diff options
Diffstat (limited to 'fs/ubifs/tnc.c')
-rw-r--r-- | fs/ubifs/tnc.c | 2956 |
1 files changed, 2956 insertions, 0 deletions
diff --git a/fs/ubifs/tnc.c b/fs/ubifs/tnc.c new file mode 100644 index 000000000000..e909f4a96443 --- /dev/null +++ b/fs/ubifs/tnc.c | |||
@@ -0,0 +1,2956 @@ | |||
1 | /* | ||
2 | * This file is part of UBIFS. | ||
3 | * | ||
4 | * Copyright (C) 2006-2008 Nokia Corporation. | ||
5 | * | ||
6 | * This program is free software; you can redistribute it and/or modify it | ||
7 | * under the terms of the GNU General Public License version 2 as published by | ||
8 | * the Free Software Foundation. | ||
9 | * | ||
10 | * This program is distributed in the hope that it will be useful, but WITHOUT | ||
11 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
12 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
13 | * more details. | ||
14 | * | ||
15 | * You should have received a copy of the GNU General Public License along with | ||
16 | * this program; if not, write to the Free Software Foundation, Inc., 51 | ||
17 | * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA | ||
18 | * | ||
19 | * Authors: Adrian Hunter | ||
20 | * Artem Bityutskiy (Битюцкий Артём) | ||
21 | */ | ||
22 | |||
23 | /* | ||
24 | * This file implements TNC (Tree Node Cache) which caches indexing nodes of | ||
25 | * the UBIFS B-tree. | ||
26 | * | ||
27 | * At the moment the locking rules of the TNC tree are quite simple and | ||
28 | * straightforward. We just have a mutex and lock it when we traverse the | ||
29 | * tree. If a znode is not in memory, we read it from flash while still having | ||
30 | * the mutex locked. | ||
31 | */ | ||
32 | |||
33 | #include <linux/crc32.h> | ||
34 | #include "ubifs.h" | ||
35 | |||
36 | /* | ||
37 | * Returned codes of 'matches_name()' and 'fallible_matches_name()' functions. | ||
38 | * @NAME_LESS: name corresponding to the first argument is less than second | ||
39 | * @NAME_MATCHES: names match | ||
40 | * @NAME_GREATER: name corresponding to the second argument is greater than | ||
41 | * first | ||
42 | * @NOT_ON_MEDIA: node referred by zbranch does not exist on the media | ||
43 | * | ||
44 | * These constants were introduce to improve readability. | ||
45 | */ | ||
46 | enum { | ||
47 | NAME_LESS = 0, | ||
48 | NAME_MATCHES = 1, | ||
49 | NAME_GREATER = 2, | ||
50 | NOT_ON_MEDIA = 3, | ||
51 | }; | ||
52 | |||
53 | /** | ||
54 | * insert_old_idx - record an index node obsoleted since the last commit start. | ||
55 | * @c: UBIFS file-system description object | ||
56 | * @lnum: LEB number of obsoleted index node | ||
57 | * @offs: offset of obsoleted index node | ||
58 | * | ||
59 | * Returns %0 on success, and a negative error code on failure. | ||
60 | * | ||
61 | * For recovery, there must always be a complete intact version of the index on | ||
62 | * flash at all times. That is called the "old index". It is the index as at the | ||
63 | * time of the last successful commit. Many of the index nodes in the old index | ||
64 | * may be dirty, but they must not be erased until the next successful commit | ||
65 | * (at which point that index becomes the old index). | ||
66 | * | ||
67 | * That means that the garbage collection and the in-the-gaps method of | ||
68 | * committing must be able to determine if an index node is in the old index. | ||
69 | * Most of the old index nodes can be found by looking up the TNC using the | ||
70 | * 'lookup_znode()' function. However, some of the old index nodes may have | ||
71 | * been deleted from the current index or may have been changed so much that | ||
72 | * they cannot be easily found. In those cases, an entry is added to an RB-tree. | ||
73 | * That is what this function does. The RB-tree is ordered by LEB number and | ||
74 | * offset because they uniquely identify the old index node. | ||
75 | */ | ||
76 | static int insert_old_idx(struct ubifs_info *c, int lnum, int offs) | ||
77 | { | ||
78 | struct ubifs_old_idx *old_idx, *o; | ||
79 | struct rb_node **p, *parent = NULL; | ||
80 | |||
81 | old_idx = kmalloc(sizeof(struct ubifs_old_idx), GFP_NOFS); | ||
82 | if (unlikely(!old_idx)) | ||
83 | return -ENOMEM; | ||
84 | old_idx->lnum = lnum; | ||
85 | old_idx->offs = offs; | ||
86 | |||
87 | p = &c->old_idx.rb_node; | ||
88 | while (*p) { | ||
89 | parent = *p; | ||
90 | o = rb_entry(parent, struct ubifs_old_idx, rb); | ||
91 | if (lnum < o->lnum) | ||
92 | p = &(*p)->rb_left; | ||
93 | else if (lnum > o->lnum) | ||
94 | p = &(*p)->rb_right; | ||
95 | else if (offs < o->offs) | ||
96 | p = &(*p)->rb_left; | ||
97 | else if (offs > o->offs) | ||
98 | p = &(*p)->rb_right; | ||
99 | else { | ||
100 | ubifs_err("old idx added twice!"); | ||
101 | kfree(old_idx); | ||
102 | return 0; | ||
103 | } | ||
104 | } | ||
105 | rb_link_node(&old_idx->rb, parent, p); | ||
106 | rb_insert_color(&old_idx->rb, &c->old_idx); | ||
107 | return 0; | ||
108 | } | ||
109 | |||
110 | /** | ||
111 | * insert_old_idx_znode - record a znode obsoleted since last commit start. | ||
112 | * @c: UBIFS file-system description object | ||
113 | * @znode: znode of obsoleted index node | ||
114 | * | ||
115 | * Returns %0 on success, and a negative error code on failure. | ||
116 | */ | ||
117 | int insert_old_idx_znode(struct ubifs_info *c, struct ubifs_znode *znode) | ||
118 | { | ||
119 | if (znode->parent) { | ||
120 | struct ubifs_zbranch *zbr; | ||
121 | |||
122 | zbr = &znode->parent->zbranch[znode->iip]; | ||
123 | if (zbr->len) | ||
124 | return insert_old_idx(c, zbr->lnum, zbr->offs); | ||
125 | } else | ||
126 | if (c->zroot.len) | ||
127 | return insert_old_idx(c, c->zroot.lnum, | ||
128 | c->zroot.offs); | ||
129 | return 0; | ||
130 | } | ||
131 | |||
132 | /** | ||
133 | * ins_clr_old_idx_znode - record a znode obsoleted since last commit start. | ||
134 | * @c: UBIFS file-system description object | ||
135 | * @znode: znode of obsoleted index node | ||
136 | * | ||
137 | * Returns %0 on success, and a negative error code on failure. | ||
138 | */ | ||
139 | static int ins_clr_old_idx_znode(struct ubifs_info *c, | ||
140 | struct ubifs_znode *znode) | ||
141 | { | ||
142 | int err; | ||
143 | |||
144 | if (znode->parent) { | ||
145 | struct ubifs_zbranch *zbr; | ||
146 | |||
147 | zbr = &znode->parent->zbranch[znode->iip]; | ||
148 | if (zbr->len) { | ||
149 | err = insert_old_idx(c, zbr->lnum, zbr->offs); | ||
150 | if (err) | ||
151 | return err; | ||
152 | zbr->lnum = 0; | ||
153 | zbr->offs = 0; | ||
154 | zbr->len = 0; | ||
155 | } | ||
156 | } else | ||
157 | if (c->zroot.len) { | ||
158 | err = insert_old_idx(c, c->zroot.lnum, c->zroot.offs); | ||
159 | if (err) | ||
160 | return err; | ||
161 | c->zroot.lnum = 0; | ||
162 | c->zroot.offs = 0; | ||
163 | c->zroot.len = 0; | ||
164 | } | ||
165 | return 0; | ||
166 | } | ||
167 | |||
168 | /** | ||
169 | * destroy_old_idx - destroy the old_idx RB-tree. | ||
170 | * @c: UBIFS file-system description object | ||
171 | * | ||
172 | * During start commit, the old_idx RB-tree is used to avoid overwriting index | ||
173 | * nodes that were in the index last commit but have since been deleted. This | ||
174 | * is necessary for recovery i.e. the old index must be kept intact until the | ||
175 | * new index is successfully written. The old-idx RB-tree is used for the | ||
176 | * in-the-gaps method of writing index nodes and is destroyed every commit. | ||
177 | */ | ||
178 | void destroy_old_idx(struct ubifs_info *c) | ||
179 | { | ||
180 | struct rb_node *this = c->old_idx.rb_node; | ||
181 | struct ubifs_old_idx *old_idx; | ||
182 | |||
183 | while (this) { | ||
184 | if (this->rb_left) { | ||
185 | this = this->rb_left; | ||
186 | continue; | ||
187 | } else if (this->rb_right) { | ||
188 | this = this->rb_right; | ||
189 | continue; | ||
190 | } | ||
191 | old_idx = rb_entry(this, struct ubifs_old_idx, rb); | ||
192 | this = rb_parent(this); | ||
193 | if (this) { | ||
194 | if (this->rb_left == &old_idx->rb) | ||
195 | this->rb_left = NULL; | ||
196 | else | ||
197 | this->rb_right = NULL; | ||
198 | } | ||
199 | kfree(old_idx); | ||
200 | } | ||
201 | c->old_idx = RB_ROOT; | ||
202 | } | ||
203 | |||
204 | /** | ||
205 | * copy_znode - copy a dirty znode. | ||
206 | * @c: UBIFS file-system description object | ||
207 | * @znode: znode to copy | ||
208 | * | ||
209 | * A dirty znode being committed may not be changed, so it is copied. | ||
210 | */ | ||
211 | static struct ubifs_znode *copy_znode(struct ubifs_info *c, | ||
212 | struct ubifs_znode *znode) | ||
213 | { | ||
214 | struct ubifs_znode *zn; | ||
215 | |||
216 | zn = kmalloc(c->max_znode_sz, GFP_NOFS); | ||
217 | if (unlikely(!zn)) | ||
218 | return ERR_PTR(-ENOMEM); | ||
219 | |||
220 | memcpy(zn, znode, c->max_znode_sz); | ||
221 | zn->cnext = NULL; | ||
222 | __set_bit(DIRTY_ZNODE, &zn->flags); | ||
223 | __clear_bit(COW_ZNODE, &zn->flags); | ||
224 | |||
225 | ubifs_assert(!test_bit(OBSOLETE_ZNODE, &znode->flags)); | ||
226 | __set_bit(OBSOLETE_ZNODE, &znode->flags); | ||
227 | |||
228 | if (znode->level != 0) { | ||
229 | int i; | ||
230 | const int n = zn->child_cnt; | ||
231 | |||
232 | /* The children now have new parent */ | ||
233 | for (i = 0; i < n; i++) { | ||
234 | struct ubifs_zbranch *zbr = &zn->zbranch[i]; | ||
235 | |||
236 | if (zbr->znode) | ||
237 | zbr->znode->parent = zn; | ||
238 | } | ||
239 | } | ||
240 | |||
241 | atomic_long_inc(&c->dirty_zn_cnt); | ||
242 | return zn; | ||
243 | } | ||
244 | |||
245 | /** | ||
246 | * add_idx_dirt - add dirt due to a dirty znode. | ||
247 | * @c: UBIFS file-system description object | ||
248 | * @lnum: LEB number of index node | ||
249 | * @dirt: size of index node | ||
250 | * | ||
251 | * This function updates lprops dirty space and the new size of the index. | ||
252 | */ | ||
253 | static int add_idx_dirt(struct ubifs_info *c, int lnum, int dirt) | ||
254 | { | ||
255 | c->calc_idx_sz -= ALIGN(dirt, 8); | ||
256 | return ubifs_add_dirt(c, lnum, dirt); | ||
257 | } | ||
258 | |||
259 | /** | ||
260 | * dirty_cow_znode - ensure a znode is not being committed. | ||
261 | * @c: UBIFS file-system description object | ||
262 | * @zbr: branch of znode to check | ||
263 | * | ||
264 | * Returns dirtied znode on success or negative error code on failure. | ||
265 | */ | ||
266 | static struct ubifs_znode *dirty_cow_znode(struct ubifs_info *c, | ||
267 | struct ubifs_zbranch *zbr) | ||
268 | { | ||
269 | struct ubifs_znode *znode = zbr->znode; | ||
270 | struct ubifs_znode *zn; | ||
271 | int err; | ||
272 | |||
273 | if (!test_bit(COW_ZNODE, &znode->flags)) { | ||
274 | /* znode is not being committed */ | ||
275 | if (!test_and_set_bit(DIRTY_ZNODE, &znode->flags)) { | ||
276 | atomic_long_inc(&c->dirty_zn_cnt); | ||
277 | atomic_long_dec(&c->clean_zn_cnt); | ||
278 | atomic_long_dec(&ubifs_clean_zn_cnt); | ||
279 | err = add_idx_dirt(c, zbr->lnum, zbr->len); | ||
280 | if (unlikely(err)) | ||
281 | return ERR_PTR(err); | ||
282 | } | ||
283 | return znode; | ||
284 | } | ||
285 | |||
286 | zn = copy_znode(c, znode); | ||
287 | if (unlikely(IS_ERR(zn))) | ||
288 | return zn; | ||
289 | |||
290 | if (zbr->len) { | ||
291 | err = insert_old_idx(c, zbr->lnum, zbr->offs); | ||
292 | if (unlikely(err)) | ||
293 | return ERR_PTR(err); | ||
294 | err = add_idx_dirt(c, zbr->lnum, zbr->len); | ||
295 | } else | ||
296 | err = 0; | ||
297 | |||
298 | zbr->znode = zn; | ||
299 | zbr->lnum = 0; | ||
300 | zbr->offs = 0; | ||
301 | zbr->len = 0; | ||
302 | |||
303 | if (unlikely(err)) | ||
304 | return ERR_PTR(err); | ||
305 | return zn; | ||
306 | } | ||
307 | |||
308 | /** | ||
309 | * lnc_add - add a leaf node to the leaf node cache. | ||
310 | * @c: UBIFS file-system description object | ||
311 | * @zbr: zbranch of leaf node | ||
312 | * @node: leaf node | ||
313 | * | ||
314 | * Leaf nodes are non-index nodes directory entry nodes or data nodes. The | ||
315 | * purpose of the leaf node cache is to save re-reading the same leaf node over | ||
316 | * and over again. Most things are cached by VFS, however the file system must | ||
317 | * cache directory entries for readdir and for resolving hash collisions. The | ||
318 | * present implementation of the leaf node cache is extremely simple, and | ||
319 | * allows for error returns that are not used but that may be needed if a more | ||
320 | * complex implementation is created. | ||
321 | * | ||
322 | * Note, this function does not add the @node object to LNC directly, but | ||
323 | * allocates a copy of the object and adds the copy to LNC. The reason for this | ||
324 | * is that @node has been allocated outside of the TNC subsystem and will be | ||
325 | * used with @c->tnc_mutex unlock upon return from the TNC subsystem. But LNC | ||
326 | * may be changed at any time, e.g. freed by the shrinker. | ||
327 | */ | ||
328 | static int lnc_add(struct ubifs_info *c, struct ubifs_zbranch *zbr, | ||
329 | const void *node) | ||
330 | { | ||
331 | int err; | ||
332 | void *lnc_node; | ||
333 | const struct ubifs_dent_node *dent = node; | ||
334 | |||
335 | ubifs_assert(!zbr->leaf); | ||
336 | ubifs_assert(zbr->len != 0); | ||
337 | ubifs_assert(is_hash_key(c, &zbr->key)); | ||
338 | |||
339 | err = ubifs_validate_entry(c, dent); | ||
340 | if (err) { | ||
341 | dbg_dump_stack(); | ||
342 | dbg_dump_node(c, dent); | ||
343 | return err; | ||
344 | } | ||
345 | |||
