aboutsummaryrefslogtreecommitdiffstats
path: root/fs/xfs/linux-2.6/xfs_aops.c
diff options
context:
space:
mode:
Diffstat (limited to 'fs/xfs/linux-2.6/xfs_aops.c')
-rw-r--r--fs/xfs/linux-2.6/xfs_aops.c540
1 files changed, 268 insertions, 272 deletions
diff --git a/fs/xfs/linux-2.6/xfs_aops.c b/fs/xfs/linux-2.6/xfs_aops.c
index 74d8be87f983..6cbbd165c60d 100644
--- a/fs/xfs/linux-2.6/xfs_aops.c
+++ b/fs/xfs/linux-2.6/xfs_aops.c
@@ -43,7 +43,29 @@
43#include <linux/pagevec.h> 43#include <linux/pagevec.h>
44#include <linux/writeback.h> 44#include <linux/writeback.h>
45 45
46STATIC void xfs_count_page_state(struct page *, int *, int *, int *); 46STATIC void
47xfs_count_page_state(
48 struct page *page,
49 int *delalloc,
50 int *unmapped,
51 int *unwritten)
52{
53 struct buffer_head *bh, *head;
54
55 *delalloc = *unmapped = *unwritten = 0;
56
57 bh = head = page_buffers(page);
58 do {
59 if (buffer_uptodate(bh) && !buffer_mapped(bh))
60 (*unmapped) = 1;
61 else if (buffer_unwritten(bh) && !buffer_delay(bh))
62 clear_buffer_unwritten(bh);
63 else if (buffer_unwritten(bh))
64 (*unwritten) = 1;
65 else if (buffer_delay(bh))
66 (*delalloc) = 1;
67 } while ((bh = bh->b_this_page) != head);
68}
47 69
48#if defined(XFS_RW_TRACE) 70#if defined(XFS_RW_TRACE)
49void 71void
@@ -54,7 +76,7 @@ xfs_page_trace(
54 int mask) 76 int mask)
55{ 77{
56 xfs_inode_t *ip; 78 xfs_inode_t *ip;
57 vnode_t *vp = LINVFS_GET_VP(inode); 79 vnode_t *vp = vn_from_inode(inode);
58 loff_t isize = i_size_read(inode); 80 loff_t isize = i_size_read(inode);
59 loff_t offset = page_offset(page); 81 loff_t offset = page_offset(page);
60 int delalloc = -1, unmapped = -1, unwritten = -1; 82 int delalloc = -1, unmapped = -1, unwritten = -1;
@@ -81,7 +103,7 @@ xfs_page_trace(
81 (void *)((unsigned long)delalloc), 103 (void *)((unsigned long)delalloc),
82 (void *)((unsigned long)unmapped), 104 (void *)((unsigned long)unmapped),
83 (void *)((unsigned long)unwritten), 105 (void *)((unsigned long)unwritten),
84 (void *)NULL, 106 (void *)((unsigned long)current_pid()),
85 (void *)NULL); 107 (void *)NULL);
86} 108}
87#else 109#else
@@ -192,7 +214,7 @@ xfs_alloc_ioend(
192 ioend->io_uptodate = 1; /* cleared if any I/O fails */ 214 ioend->io_uptodate = 1; /* cleared if any I/O fails */
193 ioend->io_list = NULL; 215 ioend->io_list = NULL;
194 ioend->io_type = type; 216 ioend->io_type = type;
195 ioend->io_vnode = LINVFS_GET_VP(inode); 217 ioend->io_vnode = vn_from_inode(inode);
196 ioend->io_buffer_head = NULL; 218 ioend->io_buffer_head = NULL;
197 ioend->io_buffer_tail = NULL; 219 ioend->io_buffer_tail = NULL;
198 atomic_inc(&ioend->io_vnode->v_iocount); 220 atomic_inc(&ioend->io_vnode->v_iocount);
@@ -217,7 +239,7 @@ xfs_map_blocks(
217 xfs_iomap_t *mapp, 239 xfs_iomap_t *mapp,
218 int flags) 240 int flags)
219{ 241{
220 vnode_t *vp = LINVFS_GET_VP(inode); 242 vnode_t *vp = vn_from_inode(inode);
221 int error, nmaps = 1; 243 int error, nmaps = 1;
222 244
223 VOP_BMAP(vp, offset, count, flags, mapp, &nmaps, error); 245 VOP_BMAP(vp, offset, count, flags, mapp, &nmaps, error);
@@ -350,7 +372,7 @@ static inline int bio_add_buffer(struct bio *bio, struct buffer_head *bh)
350 * assumes that all buffers on the page are started at the same time. 372 * assumes that all buffers on the page are started at the same time.
