diff options
Diffstat (limited to 'fs/reiserfs/fix_node.c')
| -rw-r--r-- | fs/reiserfs/fix_node.c | 4051 |
1 files changed, 2079 insertions, 1972 deletions
diff --git a/fs/reiserfs/fix_node.c b/fs/reiserfs/fix_node.c index e4f64be9e15b..2706e2adffab 100644 --- a/fs/reiserfs/fix_node.c +++ b/fs/reiserfs/fix_node.c | |||
| @@ -34,14 +34,12 @@ | |||
| 34 | ** | 34 | ** |
| 35 | **/ | 35 | **/ |
| 36 | 36 | ||
| 37 | |||
| 38 | #include <linux/config.h> | 37 | #include <linux/config.h> |
| 39 | #include <linux/time.h> | 38 | #include <linux/time.h> |
| 40 | #include <linux/string.h> | 39 | #include <linux/string.h> |
| 41 | #include <linux/reiserfs_fs.h> | 40 | #include <linux/reiserfs_fs.h> |
| 42 | #include <linux/buffer_head.h> | 41 | #include <linux/buffer_head.h> |
| 43 | 42 | ||
| 44 | |||
| 45 | /* To make any changes in the tree we find a node, that contains item | 43 | /* To make any changes in the tree we find a node, that contains item |
| 46 | to be changed/deleted or position in the node we insert a new item | 44 | to be changed/deleted or position in the node we insert a new item |
| 47 | to. We call this node S. To do balancing we need to decide what we | 45 | to. We call this node S. To do balancing we need to decide what we |
| @@ -56,490 +54,522 @@ | |||
| 56 | have to have if we do not any shiftings, if we shift to left/right | 54 | have to have if we do not any shiftings, if we shift to left/right |
| 57 | neighbor or to both. */ | 55 | neighbor or to both. */ |
| 58 | 56 | ||
| 59 | |||
| 60 | /* taking item number in virtual node, returns number of item, that it has in source buffer */ | 57 | /* taking item number in virtual node, returns number of item, that it has in source buffer */ |
| 61 | static inline int old_item_num (int new_num, int affected_item_num, int mode) | 58 | static inline int old_item_num(int new_num, int affected_item_num, int mode) |
| 62 | { | 59 | { |
| 63 | if (mode == M_PASTE || mode == M_CUT || new_num < affected_item_num) | 60 | if (mode == M_PASTE || mode == M_CUT || new_num < affected_item_num) |
| 64 | return new_num; | 61 | return new_num; |
| 65 | 62 | ||
| 66 | if (mode == M_INSERT) { | 63 | if (mode == M_INSERT) { |
| 67 | 64 | ||
| 68 | RFALSE( new_num == 0, | 65 | RFALSE(new_num == 0, |
| 69 | "vs-8005: for INSERT mode and item number of inserted item"); | 66 | "vs-8005: for INSERT mode and item number of inserted item"); |
| 70 | 67 | ||
| 71 | return new_num - 1; | 68 | return new_num - 1; |
| 72 | } | 69 | } |
| 73 | 70 | ||
| 74 | RFALSE( mode != M_DELETE, | 71 | RFALSE(mode != M_DELETE, |
| 75 | "vs-8010: old_item_num: mode must be M_DELETE (mode = \'%c\'", mode); | 72 | "vs-8010: old_item_num: mode must be M_DELETE (mode = \'%c\'", |
| 76 | /* delete mode */ | 73 | mode); |
| 77 | return new_num + 1; | 74 | /* delete mode */ |
| 75 | return new_num + 1; | ||
| 78 | } | 76 | } |
| 79 | 77 | ||
| 80 | static void create_virtual_node (struct tree_balance * tb, int h) | 78 | static void create_virtual_node(struct tree_balance *tb, int h) |
| 81 | { | 79 | { |
| 82 | struct item_head * ih; | 80 | struct item_head *ih; |
| 83 | struct virtual_node * vn = tb->tb_vn; | 81 | struct virtual_node *vn = tb->tb_vn; |
| 84 | int new_num; | 82 | int new_num; |
| 85 | struct buffer_head * Sh; /* this comes from tb->S[h] */ | 83 | struct buffer_head *Sh; /* this comes from tb->S[h] */ |
| 86 | 84 | ||
| 87 | Sh = PATH_H_PBUFFER (tb->tb_path, h); | 85 | Sh = PATH_H_PBUFFER(tb->tb_path, h); |
| 88 | 86 | ||
| 89 | /* size of changed node */ | 87 | /* size of changed node */ |
| 90 | vn->vn_size = MAX_CHILD_SIZE (Sh) - B_FREE_SPACE (Sh) + tb->insert_size[h]; | 88 | vn->vn_size = |
| 89 | MAX_CHILD_SIZE(Sh) - B_FREE_SPACE(Sh) + tb->insert_size[h]; | ||
| 91 | 90 | ||
| 92 | /* for internal nodes array if virtual items is not created */ | 91 | /* for internal nodes array if virtual items is not created */ |
| 93 | if (h) { | 92 | if (h) { |
| 94 | vn->vn_nr_item = (vn->vn_size - DC_SIZE) / (DC_SIZE + KEY_SIZE); | 93 | vn->vn_nr_item = (vn->vn_size - DC_SIZE) / (DC_SIZE + KEY_SIZE); |
| 95 | return; | 94 | return; |
| 96 | } | ||
| 97 | |||
| 98 | /* number of items in virtual node */ | ||
| 99 | vn->vn_nr_item = B_NR_ITEMS (Sh) + ((vn->vn_mode == M_INSERT)? 1 : 0) - ((vn->vn_mode == M_DELETE)? 1 : 0); | ||
| 100 | |||
| 101 | /* first virtual item */ | ||
| 102 | vn->vn_vi = (struct virtual_item *)(tb->tb_vn + 1); | ||
| 103 | memset (vn->vn_vi, 0, vn->vn_nr_item * sizeof (struct virtual_item)); | ||
| 104 | vn->vn_free_ptr += vn->vn_nr_item * sizeof (struct virtual_item); | ||
| 105 | |||
| 106 | |||
| 107 | /* first item in the node */ | ||
| 108 | ih = B_N_PITEM_HEAD (Sh, 0); | ||
| 109 | |||
| 110 | /* define the mergeability for 0-th item (if it is not being deleted) */ | ||
| 111 | if (op_is_left_mergeable (&(ih->ih_key), Sh->b_size) && (vn->vn_mode != M_DELETE || vn->vn_affected_item_num)) | ||
| 112 | vn->vn_vi[0].vi_type |= VI_TYPE_LEFT_MERGEABLE; | ||
| 113 | |||
| 114 | /* go through all items those remain in the virtual node (except for the new (inserted) one) */ | ||
| 115 | for (new_num = 0; new_num < vn->vn_nr_item; new_num ++) { | ||
| 116 | int j; | ||
| 117 | struct virtual_item * vi = vn->vn_vi + new_num; | ||
| 118 | int is_affected = ((new_num != vn->vn_affected_item_num) ? 0 : 1); | ||
| 119 | |||
| 120 | |||
| 121 | if (is_affected && vn->vn_mode == M_INSERT) | ||
| 122 | continue; | ||
| 123 | |||
| 124 | /* get item number in source node */ | ||
| 125 | j = old_item_num (new_num, vn->vn_affected_item_num, vn->vn_mode); | ||
| 126 | |||
| 127 | vi->vi_item_len += ih_item_len(ih + j) + IH_SIZE; | ||
| 128 | vi->vi_ih = ih + j; | ||
| 129 | vi->vi_item = B_I_PITEM (Sh, ih + j); | ||
| 130 | vi->vi_uarea = vn->vn_free_ptr; | ||
| 131 | |||
| 132 | // FIXME: there is no check, that item operation did not | ||
| 133 | // consume too much memory | ||
| 134 | vn->vn_free_ptr += op_create_vi (vn, vi, is_affected, tb->insert_size [0]); | ||
| 135 | if (tb->vn_buf + tb->vn_buf_size < vn->vn_free_ptr) | ||
| 136 | reiserfs_panic (tb->tb_sb, "vs-8030: create_virtual_node: " | ||
| 137 | "virtual node space consumed"); | ||
| 138 | |||
| 139 | if (!is_affected) | ||
| 140 | /* this is not being changed */ | ||
| 141 | continue; | ||
| 142 | |||
| 143 | if (vn->vn_mode == M_PASTE || vn->vn_mode == M_CUT) { | ||
| 144 | vn->vn_vi[new_num].vi_item_len += tb->insert_size[0]; | ||
| 145 | vi->vi_new_data = vn->vn_data; // pointer to data which is going to be pasted | ||
| 146 | } | 95 | } |
| 147 | } | ||
| 148 | |||
| 149 | |||
| 150 | /* virtual inserted item is not defined yet */ | ||
| 151 | if (vn->vn_mode == M_INSERT) { | ||
| 152 | struct virtual_item * vi = vn->vn_vi + vn->vn_affected_item_num; | ||
| 153 | |||
| 154 | RFALSE( vn->vn_ins_ih == 0, | ||
| 155 | "vs-8040: item header of inserted item is not specified"); | ||
| 156 | vi->vi_item_len = tb->insert_size[0]; | ||
| 157 | vi->vi_ih = vn->vn_ins_ih; | ||
| 158 | vi->vi_item = vn->vn_data; | ||
| 159 | vi->vi_uarea = vn->vn_free_ptr; | ||
| 160 | |||
| 161 | op_create_vi (vn, vi, 0/*not pasted or cut*/, tb->insert_size [0]); | ||
| 162 | } | ||
| 163 | |||
| 164 | /* set right merge flag we take right delimiting key and check whether it is a mergeable item */ | ||
| 165 | if (tb->CFR[0]) { | ||
| 166 | struct reiserfs_key * key; | ||
| 167 | |||
| 168 | key = B_N_PDELIM_KEY (tb->CFR[0], tb->rkey[0]); | ||
| 169 | if (op_is_left_mergeable (key, Sh->b_size) && (vn->vn_mode != M_DELETE || | ||
| 170 | vn->vn_affected_item_num != B_NR_ITEMS (Sh) - 1)) | ||
| 171 | vn->vn_vi[vn->vn_nr_item-1].vi_type |= VI_TYPE_RIGHT_MERGEABLE; | ||
| 172 | 96 | ||
| 173 | #ifdef CONFIG_REISERFS_CHECK | 97 | /* number of items in virtual node */ |
| 174 | if (op_is_left_mergeable (key, Sh->b_size) && | 98 | vn->vn_nr_item = |
| 175 | !(vn->vn_mode != M_DELETE || vn->vn_affected_item_num != B_NR_ITEMS (Sh) - 1) ) { | 99 | B_NR_ITEMS(Sh) + ((vn->vn_mode == M_INSERT) ? 1 : 0) - |
| 176 | /* we delete last item and it could be merged with right neighbor's first item */ | 100 | ((vn->vn_mode == M_DELETE) ? 1 : 0); |
| 177 | if (!(B_NR_ITEMS (Sh) == 1 && is_direntry_le_ih (B_N_PITEM_HEAD (Sh, 0)) && | 101 | |
| 178 | I_ENTRY_COUNT (B_N_PITEM_HEAD (Sh, 0)) == 1)) { | 102 | /* first virtual item */ |
| 179 | /* node contains more than 1 item, or item is not directory item, or this item contains more than 1 entry */ | 103 | vn->vn_vi = (struct virtual_item *)(tb->tb_vn + 1); |
| 180 | print_block (Sh, 0, -1, -1); | 104 | memset(vn->vn_vi, 0, vn->vn_nr_item * sizeof(struct virtual_item)); |
| 181 | reiserfs_panic (tb->tb_sb, "vs-8045: create_virtual_node: rdkey %k, affected item==%d (mode==%c) Must be %c", | 105 | vn->vn_free_ptr += vn->vn_nr_item * sizeof(struct virtual_item); |
| 182 | key, vn->vn_affected_item_num, vn->vn_mode, M_DELETE); | 106 | |
| 183 | } else | 107 | /* first item in the node */ |
| 184 | /* we can delete directory item, that has only one directory entry in it */ | 108 | ih = B_N_PITEM_HEAD(Sh, 0); |
| 185 | ; | 109 | |
| 110 | /* define the mergeability for 0-th item (if it is not being deleted) */ | ||
| 111 | if (op_is_left_mergeable(&(ih->ih_key), Sh->b_size) | ||
| 112 | && (vn->vn_mode != M_DELETE || vn->vn_affected_item_num)) | ||
| 113 | vn->vn_vi[0].vi_type |= VI_TYPE_LEFT_MERGEABLE; | ||
| 114 | |||
| 115 | /* go through all items those remain in the virtual node (except for the new (inserted) one) */ | ||
| 116 | for (new_num = 0; new_num < vn->vn_nr_item; new_num++) { | ||
| 117 | int j; | ||
| 118 | struct virtual_item *vi = vn->vn_vi + new_num; | ||
| 119 | int is_affected = | ||
| 120 | ((new_num != vn->vn_affected_item_num) ? 0 : 1); | ||
| 121 | |||
| 122 | if (is_affected && vn->vn_mode == M_INSERT) | ||
| 123 | continue; | ||
| 124 | |||
| 125 | /* get item number in source node */ | ||
| 126 | j = old_item_num(new_num, vn->vn_affected_item_num, | ||
| 127 | vn->vn_mode); | ||
| 128 | |||
| 129 | vi->vi_item_len += ih_item_len(ih + j) + IH_SIZE; | ||
| 130 | vi->vi_ih = ih + j; | ||
| 131 | vi->vi_item = B_I_PITEM(Sh, ih + j); | ||
| 132 | vi->vi_uarea = vn->vn_free_ptr; | ||
| 133 | |||
| 134 | // FIXME: there is no check, that item operation did not | ||