346 | lnc_node = kmalloc(zbr->len, GFP_NOFS); | ||
347 | if (!lnc_node) | ||
348 | /* We don't have to have the cache, so no error */ | ||
349 | return 0; | ||
350 | |||
351 | memcpy(lnc_node, node, zbr->len); | ||
352 | zbr->leaf = lnc_node; | ||
353 | return 0; | ||
354 | } | ||
355 | |||
356 | /** | ||
357 | * lnc_add_directly - add a leaf node to the leaf-node-cache. | ||
358 | * @c: UBIFS file-system description object | ||
359 | * @zbr: zbranch of leaf node | ||
360 | * @node: leaf node | ||
361 | * | ||
362 | * This function is similar to 'lnc_add()', but it does not create a copy of | ||
363 | * @node but inserts @node to TNC directly. | ||
364 | */ | ||
365 | static int lnc_add_directly(struct ubifs_info *c, struct ubifs_zbranch *zbr, | ||
366 | void *node) | ||
367 | { | ||
368 | int err; | ||
369 | |||
370 | ubifs_assert(!zbr->leaf); | ||
371 | ubifs_assert(zbr->len != 0); | ||
372 | |||
373 | err = ubifs_validate_entry(c, node); | ||
374 | if (err) { | ||
375 | dbg_dump_stack(); | ||
376 | dbg_dump_node(c, node); | ||
377 | return err; | ||
378 | } | ||
379 | |||
380 | zbr->leaf = node; | ||
381 | return 0; | ||
382 | } | ||
383 | |||
384 | /** | ||
385 | * lnc_free - remove a leaf node from the leaf node cache. | ||
386 | * @zbr: zbranch of leaf node | ||
387 | * @node: leaf node | ||
388 | */ | ||
389 | static void lnc_free(struct ubifs_zbranch *zbr) | ||
390 | { | ||
391 | if (!zbr->leaf) | ||
392 | return; | ||
393 | kfree(zbr->leaf); | ||
394 | zbr->leaf = NULL; | ||
395 | } | ||
396 | |||
397 | /** | ||
398 | * tnc_read_node_nm - read a "hashed" leaf node. | ||
399 | * @c: UBIFS file-system description object | ||
400 | * @zbr: key and position of the node | ||
401 | * @node: node is returned here | ||
402 | * | ||
403 | * This function reads a "hashed" node defined by @zbr from the leaf node cache | ||
404 | * (in it is there) or from the hash media, in which case the node is also | ||
405 | * added to LNC. Returns zero in case of success or a negative negative error | ||
406 | * code in case of failure. | ||
407 | */ | ||
408 | static int tnc_read_node_nm(struct ubifs_info *c, struct ubifs_zbranch *zbr, | ||
409 | void *node) | ||
410 | { | ||
411 | int err; | ||
412 | |||
413 | ubifs_assert(is_hash_key(c, &zbr->key)); | ||
414 | |||
415 | if (zbr->leaf) { | ||
416 | /* Read from the leaf node cache */ | ||
417 | ubifs_assert(zbr->len != 0); | ||
418 | memcpy(node, zbr->leaf, zbr->len); | ||
419 | return 0; | ||
420 | } | ||
421 | |||
422 | err = ubifs_tnc_read_node(c, zbr, node); | ||
423 | if (err) | ||
424 | return err; | ||
425 | |||
426 | /* Add the node to the leaf node cache */ | ||
427 | err = lnc_add(c, zbr, node); | ||
428 | return err; | ||
429 | } | ||
430 | |||
431 | /** | ||
432 | * try_read_node - read a node if it is a node. | ||
433 | * @c: UBIFS file-system description object | ||
434 | * @buf: buffer to read to | ||
435 | * @type: node type | ||
436 | * @len: node length (not aligned) | ||
437 | * @lnum: LEB number of node to read | ||
438 | * @offs: offset of node to read | ||
439 | * | ||
440 | * This function tries to read a node of known type and length, checks it and | ||
441 | * stores it in @buf. This function returns %1 if a node is present and %0 if | ||
442 | * a node is not present. A negative error code is returned for I/O errors. | ||
443 | * This function performs that same function as ubifs_read_node except that | ||
444 | * it does not require that there is actually a node present and instead | ||
445 | * the return code indicates if a node was read. | ||
446 | */ | ||
447 | static int try_read_node(const struct ubifs_info *c, void *buf, int type, | ||
448 | int len, int lnum, int offs) | ||
449 | { | ||
450 | int err, node_len; | ||
451 | struct ubifs_ch *ch = buf; | ||
452 | uint32_t crc, node_crc; | ||
453 | |||
454 | dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len); | ||
455 | |||
456 | err = ubi_read(c->ubi, lnum, buf, offs, len); | ||
457 | if (err) { | ||
458 | ubifs_err("cannot read node type %d from LEB %d:%d, error %d", | ||
459 | type, lnum, offs, err); | ||
460 | return err; | ||
461 | } | ||
462 | |||
463 | if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) | ||
464 | return 0; | ||
465 | |||
466 | if (ch->node_type != type) | ||
467 | return 0; | ||
468 | |||
469 | node_len = le32_to_cpu(ch->len); | ||
470 | if (node_len != len) | ||
471 | return 0; | ||
472 | |||
473 | crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8); | ||
474 | node_crc = le32_to_cpu(ch->crc); | ||
475 | if (crc != node_crc) | ||
476 | return 0; | ||
477 | |||
478 | return 1; | ||
479 | } | ||
480 | |||
481 | /** | ||
482 | * fallible_read_node - try to read a leaf node. | ||
483 | * @c: UBIFS file-system description object | ||
484 | * @key: key of node to read | ||
485 | * @zbr: position of node | ||
486 | * @node: node returned | ||
487 | * | ||
488 | * This function tries to read a node and returns %1 if the node is read, %0 | ||
489 | * if the node is not present, and a negative error code in the case of error. | ||
490 | */ | ||
491 | static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key, | ||
492 | struct ubifs_zbranch *zbr, void *node) | ||
493 | { | ||
494 | int ret; | ||
495 | |||
496 | dbg_tnc("LEB %d:%d, key %s", zbr->lnum, zbr->offs, DBGKEY(key)); | ||
497 | |||
498 | ret = try_read_node(c, node, key_type(c, key), zbr->len, zbr->lnum, | ||
499 | zbr->offs); | ||
500 | if (ret == 1) { | ||
501 | union ubifs_key node_key; | ||
502 | struct ubifs_dent_node *dent = node; | ||
503 | |||
504 | /* All nodes have key in the same place */ | ||
505 | key_read(c, &dent->key, &node_key); | ||
506 | if (keys_cmp(c, key, &node_key) != 0) | ||
507 | ret = 0; | ||
508 | } | ||
509 | if (ret == 0) | ||
510 | dbg_mnt("dangling branch LEB %d:%d len %d, key %s", | ||
511 | zbr->lnum, zbr->offs, zbr->len, DBGKEY(key)); | ||
512 | return ret; | ||
513 | } | ||
514 | |||
515 | /** | ||
516 | * matches_name - determine if a direntry or xattr entry matches a given name. | ||
517 | * @c: UBIFS file-system description object | ||
518 | * @zbr: zbranch of dent | ||
519 | * @nm: name to match | ||
520 | * | ||
521 | * This function checks if xentry/direntry referred by zbranch @zbr matches name | ||
522 | * @nm. Returns %NAME_MATCHES if it does, %NAME_LESS if the name referred by | ||
523 | * @zbr is less than @nm, and %NAME_GREATER if it is greater than @nm. In case | ||
524 | * of failure, a negative error code is returned. | ||
525 | */ | ||
526 | static int matches_name(struct ubifs_info *c, struct ubifs_zbranch *zbr, | ||
527 | const struct qstr *nm) | ||
528 | { | ||
529 | struct ubifs_dent_node *dent; | ||
530 | int nlen, err; | ||
531 | |||
532 | /* If possible, match against the dent in the leaf node cache */ | ||
533 | if (!zbr->leaf) { | ||
534 | dent = kmalloc(zbr->len, GFP_NOFS); | ||
535 | if (!dent) | ||
536 | return -ENOMEM; | ||
537 | |||
538 | err = ubifs_tnc_read_node(c, zbr, dent); | ||
539 | if (err) | ||
540 | goto out_free; | ||
541 | |||
542 | /* Add the node to the leaf node cache */ | ||
543 | err = lnc_add_directly(c, zbr, dent); | ||
544 | if (err) | ||
545 | goto out_free; | ||
546 | } else | ||
547 | dent = zbr->leaf; | ||
548 | |||
549 | nlen = le16_to_cpu(dent->nlen); | ||
550 | err = memcmp(dent->name, nm->name, min_t(int, nlen, nm->len)); | ||
551 | if (err == 0) { | ||
552 | if (nlen == nm->len) | ||
553 | return NAME_MATCHES; | ||
554 | else if (nlen < nm->len) | ||
555 | return NAME_LESS; | ||
556 | else | ||
557 | return NAME_GREATER; | ||
558 | } else if (err < 0) | ||
559 | return NAME_LESS; | ||
560 | else | ||
561 | return NAME_GREATER; | ||
562 | |||
563 | out_free: | ||
564 | kfree(dent); | ||
565 | return err; | ||
566 | } | ||
567 | |||
568 | /** | ||
569 | * get_znode - get a TNC znode that may not be loaded yet. | ||
570 | * @c: UBIFS file-system description object | ||
571 | * @znode: parent znode | ||
572 | * @n: znode branch slot number | ||
573 | * | ||
574 | * This function returns the znode or a negative error code. | ||
575 | */ | ||
576 | static struct ubifs_znode *get_znode(struct ubifs_info *c, | ||
577 | struct ubifs_znode *znode, int n) | ||
578 | { | ||
579 | struct ubifs_zbranch *zbr; | ||
580 | |||
581 | zbr = &znode->zbranch[n]; | ||
582 | if (zbr->znode) | ||
583 | znode = zbr->znode; | ||
584 | else | ||
585 | znode = ubifs_load_znode(c, zbr, znode, n); | ||
586 | return znode; | ||
587 | } | ||
588 | |||
589 | /** | ||
590 | * tnc_next - find next TNC entry. | ||
591 | * @c: UBIFS file-system description object | ||
592 | * @zn: znode is passed and returned here | ||
593 | * @n: znode branch slot number is passed and returned here | ||
594 | * | ||
595 | * This function returns %0 if the next TNC entry is found, %-ENOENT if there is | ||
596 | * no next entry, or a negative error code otherwise. | ||
597 | */ | ||
598 | static int tnc_next(struct ubifs_info *c, struct ubifs_znode **zn, int *n) | ||
599 | { | ||
600 | struct ubifs_znode *znode = *zn; | ||
601 | int nn = *n; | ||
602 | |||
603 | nn += 1; | ||
604 | if (nn < znode->child_cnt) { | ||
605 | *n = nn; | ||
606 | return 0; | ||
607 | } | ||
608 | while (1) { | ||
609 | struct ubifs_znode *zp; | ||
610 | |||
611 | zp = znode->parent; | ||
612 | if (!zp) | ||
613 | return -ENOENT; | ||
614 | nn = znode->iip + 1; | ||
615 | znode = zp; | ||
616 | if (nn < znode->child_cnt) { | ||
617 | znode = get_znode(c, znode, nn); | ||
618 | if (IS_ERR(znode)) | ||
619 | return PTR_ERR(znode); | ||
620 | while (znode->level != 0) { | ||
621 | znode = get_znode(c, znode, 0); | ||
622 | if (IS_ERR(znode)) | ||
623 | return PTR_ERR(znode); | ||
624 | } | ||
625 | nn = 0; | ||
626 | break; | ||
627 | } | ||
628 | } | ||
629 | *zn = znode; | ||
630 | *n = nn; | ||
631 | return 0; | ||
632 | } | ||
633 | |||
634 | /** | ||
635 | * tnc_prev - find previous TNC entry. | ||
636 | * @c: UBIFS file-system description object | ||
637 | * @zn: znode is returned here | ||
638 | * @n: znode branch slot number is passed and returned here | ||
639 | * | ||
640 | * This function returns %0 if the previous TNC entry is found, %-ENOENT if | ||
641 | * there is no next entry, or a negative error code otherwise. | ||
642 | */ | ||
643 | static int tnc_prev(struct ubifs_info *c, struct ubifs_znode **zn, int *n) | ||
644 | { | ||
645 | struct ubifs_znode *znode = *zn; | ||
646 | int nn = *n; | ||
647 | |||
648 | if (nn > 0) { | ||
649 | *n = nn - 1; | ||
650 | return 0; | ||
651 | } | ||
652 | while (1) { | ||
653 | struct ubifs_znode *zp; | ||
654 | |||
655 | zp = znode->parent; | ||
656 | if (!zp) | ||
657 | return -ENOENT; | ||
658 | nn = znode->iip - 1; | ||
659 | znode = zp; | ||
660 | if (nn >= 0) { | ||
661 | znode = get_znode(c, znode, nn); | ||
662 | if (IS_ERR(znode)) | ||
663 | return PTR_ERR(znode); | ||
664 | while (znode->level != 0) { | ||
665 | nn = znode->child_cnt - 1; | ||
666 | znode = get_znode(c, znode, nn); | ||
667 | if (IS_ERR(znode)) | ||
668 | return PTR_ERR(znode); | ||
669 | } | ||
670 | nn = znode->child_cnt - 1; | ||
671 | break; | ||
672 | } | ||
673 | } | ||
674 | *zn = znode; | ||
675 | *n = nn; | ||
676 | return 0; | ||
677 | } | ||
678 | |||
679 | /** | ||
680 | * resolve_collision - resolve a collision. | ||
681 | * @c: UBIFS file-system description object | ||
682 | * @key: key of a directory or extended attribute entry | ||
683 | * @zn: znode is returned here | ||
684 | * @n: zbranch number is passed and returned here | ||
685 | * @nm: name of the entry | ||
686 | * | ||
687 | * This function is called for "hashed" keys to make sure that the found key | ||
688 | * really corresponds to the looked up node (directory or extended attribute | ||
689 | * entry). It returns %1 and sets @zn and @n if the collision is resolved. | ||
690 | * %0 is returned if @nm is not found and @zn and @n are set to the previous | ||
691 | * entry, i.e. to the entry after which @nm could follow if it were in TNC. | ||
692 | * This means that @n may be set to %-1 if the leftmost key in @zn is the | ||
693 | * previous one. A negative error code is returned on failures. | ||
694 | */ | ||
695 | static int resolve_collision(struct ubifs_info *c, const union ubifs_key *key, | ||
696 | struct ubifs_znode **zn, int *n, | ||
697 | const struct qstr *nm) | ||
698 | { | ||
699 | int err; | ||
700 | |||
701 | err = matches_name(c, &(*zn)->zbranch[*n], nm); | ||
702 | if (unlikely(err < 0)) | ||
703 | return err; | ||
704 | if (err == NAME_MATCHES) | ||
705 | return 1; | ||
706 | |||
707 | if (err == NAME_GREATER) { | ||
708 | /* Look left */ | ||
709 | while (1) { | ||
710 | err = tnc_prev(c, zn, n); | ||
711 | if (err == -ENOENT) { | ||
712 | ubifs_assert(*n == 0); | ||
713 | *n = -1; | ||
714 | return 0; | ||
715 | } | ||
716 | if (err < 0) | ||
717 | return err; | ||
718 | if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) { | ||
719 | /* | ||
720 | * We have found the branch after which we would | ||
721 | * like to insert, but inserting in this znode | ||
722 | * may still be wrong. Consider the following 3 | ||
723 | * znodes, in the case where we are resolving a | ||
724 | * collision with Key2. | ||
725 | * | ||
726 | * znode zp | ||
727 | * ---------------------- | ||
728 | * level 1 | Key0 | Key1 | | ||
729 | * ----------------------- | ||
730 | * | | | ||
731 | * znode za | | znode zb | ||
732 | * ------------ ------------ | ||