351 * 373 *
352 * The fix is two passes across the ioend list - one to start writeback on the 374 * The fix is two passes across the ioend list - one to start writeback on the
353 * bufferheads, and then the second one submit them for I/O. 375 * buffer_heads, and then submit them for I/O on the second pass.
354 */ 376 */
355STATIC void 377STATIC void
356xfs_submit_ioend( 378xfs_submit_ioend(
@@ -462,28 +484,37 @@ xfs_add_to_ioend(
462} 484}
463 485
464STATIC void 486STATIC void
487xfs_map_buffer(
488 struct buffer_head *bh,
489 xfs_iomap_t *mp,
490 xfs_off_t offset,
491 uint block_bits)
492{
493 sector_t bn;
494
495 ASSERT(mp->iomap_bn != IOMAP_DADDR_NULL);
496
497 bn = (mp->iomap_bn >> (block_bits - BBSHIFT)) +
498 ((offset - mp->iomap_offset) >> block_bits);
499
500 ASSERT(bn || (mp->iomap_flags & IOMAP_REALTIME));
501
502 bh->b_blocknr = bn;
503 set_buffer_mapped(bh);
504}
505
506STATIC void
465xfs_map_at_offset( 507xfs_map_at_offset(
466 struct buffer_head *bh, 508 struct buffer_head *bh,
467 loff_t offset, 509 loff_t offset,
468 int block_bits, 510 int block_bits,
469 xfs_iomap_t *iomapp) 511 xfs_iomap_t *iomapp)
470{ 512{
471 xfs_daddr_t bn;
472 int sector_shift;
473
474 ASSERT(!(iomapp->iomap_flags & IOMAP_HOLE)); 513 ASSERT(!(iomapp->iomap_flags & IOMAP_HOLE));
475 ASSERT(!(iomapp->iomap_flags & IOMAP_DELAY)); 514 ASSERT(!(iomapp->iomap_flags & IOMAP_DELAY));
476 ASSERT(iomapp->iomap_bn != IOMAP_DADDR_NULL);
477
478 sector_shift = block_bits - BBSHIFT;
479 bn = (iomapp->iomap_bn >> sector_shift) +
480 ((offset - iomapp->iomap_offset) >> block_bits);
481
482 ASSERT(bn || (iomapp->iomap_flags & IOMAP_REALTIME));
483 ASSERT((bn << sector_shift) >= iomapp->iomap_bn);
484 515
485 lock_buffer(bh); 516 lock_buffer(bh);
486 bh->b_blocknr = bn; 517 xfs_map_buffer(bh, iomapp, offset, block_bits);
487 bh->b_bdev = iomapp->iomap_target->bt_bdev; 518 bh->b_bdev = iomapp->iomap_target->bt_bdev;
488 set_buffer_mapped(bh); 519 set_buffer_mapped(bh);
489 clear_buffer_delay(bh); 520 clear_buffer_delay(bh);
@@ -616,7 +647,7 @@ xfs_is_delayed_page(
616 acceptable = (type == IOMAP_UNWRITTEN); 647 acceptable = (type == IOMAP_UNWRITTEN);
617 else if (buffer_delay(bh)) 648 else if (buffer_delay(bh))
618 acceptable = (type == IOMAP_DELAY); 649 acceptable = (type == IOMAP_DELAY);
619 else if (buffer_mapped(bh)) 650 else if (buffer_dirty(bh) && buffer_mapped(bh))
620 acceptable = (type == 0); 651 acceptable = (type == 0);
621 else 652 else
622 break; 653 break;
@@ -668,7 +699,7 @@ xfs_convert_page(
668 699
669 /* 700 /*
670 * page_dirty is initially a count of buffers on the page before 701 * page_dirty is initially a count of buffers on the page before
671 * EOF and is decrememted as we move each into a cleanable state. 702 * EOF and is decremented as we move each into a cleanable state.
672 * 703 *
673 * Derivation: 704 * Derivation:
674 * 705 *
@@ -811,7 +842,7 @@ xfs_cluster_write(
811 * page if possible. 842 * page if possible.
