs_efi_item_free(
42 struct xfs_efi_log_item *efip)
40{ 43{
41 int nexts = efip->efi_format.efi_nextents; 44 if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS)
42
43 if (nexts > XFS_EFI_MAX_FAST_EXTENTS) {
44 kmem_free(efip); 45 kmem_free(efip);
45 } else { 46 else
46 kmem_zone_free(xfs_efi_zone, efip); 47 kmem_zone_free(xfs_efi_zone, efip);
47 }
48} 48}
49 49
50/* 50/*
@@ -52,9 +52,9 @@ xfs_efi_item_free(xfs_efi_log_item_t *efip)
52 * We only need 1 iovec for an efi item. It just logs the efi_log_format 52 * We only need 1 iovec for an efi item. It just logs the efi_log_format
53 * structure. 53 * structure.
54 */ 54 */
55/*ARGSUSED*/
56STATIC uint 55STATIC uint
57xfs_efi_item_size(xfs_efi_log_item_t *efip) 56xfs_efi_item_size(
57 struct xfs_log_item *lip)
58{ 58{
59 return 1; 59 return 1;
60} 60}
@@ -67,10 +67,12 @@ xfs_efi_item_size(xfs_efi_log_item_t *efip)
67 * slots in the efi item have been filled. 67 * slots in the efi item have been filled.
68 */ 68 */
69STATIC void 69STATIC void
70xfs_efi_item_format(xfs_efi_log_item_t *efip, 70xfs_efi_item_format(
71 xfs_log_iovec_t *log_vector) 71 struct xfs_log_item *lip,
72 struct xfs_log_iovec *log_vector)
72{ 73{
73 uint size; 74 struct xfs_efi_log_item *efip = EFI_ITEM(lip);
75 uint size;
74 76
75 ASSERT(efip->efi_next_extent == efip->efi_format.efi_nextents); 77 ASSERT(efip->efi_next_extent == efip->efi_format.efi_nextents);
76 78
@@ -80,7 +82,7 @@ xfs_efi_item_format(xfs_efi_log_item_t *efip,
80 size += (efip->efi_format.efi_nextents - 1) * sizeof(xfs_extent_t); 82 size += (efip->efi_format.efi_nextents - 1) * sizeof(xfs_extent_t);
81 efip->efi_format.efi_size = 1; 83 efip->efi_format.efi_size = 1;
82 84
83 log_vector->i_addr = (xfs_caddr_t)&(efip->efi_format); 85 log_vector->i_addr = &efip->efi_format;
84 log_vector->i_len = size; 86 log_vector->i_len = size;
85 log_vector->i_type = XLOG_REG_TYPE_EFI_FORMAT; 87 log_vector->i_type = XLOG_REG_TYPE_EFI_FORMAT;
86 ASSERT(size >= sizeof(xfs_efi_log_format_t)); 88 ASSERT(size >= sizeof(xfs_efi_log_format_t));
@@ -90,60 +92,33 @@ xfs_efi_item_format(xfs_efi_log_item_t *efip,
90/* 92/*
91 * Pinning has no meaning for an efi item, so just return. 93 * Pinning has no meaning for an efi item, so just return.
92 */ 94 */
93/*ARGSUSED*/
94STATIC void 95STATIC void
95xfs_efi_item_pin(xfs_efi_log_item_t *efip) 96xfs_efi_item_pin(
97 struct xfs_log_item *lip)
96{ 98{
97 return;
98} 99}
99 100
100
101/* 101/*
102 * While EFIs cannot really be pinned, the unpin operation is the 102 * While EFIs cannot really be pinned, the unpin operation is the
103 * last place at which the EFI is manipulated during a transaction. 103 * last place at which the EFI is manipulated during a transaction.
104 * Here we coordinate with xfs_efi_cancel() to determine who gets to 104 * Here we coordinate with xfs_efi_cancel() to determine who gets to
105 * free the EFI. 105 * free the EFI.