| 135 | // consume too much memory | ||
| 136 | vn->vn_free_ptr += | ||
| 137 | op_create_vi(vn, vi, is_affected, tb->insert_size[0]); | ||
| 138 | if (tb->vn_buf + tb->vn_buf_size < vn->vn_free_ptr) | ||
| 139 | reiserfs_panic(tb->tb_sb, | ||
| 140 | "vs-8030: create_virtual_node: " | ||
| 141 | "virtual node space consumed"); | ||
| 142 | |||
| 143 | if (!is_affected) | ||
| 144 | /* this is not being changed */ | ||
| 145 | continue; | ||
| 146 | |||
| 147 | if (vn->vn_mode == M_PASTE || vn->vn_mode == M_CUT) { | ||
| 148 | vn->vn_vi[new_num].vi_item_len += tb->insert_size[0]; | ||
| 149 | vi->vi_new_data = vn->vn_data; // pointer to data which is going to be pasted | ||
| 150 | } | ||
| 186 | } | 151 | } |
| 152 | |||
| 153 | /* virtual inserted item is not defined yet */ | ||
| 154 | if (vn->vn_mode == M_INSERT) { | ||
| 155 | struct virtual_item *vi = vn->vn_vi + vn->vn_affected_item_num; | ||
| 156 | |||
| 157 | RFALSE(vn->vn_ins_ih == 0, | ||
| 158 | "vs-8040: item header of inserted item is not specified"); | ||
| 159 | vi->vi_item_len = tb->insert_size[0]; | ||
| 160 | vi->vi_ih = vn->vn_ins_ih; | ||
| 161 | vi->vi_item = vn->vn_data; | ||
| 162 | vi->vi_uarea = vn->vn_free_ptr; | ||
| 163 | |||
| 164 | op_create_vi(vn, vi, 0 /*not pasted or cut */ , | ||
| 165 | tb->insert_size[0]); | ||
| 166 | } | ||
| 167 | |||
| 168 | /* set right merge flag we take right delimiting key and check whether it is a mergeable item */ | ||
| 169 | if (tb->CFR[0]) { | ||
| 170 | struct reiserfs_key *key; | ||
| 171 | |||
| 172 | key = B_N_PDELIM_KEY(tb->CFR[0], tb->rkey[0]); | ||
| 173 | if (op_is_left_mergeable(key, Sh->b_size) | ||
| 174 | && (vn->vn_mode != M_DELETE | ||
| 175 | || vn->vn_affected_item_num != B_NR_ITEMS(Sh) - 1)) | ||
| 176 | vn->vn_vi[vn->vn_nr_item - 1].vi_type |= | ||
| 177 | VI_TYPE_RIGHT_MERGEABLE; | ||
| 178 | |||
| 179 | #ifdef CONFIG_REISERFS_CHECK | ||
| 180 | if (op_is_left_mergeable(key, Sh->b_size) && | ||
| 181 | !(vn->vn_mode != M_DELETE | ||
| 182 | || vn->vn_affected_item_num != B_NR_ITEMS(Sh) - 1)) { | ||
| 183 | /* we delete last item and it could be merged with right neighbor's first item */ | ||
| 184 | if (! | ||
| 185 | (B_NR_ITEMS(Sh) == 1 | ||
| 186 | && is_direntry_le_ih(B_N_PITEM_HEAD(Sh, 0)) | ||
| 187 | && I_ENTRY_COUNT(B_N_PITEM_HEAD(Sh, 0)) == 1)) { | ||
| 188 | /* node contains more than 1 item, or item is not directory item, or this item contains more than 1 entry */ | ||
| 189 | print_block(Sh, 0, -1, -1); | ||
| 190 | reiserfs_panic(tb->tb_sb, | ||
| 191 | "vs-8045: create_virtual_node: rdkey %k, affected item==%d (mode==%c) Must be %c", | ||
| 192 | key, vn->vn_affected_item_num, | ||
| 193 | vn->vn_mode, M_DELETE); | ||
| 194 | } else | ||
| 195 | /* we can delete directory item, that has only one directory entry in it */ | ||
| 196 | ; | ||
| 197 | } | ||
| 187 | #endif | 198 | #endif |
| 188 | |||
| 189 | } | ||
| 190 | } | ||
| 191 | 199 | ||
| 200 | } | ||
| 201 | } | ||
| 192 | 202 | ||
| 193 | /* using virtual node check, how many items can be shifted to left | 203 | /* using virtual node check, how many items can be shifted to left |
| 194 | neighbor */ | 204 | neighbor */ |
| 195 | static void check_left (struct tree_balance * tb, int h, int cur_free) | 205 | static void check_left(struct tree_balance *tb, int h, int cur_free) |
| 196 | { | 206 | { |
| 197 | int i; | 207 | int i; |
| 198 | struct virtual_node * vn = tb->tb_vn; | 208 | struct virtual_node *vn = tb->tb_vn; |
| 199 | struct virtual_item * vi; | 209 | struct virtual_item *vi; |
| 200 | int d_size, ih_size; | 210 | int d_size, ih_size; |
| 201 | 211 | ||
| 202 | RFALSE( cur_free < 0, "vs-8050: cur_free (%d) < 0", cur_free); | 212 | RFALSE(cur_free < 0, "vs-8050: cur_free (%d) < 0", cur_free); |
| 203 | 213 | ||
| 204 | /* internal level */ | 214 | /* internal level */ |
| 205 | if (h > 0) { | 215 | if (h > 0) { |
| 206 | tb->lnum[h] = cur_free / (DC_SIZE + KEY_SIZE); | 216 | tb->lnum[h] = cur_free / (DC_SIZE + KEY_SIZE); |
| 207 | return; | 217 | return; |
| 208 | } | 218 | } |
| 209 | 219 | ||
| 210 | /* leaf level */ | 220 | /* leaf level */ |
| 211 | 221 | ||
| 212 | if (!cur_free || !vn->vn_nr_item) { | 222 | if (!cur_free || !vn->vn_nr_item) { |
| 213 | /* no free space or nothing to move */ | 223 | /* no free space or nothing to move */ |
| 214 | tb->lnum[h] = 0; | 224 | tb->lnum[h] = 0; |
| 215 | tb->lbytes = -1; | 225 | tb->lbytes = -1; |
| 216 | return; | 226 | return; |
| 217 | } | 227 | } |
| 218 | 228 | ||
| 219 | RFALSE( !PATH_H_PPARENT (tb->tb_path, 0), | 229 | RFALSE(!PATH_H_PPARENT(tb->tb_path, 0), |
| 220 | "vs-8055: parent does not exist or invalid"); | 230 | "vs-8055: parent does not exist or invalid"); |
| 221 | 231 | ||
| 222 | vi = vn->vn_vi; | 232 | vi = vn->vn_vi; |
| 223 | if ((unsigned int)cur_free >= (vn->vn_size - ((vi->vi_type & VI_TYPE_LEFT_MERGEABLE) ? IH_SIZE : 0))) { | 233 | if ((unsigned int)cur_free >= |
| 224 | /* all contents of S[0] fits into L[0] */ | 234 | (vn->vn_size - |
| 235 | ((vi->vi_type & VI_TYPE_LEFT_MERGEABLE) ? IH_SIZE : 0))) { | ||
| 236 | /* all contents of S[0] fits into L[0] */ | ||
| 225 | 237 | ||
| 226 | RFALSE( vn->vn_mode == M_INSERT || vn->vn_mode == M_PASTE, | 238 | RFALSE(vn->vn_mode == M_INSERT || vn->vn_mode == M_PASTE, |
| 227 | "vs-8055: invalid mode or balance condition failed"); | 239 | "vs-8055: invalid mode or balance condition failed"); |
| 228 | 240 | ||
| 229 | tb->lnum[0] = vn->vn_nr_item; | 241 | tb->lnum[0] = vn->vn_nr_item; |
| 230 | tb->lbytes = -1; | 242 | tb->lbytes = -1; |
| 231 | return; | 243 | return; |
| 232 | } | ||
| 233 | |||
| 234 | |||
| 235 | d_size = 0, ih_size = IH_SIZE; | ||
| 236 | |||
| 237 | /* first item may be merge with last item in left neighbor */ | ||
| 238 | if (vi->vi_type & VI_TYPE_LEFT_MERGEABLE) | ||
| 239 | d_size = -((int)IH_SIZE), ih_size = 0; | ||
| 240 | |||
| 241 | tb->lnum[0] = 0; | ||
| 242 | for (i = 0; i < vn->vn_nr_item; i ++, ih_size = IH_SIZE, d_size = 0, vi ++) { | ||
| 243 | d_size += vi->vi_item_len; | ||
| 244 | if (cur_free >= d_size) { | ||
| 245 | /* the item can be shifted entirely */ | ||
| 246 | cur_free -= d_size; | ||
| 247 | tb->lnum[0] ++; | ||
| 248 | continue; | ||
| 249 | } | 244 | } |
| 250 | 245 | ||
| 251 | /* the item cannot be shifted entirely, try to split it */ | 246 | d_size = 0, ih_size = IH_SIZE; |
| 252 | /* check whether L[0] can hold ih and at least one byte of the item body */ | 247 | |
| 253 | if (cur_free <= ih_size) { | 248 | /* first item may be merge with last item in left neighbor */ |
| 254 | /* cannot shift even a part of the current item */ | 249 | if (vi->vi_type & VI_TYPE_LEFT_MERGEABLE) |
| 255 | tb->lbytes = -1; | 250 | d_size = -((int)IH_SIZE), ih_size = 0; |
| 256 | return; | 251 | |
| 252 | tb->lnum[0] = 0; | ||
| 253 | for (i = 0; i < vn->vn_nr_item; | ||
| 254 | i++, ih_size = IH_SIZE, d_size = 0, vi++) { | ||
| 255 | d_size += vi->vi_item_len; | ||
| 256 | if (cur_free >= d_size) { | ||
| 257 | /* the item can be shifted entirely */ | ||
| 258 | cur_free -= d_size; | ||
| 259 | tb->lnum[0]++; | ||
| 260 | continue; | ||
| 261 | } | ||
| 262 | |||
| 263 | /* the item cannot be shifted entirely, try to split it */ | ||
| 264 | /* check whether L[0] can hold ih and at least one byte of the item body */ | ||
| 265 | if (cur_free <= ih_size) { | ||
| 266 | /* cannot shift even a part of the current item */ | ||
| 267 | tb->lbytes = -1; | ||
| 268 | return; | ||
| 269 | } | ||
| 270 | cur_free -= ih_size; | ||
| 271 | |||
| 272 | tb->lbytes = op_check_left(vi, cur_free, 0, 0); | ||
| 273 | if (tb->lbytes != -1) | ||
| 274 | /* count partially shifted item */ | ||
| 275 | tb->lnum[0]++; | ||
| 276 | |||
| 277 | break; | ||
| 257 | } | 278 | } |
| 258 | cur_free -= ih_size; | ||
| 259 | |||
| 260 | tb->lbytes = op_check_left (vi, cur_free, 0, 0); | ||
| 261 | if (tb->lbytes != -1) | ||
| 262 | /* count partially shifted item */ | ||
| 263 | tb->lnum[0] ++; | ||
| 264 | |||
| 265 | break; | ||
| 266 | } | ||
| 267 | |||
| 268 | return; | ||
| 269 | } | ||
| 270 | 279 | ||
| 280 | return; | ||
| 281 | } | ||
| 271 | 282 | ||
| 272 | /* using virtual node check, how many items can be shifted to right | 283 | /* using virtual node check, how many items can be shifted to right |
| 273 | neighbor */ | 284 | neighbor */ |
| 274 | static void check_right (struct tree_balance * tb, int h, int cur_free) | 285 | static void check_right(struct tree_balance *tb, int h, int cur_free) |
| 275 | { | 286 | { |
| 276 | int i; | 287 | int i; |
| 277 | struct virtual_node * vn = tb->tb_vn; | 288 | struct virtual_node *vn = tb->tb_vn; |
| 278 | struct virtual_item * vi; | 289 | struct virtual_item *vi; |
| 279 | int d_size, ih_size; | 290 | int d_size, ih_size; |
| 280 | 291 | ||
| 281 | RFALSE( cur_free < 0, "vs-8070: cur_free < 0"); | 292 | RFALSE(cur_free < 0, "vs-8070: cur_free < 0"); |
| 282 | 293 | ||
| 283 | /* internal level */ | 294 | /* internal level */ |
| 284 | if (h > 0) { | 295 | if (h > 0) { |
| 285 | tb->rnum[h] = cur_free / (DC_SIZE + KEY_SIZE); | 296 | tb->rnum[h] = cur_free / (DC_SIZE + KEY_SIZE); |
| 286 | return; | 297 | return; |
| 287 | } | ||
| 288 | |||
| 289 | /* leaf level */ | ||
| 290 | |||
| 291 | if (!cur_free || !vn->vn_nr_item) { | ||
| 292 | /* no free space */ | ||
| 293 | tb->rnum[h] = 0; | ||
| 294 | tb->rbytes = -1; | ||
| 295 | return; | ||
| 296 | } | ||
| 297 | |||
| 298 | RFALSE( !PATH_H_PPARENT (tb->tb_path, 0), | ||
| 299 | "vs-8075: parent does not exist or invalid"); | ||
| 300 | |||
| 301 | vi = vn->vn_vi + vn->vn_nr_item - 1; | ||
| 302 | if ((unsigned int)cur_free >= (vn->vn_size - ((vi->vi_type & VI_TYPE_RIGHT_MERGEABLE) ? IH_SIZE : 0))) { | ||
| 303 | /* all contents of S[0] fits into R[0] */ | ||
| 304 | |||
| 305 | RFALSE( vn->vn_mode == M_INSERT || vn->vn_mode == M_PASTE, | ||
| 306 | "vs-8080: invalid mode or balance condition failed"); | ||
| 307 | |||
| 308 | tb->rnum[h] = vn->vn_nr_item; | ||
| 309 | tb->rbytes = -1; | ||
| 310 | return; | ||
| 311 | } | ||
| 312 | |||
| 313 | d_size = 0, ih_size = IH_SIZE; | ||
| 314 | |||
| 315 | /* last item may be merge with first item in right neighbor */ | ||
| 316 | if (vi->vi_type & VI_TYPE_RIGHT_MERGEABLE) | ||
