diff options
Diffstat (limited to 'fs/xfs/linux-2.6/xfs_sync.c')
-rw-r--r-- | fs/xfs/linux-2.6/xfs_sync.c | 762 |
1 files changed, 762 insertions, 0 deletions
diff --git a/fs/xfs/linux-2.6/xfs_sync.c b/fs/xfs/linux-2.6/xfs_sync.c new file mode 100644 index 000000000000..2ed035354c26 --- /dev/null +++ b/fs/xfs/linux-2.6/xfs_sync.c | |||
@@ -0,0 +1,762 @@ | |||
1 | /* | ||
2 | * Copyright (c) 2000-2005 Silicon Graphics, Inc. | ||
3 | * All Rights Reserved. | ||
4 | * | ||
5 | * This program is free software; you can redistribute it and/or | ||
6 | * modify it under the terms of the GNU General Public License as | ||
7 | * published by the Free Software Foundation. | ||
8 | * | ||
9 | * This program is distributed in the hope that it would be useful, | ||
10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
12 | * GNU General Public License for more details. | ||
13 | * | ||
14 | * You should have received a copy of the GNU General Public License | ||
15 | * along with this program; if not, write the Free Software Foundation, | ||
16 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA | ||
17 | */ | ||
18 | #include "xfs.h" | ||
19 | #include "xfs_fs.h" | ||
20 | #include "xfs_types.h" | ||
21 | #include "xfs_bit.h" | ||
22 | #include "xfs_log.h" | ||
23 | #include "xfs_inum.h" | ||
24 | #include "xfs_trans.h" | ||
25 | #include "xfs_sb.h" | ||
26 | #include "xfs_ag.h" | ||
27 | #include "xfs_dir2.h" | ||
28 | #include "xfs_dmapi.h" | ||
29 | #include "xfs_mount.h" | ||
30 | #include "xfs_bmap_btree.h" | ||
31 | #include "xfs_alloc_btree.h" | ||
32 | #include "xfs_ialloc_btree.h" | ||
33 | #include "xfs_btree.h" | ||
34 | #include "xfs_dir2_sf.h" | ||
35 | #include "xfs_attr_sf.h" | ||
36 | #include "xfs_inode.h" | ||
37 | #include "xfs_dinode.h" | ||
38 | #include "xfs_error.h" | ||
39 | #include "xfs_mru_cache.h" | ||
40 | #include "xfs_filestream.h" | ||
41 | #include "xfs_vnodeops.h" | ||
42 | #include "xfs_utils.h" | ||
43 | #include "xfs_buf_item.h" | ||
44 | #include "xfs_inode_item.h" | ||
45 | #include "xfs_rw.h" | ||
46 | |||
47 | #include <linux/kthread.h> | ||
48 | #include <linux/freezer.h> | ||
49 | |||
50 | /* | ||
51 | * Sync all the inodes in the given AG according to the | ||
52 | * direction given by the flags. | ||
53 | */ | ||
54 | STATIC int | ||
55 | xfs_sync_inodes_ag( | ||
56 | xfs_mount_t *mp, | ||
57 | int ag, | ||
58 | int flags) | ||
59 | { | ||
60 | xfs_perag_t *pag = &mp->m_perag[ag]; | ||
61 | int nr_found; | ||
62 | uint32_t first_index = 0; | ||
63 | int error = 0; | ||
64 | int last_error = 0; | ||
65 | int fflag = XFS_B_ASYNC; | ||
66 | |||
67 | if (flags & SYNC_DELWRI) | ||
68 | fflag = XFS_B_DELWRI; | ||
69 | if (flags & SYNC_WAIT) | ||
70 | fflag = 0; /* synchronous overrides all */ | ||
71 | |||
72 | do { | ||
73 | struct inode *inode; | ||
74 | xfs_inode_t *ip = NULL; | ||
75 | int lock_flags = XFS_ILOCK_SHARED; | ||
76 | |||
77 | /* | ||
78 | * use a gang lookup to find the next inode in the tree | ||
79 | * as the tree is sparse and a gang lookup walks to find | ||
80 | * the number of objects requested. | ||
81 | */ | ||
82 | read_lock(&pag->pag_ici_lock); | ||
83 | nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, | ||