106 */ 106 */
107/*ARGSUSED*/
108STATIC void
109xfs_efi_item_unpin(xfs_efi_log_item_t *efip)
110{
111 struct xfs_ail *ailp = efip->efi_item.li_ailp;
112
113 spin_lock(&ailp->xa_lock);
114 if (efip->efi_flags & XFS_EFI_CANCELED) {
115 /* xfs_trans_ail_delete() drops the AIL lock. */
116 xfs_trans_ail_delete(ailp, (xfs_log_item_t *)efip);
117 xfs_efi_item_free(efip);
118 } else {
119 efip->efi_flags |= XFS_EFI_COMMITTED;
120 spin_unlock(&ailp->xa_lock);
121 }
122}
123
124/*
125 * like unpin only we have to also clear the xaction descriptor
126 * pointing the log item if we free the item. This routine duplicates
127 * unpin because efi_flags is protected by the AIL lock. Freeing
128 * the descriptor and then calling unpin would force us to drop the AIL
129 * lock which would open up a race condition.
130 */
131STATIC void 107STATIC void
132xfs_efi_item_unpin_remove(xfs_efi_log_item_t *efip, xfs_trans_t *tp) 108xfs_efi_item_unpin(
109 struct xfs_log_item *lip,
110 int remove)
133{ 111{
134 struct xfs_ail *ailp = efip->efi_item.li_ailp; 112 struct xfs_efi_log_item *efip = EFI_ITEM(lip);
135 xfs_log_item_desc_t *lidp; 113 struct xfs_ail *ailp = lip->li_ailp;
136 114
137 spin_lock(&ailp->xa_lock); 115 spin_lock(&ailp->xa_lock);
138 if (efip->efi_flags & XFS_EFI_CANCELED) { 116 if (efip->efi_flags & XFS_EFI_CANCELED) {
139 /* 117 if (remove)
140 * free the xaction descriptor pointing to this item 118 xfs_trans_del_item(lip);
141 */
142 lidp = xfs_trans_find_item(tp, (xfs_log_item_t *) efip);
143 xfs_trans_free_item(tp, lidp);
144 119
145 /* xfs_trans_ail_delete() drops the AIL lock. */ 120 /* xfs_trans_ail_delete() drops the AIL lock. */
146 xfs_trans_ail_delete(ailp, (xfs_log_item_t *)efip); 121 xfs_trans_ail_delete(ailp, lip);
147 xfs_efi_item_free(efip); 122 xfs_efi_item_free(efip);
148 } else { 123 } else {
149 efip->efi_flags |= XFS_EFI_COMMITTED; 124 efip->efi_flags |= XFS_EFI_COMMITTED;
@@ -158,9 +133,9 @@ xfs_efi_item_unpin_remove(xfs_efi_log_item_t *efip, xfs_trans_t *tp)
158 * XFS_ITEM_PINNED so that the caller will eventually flush the log. 133 * XFS_ITEM_PINNED so that the caller will eventually flush the log.
159 * This should help in getting the EFI out of the AIL. 134 * This should help in getting the EFI out of the AIL.
160 */ 135 */
161/*ARGSUSED*/
162STATIC uint 136STATIC uint
163xfs_efi_item_trylock(xfs_efi_log_item_t *efip) 137xfs_efi_item_trylock(
138 struct xfs_log_item *lip)
164{ 139{
165 return XFS_ITEM_PINNED; 140 return XFS_ITEM_PINNED;
166} 141}
@@ -168,13 +143,12 @@ xfs_efi_item_trylock(xfs_efi_log_item_t *efip)
168/* 143/*
169 * Efi items have no locking, so just return. 144 * Efi items have no locking, so just return.
170 */ 145 */
171/*ARGSUSED*/
172STATIC void 146STATIC void
173xfs_efi_item_unlock(xfs_efi_log_item_t *efip) 147xfs_efi_item_unlock(
148 struct xfs_log_item *lip)
174{ 149{
175 if (efip->efi_item.li_flags & XFS_LI_ABORTED) 150 if (lip->li_flags & XFS_LI_ABORTED)
176 xfs_efi_item_free(efip); 151 xfs_efi_item_free(EFI_ITEM(lip));
177 return;
178} 152}
179 153
180/* 154/*
@@ -183,9 +157,10 @@ xfs_efi_item_unlock(xfs_efi_log_item_t *efip)
183 * flag is not paid any attention here. Checking for that is delayed 157 * flag is not paid any attention here. Checking for that is delayed
184 * until the EFI is unpinned. 158 * until the EFI is unpinned.