| 317 | d_size = -(int)IH_SIZE, ih_size = 0; | ||
| 318 | |||
| 319 | tb->rnum[0] = 0; | ||
| 320 | for (i = vn->vn_nr_item - 1; i >= 0; i --, d_size = 0, ih_size = IH_SIZE, vi --) { | ||
| 321 | d_size += vi->vi_item_len; | ||
| 322 | if (cur_free >= d_size) { | ||
| 323 | /* the item can be shifted entirely */ | ||
| 324 | cur_free -= d_size; | ||
| 325 | tb->rnum[0] ++; | ||
| 326 | continue; | ||
| 327 | } | 298 | } |
| 328 | 299 | ||
| 329 | /* check whether R[0] can hold ih and at least one byte of the item body */ | 300 | /* leaf level */ |
| 330 | if ( cur_free <= ih_size ) { /* cannot shift even a part of the current item */ | 301 | |
| 331 | tb->rbytes = -1; | 302 | if (!cur_free || !vn->vn_nr_item) { |
| 332 | return; | 303 | /* no free space */ |
| 304 | tb->rnum[h] = 0; | ||
| 305 | tb->rbytes = -1; | ||
| 306 | return; | ||
| 333 | } | 307 | } |
| 334 | |||
| 335 | /* R[0] can hold the header of the item and at least one byte of its body */ | ||
| 336 | cur_free -= ih_size; /* cur_free is still > 0 */ | ||
| 337 | |||
| 338 | tb->rbytes = op_check_right (vi, cur_free); | ||
| 339 | if (tb->rbytes != -1) | ||
| 340 | /* count partially shifted item */ | ||
| 341 | tb->rnum[0] ++; | ||
| 342 | |||
| 343 | break; | ||
| 344 | } | ||
| 345 | |||
| 346 | return; | ||
| 347 | } | ||
| 348 | 308 | ||
| 309 | RFALSE(!PATH_H_PPARENT(tb->tb_path, 0), | ||
| 310 | "vs-8075: parent does not exist or invalid"); | ||
| 311 | |||
| 312 | vi = vn->vn_vi + vn->vn_nr_item - 1; | ||
| 313 | if ((unsigned int)cur_free >= | ||
| 314 | (vn->vn_size - | ||
| 315 | ((vi->vi_type & VI_TYPE_RIGHT_MERGEABLE) ? IH_SIZE : 0))) { | ||
| 316 | /* all contents of S[0] fits into R[0] */ | ||
| 317 | |||
| 318 | RFALSE(vn->vn_mode == M_INSERT || vn->vn_mode == M_PASTE, | ||
| 319 | "vs-8080: invalid mode or balance condition failed"); | ||
| 320 | |||
| 321 | tb->rnum[h] = vn->vn_nr_item; | ||
| 322 | tb->rbytes = -1; | ||
| 323 | return; | ||
| 324 | } | ||
| 325 | |||
| 326 | d_size = 0, ih_size = IH_SIZE; | ||
| 327 | |||
| 328 | /* last item may be merge with first item in right neighbor */ | ||
| 329 | if (vi->vi_type & VI_TYPE_RIGHT_MERGEABLE) | ||
| 330 | d_size = -(int)IH_SIZE, ih_size = 0; | ||
| 331 | |||
| 332 | tb->rnum[0] = 0; | ||
| 333 | for (i = vn->vn_nr_item - 1; i >= 0; | ||
| 334 | i--, d_size = 0, ih_size = IH_SIZE, vi--) { | ||
| 335 | d_size += vi->vi_item_len; | ||
| 336 | if (cur_free >= d_size) { | ||
| 337 | /* the item can be shifted entirely */ | ||
| 338 | cur_free -= d_size; | ||
| 339 | tb->rnum[0]++; | ||
| 340 | continue; | ||
| 341 | } | ||
| 342 | |||
| 343 | /* check whether R[0] can hold ih and at least one byte of the item body */ | ||
| 344 | if (cur_free <= ih_size) { /* cannot shift even a part of the current item */ | ||
| 345 | tb->rbytes = -1; | ||
| 346 | return; | ||
| 347 | } | ||
| 348 | |||
| 349 | /* R[0] can hold the header of the item and at least one byte of its body */ | ||
| 350 | cur_free -= ih_size; /* cur_free is still > 0 */ | ||
| 351 | |||
| 352 | tb->rbytes = op_check_right(vi, cur_free); | ||
| 353 | if (tb->rbytes != -1) | ||
| 354 | /* count partially shifted item */ | ||
| 355 | tb->rnum[0]++; | ||
| 356 | |||
| 357 | break; | ||
| 358 | } | ||
| 359 | |||
| 360 | return; | ||
| 361 | } | ||
| 349 | 362 | ||
| 350 | /* | 363 | /* |
| 351 | * from - number of items, which are shifted to left neighbor entirely | 364 | * from - number of items, which are shifted to left neighbor entirely |
| 352 | * to - number of item, which are shifted to right neighbor entirely | 365 | * to - number of item, which are shifted to right neighbor entirely |
| 353 | * from_bytes - number of bytes of boundary item (or directory entries) which are shifted to left neighbor | 366 | * from_bytes - number of bytes of boundary item (or directory entries) which are shifted to left neighbor |
| 354 | * to_bytes - number of bytes of boundary item (or directory entries) which are shifted to right neighbor */ | 367 | * to_bytes - number of bytes of boundary item (or directory entries) which are shifted to right neighbor */ |
| 355 | static int get_num_ver (int mode, struct tree_balance * tb, int h, | 368 | static int get_num_ver(int mode, struct tree_balance *tb, int h, |
| 356 | int from, int from_bytes, | 369 | int from, int from_bytes, |
| 357 | int to, int to_bytes, | 370 | int to, int to_bytes, short *snum012, int flow) |
| 358 | short * snum012, int flow | ||
| 359 | ) | ||
| 360 | { | 371 | { |
| 361 | int i; | 372 | int i; |
| 362 | int cur_free; | 373 | int cur_free; |
| 363 | // int bytes; | 374 | // int bytes; |
| 364 | int units; | 375 | int units; |
| 365 | struct virtual_node * vn = tb->tb_vn; | 376 | struct virtual_node *vn = tb->tb_vn; |
| 366 | // struct virtual_item * vi; | 377 | // struct virtual_item * vi; |
| 367 | 378 | ||
| 368 | int total_node_size, max_node_size, current_item_size; | 379 | int total_node_size, max_node_size, current_item_size; |
| 369 | int needed_nodes; | 380 | int needed_nodes; |
| 370 | int start_item, /* position of item we start filling node from */ | 381 | int start_item, /* position of item we start filling node from */ |
| 371 | end_item, /* position of item we finish filling node by */ | 382 | end_item, /* position of item we finish filling node by */ |
| 372 | start_bytes,/* number of first bytes (entries for directory) of start_item-th item | 383 | start_bytes, /* number of first bytes (entries for directory) of start_item-th item |
| 373 | we do not include into node that is being filled */ | 384 | we do not include into node that is being filled */ |
| 374 | end_bytes; /* number of last bytes (entries for directory) of end_item-th item | 385 | end_bytes; /* number of last bytes (entries for directory) of end_item-th item |
| 375 | we do node include into node that is being filled */ | 386 | we do node include into node that is being filled */ |
| 376 | int split_item_positions[2]; /* these are positions in virtual item of | 387 | int split_item_positions[2]; /* these are positions in virtual item of |
| 377 | items, that are split between S[0] and | 388 | items, that are split between S[0] and |
| 378 | S1new and S1new and S2new */ | 389 | S1new and S1new and S2new */ |
| 379 | 390 | ||
| 380 | split_item_positions[0] = -1; | 391 | split_item_positions[0] = -1; |
| 381 | split_item_positions[1] = -1; | 392 | split_item_positions[1] = -1; |
| 382 | 393 | ||
| 383 | /* We only create additional nodes if we are in insert or paste mode | 394 | /* We only create additional nodes if we are in insert or paste mode |
| 384 | or we are in replace mode at the internal level. If h is 0 and | 395 | or we are in replace mode at the internal level. If h is 0 and |
| 385 | the mode is M_REPLACE then in fix_nodes we change the mode to | 396 | the mode is M_REPLACE then in fix_nodes we change the mode to |
| 386 | paste or insert before we get here in the code. */ | 397 | paste or insert before we get here in the code. */ |
| 387 | RFALSE( tb->insert_size[h] < 0 || (mode != M_INSERT && mode != M_PASTE), | 398 | RFALSE(tb->insert_size[h] < 0 || (mode != M_INSERT && mode != M_PASTE), |
| 388 | "vs-8100: insert_size < 0 in overflow"); | 399 | "vs-8100: insert_size < 0 in overflow"); |
| 389 | 400 | ||
| 390 | max_node_size = MAX_CHILD_SIZE (PATH_H_PBUFFER (tb->tb_path, h)); | 401 | max_node_size = MAX_CHILD_SIZE(PATH_H_PBUFFER(tb->tb_path, h)); |
| 391 | 402 | ||
| 392 | /* snum012 [0-2] - number of items, that lay | 403 | /* snum012 [0-2] - number of items, that lay |
| 393 | to S[0], first new node and second new node */ | 404 | to S[0], first new node and second new node */ |
| 394 | snum012[3] = -1; /* s1bytes */ | 405 | snum012[3] = -1; /* s1bytes */ |
| 395 | snum012[4] = -1; /* s2bytes */ | 406 | snum012[4] = -1; /* s2bytes */ |
| 396 | 407 | ||
| 397 | /* internal level */ | 408 | /* internal level */ |
| 398 | if (h > 0) { | 409 | if (h > 0) { |
| 399 | i = ((to - from) * (KEY_SIZE + DC_SIZE) + DC_SIZE); | 410 | i = ((to - from) * (KEY_SIZE + DC_SIZE) + DC_SIZE); |
| 400 | if (i == max_node_size) | 411 | if (i == max_node_size) |
| 401 | return 1; | 412 | return 1; |
| 402 | return (i / max_node_size + 1); | 413 | return (i / max_node_size + 1); |
| 403 | } | ||
| 404 | |||
| 405 | /* leaf level */ | ||
| 406 | needed_nodes = 1; | ||
| 407 | total_node_size = 0; | ||
| 408 | cur_free = max_node_size; | ||
| 409 | |||
| 410 | // start from 'from'-th item | ||
| 411 | start_item = from; | ||
| 412 | // skip its first 'start_bytes' units | ||
| 413 | start_bytes = ((from_bytes != -1) ? from_bytes : 0); | ||
| 414 | |||
| 415 | // last included item is the 'end_item'-th one | ||
| 416 | end_item = vn->vn_nr_item - to - 1; | ||
| 417 | // do not count last 'end_bytes' units of 'end_item'-th item | ||
| 418 | end_bytes = (to_bytes != -1) ? to_bytes : 0; | ||
| 419 | |||
| 420 | /* go through all item beginning from the start_item-th item and ending by | ||
| 421 | the end_item-th item. Do not count first 'start_bytes' units of | ||
| 422 | 'start_item'-th item and last 'end_bytes' of 'end_item'-th item */ | ||
| 423 | |||
| 424 | for (i = start_item; i <= end_item; i ++) { | ||
| 425 | struct virtual_item * vi = vn->vn_vi + i; | ||
| 426 | int skip_from_end = ((i == end_item) ? end_bytes : 0); | ||
| 427 | |||
| 428 | RFALSE( needed_nodes > 3, "vs-8105: too many nodes are needed"); | ||
| 429 | |||
| 430 | /* get size of current item */ | ||
| 431 | current_item_size = vi->vi_item_len; | ||
| 432 | |||
| 433 | /* do not take in calculation head part (from_bytes) of from-th item */ | ||
| 434 | current_item_size -= op_part_size (vi, 0/*from start*/, start_bytes); | ||
| 435 | |||
| 436 | /* do not take in calculation tail part of last item */ | ||
| 437 | current_item_size -= op_part_size (vi, 1/*from end*/, skip_from_end); | ||
| 438 | |||
| 439 | /* if item fits into current node entierly */ | ||
| 440 | if (total_node_size + current_item_size <= max_node_size) { | ||
| 441 | snum012[needed_nodes - 1] ++; | ||
| 442 | total_node_size += current_item_size; | ||
| 443 | start_bytes = 0; | ||
| 444 | continue; | ||
| 445 | } | 414 | } |
| 446 | 415 | ||
| 447 | if (current_item_size > max_node_size) { | 416 | /* leaf level */ |