812 * The bh->b_state's cannot know if any of the blocks or which block for 843 * The bh->b_state's cannot know if any of the blocks or which block for
813 * that matter are dirty due to mmap writes, and therefore bh uptodate is 844 * that matter are dirty due to mmap writes, and therefore bh uptodate is
814 * only vaild if the page itself isn't completely uptodate. Some layers 845 * only valid if the page itself isn't completely uptodate. Some layers
815 * may clear the page dirty flag prior to calling write page, under the 846 * may clear the page dirty flag prior to calling write page, under the
816 * assumption the entire page will be written out; by not writing out the 847 * assumption the entire page will be written out; by not writing out the
817 * whole page the page can be reused before all valid dirty data is 848 * whole page the page can be reused before all valid dirty data is
@@ -861,7 +892,7 @@ xfs_page_state_convert(
861 892
862 /* 893 /*
863 * page_dirty is initially a count of buffers on the page before 894 * page_dirty is initially a count of buffers on the page before
864 * EOF and is decrememted as we move each into a cleanable state. 895 * EOF and is decremented as we move each into a cleanable state.
865 * 896 *
866 * Derivation: 897 * Derivation:
867 * 898 *
@@ -1040,54 +1071,191 @@ error:
1040 return err; 1071 return err;
1041} 1072}
1042 1073
1074/*
1075 * writepage: Called from one of two places:
1076 *
1077 * 1. we are flushing a delalloc buffer head.
1078 *
1079 * 2. we are writing out a dirty page. Typically the page dirty
1080 * state is cleared before we get here. In this case is it
1081 * conceivable we have no buffer heads.
1082 *
1083 * For delalloc space on the page we need to allocate space and
1084 * flush it. For unmapped buffer heads on the page we should
1085 * allocate space if the page is uptodate. For any other dirty
1086 * buffer heads on the page we should flush them.
1087 *
1088 * If we detect that a transaction would be required to flush
1089 * the page, we have to check the process flags first, if we
1090 * are already in a transaction or disk I/O during allocations
1091 * is off, we need to fail the writepage and redirty the page.
1092 */
1093
1043STATIC int 1094STATIC int
1044__linvfs_get_block( 1095xfs_vm_writepage(
1096 struct page *page,
1097 struct writeback_control *wbc)
1098{
1099 int error;
1100 int need_trans;
1101 int delalloc, unmapped, unwritten;
1102 struct inode *inode = page->mapping->host;
1103
1104 xfs_page_trace(XFS_WRITEPAGE_ENTER, inode, page, 0);
1105
1106 /*
1107 * We need a transaction if:
1108 * 1. There are delalloc buffers on the page
1109 * 2. The page is uptodate and we have unmapped buffers
1110 * 3. The page is uptodate and we have no buffers
1111 * 4. There are unwritten buffers on the page
1112 */
1113
1114 if (!page_has_buffers(page)) {
1115 unmapped = 1;
1116 need_trans = 1;
1117 } else {
1118 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
1119 if (!PageUptodate(page))
1120 unmapped = 0;
1121 need_trans = delalloc + unmapped + unwritten;
1122 }
1123
1124 /*
1125 * If we need a transaction and the process flags say
1126 * we are already in a transaction, or no IO is allowed
1127 * then mark the page dirty again and leave the page
1128 * as is.
1129 */
1130 if (PFLAGS_TEST_FSTRANS() && need_trans)
1131 goto out_fail;
1132
1133 /*
1134 * Delay hooking up buffer heads until we have
1135 * made our go/no-go decision.
1136 */
1137 if (!page_has_buffers(page))
1138 create_empty_buffers(page, 1 << inode->i_blkbits, 0);
1139
1140 /*
1141 * Convert delayed allocate, unwritten or unmapped space
1142 * to real space and flush out to disk.
1143 */
1144 error = xfs_page_state_convert(inode, page, wbc, 1, unmapped);
1145 if (error == -EAGAIN)
1146 goto out_fail;
1147 if (unlikely(error < 0))
1148 goto out_unlock;
1149
1150 return 0;
1151
1152out_fail:
1153 redirty_page_for_writepage(wbc, page);
1154 unlock_page(page);
1155 return 0;
1156out_unlock:
1157 unlock_page(page);
1158 return error;
1159}
1160
1161/*
1162 * Called to move a page into cleanable state - and from there
1163 * to be released. Possibly the page is already clean. We always
1164 * have buffer heads in this call.
1165 *
1166 * Returns 0 if the page is ok to release, 1 otherwise.
1167 *
1168 * Possible scenarios are:
1169 *
1170 * 1. We are being called to release a page which has been written
1171 * to via regular I/O. buffer heads will be dirty and possibly
1172 * delalloc. If no delalloc buffer heads in this case then we
1173 * can just return zero.
