aboutsummaryrefslogtreecommitdiffstats
path: root/fs/xfs/xfs_extfree_item.c
diff options
context:
space:
mode:
Diffstat (limited to 'fs/xfs/xfs_extfree_item.c')
-rw-r--r--fs/xfs/xfs_extfree_item.c668
1 files changed, 668 insertions, 0 deletions
diff --git a/fs/xfs/xfs_extfree_item.c b/fs/xfs/xfs_extfree_item.c
new file mode 100644
index 000000000000..5eafd5b63211
--- /dev/null
+++ b/fs/xfs/xfs_extfree_item.c
@@ -0,0 +1,668 @@
1/*
2 * Copyright (c) 2000-2001 Silicon Graphics, Inc. All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of version 2 of the GNU General Public License as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it would be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
11 *
12 * Further, this software is distributed without any warranty that it is
13 * free of the rightful claim of any third person regarding infringement
14 * or the like. Any license provided herein, whether implied or
15 * otherwise, applies only to this software file. Patent licenses, if
16 * any, provided herein do not apply to combinations of this program with
17 * other software, or any other product whatsoever.
18 *
19 * You should have received a copy of the GNU General Public License along
20 * with this program; if not, write the Free Software Foundation, Inc., 59
21 * Temple Place - Suite 330, Boston MA 02111-1307, USA.
22 *
23 * Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy,
24 * Mountain View, CA 94043, or:
25 *
26 * http://www.sgi.com
27 *
28 * For further information regarding this notice, see:
29 *
30 * http://oss.sgi.com/projects/GenInfo/SGIGPLNoticeExplan/
31 */
32
33/*
34 * This file contains the implementation of the xfs_efi_log_item
35 * and xfs_efd_log_item items.
36 */
37
38#include "xfs.h"
39
40#include "xfs_macros.h"
41#include "xfs_types.h"
42#include "xfs_inum.h"
43#include "xfs_log.h"
44#include "xfs_trans.h"
45#include "xfs_buf_item.h"
46#include "xfs_sb.h"
47#include "xfs_dir.h"
48#include "xfs_dmapi.h"
49#include "xfs_mount.h"
50#include "xfs_trans_priv.h"
51#include "xfs_extfree_item.h"
52
53
54kmem_zone_t *xfs_efi_zone;
55kmem_zone_t *xfs_efd_zone;
56
57STATIC void xfs_efi_item_unlock(xfs_efi_log_item_t *);
58STATIC void xfs_efi_item_abort(xfs_efi_log_item_t *);
59STATIC void xfs_efd_item_abort(xfs_efd_log_item_t *);
60
61
62
63/*
64 * This returns the number of iovecs needed to log the given efi item.
65 * We only need 1 iovec for an efi item. It just logs the efi_log_format
66 * structure.
67 */
68/*ARGSUSED*/
69STATIC uint
70xfs_efi_item_size(xfs_efi_log_item_t *efip)
71{
72 return 1;
73}
74
75/*
76 * This is called to fill in the vector of log iovecs for the
77 * given efi log item. We use only 1 iovec, and we point that
78 * at the efi_log_format structure embedded in the efi item.
79 * It is at this point that we assert that all of the extent
80 * slots in the efi item have been filled.
81 */
82STATIC void
83xfs_efi_item_format(xfs_efi_log_item_t *efip,
84 xfs_log_iovec_t *log_vector)
85{
86 uint size;
87
88 ASSERT(efip->efi_next_extent == efip->efi_format.efi_nextents);
89
90 efip->efi_format.efi_type = XFS_LI_EFI;
91
92 size = sizeof(xfs_efi_log_format_t);
93 size += (efip->efi_format.efi_nextents - 1) * sizeof(xfs_extent_t);
94 efip->efi_format.efi_size = 1;
95
96 log_vector->i_addr = (xfs_caddr_t)&(efip->efi_format);
97 log_vector->i_len = size;
98 ASSERT(size >= sizeof(xfs_efi_log_format_t));
99}
100
101
102/*
103 * Pinning has no meaning for an efi item, so just return.