733 | * level 0 | Key0 | | Key2 | | ||
734 | * ------------ ------------ | ||
735 | * | ||
736 | * The lookup finds Key2 in znode zb. Lets say | ||
737 | * there is no match and the name is greater so | ||
738 | * we look left. When we find Key0, we end up | ||
739 | * here. If we return now, we will insert into | ||
740 | * znode za at slot n = 1. But that is invalid | ||
741 | * according to the parent's keys. Key2 must | ||
742 | * be inserted into znode zb. | ||
743 | * | ||
744 | * Note, this problem is not relevant for the | ||
745 | * case when we go right, because | ||
746 | * 'tnc_insert()' would correct the parent key. | ||
747 | */ | ||
748 | if (*n == (*zn)->child_cnt - 1) { | ||
749 | err = tnc_next(c, zn, n); | ||
750 | if (err) { | ||
751 | /* Should be impossible */ | ||
752 | ubifs_assert(0); | ||
753 | if (err == -ENOENT) | ||
754 | err = -EINVAL; | ||
755 | return err; | ||
756 | } | ||
757 | ubifs_assert(*n == 0); | ||
758 | *n = -1; | ||
759 | } | ||
760 | return 0; | ||
761 | } | ||
762 | err = matches_name(c, &(*zn)->zbranch[*n], nm); | ||
763 | if (err < 0) | ||
764 | return err; | ||
765 | if (err == NAME_LESS) | ||
766 | return 0; | ||
767 | if (err == NAME_MATCHES) | ||
768 | return 1; | ||
769 | ubifs_assert(err == NAME_GREATER); | ||
770 | } | ||
771 | } else { | ||
772 | int nn = *n; | ||
773 | struct ubifs_znode *znode = *zn; | ||
774 | |||
775 | /* Look right */ | ||
776 | while (1) { | ||
777 | err = tnc_next(c, &znode, &nn); | ||
778 | if (err == -ENOENT) | ||
779 | return 0; | ||
780 | if (err < 0) | ||
781 | return err; | ||
782 | if (keys_cmp(c, &znode->zbranch[nn].key, key)) | ||
783 | return 0; | ||
784 | err = matches_name(c, &znode->zbranch[nn], nm); | ||
785 | if (err < 0) | ||
786 | return err; | ||
787 | if (err == NAME_GREATER) | ||
788 | return 0; | ||
789 | *zn = znode; | ||
790 | *n = nn; | ||
791 | if (err == NAME_MATCHES) | ||
792 | return 1; | ||
793 | ubifs_assert(err == NAME_LESS); | ||
794 | } | ||
795 | } | ||
796 | } | ||
797 | |||
798 | /** | ||
799 | * fallible_matches_name - determine if a dent matches a given name. | ||
800 | * @c: UBIFS file-system description object | ||
801 | * @zbr: zbranch of dent | ||
802 | * @nm: name to match | ||
803 | * | ||
804 | * This is a "fallible" version of 'matches_name()' function which does not | ||
805 | * panic if the direntry/xentry referred by @zbr does not exist on the media. | ||
806 | * | ||
807 | * This function checks if xentry/direntry referred by zbranch @zbr matches name | ||
808 | * @nm. Returns %NAME_MATCHES it does, %NAME_LESS if the name referred by @zbr | ||
809 | * is less than @nm, %NAME_GREATER if it is greater than @nm, and @NOT_ON_MEDIA | ||
810 | * if xentry/direntry referred by @zbr does not exist on the media. A negative | ||
811 | * error code is returned in case of failure. | ||
812 | */ | ||
813 | static int fallible_matches_name(struct ubifs_info *c, | ||
814 | struct ubifs_zbranch *zbr, | ||
815 | const struct qstr *nm) | ||
816 | { | ||
817 | struct ubifs_dent_node *dent; | ||
818 | int nlen, err; | ||
819 | |||
820 | /* If possible, match against the dent in the leaf node cache */ | ||
821 | if (!zbr->leaf) { | ||
822 | dent = kmalloc(zbr->len, GFP_NOFS); | ||
823 | if (!dent) | ||
824 | return -ENOMEM; | ||
825 | |||
826 | err = fallible_read_node(c, &zbr->key, zbr, dent); | ||
827 | if (err < 0) | ||
828 | goto out_free; | ||
829 | if (err == 0) { | ||
830 | /* The node was not present */ | ||
831 | err = NOT_ON_MEDIA; | ||
832 | goto out_free; | ||
833 | } | ||
834 | ubifs_assert(err == 1); | ||
835 | |||
836 | err = lnc_add_directly(c, zbr, dent); | ||
837 | if (err) | ||
838 | goto out_free; | ||
839 | } else | ||
840 | dent = zbr->leaf; | ||
841 | |||
842 | nlen = le16_to_cpu(dent->nlen); | ||
843 | err = memcmp(dent->name, nm->name, min_t(int, nlen, nm->len)); | ||
844 | if (err == 0) { | ||
845 | if (nlen == nm->len) | ||
846 | return NAME_MATCHES; | ||
847 | else if (nlen < nm->len) | ||
848 | return NAME_LESS; | ||
849 | else | ||
850 | return NAME_GREATER; | ||
851 | } else if (err < 0) | ||
852 | return NAME_LESS; | ||
853 | else | ||
854 | return NAME_GREATER; | ||
855 | |||
856 | out_free: | ||
857 | kfree(dent); | ||
858 | return err; | ||
859 | } | ||
860 | |||
861 | /** | ||
862 | * fallible_resolve_collision - resolve a collision even if nodes are missing. | ||
863 | * @c: UBIFS file-system description object | ||
864 | * @key: key | ||
865 | * @zn: znode is returned here | ||
866 | * @n: branch number is passed and returned here | ||
867 | * @nm: name of directory entry | ||
868 | * @adding: indicates caller is adding a key to the TNC | ||
869 | * | ||
870 | * This is a "fallible" version of the 'resolve_collision()' function which | ||
871 | * does not panic if one of the nodes referred to by TNC does not exist on the | ||
872 | * media. This may happen when replaying the journal if a deleted node was | ||
873 | * Garbage-collected and the commit was not done. A branch that refers to a node | ||
874 | * that is not present is called a dangling branch. The following are the return | ||
875 | * codes for this function: | ||
876 | * o if @nm was found, %1 is returned and @zn and @n are set to the found | ||
877 | * branch; | ||
878 | * o if we are @adding and @nm was not found, %0 is returned; | ||
879 | * o if we are not @adding and @nm was not found, but a dangling branch was | ||
880 | * found, then %1 is returned and @zn and @n are set to the dangling branch; | ||
881 | * o a negative error code is returned in case of failure. | ||
882 | */ | ||
883 | static int fallible_resolve_collision(struct ubifs_info *c, | ||
884 | const union ubifs_key *key, | ||
885 | struct ubifs_znode **zn, int *n, | ||
886 | const struct qstr *nm, int adding) | ||
887 | { | ||
888 | struct ubifs_znode *o_znode = NULL, *znode = *zn; | ||
889 | int uninitialized_var(o_n), err, cmp, unsure = 0, nn = *n; | ||
890 | |||
891 | cmp = fallible_matches_name(c, &znode->zbranch[nn], nm); | ||
892 | if (unlikely(cmp < 0)) | ||
893 | return cmp; | ||
894 | if (cmp == NAME_MATCHES) | ||
895 | return 1; | ||
896 | if (cmp == NOT_ON_MEDIA) { | ||
897 | o_znode = znode; | ||
898 | o_n = nn; | ||
899 | /* | ||
900 | * We are unlucky and hit a dangling branch straight away. | ||
901 | * Now we do not really know where to go to find the needed | ||
902 | * branch - to the left or to the right. Well, let's try left. | ||
903 | */ | ||
904 | unsure = 1; | ||
905 | } else if (!adding) | ||
906 | unsure = 1; /* Remove a dangling branch wherever it is */ | ||
907 | |||
908 | if (cmp == NAME_GREATER || unsure) { | ||
909 | /* Look left */ | ||
910 | while (1) { | ||
911 | err = tnc_prev(c, zn, n); | ||
912 | if (err == -ENOENT) { | ||
913 | ubifs_assert(*n == 0); | ||
914 | *n = -1; | ||
915 | break; | ||
916 | } | ||
917 | if (err < 0) | ||
918 | return err; | ||
919 | if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) { | ||
920 | /* See comments in 'resolve_collision()' */ | ||
921 | if (*n == (*zn)->child_cnt - 1) { | ||
922 | err = tnc_next(c, zn, n); | ||
923 | if (err) { | ||
924 | /* Should be impossible */ | ||
925 | ubifs_assert(0); | ||
926 | if (err == -ENOENT) | ||
927 | err = -EINVAL; | ||
928 | return err; | ||
929 | } | ||
930 | ubifs_assert(*n == 0); | ||
931 | *n = -1; | ||
932 | } | ||
933 | break; | ||
934 | } | ||
935 | err = fallible_matches_name(c, &(*zn)->zbranch[*n], nm); | ||
936 | if (err < 0) | ||
937 | return err; | ||
938 | if (err == NAME_MATCHES) | ||
939 | return 1; | ||
940 | if (err == NOT_ON_MEDIA) { | ||
941 | o_znode = *zn; | ||
942 | o_n = *n; | ||
943 | continue; | ||
944 | } | ||
945 | if (!adding) | ||
946 | continue; | ||
947 | if (err == NAME_LESS) | ||
948 | break; | ||
949 | else | ||
950 | unsure = 0; | ||
951 | } | ||
952 | } | ||
953 | |||
954 | if (cmp == NAME_LESS || unsure) { | ||
955 | /* Look right */ | ||
956 | *zn = znode; | ||
957 | *n = nn; | ||
958 | while (1) { | ||
959 | err = tnc_next(c, &znode, &nn); | ||
960 | if (err == -ENOENT) | ||
961 | break; | ||
962 | if (err < 0) | ||
963 | return err; | ||
964 | if (keys_cmp(c, &znode->zbranch[nn].key, key)) | ||
965 | break; | ||
966 | err = fallible_matches_name(c, &znode->zbranch[nn], nm); | ||
967 | if (err < 0) | ||
968 | return err; | ||
969 | if (err == NAME_GREATER) | ||
970 | break; | ||
971 | *zn = znode; | ||
972 | *n = nn; | ||
973 | if (err == NAME_MATCHES) | ||
974 | return 1; | ||
975 | if (err == NOT_ON_MEDIA) { | ||
976 | o_znode = znode; | ||
977 | o_n = nn; | ||
978 | } | ||
979 | } | ||
980 | } | ||
981 | |||
982 | /* Never match a dangling branch when adding */ | ||
983 | if (adding || !o_znode) | ||
984 | return 0; | ||
985 | |||
986 | dbg_mnt("dangling match LEB %d:%d len %d %s", | ||
987 | o_znode->zbranch[o_n].lnum, o_znode->zbranch[o_n].offs, | ||
988 | o_znode->zbranch[o_n].len, DBGKEY(key)); | ||
989 | *zn = o_znode; | ||
990 | *n = o_n; | ||
991 | return 1; | ||
992 | } | ||
993 | |||
994 | /** | ||
995 | * matches_position - determine if a zbranch matches a given position. | ||
996 | * @zbr: zbranch of dent | ||
997 | * @lnum: LEB number of dent to match | ||
998 | * @offs: offset of dent to match | ||
999 | * | ||
1000 | * This function returns %1 if @lnum:@offs matches, and %0 otherwise. | ||
1001 | */ | ||
1002 | static int matches_position(struct ubifs_zbranch *zbr, int lnum, int offs) | ||
1003 | { | ||
1004 | if (zbr->lnum == lnum && zbr->offs == offs) | ||
1005 | return 1; | ||
1006 | else | ||
1007 | return 0; | ||
1008 | } | ||
1009 | |||
1010 | /** | ||
1011 | * resolve_collision_directly - resolve a collision directly. | ||
1012 | * @c: UBIFS file-system description object | ||
1013 | * @key: key of directory entry | ||
1014 | * @zn: znode is passed and returned here | ||
1015 | * @n: zbranch number is passed and returned here | ||
1016 | * @lnum: LEB number of dent node to match | ||
1017 | * @offs: offset of dent node to match | ||
1018 | * | ||
1019 | * This function is used for "hashed" keys to make sure the found directory or | ||
1020 | * extended attribute entry node is what was looked for. It is used when the | ||
1021 | * flash address of the right node is known (@lnum:@offs) which makes it much | ||
1022 | * easier to resolve collisions (no need to read entries and match full | ||
1023 | * names). This function returns %1 and sets @zn and @n if the collision is | ||
1024 | * resolved, %0 if @lnum:@offs is not found and @zn and @n are set to the | ||
1025 | * previous directory entry. Otherwise a negative error code is returned. | ||
1026 | */ | ||
1027 | static int resolve_collision_directly(struct ubifs_info *c, | ||
1028 | const union ubifs_key *key, | ||
1029 | struct ubifs_znode **zn, int *n, | ||
1030 | int lnum, int offs) | ||
1031 | { | ||
1032 | struct ubifs_znode *znode; | ||
1033 | int nn, err; | ||
1034 | |||
1035 | znode = *zn; | ||
1036 | nn = *n; | ||
1037 | if (matches_position(&znode->zbranch[nn], lnum, offs)) | ||
1038 | return 1; | ||
1039 | |||
1040 | /* Look left */ | ||
1041 | while (1) { | ||
1042 | err = tnc_prev(c, &znode, &nn); | ||
1043 | if (err == -ENOENT) | ||
1044 | break; | ||
1045 | if (err < 0) | ||
1046 | return err; | ||
1047 | if (keys_cmp(c, &znode->zbranch[nn].key, key)) | ||
1048 | break; | ||
1049 | if (matches_position(&znode->zbranch[nn], lnum, offs)) { | ||
1050 | *zn = znode; | ||
1051 | *n = nn; | ||
1052 | return 1; | ||
1053 | } | ||
1054 | } | ||
1055 | |||
1056 | /* Look right */ | ||
1057 | znode = *zn; | ||
1058 | nn = *n; | ||
1059 | while (1) { | ||
1060 | err = tnc_next(c, &znode, &nn); | ||
1061 | if (err == -ENOENT) | ||
1062 | return 0; | ||
1063 | if (err < 0) | ||
1064 | return err; | ||
1065 | if (keys_cmp(c, &znode->zbranch[nn].key, key)) | ||
1066 | return 0; | ||
1067 | *zn = znode; | ||
1068 | *n = nn; | ||
1069 | if (matches_position(&znode->zbranch[nn], lnum, offs)) | ||
1070 | return 1; | ||
1071 | } | ||
1072 | } | ||
1073 | |||
1074 | /** | ||
1075 | * dirty_cow_bottom_up - dirty a znode and its ancestors. | ||
1076 | * @c: UBIFS file-system description object | ||
1077 | * @znode: znode to dirty | ||
1078 | * | ||
1079 | * If we do not have a unique key that resides in a znode, then we cannot | ||
1080 | * dirty that znode from the top down (i.e. by using lookup_level0_dirty) | ||
1081 | * This function records the path back to the last dirty ancestor, and then | ||
1082 | * dirties the znodes on that path. | ||
1083 | */ | ||
1084 | static struct ubifs_znode *dirty_cow_bottom_up(struct ubifs_info *c, | ||
1085 | struct ubifs_znode *znode) | ||
1086 | { | ||
1087 | struct ubifs_znode *zp; | ||
1088 | int *path = c->bottom_up_buf, p = 0; | ||
1089 | |||
1090 | ubifs_assert(c->zroot.znode); | ||
1091 | ubifs_assert(znode); | ||
1092 | if (c->zroot.znode->level > BOTTOM_UP_HEIGHT) { | ||
1093 | kfree(c->bottom_up_buf); | ||
1094 | c->bottom_up_buf = kmalloc(c->zroot.znode->level * sizeof(int), | ||
1095 | GFP_NOFS); | ||
1096 | if (!c->bottom_up_buf) | ||
1097 | return ERR_PTR(-ENOMEM); | ||
1098 | path = c->bottom_up_buf; | ||
1099 | } | ||
1100 | if (c->zroot.znode->level) { | ||
1101 | /* Go up until parent is dirty */ | ||
1102 | while (1) { | ||
1103 | int n; | ||
1104 | |||
1105 | zp = znode->parent; | ||
1106 | if (!zp) | ||
1107 | break; | ||
1108 | n = znode->iip; | ||
1109 | ubifs_assert(p < c->zroot.znode->level); | ||