1174 *
1175 * 2. We are called to release a page which has been written via
1176 * mmap, all we need to do is ensure there is no delalloc
1177 * state in the buffer heads, if not we can let the caller
1178 * free them and we should come back later via writepage.
1179 */
1180STATIC int
1181xfs_vm_releasepage(
1182 struct page *page,
1183 gfp_t gfp_mask)
1184{
1185 struct inode *inode = page->mapping->host;
1186 int dirty, delalloc, unmapped, unwritten;
1187 struct writeback_control wbc = {
1188 .sync_mode = WB_SYNC_ALL,
1189 .nr_to_write = 1,
1190 };
1191
1192 xfs_page_trace(XFS_RELEASEPAGE_ENTER, inode, page, gfp_mask);
1193
1194 if (!page_has_buffers(page))
1195 return 0;
1196
1197 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
1198 if (!delalloc && !unwritten)
1199 goto free_buffers;
1200
1201 if (!(gfp_mask & __GFP_FS))
1202 return 0;
1203
1204 /* If we are already inside a transaction or the thread cannot
1205 * do I/O, we cannot release this page.
1206 */
1207 if (PFLAGS_TEST_FSTRANS())
1208 return 0;
1209
1210 /*
1211 * Convert delalloc space to real space, do not flush the
1212 * data out to disk, that will be done by the caller.
1213 * Never need to allocate space here - we will always
1214 * come back to writepage in that case.
1215 */
1216 dirty = xfs_page_state_convert(inode, page, &wbc, 0, 0);
1217 if (dirty == 0 && !unwritten)
1218 goto free_buffers;
1219 return 0;
1220
1221free_buffers:
1222 return try_to_free_buffers(page);
1223}
1224
1225STATIC int
1226__xfs_get_blocks(
1045 struct inode *inode, 1227 struct inode *inode,
1046 sector_t iblock, 1228 sector_t iblock,
1047 unsigned long blocks,
1048 struct buffer_head *bh_result, 1229 struct buffer_head *bh_result,
1049 int create, 1230 int create,
1050 int direct, 1231 int direct,
1051 bmapi_flags_t flags) 1232 bmapi_flags_t flags)
1052{ 1233{
1053 vnode_t *vp = LINVFS_GET_VP(inode); 1234 vnode_t *vp = vn_from_inode(inode);
1054 xfs_iomap_t iomap; 1235 xfs_iomap_t iomap;
1055 xfs_off_t offset; 1236 xfs_off_t offset;
1056 ssize_t size; 1237 ssize_t size;
1057 int retpbbm = 1; 1238 int niomap = 1;
1058 int error; 1239 int error;
1059 1240
1060 offset = (xfs_off_t)iblock << inode->i_blkbits; 1241 offset = (xfs_off_t)iblock << inode->i_blkbits;
1061 if (blocks) 1242 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1062 size = (ssize_t) min_t(xfs_off_t, LONG_MAX, 1243 size = bh_result->b_size;
1063 (xfs_off_t)blocks << inode->i_blkbits);
1064 else
1065 size = 1 << inode->i_blkbits;
1066
1067 VOP_BMAP(vp, offset, size, 1244 VOP_BMAP(vp, offset, size,
1068 create ? flags : BMAPI_READ, &iomap, &retpbbm, error); 1245 create ? flags : BMAPI_READ, &iomap, &niomap, error);
1069 if (error) 1246 if (error)
1070 return -error; 1247 return -error;
1071 1248 if (niomap == 0)
1072 if (retpbbm == 0)
1073 return 0; 1249 return 0;
1074 1250
1075 if (iomap.iomap_bn != IOMAP_DADDR_NULL) { 1251 if (iomap.iomap_bn != IOMAP_DADDR_NULL) {
1076 xfs_daddr_t bn; 1252 /*
1077 xfs_off_t delta; 1253 * For unwritten extents do not report a disk address on
1078
1079 /* For unwritten extents do not report a disk address on
1080 * the read case (treat as if we're reading into a hole). 1254 * the read case (treat as if we're reading into a hole).