| 448 | /* virtual item length is longer, than max size of item in | 417 | needed_nodes = 1; |
| 449 | a node. It is impossible for direct item */ | 418 | total_node_size = 0; |
| 450 | RFALSE( is_direct_le_ih (vi->vi_ih), | 419 | cur_free = max_node_size; |
| 451 | "vs-8110: " | 420 | |
| 452 | "direct item length is %d. It can not be longer than %d", | 421 | // start from 'from'-th item |
| 453 | current_item_size, max_node_size); | 422 | start_item = from; |
| 454 | /* we will try to split it */ | 423 | // skip its first 'start_bytes' units |
| 455 | flow = 1; | 424 | start_bytes = ((from_bytes != -1) ? from_bytes : 0); |
| 425 | |||
| 426 | // last included item is the 'end_item'-th one | ||
| 427 | end_item = vn->vn_nr_item - to - 1; | ||
| 428 | // do not count last 'end_bytes' units of 'end_item'-th item | ||
| 429 | end_bytes = (to_bytes != -1) ? to_bytes : 0; | ||
| 430 | |||
| 431 | /* go through all item beginning from the start_item-th item and ending by | ||
| 432 | the end_item-th item. Do not count first 'start_bytes' units of | ||
| 433 | 'start_item'-th item and last 'end_bytes' of 'end_item'-th item */ | ||
| 434 | |||
| 435 | for (i = start_item; i <= end_item; i++) { | ||
| 436 | struct virtual_item *vi = vn->vn_vi + i; | ||
| 437 | int skip_from_end = ((i == end_item) ? end_bytes : 0); | ||
| 438 | |||
| 439 | RFALSE(needed_nodes > 3, "vs-8105: too many nodes are needed"); | ||
| 440 | |||
| 441 | /* get size of current item */ | ||
| 442 | current_item_size = vi->vi_item_len; | ||
| 443 | |||
| 444 | /* do not take in calculation head part (from_bytes) of from-th item */ | ||
| 445 | current_item_size -= | ||
| 446 | op_part_size(vi, 0 /*from start */ , start_bytes); | ||
| 447 | |||
| 448 | /* do not take in calculation tail part of last item */ | ||
| 449 | current_item_size -= | ||
| 450 | op_part_size(vi, 1 /*from end */ , skip_from_end); | ||
| 451 | |||
| 452 | /* if item fits into current node entierly */ | ||
| 453 | if (total_node_size + current_item_size <= max_node_size) { | ||
| 454 | snum012[needed_nodes - 1]++; | ||
| 455 | total_node_size += current_item_size; | ||
| 456 | start_bytes = 0; | ||
| 457 | continue; | ||
| 458 | } | ||
| 459 | |||
| 460 | if (current_item_size > max_node_size) { | ||
| 461 | /* virtual item length is longer, than max size of item in | ||
| 462 | a node. It is impossible for direct item */ | ||
| 463 | RFALSE(is_direct_le_ih(vi->vi_ih), | ||
| 464 | "vs-8110: " | ||
| 465 | "direct item length is %d. It can not be longer than %d", | ||
| 466 | current_item_size, max_node_size); | ||
| 467 | /* we will try to split it */ | ||
| 468 | flow = 1; | ||
| 469 | } | ||
| 470 | |||
| 471 | if (!flow) { | ||
| 472 | /* as we do not split items, take new node and continue */ | ||
| 473 | needed_nodes++; | ||
| 474 | i--; | ||
| 475 | total_node_size = 0; | ||
| 476 | continue; | ||
| 477 | } | ||
| 478 | // calculate number of item units which fit into node being | ||
| 479 | // filled | ||
| 480 | { | ||
| 481 | int free_space; | ||
| 482 | |||
| 483 | free_space = max_node_size - total_node_size - IH_SIZE; | ||
| 484 | units = | ||
| 485 | op_check_left(vi, free_space, start_bytes, | ||
| 486 | skip_from_end); | ||
| 487 | if (units == -1) { | ||
| 488 | /* nothing fits into current node, take new node and continue */ | ||
| 489 | needed_nodes++, i--, total_node_size = 0; | ||
| 490 | continue; | ||
| 491 | } | ||
| 492 | } | ||
| 493 | |||
| 494 | /* something fits into the current node */ | ||
| 495 | //if (snum012[3] != -1 || needed_nodes != 1) | ||
| 496 | // reiserfs_panic (tb->tb_sb, "vs-8115: get_num_ver: too many nodes required"); | ||
| 497 | //snum012[needed_nodes - 1 + 3] = op_unit_num (vi) - start_bytes - units; | ||
| 498 | start_bytes += units; | ||
| 499 | snum012[needed_nodes - 1 + 3] = units; | ||
| 500 | |||
| 501 | if (needed_nodes > 2) | ||
| 502 | reiserfs_warning(tb->tb_sb, "vs-8111: get_num_ver: " | ||
| 503 | "split_item_position is out of boundary"); | ||
| 504 | snum012[needed_nodes - 1]++; | ||
| 505 | split_item_positions[needed_nodes - 1] = i; | ||
| 506 | needed_nodes++; | ||
| 507 | /* continue from the same item with start_bytes != -1 */ | ||
| 508 | start_item = i; | ||
| 509 | i--; | ||
| 510 | total_node_size = 0; | ||
| 456 | } | 511 | } |
| 457 | 512 | ||
| 458 | if (!flow) { | 513 | // sum012[4] (if it is not -1) contains number of units of which |
| 459 | /* as we do not split items, take new node and continue */ | 514 | // are to be in S1new, snum012[3] - to be in S0. They are supposed |
| 460 | needed_nodes ++; i --; total_node_size = 0; | 515 | // to be S1bytes and S2bytes correspondingly, so recalculate |
| 461 | continue; | 516 | if (snum012[4] > 0) { |
| 517 | int split_item_num; | ||
| 518 | int bytes_to_r, bytes_to_l; | ||
| 519 | int bytes_to_S1new; | ||
| 520 | |||
| 521 | split_item_num = split_item_positions[1]; | ||
| 522 | bytes_to_l = | ||
| 523 | ((from == split_item_num | ||
| 524 | && from_bytes != -1) ? from_bytes : 0); | ||
| 525 | bytes_to_r = | ||
| 526 | ((end_item == split_item_num | ||
| 527 | && end_bytes != -1) ? end_bytes : 0); | ||
| 528 | bytes_to_S1new = | ||
| 529 | ((split_item_positions[0] == | ||
| 530 | split_item_positions[1]) ? snum012[3] : 0); | ||
| 531 | |||
| 532 | // s2bytes | ||
| 533 | snum012[4] = | ||
| 534 | op_unit_num(&vn->vn_vi[split_item_num]) - snum012[4] - | ||
| 535 | bytes_to_r - bytes_to_l - bytes_to_S1new; | ||
| 536 | |||
| 537 | if (vn->vn_vi[split_item_num].vi_index != TYPE_DIRENTRY && | ||
| 538 | vn->vn_vi[split_item_num].vi_index != TYPE_INDIRECT) | ||
| 539 | reiserfs_warning(tb->tb_sb, "vs-8115: get_num_ver: not " | ||
| 540 | "directory or indirect item"); | ||
| 462 | } | 541 | } |
| 463 | 542 | ||
| 464 | // calculate number of item units which fit into node being | 543 | /* now we know S2bytes, calculate S1bytes */ |
| 465 | // filled | 544 | if (snum012[3] > 0) { |
| 466 | { | 545 | int split_item_num; |
| 467 | int free_space; | 546 | int bytes_to_r, bytes_to_l; |
| 468 | 547 | int bytes_to_S2new; | |
| 469 | free_space = max_node_size - total_node_size - IH_SIZE; | 548 | |
| 470 | units = op_check_left (vi, free_space, start_bytes, skip_from_end); | 549 | split_item_num = split_item_positions[0]; |
| 471 | if (units == -1) { | 550 | bytes_to_l = |
| 472 | /* nothing fits into current node, take new node and continue */ | 551 | ((from == split_item_num |
| 473 | needed_nodes ++, i--, total_node_size = 0; | 552 | && from_bytes != -1) ? from_bytes : 0); |
| 474 | continue; | 553 | bytes_to_r = |
| 475 | } | 554 | ((end_item == split_item_num |
| 555 | && end_bytes != -1) ? end_bytes : 0); | ||
| 556 | bytes_to_S2new = | ||
| 557 | ((split_item_positions[0] == split_item_positions[1] | ||
| 558 | && snum012[4] != -1) ? snum012[4] : 0); | ||
| 559 | |||
| 560 | // s1bytes | ||
| 561 | snum012[3] = | ||
| 562 | op_unit_num(&vn->vn_vi[split_item_num]) - snum012[3] - | ||
| 563 | bytes_to_r - bytes_to_l - bytes_to_S2new; | ||
| 476 | } | 564 | } |
| 477 | 565 | ||
| 478 | /* something fits into the current node */ | 566 | return needed_nodes; |
| 479 | //if (snum012[3] != -1 || needed_nodes != 1) | ||
| 480 | // reiserfs_panic (tb->tb_sb, "vs-8115: get_num_ver: too many nodes required"); | ||
| 481 | //snum012[needed_nodes - 1 + 3] = op_unit_num (vi) - start_bytes - units; | ||
| 482 | start_bytes += units; | ||
| 483 | snum012[needed_nodes - 1 + 3] = units; | ||
| 484 | |||
| 485 | if (needed_nodes > 2) | ||
| 486 | reiserfs_warning (tb->tb_sb, "vs-8111: get_num_ver: " | ||
| 487 | "split_item_position is out of boundary"); | ||
| 488 | snum012[needed_nodes - 1] ++; | ||
| 489 | split_item_positions[needed_nodes - 1] = i; | ||
| 490 | needed_nodes ++; | ||
| 491 | /* continue from the same item with start_bytes != -1 */ | ||
| 492 | start_item = i; | ||
| 493 | i --; | ||
| 494 | total_node_size = 0; | ||
| 495 | } | ||
| 496 | |||
| 497 | // sum012[4] (if it is not -1) contains number of units of which | ||
| 498 | // are to be in S1new, snum012[3] - to be in S0. They are supposed | ||
| 499 | // to be S1bytes and S2bytes correspondingly, so recalculate | ||
| 500 | if (snum012[4] > 0) { | ||
| 501 | int split_item_num; | ||
| 502 | int bytes_to_r, bytes_to_l; | ||
| 503 | int bytes_to_S1new; | ||
| 504 | |||
| 505 | split_item_num = split_item_positions[1]; | ||
| 506 | bytes_to_l = ((from == split_item_num && from_bytes != -1) ? from_bytes : 0); | ||
| 507 | bytes_to_r = ((end_item == split_item_num && end_bytes != -1) ? end_bytes : 0); | ||
| 508 | bytes_to_S1new = ((split_item_positions[0] == split_item_positions[1]) ? snum012[3] : 0); | ||
| 509 | |||
| 510 | // s2bytes | ||
| 511 | snum012[4] = op_unit_num (&vn->vn_vi[split_item_num]) - snum012[4] - bytes_to_r - bytes_to_l - bytes_to_S1new; | ||
| 512 | |||
| 513 | if (vn->vn_vi[split_item_num].vi_index != TYPE_DIRENTRY && | ||
| 514 | vn->vn_vi[split_item_num].vi_index != TYPE_INDIRECT) | ||
| 515 | reiserfs_warning (tb->tb_sb, "vs-8115: get_num_ver: not " | ||
| 516 | "directory or indirect item"); | ||
| 517 | } | ||
| 518 | |||
| 519 | /* now we know S2bytes, calculate S1bytes */ | ||
| 520 | if (snum012[3] > 0) { | ||
| 521 | int split_item_num; | ||
| 522 | int bytes_to_r, bytes_to_l; | ||
| 523 | int bytes_to_S2new; | ||
| 524 | |||
| 525 | split_item_num = split_item_positions[0]; | ||
| 526 | bytes_to_l = ((from == split_item_num && from_bytes != -1) ? from_bytes : 0); | ||
| 527 | bytes_to_r = ((end_item == split_item_num && end_bytes != -1) ? end_bytes : 0); | ||
| 528 | bytes_to_S2new = ((split_item_positions[0] == split_item_positions[1] && snum012[4] != -1) ? snum012[4] : 0); | ||
| 529 | |||
| 530 | // s1bytes | ||
| 531 | snum012[3] = op_unit_num (&vn->vn_vi[split_item_num]) - snum012[3] - bytes_to_r - bytes_to_l - bytes_to_S2new; | ||
| 532 | } | ||
| 533 | |||
| 534 | return needed_nodes; | ||
| 535 | } | 567 | } |
| 536 | 568 | ||
| 537 | |||
| 538 | #ifdef CONFIG_REISERFS_CHECK | 569 | #ifdef CONFIG_REISERFS_CHECK |
| 539 | extern struct tree_balance * cur_tb; | 570 | extern struct tree_balance *cur_tb; |
| 540 | #endif | 571 | #endif |
| 541 | 572 | ||
| 542 | |||
| 543 | /* Set parameters for balancing. | 573 | /* Set parameters for balancing. |