84 | (void**)&ip, first_index, 1); | ||
85 | |||
86 | if (!nr_found) { | ||
87 | read_unlock(&pag->pag_ici_lock); | ||
88 | break; | ||
89 | } | ||
90 | |||
91 | /* | ||
92 | * Update the index for the next lookup. Catch overflows | ||
93 | * into the next AG range which can occur if we have inodes | ||
94 | * in the last block of the AG and we are currently | ||
95 | * pointing to the last inode. | ||
96 | */ | ||
97 | first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1); | ||
98 | if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) { | ||
99 | read_unlock(&pag->pag_ici_lock); | ||
100 | break; | ||
101 | } | ||
102 | |||
103 | /* nothing to sync during shutdown */ | ||
104 | if (XFS_FORCED_SHUTDOWN(mp)) { | ||
105 | read_unlock(&pag->pag_ici_lock); | ||
106 | return 0; | ||
107 | } | ||
108 | |||
109 | /* | ||
110 | * If we can't get a reference on the inode, it must be | ||
111 | * in reclaim. Leave it for the reclaim code to flush. | ||
112 | */ | ||
113 | inode = VFS_I(ip); | ||
114 | if (!igrab(inode)) { | ||
115 | read_unlock(&pag->pag_ici_lock); | ||
116 | continue; | ||
117 | } | ||
118 | read_unlock(&pag->pag_ici_lock); | ||
119 | |||
120 | /* avoid new or bad inodes */ | ||
121 | if (is_bad_inode(inode) || | ||
122 | xfs_iflags_test(ip, XFS_INEW)) { | ||
123 | IRELE(ip); | ||
124 | continue; | ||
125 | } | ||
126 | |||
127 | /* | ||
128 | * If we have to flush data or wait for I/O completion | ||
129 | * we need to hold the iolock. | ||
130 | */ | ||
131 | if ((flags & SYNC_DELWRI) && VN_DIRTY(inode)) { | ||
132 | xfs_ilock(ip, XFS_IOLOCK_SHARED); | ||
133 | lock_flags |= XFS_IOLOCK_SHARED; | ||
134 | error = xfs_flush_pages(ip, 0, -1, fflag, FI_NONE); | ||
135 | if (flags & SYNC_IOWAIT) | ||
136 | xfs_ioend_wait(ip); | ||
137 | } | ||
138 | xfs_ilock(ip, XFS_ILOCK_SHARED); | ||
139 | |||
140 | if ((flags & SYNC_ATTR) && !xfs_inode_clean(ip)) { | ||
141 | if (flags & SYNC_WAIT) { | ||
142 | xfs_iflock(ip); | ||
143 | if (!xfs_inode_clean(ip)) | ||
144 | error = xfs_iflush(ip, XFS_IFLUSH_SYNC); | ||
145 | else | ||
146 | xfs_ifunlock(ip); | ||
147 | } else if (xfs_iflock_nowait(ip)) { | ||
148 | if (!xfs_inode_clean(ip)) | ||
149 | error = xfs_iflush(ip, XFS_IFLUSH_DELWRI); | ||
150 | else | ||
151 | xfs_ifunlock(ip); | ||
152 | } | ||
153 | } | ||
154 | xfs_iput(ip, lock_flags); | ||
155 | |||
156 | if (error) | ||
157 | last_error = error; | ||
158 | /* | ||
159 | * bail out if the filesystem is corrupted. | ||
160 | */ | ||
161 | if (error == EFSCORRUPTED) | ||
162 | return XFS_ERROR(error); | ||
163 | |||
164 | } while (nr_found); | ||
165 | |||
166 | return last_error; | ||
167 | } | ||
168 | |||
169 | int | ||
170 | xfs_sync_inodes( | ||
171 | xfs_mount_t *mp, | ||
172 | int flags) | ||
173 | { | ||
174 | int error; | ||
175 | int last_error; | ||
176 | int i; | ||
177 | int lflags = XFS_LOG_FORCE; | ||
178 | |||
179 | if (mp->m_flags & XFS_MOUNT_RDONLY) | ||
180 | return 0; | ||
181 | error = 0; | ||
182 | last_error = 0; | ||
183 | |||
184 | if (flags & SYNC_WAIT) | ||
185 | lflags |= XFS_LOG_SYNC; | ||
186 | |||
187 | for (i = 0; i < mp->m_sb.sb_agcount; i++) { | ||
188 | if (!mp->m_perag[i].pag_ici_init) | ||
189 | continue; | ||