1081 */ 1255 */
1082 if (create || !(iomap.iomap_flags & IOMAP_UNWRITTEN)) { 1256 if (create || !(iomap.iomap_flags & IOMAP_UNWRITTEN)) {
1083 delta = offset - iomap.iomap_offset; 1257 xfs_map_buffer(bh_result, &iomap, offset,
1084 delta >>= inode->i_blkbits; 1258 inode->i_blkbits);
1085
1086 bn = iomap.iomap_bn >> (inode->i_blkbits - BBSHIFT);
1087 bn += delta;
1088 BUG_ON(!bn && !(iomap.iomap_flags & IOMAP_REALTIME));
1089 bh_result->b_blocknr = bn;
1090 set_buffer_mapped(bh_result);
1091 } 1259 }
1092 if (create && (iomap.iomap_flags & IOMAP_UNWRITTEN)) { 1260 if (create && (iomap.iomap_flags & IOMAP_UNWRITTEN)) {
1093 if (direct) 1261 if (direct)
@@ -1097,12 +1265,16 @@ __linvfs_get_block(
1097 } 1265 }
1098 } 1266 }
1099 1267
1100 /* If this is a realtime file, data might be on a new device */ 1268 /*
1269 * If this is a realtime file, data may be on a different device.
1270 * to that pointed to from the buffer_head b_bdev currently.
1271 */
1101 bh_result->b_bdev = iomap.iomap_target->bt_bdev; 1272 bh_result->b_bdev = iomap.iomap_target->bt_bdev;
1102 1273
1103 /* If we previously allocated a block out beyond eof and 1274 /*
1104 * we are now coming back to use it then we will need to 1275 * If we previously allocated a block out beyond eof and we are
1105 * flag it as new even if it has a disk address. 1276 * now coming back to use it then we will need to flag it as new
1277 * even if it has a disk address.
1106 */ 1278 */
1107 if (create && 1279 if (create &&
1108 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) || 1280 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
@@ -1118,42 +1290,40 @@ __linvfs_get_block(
1118 } 1290 }
1119 } 1291 }
1120 1292
1121 if (blocks) { 1293 if (direct || size > (1 << inode->i_blkbits)) {
1122 ASSERT(iomap.iomap_bsize - iomap.iomap_delta > 0); 1294 ASSERT(iomap.iomap_bsize - iomap.iomap_delta > 0);
1123 offset = min_t(xfs_off_t, 1295 offset = min_t(xfs_off_t,
1124 iomap.iomap_bsize - iomap.iomap_delta, 1296 iomap.iomap_bsize - iomap.iomap_delta, size);
1125 (xfs_off_t)blocks << inode->i_blkbits); 1297 bh_result->b_size = (ssize_t)min_t(xfs_off_t, LONG_MAX, offset);
1126 bh_result->b_size = (u32) min_t(xfs_off_t, UINT_MAX, offset);
1127 } 1298 }
1128 1299
1129 return 0; 1300 return 0;
1130} 1301}
1131 1302
1132int 1303int
1133linvfs_get_block( 1304xfs_get_blocks(
1134 struct inode *inode, 1305 struct inode *inode,
1135 sector_t iblock, 1306 sector_t iblock,
1136 struct buffer_head *bh_result, 1307 struct buffer_head *bh_result,
1137 int create) 1308 int create)
1138{ 1309{
1139 return __linvfs_get_block(inode, iblock, 0, bh_result, 1310 return __xfs_get_blocks(inode, iblock,
1140 create, 0, BMAPI_WRITE); 1311 bh_result, create, 0, BMAPI_WRITE);
1141} 1312}
1142 1313
1143STATIC int 1314STATIC int
1144linvfs_get_blocks_direct( 1315xfs_get_blocks_direct(
1145 struct inode *inode, 1316 struct inode *inode,
1146 sector_t iblock, 1317 sector_t iblock,
1147 unsigned long max_blocks,
1148 struct buffer_head *bh_result, 1318 struct buffer_head *bh_result,
1149 int create) 1319 int create)
1150{ 1320{
1151 return __linvfs_get_block(inode, iblock, max_blocks, bh_result, 1321 return __xfs_get_blocks(inode, iblock,
1152 create, 1, BMAPI_WRITE|BMAPI_DIRECT); 1322 bh_result, create, 1, BMAPI_WRITE|BMAPI_DIRECT);
1153} 1323}
1154 1324
1155STATIC void 1325STATIC void
1156linvfs_end_io_direct( 1326xfs_end_io_direct(
1157 struct kiocb *iocb, 1327 struct kiocb *iocb,
1158 loff_t offset, 1328 loff_t offset,
1159 ssize_t size, 1329 ssize_t size,
@@ -1164,9 +1334,9 @@ linvfs_end_io_direct(
1164 /* 1334 /*
1165 * Non-NULL private data means we need to issue a transaction to 1335 * Non-NULL private data means we need to issue a transaction to
1166 * convert a range from unwritten to written extents. This needs 1336 * convert a range from unwritten to written extents. This needs
1167 * to happen from process contect but aio+dio I/O completion 1337 * to happen from process context but aio+dio I/O completion
1168 * happens from irq context so we need to defer it to a workqueue. 1338 * happens from irq context so we need to defer it to a workqueue.