104 */
105/*ARGSUSED*/
106STATIC void
107xfs_efi_item_pin(xfs_efi_log_item_t *efip)
108{
109 return;
110}
111
112
113/*
114 * While EFIs cannot really be pinned, the unpin operation is the
115 * last place at which the EFI is manipulated during a transaction.
116 * Here we coordinate with xfs_efi_cancel() to determine who gets to
117 * free the EFI.
118 */
119/*ARGSUSED*/
120STATIC void
121xfs_efi_item_unpin(xfs_efi_log_item_t *efip, int stale)
122{
123 int nexts;
124 int size;
125 xfs_mount_t *mp;
126 SPLDECL(s);
127
128 mp = efip->efi_item.li_mountp;
129 AIL_LOCK(mp, s);
130 if (efip->efi_flags & XFS_EFI_CANCELED) {
131 /*
132 * xfs_trans_delete_ail() drops the AIL lock.
133 */
134 xfs_trans_delete_ail(mp, (xfs_log_item_t *)efip, s);
135
136 nexts = efip->efi_format.efi_nextents;
137 if (nexts > XFS_EFI_MAX_FAST_EXTENTS) {
138 size = sizeof(xfs_efi_log_item_t);
139 size += (nexts - 1) * sizeof(xfs_extent_t);
140 kmem_free(efip, size);
141 } else {
142 kmem_zone_free(xfs_efi_zone, efip);
143 }
144 } else {
145 efip->efi_flags |= XFS_EFI_COMMITTED;
146 AIL_UNLOCK(mp, s);
147 }
148
149 return;
150}
151
152/*
153 * like unpin only we have to also clear the xaction descriptor
154 * pointing the log item if we free the item. This routine duplicates
155 * unpin because efi_flags is protected by the AIL lock. Freeing
156 * the descriptor and then calling unpin would force us to drop the AIL
157 * lock which would open up a race condition.
158 */
159STATIC void
160xfs_efi_item_unpin_remove(xfs_efi_log_item_t *efip, xfs_trans_t *tp)
161{
162 int nexts;
163 int size;
164 xfs_mount_t *mp;
165 xfs_log_item_desc_t *lidp;
166 SPLDECL(s);
167
168 mp = efip->efi_item.li_mountp;
169 AIL_LOCK(mp, s);
170 if (efip->efi_flags & XFS_EFI_CANCELED) {
171 /*
172 * free the xaction descriptor pointing to this item
173 */
174 lidp = xfs_trans_find_item(tp, (xfs_log_item_t *) efip);
175 xfs_trans_free_item(tp, lidp);
176 /*
177 * pull the item off the AIL.
178 * xfs_trans_delete_ail() drops the AIL lock.
179 */
180 xfs_trans_delete_ail(mp, (xfs_log_item_t *)efip, s);
181 /*
182 * now free the item itself
183 */
184 nexts = efip->efi_format.efi_nextents;
185 if (nexts > XFS_EFI_MAX_FAST_EXTENTS) {
186 size = sizeof(xfs_efi_log_item_t);
187 size += (nexts - 1) * sizeof(xfs_extent_t);
188 kmem_free(efip, size);
189 } else {
190 kmem_zone_free(xfs_efi_zone, efip);
191 }
192 } else {
193 efip->efi_flags |= XFS_EFI_COMMITTED;
194 AIL_UNLOCK(mp, s);
195 }
196
197 return;
198}
199
200/*
201 * Efi items have no locking or pushing. However, since EFIs are
202 * pulled from the AIL when their corresponding EFDs are committed
203 * to disk, their situation is very similar to being pinned. Return
204 * XFS_ITEM_PINNED so that the caller will eventually flush the log.
205 * This should help in getting the EFI out of the AIL.
206 */
207/*ARGSUSED*/
208STATIC uint
209xfs_efi_item_trylock(xfs_efi_log_item_t *efip)
210{
211 return XFS_ITEM_PINNED;
212}
213
214/*
215 * Efi items have no locking, so just return.
216 */
217/*ARGSUSED*/
218STATIC void
219xfs_efi_item_unlock(xfs_efi_log_item_t *efip)
220{
221 if (efip->efi_item.li_flags & XFS_LI_ABORTED)
222 xfs_efi_item_abort(efip);
223 return;
224}
225
226/*
227 * The EFI is logged only once and cannot be moved in the log, so
228 * simply return the lsn at which it's been logged. The canceled
229 * flag is not paid any attention here. Checking for that is delayed
230 * until the EFI is unpinned.