185 */ 159 */
186/*ARGSUSED*/
187STATIC xfs_lsn_t 160STATIC xfs_lsn_t
188xfs_efi_item_committed(xfs_efi_log_item_t *efip, xfs_lsn_t lsn) 161xfs_efi_item_committed(
162 struct xfs_log_item *lip,
163 xfs_lsn_t lsn)
189{ 164{
190 return lsn; 165 return lsn;
191} 166}
@@ -195,11 +170,10 @@ xfs_efi_item_committed(xfs_efi_log_item_t *efip, xfs_lsn_t lsn)
195 * stuck waiting for all of its corresponding efd items to be 170 * stuck waiting for all of its corresponding efd items to be
196 * committed to disk. 171 * committed to disk.
197 */ 172 */
198/*ARGSUSED*/
199STATIC void 173STATIC void
200xfs_efi_item_push(xfs_efi_log_item_t *efip) 174xfs_efi_item_push(
175 struct xfs_log_item *lip)
201{ 176{
202 return;
203} 177}
204 178
205/* 179/*
@@ -209,61 +183,55 @@ xfs_efi_item_push(xfs_efi_log_item_t *efip)
209 * example, for inodes, the inode is locked throughout the extent freeing 183 * example, for inodes, the inode is locked throughout the extent freeing
210 * so the dependency should be recorded there. 184 * so the dependency should be recorded there.
211 */ 185 */
212/*ARGSUSED*/
213STATIC void 186STATIC void
214xfs_efi_item_committing(xfs_efi_log_item_t *efip, xfs_lsn_t lsn) 187xfs_efi_item_committing(
188 struct xfs_log_item *lip,
189 xfs_lsn_t lsn)
215{ 190{
216 return;
217} 191}
218 192
219/* 193/*
220 * This is the ops vector shared by all efi log items. 194 * This is the ops vector shared by all efi log items.
221 */ 195 */
222static struct xfs_item_ops xfs_efi_item_ops = { 196static struct xfs_item_ops xfs_efi_item_ops = {
223 .iop_size = (uint(*)(xfs_log_item_t*))xfs_efi_item_size, 197 .iop_size = xfs_efi_item_size,
224 .iop_format = (void(*)(xfs_log_item_t*, xfs_log_iovec_t*)) 198 .iop_format = xfs_efi_item_format,
225 xfs_efi_item_format, 199 .iop_pin = xfs_efi_item_pin,
226 .iop_pin = (void(*)(xfs_log_item_t*))xfs_efi_item_pin, 200 .iop_unpin = xfs_efi_item_unpin,
227 .iop_unpin = (void(*)(xfs_log_item_t*))xfs_efi_item_unpin, 201 .iop_trylock = xfs_efi_item_trylock,
228 .iop_unpin_remove = (void(*)(xfs_log_item_t*, xfs_trans_t *)) 202 .iop_unlock = xfs_efi_item_unlock,
229 xfs_efi_item_unpin_remove, 203 .iop_committed = xfs_efi_item_committed,
230 .iop_trylock = (uint(*)(xfs_log_item_t*))xfs_efi_item_trylock, 204 .iop_push = xfs_efi_item_push,
231 .iop_unlock = (void(*)(xfs_log_item_t*))xfs_efi_item_unlock, 205 .iop_committing = xfs_efi_item_committing
232 .iop_committed = (xfs_lsn_t(*)(xfs_log_item_t*, xfs_lsn_t))
233 xfs_efi_item_committed,
234 .iop_push = (void(*)(xfs_log_item_t*))xfs_efi_item_push,
235 .iop_pushbuf = NULL,
236 .iop_committing = (void(*)(xfs_log_item_t*, xfs_lsn_t))
237 xfs_efi_item_committing
238}; 206};
239 207
240 208
241/* 209/*
242 * Allocate and initialize an efi item with the given number of extents. 210 * Allocate and initialize an efi item with the given number of extents.