1169 * This is not nessecary for synchronous direct I/O, but we do 1339 * This is not necessary for synchronous direct I/O, but we do
1170 * it anyway to keep the code uniform and simpler. 1340 * it anyway to keep the code uniform and simpler.
1171 * 1341 *
1172 * The core direct I/O code might be changed to always call the 1342 * The core direct I/O code might be changed to always call the
@@ -1183,7 +1353,7 @@ linvfs_end_io_direct(
1183 } 1353 }
1184 1354
1185 /* 1355 /*
1186 * blockdev_direct_IO can return an error even afer the I/O 1356 * blockdev_direct_IO can return an error even after the I/O
1187 * completion handler was called. Thus we need to protect 1357 * completion handler was called. Thus we need to protect
1188 * against double-freeing. 1358 * against double-freeing.
1189 */ 1359 */
@@ -1191,7 +1361,7 @@ linvfs_end_io_direct(
1191} 1361}
1192 1362
1193STATIC ssize_t 1363STATIC ssize_t
1194linvfs_direct_IO( 1364xfs_vm_direct_IO(
1195 int rw, 1365 int rw,
1196 struct kiocb *iocb, 1366 struct kiocb *iocb,
1197 const struct iovec *iov, 1367 const struct iovec *iov,
@@ -1200,7 +1370,7 @@ linvfs_direct_IO(
1200{ 1370{
1201 struct file *file = iocb->ki_filp; 1371 struct file *file = iocb->ki_filp;
1202 struct inode *inode = file->f_mapping->host; 1372 struct inode *inode = file->f_mapping->host;
1203 vnode_t *vp = LINVFS_GET_VP(inode); 1373 vnode_t *vp = vn_from_inode(inode);
1204 xfs_iomap_t iomap; 1374 xfs_iomap_t iomap;
1205 int maps = 1; 1375 int maps = 1;
1206 int error; 1376 int error;
@@ -1215,253 +1385,79 @@ linvfs_direct_IO(
1215 ret = blockdev_direct_IO_own_locking(rw, iocb, inode, 1385 ret = blockdev_direct_IO_own_locking(rw, iocb, inode,
1216 iomap.iomap_target->bt_bdev, 1386 iomap.iomap_target->bt_bdev,
1217 iov, offset, nr_segs, 1387 iov, offset, nr_segs,
1218 linvfs_get_blocks_direct, 1388 xfs_get_blocks_direct,
1219 linvfs_end_io_direct); 1389 xfs_end_io_direct);
1220 1390
1221 if (unlikely(ret <= 0 && iocb->private)) 1391 if (unlikely(ret <= 0 && iocb->private))
1222 xfs_destroy_ioend(iocb->private); 1392 xfs_destroy_ioend(iocb->private);
1223 return ret; 1393 return ret;
1224} 1394}
1225 1395
1396STATIC int
1397xfs_vm_prepare_write(
1398 struct file *file,
1399 struct page *page,
1400 unsigned int from,
1401 unsigned int to)
1402{
1403 return block_prepare_write(page, from, to, xfs_get_blocks);
1404}
1226 1405
1227STATIC sector_t 1406STATIC sector_t
1228linvfs_bmap( 1407xfs_vm_bmap(
1229 struct address_space *mapping, 1408 struct address_space *mapping,
1230 sector_t block) 1409 sector_t block)
1231{ 1410{
1232 struct inode *inode = (struct inode *)mapping->host; 1411 struct inode *inode = (struct inode *)mapping->host;
1233 vnode_t *vp = LINVFS_GET_VP(inode); 1412 vnode_t *vp = vn_from_inode(inode);
1234 int error; 1413 int error;
1235 1414
1236 vn_trace_entry(vp, "linvfs_bmap", (inst_t *)__return_address); 1415 vn_trace_entry(vp, __FUNCTION__, (inst_t *)__return_address);
1237 1416
1238 VOP_RWLOCK(vp, VRWLOCK_READ); 1417 VOP_RWLOCK(vp, VRWLOCK_READ);
1239 VOP_FLUSH_PAGES(vp, (xfs_off_t)0, -1, 0, FI_REMAPF, error); 1418 VOP_FLUSH_PAGES(vp, (xfs_off_t)0, -1, 0, FI_REMAPF, error);
1240 VOP_RWUNLOCK(vp, VRWLOCK_READ); 1419 VOP_RWUNLOCK(vp, VRWLOCK_READ);
1241 return generic_block_bmap(mapping, block, linvfs_get_block); 1420 return generic_block_bmap(mapping, block, xfs_get_blocks);
1242} 1421}
1243 1422
1244STATIC int 1423STATIC int
1245linvfs_readpage( 1424xfs_vm_readpage(
1246 struct file *unused, 1425 struct file *unused,
1247 struct page *page) 1426 struct page *page)