190 | error = xfs_sync_inodes_ag(mp, i, flags); | ||
191 | if (error) | ||
192 | last_error = error; | ||
193 | if (error == EFSCORRUPTED) | ||
194 | break; | ||
195 | } | ||
196 | if (flags & SYNC_DELWRI) | ||
197 | xfs_log_force(mp, 0, lflags); | ||
198 | |||
199 | return XFS_ERROR(last_error); | ||
200 | } | ||
201 | |||
202 | STATIC int | ||
203 | xfs_commit_dummy_trans( | ||
204 | struct xfs_mount *mp, | ||
205 | uint log_flags) | ||
206 | { | ||
207 | struct xfs_inode *ip = mp->m_rootip; | ||
208 | struct xfs_trans *tp; | ||
209 | int error; | ||
210 | |||
211 | /* | ||
212 | * Put a dummy transaction in the log to tell recovery | ||
213 | * that all others are OK. | ||
214 | */ | ||
215 | tp = xfs_trans_alloc(mp, XFS_TRANS_DUMMY1); | ||
216 | error = xfs_trans_reserve(tp, 0, XFS_ICHANGE_LOG_RES(mp), 0, 0, 0); | ||
217 | if (error) { | ||
218 | xfs_trans_cancel(tp, 0); | ||
219 | return error; | ||
220 | } | ||
221 | |||
222 | xfs_ilock(ip, XFS_ILOCK_EXCL); | ||
223 | |||
224 | xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); | ||
225 | xfs_trans_ihold(tp, ip); | ||
226 | xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); | ||
227 | /* XXX(hch): ignoring the error here.. */ | ||
228 | error = xfs_trans_commit(tp, 0); | ||
229 | |||
230 | xfs_iunlock(ip, XFS_ILOCK_EXCL); | ||
231 | |||
232 | xfs_log_force(mp, 0, log_flags); | ||
233 | return 0; | ||
234 | } | ||
235 | |||
236 | int | ||
237 | xfs_sync_fsdata( | ||
238 | struct xfs_mount *mp, | ||
239 | int flags) | ||
240 | { | ||
241 | struct xfs_buf *bp; | ||
242 | struct xfs_buf_log_item *bip; | ||
243 | int error = 0; | ||
244 | |||
245 | /* | ||
246 | * If this is xfssyncd() then only sync the superblock if we can | ||
247 | * lock it without sleeping and it is not pinned. | ||
248 | */ | ||
249 | if (flags & SYNC_BDFLUSH) { | ||
250 | ASSERT(!(flags & SYNC_WAIT)); | ||
251 | |||
252 | bp = xfs_getsb(mp, XFS_BUF_TRYLOCK); | ||
253 | if (!bp) | ||
254 | goto out; | ||
255 | |||
256 | bip = XFS_BUF_FSPRIVATE(bp, struct xfs_buf_log_item *); | ||
257 | if (!bip || !xfs_buf_item_dirty(bip) || XFS_BUF_ISPINNED(bp)) | ||
258 | goto out_brelse; | ||
259 | } else { | ||
260 | bp = xfs_getsb(mp, 0); | ||
261 | |||
262 | /* | ||
263 | * If the buffer is pinned then push on the log so we won't | ||
264 | * get stuck waiting in the write for someone, maybe | ||
265 | * ourselves, to flush the log. | ||
266 | * | ||
267 | * Even though we just pushed the log above, we did not have | ||
268 | * the superblock buffer locked at that point so it can | ||
269 | * become pinned in between there and here. | ||
270 | */ | ||
271 | if (XFS_BUF_ISPINNED(bp)) | ||
272 | xfs_log_force(mp, 0, XFS_LOG_FORCE); | ||
273 | } | ||
274 | |||
275 | |||
276 | if (flags & SYNC_WAIT) | ||
277 | XFS_BUF_UNASYNC(bp); | ||
278 | else | ||
279 | XFS_BUF_ASYNC(bp); | ||
280 | |||
281 | return xfs_bwrite(mp, bp); | ||
282 | |||
283 | out_brelse: | ||
284 | xfs_buf_relse(bp); | ||
285 | out: | ||
286 | return error; | ||
287 | } | ||
288 | |||
289 | /* | ||
290 | * When remounting a filesystem read-only or freezing the filesystem, we have | ||
291 | * two phases to execute. This first phase is syncing the data before we | ||