1110 | path[p++] = n; | ||
1111 | if (!zp->cnext && ubifs_zn_dirty(znode)) | ||
1112 | break; | ||
1113 | znode = zp; | ||
1114 | } | ||
1115 | } | ||
1116 | |||
1117 | /* Come back down, dirtying as we go */ | ||
1118 | while (1) { | ||
1119 | struct ubifs_zbranch *zbr; | ||
1120 | |||
1121 | zp = znode->parent; | ||
1122 | if (zp) { | ||
1123 | ubifs_assert(path[p - 1] >= 0); | ||
1124 | ubifs_assert(path[p - 1] < zp->child_cnt); | ||
1125 | zbr = &zp->zbranch[path[--p]]; | ||
1126 | znode = dirty_cow_znode(c, zbr); | ||
1127 | } else { | ||
1128 | ubifs_assert(znode == c->zroot.znode); | ||
1129 | znode = dirty_cow_znode(c, &c->zroot); | ||
1130 | } | ||
1131 | if (unlikely(IS_ERR(znode)) || !p) | ||
1132 | break; | ||
1133 | ubifs_assert(path[p - 1] >= 0); | ||
1134 | ubifs_assert(path[p - 1] < znode->child_cnt); | ||
1135 | znode = znode->zbranch[path[p - 1]].znode; | ||
1136 | } | ||
1137 | |||
1138 | return znode; | ||
1139 | } | ||
1140 | |||
1141 | /** | ||
1142 | * ubifs_lookup_level0 - search for zero-level znode. | ||
1143 | * @c: UBIFS file-system description object | ||
1144 | * @key: key to lookup | ||
1145 | * @zn: znode is returned here | ||
1146 | * @n: znode branch slot number is returned here | ||
1147 | * | ||
1148 | * This function looks up the TNC tree and search for zero-level znode which | ||
1149 | * refers key @key. The found zero-level znode is returned in @zn. There are 3 | ||
1150 | * cases: | ||
1151 | * o exact match, i.e. the found zero-level znode contains key @key, then %1 | ||
1152 | * is returned and slot number of the matched branch is stored in @n; | ||
1153 | * o not exact match, which means that zero-level znode does not contain | ||
1154 | * @key, then %0 is returned and slot number of the closed branch is stored | ||
1155 | * in @n; | ||
1156 | * o @key is so small that it is even less than the lowest key of the | ||
1157 | * leftmost zero-level node, then %0 is returned and %0 is stored in @n. | ||
1158 | * | ||
1159 | * Note, when the TNC tree is traversed, some znodes may be absent, then this | ||
1160 | * function reads corresponding indexing nodes and inserts them to TNC. In | ||
1161 | * case of failure, a negative error code is returned. | ||
1162 | */ | ||
1163 | int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key, | ||
1164 | struct ubifs_znode **zn, int *n) | ||
1165 | { | ||
1166 | int err, exact; | ||
1167 | struct ubifs_znode *znode; | ||
1168 | unsigned long time = get_seconds(); | ||
1169 | |||
1170 | dbg_tnc("search key %s", DBGKEY(key)); | ||
1171 | |||
1172 | znode = c->zroot.znode; | ||
1173 | if (unlikely(!znode)) { | ||
1174 | znode = ubifs_load_znode(c, &c->zroot, NULL, 0); | ||
1175 | if (IS_ERR(znode)) | ||
1176 | return PTR_ERR(znode); | ||
1177 | } | ||
1178 | |||
1179 | znode->time = time; | ||
1180 | |||
1181 | while (1) { | ||
1182 | struct ubifs_zbranch *zbr; | ||
1183 | |||
1184 | exact = ubifs_search_zbranch(c, znode, key, n); | ||
1185 | |||
1186 | if (znode->level == 0) | ||
1187 | break; | ||
1188 | |||
1189 | if (*n < 0) | ||
1190 | *n = 0; | ||
1191 | zbr = &znode->zbranch[*n]; | ||
1192 | |||
1193 | if (zbr->znode) { | ||
1194 | znode->time = time; | ||
1195 | znode = zbr->znode; | ||
1196 | continue; | ||
1197 | } | ||
1198 | |||
1199 | /* znode is not in TNC cache, load it from the media */ | ||
1200 | znode = ubifs_load_znode(c, zbr, znode, *n); | ||
1201 | if (IS_ERR(znode)) | ||
1202 | return PTR_ERR(znode); | ||
1203 | } | ||
1204 | |||
1205 | *zn = znode; | ||
1206 | if (exact || !is_hash_key(c, key) || *n != -1) { | ||
1207 | dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n); | ||
1208 | return exact; | ||
1209 | } | ||
1210 | |||
1211 | /* | ||
1212 | * Here is a tricky place. We have not found the key and this is a | ||
1213 | * "hashed" key, which may collide. The rest of the code deals with | ||
1214 | * situations like this: | ||
1215 | * | ||
1216 | * | 3 | 5 | | ||
1217 | * / \ | ||
1218 | * | 3 | 5 | | 6 | 7 | (x) | ||
1219 | * | ||
1220 | * Or more a complex example: | ||
1221 | * | ||
1222 | * | 1 | 5 | | ||
1223 | * / \ | ||
1224 | * | 1 | 3 | | 5 | 8 | | ||
1225 | * \ / | ||
1226 | * | 5 | 5 | | 6 | 7 | (x) | ||
1227 | * | ||
1228 | * In the examples, if we are looking for key "5", we may reach nodes | ||
1229 | * marked with "(x)". In this case what we have do is to look at the | ||
1230 | * left and see if there is "5" key there. If there is, we have to | ||
1231 | * return it. | ||
1232 | * | ||
1233 | * Note, this whole situation is possible because we allow to have | ||
1234 | * elements which are equivalent to the next key in the parent in the | ||
1235 | * children of current znode. For example, this happens if we split a | ||
1236 | * znode like this: | 3 | 5 | 5 | 6 | 7 |, which results in something | ||
1237 | * like this: | ||
1238 | * | 3 | 5 | | ||
1239 | * / \ | ||
1240 | * | 3 | 5 | | 5 | 6 | 7 | | ||
1241 | * ^ | ||
1242 | * And this becomes what is at the first "picture" after key "5" marked | ||
1243 | * with "^" is removed. What could be done is we could prohibit | ||
1244 | * splitting in the middle of the colliding sequence. Also, when | ||
1245 | * removing the leftmost key, we would have to correct the key of the | ||
1246 | * parent node, which would introduce additional complications. Namely, | ||
1247 | * if we changed the the leftmost key of the parent znode, the garbage | ||
1248 | * collector would be unable to find it (GC is doing this when GC'ing | ||
1249 | * indexing LEBs). Although we already have an additional RB-tree where | ||
1250 | * we save such changed znodes (see 'ins_clr_old_idx_znode()') until | ||
1251 | * after the commit. But anyway, this does not look easy to implement | ||
1252 | * so we did not try this. | ||
1253 | */ | ||
1254 | err = tnc_prev(c, &znode, n); | ||
1255 | if (err == -ENOENT) { | ||
1256 | dbg_tnc("found 0, lvl %d, n -1", znode->level); | ||
1257 | *n = -1; | ||
1258 | return 0; | ||
1259 | } | ||
1260 | if (unlikely(err < 0)) | ||
1261 | return err; | ||
1262 | if (keys_cmp(c, key, &znode->zbranch[*n].key)) { | ||
1263 | dbg_tnc("found 0, lvl %d, n -1", znode->level); | ||
1264 | *n = -1; | ||
1265 | return 0; | ||
1266 | } | ||
1267 | |||
1268 | dbg_tnc("found 1, lvl %d, n %d", znode->level, *n); | ||
1269 | *zn = znode; | ||
1270 | return 1; | ||
1271 | } | ||
1272 | |||
1273 | /** | ||
1274 | * lookup_level0_dirty - search for zero-level znode dirtying. | ||
1275 | * @c: UBIFS file-system description object | ||
1276 | * @key: key to lookup | ||
1277 | * @zn: znode is returned here | ||
1278 | * @n: znode branch slot number is returned here | ||
1279 | * | ||
1280 | * This function looks up the TNC tree and search for zero-level znode which | ||
1281 | * refers key @key. The found zero-level znode is returned in @zn. There are 3 | ||
1282 | * cases: | ||
1283 | * o exact match, i.e. the found zero-level znode contains key @key, then %1 | ||
1284 | * is returned and slot number of the matched branch is stored in @n; | ||
1285 | * o not exact match, which means that zero-level znode does not contain @key | ||
1286 | * then %0 is returned and slot number of the closed branch is stored in | ||
1287 | * @n; | ||
1288 | * o @key is so small that it is even less than the lowest key of the | ||
1289 | * leftmost zero-level node, then %0 is returned and %-1 is stored in @n. | ||
1290 | * | ||
1291 | * Additionally all znodes in the path from the root to the located zero-level | ||
1292 | * znode are marked as dirty. | ||
1293 | * | ||
1294 | * Note, when the TNC tree is traversed, some znodes may be absent, then this | ||
1295 | * function reads corresponding indexing nodes and inserts them to TNC. In | ||
1296 | * case of failure, a negative error code is returned. | ||
1297 | */ | ||
1298 | static int lookup_level0_dirty(struct ubifs_info *c, const union ubifs_key *key, | ||
1299 | struct ubifs_znode **zn, int *n) | ||
1300 | { | ||
1301 | int err, exact; | ||
1302 | struct ubifs_znode *znode; | ||
1303 | unsigned long time = get_seconds(); | ||
1304 | |||
1305 | dbg_tnc("search and dirty key %s", DBGKEY(key)); | ||
1306 | |||
1307 | znode = c->zroot.znode; | ||
1308 | if (unlikely(!znode)) { | ||
1309 | znode = ubifs_load_znode(c, &c->zroot, NULL, 0); | ||
1310 | if (IS_ERR(znode)) | ||
1311 | return PTR_ERR(znode); | ||
1312 | } | ||
1313 | |||
1314 | znode = dirty_cow_znode(c, &c->zroot); | ||
1315 | if (IS_ERR(znode)) | ||
1316 | return PTR_ERR(znode); | ||
1317 | |||
1318 | znode->time = time; | ||
1319 | |||
1320 | while (1) { | ||
1321 | struct ubifs_zbranch *zbr; | ||
1322 | |||
1323 | exact = ubifs_search_zbranch(c, znode, key, n); | ||
1324 | |||
1325 | if (znode->level == 0) | ||
1326 | break; | ||
1327 | |||
1328 | if (*n < 0) | ||
1329 | *n = 0; | ||
1330 | zbr = &znode->zbranch[*n]; | ||
1331 | |||
1332 | if (zbr->znode) { | ||
1333 | znode->time = time; | ||
1334 | znode = dirty_cow_znode(c, zbr); | ||
1335 | if (IS_ERR(znode)) | ||
1336 | return PTR_ERR(znode); | ||
1337 | continue; | ||
1338 | } | ||
1339 | |||
1340 | /* znode is not in TNC cache, load it from the media */ | ||
1341 | znode = ubifs_load_znode(c, zbr, znode, *n); | ||
1342 | if (IS_ERR(znode)) | ||
1343 | return PTR_ERR(znode); | ||
1344 | znode = dirty_cow_znode(c, zbr); | ||
1345 | if (IS_ERR(znode)) | ||
1346 | return PTR_ERR(znode); | ||
1347 | } | ||
1348 | |||
1349 | *zn = znode; | ||
1350 | if (exact || !is_hash_key(c, key) || *n != -1) { | ||
1351 | dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n); | ||
1352 | return exact; | ||
1353 | } | ||
1354 | |||
1355 | /* | ||
1356 | * See huge comment at 'lookup_level0_dirty()' what is the rest of the | ||
1357 | * code. | ||
1358 | */ | ||
1359 | err = tnc_prev(c, &znode, n); | ||
1360 | if (err == -ENOENT) { | ||
1361 | *n = -1; | ||
1362 | dbg_tnc("found 0, lvl %d, n -1", znode->level); | ||
1363 | return 0; | ||
1364 | } | ||
1365 | if (unlikely(err < 0)) | ||
1366 | return err; | ||
1367 | if (keys_cmp(c, key, &znode->zbranch[*n].key)) { | ||
1368 | *n = -1; | ||
1369 | dbg_tnc("found 0, lvl %d, n -1", znode->level); | ||
1370 | return 0; | ||
1371 | } | ||
1372 | |||
1373 | if (znode->cnext || !ubifs_zn_dirty(znode)) { | ||
1374 | znode = dirty_cow_bottom_up(c, znode); | ||
1375 | if (IS_ERR(znode)) | ||
1376 | return PTR_ERR(znode); | ||
1377 | } | ||
1378 | |||
1379 | dbg_tnc("found 1, lvl %d, n %d", znode->level, *n); | ||
1380 | *zn = znode; | ||
1381 | return 1; | ||
1382 | } | ||
1383 | |||
1384 | /** | ||
1385 | * ubifs_tnc_lookup - look up a file-system node. | ||
1386 | * @c: UBIFS file-system description object | ||
1387 | * @key: node key to lookup | ||
1388 | * @node: the node is returned here | ||
1389 | * | ||
1390 | * This function look up and reads node with key @key. The caller has to make | ||
1391 | * sure the @node buffer is large enough to fit the node. Returns zero in case | ||
1392 | * of success, %-ENOENT if the node was not found, and a negative error code in | ||
1393 | * case of failure. | ||
1394 | */ | ||
1395 | int ubifs_tnc_lookup(struct ubifs_info *c, const union ubifs_key *key, | ||
1396 | void *node) | ||
1397 | { | ||
1398 | int found, n, err; | ||
1399 | struct ubifs_znode *znode; | ||
1400 | struct ubifs_zbranch zbr, *zt; | ||
1401 | |||
1402 | mutex_lock(&c->tnc_mutex); | ||
1403 | found = ubifs_lookup_level0(c, key, &znode, &n); | ||
1404 | if (!found) { | ||
1405 | err = -ENOENT; | ||
1406 | goto out; | ||
1407 | } else if (found < 0) { | ||
1408 | err = found; | ||
1409 | goto out; | ||
1410 | } | ||
1411 | zt = &znode->zbranch[n]; | ||
1412 | if (is_hash_key(c, key)) { | ||
1413 | /* | ||
1414 | * In this case the leaf node cache gets used, so we pass the | ||
1415 | * address of the zbranch and keep the mutex locked | ||
1416 | */ | ||
1417 | err = tnc_read_node_nm(c, zt, node); | ||
1418 | goto out; | ||
1419 | } | ||
1420 | zbr = znode->zbranch[n]; | ||
1421 | mutex_unlock(&c->tnc_mutex); | ||
1422 | |||
1423 | err = ubifs_tnc_read_node(c, &zbr, node); | ||
1424 | return err; | ||
1425 | |||
1426 | out: | ||
1427 | mutex_unlock(&c->tnc_mutex); | ||
1428 | return err; | ||
1429 | } | ||
1430 | |||
1431 | /** | ||
1432 | * ubifs_tnc_locate - look up a file-system node and return it and its location. | ||
1433 | * @c: UBIFS file-system description object | ||
1434 | * @key: node key to lookup | ||
1435 | * @node: the node is returned here | ||
1436 | * @lnum: LEB number is returned here | ||
1437 | * @offs: offset is returned here | ||
1438 | * | ||
1439 | * This function is the same as 'ubifs_tnc_lookup()' but it returns the node | ||
1440 | * location also. See 'ubifs_tnc_lookup()'. | ||
1441 | */ | ||
1442 | int ubifs_tnc_locate(struct ubifs_info *c, const union ubifs_key *key, | ||
1443 | void *node, int *lnum, int *offs) | ||
1444 | { | ||
1445 | int found, n, err; | ||
1446 | struct ubifs_znode *znode; | ||
1447 | struct ubifs_zbranch zbr, *zt; | ||
1448 | |||
1449 | mutex_lock(&c->tnc_mutex); | ||
1450 | found = ubifs_lookup_level0(c, key, &znode, &n); | ||
1451 | if (!found) { | ||
1452 | err = -ENOENT; | ||
1453 | goto out; | ||
1454 | } else if (found < 0) { | ||
1455 | err = found; | ||
1456 | goto out; | ||
1457 | } | ||
1458 | zt = &znode->zbranch[n]; | ||
1459 | if (is_hash_key(c, key)) { | ||
1460 | /* | ||
1461 | * In this case the leaf node cache gets used, so we pass the | ||