243 */ 211 */
244xfs_efi_log_item_t * 212struct xfs_efi_log_item *
245xfs_efi_init(xfs_mount_t *mp, 213xfs_efi_init(
246 uint nextents) 214 struct xfs_mount *mp,
215 uint nextents)
247 216
248{ 217{
249 xfs_efi_log_item_t *efip; 218 struct xfs_efi_log_item *efip;
250 uint size; 219 uint size;
251 220
252 ASSERT(nextents > 0); 221 ASSERT(nextents > 0);
253 if (nextents > XFS_EFI_MAX_FAST_EXTENTS) { 222 if (nextents > XFS_EFI_MAX_FAST_EXTENTS) {
254 size = (uint)(sizeof(xfs_efi_log_item_t) + 223 size = (uint)(sizeof(xfs_efi_log_item_t) +
255 ((nextents - 1) * sizeof(xfs_extent_t))); 224 ((nextents - 1) * sizeof(xfs_extent_t)));
256 efip = (xfs_efi_log_item_t*)kmem_zalloc(size, KM_SLEEP); 225 efip = kmem_zalloc(size, KM_SLEEP);
257 } else { 226 } else {
258 efip = (xfs_efi_log_item_t*)kmem_zone_zalloc(xfs_efi_zone, 227 efip = kmem_zone_zalloc(xfs_efi_zone, KM_SLEEP);
259 KM_SLEEP);
260 } 228 }
261 229
262 xfs_log_item_init(mp, &efip->efi_item, XFS_LI_EFI, &xfs_efi_item_ops); 230 xfs_log_item_init(mp, &efip->efi_item, XFS_LI_EFI, &xfs_efi_item_ops);
263 efip->efi_format.efi_nextents = nextents; 231 efip->efi_format.efi_nextents = nextents;
264 efip->efi_format.efi_id = (__psint_t)(void*)efip; 232 efip->efi_format.efi_id = (__psint_t)(void*)efip;
265 233
266 return (efip); 234 return efip;
267} 235}
268 236
269/* 237/*
@@ -276,7 +244,7 @@ xfs_efi_init(xfs_mount_t *mp,
276int 244int
277xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt) 245xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt)
278{ 246{
279 xfs_efi_log_format_t *src_efi_fmt = (xfs_efi_log_format_t *)buf->i_addr; 247 xfs_efi_log_format_t *src_efi_fmt = buf->i_addr;
280 uint i; 248 uint i;
281 uint len = sizeof(xfs_efi_log_format_t) + 249 uint len = sizeof(xfs_efi_log_format_t) +
282 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_t); 250 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_t);
@@ -289,8 +257,7 @@ xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt)
289 memcpy((char *)dst_efi_fmt, (char*)src_efi_fmt, len); 257 memcpy((char *)dst_efi_fmt, (char*)src_efi_fmt, len);
290 return 0; 258 return 0;
291 } else if (buf->i_len == len32) { 259 } else if (buf->i_len == len32) {
292 xfs_efi_log_format_32_t *src_efi_fmt_32 = 260 xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->i_addr;
293 (xfs_efi_log_format_32_t *)buf->i_addr;
294 261
295 dst_efi_fmt->efi_type = src_efi_fmt_32->efi_type; 262 dst_efi_fmt->efi_type = src_efi_fmt_32->efi_type;
296 dst_efi_fmt->efi_size = src_efi_fmt_32->efi_size; 263 dst_efi_fmt->efi_size = src_efi_fmt_32->efi_size;
@@ -304,8 +271,7 @@ xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt)
304 } 271 }
305 return 0; 272 return 0;
306 } else if (buf->i_len == len64) { 273 } else if (buf->i_len == len64) {
307 xfs_efi_log_format_64_t *src_efi_fmt_64 = 274 xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->i_addr;
308 (xfs_efi_log_format_64_t *)buf->i_addr;
309 275
310 dst_efi_fmt->efi_type = src_efi_fmt_64->efi_type; 276 dst_efi_fmt->efi_type = src_efi_fmt_64->efi_type;
311 dst_efi_fmt->efi_size = src_efi_fmt_64->efi_size; 277 dst_efi_fmt->efi_size = src_efi_fmt_64->efi_size;
@@ -356,16 +322,18 @@ xfs_efi_release(xfs_efi_log_item_t *efip,
356 } 322 }
357} 323}
358 324
359STATIC void 325static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip)
360xfs_efd_item_free(xfs_efd_log_item_t *efdp)
361{ 326{
362 int nexts = efdp->efd_format.efd_nextents; 327 return container_of(lip, struct xfs_efd_log_item, efd_item);
328}
363 329
364 if (nexts > XFS_EFD_MAX_FAST_EXTENTS) { 330STATIC void
331xfs_efd_item_free(struct xfs_efd_log_item *efdp)
332{
333 if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS)
365 kmem_free(efdp); 334 kmem_free(efdp);
366 } else { 335 else
367 kmem_zone_free(xfs_efd_zone, efdp); 336 kmem_zone_free(xfs_efd_zone, efdp);
368 }
369} 337}
370 338
371/* 339/*
@@ -373,9 +341,9 @@ xfs_efd_item_free(xfs_efd_log_item_t *efdp)
373 * We only need 1 iovec for an efd item. It just logs the efd_log_format 341 * We only need 1 iovec for an efd item. It just logs the efd_log_format
374 * structure. 342 * structure.