231 */
232/*ARGSUSED*/
233STATIC xfs_lsn_t
234xfs_efi_item_committed(xfs_efi_log_item_t *efip, xfs_lsn_t lsn)
235{
236 return lsn;
237}
238
239/*
240 * This is called when the transaction logging the EFI is aborted.
241 * Free up the EFI and return. No need to clean up the slot for
242 * the item in the transaction. That was done by the unpin code
243 * which is called prior to this routine in the abort/fs-shutdown path.
244 */
245STATIC void
246xfs_efi_item_abort(xfs_efi_log_item_t *efip)
247{
248 int nexts;
249 int size;
250
251 nexts = efip->efi_format.efi_nextents;
252 if (nexts > XFS_EFI_MAX_FAST_EXTENTS) {
253 size = sizeof(xfs_efi_log_item_t);
254 size += (nexts - 1) * sizeof(xfs_extent_t);
255 kmem_free(efip, size);
256 } else {
257 kmem_zone_free(xfs_efi_zone, efip);
258 }
259 return;
260}
261
262/*
263 * There isn't much you can do to push on an efi item. It is simply
264 * stuck waiting for all of its corresponding efd items to be
265 * committed to disk.
266 */
267/*ARGSUSED*/
268STATIC void
269xfs_efi_item_push(xfs_efi_log_item_t *efip)
270{
271 return;
272}
273
274/*
275 * The EFI dependency tracking op doesn't do squat. It can't because
276 * it doesn't know where the free extent is coming from. The dependency
277 * tracking has to be handled by the "enclosing" metadata object. For
278 * example, for inodes, the inode is locked throughout the extent freeing
279 * so the dependency should be recorded there.
280 */
281/*ARGSUSED*/
282STATIC void
283xfs_efi_item_committing(xfs_efi_log_item_t *efip, xfs_lsn_t lsn)
284{
285 return;
286}
287
288/*
289 * This is the ops vector shared by all efi log items.
290 */
291struct xfs_item_ops xfs_efi_item_ops = {
292 .iop_size = (uint(*)(xfs_log_item_t*))xfs_efi_item_size,
293 .iop_format = (void(*)(xfs_log_item_t*, xfs_log_iovec_t*))
294 xfs_efi_item_format,
295 .iop_pin = (void(*)(xfs_log_item_t*))xfs_efi_item_pin,
296 .iop_unpin = (void(*)(xfs_log_item_t*, int))xfs_efi_item_unpin,
297 .iop_unpin_remove = (void(*)(xfs_log_item_t*, xfs_trans_t *))
298 xfs_efi_item_unpin_remove,
299 .iop_trylock = (uint(*)(xfs_log_item_t*))xfs_efi_item_trylock,
300 .iop_unlock = (void(*)(xfs_log_item_t*))xfs_efi_item_unlock,
301 .iop_committed = (xfs_lsn_t(*)(xfs_log_item_t*, xfs_lsn_t))
302 xfs_efi_item_committed,
303 .iop_push = (void(*)(xfs_log_item_t*))xfs_efi_item_push,
304 .iop_abort = (void(*)(xfs_log_item_t*))xfs_efi_item_abort,
305 .iop_pushbuf = NULL,
306 .iop_committing = (void(*)(xfs_log_item_t*, xfs_lsn_t))
307 xfs_efi_item_committing
308};
309
310
311/*
312 * Allocate and initialize an efi item with the given number of extents.