292 | * quiesce the filesystem, and the second is flushing all the inodes out after | ||
293 | * we've waited for all the transactions created by the first phase to | ||
294 | * complete. The second phase ensures that the inodes are written to their | ||
295 | * location on disk rather than just existing in transactions in the log. This | ||
296 | * means after a quiesce there is no log replay required to write the inodes to | ||
297 | * disk (this is the main difference between a sync and a quiesce). | ||
298 | */ | ||
299 | /* | ||
300 | * First stage of freeze - no writers will make progress now we are here, | ||
301 | * so we flush delwri and delalloc buffers here, then wait for all I/O to | ||
302 | * complete. Data is frozen at that point. Metadata is not frozen, | ||
303 | * transactions can still occur here so don't bother flushing the buftarg | ||
304 | * because it'll just get dirty again. | ||
305 | */ | ||
306 | int | ||
307 | xfs_quiesce_data( | ||
308 | struct xfs_mount *mp) | ||
309 | { | ||
310 | int error; | ||
311 | |||
312 | /* push non-blocking */ | ||
313 | xfs_sync_inodes(mp, SYNC_DELWRI|SYNC_BDFLUSH); | ||
314 | XFS_QM_DQSYNC(mp, SYNC_BDFLUSH); | ||
315 | xfs_filestream_flush(mp); | ||
316 | |||
317 | /* push and block */ | ||
318 | xfs_sync_inodes(mp, SYNC_DELWRI|SYNC_WAIT|SYNC_IOWAIT); | ||
319 | XFS_QM_DQSYNC(mp, SYNC_WAIT); | ||
320 | |||
321 | /* write superblock and hoover up shutdown errors */ | ||
322 | error = xfs_sync_fsdata(mp, 0); | ||
323 | |||
324 | /* flush data-only devices */ | ||
325 | if (mp->m_rtdev_targp) | ||
326 | XFS_bflush(mp->m_rtdev_targp); | ||
327 | |||
328 | return error; | ||
329 | } | ||
330 | |||
331 | STATIC void | ||
332 | xfs_quiesce_fs( | ||
333 | struct xfs_mount *mp) | ||
334 | { | ||
335 | int count = 0, pincount; | ||
336 | |||
337 | xfs_flush_buftarg(mp->m_ddev_targp, 0); | ||
338 | xfs_reclaim_inodes(mp, 0, XFS_IFLUSH_DELWRI_ELSE_ASYNC); | ||
339 | |||
340 | /* | ||
341 | * This loop must run at least twice. The first instance of the loop | ||
342 | * will flush most meta data but that will generate more meta data | ||
343 | * (typically directory updates). Which then must be flushed and | ||
344 | * logged before we can write the unmount record. | ||
345 | */ | ||
346 | do { | ||
347 | xfs_sync_inodes(mp, SYNC_ATTR|SYNC_WAIT); | ||
348 | pincount = xfs_flush_buftarg(mp->m_ddev_targp, 1); | ||
349 | if (!pincount) { | ||
350 | delay(50); | ||
351 | count++; | ||
352 | } | ||
353 | } while (count < 2); | ||
354 | } | ||
355 | |||
356 | /* | ||
357 | * Second stage of a quiesce. The data is already synced, now we have to take | ||
358 | * care of the metadata. New transactions are already blocked, so we need to | ||
359 | * wait for any remaining transactions to drain out before proceding. | ||
360 | */ | ||
361 | void | ||
362 | xfs_quiesce_attr( | ||
363 | struct xfs_mount *mp) | ||
364 | { | ||
365 | int error = 0; | ||
366 | |||
367 | /* wait for all modifications to complete */ | ||
368 | while (atomic_read(&mp->m_active_trans) > 0) | ||
369 | delay(100); | ||
370 | |||
371 | /* flush inodes and push all remaining buffers out to disk */ | ||
372 | xfs_quiesce_fs(mp); | ||
373 | |||
374 | ASSERT_ALWAYS(atomic_read(&mp->m_active_trans) == 0); | ||