375 */ 343 */
376/*ARGSUSED*/
377STATIC uint 344STATIC uint
378xfs_efd_item_size(xfs_efd_log_item_t *efdp) 345xfs_efd_item_size(
346 struct xfs_log_item *lip)
379{ 347{
380 return 1; 348 return 1;
381} 349}
@@ -388,10 +356,12 @@ xfs_efd_item_size(xfs_efd_log_item_t *efdp)
388 * slots in the efd item have been filled. 356 * slots in the efd item have been filled.
389 */ 357 */
390STATIC void 358STATIC void
391xfs_efd_item_format(xfs_efd_log_item_t *efdp, 359xfs_efd_item_format(
392 xfs_log_iovec_t *log_vector) 360 struct xfs_log_item *lip,
361 struct xfs_log_iovec *log_vector)
393{ 362{
394 uint size; 363 struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
364 uint size;
395 365
396 ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents); 366 ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents);
397 367
@@ -401,48 +371,38 @@ xfs_efd_item_format(xfs_efd_log_item_t *efdp,
401 size += (efdp->efd_format.efd_nextents - 1) * sizeof(xfs_extent_t); 371 size += (efdp->efd_format.efd_nextents - 1) * sizeof(xfs_extent_t);
402 efdp->efd_format.efd_size = 1; 372 efdp->efd_format.efd_size = 1;
403 373
404 log_vector->i_addr = (xfs_caddr_t)&(efdp->efd_format); 374 log_vector->i_addr = &efdp->efd_format;
405 log_vector->i_len = size; 375 log_vector->i_len = size;
406 log_vector->i_type = XLOG_REG_TYPE_EFD_FORMAT; 376 log_vector->i_type = XLOG_REG_TYPE_EFD_FORMAT;
407 ASSERT(size >= sizeof(xfs_efd_log_format_t)); 377 ASSERT(size >= sizeof(xfs_efd_log_format_t));
408} 378}
409 379
410
411/* 380/*
412 * Pinning has no meaning for an efd item, so just return. 381 * Pinning has no meaning for an efd item, so just return.
413 */ 382 */
414/*ARGSUSED*/
415STATIC void 383STATIC void
416xfs_efd_item_pin(xfs_efd_log_item_t *efdp) 384xfs_efd_item_pin(
385 struct xfs_log_item *lip)
417{ 386{
418 return;
419} 387}
420 388
421
422/* 389/*
423 * Since pinning has no meaning for an efd item, unpinning does 390 * Since pinning has no meaning for an efd item, unpinning does
424 * not either. 391 * not either.
425 */ 392 */
426/*ARGSUSED*/
427STATIC void
428xfs_efd_item_unpin(xfs_efd_log_item_t *efdp)
429{
430 return;
431}
432
433/*ARGSUSED*/
434STATIC void 393STATIC void
435xfs_efd_item_unpin_remove(xfs_efd_log_item_t *efdp, xfs_trans_t *tp) 394xfs_efd_item_unpin(
395 struct xfs_log_item *lip,
396 int remove)
436{ 397{
437 return;
438} 398}
439 399
440/* 400/*
441 * Efd items have no locking, so just return success. 401 * Efd items have no locking, so just return success.
