diff options
Diffstat (limited to 'fs/reiserfs/objectid.c')
-rw-r--r-- | fs/reiserfs/objectid.c | 206 |
1 files changed, 206 insertions, 0 deletions
diff --git a/fs/reiserfs/objectid.c b/fs/reiserfs/objectid.c new file mode 100644 index 000000000000..0785c43a7486 --- /dev/null +++ b/fs/reiserfs/objectid.c | |||
@@ -0,0 +1,206 @@ | |||
1 | /* | ||
2 | * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README | ||
3 | */ | ||
4 | |||
5 | #include <linux/config.h> | ||
6 | #include <linux/string.h> | ||
7 | #include <linux/random.h> | ||
8 | #include <linux/time.h> | ||
9 | #include <linux/reiserfs_fs.h> | ||
10 | #include <linux/reiserfs_fs_sb.h> | ||
11 | |||
12 | // find where objectid map starts | ||
13 | #define objectid_map(s,rs) (old_format_only (s) ? \ | ||
14 | (__u32 *)((struct reiserfs_super_block_v1 *)(rs) + 1) :\ | ||
15 | (__u32 *)((rs) + 1)) | ||
16 | |||
17 | |||
18 | #ifdef CONFIG_REISERFS_CHECK | ||
19 | |||
20 | static void check_objectid_map (struct super_block * s, __u32 * map) | ||
21 | { | ||
22 | if (le32_to_cpu (map[0]) != 1) | ||
23 | reiserfs_panic (s, "vs-15010: check_objectid_map: map corrupted: %lx", | ||
24 | ( long unsigned int ) le32_to_cpu (map[0])); | ||
25 | |||
26 | // FIXME: add something else here | ||
27 | } | ||
28 | |||
29 | #else | ||
30 | static void check_objectid_map (struct super_block * s, __u32 * map) | ||
31 | {;} | ||
32 | #endif | ||
33 | |||
34 | |||
35 | /* When we allocate objectids we allocate the first unused objectid. | ||
36 | Each sequence of objectids in use (the odd sequences) is followed | ||
37 | by a sequence of objectids not in use (the even sequences). We | ||
38 | only need to record the last objectid in each of these sequences | ||
39 | (both the odd and even sequences) in order to fully define the | ||
40 | boundaries of the sequences. A consequence of allocating the first | ||
41 | objectid not in use is that under most conditions this scheme is | ||
42 | extremely compact. The exception is immediately after a sequence | ||
43 | of operations which deletes a large number of objects of | ||
44 | non-sequential objectids, and even then it will become compact | ||
45 | again as soon as more objects are created. Note that many | ||
46 | interesting optimizations of layout could result from complicating | ||
47 | objectid assignment, but we have deferred making them for now. */ | ||
48 | |||
49 | |||
50 | /* get unique object identifier */ | ||
51 | __u32 reiserfs_get_unused_objectid (struct reiserfs_transaction_handle *th) | ||
52 | { | ||
53 | struct super_block * s = th->t_super; | ||
54 | struct reiserfs_super_block * rs = SB_DISK_SUPER_BLOCK (s); | ||
55 | __u32 * map = objectid_map (s, rs); | ||
56 | __u32 unused_objectid; | ||
57 | |||
58 | BUG_ON (!th->t_trans_id); | ||
59 | |||
60 | check_objectid_map (s, map); | ||
61 | |||
62 | reiserfs_prepare_for_journal(s, SB_BUFFER_WITH_SB(s), 1) ; | ||
63 | /* comment needed -Hans */ | ||
64 | unused_objectid = le32_to_cpu (map[1]); | ||
65 | if (unused_objectid == U32_MAX) { | ||