375 | |||
376 | /* Push the superblock and write an unmount record */ | ||
377 | error = xfs_log_sbcount(mp, 1); | ||
378 | if (error) | ||
379 | xfs_fs_cmn_err(CE_WARN, mp, | ||
380 | "xfs_attr_quiesce: failed to log sb changes. " | ||
381 | "Frozen image may not be consistent."); | ||
382 | xfs_log_unmount_write(mp); | ||
383 | xfs_unmountfs_writesb(mp); | ||
384 | } | ||
385 | |||
386 | /* | ||
387 | * Enqueue a work item to be picked up by the vfs xfssyncd thread. | ||
388 | * Doing this has two advantages: | ||
389 | * - It saves on stack space, which is tight in certain situations | ||
390 | * - It can be used (with care) as a mechanism to avoid deadlocks. | ||
391 | * Flushing while allocating in a full filesystem requires both. | ||
392 | */ | ||
393 | STATIC void | ||
394 | xfs_syncd_queue_work( | ||
395 | struct xfs_mount *mp, | ||
396 | void *data, | ||
397 | void (*syncer)(struct xfs_mount *, void *)) | ||
398 | { | ||
399 | struct bhv_vfs_sync_work *work; | ||
400 | |||
401 | work = kmem_alloc(sizeof(struct bhv_vfs_sync_work), KM_SLEEP); | ||
402 | INIT_LIST_HEAD(&work->w_list); | ||
403 | work->w_syncer = syncer; | ||
404 | work->w_data = data; | ||
405 | work->w_mount = mp; | ||
406 | spin_lock(&mp->m_sync_lock); | ||
407 | list_add_tail(&work->w_list, &mp->m_sync_list); | ||
408 | spin_unlock(&mp->m_sync_lock); | ||
409 | wake_up_process(mp->m_sync_task); | ||
410 | } | ||
411 | |||
412 | /* | ||
413 | * Flush delayed allocate data, attempting to free up reserved space | ||
414 | * from existing allocations. At this point a new allocation attempt | ||
415 | * has failed with ENOSPC and we are in the process of scratching our | ||
416 | * heads, looking about for more room... | ||
417 | */ | ||
418 | STATIC void | ||
419 | xfs_flush_inode_work( | ||
420 | struct xfs_mount *mp, | ||
421 | void *arg) | ||
422 | { | ||
423 | struct inode *inode = arg; | ||
424 | filemap_flush(inode->i_mapping); | ||
425 | iput(inode); | ||
426 | } | ||
427 | |||
428 | void | ||
429 | xfs_flush_inode( | ||
430 | xfs_inode_t *ip) | ||
431 | { | ||
432 | struct inode *inode = VFS_I(ip); | ||
433 | |||
434 | igrab(inode); | ||
435 | xfs_syncd_queue_work(ip->i_mount, inode, xfs_flush_inode_work); | ||
436 | delay(msecs_to_jiffies(500)); | ||
437 | } | ||
438 | |||
439 | /* | ||
440 | * This is the "bigger hammer" version of xfs_flush_inode_work... | ||
441 | * (IOW, "If at first you don't succeed, use a Bigger Hammer"). | ||
442 | */ | ||
443 | STATIC void | ||
444 | xfs_flush_device_work( | ||
445 | struct xfs_mount *mp, | ||
446 | void *arg) | ||
447 | { | ||
448 | struct inode *inode = arg; | ||
449 | sync_blockdev(mp->m_super->s_bdev); | ||
450 | iput(inode); | ||
451 | } | ||
452 | |||
453 | void | ||
454 | xfs_flush_device( | ||
455 | xfs_inode_t *ip) | ||
456 | { | ||
457 | struct inode *inode = VFS_I(ip); | ||
458 | |||
459 | igrab(inode); | ||
460 | xfs_syncd_queue_work(ip->i_mount, inode, xfs_flush_device_work); | ||
461 | delay(msecs_to_jiffies(500)); | ||
462 | xfs_log_force(ip->i_mount, (xfs_lsn_t)0, XFS_LOG_FORCE|XFS_LOG_SYNC); | ||
463 | } | ||
464 | |||
465 | /* | ||
466 | * Every sync period we need to unpin all items, reclaim inodes, sync | ||