442 */ 402 */
443/*ARGSUSED*/
444STATIC uint 403STATIC uint
445xfs_efd_item_trylock(xfs_efd_log_item_t *efdp) 404xfs_efd_item_trylock(
405 struct xfs_log_item *lip)
446{ 406{
447 return XFS_ITEM_LOCKED; 407 return XFS_ITEM_LOCKED;
448} 408}
@@ -451,13 +411,12 @@ xfs_efd_item_trylock(xfs_efd_log_item_t *efdp)
451 * Efd items have no locking or pushing, so return failure 411 * Efd items have no locking or pushing, so return failure
452 * so that the caller doesn't bother with us. 412 * so that the caller doesn't bother with us.
453 */ 413 */
454/*ARGSUSED*/
455STATIC void 414STATIC void
456xfs_efd_item_unlock(xfs_efd_log_item_t *efdp) 415xfs_efd_item_unlock(
416 struct xfs_log_item *lip)
457{ 417{
458 if (efdp->efd_item.li_flags & XFS_LI_ABORTED) 418 if (lip->li_flags & XFS_LI_ABORTED)
459 xfs_efd_item_free(efdp); 419 xfs_efd_item_free(EFD_ITEM(lip));
460 return;
461} 420}
462 421
463/* 422/*
@@ -467,15 +426,18 @@ xfs_efd_item_unlock(xfs_efd_log_item_t *efdp)
467 * return -1 to keep the transaction code from further referencing 426 * return -1 to keep the transaction code from further referencing
468 * this item. 427 * this item.
469 */ 428 */
470/*ARGSUSED*/
471STATIC xfs_lsn_t 429STATIC xfs_lsn_t
472xfs_efd_item_committed(xfs_efd_log_item_t *efdp, xfs_lsn_t lsn) 430xfs_efd_item_committed(
431 struct xfs_log_item *lip,
432 xfs_lsn_t lsn)
473{ 433{
434 struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
435
474 /* 436 /*
475 * If we got a log I/O error, it's always the case that the LR with the 437 * If we got a log I/O error, it's always the case that the LR with the
476 * EFI got unpinned and freed before the EFD got aborted. 438 * EFI got unpinned and freed before the EFD got aborted.
477 */ 439 */
478 if ((efdp->efd_item.li_flags & XFS_LI_ABORTED) == 0) 440 if (!(lip->li_flags & XFS_LI_ABORTED))
479 xfs_efi_release(efdp->efd_efip, efdp->efd_format.efd_nextents); 441 xfs_efi_release(efdp->efd_efip, efdp->efd_format.efd_nextents);
480 442
481 xfs_efd_item_free(efdp); 443 xfs_efd_item_free(efdp);
@@ -486,11 +448,10 @@ xfs_efd_item_committed(xfs_efd_log_item_t *efdp, xfs_lsn_t lsn)
486 * There isn't much you can do to push on an efd item. It is simply 448 * There isn't much you can do to push on an efd item. It is simply
487 * stuck waiting for the log to be flushed to disk. 449 * stuck waiting for the log to be flushed to disk.
488 */ 450 */
489/*ARGSUSED*/
490STATIC void 451STATIC void
491xfs_efd_item_push(xfs_efd_log_item_t *efdp) 452xfs_efd_item_push(
453 struct xfs_log_item *lip)
492{ 454{
493 return;
494} 455}
495 456
496/* 457/*
@@ -500,55 +461,48 @@ xfs_efd_item_push(xfs_efd_log_item_t *efdp)
500 * example, for inodes, the inode is locked throughout the extent freeing 461 * example, for inodes, the inode is locked throughout the extent freeing
501 * so the dependency should be recorded there. 462 * so the dependency should be recorded there.
502 */ 463 */
503/*ARGSUSED*/
504STATIC void 464STATIC void
505xfs_efd_item_committing(xfs_efd_log_item_t *efip, xfs_lsn_t lsn) 465xfs_efd_item_committing(
466 struct xfs_log_item *lip,
467 xfs_lsn_t lsn)
506{ 468{
507 return;
508} 469}
509 470
510/* 471/*
511 * This is the ops vector shared by all efd log items. 472 * This is the ops vector shared by all efd log items.