| 544 | * Performs write of results of analysis of balancing into structure tb, | 574 | * Performs write of results of analysis of balancing into structure tb, |
| 545 | * where it will later be used by the functions that actually do the balancing. | 575 | * where it will later be used by the functions that actually do the balancing. |
| @@ -557,131 +587,130 @@ extern struct tree_balance * cur_tb; | |||
| 557 | * s1bytes number of bytes which flow to the first new node when S[0] splits (this number is contained in s012 array) | 587 | * s1bytes number of bytes which flow to the first new node when S[0] splits (this number is contained in s012 array) |
| 558 | */ | 588 | */ |
| 559 | 589 | ||
| 560 | static void set_parameters (struct tree_balance * tb, int h, int lnum, | 590 | static void set_parameters(struct tree_balance *tb, int h, int lnum, |
| 561 | int rnum, int blk_num, short * s012, int lb, int rb) | 591 | int rnum, int blk_num, short *s012, int lb, int rb) |
| 562 | { | 592 | { |
| 563 | 593 | ||
| 564 | tb->lnum[h] = lnum; | 594 | tb->lnum[h] = lnum; |
| 565 | tb->rnum[h] = rnum; | 595 | tb->rnum[h] = rnum; |
| 566 | tb->blknum[h] = blk_num; | 596 | tb->blknum[h] = blk_num; |
| 567 | 597 | ||
| 568 | if (h == 0) | 598 | if (h == 0) { /* only for leaf level */ |
| 569 | { /* only for leaf level */ | 599 | if (s012 != NULL) { |
| 570 | if (s012 != NULL) | 600 | tb->s0num = *s012++, |
| 571 | { | 601 | tb->s1num = *s012++, tb->s2num = *s012++; |
| 572 | tb->s0num = * s012 ++, | 602 | tb->s1bytes = *s012++; |
| 573 | tb->s1num = * s012 ++, | 603 | tb->s2bytes = *s012; |
| 574 | tb->s2num = * s012 ++; | 604 | } |
| 575 | tb->s1bytes = * s012 ++; | 605 | tb->lbytes = lb; |
| 576 | tb->s2bytes = * s012; | 606 | tb->rbytes = rb; |
| 577 | } | 607 | } |
| 578 | tb->lbytes = lb; | 608 | PROC_INFO_ADD(tb->tb_sb, lnum[h], lnum); |
| 579 | tb->rbytes = rb; | 609 | PROC_INFO_ADD(tb->tb_sb, rnum[h], rnum); |
| 580 | } | ||
| 581 | PROC_INFO_ADD( tb -> tb_sb, lnum[ h ], lnum ); | ||
| 582 | PROC_INFO_ADD( tb -> tb_sb, rnum[ h ], rnum ); | ||
| 583 | |||
| 584 | PROC_INFO_ADD( tb -> tb_sb, lbytes[ h ], lb ); | ||
| 585 | PROC_INFO_ADD( tb -> tb_sb, rbytes[ h ], rb ); | ||
| 586 | } | ||
| 587 | |||
| 588 | 610 | ||
| 611 | PROC_INFO_ADD(tb->tb_sb, lbytes[h], lb); | ||
| 612 | PROC_INFO_ADD(tb->tb_sb, rbytes[h], rb); | ||
| 613 | } | ||
| 589 | 614 | ||
| 590 | /* check, does node disappear if we shift tb->lnum[0] items to left | 615 | /* check, does node disappear if we shift tb->lnum[0] items to left |
| 591 | neighbor and tb->rnum[0] to the right one. */ | 616 | neighbor and tb->rnum[0] to the right one. */ |
| 592 | static int is_leaf_removable (struct tree_balance * tb) | 617 | static int is_leaf_removable(struct tree_balance *tb) |
| 593 | { | 618 | { |
| 594 | struct virtual_node * vn = tb->tb_vn; | 619 | struct virtual_node *vn = tb->tb_vn; |
| 595 | int to_left, to_right; | 620 | int to_left, to_right; |
| 596 | int size; | 621 | int size; |
| 597 | int remain_items; | 622 | int remain_items; |
| 598 | 623 | ||
| 599 | /* number of items, that will be shifted to left (right) neighbor | 624 | /* number of items, that will be shifted to left (right) neighbor |
| 600 | entirely */ | 625 | entirely */ |
| 601 | to_left = tb->lnum[0] - ((tb->lbytes != -1) ? 1 : 0); | 626 | to_left = tb->lnum[0] - ((tb->lbytes != -1) ? 1 : 0); |
| 602 | to_right = tb->rnum[0] - ((tb->rbytes != -1) ? 1 : 0); | 627 | to_right = tb->rnum[0] - ((tb->rbytes != -1) ? 1 : 0); |
| 603 | remain_items = vn->vn_nr_item; | 628 | remain_items = vn->vn_nr_item; |
| 604 | 629 | ||
| 605 | /* how many items remain in S[0] after shiftings to neighbors */ | 630 | /* how many items remain in S[0] after shiftings to neighbors */ |
| 606 | remain_items -= (to_left + to_right); | 631 | remain_items -= (to_left + to_right); |
| 607 | 632 | ||
| 608 | if (remain_items < 1) { | 633 | if (remain_items < 1) { |
| 609 | /* all content of node can be shifted to neighbors */ | 634 | /* all content of node can be shifted to neighbors */ |
| 610 | set_parameters (tb, 0, to_left, vn->vn_nr_item - to_left, 0, NULL, -1, -1); | 635 | set_parameters(tb, 0, to_left, vn->vn_nr_item - to_left, 0, |
| 611 | return 1; | 636 | NULL, -1, -1); |
| 612 | } | 637 | return 1; |
| 613 | 638 | } | |
| 614 | if (remain_items > 1 || tb->lbytes == -1 || tb->rbytes == -1) | ||
| 615 | /* S[0] is not removable */ | ||
| 616 | return 0; | ||
| 617 | |||
| 618 | /* check, whether we can divide 1 remaining item between neighbors */ | ||
| 619 | |||
| 620 | /* get size of remaining item (in item units) */ | ||
| 621 | size = op_unit_num (&(vn->vn_vi[to_left])); | ||
| 622 | |||
| 623 | if (tb->lbytes + tb->rbytes >= size) { | ||
| 624 | set_parameters (tb, 0, to_left + 1, to_right + 1, 0, NULL, tb->lbytes, -1); | ||
| 625 | return 1; | ||
| 626 | } | ||
| 627 | |||
| 628 | return 0; | ||
| 629 | } | ||
| 630 | 639 | ||
| 640 | if (remain_items > 1 || tb->lbytes == -1 || tb->rbytes == -1) | ||
| 641 | /* S[0] is not removable */ | ||
| 642 | return 0; | ||
| 643 | |||
| 644 | /* check, whether we can divide 1 remaining item between neighbors */ | ||
| 645 | |||
| 646 | /* get size of remaining item (in item units) */ | ||
| 647 | size = op_unit_num(&(vn->vn_vi[to_left])); | ||
| 648 | |||
| 649 | if (tb->lbytes + tb->rbytes >= size) { | ||
| 650 | set_parameters(tb, 0, to_left + 1, to_right + 1, 0, NULL, | ||
| 651 | tb->lbytes, -1); | ||
| 652 | return 1; | ||
| 653 | } | ||
| 654 | |||
| 655 | return 0; | ||
| 656 | } | ||
| 631 | 657 | ||
| 632 | /* check whether L, S, R can be joined in one node */ | 658 | /* check whether L, S, R can be joined in one node */ |
| 633 | static int are_leaves_removable (struct tree_balance * tb, int lfree, int rfree) | 659 | static int are_leaves_removable(struct tree_balance *tb, int lfree, int rfree) |
| 634 | { | 660 | { |
| 635 | struct virtual_node * vn = tb->tb_vn; | 661 | struct virtual_node *vn = tb->tb_vn; |
| 636 | int ih_size; | 662 | int ih_size; |
| 637 | struct buffer_head *S0; | 663 | struct buffer_head *S0; |
| 638 | 664 | ||
| 639 | S0 = PATH_H_PBUFFER (tb->tb_path, 0); | 665 | S0 = PATH_H_PBUFFER(tb->tb_path, 0); |
| 640 | 666 | ||
| 641 | ih_size = 0; | 667 | ih_size = 0; |
| 642 | if (vn->vn_nr_item) { | 668 | if (vn->vn_nr_item) { |
| 643 | if (vn->vn_vi[0].vi_type & VI_TYPE_LEFT_MERGEABLE) | 669 | if (vn->vn_vi[0].vi_type & VI_TYPE_LEFT_MERGEABLE) |
| 644 | ih_size += IH_SIZE; | 670 | ih_size += IH_SIZE; |
| 645 | 671 | ||
| 646 | if (vn->vn_vi[vn->vn_nr_item-1].vi_type & VI_TYPE_RIGHT_MERGEABLE) | 672 | if (vn->vn_vi[vn->vn_nr_item - 1]. |
| 647 | ih_size += IH_SIZE; | 673 | vi_type & VI_TYPE_RIGHT_MERGEABLE) |
| 648 | } else { | 674 | ih_size += IH_SIZE; |
| 649 | /* there was only one item and it will be deleted */ | 675 | } else { |
| 650 | struct item_head * ih; | 676 | /* there was only one item and it will be deleted */ |
| 651 | 677 | struct item_head *ih; | |
| 652 | RFALSE( B_NR_ITEMS (S0) != 1, | 678 | |
| 653 | "vs-8125: item number must be 1: it is %d", B_NR_ITEMS(S0)); | 679 | RFALSE(B_NR_ITEMS(S0) != 1, |
| 654 | 680 | "vs-8125: item number must be 1: it is %d", | |
| 655 | ih = B_N_PITEM_HEAD (S0, 0); | 681 | B_NR_ITEMS(S0)); |
| 656 | if (tb->CFR[0] && !comp_short_le_keys (&(ih->ih_key), B_N_PDELIM_KEY (tb->CFR[0], tb->rkey[0]))) | 682 | |
| 657 | if (is_direntry_le_ih (ih)) { | 683 | ih = B_N_PITEM_HEAD(S0, 0); |
| 658 | /* Directory must be in correct state here: that is | 684 | if (tb->CFR[0] |
| 659 | somewhere at the left side should exist first directory | 685 | && !comp_short_le_keys(&(ih->ih_key), |
| 660 | item. But the item being deleted can not be that first | 686 | B_N_PDELIM_KEY(tb->CFR[0], |
| 661 | one because its right neighbor is item of the same | 687 | tb->rkey[0]))) |
| 662 | directory. (But first item always gets deleted in last | 688 | if (is_direntry_le_ih(ih)) { |
| 663 | turn). So, neighbors of deleted item can be merged, so | 689 | /* Directory must be in correct state here: that is |
| 664 | we can save ih_size */ | 690 | somewhere at the left side should exist first directory |
| 665 | ih_size = IH_SIZE; | 691 | item. But the item being deleted can not be that first |
| 666 | 692 | one because its right neighbor is item of the same | |
| 667 | /* we might check that left neighbor exists and is of the | 693 | directory. (But first item always gets deleted in last |
| 668 | same directory */ | 694 | turn). So, neighbors of deleted item can be merged, so |
| 669 | RFALSE(le_ih_k_offset (ih) == DOT_OFFSET, | 695 | we can save ih_size */ |
| 670 | "vs-8130: first directory item can not be removed until directory is not empty"); | 696 | ih_size = IH_SIZE; |
| 671 | } | 697 | |
| 672 | 698 | /* we might check that left neighbor exists and is of the | |
| 673 | } | 699 | same directory */ |
| 674 | 700 | RFALSE(le_ih_k_offset(ih) == DOT_OFFSET, | |
| 675 | if (MAX_CHILD_SIZE (S0) + vn->vn_size <= rfree + lfree + ih_size) { | 701 | "vs-8130: first directory item can not be removed until directory is not empty"); |
| 676 | set_parameters (tb, 0, -1, -1, -1, NULL, -1, -1); | 702 | } |
| 677 | PROC_INFO_INC( tb -> tb_sb, leaves_removable ); | ||
| 678 | return 1; | ||
| 679 | } | ||
| 680 | return 0; | ||
| 681 | |||
| 682 | } | ||
| 683 | 703 | ||
| 704 | } | ||
| 705 | |||
| 706 | if (MAX_CHILD_SIZE(S0) + vn->vn_size <= rfree + lfree + ih_size) { | ||
| 707 | set_parameters(tb, 0, -1, -1, -1, NULL, -1, -1); | ||
| 708 | PROC_INFO_INC(tb->tb_sb, leaves_removable); | ||
| 709 | return 1; | ||
| 710 | } | ||
| 711 | return 0; | ||
| 684 | 712 | ||
| 713 | } | ||
| 685 | 714 | ||
| 686 | /* when we do not split item, lnum and rnum are numbers of entire items */ | 715 | /* when we do not split item, lnum and rnum are numbers of entire items */ |
| 687 | #define SET_PAR_SHIFT_LEFT \ | 716 | #define SET_PAR_SHIFT_LEFT \ |
| @@ -704,7 +733,6 @@ else \ | |||
| 704 | -1, -1);\ | 733 | -1, -1);\ |
| 705 | } | 734 | } |
| 706 | 735 | ||
| 707 | |||
| 708 | #define SET_PAR_SHIFT_RIGHT \ | 736 | #define SET_PAR_SHIFT_RIGHT \ |
| 709 | if (h)\ | 737 | if (h)\ |
| 710 | {\ | 738 | {\ |
| @@ -724,214 +752,199 @@ else \ | |||
| 724 | -1, -1);\ | 752 | -1, -1);\ |
| 725 | } | 753 | } |