1462 | * address of the zbranch and keep the mutex locked | ||
1463 | */ | ||
1464 | *lnum = zt->lnum; | ||
1465 | *offs = zt->offs; | ||
1466 | err = tnc_read_node_nm(c, zt, node); | ||
1467 | goto out; | ||
1468 | } | ||
1469 | zbr = znode->zbranch[n]; | ||
1470 | mutex_unlock(&c->tnc_mutex); | ||
1471 | |||
1472 | *lnum = zbr.lnum; | ||
1473 | *offs = zbr.offs; | ||
1474 | |||
1475 | err = ubifs_tnc_read_node(c, &zbr, node); | ||
1476 | return err; | ||
1477 | |||
1478 | out: | ||
1479 | mutex_unlock(&c->tnc_mutex); | ||
1480 | return err; | ||
1481 | } | ||
1482 | |||
1483 | /** | ||
1484 | * do_lookup_nm- look up a "hashed" node. | ||
1485 | * @c: UBIFS file-system description object | ||
1486 | * @key: node key to lookup | ||
1487 | * @node: the node is returned here | ||
1488 | * @nm: node name | ||
1489 | * | ||
1490 | * This function look up and reads a node which contains name hash in the key. | ||
1491 | * Since the hash may have collisions, there may be many nodes with the same | ||
1492 | * key, so we have to sequentially look to all of them until the needed one is | ||
1493 | * found. This function returns zero in case of success, %-ENOENT if the node | ||
1494 | * was not found, and a negative error code in case of failure. | ||
1495 | */ | ||
1496 | static int do_lookup_nm(struct ubifs_info *c, const union ubifs_key *key, | ||
1497 | void *node, const struct qstr *nm) | ||
1498 | { | ||
1499 | int found, n, err; | ||
1500 | struct ubifs_znode *znode; | ||
1501 | struct ubifs_zbranch zbr; | ||
1502 | |||
1503 | dbg_tnc("name '%.*s' key %s", nm->len, nm->name, DBGKEY(key)); | ||
1504 | mutex_lock(&c->tnc_mutex); | ||
1505 | found = ubifs_lookup_level0(c, key, &znode, &n); | ||
1506 | if (!found) { | ||
1507 | err = -ENOENT; | ||
1508 | goto out_unlock; | ||
1509 | } else if (found < 0) { | ||
1510 | err = found; | ||
1511 | goto out_unlock; | ||
1512 | } | ||
1513 | |||
1514 | ubifs_assert(n >= 0); | ||
1515 | |||
1516 | err = resolve_collision(c, key, &znode, &n, nm); | ||
1517 | dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n); | ||
1518 | if (unlikely(err < 0)) | ||
1519 | goto out_unlock; | ||
1520 | if (err == 0) { | ||
1521 | err = -ENOENT; | ||
1522 | goto out_unlock; | ||
1523 | } | ||
1524 | |||
1525 | zbr = znode->zbranch[n]; | ||
1526 | mutex_unlock(&c->tnc_mutex); | ||
1527 | |||
1528 | err = tnc_read_node_nm(c, &zbr, node); | ||
1529 | return err; | ||
1530 | |||
1531 | out_unlock: | ||
1532 | mutex_unlock(&c->tnc_mutex); | ||
1533 | return err; | ||
1534 | } | ||
1535 | |||
1536 | /** | ||
1537 | * ubifs_tnc_lookup_nm - look up a "hashed" node. | ||
1538 | * @c: UBIFS file-system description object | ||
1539 | * @key: node key to lookup | ||
1540 | * @node: the node is returned here | ||
1541 | * @nm: node name | ||
1542 | * | ||
1543 | * This function look up and reads a node which contains name hash in the key. | ||
1544 | * Since the hash may have collisions, there may be many nodes with the same | ||
1545 | * key, so we have to sequentially look to all of them until the needed one is | ||
1546 | * found. This function returns zero in case of success, %-ENOENT if the node | ||
1547 | * was not found, and a negative error code in case of failure. | ||
1548 | */ | ||
1549 | int ubifs_tnc_lookup_nm(struct ubifs_info *c, const union ubifs_key *key, | ||
1550 | void *node, const struct qstr *nm) | ||
1551 | { | ||
1552 | int err, len; | ||
1553 | const struct ubifs_dent_node *dent = node; | ||
1554 | |||
1555 | /* | ||
1556 | * We assume that in most of the cases there are no name collisions and | ||
1557 | * 'ubifs_tnc_lookup()' returns us the right direntry. | ||
1558 | */ | ||
1559 | err = ubifs_tnc_lookup(c, key, node); | ||
1560 | if (err) | ||
1561 | return err; | ||
1562 | |||
1563 | len = le16_to_cpu(dent->nlen); | ||
1564 | if (nm->len == len && !memcmp(dent->name, nm->name, len)) | ||
1565 | return 0; | ||
1566 | |||
1567 | /* | ||
1568 | * Unluckily, there are hash collisions and we have to iterate over | ||
1569 | * them look at each direntry with colliding name hash sequentially. | ||
1570 | */ | ||
1571 | return do_lookup_nm(c, key, node, nm); | ||
1572 | } | ||
1573 | |||
1574 | /** | ||
1575 | * correct_parent_keys - correct parent znodes' keys. | ||
1576 | * @c: UBIFS file-system description object | ||
1577 | * @znode: znode to correct parent znodes for | ||
1578 | * | ||
1579 | * This is a helper function for 'tnc_insert()'. When the key of the leftmost | ||
1580 | * zbranch changes, keys of parent znodes have to be corrected. This helper | ||
1581 | * function is called in such situations and corrects the keys if needed. | ||
1582 | */ | ||
1583 | static void correct_parent_keys(const struct ubifs_info *c, | ||
1584 | struct ubifs_znode *znode) | ||
1585 | { | ||
1586 | union ubifs_key *key, *key1; | ||
1587 | |||
1588 | ubifs_assert(znode->parent); | ||
1589 | ubifs_assert(znode->iip == 0); | ||
1590 | |||
1591 | key = &znode->zbranch[0].key; | ||
1592 | key1 = &znode->parent->zbranch[0].key; | ||
1593 | |||
1594 | while (keys_cmp(c, key, key1) < 0) { | ||
1595 | key_copy(c, key, key1); | ||
1596 | znode = znode->parent; | ||
1597 | znode->alt = 1; | ||
1598 | if (!znode->parent || znode->iip) | ||
1599 | break; | ||
1600 | key1 = &znode->parent->zbranch[0].key; | ||
1601 | } | ||
1602 | } | ||
1603 | |||
1604 | /** | ||
1605 | * insert_zbranch - insert a zbranch into a znode. | ||
1606 | * @znode: znode into which to insert | ||
1607 | * @zbr: zbranch to insert | ||
1608 | * @n: slot number to insert to | ||
1609 | * | ||
1610 | * This is a helper function for 'tnc_insert()'. UBIFS does not allow "gaps" in | ||
1611 | * znode's array of zbranches and keeps zbranches consolidated, so when a new | ||
1612 | * zbranch has to be inserted to the @znode->zbranches[]' array at the @n-th | ||
1613 | * slot, zbranches starting from @n have to be moved right. | ||
1614 | */ | ||
1615 | static void insert_zbranch(struct ubifs_znode *znode, | ||
1616 | const struct ubifs_zbranch *zbr, int n) | ||
1617 | { | ||
1618 | int i; | ||
1619 | |||
1620 | ubifs_assert(ubifs_zn_dirty(znode)); | ||
1621 | |||
1622 | if (znode->level) { | ||
1623 | for (i = znode->child_cnt; i > n; i--) { | ||
1624 | znode->zbranch[i] = znode->zbranch[i - 1]; | ||
1625 | if (znode->zbranch[i].znode) | ||
1626 | znode->zbranch[i].znode->iip = i; | ||
1627 | } | ||
1628 | if (zbr->znode) | ||
1629 | zbr->znode->iip = n; | ||
1630 | } else | ||
1631 | for (i = znode->child_cnt; i > n; i--) | ||
1632 | znode->zbranch[i] = znode->zbranch[i - 1]; | ||
1633 | |||
1634 | znode->zbranch[n] = *zbr; | ||
1635 | znode->child_cnt += 1; | ||
1636 | |||
1637 | /* | ||
1638 | * After inserting at slot zero, the lower bound of the key range of | ||
1639 | * this znode may have changed. If this znode is subsequently split | ||
1640 | * then the upper bound of the key range may change, and furthermore | ||
1641 | * it could change to be lower than the original lower bound. If that | ||
1642 | * happens, then it will no longer be possible to find this znode in the | ||
1643 | * TNC using the key from the index node on flash. That is bad because | ||
1644 | * if it is not found, we will assume it is obsolete and may overwrite | ||
1645 | * it. Then if there is an unclean unmount, we will start using the | ||
1646 | * old index which will be broken. | ||
1647 | * | ||
1648 | * So we first mark znodes that have insertions at slot zero, and then | ||
1649 | * if they are split we add their lnum/offs to the old_idx tree. | ||
1650 | */ | ||
1651 | if (n == 0) | ||
1652 | znode->alt = 1; | ||
1653 | } | ||
1654 | |||
1655 | /** | ||
1656 | * tnc_insert - insert a node into TNC. | ||
1657 | * @c: UBIFS file-system description object | ||
1658 | * @znode: znode to insert into | ||
1659 | * @zbr: branch to insert | ||
1660 | * @n: slot number to insert new zbranch to | ||
1661 | * | ||
1662 | * This function inserts a new node described by @zbr into znode @znode. If | ||
1663 | * znode does not have a free slot for new zbranch, it is split. Parent znodes | ||
1664 | * are splat as well if needed. Returns zero in case of success or a negative | ||
1665 | * error code in case of failure. | ||
1666 | */ | ||
1667 | static int tnc_insert(struct ubifs_info *c, struct ubifs_znode *znode, | ||
1668 | struct ubifs_zbranch *zbr, int n) | ||
1669 | { | ||
1670 | struct ubifs_znode *zn, *zi, *zp; | ||
1671 | int i, keep, move, appending = 0; | ||
1672 | union ubifs_key *key = &zbr->key; | ||
1673 | |||
1674 | ubifs_assert(n >= 0 && n <= c->fanout); | ||
1675 | |||
1676 | /* Implement naive insert for now */ | ||
1677 | again: | ||
1678 | zp = znode->parent; | ||
1679 | if (znode->child_cnt < c->fanout) { | ||
1680 | ubifs_assert(n != c->fanout); | ||
1681 | dbg_tnc("inserted at %d level %d, key %s", n, znode->level, | ||
1682 | DBGKEY(key)); | ||
1683 | |||
1684 | insert_zbranch(znode, zbr, n); | ||
1685 | |||
1686 | /* Ensure parent's key is correct */ | ||
1687 | if (n == 0 && zp && znode->iip == 0) | ||
1688 | correct_parent_keys(c, znode); | ||
1689 | |||
1690 | return 0; | ||
1691 | } | ||
1692 | |||
1693 | /* | ||
1694 | * Unfortunately, @znode does not have more empty slots and we have to | ||
1695 | * split it. | ||
1696 | */ | ||
1697 | dbg_tnc("splitting level %d, key %s", znode->level, DBGKEY(key)); | ||
1698 | |||
1699 | if (znode->alt) | ||
1700 | /* | ||
1701 | * We can no longer be sure of finding this znode by key, so we | ||
1702 | * record it in the old_idx tree. | ||
1703 | */ | ||
1704 | ins_clr_old_idx_znode(c, znode); | ||
1705 | |||
1706 | zn = kzalloc(c->max_znode_sz, GFP_NOFS); | ||
1707 | if (!zn) | ||
1708 | return -ENOMEM; | ||
1709 | zn->parent = zp; | ||
1710 | zn->level = znode->level; | ||
1711 | |||
1712 | /* Decide where to split */ | ||
1713 | if (znode->level == 0 && n == c->fanout && | ||
1714 | key_type(c, key) == UBIFS_DATA_KEY) { | ||
1715 | union ubifs_key *key1; | ||
1716 | |||
1717 | /* | ||
1718 | * If this is an inode which is being appended - do not split | ||
1719 | * it because no other zbranches can be inserted between | ||
1720 | * zbranches of consecutive data nodes anyway. | ||
1721 | */ | ||
1722 | key1 = &znode->zbranch[n - 1].key; | ||
1723 | if (key_inum(c, key1) == key_inum(c, key) && | ||
1724 | key_type(c, key1) == UBIFS_DATA_KEY && | ||
1725 | key_block(c, key1) == key_block(c, key) - 1) | ||
1726 | appending = 1; | ||
1727 | } | ||
1728 | |||
1729 | if (appending) { | ||
1730 | keep = c->fanout; | ||
1731 | move = 0; | ||
1732 | } else { | ||
1733 | keep = (c->fanout + 1) / 2; | ||
1734 | move = c->fanout - keep; | ||
1735 | } | ||
1736 | |||
1737 | /* | ||
1738 | * Although we don't at present, we could look at the neighbors and see | ||
1739 | * if we can move some zbranches there. | ||
1740 | */ | ||
1741 | |||
1742 | if (n < keep) { | ||
1743 | /* Insert into existing znode */ | ||
1744 | zi = znode; | ||
1745 | move += 1; | ||
1746 | keep -= 1; | ||
1747 | } else { | ||
1748 | /* Insert into new znode */ | ||
1749 | zi = zn; | ||
1750 | n -= keep; | ||
1751 | /* Re-parent */ | ||
1752 | if (zn->level != 0) | ||
1753 | zbr->znode->parent = zn; | ||
1754 | } | ||
1755 | |||
1756 | __set_bit(DIRTY_ZNODE, &zn->flags); | ||
1757 | atomic_long_inc(&c->dirty_zn_cnt); | ||
1758 | |||
1759 | zn->child_cnt = move; | ||
1760 | znode->child_cnt = keep; | ||
1761 | |||
1762 | dbg_tnc("moving %d, keeping %d", move, keep); | ||
1763 | |||
1764 | /* Move zbranch */ | ||
1765 | for (i = 0; i < move; i++) { | ||
1766 | zn->zbranch[i] = znode->zbranch[keep + i]; | ||
1767 | /* Re-parent */ | ||
1768 | if (zn->level != 0) | ||
1769 | if (zn->zbranch[i].znode) { | ||
1770 | zn->zbranch[i].znode->parent = zn; | ||
1771 | zn->zbranch[i].znode->iip = i; | ||
1772 | } | ||
1773 | } | ||
1774 | |||
1775 | /* Insert new key and branch */ | ||
1776 | dbg_tnc("inserting at %d level %d, key %s", n, zn->level, DBGKEY(key)); | ||
1777 | |||
1778 | insert_zbranch(zi, zbr, n); | ||
1779 | |||
1780 | /* Insert new znode (produced by spitting) into the parent */ | ||
1781 | if (zp) { | ||
1782 | i = n; | ||
1783 | /* Locate insertion point */ | ||
1784 | n = znode->iip + 1; | ||
1785 | if (appending && n != c->fanout) | ||
1786 | appending = 0; | ||
1787 | |||
1788 | if (i == 0 && zi == znode && znode->iip == 0) | ||
1789 | correct_parent_keys(c, znode); | ||
1790 | |||
1791 | /* Tail recursion */ | ||
1792 | zbr->key = zn->zbranch[0].key; | ||
1793 | zbr->znode = zn; | ||
1794 | zbr->lnum = 0; | ||
1795 | zbr->offs = 0; | ||
1796 | zbr->len = 0; | ||
1797 | znode = zp; | ||
1798 | |||
1799 | goto again; | ||
1800 | } | ||
1801 | |||
1802 | /* We have to split root znode */ | ||
1803 | dbg_tnc("creating new zroot at level %d", znode->level + 1); | ||
1804 | |||
1805 | zi = kzalloc(c->max_znode_sz, GFP_NOFS); | ||
1806 | if (!zi) | ||
1807 | return -ENOMEM; | ||
1808 | |||
1809 | zi->child_cnt = 2; | ||
1810 | zi->level = znode->level + 1; | ||
1811 | |||
1812 | __set_bit(DIRTY_ZNODE, &zi->flags); | ||
1813 | atomic_long_inc(&c->dirty_zn_cnt); | ||
1814 | |||
1815 | zi->zbranch[0].key = znode->zbranch[0].key; | ||
1816 | zi->zbranch[0].znode = znode; | ||
1817 | zi->zbranch[0].lnum = c->zroot.lnum; | ||
1818 | zi->zbranch[0].offs = c->zroot.offs; | ||
1819 | zi->zbranch[0].len = c->zroot.len; | ||
1820 | zi->zbranch[1].key = zn->zbranch[0].key; | ||