467 | * quota and write out the superblock. We might need to cover the log | ||
468 | * to indicate it is idle. | ||
469 | */ | ||
470 | STATIC void | ||
471 | xfs_sync_worker( | ||
472 | struct xfs_mount *mp, | ||
473 | void *unused) | ||
474 | { | ||
475 | int error; | ||
476 | |||
477 | if (!(mp->m_flags & XFS_MOUNT_RDONLY)) { | ||
478 | xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE); | ||
479 | xfs_reclaim_inodes(mp, 0, XFS_IFLUSH_DELWRI_ELSE_ASYNC); | ||
480 | /* dgc: errors ignored here */ | ||
481 | error = XFS_QM_DQSYNC(mp, SYNC_BDFLUSH); | ||
482 | error = xfs_sync_fsdata(mp, SYNC_BDFLUSH); | ||
483 | if (xfs_log_need_covered(mp)) | ||
484 | error = xfs_commit_dummy_trans(mp, XFS_LOG_FORCE); | ||
485 | } | ||
486 | mp->m_sync_seq++; | ||
487 | wake_up(&mp->m_wait_single_sync_task); | ||
488 | } | ||
489 | |||
490 | STATIC int | ||
491 | xfssyncd( | ||
492 | void *arg) | ||
493 | { | ||
494 | struct xfs_mount *mp = arg; | ||
495 | long timeleft; | ||
496 | bhv_vfs_sync_work_t *work, *n; | ||
497 | LIST_HEAD (tmp); | ||
498 | |||
499 | set_freezable(); | ||
500 | timeleft = xfs_syncd_centisecs * msecs_to_jiffies(10); | ||
501 | for (;;) { | ||
502 | timeleft = schedule_timeout_interruptible(timeleft); | ||
503 | /* swsusp */ | ||
504 | try_to_freeze(); | ||
505 | if (kthread_should_stop() && list_empty(&mp->m_sync_list)) | ||
506 | break; | ||
507 | |||
508 | spin_lock(&mp->m_sync_lock); | ||
509 | /* | ||
510 | * We can get woken by laptop mode, to do a sync - | ||
511 | * that's the (only!) case where the list would be | ||
512 | * empty with time remaining. | ||
513 | */ | ||
514 | if (!timeleft || list_empty(&mp->m_sync_list)) { | ||
515 | if (!timeleft) | ||
516 | timeleft = xfs_syncd_centisecs * | ||
517 | msecs_to_jiffies(10); | ||
518 | INIT_LIST_HEAD(&mp->m_sync_work.w_list); | ||
519 | list_add_tail(&mp->m_sync_work.w_list, | ||
520 | &mp->m_sync_list); | ||
521 | } | ||
522 | list_for_each_entry_safe(work, n, &mp->m_sync_list, w_list) | ||
523 | list_move(&work->w_list, &tmp); | ||
524 | spin_unlock(&mp->m_sync_lock); | ||
525 | |||
526 | list_for_each_entry_safe(work, n, &tmp, w_list) { | ||
527 | (*work->w_syncer)(mp, work->w_data); | ||
528 | list_del(&work->w_list); | ||
529 | if (work == &mp->m_sync_work) | ||
530 | continue; | ||
531 | kmem_free(work); | ||
532 | } | ||
533 | } | ||
534 | |||
535 | return 0; | ||
536 | } | ||
537 | |||
538 | int | ||
539 | xfs_syncd_init( | ||
540 | struct xfs_mount *mp) | ||
541 | { | ||
542 | mp->m_sync_work.w_syncer = xfs_sync_worker; | ||
543 | mp->m_sync_work.w_mount = mp; | ||
544 | mp->m_sync_task = kthread_run(xfssyncd, mp, "xfssyncd"); | ||
545 | if (IS_ERR(mp->m_sync_task)) | ||
546 | return -PTR_ERR(mp->m_sync_task); | ||
547 | return 0; | ||
548 | } | ||
549 | |||
550 | void | ||
551 | xfs_syncd_stop( | ||
552 | struct xfs_mount *mp) | ||
553 | { | ||
554 | kthread_stop(mp->m_sync_task); | ||
555 | } | ||
556 | |||
557 | int | ||
558 | xfs_reclaim_inode( | ||
559 | xfs_inode_t *ip, | ||
560 | int locked, | ||
561 | int sync_mode) | ||
562 | { | ||
563 | xfs_perag_t *pag = xfs_get_perag(ip->i_mount, ip->i_ino); | ||
564 | |||
565 | /* The hash lock here protects a thread in xfs_iget_core from | ||