66 | reiserfs_warning (s, "%s: no more object ids", __FUNCTION__); | ||
67 | reiserfs_restore_prepared_buffer(s, SB_BUFFER_WITH_SB(s)) ; | ||
68 | return 0; | ||
69 | } | ||
70 | |||
71 | /* This incrementation allocates the first unused objectid. That | ||
72 | is to say, the first entry on the objectid map is the first | ||
73 | unused objectid, and by incrementing it we use it. See below | ||
74 | where we check to see if we eliminated a sequence of unused | ||
75 | objectids.... */ | ||
76 | map[1] = cpu_to_le32 (unused_objectid + 1); | ||
77 | |||
78 | /* Now we check to see if we eliminated the last remaining member of | ||
79 | the first even sequence (and can eliminate the sequence by | ||
80 | eliminating its last objectid from oids), and can collapse the | ||
81 | first two odd sequences into one sequence. If so, then the net | ||
82 | result is to eliminate a pair of objectids from oids. We do this | ||
83 | by shifting the entire map to the left. */ | ||
84 | if (sb_oid_cursize(rs) > 2 && map[1] == map[2]) { | ||
85 | memmove (map + 1, map + 3, (sb_oid_cursize(rs) - 3) * sizeof(__u32)); | ||
86 | set_sb_oid_cursize( rs, sb_oid_cursize(rs) - 2 ); | ||
87 | } | ||
88 | |||
89 | journal_mark_dirty(th, s, SB_BUFFER_WITH_SB (s)); | ||
90 | return unused_objectid; | ||
91 | } | ||
92 | |||
93 | |||
94 | /* makes object identifier unused */ | ||
95 | void reiserfs_release_objectid (struct reiserfs_transaction_handle *th, | ||
96 | __u32 objectid_to_release) | ||
97 | { | ||
98 | struct super_block * s = th->t_super; | ||
99 | struct reiserfs_super_block * rs = SB_DISK_SUPER_BLOCK (s); | ||
100 | __u32 * map = objectid_map (s, rs); | ||
101 | int i = 0; | ||
102 | |||
103 | BUG_ON (!th->t_trans_id); | ||
104 | //return; | ||
105 | check_objectid_map (s, map); | ||
106 | |||
107 | reiserfs_prepare_for_journal(s, SB_BUFFER_WITH_SB(s), 1) ; | ||
108 | journal_mark_dirty(th, s, SB_BUFFER_WITH_SB (s)); | ||
109 | |||
110 | /* start at the beginning of the objectid map (i = 0) and go to | ||
111 | the end of it (i = disk_sb->s_oid_cursize). Linear search is | ||
112 | what we use, though it is possible that binary search would be | ||
113 | more efficient after performing lots of deletions (which is | ||
114 | when oids is large.) We only check even i's. */ | ||
115 | while (i < sb_oid_cursize(rs)) { | ||
116 | if (objectid_to_release == le32_to_cpu (map[i])) { | ||
117 | /* This incrementation unallocates the objectid. */ | ||
118 | //map[i]++; | ||
119 | map[i] = cpu_to_le32 (le32_to_cpu (map[i]) + 1); | ||
120 | |||
121 | /* Did we unallocate the last member of an odd sequence, and can shrink oids? */ | ||
122 | if (map[i] == map[i+1]) { | ||
123 | /* shrink objectid map */ | ||
124 | memmove (map + i, map + i + 2, | ||
125 | (sb_oid_cursize(rs) - i - 2) * sizeof (__u32)); | ||
126 | //disk_sb->s_oid_cursize -= 2; | ||
127 | set_sb_oid_cursize( rs, sb_oid_cursize(rs) - 2 ); | ||
128 | |||
129 | RFALSE( sb_oid_cursize(rs) < 2 || | ||
130 | sb_oid_cursize(rs) > sb_oid_maxsize(rs), | ||
131 | "vs-15005: objectid map corrupted cur_size == %d (max == %d)", | ||