512 */ 473 */
513static struct xfs_item_ops xfs_efd_item_ops = { 474static struct xfs_item_ops xfs_efd_item_ops = {
514 .iop_size = (uint(*)(xfs_log_item_t*))xfs_efd_item_size, 475 .iop_size = xfs_efd_item_size,
515 .iop_format = (void(*)(xfs_log_item_t*, xfs_log_iovec_t*)) 476 .iop_format = xfs_efd_item_format,
516 xfs_efd_item_format, 477 .iop_pin = xfs_efd_item_pin,
517 .iop_pin = (void(*)(xfs_log_item_t*))xfs_efd_item_pin, 478 .iop_unpin = xfs_efd_item_unpin,
518 .iop_unpin = (void(*)(xfs_log_item_t*))xfs_efd_item_unpin, 479 .iop_trylock = xfs_efd_item_trylock,
519 .iop_unpin_remove = (void(*)(xfs_log_item_t*, xfs_trans_t*)) 480 .iop_unlock = xfs_efd_item_unlock,
520 xfs_efd_item_unpin_remove, 481 .iop_committed = xfs_efd_item_committed,
521 .iop_trylock = (uint(*)(xfs_log_item_t*))xfs_efd_item_trylock, 482 .iop_push = xfs_efd_item_push,
522 .iop_unlock = (void(*)(xfs_log_item_t*))xfs_efd_item_unlock, 483 .iop_committing = xfs_efd_item_committing
523 .iop_committed = (xfs_lsn_t(*)(xfs_log_item_t*, xfs_lsn_t))
524 xfs_efd_item_committed,
525 .iop_push = (void(*)(xfs_log_item_t*))xfs_efd_item_push,
526 .iop_pushbuf = NULL,
527 .iop_committing = (void(*)(xfs_log_item_t*, xfs_lsn_t))
528 xfs_efd_item_committing
529}; 484};
530 485
531
532/* 486/*
533 * Allocate and initialize an efd item with the given number of extents. 487 * Allocate and initialize an efd item with the given number of extents.
534 */ 488 */
535xfs_efd_log_item_t * 489struct xfs_efd_log_item *
536xfs_efd_init(xfs_mount_t *mp, 490xfs_efd_init(
537 xfs_efi_log_item_t *efip, 491 struct xfs_mount *mp,
538 uint nextents) 492 struct xfs_efi_log_item *efip,
493 uint nextents)
539 494
540{ 495{
541 xfs_efd_log_item_t *efdp; 496 struct xfs_efd_log_item *efdp;
542 uint size; 497 uint size;
543 498
544 ASSERT(nextents > 0); 499 ASSERT(nextents > 0);
545 if (nextents > XFS_EFD_MAX_FAST_EXTENTS) { 500 if (nextents > XFS_EFD_MAX_FAST_EXTENTS) {
546 size = (uint)(sizeof(xfs_efd_log_item_t) + 501 size = (uint)(sizeof(xfs_efd_log_item_t) +
547 ((nextents - 1) * sizeof(xfs_extent_t))); 502 ((nextents - 1) * sizeof(xfs_extent_t)));
548 efdp = (xfs_efd_log_item_t*)kmem_zalloc(size, KM_SLEEP); 503 efdp = kmem_zalloc(size, KM_SLEEP);
549 } else { 504 } else {
550 efdp = (xfs_efd_log_item_t*)kmem_zone_zalloc(xfs_efd_zone, 505 efdp = kmem_zone_zalloc(xfs_efd_zone, KM_SLEEP);
551 KM_SLEEP);
552 } 506 }
553 507
554 xfs_log_item_init(mp, &efdp->efd_item, XFS_LI_EFD, &xfs_efd_item_ops); 508 xfs_log_item_init(mp, &efdp->efd_item, XFS_LI_EFD, &xfs_efd_item_ops);
@@ -556,5 +510,5 @@ xfs_efd_init(xfs_mount_t *mp,
556 efdp->efd_format.efd_nextents = nextents; 510 efdp->efd_format.efd_nextents = nextents;
557 efdp->efd_format.efd_efi_id = efip->efi_format.efi_id; 511 efdp->efd_format.efd_efi_id = efip->efi_format.efi_id;
558 512
559 return (efdp); 513 return efdp;
560} 514}