1248{ 1427{
1249 return mpage_readpage(page, linvfs_get_block); 1428 return mpage_readpage(page, xfs_get_blocks);
1250} 1429}
1251 1430
1252STATIC int 1431STATIC int
1253linvfs_readpages( 1432xfs_vm_readpages(
1254 struct file *unused, 1433 struct file *unused,
1255 struct address_space *mapping, 1434 struct address_space *mapping,
1256 struct list_head *pages, 1435 struct list_head *pages,
1257 unsigned nr_pages) 1436 unsigned nr_pages)
1258{ 1437{
1259 return mpage_readpages(mapping, pages, nr_pages, linvfs_get_block); 1438 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1260} 1439}
1261 1440
1262STATIC void 1441STATIC void
1263xfs_count_page_state( 1442xfs_vm_invalidatepage(
1264 struct page *page,
1265 int *delalloc,
1266 int *unmapped,
1267 int *unwritten)
1268{
1269 struct buffer_head *bh, *head;
1270
1271 *delalloc = *unmapped = *unwritten = 0;
1272
1273 bh = head = page_buffers(page);
1274 do {
1275 if (buffer_uptodate(bh) && !buffer_mapped(bh))
1276 (*unmapped) = 1;
1277 else if (buffer_unwritten(bh) && !buffer_delay(bh))
1278 clear_buffer_unwritten(bh);
1279 else if (buffer_unwritten(bh))
1280 (*unwritten) = 1;
1281 else if (buffer_delay(bh))
1282 (*delalloc) = 1;
1283 } while ((bh = bh->b_this_page) != head);
1284}
1285
1286
1287/*
1288 * writepage: Called from one of two places:
1289 *
1290 * 1. we are flushing a delalloc buffer head.
1291 *
1292 * 2. we are writing out a dirty page. Typically the page dirty
1293 * state is cleared before we get here. In this case is it
1294 * conceivable we have no buffer heads.
1295 *
1296 * For delalloc space on the page we need to allocate space and
1297 * flush it. For unmapped buffer heads on the page we should
1298 * allocate space if the page is uptodate. For any other dirty
1299 * buffer heads on the page we should flush them.
1300 *
1301 * If we detect that a transaction would be required to flush
1302 * the page, we have to check the process flags first, if we
1303 * are already in a transaction or disk I/O during allocations
1304 * is off, we need to fail the writepage and redirty the page.
1305 */
1306
1307STATIC int
1308linvfs_writepage(
1309 struct page *page,
1310 struct writeback_control *wbc)
1311{
1312 int error;
1313 int need_trans;
1314 int delalloc, unmapped, unwritten;
1315 struct inode *inode = page->mapping->host;
1316
1317 xfs_page_trace(XFS_WRITEPAGE_ENTER, inode, page, 0);
1318
1319 /*
1320 * We need a transaction if:
1321 * 1. There are delalloc buffers on the page
1322 * 2. The page is uptodate and we have unmapped buffers
1323 * 3. The page is uptodate and we have no buffers
1324 * 4. There are unwritten buffers on the page
1325 */
1326
1327 if (!page_has_buffers(page)) {
1328 unmapped = 1;
1329 need_trans = 1;
1330 } else {
1331 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
1332 if (!PageUptodate(page))
1333 unmapped = 0;
1334 need_trans = delalloc + unmapped + unwritten;
1335 }
1336
1337 /*
1338 * If we need a transaction and the process flags say
1339 * we are already in a transaction, or no IO is allowed
1340 * then mark the page dirty again and leave the page
1341 * as is.
1342 */
1343 if (PFLAGS_TEST_FSTRANS() && need_trans)
1344 goto out_fail;
1345
1346 /*
1347 * Delay hooking up buffer heads until we have
1348 * made our go/no-go decision.
1349 */
1350 if (!page_has_buffers(page))
1351 create_empty_buffers(page, 1 << inode->i_blkbits, 0);
1352
1353 /*
1354 * Convert delayed allocate, unwritten or unmapped space
1355 * to real space and flush out to disk.