132 | sb_oid_cursize(rs), sb_oid_maxsize(rs)); | ||
133 | } | ||
134 | return; | ||
135 | } | ||
136 | |||
137 | if (objectid_to_release > le32_to_cpu (map[i]) && | ||
138 | objectid_to_release < le32_to_cpu (map[i + 1])) { | ||
139 | /* size of objectid map is not changed */ | ||
140 | if (objectid_to_release + 1 == le32_to_cpu (map[i + 1])) { | ||
141 | //objectid_map[i+1]--; | ||
142 | map[i + 1] = cpu_to_le32 (le32_to_cpu (map[i + 1]) - 1); | ||
143 | return; | ||
144 | } | ||
145 | |||
146 | /* JDM comparing two little-endian values for equality -- safe */ | ||
147 | if (sb_oid_cursize(rs) == sb_oid_maxsize(rs)) { | ||
148 | /* objectid map must be expanded, but there is no space */ | ||
149 | PROC_INFO_INC( s, leaked_oid ); | ||
150 | return; | ||
151 | } | ||
152 | |||
153 | /* expand the objectid map*/ | ||
154 | memmove (map + i + 3, map + i + 1, | ||
155 | (sb_oid_cursize(rs) - i - 1) * sizeof(__u32)); | ||
156 | map[i + 1] = cpu_to_le32 (objectid_to_release); | ||
157 | map[i + 2] = cpu_to_le32 (objectid_to_release + 1); | ||
158 | set_sb_oid_cursize( rs, sb_oid_cursize(rs) + 2 ); | ||
159 | return; | ||
160 | } | ||
161 | i += 2; | ||
162 | } | ||
163 | |||
164 | reiserfs_warning (s, "vs-15011: reiserfs_release_objectid: tried to free free object id (%lu)", | ||
165 | ( long unsigned ) objectid_to_release); | ||
166 | } | ||
167 | |||
168 | |||
169 | int reiserfs_convert_objectid_map_v1(struct super_block *s) { | ||
170 | struct reiserfs_super_block *disk_sb = SB_DISK_SUPER_BLOCK (s); | ||
171 | int cur_size = sb_oid_cursize(disk_sb); | ||
172 | int new_size = (s->s_blocksize - SB_SIZE) / sizeof(__u32) / 2 * 2 ; | ||
173 | int old_max = sb_oid_maxsize(disk_sb); | ||
174 | struct reiserfs_super_block_v1 *disk_sb_v1 ; | ||
175 | __u32 *objectid_map, *new_objectid_map ; | ||
176 | int i ; | ||
177 | |||
178 | disk_sb_v1=(struct reiserfs_super_block_v1 *)(SB_BUFFER_WITH_SB(s)->b_data); | ||
179 | objectid_map = (__u32 *)(disk_sb_v1 + 1) ; | ||
180 | new_objectid_map = (__u32 *)(disk_sb + 1) ; | ||
181 | |||
182 | if (cur_size > new_size) { | ||
183 | /* mark everyone used that was listed as free at the end of the objectid | ||
184 | ** map | ||
185 | */ | ||
186 | objectid_map[new_size - 1] = objectid_map[cur_size - 1] ; | ||
187 | set_sb_oid_cursize(disk_sb,new_size) ; | ||
188 | } | ||
189 | /* move the smaller objectid map past the end of the new super */ | ||
190 | for (i = new_size - 1 ; i >= 0 ; i--) { | ||
191 | objectid_map[i + (old_max - new_size)] = objectid_map[i] ; | ||
192 | } | ||
193 | |||
194 | |||
195 | /* set the max size so we don't overflow later */ | ||
196 | set_sb_oid_maxsize(disk_sb,new_size) ; | ||
197 | |||
198 | /* Zero out label and generate random UUID */ | ||
199 | memset(disk_sb->s_label, 0, sizeof(disk_sb->s_label)) ; | ||
200 | generate_random_uuid(disk_sb->s_uuid); | ||
201 | |||
202 | /* finally, zero out the unused chunk of the new super */ | ||
203 | memset(disk_sb->s_unused, 0, sizeof(disk_sb->s_unused)) ; | ||
204 | return 0 ; | ||
205 | } | ||
206 | |||