313 */
314xfs_efi_log_item_t *
315xfs_efi_init(xfs_mount_t *mp,
316 uint nextents)
317
318{
319 xfs_efi_log_item_t *efip;
320 uint size;
321
322 ASSERT(nextents > 0);
323 if (nextents > XFS_EFI_MAX_FAST_EXTENTS) {
324 size = (uint)(sizeof(xfs_efi_log_item_t) +
325 ((nextents - 1) * sizeof(xfs_extent_t)));
326 efip = (xfs_efi_log_item_t*)kmem_zalloc(size, KM_SLEEP);
327 } else {
328 efip = (xfs_efi_log_item_t*)kmem_zone_zalloc(xfs_efi_zone,
329 KM_SLEEP);
330 }
331
332 efip->efi_item.li_type = XFS_LI_EFI;
333 efip->efi_item.li_ops = &xfs_efi_item_ops;
334 efip->efi_item.li_mountp = mp;
335 efip->efi_format.efi_nextents = nextents;
336 efip->efi_format.efi_id = (__psint_t)(void*)efip;
337
338 return (efip);
339}
340
341/*
342 * This is called by the efd item code below to release references to
343 * the given efi item. Each efd calls this with the number of
344 * extents that it has logged, and when the sum of these reaches
345 * the total number of extents logged by this efi item we can free
346 * the efi item.
347 *
348 * Freeing the efi item requires that we remove it from the AIL.
349 * We'll use the AIL lock to protect our counters as well as
350 * the removal from the AIL.
351 */
352void
353xfs_efi_release(xfs_efi_log_item_t *efip,
354 uint nextents)
355{
356 xfs_mount_t *mp;
357 int extents_left;
358 uint size;
359 int nexts;
360 SPLDECL(s);
361
362 mp = efip->efi_item.li_mountp;
363 ASSERT(efip->efi_next_extent > 0);
364 ASSERT(efip->efi_flags & XFS_EFI_COMMITTED);
365
366 AIL_LOCK(mp, s);
367 ASSERT(efip->efi_next_extent >= nextents);
368 efip->efi_next_extent -= nextents;
369 extents_left = efip->efi_next_extent;
370 if (extents_left == 0) {
371 /*
372 * xfs_trans_delete_ail() drops the AIL lock.
373 */
374 xfs_trans_delete_ail(mp, (xfs_log_item_t *)efip, s);
375 } else {
376 AIL_UNLOCK(mp, s);
377 }
378
379 if (extents_left == 0) {
380 nexts = efip->efi_format.efi_nextents;
381 if (nexts > XFS_EFI_MAX_FAST_EXTENTS) {
382 size = sizeof(xfs_efi_log_item_t);
383 size += (nexts - 1) * sizeof(xfs_extent_t);
384 kmem_free(efip, size);
385 } else {
386 kmem_zone_free(xfs_efi_zone, efip);
387 }
388 }
389}
390
391/*
392 * This is called when the transaction that should be committing the
393 * EFD corresponding to the given EFI is aborted. The committed and
394 * canceled flags are used to coordinate the freeing of the EFI and
395 * the references by the transaction that committed it.
396 */
397STATIC void
398xfs_efi_cancel(
399 xfs_efi_log_item_t *efip)
400{
401 int nexts;
402 int size;
403 xfs_mount_t *mp;
404 SPLDECL(s);
405
406 mp = efip->efi_item.li_mountp;
407 AIL_LOCK(mp, s);
408 if (efip->efi_flags & XFS_EFI_COMMITTED) {
409 /*
410 * xfs_trans_delete_ail() drops the AIL lock.
411 */
412 xfs_trans_delete_ail(mp, (xfs_log_item_t *)efip, s);
413
414 nexts = efip->efi_format.efi_nextents;
415 if (nexts > XFS_EFI_MAX_FAST_EXTENTS) {
416 size = sizeof(xfs_efi_log_item_t);
417 size += (nexts - 1) * sizeof(xfs_extent_t);
418 kmem_free(efip, size);
419 } else {
420 kmem_zone_free(xfs_efi_zone, efip);
421 }
422 } else {
423 efip->efi_flags |= XFS_EFI_CANCELED;
424 AIL_UNLOCK(mp, s);
425 }
426
427 return;
428}
429
430
431
432
433
434/*
435 * This returns the number of iovecs needed to log the given efd item.
436 * We only need 1 iovec for an efd item. It just logs the efd_log_format
437 * structure.
438 */
439/*ARGSUSED*/
440STATIC uint
441xfs_efd_item_size(xfs_efd_log_item_t *efdp)
442{
443 return 1;
444}
445
446/*
447 * This is called to fill in the vector of log iovecs for the
448 * given efd log item. We use only 1 iovec, and we point that
449 * at the efd_log_format structure embedded in the efd item.