1821 | zi->zbranch[1].znode = zn; | ||
1822 | |||
1823 | c->zroot.lnum = 0; | ||
1824 | c->zroot.offs = 0; | ||
1825 | c->zroot.len = 0; | ||
1826 | c->zroot.znode = zi; | ||
1827 | |||
1828 | zn->parent = zi; | ||
1829 | zn->iip = 1; | ||
1830 | znode->parent = zi; | ||
1831 | znode->iip = 0; | ||
1832 | |||
1833 | return 0; | ||
1834 | } | ||
1835 | |||
1836 | /** | ||
1837 | * ubifs_tnc_add - add a node to TNC. | ||
1838 | * @c: UBIFS file-system description object | ||
1839 | * @key: key to add | ||
1840 | * @lnum: LEB number of node | ||
1841 | * @offs: node offset | ||
1842 | * @len: node length | ||
1843 | * | ||
1844 | * This function adds a node with key @key to TNC. The node may be new or it may | ||
1845 | * obsolete some existing one. Returns %0 on success or negative error code on | ||
1846 | * failure. | ||
1847 | */ | ||
1848 | int ubifs_tnc_add(struct ubifs_info *c, const union ubifs_key *key, int lnum, | ||
1849 | int offs, int len) | ||
1850 | { | ||
1851 | int found, n, err = 0; | ||
1852 | struct ubifs_znode *znode; | ||
1853 | |||
1854 | mutex_lock(&c->tnc_mutex); | ||
1855 | dbg_tnc("%d:%d, len %d, key %s", lnum, offs, len, DBGKEY(key)); | ||
1856 | found = lookup_level0_dirty(c, key, &znode, &n); | ||
1857 | if (!found) { | ||
1858 | struct ubifs_zbranch zbr; | ||
1859 | |||
1860 | zbr.znode = NULL; | ||
1861 | zbr.lnum = lnum; | ||
1862 | zbr.offs = offs; | ||
1863 | zbr.len = len; | ||
1864 | key_copy(c, key, &zbr.key); | ||
1865 | err = tnc_insert(c, znode, &zbr, n + 1); | ||
1866 | } else if (found == 1) { | ||
1867 | struct ubifs_zbranch *zbr = &znode->zbranch[n]; | ||
1868 | |||
1869 | lnc_free(zbr); | ||
1870 | err = ubifs_add_dirt(c, zbr->lnum, zbr->len); | ||
1871 | zbr->lnum = lnum; | ||
1872 | zbr->offs = offs; | ||
1873 | zbr->len = len; | ||
1874 | } else | ||
1875 | err = found; | ||
1876 | if (!err) | ||
1877 | err = dbg_check_tnc(c, 0); | ||
1878 | mutex_unlock(&c->tnc_mutex); | ||
1879 | |||
1880 | return err; | ||
1881 | } | ||
1882 | |||
1883 | /** | ||
1884 | * ubifs_tnc_replace - replace a node in the TNC only if the old node is found. | ||
1885 | * @c: UBIFS file-system description object | ||
1886 | * @key: key to add | ||
1887 | * @old_lnum: LEB number of old node | ||
1888 | * @old_offs: old node offset | ||
1889 | * @lnum: LEB number of node | ||
1890 | * @offs: node offset | ||
1891 | * @len: node length | ||
1892 | * | ||
1893 | * This function replaces a node with key @key in the TNC only if the old node | ||
1894 | * is found. This function is called by garbage collection when node are moved. | ||
1895 | * Returns %0 on success or negative error code on failure. | ||
1896 | */ | ||
1897 | int ubifs_tnc_replace(struct ubifs_info *c, const union ubifs_key *key, | ||
1898 | int old_lnum, int old_offs, int lnum, int offs, int len) | ||
1899 | { | ||
1900 | int found, n, err = 0; | ||
1901 | struct ubifs_znode *znode; | ||
1902 | |||
1903 | mutex_lock(&c->tnc_mutex); | ||
1904 | dbg_tnc("old LEB %d:%d, new LEB %d:%d, len %d, key %s", old_lnum, | ||
1905 | old_offs, lnum, offs, len, DBGKEY(key)); | ||
1906 | found = lookup_level0_dirty(c, key, &znode, &n); | ||
1907 | if (found < 0) { | ||
1908 | err = found; | ||
1909 | goto out_unlock; | ||
1910 | } | ||
1911 | |||
1912 | if (found == 1) { | ||
1913 | struct ubifs_zbranch *zbr = &znode->zbranch[n]; | ||
1914 | |||
1915 | found = 0; | ||
1916 | if (zbr->lnum == old_lnum && zbr->offs == old_offs) { | ||
1917 | lnc_free(zbr); | ||
1918 | err = ubifs_add_dirt(c, zbr->lnum, zbr->len); | ||
1919 | if (err) | ||
1920 | goto out_unlock; | ||
1921 | zbr->lnum = lnum; | ||
1922 | zbr->offs = offs; | ||
1923 | zbr->len = len; | ||
1924 | found = 1; | ||
1925 | } else if (is_hash_key(c, key)) { | ||
1926 | found = resolve_collision_directly(c, key, &znode, &n, | ||
1927 | old_lnum, old_offs); | ||
1928 | dbg_tnc("rc returned %d, znode %p, n %d, LEB %d:%d", | ||
1929 | found, znode, n, old_lnum, old_offs); | ||
1930 | if (found < 0) { | ||
1931 | err = found; | ||
1932 | goto out_unlock; | ||
1933 | } | ||
1934 | |||
1935 | if (found) { | ||
1936 | /* Ensure the znode is dirtied */ | ||
1937 | if (znode->cnext || !ubifs_zn_dirty(znode)) { | ||
1938 | znode = dirty_cow_bottom_up(c, | ||
1939 | znode); | ||
1940 | if (IS_ERR(znode)) { | ||
1941 | err = PTR_ERR(znode); | ||
1942 | goto out_unlock; | ||
1943 | } | ||
1944 | } | ||
1945 | zbr = &znode->zbranch[n]; | ||
1946 | lnc_free(zbr); | ||
1947 | err = ubifs_add_dirt(c, zbr->lnum, | ||
1948 | zbr->len); | ||
1949 | if (err) | ||
1950 | goto out_unlock; | ||
1951 | zbr->lnum = lnum; | ||
1952 | zbr->offs = offs; | ||
1953 | zbr->len = len; | ||
1954 | } | ||
1955 | } | ||
1956 | } | ||
1957 | |||
1958 | if (!found) | ||
1959 | err = ubifs_add_dirt(c, lnum, len); | ||
1960 | |||
1961 | if (!err) | ||
1962 | err = dbg_check_tnc(c, 0); | ||
1963 | |||
1964 | out_unlock: | ||
1965 | mutex_unlock(&c->tnc_mutex); | ||
1966 | return err; | ||
1967 | } | ||
1968 | |||
1969 | /** | ||
1970 | * ubifs_tnc_add_nm - add a "hashed" node to TNC. | ||
1971 | * @c: UBIFS file-system description object | ||
1972 | * @key: key to add | ||
1973 | * @lnum: LEB number of node | ||
1974 | * @offs: node offset | ||
1975 | * @len: node length | ||
1976 | * @nm: node name | ||
1977 | * | ||
1978 | * This is the same as 'ubifs_tnc_add()' but it should be used with keys which | ||
1979 | * may have collisions, like directory entry keys. | ||
1980 | */ | ||
1981 | int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key, | ||
1982 | int lnum, int offs, int len, const struct qstr *nm) | ||
1983 | { | ||
1984 | int found, n, err = 0; | ||
1985 | struct ubifs_znode *znode; | ||
1986 | |||
1987 | mutex_lock(&c->tnc_mutex); | ||
1988 | dbg_tnc("LEB %d:%d, name '%.*s', key %s", lnum, offs, nm->len, nm->name, | ||
1989 | DBGKEY(key)); | ||
1990 | found = lookup_level0_dirty(c, key, &znode, &n); | ||
1991 | if (found < 0) { | ||
1992 | err = found; | ||
1993 | goto out_unlock; | ||
1994 | } | ||
1995 | |||
1996 | if (found == 1) { | ||
1997 | if (c->replaying) | ||
1998 | found = fallible_resolve_collision(c, key, &znode, &n, | ||
1999 | nm, 1); | ||
2000 | else | ||
2001 | found = resolve_collision(c, key, &znode, &n, nm); | ||
2002 | dbg_tnc("rc returned %d, znode %p, n %d", found, znode, n); | ||
2003 | if (found < 0) { | ||
2004 | err = found; | ||
2005 | goto out_unlock; | ||
2006 | } | ||
2007 | |||
2008 | /* Ensure the znode is dirtied */ | ||
2009 | if (znode->cnext || !ubifs_zn_dirty(znode)) { | ||
2010 | znode = dirty_cow_bottom_up(c, znode); | ||
2011 | if (IS_ERR(znode)) { | ||
2012 | err = PTR_ERR(znode); | ||
2013 | goto out_unlock; | ||
2014 | } | ||
2015 | } | ||
2016 | |||
2017 | if (found == 1) { | ||
2018 | struct ubifs_zbranch *zbr = &znode->zbranch[n]; | ||
2019 | |||
2020 | lnc_free(zbr); | ||
2021 | err = ubifs_add_dirt(c, zbr->lnum, zbr->len); | ||
2022 | zbr->lnum = lnum; | ||
2023 | zbr->offs = offs; | ||
2024 | zbr->len = len; | ||
2025 | goto out_unlock; | ||
2026 | } | ||
2027 | } | ||
2028 | |||
2029 | if (!found) { | ||
2030 | struct ubifs_zbranch zbr; | ||
2031 | |||
2032 | zbr.znode = NULL; | ||
2033 | zbr.lnum = lnum; | ||
2034 | zbr.offs = offs; | ||
2035 | zbr.len = len; | ||
2036 | key_copy(c, key, &zbr.key); | ||
2037 | err = tnc_insert(c, znode, &zbr, n + 1); | ||
2038 | if (err) | ||
2039 | goto out_unlock; | ||
2040 | if (c->replaying) { | ||
2041 | /* | ||
2042 | * We did not find it in the index so there may be a | ||
2043 | * dangling branch still in the index. So we remove it | ||
2044 | * by passing 'ubifs_tnc_remove_nm()' the same key but | ||
2045 | * an unmatchable name. | ||
2046 | */ | ||
2047 | struct qstr noname = { .len = 0, .name = "" }; | ||
2048 | |||
2049 | err = dbg_check_tnc(c, 0); | ||
2050 | mutex_unlock(&c->tnc_mutex); | ||
2051 | if (err) | ||
2052 | return err; | ||
2053 | return ubifs_tnc_remove_nm(c, key, &noname); | ||
2054 | } | ||
2055 | } | ||
2056 | |||
2057 | out_unlock: | ||
2058 | if (!err) | ||
2059 | err = dbg_check_tnc(c, 0); | ||
2060 | mutex_unlock(&c->tnc_mutex); | ||
2061 | return err; | ||
2062 | } | ||
2063 | |||
2064 | /** | ||
2065 | * tnc_delete - delete a znode form TNC. | ||
2066 | * @c: UBIFS file-system description object | ||
2067 | * @znode: znode to delete from | ||
2068 | * @n: zbranch slot number to delete | ||
2069 | * | ||
2070 | * This function deletes a leaf node from @n-th slot of @znode. Returns zero in | ||
2071 | * case of success and a negative error code in case of failure. | ||
2072 | */ | ||
2073 | static int tnc_delete(struct ubifs_info *c, struct ubifs_znode *znode, int n) | ||
2074 | { | ||
2075 | struct ubifs_zbranch *zbr; | ||
2076 | struct ubifs_znode *zp; | ||
2077 | int i, err; | ||
2078 | |||
2079 | /* Delete without merge for now */ | ||
2080 | ubifs_assert(znode->level == 0); | ||
2081 | ubifs_assert(n >= 0 && n < c->fanout); | ||
2082 | dbg_tnc("deleting %s", DBGKEY(&znode->zbranch[n].key)); | ||
2083 | |||
2084 | zbr = &znode->zbranch[n]; | ||
2085 | lnc_free(zbr); | ||
2086 | |||
2087 | err = ubifs_add_dirt(c, zbr->lnum, zbr->len); | ||
2088 | if (err) { | ||
2089 | dbg_dump_znode(c, znode); | ||
2090 | return err; | ||
2091 | } | ||
2092 | |||
2093 | /* We do not "gap" zbranch slots */ | ||
2094 | for (i = n; i < znode->child_cnt - 1; i++) | ||
2095 | znode->zbranch[i] = znode->zbranch[i + 1]; | ||
2096 | znode->child_cnt -= 1; | ||
2097 | |||
2098 | if (znode->child_cnt > 0) | ||
2099 | return 0; | ||
2100 | |||
2101 | /* | ||
2102 | * This was the last zbranch, we have to delete this znode from the | ||
2103 | * parent. | ||
2104 | */ | ||
2105 | |||
2106 | do { | ||
2107 | ubifs_assert(!test_bit(OBSOLETE_ZNODE, &znode->flags)); | ||
2108 | ubifs_assert(ubifs_zn_dirty(znode)); | ||
2109 | |||
2110 | zp = znode->parent; | ||
2111 | n = znode->iip; | ||
2112 | |||
2113 | atomic_long_dec(&c->dirty_zn_cnt); | ||
2114 | |||
2115 | err = insert_old_idx_znode(c, znode); | ||
2116 | if (err) | ||
2117 | return err; | ||
2118 | |||
2119 | if (znode->cnext) { | ||
2120 | __set_bit(OBSOLETE_ZNODE, &znode->flags); | ||
2121 | atomic_long_inc(&c->clean_zn_cnt); | ||
2122 | atomic_long_inc(&ubifs_clean_zn_cnt); | ||
2123 | } else | ||
2124 | kfree(znode); | ||
2125 | znode = zp; | ||
2126 | } while (znode->child_cnt == 1); /* while removing last child */ | ||
2127 | |||
2128 | /* Remove from znode, entry n - 1 */ | ||
2129 | znode->child_cnt -= 1; | ||
2130 | ubifs_assert(znode->level != 0); | ||
2131 | for (i = n; i < znode->child_cnt; i++) { | ||
2132 | znode->zbranch[i] = znode->zbranch[i + 1]; | ||
2133 | if (znode->zbranch[i].znode) | ||
2134 | znode->zbranch[i].znode->iip = i; | ||
2135 | } | ||
2136 | |||
2137 | /* | ||
2138 | * If this is the root and it has only 1 child then | ||
2139 | * collapse the tree. | ||
2140 | */ | ||
2141 | if (!znode->parent) { | ||
2142 | while (znode->child_cnt == 1 && znode->level != 0) { | ||
2143 | zp = znode; | ||
2144 | zbr = &znode->zbranch[0]; | ||
2145 | znode = get_znode(c, znode, 0); | ||
2146 | if (IS_ERR(znode)) | ||
2147 | return PTR_ERR(znode); | ||
2148 | znode = dirty_cow_znode(c, zbr); | ||
2149 | if (IS_ERR(znode)) | ||
2150 | return PTR_ERR(znode); | ||
2151 | znode->parent = NULL; | ||
2152 | znode->iip = 0; | ||
2153 | if (c->zroot.len) { | ||
2154 | err = insert_old_idx(c, c->zroot.lnum, | ||
2155 | c->zroot.offs); | ||
2156 | if (err) | ||
2157 | return err; | ||
2158 | } | ||
2159 | c->zroot.lnum = zbr->lnum; | ||
2160 | c->zroot.offs = zbr->offs; | ||
2161 | c->zroot.len = zbr->len; | ||
2162 | c->zroot.znode = znode; | ||
2163 | ubifs_assert(!test_bit(OBSOLETE_ZNODE, | ||
2164 | &zp->flags)); | ||
2165 | ubifs_assert(test_bit(DIRTY_ZNODE, &zp->flags)); | ||
2166 | atomic_long_dec(&c->dirty_zn_cnt); | ||
2167 | |||
2168 | if (zp->cnext) { | ||
2169 | __set_bit(OBSOLETE_ZNODE, &zp->flags); | ||
2170 | atomic_long_inc(&c->clean_zn_cnt); | ||
2171 | atomic_long_inc(&ubifs_clean_zn_cnt); | ||
2172 | } else | ||
2173 | kfree(zp); | ||
2174 | } | ||
2175 | } | ||
2176 | |||
2177 | return 0; | ||
2178 | } | ||
2179 | |||
2180 | /** | ||
2181 | * ubifs_tnc_remove - remove an index entry of a node. | ||
2182 | * @c: UBIFS file-system description object | ||
2183 | * @key: key of node | ||
2184 | * | ||
2185 | * Returns %0 on success or negative error code on failure. | ||
2186 | */ | ||
2187 | int ubifs_tnc_remove(struct ubifs_info *c, const union ubifs_key *key) | ||
2188 | { | ||
2189 | int found, n, err = 0; | ||
2190 | struct ubifs_znode *znode; | ||
2191 | |||
2192 | mutex_lock(&c->tnc_mutex); | ||
2193 | dbg_tnc("key %s", DBGKEY(key)); | ||
2194 | found = lookup_level0_dirty(c, key, &znode, &n); | ||
2195 | if (found < 0) { | ||
2196 | err = found; | ||
2197 | goto out_unlock; | ||
2198 | } | ||
2199 | if (found == 1) | ||
2200 | err = tnc_delete(c, znode, n); | ||
2201 | if (!err) | ||
2202 | err = dbg_check_tnc(c, 0); | ||
2203 | |||
2204 | out_unlock: | ||
2205 | mutex_unlock(&c->tnc_mutex); | ||
2206 | return err; | ||
2207 | } | ||
2208 | |||
2209 | /** | ||
2210 | * ubifs_tnc_remove_nm - remove an index entry for a "hashed" node. | ||
2211 | * @c: UBIFS file-system description object | ||
2212 | * @key: key of node | ||
2213 | * @nm: directory entry name | ||
2214 | * | ||
2215 | * Returns %0 on success or negative error code on failure. | ||
2216 | */ | ||
2217 | int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key, | ||