1356 */
1357 error = xfs_page_state_convert(inode, page, wbc, 1, unmapped);
1358 if (error == -EAGAIN)
1359 goto out_fail;
1360 if (unlikely(error < 0))
1361 goto out_unlock;
1362
1363 return 0;
1364
1365out_fail:
1366 redirty_page_for_writepage(wbc, page);
1367 unlock_page(page);
1368 return 0;
1369out_unlock:
1370 unlock_page(page);
1371 return error;
1372}
1373
1374STATIC int
1375linvfs_invalidate_page(
1376 struct page *page, 1443 struct page *page,
1377 unsigned long offset) 1444 unsigned long offset)
1378{ 1445{
1379 xfs_page_trace(XFS_INVALIDPAGE_ENTER, 1446 xfs_page_trace(XFS_INVALIDPAGE_ENTER,
1380 page->mapping->host, page, offset); 1447 page->mapping->host, page, offset);
1381 return block_invalidatepage(page, offset); 1448 block_invalidatepage(page, offset);
1382}
1383
1384/*
1385 * Called to move a page into cleanable state - and from there
1386 * to be released. Possibly the page is already clean. We always
1387 * have buffer heads in this call.
1388 *
1389 * Returns 0 if the page is ok to release, 1 otherwise.
1390 *
1391 * Possible scenarios are:
1392 *
1393 * 1. We are being called to release a page which has been written
1394 * to via regular I/O. buffer heads will be dirty and possibly
1395 * delalloc. If no delalloc buffer heads in this case then we
1396 * can just return zero.
1397 *
1398 * 2. We are called to release a page which has been written via
1399 * mmap, all we need to do is ensure there is no delalloc
1400 * state in the buffer heads, if not we can let the caller
1401 * free them and we should come back later via writepage.
1402 */
1403STATIC int
1404linvfs_release_page(
1405 struct page *page,
1406 gfp_t gfp_mask)
1407{
1408 struct inode *inode = page->mapping->host;
1409 int dirty, delalloc, unmapped, unwritten;
1410 struct writeback_control wbc = {
1411 .sync_mode = WB_SYNC_ALL,
1412 .nr_to_write = 1,
1413 };
1414
1415 xfs_page_trace(XFS_RELEASEPAGE_ENTER, inode, page, gfp_mask);
1416
1417 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
1418 if (!delalloc && !unwritten)
1419 goto free_buffers;
1420
1421 if (!(gfp_mask & __GFP_FS))
1422 return 0;
1423
1424 /* If we are already inside a transaction or the thread cannot
1425 * do I/O, we cannot release this page.
1426 */
1427 if (PFLAGS_TEST_FSTRANS())
1428 return 0;
1429
1430 /*
1431 * Convert delalloc space to real space, do not flush the
1432 * data out to disk, that will be done by the caller.
1433 * Never need to allocate space here - we will always
1434 * come back to writepage in that case.
1435 */
1436 dirty = xfs_page_state_convert(inode, page, &wbc, 0, 0);
1437 if (dirty == 0 && !unwritten)
1438 goto free_buffers;
1439 return 0;
1440
1441free_buffers:
1442 return try_to_free_buffers(page);
1443}
1444
1445STATIC int
1446linvfs_prepare_write(
1447 struct file *file,
1448 struct page *page,
1449 unsigned int from,
1450 unsigned int to)
1451{
1452 return block_prepare_write(page, from, to, linvfs_get_block);
1453} 1449}
1454 1450
1455struct address_space_operations linvfs_aops = { 1451struct address_space_operations xfs_address_space_operations = {
1456 .readpage = linvfs_readpage, 1452 .readpage = xfs_vm_readpage,
1457 .readpages = linvfs_readpages, 1453 .readpages = xfs_vm_readpages,
1458 .writepage = linvfs_writepage, 1454 .writepage = xfs_vm_writepage,
1459 .sync_page = block_sync_page, 1455 .sync_page = block_sync_page,
1460 .releasepage = linvfs_release_page, 1456 .releasepage = xfs_vm_releasepage,
1461 .invalidatepage = linvfs_invalidate_page, 1457 .invalidatepage = xfs_vm_invalidatepage,
1462 .prepare_write = linvfs_prepare_write, 1458 .prepare_write = xfs_vm_prepare_write,
1463 .commit_write = generic_commit_write, 1459 .commit_write = generic_commit_write,
1464 .bmap = linvfs_bmap, 1460 .bmap = xfs_vm_bmap,
1465 .direct_IO = linvfs_direct_IO, 1461 .direct_IO = xfs_vm_direct_IO,
1466 .migratepage = buffer_migrate_page, 1462 .migratepage = buffer_migrate_page,
1467}; 1463};