| 726 | 754 | ||
| 727 | 755 | static void free_buffers_in_tb(struct tree_balance *p_s_tb) | |
| 728 | static void free_buffers_in_tb ( | 756 | { |
| 729 | struct tree_balance * p_s_tb | 757 | int n_counter; |
| 730 | ) { | 758 | |
| 731 | int n_counter; | 759 | decrement_counters_in_path(p_s_tb->tb_path); |
| 732 | 760 | ||
| 733 | decrement_counters_in_path(p_s_tb->tb_path); | 761 | for (n_counter = 0; n_counter < MAX_HEIGHT; n_counter++) { |
| 734 | 762 | decrement_bcount(p_s_tb->L[n_counter]); | |
| 735 | for ( n_counter = 0; n_counter < MAX_HEIGHT; n_counter++ ) { | 763 | p_s_tb->L[n_counter] = NULL; |
| 736 | decrement_bcount(p_s_tb->L[n_counter]); | 764 | decrement_bcount(p_s_tb->R[n_counter]); |
| 737 | p_s_tb->L[n_counter] = NULL; | 765 | p_s_tb->R[n_counter] = NULL; |
| 738 | decrement_bcount(p_s_tb->R[n_counter]); | 766 | decrement_bcount(p_s_tb->FL[n_counter]); |
| 739 | p_s_tb->R[n_counter] = NULL; | 767 | p_s_tb->FL[n_counter] = NULL; |
| 740 | decrement_bcount(p_s_tb->FL[n_counter]); | 768 | decrement_bcount(p_s_tb->FR[n_counter]); |
| 741 | p_s_tb->FL[n_counter] = NULL; | 769 | p_s_tb->FR[n_counter] = NULL; |
| 742 | decrement_bcount(p_s_tb->FR[n_counter]); | 770 | decrement_bcount(p_s_tb->CFL[n_counter]); |
| 743 | p_s_tb->FR[n_counter] = NULL; | 771 | p_s_tb->CFL[n_counter] = NULL; |
| 744 | decrement_bcount(p_s_tb->CFL[n_counter]); | 772 | decrement_bcount(p_s_tb->CFR[n_counter]); |
| 745 | p_s_tb->CFL[n_counter] = NULL; | 773 | p_s_tb->CFR[n_counter] = NULL; |
| 746 | decrement_bcount(p_s_tb->CFR[n_counter]); | 774 | } |
| 747 | p_s_tb->CFR[n_counter] = NULL; | ||
| 748 | } | ||
| 749 | } | 775 | } |
| 750 | 776 | ||
| 751 | |||
| 752 | /* Get new buffers for storing new nodes that are created while balancing. | 777 | /* Get new buffers for storing new nodes that are created while balancing. |
| 753 | * Returns: SCHEDULE_OCCURRED - schedule occurred while the function worked; | 778 | * Returns: SCHEDULE_OCCURRED - schedule occurred while the function worked; |
| 754 | * CARRY_ON - schedule didn't occur while the function worked; | 779 | * CARRY_ON - schedule didn't occur while the function worked; |
| 755 | * NO_DISK_SPACE - no disk space. | 780 | * NO_DISK_SPACE - no disk space. |
| 756 | */ | 781 | */ |
| 757 | /* The function is NOT SCHEDULE-SAFE! */ | 782 | /* The function is NOT SCHEDULE-SAFE! */ |
| 758 | static int get_empty_nodes( | 783 | static int get_empty_nodes(struct tree_balance *p_s_tb, int n_h) |
| 759 | struct tree_balance * p_s_tb, | 784 | { |
| 760 | int n_h | 785 | struct buffer_head *p_s_new_bh, |
| 761 | ) { | 786 | *p_s_Sh = PATH_H_PBUFFER(p_s_tb->tb_path, n_h); |
| 762 | struct buffer_head * p_s_new_bh, | 787 | b_blocknr_t *p_n_blocknr, a_n_blocknrs[MAX_AMOUNT_NEEDED] = { 0, }; |
| 763 | * p_s_Sh = PATH_H_PBUFFER (p_s_tb->tb_path, n_h); | 788 | int n_counter, n_number_of_freeblk, n_amount_needed, /* number of needed empty blocks */ |
| 764 | b_blocknr_t * p_n_blocknr, | 789 | n_retval = CARRY_ON; |
| 765 | a_n_blocknrs[MAX_AMOUNT_NEEDED] = {0, }; | 790 | struct super_block *p_s_sb = p_s_tb->tb_sb; |
| 766 | int n_counter, | 791 | |
| 767 | n_number_of_freeblk, | 792 | /* number_of_freeblk is the number of empty blocks which have been |
| 768 | n_amount_needed,/* number of needed empty blocks */ | 793 | acquired for use by the balancing algorithm minus the number of |
| 769 | n_retval = CARRY_ON; | 794 | empty blocks used in the previous levels of the analysis, |
| 770 | struct super_block * p_s_sb = p_s_tb->tb_sb; | 795 | number_of_freeblk = tb->cur_blknum can be non-zero if a schedule occurs |
| 771 | 796 | after empty blocks are acquired, and the balancing analysis is | |
| 772 | 797 | then restarted, amount_needed is the number needed by this level | |
| 773 | /* number_of_freeblk is the number of empty blocks which have been | 798 | (n_h) of the balancing analysis. |
| 774 | acquired for use by the balancing algorithm minus the number of | 799 | |
| 775 | empty blocks used in the previous levels of the analysis, | 800 | Note that for systems with many processes writing, it would be |
| 776 | number_of_freeblk = tb->cur_blknum can be non-zero if a schedule occurs | 801 | more layout optimal to calculate the total number needed by all |
| 777 | after empty blocks are acquired, and the balancing analysis is | 802 | levels and then to run reiserfs_new_blocks to get all of them at once. */ |
| 778 | then restarted, amount_needed is the number needed by this level | 803 | |
| 779 | (n_h) of the balancing analysis. | 804 | /* Initiate number_of_freeblk to the amount acquired prior to the restart of |
| 780 | 805 | the analysis or 0 if not restarted, then subtract the amount needed | |
| 781 | Note that for systems with many processes writing, it would be | 806 | by all of the levels of the tree below n_h. */ |
| 782 | more layout optimal to calculate the total number needed by all | 807 | /* blknum includes S[n_h], so we subtract 1 in this calculation */ |
| 783 | levels and then to run reiserfs_new_blocks to get all of them at once. */ | 808 | for (n_counter = 0, n_number_of_freeblk = p_s_tb->cur_blknum; |
| 784 | 809 | n_counter < n_h; n_counter++) | |
| 785 | /* Initiate number_of_freeblk to the amount acquired prior to the restart of | 810 | n_number_of_freeblk -= |
| 786 | the analysis or 0 if not restarted, then subtract the amount needed | 811 | (p_s_tb->blknum[n_counter]) ? (p_s_tb->blknum[n_counter] - |
| 787 | by all of the levels of the tree below n_h. */ | 812 | 1) : 0; |
| 788 | /* blknum includes S[n_h], so we subtract 1 in this calculation */ | 813 | |
| 789 | for ( n_counter = 0, n_number_of_freeblk = p_s_tb->cur_blknum; n_counter < n_h; n_counter++ ) | 814 | /* Allocate missing empty blocks. */ |
| 790 | n_number_of_freeblk -= ( p_s_tb->blknum[n_counter] ) ? (p_s_tb->blknum[n_counter] - 1) : 0; | 815 | /* if p_s_Sh == 0 then we are getting a new root */ |
| 791 | 816 | n_amount_needed = (p_s_Sh) ? (p_s_tb->blknum[n_h] - 1) : 1; | |
| 792 | /* Allocate missing empty blocks. */ | 817 | /* Amount_needed = the amount that we need more than the amount that we have. */ |
| 793 | /* if p_s_Sh == 0 then we are getting a new root */ | 818 | if (n_amount_needed > n_number_of_freeblk) |
| 794 | n_amount_needed = ( p_s_Sh ) ? (p_s_tb->blknum[n_h] - 1) : 1; | 819 | n_amount_needed -= n_number_of_freeblk; |
| 795 | /* Amount_needed = the amount that we need more than the amount that we have. */ | 820 | else /* If we have enough already then there is nothing to do. */ |
| 796 | if ( n_amount_needed > n_number_of_freeblk ) | 821 | return CARRY_ON; |
| 797 | n_amount_needed -= n_number_of_freeblk; | 822 | |
| 798 | else /* If we have enough already then there is nothing to do. */ | 823 | /* No need to check quota - is not allocated for blocks used for formatted nodes */ |
| 799 | return CARRY_ON; | 824 | if (reiserfs_new_form_blocknrs(p_s_tb, a_n_blocknrs, |
| 800 | 825 | n_amount_needed) == NO_DISK_SPACE) | |
| 801 | /* No need to check quota - is not allocated for blocks used for formatted nodes */ | 826 | return NO_DISK_SPACE; |
| 802 | if (reiserfs_new_form_blocknrs (p_s_tb, a_n_blocknrs, | 827 | |
| 803 | n_amount_needed) == NO_DISK_SPACE) | 828 | /* for each blocknumber we just got, get a buffer and stick it on FEB */ |
| 804 | return NO_DISK_SPACE; | 829 | for (p_n_blocknr = a_n_blocknrs, n_counter = 0; |
| 805 | 830 | n_counter < n_amount_needed; p_n_blocknr++, n_counter++) { | |
| 806 | /* for each blocknumber we just got, get a buffer and stick it on FEB */ | 831 | |
| 807 | for ( p_n_blocknr = a_n_blocknrs, n_counter = 0; n_counter < n_amount_needed; | 832 | RFALSE(!*p_n_blocknr, |
| 808 | p_n_blocknr++, n_counter++ ) { | 833 | "PAP-8135: reiserfs_new_blocknrs failed when got new blocks"); |
| 809 | 834 | ||
| 810 | RFALSE( ! *p_n_blocknr, | 835 | p_s_new_bh = sb_getblk(p_s_sb, *p_n_blocknr); |
| 811 | "PAP-8135: reiserfs_new_blocknrs failed when got new blocks"); | 836 | RFALSE(buffer_dirty(p_s_new_bh) || |
| 812 | 837 | buffer_journaled(p_s_new_bh) || | |
| 813 | p_s_new_bh = sb_getblk(p_s_sb, *p_n_blocknr); | 838 | buffer_journal_dirty(p_s_new_bh), |
| 814 | RFALSE (buffer_dirty (p_s_new_bh) || | 839 | "PAP-8140: journlaled or dirty buffer %b for the new block", |
| 815 | buffer_journaled (p_s_new_bh) || | 840 | p_s_new_bh); |
| 816 | buffer_journal_dirty (p_s_new_bh), | 841 | |
| 817 | "PAP-8140: journlaled or dirty buffer %b for the new block", | 842 | /* Put empty buffers into the array. */ |
| 818 | p_s_new_bh); | 843 | RFALSE(p_s_tb->FEB[p_s_tb->cur_blknum], |
| 819 | 844 | "PAP-8141: busy slot for new buffer"); | |
| 820 | /* Put empty buffers into the array. */ | 845 | |
| 821 | RFALSE (p_s_tb->FEB[p_s_tb->cur_blknum], | 846 | set_buffer_journal_new(p_s_new_bh); |
| 822 | "PAP-8141: busy slot for new buffer"); | 847 | p_s_tb->FEB[p_s_tb->cur_blknum++] = p_s_new_bh; |
| 823 | 848 | } | |
| 824 | set_buffer_journal_new (p_s_new_bh); | 849 | |
| 825 | p_s_tb->FEB[p_s_tb->cur_blknum++] = p_s_new_bh; | 850 | if (n_retval == CARRY_ON && FILESYSTEM_CHANGED_TB(p_s_tb)) |
| 826 | } | 851 | n_retval = REPEAT_SEARCH; |
| 827 | |||
| 828 | if ( n_retval == CARRY_ON && FILESYSTEM_CHANGED_TB (p_s_tb) ) | ||
| 829 | n_retval = REPEAT_SEARCH ; | ||
| 830 | |||
| 831 | return n_retval; | ||
| 832 | } | ||
| 833 | 852 | ||
| 853 | return n_retval; | ||
| 854 | } | ||
| 834 | 855 | ||
| 835 | /* Get free space of the left neighbor, which is stored in the parent | 856 | /* Get free space of the left neighbor, which is stored in the parent |
| 836 | * node of the left neighbor. */ | 857 | * node of the left neighbor. */ |
| 837 | static int get_lfree (struct tree_balance * tb, int h) | 858 | static int get_lfree(struct tree_balance *tb, int h) |
| 838 | { | 859 | { |
| 839 | struct buffer_head * l, * f; | 860 | struct buffer_head *l, *f; |
| 840 | int order; | 861 | int order; |
| 841 | 862 | ||
| 842 | if ((f = PATH_H_PPARENT (tb->tb_path, h)) == 0 || (l = tb->FL[h]) == 0) | 863 | if ((f = PATH_H_PPARENT(tb->tb_path, h)) == 0 || (l = tb->FL[h]) == 0) |
| 843 | return 0; | 864 | return 0; |
| 844 | 865 | ||
| 845 | if (f == l) | 866 | if (f == l) |
| 846 | order = PATH_H_B_ITEM_ORDER (tb->tb_path, h) - 1; | 867 | order = PATH_H_B_ITEM_ORDER(tb->tb_path, h) - 1; |