2218 | const struct qstr *nm) | ||
2219 | { | ||
2220 | int n, err; | ||
2221 | struct ubifs_znode *znode; | ||
2222 | |||
2223 | mutex_lock(&c->tnc_mutex); | ||
2224 | dbg_tnc("%.*s, key %s", nm->len, nm->name, DBGKEY(key)); | ||
2225 | err = lookup_level0_dirty(c, key, &znode, &n); | ||
2226 | if (err < 0) | ||
2227 | goto out_unlock; | ||
2228 | |||
2229 | if (err) { | ||
2230 | if (c->replaying) | ||
2231 | err = fallible_resolve_collision(c, key, &znode, &n, | ||
2232 | nm, 0); | ||
2233 | else | ||
2234 | err = resolve_collision(c, key, &znode, &n, nm); | ||
2235 | dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n); | ||
2236 | if (err < 0) | ||
2237 | goto out_unlock; | ||
2238 | if (err) { | ||
2239 | /* Ensure the znode is dirtied */ | ||
2240 | if (znode->cnext || !ubifs_zn_dirty(znode)) { | ||
2241 | znode = dirty_cow_bottom_up(c, znode); | ||
2242 | if (IS_ERR(znode)) { | ||
2243 | err = PTR_ERR(znode); | ||
2244 | goto out_unlock; | ||
2245 | } | ||
2246 | } | ||
2247 | err = tnc_delete(c, znode, n); | ||
2248 | } | ||
2249 | } | ||
2250 | |||
2251 | out_unlock: | ||
2252 | if (!err) | ||
2253 | err = dbg_check_tnc(c, 0); | ||
2254 | mutex_unlock(&c->tnc_mutex); | ||
2255 | return err; | ||
2256 | } | ||
2257 | |||
2258 | /** | ||
2259 | * key_in_range - determine if a key falls within a range of keys. | ||
2260 | * @c: UBIFS file-system description object | ||
2261 | * @key: key to check | ||
2262 | * @from_key: lowest key in range | ||
2263 | * @to_key: highest key in range | ||
2264 | * | ||
2265 | * This function returns %1 if the key is in range and %0 otherwise. | ||
2266 | */ | ||
2267 | static int key_in_range(struct ubifs_info *c, union ubifs_key *key, | ||
2268 | union ubifs_key *from_key, union ubifs_key *to_key) | ||
2269 | { | ||
2270 | if (keys_cmp(c, key, from_key) < 0) | ||
2271 | return 0; | ||
2272 | if (keys_cmp(c, key, to_key) > 0) | ||
2273 | return 0; | ||
2274 | return 1; | ||
2275 | } | ||
2276 | |||
2277 | /** | ||
2278 | * ubifs_tnc_remove_range - remove index entries in range. | ||
2279 | * @c: UBIFS file-system description object | ||
2280 | * @from_key: lowest key to remove | ||
2281 | * @to_key: highest key to remove | ||
2282 | * | ||
2283 | * This function removes index entries starting at @from_key and ending at | ||
2284 | * @to_key. This function returns zero in case of success and a negative error | ||
2285 | * code in case of failure. | ||
2286 | */ | ||
2287 | int ubifs_tnc_remove_range(struct ubifs_info *c, union ubifs_key *from_key, | ||
2288 | union ubifs_key *to_key) | ||
2289 | { | ||
2290 | int i, n, k, err = 0; | ||
2291 | struct ubifs_znode *znode; | ||
2292 | union ubifs_key *key; | ||
2293 | |||
2294 | mutex_lock(&c->tnc_mutex); | ||
2295 | while (1) { | ||
2296 | /* Find first level 0 znode that contains keys to remove */ | ||
2297 | err = ubifs_lookup_level0(c, from_key, &znode, &n); | ||
2298 | if (err < 0) | ||
2299 | goto out_unlock; | ||
2300 | |||
2301 | if (err) | ||
2302 | key = from_key; | ||
2303 | else { | ||
2304 | err = tnc_next(c, &znode, &n); | ||
2305 | if (err == -ENOENT) { | ||
2306 | err = 0; | ||
2307 | goto out_unlock; | ||
2308 | } | ||
2309 | if (err < 0) | ||
2310 | goto out_unlock; | ||
2311 | key = &znode->zbranch[n].key; | ||
2312 | if (!key_in_range(c, key, from_key, to_key)) { | ||
2313 | err = 0; | ||
2314 | goto out_unlock; | ||
2315 | } | ||
2316 | } | ||
2317 | |||
2318 | /* Ensure the znode is dirtied */ | ||
2319 | if (znode->cnext || !ubifs_zn_dirty(znode)) { | ||
2320 | znode = dirty_cow_bottom_up(c, znode); | ||
2321 | if (IS_ERR(znode)) { | ||
2322 | err = PTR_ERR(znode); | ||
2323 | goto out_unlock; | ||
2324 | } | ||
2325 | } | ||
2326 | |||
2327 | /* Remove all keys in range except the first */ | ||
2328 | for (i = n + 1, k = 0; i < znode->child_cnt; i++, k++) { | ||
2329 | key = &znode->zbranch[i].key; | ||
2330 | if (!key_in_range(c, key, from_key, to_key)) | ||
2331 | break; | ||
2332 | lnc_free(&znode->zbranch[i]); | ||
2333 | err = ubifs_add_dirt(c, znode->zbranch[i].lnum, | ||
2334 | znode->zbranch[i].len); | ||
2335 | if (err) { | ||
2336 | dbg_dump_znode(c, znode); | ||
2337 | goto out_unlock; | ||
2338 | } | ||
2339 | dbg_tnc("removing %s", DBGKEY(key)); | ||
2340 | } | ||
2341 | if (k) { | ||
2342 | for (i = n + 1 + k; i < znode->child_cnt; i++) | ||
2343 | znode->zbranch[i - k] = znode->zbranch[i]; | ||
2344 | znode->child_cnt -= k; | ||
2345 | } | ||
2346 | |||
2347 | /* Now delete the first */ | ||
2348 | err = tnc_delete(c, znode, n); | ||
2349 | if (err) | ||
2350 | goto out_unlock; | ||
2351 | } | ||
2352 | |||
2353 | out_unlock: | ||
2354 | if (!err) | ||
2355 | err = dbg_check_tnc(c, 0); | ||
2356 | mutex_unlock(&c->tnc_mutex); | ||
2357 | return err; | ||
2358 | } | ||
2359 | |||
2360 | /** | ||
2361 | * ubifs_tnc_remove_ino - remove an inode from TNC. | ||
2362 | * @c: UBIFS file-system description object | ||
2363 | * @inum: inode number to remove | ||
2364 | * | ||
2365 | * This function remove inode @inum and all the extended attributes associated | ||
2366 | * with the anode from TNC and returns zero in case of success or a negative | ||
2367 | * error code in case of failure. | ||
2368 | */ | ||
2369 | int ubifs_tnc_remove_ino(struct ubifs_info *c, ino_t inum) | ||
2370 | { | ||
2371 | union ubifs_key key1, key2; | ||
2372 | struct ubifs_dent_node *xent, *pxent = NULL; | ||
2373 | struct qstr nm = { .name = NULL }; | ||
2374 | |||
2375 | dbg_tnc("ino %lu", inum); | ||
2376 | |||
2377 | /* | ||
2378 | * Walk all extended attribute entries and remove them together with | ||
2379 | * corresponding extended attribute inodes. | ||
2380 | */ | ||
2381 | lowest_xent_key(c, &key1, inum); | ||
2382 | while (1) { | ||
2383 | ino_t xattr_inum; | ||
2384 | int err; | ||
2385 | |||
2386 | xent = ubifs_tnc_next_ent(c, &key1, &nm); | ||
2387 | if (IS_ERR(xent)) { | ||
2388 | err = PTR_ERR(xent); | ||
2389 | if (err == -ENOENT) | ||
2390 | break; | ||
2391 | return err; | ||
2392 | } | ||
2393 | |||
2394 | xattr_inum = le64_to_cpu(xent->inum); | ||
2395 | dbg_tnc("xent '%s', ino %lu", xent->name, xattr_inum); | ||
2396 | |||
2397 | nm.name = xent->name; | ||
2398 | nm.len = le16_to_cpu(xent->nlen); | ||
2399 | err = ubifs_tnc_remove_nm(c, &key1, &nm); | ||
2400 | if (err) { | ||
2401 | kfree(xent); | ||
2402 | return err; | ||
2403 | } | ||
2404 | |||
2405 | lowest_ino_key(c, &key1, xattr_inum); | ||
2406 | highest_ino_key(c, &key2, xattr_inum); | ||
2407 | err = ubifs_tnc_remove_range(c, &key1, &key2); | ||
2408 | if (err) { | ||
2409 | kfree(xent); | ||
2410 | return err; | ||
2411 | } | ||
2412 | |||
2413 | kfree(pxent); | ||
2414 | pxent = xent; | ||
2415 | key_read(c, &xent->key, &key1); | ||
2416 | } | ||
2417 | |||
2418 | kfree(pxent); | ||
2419 | lowest_ino_key(c, &key1, inum); | ||
2420 | highest_ino_key(c, &key2, inum); | ||
2421 | |||
2422 | return ubifs_tnc_remove_range(c, &key1, &key2); | ||
2423 | } | ||
2424 | |||
2425 | /** | ||
2426 | * ubifs_tnc_next_ent - walk directory or extended attribute entries. | ||
2427 | * @c: UBIFS file-system description object | ||
2428 | * @key: key of last entry | ||
2429 | * @nm: name of last entry found or %NULL | ||
2430 | * | ||
2431 | * This function finds and reads the next directory or extended attribute entry | ||
2432 | * after the given key (@key) if there is one. @nm is used to resolve | ||
2433 | * collisions. | ||
2434 | * | ||
2435 | * If the name of the current entry is not known and only the key is known, | ||
2436 | * @nm->name has to be %NULL. In this case the semantics of this function is a | ||
2437 | * little bit different and it returns the entry corresponding to this key, not | ||
2438 | * the next one. If the key was not found, the closest "right" entry is | ||
2439 | * returned. | ||
2440 | * | ||
2441 | * If the fist entry has to be found, @key has to contain the lowest possible | ||
2442 | * key value for this inode and @name has to be %NULL. | ||
2443 | * | ||
2444 | * This function returns the found directory or extended attribute entry node | ||
2445 | * in case of success, %-ENOENT is returned if no entry was found, and a | ||
2446 | * negative error code is returned in case of failure. | ||
2447 | */ | ||
2448 | struct ubifs_dent_node *ubifs_tnc_next_ent(struct ubifs_info *c, | ||
2449 | union ubifs_key *key, | ||
2450 | const struct qstr *nm) | ||
2451 | { | ||
2452 | int n, err, type = key_type(c, key); | ||
2453 | struct ubifs_znode *znode; | ||
2454 | struct ubifs_dent_node *dent; | ||
2455 | struct ubifs_zbranch *zbr; | ||
2456 | union ubifs_key *dkey; | ||
2457 | |||
2458 | dbg_tnc("%s %s", nm->name ? (char *)nm->name : "(lowest)", DBGKEY(key)); | ||
2459 | ubifs_assert(is_hash_key(c, key)); | ||
2460 | |||
2461 | mutex_lock(&c->tnc_mutex); | ||
2462 | err = ubifs_lookup_level0(c, key, &znode, &n); | ||
2463 | if (unlikely(err < 0)) | ||
2464 | goto out_unlock; | ||
2465 | |||
2466 | if (nm->name) { | ||
2467 | if (err) { | ||
2468 | /* Handle collisions */ | ||
2469 | err = resolve_collision(c, key, &znode, &n, nm); | ||
2470 | dbg_tnc("rc returned %d, znode %p, n %d", | ||
2471 | err, znode, n); | ||
2472 | if (unlikely(err < 0)) | ||
2473 | goto out_unlock; | ||
2474 | } | ||
2475 | |||
2476 | /* Now find next entry */ | ||
2477 | err = tnc_next(c, &znode, &n); | ||
2478 | if (unlikely(err)) | ||
2479 | goto out_unlock; | ||
2480 | } else { | ||
2481 | /* | ||
2482 | * The full name of the entry was not given, in which case the | ||
2483 | * behavior of this function is a little different and it | ||
2484 | * returns current entry, not the next one. | ||
2485 | */ | ||
2486 | if (!err) { | ||
2487 | /* | ||
2488 | * However, the given key does not exist in the TNC | ||
2489 | * tree and @znode/@n variables contain the closest | ||
2490 | * "preceding" element. Switch to the next one. | ||
2491 | */ | ||
2492 | err = tnc_next(c, &znode, &n); | ||
2493 | if (err) | ||
2494 | goto out_unlock; | ||
2495 | } | ||
2496 | } | ||
2497 | |||
2498 | zbr = &znode->zbranch[n]; | ||
2499 | dent = kmalloc(zbr->len, GFP_NOFS); | ||
2500 | if (unlikely(!dent)) { | ||
2501 | err = -ENOMEM; | ||
2502 | goto out_unlock; | ||
2503 | } | ||
2504 | |||
2505 | /* | ||
2506 | * The above 'tnc_next()' call could lead us to the next inode, check | ||
2507 | * this. | ||
2508 | */ | ||
2509 | dkey = &zbr->key; | ||
2510 | if (key_inum(c, dkey) != key_inum(c, key) || | ||
2511 | key_type(c, dkey) != type) { | ||
2512 | err = -ENOENT; | ||
2513 | goto out_free; | ||
2514 | } | ||
2515 | |||
2516 | err = tnc_read_node_nm(c, zbr, dent); | ||
2517 | if (unlikely(err)) | ||
2518 | goto out_free; | ||
2519 | |||
2520 | mutex_unlock(&c->tnc_mutex); | ||
2521 | return dent; | ||
2522 | |||
2523 | out_free: | ||
2524 | kfree(dent); | ||
2525 | out_unlock: | ||
2526 | mutex_unlock(&c->tnc_mutex); | ||
2527 | return ERR_PTR(err); | ||
2528 | } | ||
2529 | |||
2530 | /** | ||
2531 | * tnc_destroy_cnext - destroy left-over obsolete znodes from a failed commit. | ||
2532 | * @c: UBIFS file-system description object | ||
2533 | * | ||
2534 | * Destroy left-over obsolete znodes from a failed commit. | ||
2535 | */ | ||
2536 | static void tnc_destroy_cnext(struct ubifs_info *c) | ||
2537 | { | ||
2538 | struct ubifs_znode *cnext; | ||
2539 | |||
2540 | if (!c->cnext) | ||
2541 | return; | ||
2542 | ubifs_assert(c->cmt_state == COMMIT_BROKEN); | ||
2543 | cnext = c->cnext; | ||
2544 | do { | ||
2545 | struct ubifs_znode *znode = cnext; | ||
2546 | |||
2547 | cnext = cnext->cnext; | ||
2548 | if (test_bit(OBSOLETE_ZNODE, &znode->flags)) | ||
2549 | kfree(znode); | ||
2550 | } while (cnext && cnext != c->cnext); | ||
2551 | } | ||
2552 | |||
2553 | /** | ||
2554 | * ubifs_tnc_close - close TNC subsystem and free all related resources. | ||
2555 | * @c: UBIFS file-system description object | ||
2556 | */ | ||
2557 | void ubifs_tnc_close(struct ubifs_info *c) | ||
2558 | { | ||
2559 | long clean_freed; | ||
2560 | |||
2561 | tnc_destroy_cnext(c); | ||
2562 | if (c->zroot.znode) { | ||
2563 | clean_freed = ubifs_destroy_tnc_subtree(c->zroot.znode); | ||
2564 | atomic_long_sub(clean_freed, &ubifs_clean_zn_cnt); | ||
2565 | } | ||
2566 | kfree(c->gap_lebs); | ||
2567 | kfree(c->ilebs); | ||
2568 | destroy_old_idx(c); | ||
2569 | } | ||
2570 | |||
2571 | /** | ||
2572 | * left_znode - get the znode to the left. | ||
2573 | * @c: UBIFS file-system description object | ||
2574 | * @znode: znode | ||
2575 | * | ||
2576 | * This function returns a pointer to the znode to the left of @znode or NULL if | ||
2577 | * there is not one. A negative error code is returned on failure. | ||
2578 | */ | ||
2579 | static struct ubifs_znode *left_znode(struct ubifs_info *c, | ||
2580 | struct ubifs_znode *znode) | ||
2581 | { | ||
2582 | int level = znode->level; | ||
2583 | |||
2584 | while (1) { | ||
2585 | int n = znode->iip - 1; | ||
2586 | |||
2587 | /* Go up until we can go left */ | ||
2588 | znode = znode->parent; | ||
2589 | if (!znode) | ||
2590 | return NULL; | ||
2591 | if (n >= 0) { | ||
2592 | /* Now go down the rightmost branch to 'level' */ | ||
2593 | znode = get_znode(c, znode, n); | ||
2594 | if (IS_ERR(znode)) | ||
2595 | return znode; | ||
2596 | while (znode->level != level) { | ||
2597 | n = znode->child_cnt - 1; | ||
2598 | znode = get_znode(c, znode, n); | ||
2599 | if (IS_ERR(znode)) | ||