566 | * racing with us on linking the inode back with a vnode. | ||
567 | * Once we have the XFS_IRECLAIM flag set it will not touch | ||
568 | * us. | ||
569 | */ | ||
570 | write_lock(&pag->pag_ici_lock); | ||
571 | spin_lock(&ip->i_flags_lock); | ||
572 | if (__xfs_iflags_test(ip, XFS_IRECLAIM) || | ||
573 | !__xfs_iflags_test(ip, XFS_IRECLAIMABLE)) { | ||
574 | spin_unlock(&ip->i_flags_lock); | ||
575 | write_unlock(&pag->pag_ici_lock); | ||
576 | if (locked) { | ||
577 | xfs_ifunlock(ip); | ||
578 | xfs_iunlock(ip, XFS_ILOCK_EXCL); | ||
579 | } | ||
580 | return 1; | ||
581 | } | ||
582 | __xfs_iflags_set(ip, XFS_IRECLAIM); | ||
583 | spin_unlock(&ip->i_flags_lock); | ||
584 | write_unlock(&pag->pag_ici_lock); | ||
585 | xfs_put_perag(ip->i_mount, pag); | ||
586 | |||
587 | /* | ||
588 | * If the inode is still dirty, then flush it out. If the inode | ||
589 | * is not in the AIL, then it will be OK to flush it delwri as | ||
590 | * long as xfs_iflush() does not keep any references to the inode. | ||
591 | * We leave that decision up to xfs_iflush() since it has the | ||
592 | * knowledge of whether it's OK to simply do a delwri flush of | ||
593 | * the inode or whether we need to wait until the inode is | ||
594 | * pulled from the AIL. | ||
595 | * We get the flush lock regardless, though, just to make sure | ||
596 | * we don't free it while it is being flushed. | ||
597 | */ | ||
598 | if (!locked) { | ||
599 | xfs_ilock(ip, XFS_ILOCK_EXCL); | ||
600 | xfs_iflock(ip); | ||
601 | } | ||
602 | |||
603 | /* | ||
604 | * In the case of a forced shutdown we rely on xfs_iflush() to | ||
605 | * wait for the inode to be unpinned before returning an error. | ||
606 | */ | ||
607 | if (!is_bad_inode(VFS_I(ip)) && xfs_iflush(ip, sync_mode) == 0) { | ||
608 | /* synchronize with xfs_iflush_done */ | ||
609 | xfs_iflock(ip); | ||
610 | xfs_ifunlock(ip); | ||
611 | } | ||
612 | |||
613 | xfs_iunlock(ip, XFS_ILOCK_EXCL); | ||
614 | xfs_ireclaim(ip); | ||
615 | return 0; | ||
616 | } | ||
617 | |||
618 | /* | ||
619 | * We set the inode flag atomically with the radix tree tag. | ||
620 | * Once we get tag lookups on the radix tree, this inode flag | ||
621 | * can go away. | ||
622 | */ | ||
623 | void | ||
624 | xfs_inode_set_reclaim_tag( | ||
625 | xfs_inode_t *ip) | ||
626 | { | ||
627 | xfs_mount_t *mp = ip->i_mount; | ||
628 | xfs_perag_t *pag = xfs_get_perag(mp, ip->i_ino); | ||
629 | |||
630 | read_lock(&pag->pag_ici_lock); | ||
631 | spin_lock(&ip->i_flags_lock); | ||
632 | radix_tree_tag_set(&pag->pag_ici_root, | ||
633 | XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG); | ||
634 | __xfs_iflags_set(ip, XFS_IRECLAIMABLE); | ||
635 | spin_unlock(&ip->i_flags_lock); | ||
636 | read_unlock(&pag->pag_ici_lock); | ||
637 | xfs_put_perag(mp, pag); | ||
638 | } | ||
639 | |||
640 | void | ||
641 | __xfs_inode_clear_reclaim_tag( | ||
642 | xfs_mount_t *mp, | ||
643 | xfs_perag_t *pag, | ||
644 | xfs_inode_t *ip) | ||
645 | { | ||
646 | radix_tree_tag_clear(&pag->pag_ici_root, | ||
647 | XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG); | ||
648 | } | ||
649 | |||
650 | void | ||
651 | xfs_inode_clear_reclaim_tag( | ||
652 | xfs_inode_t *ip) | ||
653 | { | ||