| 847 | else { | 868 | else { |
| 848 | order = B_NR_ITEMS (l); | 869 | order = B_NR_ITEMS(l); |
| 849 | f = l; | 870 | f = l; |
| 850 | } | 871 | } |
| 851 | 872 | ||
| 852 | return (MAX_CHILD_SIZE(f) - dc_size(B_N_CHILD(f,order))); | 873 | return (MAX_CHILD_SIZE(f) - dc_size(B_N_CHILD(f, order))); |
| 853 | } | 874 | } |
| 854 | 875 | ||
| 855 | |||
| 856 | /* Get free space of the right neighbor, | 876 | /* Get free space of the right neighbor, |
| 857 | * which is stored in the parent node of the right neighbor. | 877 | * which is stored in the parent node of the right neighbor. |
| 858 | */ | 878 | */ |
| 859 | static int get_rfree (struct tree_balance * tb, int h) | 879 | static int get_rfree(struct tree_balance *tb, int h) |
| 860 | { | 880 | { |
| 861 | struct buffer_head * r, * f; | 881 | struct buffer_head *r, *f; |
| 862 | int order; | 882 | int order; |
| 863 | 883 | ||
| 864 | if ((f = PATH_H_PPARENT (tb->tb_path, h)) == 0 || (r = tb->FR[h]) == 0) | 884 | if ((f = PATH_H_PPARENT(tb->tb_path, h)) == 0 || (r = tb->FR[h]) == 0) |
| 865 | return 0; | 885 | return 0; |
| 866 | 886 | ||
| 867 | if (f == r) | 887 | if (f == r) |
| 868 | order = PATH_H_B_ITEM_ORDER (tb->tb_path, h) + 1; | 888 | order = PATH_H_B_ITEM_ORDER(tb->tb_path, h) + 1; |
| 869 | else { | 889 | else { |
| 870 | order = 0; | 890 | order = 0; |
| 871 | f = r; | 891 | f = r; |
| 872 | } | 892 | } |
| 873 | 893 | ||
| 874 | return (MAX_CHILD_SIZE(f) - dc_size( B_N_CHILD(f,order))); | 894 | return (MAX_CHILD_SIZE(f) - dc_size(B_N_CHILD(f, order))); |
| 875 | 895 | ||
| 876 | } | 896 | } |
| 877 | 897 | ||
| 878 | |||
| 879 | /* Check whether left neighbor is in memory. */ | 898 | /* Check whether left neighbor is in memory. */ |
| 880 | static int is_left_neighbor_in_cache( | 899 | static int is_left_neighbor_in_cache(struct tree_balance *p_s_tb, int n_h) |
| 881 | struct tree_balance * p_s_tb, | 900 | { |
| 882 | int n_h | 901 | struct buffer_head *p_s_father, *left; |
| 883 | ) { | 902 | struct super_block *p_s_sb = p_s_tb->tb_sb; |
| 884 | struct buffer_head * p_s_father, * left; | 903 | b_blocknr_t n_left_neighbor_blocknr; |
| 885 | struct super_block * p_s_sb = p_s_tb->tb_sb; | 904 | int n_left_neighbor_position; |
| 886 | b_blocknr_t n_left_neighbor_blocknr; | 905 | |
| 887 | int n_left_neighbor_position; | 906 | if (!p_s_tb->FL[n_h]) /* Father of the left neighbor does not exist. */ |
| 888 | 907 | return 0; | |
| 889 | if ( ! p_s_tb->FL[n_h] ) /* Father of the left neighbor does not exist. */ | 908 | |
| 890 | return 0; | 909 | /* Calculate father of the node to be balanced. */ |
| 891 | 910 | p_s_father = PATH_H_PBUFFER(p_s_tb->tb_path, n_h + 1); | |
| 892 | /* Calculate father of the node to be balanced. */ | 911 | |
| 893 | p_s_father = PATH_H_PBUFFER(p_s_tb->tb_path, n_h + 1); | 912 | RFALSE(!p_s_father || |
| 894 | 913 | !B_IS_IN_TREE(p_s_father) || | |
| 895 | RFALSE( ! p_s_father || | 914 | !B_IS_IN_TREE(p_s_tb->FL[n_h]) || |
| 896 | ! B_IS_IN_TREE (p_s_father) || | 915 | !buffer_uptodate(p_s_father) || |
| 897 | ! B_IS_IN_TREE (p_s_tb->FL[n_h]) || | 916 | !buffer_uptodate(p_s_tb->FL[n_h]), |
| 898 | ! buffer_uptodate (p_s_father) || | 917 | "vs-8165: F[h] (%b) or FL[h] (%b) is invalid", |
| 899 | ! buffer_uptodate (p_s_tb->FL[n_h]), | 918 | p_s_father, p_s_tb->FL[n_h]); |
| 900 | "vs-8165: F[h] (%b) or FL[h] (%b) is invalid", | 919 | |
| 901 | p_s_father, p_s_tb->FL[n_h]); | 920 | /* Get position of the pointer to the left neighbor into the left father. */ |
| 902 | 921 | n_left_neighbor_position = (p_s_father == p_s_tb->FL[n_h]) ? | |
| 903 | 922 | p_s_tb->lkey[n_h] : B_NR_ITEMS(p_s_tb->FL[n_h]); | |
| 904 | /* Get position of the pointer to the left neighbor into the left father. */ | 923 | /* Get left neighbor block number. */ |
| 905 | n_left_neighbor_position = ( p_s_father == p_s_tb->FL[n_h] ) ? | 924 | n_left_neighbor_blocknr = |
| 906 | p_s_tb->lkey[n_h] : B_NR_ITEMS (p_s_tb->FL[n_h]); | 925 | B_N_CHILD_NUM(p_s_tb->FL[n_h], n_left_neighbor_position); |
| 907 | /* Get left neighbor block number. */ | 926 | /* Look for the left neighbor in the cache. */ |
| 908 | n_left_neighbor_blocknr = B_N_CHILD_NUM(p_s_tb->FL[n_h], n_left_neighbor_position); | 927 | if ((left = sb_find_get_block(p_s_sb, n_left_neighbor_blocknr))) { |
| 909 | /* Look for the left neighbor in the cache. */ | 928 | |
| 910 | if ( (left = sb_find_get_block(p_s_sb, n_left_neighbor_blocknr)) ) { | 929 | RFALSE(buffer_uptodate(left) && !B_IS_IN_TREE(left), |
| 911 | 930 | "vs-8170: left neighbor (%b %z) is not in the tree", | |
| 912 | RFALSE( buffer_uptodate (left) && ! B_IS_IN_TREE(left), | 931 | left, left); |
| 913 | "vs-8170: left neighbor (%b %z) is not in the tree", left, left); | 932 | put_bh(left); |
| 914 | put_bh(left) ; | 933 | return 1; |
| 915 | return 1; | 934 | } |
| 916 | } | ||
| 917 | |||
| 918 | return 0; | ||
| 919 | } | ||
| 920 | 935 | ||
| 936 | return 0; | ||
| 937 | } | ||
| 921 | 938 | ||
| 922 | #define LEFT_PARENTS 'l' | 939 | #define LEFT_PARENTS 'l' |
| 923 | #define RIGHT_PARENTS 'r' | 940 | #define RIGHT_PARENTS 'r' |
| 924 | 941 | ||
| 925 | 942 | static void decrement_key(struct cpu_key *p_s_key) | |
| 926 | static void decrement_key (struct cpu_key * p_s_key) | ||
| 927 | { | 943 | { |
| 928 | // call item specific function for this key | 944 | // call item specific function for this key |
| 929 | item_ops[cpu_key_k_type (p_s_key)]->decrement_key (p_s_key); | 945 | item_ops[cpu_key_k_type(p_s_key)]->decrement_key(p_s_key); |
| 930 | } | 946 | } |
| 931 | 947 | ||
| 932 | |||
| 933 | |||
| 934 | |||
| 935 | /* Calculate far left/right parent of the left/right neighbor of the current node, that | 948 | /* Calculate far left/right parent of the left/right neighbor of the current node, that |
| 936 | * is calculate the left/right (FL[h]/FR[h]) neighbor of the parent F[h]. | 949 | * is calculate the left/right (FL[h]/FR[h]) neighbor of the parent F[h]. |
| 937 | * Calculate left/right common parent of the current node and L[h]/R[h]. | 950 | * Calculate left/right common parent of the current node and L[h]/R[h]. |
| @@ -940,111 +953,121 @@ static void decrement_key (struct cpu_key * p_s_key) | |||
| 940 | SCHEDULE_OCCURRED - schedule occurred while the function worked; | 953 | SCHEDULE_OCCURRED - schedule occurred while the function worked; |
| 941 | * CARRY_ON - schedule didn't occur while the function worked; | 954 | * CARRY_ON - schedule didn't occur while the function worked; |
| 942 | */ | 955 | */ |
| 943 | static int get_far_parent (struct tree_balance * p_s_tb, | 956 | static int get_far_parent(struct tree_balance *p_s_tb, |
| 944 | int n_h, | 957 | int n_h, |
| 945 | struct buffer_head ** pp_s_father, | 958 | struct buffer_head **pp_s_father, |
| 946 | struct buffer_head ** pp_s_com_father, | 959 | struct buffer_head **pp_s_com_father, char c_lr_par) |
| 947 | char c_lr_par) | ||
| 948 | { | 960 | { |
| 949 | struct buffer_head * p_s_parent; | 961 | struct buffer_head *p_s_parent; |
| 950 | INITIALIZE_PATH (s_path_to_neighbor_father); | 962 | INITIALIZE_PATH(s_path_to_neighbor_father); |
| 951 | struct path * p_s_path = p_s_tb->tb_path; | 963 | struct path *p_s_path = p_s_tb->tb_path; |
| 952 | struct cpu_key s_lr_father_key; | 964 | struct cpu_key s_lr_father_key; |
| 953 | int n_counter, | 965 | int n_counter, |
| 954 | n_position = INT_MAX, | 966 | n_position = INT_MAX, |
| 955 | n_first_last_position = 0, | 967 | n_first_last_position = 0, |
| 956 | n_path_offset = PATH_H_PATH_OFFSET(p_s_path, n_h); | 968 | n_path_offset = PATH_H_PATH_OFFSET(p_s_path, n_h); |
| 957 | 969 | ||
| 958 | /* Starting from F[n_h] go upwards in the tree, and look for the common | 970 | /* Starting from F[n_h] go upwards in the tree, and look for the common |
| 959 | ancestor of F[n_h], and its neighbor l/r, that should be obtained. */ | 971 | ancestor of F[n_h], and its neighbor l/r, that should be obtained. */ |
| 960 | 972 | ||
| 961 | n_counter = n_path_offset; | 973 | n_counter = n_path_offset; |
| 962 | 974 | ||
| 963 | RFALSE( n_counter < FIRST_PATH_ELEMENT_OFFSET, | 975 | RFALSE(n_counter < FIRST_PATH_ELEMENT_OFFSET, |
| 964 | "PAP-8180: invalid path length"); | 976 | "PAP-8180: invalid path length"); |
| 965 | 977 | ||
| 966 | 978 | for (; n_counter > FIRST_PATH_ELEMENT_OFFSET; n_counter--) { | |
| 967 | for ( ; n_counter > FIRST_PATH_ELEMENT_OFFSET; n_counter-- ) { | 979 | /* Check whether parent of the current buffer in the path is really parent in the tree. */ |
| 968 | /* Check whether parent of the current buffer in the path is really parent in the tree. */ | 980 | if (!B_IS_IN_TREE |
| 969 | if ( ! B_IS_IN_TREE(p_s_parent = PATH_OFFSET_PBUFFER(p_s_path, n_counter - 1)) ) | 981 | (p_s_parent = PATH_OFFSET_PBUFFER(p_s_path, n_counter - 1))) |
| 970 | return REPEAT_SEARCH; | 982 | return REPEAT_SEARCH; |
| 971 | /* Check whether position in the parent is correct. */ | 983 | /* Check whether position in the parent is correct. */ |
| 972 | if ( (n_position = PATH_OFFSET_POSITION(p_s_path, n_counter - 1)) > B_NR_ITEMS(p_s_parent) ) | 984 | if ((n_position = |
| 973 | return REPEAT_SEARCH; | 985 | PATH_OFFSET_POSITION(p_s_path, |
| 974 | /* Check whether parent at the path really points to the child. */ | 986 | n_counter - 1)) > |
| 975 | if ( B_N_CHILD_NUM(p_s_parent, n_position) != | 987 | B_NR_ITEMS(p_s_parent)) |
| 976 | PATH_OFFSET_PBUFFER(p_s_path, n_counter)->b_blocknr ) | 988 | return REPEAT_SEARCH; |
| 977 | return REPEAT_SEARCH; | 989 | /* Check whether parent at the path really points to the child. */ |
| 978 | /* Return delimiting key if position in the parent is not equal to first/last one. */ | 990 | if (B_N_CHILD_NUM(p_s_parent, n_position) != |
| 979 | if ( c_lr_par == RIGHT_PARENTS ) | 991 | PATH_OFFSET_PBUFFER(p_s_path, n_counter)->b_blocknr) |
| 980 | n_first_last_position = B_NR_ITEMS (p_s_parent); | 992 | return REPEAT_SEARCH; |
| 981 | if ( n_position != n_first_last_position ) { | 993 | /* Return delimiting key if position in the parent is not equal to first/last one. */ |
| 982 | *pp_s_com_father = p_s_parent; | 994 | if (c_lr_par == RIGHT_PARENTS) |
| 983 | get_bh(*pp_s_com_father) ; | 995 | n_first_last_position = B_NR_ITEMS(p_s_parent); |