2600 | return znode; | ||
2601 | } | ||
2602 | break; | ||
2603 | } | ||
2604 | } | ||
2605 | return znode; | ||
2606 | } | ||
2607 | |||
2608 | /** | ||
2609 | * right_znode - get the znode to the right. | ||
2610 | * @c: UBIFS file-system description object | ||
2611 | * @znode: znode | ||
2612 | * | ||
2613 | * This function returns a pointer to the znode to the right of @znode or NULL | ||
2614 | * if there is not one. A negative error code is returned on failure. | ||
2615 | */ | ||
2616 | static struct ubifs_znode *right_znode(struct ubifs_info *c, | ||
2617 | struct ubifs_znode *znode) | ||
2618 | { | ||
2619 | int level = znode->level; | ||
2620 | |||
2621 | while (1) { | ||
2622 | int n = znode->iip + 1; | ||
2623 | |||
2624 | /* Go up until we can go right */ | ||
2625 | znode = znode->parent; | ||
2626 | if (!znode) | ||
2627 | return NULL; | ||
2628 | if (n < znode->child_cnt) { | ||
2629 | /* Now go down the leftmost branch to 'level' */ | ||
2630 | znode = get_znode(c, znode, n); | ||
2631 | if (IS_ERR(znode)) | ||
2632 | return znode; | ||
2633 | while (znode->level != level) { | ||
2634 | znode = get_znode(c, znode, 0); | ||
2635 | if (IS_ERR(znode)) | ||
2636 | return znode; | ||
2637 | } | ||
2638 | break; | ||
2639 | } | ||
2640 | } | ||
2641 | return znode; | ||
2642 | } | ||
2643 | |||
2644 | /** | ||
2645 | * lookup_znode - find a particular indexing node from TNC. | ||
2646 | * @c: UBIFS file-system description object | ||
2647 | * @key: index node key to lookup | ||
2648 | * @level: index node level | ||
2649 | * @lnum: index node LEB number | ||
2650 | * @offs: index node offset | ||
2651 | * | ||
2652 | * This function searches an indexing node by its first key @key and its | ||
2653 | * address @lnum:@offs. It looks up the indexing tree by pulling all indexing | ||
2654 | * nodes it traverses to TNC. This function is called fro indexing nodes which | ||
2655 | * were found on the media by scanning, for example when garbage-collecting or | ||
2656 | * when doing in-the-gaps commit. This means that the indexing node which is | ||
2657 | * looked for does not have to have exactly the same leftmost key @key, because | ||
2658 | * the leftmost key may have been changed, in which case TNC will contain a | ||
2659 | * dirty znode which still refers the same @lnum:@offs. This function is clever | ||
2660 | * enough to recognize such indexing nodes. | ||
2661 | * | ||
2662 | * Note, if a znode was deleted or changed too much, then this function will | ||
2663 | * not find it. For situations like this UBIFS has the old index RB-tree | ||
2664 | * (indexed by @lnum:@offs). | ||
2665 | * | ||
2666 | * This function returns a pointer to the znode found or %NULL if it is not | ||
2667 | * found. A negative error code is returned on failure. | ||
2668 | */ | ||
2669 | static struct ubifs_znode *lookup_znode(struct ubifs_info *c, | ||
2670 | union ubifs_key *key, int level, | ||
2671 | int lnum, int offs) | ||
2672 | { | ||
2673 | struct ubifs_znode *znode, *zn; | ||
2674 | int n, nn; | ||
2675 | |||
2676 | /* | ||
2677 | * The arguments have probably been read off flash, so don't assume | ||
2678 | * they are valid. | ||
2679 | */ | ||
2680 | if (level < 0) | ||
2681 | return ERR_PTR(-EINVAL); | ||
2682 | |||
2683 | /* Get the root znode */ | ||
2684 | znode = c->zroot.znode; | ||
2685 | if (!znode) { | ||
2686 | znode = ubifs_load_znode(c, &c->zroot, NULL, 0); | ||
2687 | if (IS_ERR(znode)) | ||
2688 | return znode; | ||
2689 | } | ||
2690 | /* Check if it is the one we are looking for */ | ||
2691 | if (c->zroot.lnum == lnum && c->zroot.offs == offs) | ||
2692 | return znode; | ||
2693 | /* Descend to the parent level i.e. (level + 1) */ | ||
2694 | if (level >= znode->level) | ||
2695 | return NULL; | ||
2696 | while (1) { | ||
2697 | ubifs_search_zbranch(c, znode, key, &n); | ||
2698 | if (n < 0) { | ||
2699 | /* | ||
2700 | * We reached a znode where the leftmost key is greater | ||
2701 | * than the key we are searching for. This is the same | ||
2702 | * situation as the one described in a huge comment at | ||
2703 | * the end of the 'ubifs_lookup_level0()' function. And | ||
2704 | * for exactly the same reasons we have to try to look | ||
2705 | * left before giving up. | ||
2706 | */ | ||
2707 | znode = left_znode(c, znode); | ||
2708 | if (!znode) | ||
2709 | return NULL; | ||
2710 | if (IS_ERR(znode)) | ||
2711 | return znode; | ||
2712 | ubifs_search_zbranch(c, znode, key, &n); | ||
2713 | ubifs_assert(n >= 0); | ||
2714 | } | ||
2715 | if (znode->level == level + 1) | ||
2716 | break; | ||
2717 | znode = get_znode(c, znode, n); | ||
2718 | if (IS_ERR(znode)) | ||
2719 | return znode; | ||
2720 | } | ||
2721 | /* Check if the child is the one we are looking for */ | ||
2722 | if (znode->zbranch[n].lnum == lnum && znode->zbranch[n].offs == offs) | ||
2723 | return get_znode(c, znode, n); | ||
2724 | /* If the key is unique, there is nowhere else to look */ | ||
2725 | if (!is_hash_key(c, key)) | ||
2726 | return NULL; | ||
2727 | /* | ||
2728 | * The key is not unique and so may be also in the znodes to either | ||
2729 | * side. | ||
2730 | */ | ||
2731 | zn = znode; | ||
2732 | nn = n; | ||
2733 | /* Look left */ | ||
2734 | while (1) { | ||
2735 | /* Move one branch to the left */ | ||
2736 | if (n) | ||
2737 | n -= 1; | ||
2738 | else { | ||
2739 | znode = left_znode(c, znode); | ||
2740 | if (!znode) | ||
2741 | break; | ||
2742 | if (IS_ERR(znode)) | ||
2743 | return znode; | ||
2744 | n = znode->child_cnt - 1; | ||
2745 | } | ||
2746 | /* Check it */ | ||
2747 | if (znode->zbranch[n].lnum == lnum && | ||
2748 | znode->zbranch[n].offs == offs) | ||
2749 | return get_znode(c, znode, n); | ||
2750 | /* Stop if the key is less than the one we are looking for */ | ||
2751 | if (keys_cmp(c, &znode->zbranch[n].key, key) < 0) | ||
2752 | break; | ||
2753 | } | ||
2754 | /* Back to the middle */ | ||
2755 | znode = zn; | ||
2756 | n = nn; | ||
2757 | /* Look right */ | ||
2758 | while (1) { | ||
2759 | /* Move one branch to the right */ | ||
2760 | if (++n >= znode->child_cnt) { | ||
2761 | znode = right_znode(c, znode); | ||
2762 | if (!znode) | ||
2763 | break; | ||
2764 | if (IS_ERR(znode)) | ||
2765 | return znode; | ||
2766 | n = 0; | ||
2767 | } | ||
2768 | /* Check it */ | ||
2769 | if (znode->zbranch[n].lnum == lnum && | ||
2770 | znode->zbranch[n].offs == offs) | ||
2771 | return get_znode(c, znode, n); | ||
2772 | /* Stop if the key is greater than the one we are looking for */ | ||
2773 | if (keys_cmp(c, &znode->zbranch[n].key, key) > 0) | ||
2774 | break; | ||
2775 | } | ||
2776 | return NULL; | ||
2777 | } | ||
2778 | |||
2779 | /** | ||
2780 | * is_idx_node_in_tnc - determine if an index node is in the TNC. | ||
2781 | * @c: UBIFS file-system description object | ||
2782 | * @key: key of index node | ||
2783 | * @level: index node level | ||
2784 | * @lnum: LEB number of index node | ||
2785 | * @offs: offset of index node | ||
2786 | * | ||
2787 | * This function returns %0 if the index node is not referred to in the TNC, %1 | ||
2788 | * if the index node is referred to in the TNC and the corresponding znode is | ||
2789 | * dirty, %2 if an index node is referred to in the TNC and the corresponding | ||
2790 | * znode is clean, and a negative error code in case of failure. | ||
2791 | * | ||
2792 | * Note, the @key argument has to be the key of the first child. Also note, | ||
2793 | * this function relies on the fact that 0:0 is never a valid LEB number and | ||
2794 | * offset for a main-area node. | ||
2795 | */ | ||
2796 | int is_idx_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, int level, | ||
2797 | int lnum, int offs) | ||
2798 | { | ||
2799 | struct ubifs_znode *znode; | ||
2800 | |||
2801 | znode = lookup_znode(c, key, level, lnum, offs); | ||
2802 | if (!znode) | ||
2803 | return 0; | ||
2804 | if (IS_ERR(znode)) | ||
2805 | return PTR_ERR(znode); | ||
2806 | |||
2807 | return ubifs_zn_dirty(znode) ? 1 : 2; | ||
2808 | } | ||
2809 | |||
2810 | /** | ||
2811 | * is_leaf_node_in_tnc - determine if a non-indexing not is in the TNC. | ||
2812 | * @c: UBIFS file-system description object | ||
2813 | * @key: node key | ||
2814 | * @lnum: node LEB number | ||
2815 | * @offs: node offset | ||
2816 | * | ||
2817 | * This function returns %1 if the node is referred to in the TNC, %0 if it is | ||
2818 | * not, and a negative error code in case of failure. | ||
2819 | * | ||
2820 | * Note, this function relies on the fact that 0:0 is never a valid LEB number | ||
2821 | * and offset for a main-area node. | ||
2822 | */ | ||
2823 | static int is_leaf_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, | ||
2824 | int lnum, int offs) | ||
2825 | { | ||
2826 | struct ubifs_zbranch *zbr; | ||
2827 | struct ubifs_znode *znode, *zn; | ||
2828 | int n, found, err, nn; | ||
2829 | const int unique = !is_hash_key(c, key); | ||
2830 | |||
2831 | found = ubifs_lookup_level0(c, key, &znode, &n); | ||
2832 | if (found < 0) | ||
2833 | return found; /* Error code */ | ||
2834 | if (!found) | ||
2835 | return 0; | ||
2836 | zbr = &znode->zbranch[n]; | ||
2837 | if (lnum == zbr->lnum && offs == zbr->offs) | ||
2838 | return 1; /* Found it */ | ||
2839 | if (unique) | ||
2840 | return 0; | ||
2841 | /* | ||
2842 | * Because the key is not unique, we have to look left | ||
2843 | * and right as well | ||
2844 | */ | ||
2845 | zn = znode; | ||
2846 | nn = n; | ||
2847 | /* Look left */ | ||
2848 | while (1) { | ||
2849 | err = tnc_prev(c, &znode, &n); | ||
2850 | if (err == -ENOENT) | ||
2851 | break; | ||
2852 | if (err) | ||
2853 | return err; | ||
2854 | if (keys_cmp(c, key, &znode->zbranch[n].key)) | ||
2855 | break; | ||
2856 | zbr = &znode->zbranch[n]; | ||
2857 | if (lnum == zbr->lnum && offs == zbr->offs) | ||
2858 | return 1; /* Found it */ | ||
2859 | } | ||
2860 | /* Look right */ | ||
2861 | znode = zn; | ||
2862 | n = nn; | ||
2863 | while (1) { | ||
2864 | err = tnc_next(c, &znode, &n); | ||
2865 | if (err) { | ||
2866 | if (err == -ENOENT) | ||
2867 | return 0; | ||
2868 | return err; | ||
2869 | } | ||
2870 | if (keys_cmp(c, key, &znode->zbranch[n].key)) | ||
2871 | break; | ||
2872 | zbr = &znode->zbranch[n]; | ||
2873 | if (lnum == zbr->lnum && offs == zbr->offs) | ||
2874 | return 1; /* Found it */ | ||
2875 | } | ||
2876 | return 0; | ||
2877 | } | ||
2878 | |||
2879 | /** | ||
2880 | * ubifs_tnc_has_node - determine whether a node is in the TNC. | ||
2881 | * @c: UBIFS file-system description object | ||
2882 | * @key: node key | ||
2883 | * @level: index node level (if it is an index node) | ||
2884 | * @lnum: node LEB number | ||
2885 | * @offs: node offset | ||
2886 | * @is_idx: non-zero if the node is an index node | ||
2887 | * | ||
2888 | * This function returns %1 if the node is in the TNC, %0 if it is not, and a | ||
2889 | * negative error code in case of failure. For index nodes, @key has to be the | ||
2890 | * key of the first child. An index node is considered to be in the TNC only if | ||
2891 | * the corresponding znode is clean or has not been loaded. | ||
2892 | */ | ||
2893 | int ubifs_tnc_has_node(struct ubifs_info *c, union ubifs_key *key, int level, | ||
2894 | int lnum, int offs, int is_idx) | ||
2895 | { | ||
2896 | int err; | ||
2897 | |||
2898 | mutex_lock(&c->tnc_mutex); | ||
2899 | if (is_idx) { | ||
2900 | err = is_idx_node_in_tnc(c, key, level, lnum, offs); | ||
2901 | if (err < 0) | ||
2902 | goto out_unlock; | ||
2903 | if (err == 1) | ||
2904 | /* The index node was found but it was dirty */ | ||
2905 | err = 0; | ||
2906 | else if (err == 2) | ||
2907 | /* The index node was found and it was clean */ | ||
2908 | err = 1; | ||
2909 | else | ||
2910 | BUG_ON(err != 0); | ||
2911 | } else | ||
2912 | err = is_leaf_node_in_tnc(c, key, lnum, offs); | ||
2913 | |||
2914 | out_unlock: | ||
2915 | mutex_unlock(&c->tnc_mutex); | ||
2916 | return err; | ||
2917 | } | ||
2918 | |||
2919 | /** | ||
2920 | * ubifs_dirty_idx_node - dirty an index node. | ||
2921 | * @c: UBIFS file-system description object | ||
2922 | * @key: index node key | ||
2923 | * @level: index node level | ||
2924 | * @lnum: index node LEB number | ||
2925 | * @offs: index node offset | ||
2926 | * | ||
2927 | * This function loads and dirties an index node so that it can be garbage | ||
2928 | * collected. The @key argument has to be the key of the first child. This | ||
2929 | * function relies on the fact that 0:0 is never a valid LEB number and offset | ||
2930 | * for a main-area node. Returns %0 on success and a negative error code on | ||
2931 | * failure. | ||
2932 | */ | ||
2933 | int ubifs_dirty_idx_node(struct ubifs_info *c, union ubifs_key *key, int level, | ||
2934 | int lnum, int offs) | ||
2935 | { | ||
2936 | struct ubifs_znode *znode; | ||
2937 | int err = 0; | ||
2938 | |||
2939 | mutex_lock(&c->tnc_mutex); | ||
2940 | znode = lookup_znode(c, key, level, lnum, offs); | ||
2941 | if (!znode) | ||
2942 | goto out_unlock; | ||
2943 | if (IS_ERR(znode)) { | ||
2944 | err = PTR_ERR(znode); | ||
2945 | goto out_unlock; | ||
2946 | } | ||
2947 | znode = dirty_cow_bottom_up(c, znode); | ||
2948 | if (IS_ERR(znode)) { | ||
2949 | err = PTR_ERR(znode); | ||
2950 | goto out_unlock; | ||
2951 | } | ||
2952 | |||
2953 | out_unlock: | ||
2954 | mutex_unlock(&c->tnc_mutex); | ||
2955 | return err; | ||
2956 | } | ||