654 | xfs_mount_t *mp = ip->i_mount; | ||
655 | xfs_perag_t *pag = xfs_get_perag(mp, ip->i_ino); | ||
656 | |||
657 | read_lock(&pag->pag_ici_lock); | ||
658 | spin_lock(&ip->i_flags_lock); | ||
659 | __xfs_inode_clear_reclaim_tag(mp, pag, ip); | ||
660 | spin_unlock(&ip->i_flags_lock); | ||
661 | read_unlock(&pag->pag_ici_lock); | ||
662 | xfs_put_perag(mp, pag); | ||
663 | } | ||
664 | |||
665 | |||
666 | STATIC void | ||
667 | xfs_reclaim_inodes_ag( | ||
668 | xfs_mount_t *mp, | ||
669 | int ag, | ||
670 | int noblock, | ||
671 | int mode) | ||
672 | { | ||
673 | xfs_inode_t *ip = NULL; | ||
674 | xfs_perag_t *pag = &mp->m_perag[ag]; | ||
675 | int nr_found; | ||
676 | uint32_t first_index; | ||
677 | int skipped; | ||
678 | |||
679 | restart: | ||
680 | first_index = 0; | ||
681 | skipped = 0; | ||
682 | do { | ||
683 | /* | ||
684 | * use a gang lookup to find the next inode in the tree | ||
685 | * as the tree is sparse and a gang lookup walks to find | ||
686 | * the number of objects requested. | ||
687 | */ | ||
688 | read_lock(&pag->pag_ici_lock); | ||
689 | nr_found = radix_tree_gang_lookup_tag(&pag->pag_ici_root, | ||
690 | (void**)&ip, first_index, 1, | ||
691 | XFS_ICI_RECLAIM_TAG); | ||
692 | |||
693 | if (!nr_found) { | ||
694 | read_unlock(&pag->pag_ici_lock); | ||
695 | break; | ||
696 | } | ||
697 | |||
698 | /* | ||
699 | * Update the index for the next lookup. Catch overflows | ||
700 | * into the next AG range which can occur if we have inodes | ||
701 | * in the last block of the AG and we are currently | ||
702 | * pointing to the last inode. | ||
703 | */ | ||
704 | first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1); | ||
705 | if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) { | ||
706 | read_unlock(&pag->pag_ici_lock); | ||
707 | break; | ||
708 | } | ||
709 | |||
710 | /* ignore if already under reclaim */ | ||
711 | if (xfs_iflags_test(ip, XFS_IRECLAIM)) { | ||
712 | read_unlock(&pag->pag_ici_lock); | ||
713 | continue; | ||
714 | } | ||
715 | |||
716 | if (noblock) { | ||
717 | if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { | ||
718 | read_unlock(&pag->pag_ici_lock); | ||
719 | continue; | ||
720 | } | ||
721 | if (xfs_ipincount(ip) || | ||
722 | !xfs_iflock_nowait(ip)) { | ||
723 | xfs_iunlock(ip, XFS_ILOCK_EXCL); | ||
724 | read_unlock(&pag->pag_ici_lock); | ||
725 | continue; | ||
726 | } | ||
727 | } | ||
728 | read_unlock(&pag->pag_ici_lock); | ||
729 | |||
730 | /* | ||
731 | * hmmm - this is an inode already in reclaim. Do | ||
732 | * we even bother catching it here? | ||
733 | */ | ||
734 | if (xfs_reclaim_inode(ip, noblock, mode)) | ||
735 | skipped++; | ||
736 | } while (nr_found); | ||
737 | |||
738 | if (skipped) { | ||
739 | delay(1); | ||
740 | goto restart; | ||
741 | } | ||
742 | return; | ||
743 | |||
744 | } | ||
745 | |||
746 | int | ||
747 | xfs_reclaim_inodes( | ||
748 | xfs_mount_t *mp, | ||
749 | int noblock, | ||
750 | int mode) | ||
751 | { | ||
752 | int i; | ||
753 | |||
754 | for (i = 0; i < mp->m_sb.sb_agcount; i++) { | ||
755 | if (!mp->m_perag[i].pag_ici_init) | ||
756 | continue; | ||
757 | xfs_reclaim_inodes_ag(mp, i, noblock, mode); | ||
758 | } | ||
759 | return 0; | ||
760 | } | ||
761 | |||
762 | |||