450 * It is at this point that we assert that all of the extent
451 * slots in the efd item have been filled.
452 */
453STATIC void
454xfs_efd_item_format(xfs_efd_log_item_t *efdp,
455 xfs_log_iovec_t *log_vector)
456{
457 uint size;
458
459 ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents);
460
461 efdp->efd_format.efd_type = XFS_LI_EFD;
462
463 size = sizeof(xfs_efd_log_format_t);
464 size += (efdp->efd_format.efd_nextents - 1) * sizeof(xfs_extent_t);
465 efdp->efd_format.efd_size = 1;
466
467 log_vector->i_addr = (xfs_caddr_t)&(efdp->efd_format);
468 log_vector->i_len = size;
469 ASSERT(size >= sizeof(xfs_efd_log_format_t));
470}
471
472
473/*
474 * Pinning has no meaning for an efd item, so just return.
475 */
476/*ARGSUSED*/
477STATIC void
478xfs_efd_item_pin(xfs_efd_log_item_t *efdp)
479{
480 return;
481}
482
483
484/*
485 * Since pinning has no meaning for an efd item, unpinning does
486 * not either.
487 */
488/*ARGSUSED*/
489STATIC void
490xfs_efd_item_unpin(xfs_efd_log_item_t *efdp, int stale)
491{
492 return;
493}
494
495/*ARGSUSED*/
496STATIC void
497xfs_efd_item_unpin_remove(xfs_efd_log_item_t *efdp, xfs_trans_t *tp)
498{
499 return;
500}
501
502/*
503 * Efd items have no locking, so just return success.
504 */
505/*ARGSUSED*/
506STATIC uint
507xfs_efd_item_trylock(xfs_efd_log_item_t *efdp)
508{
509 return XFS_ITEM_LOCKED;
510}
511
512/*
513 * Efd items have no locking or pushing, so return failure
514 * so that the caller doesn't bother with us.
515 */
516/*ARGSUSED*/
517STATIC void
518xfs_efd_item_unlock(xfs_efd_log_item_t *efdp)
519{
520 if (efdp->efd_item.li_flags & XFS_LI_ABORTED)
521 xfs_efd_item_abort(efdp);
522 return;
523}
524
525/*
526 * When the efd item is committed to disk, all we need to do
527 * is delete our reference to our partner efi item and then
528 * free ourselves. Since we're freeing ourselves we must
529 * return -1 to keep the transaction code from further referencing
530 * this item.
531 */
532/*ARGSUSED*/
533STATIC xfs_lsn_t
534xfs_efd_item_committed(xfs_efd_log_item_t *efdp, xfs_lsn_t lsn)
535{
536 uint size;
537 int nexts;
538
539 /*
540 * If we got a log I/O error, it's always the case that the LR with the
541 * EFI got unpinned and freed before the EFD got aborted.
542 */
543 if ((efdp->efd_item.li_flags & XFS_LI_ABORTED) == 0)
544 xfs_efi_release(efdp->efd_efip, efdp->efd_format.efd_nextents);
545
546 nexts = efdp->efd_format.efd_nextents;
547 if (nexts > XFS_EFD_MAX_FAST_EXTENTS) {
548 size = sizeof(xfs_efd_log_item_t);
549 size += (nexts - 1) * sizeof(xfs_extent_t);
550 kmem_free(efdp, size);
551 } else {
552 kmem_zone_free(xfs_efd_zone, efdp);
553 }
554
555 return (xfs_lsn_t)-1;
556}
557
558/*
559 * The transaction of which this EFD is a part has been aborted.
560 * Inform its companion EFI of this fact and then clean up after
561 * ourselves. No need to clean up the slot for the item in the
562 * transaction. That was done by the unpin code which is called
563 * prior to this routine in the abort/fs-shutdown path.
564 */
565STATIC void
566xfs_efd_item_abort(xfs_efd_log_item_t *efdp)
567{
568 int nexts;
569 int size;
570
571 /*
572 * If we got a log I/O error, it's always the case that the LR with the
573 * EFI got unpinned and freed before the EFD got aborted. So don't
574 * reference the EFI at all in that case.
575 */
576 if ((efdp->efd_item.li_flags & XFS_LI_ABORTED) == 0)
577 xfs_efi_cancel(efdp->efd_efip);
578
579 nexts = efdp->efd_format.efd_nextents;
580 if (nexts > XFS_EFD_MAX_FAST_EXTENTS) {
581 size = sizeof(xfs_efd_log_item_t);
582 size += (nexts - 1) * sizeof(xfs_extent_t);
583 kmem_free(efdp, size);
584 } else {
585 kmem_zone_free(xfs_efd_zone, efdp);
586 }
587 return;
588}
589
590/*
591 * There isn't much you can do to push on an efd item. It is simply
592 * stuck waiting for the log to be flushed to disk.
593 */
594/*ARGSUSED*/
595STATIC void
596xfs_efd_item_push(xfs_efd_log_item_t *efdp)
597{
598 return;
599}
600
601/*
602 * The EFD dependency tracking op doesn't do squat. It can't because
603 * it doesn't know where the free extent is coming from. The dependency
604 * tracking has to be handled by the "enclosing" metadata object. For
605 * example, for inodes, the inode is locked throughout the extent freeing
606 * so the dependency should be recorded there.
607 */
608/*ARGSUSED*/
609STATIC void
610xfs_efd_item_committing(xfs_efd_log_item_t *efip, xfs_lsn_t lsn)
611{
612 return;
613}
614
615/*
616 * This is the ops vector shared by all efd log items.
617 */
618struct xfs_item_ops xfs_efd_item_ops = {
619 .iop_size = (uint(*)(xfs_log_item_t*))xfs_efd_item_size,
620 .iop_format = (void(*)(xfs_log_item_t*, xfs_log_iovec_t*))
621 xfs_efd_item_format,
622 .iop_pin = (void(*)(xfs_log_item_t*))xfs_efd_item_pin,
623 .iop_unpin = (void(*)(xfs_log_item_t*, int))xfs_efd_item_unpin,
624 .iop_unpin_remove = (void(*)(xfs_log_item_t*, xfs_trans_t*))
625 xfs_efd_item_unpin_remove,
626 .iop_trylock = (uint(*)(xfs_log_item_t*))xfs_efd_item_trylock,
627 .iop_unlock = (void(*)(xfs_log_item_t*))xfs_efd_item_unlock,
628 .iop_committed = (xfs_lsn_t(*)(xfs_log_item_t*, xfs_lsn_t))
629 xfs_efd_item_committed,
630 .iop_push = (void(*)(xfs_log_item_t*))xfs_efd_item_push,
631 .iop_abort = (void(*)(xfs_log_item_t*))xfs_efd_item_abort,
632 .iop_pushbuf = NULL,
633 .iop_committing = (void(*)(xfs_log_item_t*, xfs_lsn_t))
634 xfs_efd_item_committing
635};
636
637
638/*
639 * Allocate and initialize an efd item with the given number of extents.
640 */
641xfs_efd_log_item_t *
642xfs_efd_init(xfs_mount_t *mp,
643 xfs_efi_log_item_t *efip,
644 uint nextents)
645
646{
647 xfs_efd_log_item_t *efdp;
648 uint size;
649
650 ASSERT(nextents > 0);
651 if (nextents > XFS_EFD_MAX_FAST_EXTENTS) {
652 size = (uint)(sizeof(xfs_efd_log_item_t) +
653 ((nextents - 1) * sizeof(xfs_extent_t)));
654 efdp = (xfs_efd_log_item_t*)kmem_zalloc(size, KM_SLEEP);
655 } else {
656 efdp = (xfs_efd_log_item_t*)kmem_zone_zalloc(xfs_efd_zone,
657 KM_SLEEP);
658 }
659
660 efdp->efd_item.li_type = XFS_LI_EFD;
661 efdp->efd_item.li_ops = &xfs_efd_item_ops;
662 efdp->efd_item.li_mountp = mp;
663 efdp->efd_efip = efip;
664 efdp->efd_format.efd_nextents = nextents;
665 efdp->efd_format.efd_efi_id = efip->efi_format.efi_id;
666
667 return (efdp);
668}