| 984 | /*(*pp_s_com_father = p_s_parent)->b_count++;*/ | 996 | if (n_position != n_first_last_position) { |
| 985 | break; | 997 | *pp_s_com_father = p_s_parent; |
| 998 | get_bh(*pp_s_com_father); | ||
| 999 | /*(*pp_s_com_father = p_s_parent)->b_count++; */ | ||
| 1000 | break; | ||
| 1001 | } | ||
| 986 | } | 1002 | } |
| 987 | } | 1003 | |
| 988 | 1004 | /* if we are in the root of the tree, then there is no common father */ | |
| 989 | /* if we are in the root of the tree, then there is no common father */ | 1005 | if (n_counter == FIRST_PATH_ELEMENT_OFFSET) { |
| 990 | if ( n_counter == FIRST_PATH_ELEMENT_OFFSET ) { | 1006 | /* Check whether first buffer in the path is the root of the tree. */ |
| 991 | /* Check whether first buffer in the path is the root of the tree. */ | 1007 | if (PATH_OFFSET_PBUFFER |
| 992 | if ( PATH_OFFSET_PBUFFER(p_s_tb->tb_path, FIRST_PATH_ELEMENT_OFFSET)->b_blocknr == | 1008 | (p_s_tb->tb_path, |
| 993 | SB_ROOT_BLOCK (p_s_tb->tb_sb) ) { | 1009 | FIRST_PATH_ELEMENT_OFFSET)->b_blocknr == |
| 994 | *pp_s_father = *pp_s_com_father = NULL; | 1010 | SB_ROOT_BLOCK(p_s_tb->tb_sb)) { |
| 995 | return CARRY_ON; | 1011 | *pp_s_father = *pp_s_com_father = NULL; |
| 1012 | return CARRY_ON; | ||
| 1013 | } | ||
| 1014 | return REPEAT_SEARCH; | ||
| 996 | } | 1015 | } |
| 997 | return REPEAT_SEARCH; | ||
| 998 | } | ||
| 999 | 1016 | ||
| 1000 | RFALSE( B_LEVEL (*pp_s_com_father) <= DISK_LEAF_NODE_LEVEL, | 1017 | RFALSE(B_LEVEL(*pp_s_com_father) <= DISK_LEAF_NODE_LEVEL, |
| 1001 | "PAP-8185: (%b %z) level too small", | 1018 | "PAP-8185: (%b %z) level too small", |
| 1002 | *pp_s_com_father, *pp_s_com_father); | 1019 | *pp_s_com_father, *pp_s_com_father); |
| 1003 | 1020 | ||
| 1004 | /* Check whether the common parent is locked. */ | 1021 | /* Check whether the common parent is locked. */ |
| 1005 | 1022 | ||
| 1006 | if ( buffer_locked (*pp_s_com_father) ) { | 1023 | if (buffer_locked(*pp_s_com_father)) { |
| 1007 | __wait_on_buffer(*pp_s_com_father); | 1024 | __wait_on_buffer(*pp_s_com_father); |
| 1008 | if ( FILESYSTEM_CHANGED_TB (p_s_tb) ) { | 1025 | if (FILESYSTEM_CHANGED_TB(p_s_tb)) { |
| 1009 | decrement_bcount(*pp_s_com_father); | 1026 | decrement_bcount(*pp_s_com_father); |
| 1010 | return REPEAT_SEARCH; | 1027 | return REPEAT_SEARCH; |
| 1028 | } | ||
| 1011 | } | 1029 | } |
| 1012 | } | ||
| 1013 | |||
| 1014 | /* So, we got common parent of the current node and its left/right neighbor. | ||
| 1015 | Now we are geting the parent of the left/right neighbor. */ | ||
| 1016 | 1030 | ||
| 1017 | /* Form key to get parent of the left/right neighbor. */ | 1031 | /* So, we got common parent of the current node and its left/right neighbor. |
| 1018 | le_key2cpu_key (&s_lr_father_key, B_N_PDELIM_KEY(*pp_s_com_father, ( c_lr_par == LEFT_PARENTS ) ? | 1032 | Now we are geting the parent of the left/right neighbor. */ |
| 1019 | (p_s_tb->lkey[n_h - 1] = n_position - 1) : (p_s_tb->rkey[n_h - 1] = n_position))); | ||
| 1020 | 1033 | ||
| 1034 | /* Form key to get parent of the left/right neighbor. */ | ||
| 1035 | le_key2cpu_key(&s_lr_father_key, | ||
| 1036 | B_N_PDELIM_KEY(*pp_s_com_father, | ||
| 1037 | (c_lr_par == | ||
| 1038 | LEFT_PARENTS) ? (p_s_tb->lkey[n_h - 1] = | ||
| 1039 | n_position - | ||
| 1040 | 1) : (p_s_tb->rkey[n_h - | ||
| 1041 | 1] = | ||
| 1042 | n_position))); | ||
| 1021 | 1043 | ||
| 1022 | if ( c_lr_par == LEFT_PARENTS ) | 1044 | if (c_lr_par == LEFT_PARENTS) |
| 1023 | decrement_key(&s_lr_father_key); | 1045 | decrement_key(&s_lr_father_key); |
| 1024 | 1046 | ||
| 1025 | if (search_by_key(p_s_tb->tb_sb, &s_lr_father_key, &s_path_to_neighbor_father, n_h + 1) == IO_ERROR) | 1047 | if (search_by_key |
| 1026 | // path is released | 1048 | (p_s_tb->tb_sb, &s_lr_father_key, &s_path_to_neighbor_father, |
| 1027 | return IO_ERROR; | 1049 | n_h + 1) == IO_ERROR) |
| 1050 | // path is released | ||
| 1051 | return IO_ERROR; | ||
| 1028 | 1052 | ||
| 1029 | if ( FILESYSTEM_CHANGED_TB (p_s_tb) ) { | 1053 | if (FILESYSTEM_CHANGED_TB(p_s_tb)) { |
| 1030 | decrement_counters_in_path(&s_path_to_neighbor_father); | 1054 | decrement_counters_in_path(&s_path_to_neighbor_father); |
| 1031 | decrement_bcount(*pp_s_com_father); | 1055 | decrement_bcount(*pp_s_com_father); |
| 1032 | return REPEAT_SEARCH; | 1056 | return REPEAT_SEARCH; |
| 1033 | } | 1057 | } |
| 1034 | 1058 | ||
| 1035 | *pp_s_father = PATH_PLAST_BUFFER(&s_path_to_neighbor_father); | 1059 | *pp_s_father = PATH_PLAST_BUFFER(&s_path_to_neighbor_father); |
| 1036 | 1060 | ||
| 1037 | RFALSE( B_LEVEL (*pp_s_father) != n_h + 1, | 1061 | RFALSE(B_LEVEL(*pp_s_father) != n_h + 1, |
| 1038 | "PAP-8190: (%b %z) level too small", *pp_s_father, *pp_s_father); | 1062 | "PAP-8190: (%b %z) level too small", *pp_s_father, *pp_s_father); |
| 1039 | RFALSE( s_path_to_neighbor_father.path_length < FIRST_PATH_ELEMENT_OFFSET, | 1063 | RFALSE(s_path_to_neighbor_father.path_length < |
| 1040 | "PAP-8192: path length is too small"); | 1064 | FIRST_PATH_ELEMENT_OFFSET, "PAP-8192: path length is too small"); |
| 1041 | 1065 | ||
| 1042 | s_path_to_neighbor_father.path_length--; | 1066 | s_path_to_neighbor_father.path_length--; |
| 1043 | decrement_counters_in_path(&s_path_to_neighbor_father); | 1067 | decrement_counters_in_path(&s_path_to_neighbor_father); |
| 1044 | return CARRY_ON; | 1068 | return CARRY_ON; |
| 1045 | } | 1069 | } |
| 1046 | 1070 | ||
| 1047 | |||
| 1048 | /* Get parents of neighbors of node in the path(S[n_path_offset]) and common parents of | 1071 | /* Get parents of neighbors of node in the path(S[n_path_offset]) and common parents of |
| 1049 | * S[n_path_offset] and L[n_path_offset]/R[n_path_offset]: F[n_path_offset], FL[n_path_offset], | 1072 | * S[n_path_offset] and L[n_path_offset]/R[n_path_offset]: F[n_path_offset], FL[n_path_offset], |
| 1050 | * FR[n_path_offset], CFL[n_path_offset], CFR[n_path_offset]. | 1073 | * FR[n_path_offset], CFL[n_path_offset], CFR[n_path_offset]. |
| @@ -1052,122 +1075,127 @@ static int get_far_parent (struct tree_balance * p_s_tb, | |||
| 1052 | * Returns: SCHEDULE_OCCURRED - schedule occurred while the function worked; | 1075 | * Returns: SCHEDULE_OCCURRED - schedule occurred while the function worked; |
| 1053 | * CARRY_ON - schedule didn't occur while the function worked; | 1076 | * CARRY_ON - schedule didn't occur while the function worked; |
| 1054 | */ | 1077 | */ |
| 1055 | static int get_parents (struct tree_balance * p_s_tb, int n_h) | 1078 | static int get_parents(struct tree_balance *p_s_tb, int n_h) |
| 1056 | { | 1079 | { |
| 1057 | struct path * p_s_path = p_s_tb->tb_path; | 1080 | struct path *p_s_path = p_s_tb->tb_path; |
| 1058 | int n_position, | 1081 | int n_position, |
| 1059 | n_ret_value, | 1082 | n_ret_value, |
| 1060 | n_path_offset = PATH_H_PATH_OFFSET(p_s_tb->tb_path, n_h); | 1083 | n_path_offset = PATH_H_PATH_OFFSET(p_s_tb->tb_path, n_h); |
| 1061 | struct buffer_head * p_s_curf, | 1084 | struct buffer_head *p_s_curf, *p_s_curcf; |
| 1062 | * p_s_curcf; | 1085 | |
| 1063 | 1086 | /* Current node is the root of the tree or will be root of the tree */ | |
| 1064 | /* Current node is the root of the tree or will be root of the tree */ | 1087 | if (n_path_offset <= FIRST_PATH_ELEMENT_OFFSET) { |
| 1065 | if ( n_path_offset <= FIRST_PATH_ELEMENT_OFFSET ) { | 1088 | /* The root can not have parents. |
| 1066 | /* The root can not have parents. | 1089 | Release nodes which previously were obtained as parents of the current node neighbors. */ |
| 1067 | Release nodes which previously were obtained as parents of the current node neighbors. */ | 1090 | decrement_bcount(p_s_tb->FL[n_h]); |
| 1091 | decrement_bcount(p_s_tb->CFL[n_h]); | ||
| 1092 | decrement_bcount(p_s_tb->FR[n_h]); | ||
| 1093 | decrement_bcount(p_s_tb->CFR[n_h]); | ||
| 1094 | p_s_tb->FL[n_h] = p_s_tb->CFL[n_h] = p_s_tb->FR[n_h] = | ||
| 1095 | p_s_tb->CFR[n_h] = NULL; | ||
| 1096 | return CARRY_ON; | ||
| 1097 | } | ||
| 1098 | |||
| 1099 | /* Get parent FL[n_path_offset] of L[n_path_offset]. */ | ||
| 1100 | if ((n_position = PATH_OFFSET_POSITION(p_s_path, n_path_offset - 1))) { | ||
| 1101 | /* Current node is not the first child of its parent. */ | ||
| 1102 | /*(p_s_curf = p_s_curcf = PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1))->b_count += 2; */ | ||
| 1103 | p_s_curf = p_s_curcf = | ||
| 1104 | PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1); | ||
| 1105 | get_bh(p_s_curf); | ||
| 1106 | get_bh(p_s_curf); | ||
| 1107 | p_s_tb->lkey[n_h] = n_position - 1; | ||
| 1108 | } else { | ||
| 1109 | /* Calculate current parent of L[n_path_offset], which is the left neighbor of the current node. | ||
| 1110 | Calculate current common parent of L[n_path_offset] and the current node. Note that | ||
| 1111 | CFL[n_path_offset] not equal FL[n_path_offset] and CFL[n_path_offset] not equal F[n_path_offset]. | ||
| 1112 | Calculate lkey[n_path_offset]. */ | ||
| 1113 | if ((n_ret_value = get_far_parent(p_s_tb, n_h + 1, &p_s_curf, | ||
| 1114 | &p_s_curcf, | ||
| 1115 | LEFT_PARENTS)) != CARRY_ON) | ||
| 1116 | return n_ret_value; | ||
| 1117 | } | ||
| 1118 | |||
| 1068 | decrement_bcount(p_s_tb->FL[n_h]); | 1119 | decrement_bcount(p_s_tb->FL[n_h]); |
| 1120 | p_s_tb->FL[n_h] = p_s_curf; /* New initialization of FL[n_h]. */ | ||
| 1069 | decrement_bcount(p_s_tb->CFL[n_h]); | 1121 | decrement_bcount(p_s_tb->CFL[n_h]); |
| 1070 | decrement_bcount(p_s_tb->FR[n_h]); | 1122 | p_s_tb->CFL[n_h] = p_s_curcf; /* New initialization of CFL[n_h]. */ |
| 1071 | decrement_bcount(p_s_tb->CFR[n_h]); | 1123 | |
| 1072 | p_s_tb->FL[n_h] = p_s_tb->CFL[n_h] = p_s_tb->FR[n_h] = p_s_tb->CFR[n_h] = NULL; | 1124 | RFALSE((p_s_curf && !B_IS_IN_TREE(p_s_curf)) || |
| 1073 | return CARRY_ON; | 1125 | (p_s_curcf && !B_IS_IN_TREE(p_s_curcf)), |
| 1074 | } | 1126 | "PAP-8195: FL (%b) or CFL (%b) is invalid", p_s_curf, p_s_curcf); |
| 1075 | |||
| 1076 | /* Get parent FL[n_path_offset] of L[n_path_offset]. */ | ||
| 1077 | if ( (n_position = PATH_OFFSET_POSITION(p_s_path, n_path_offset - 1)) ) { | ||
| 1078 | /* Current node is not the first child of its parent. */ | ||
| 1079 | /*(p_s_curf = p_s_curcf = PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1))->b_count += 2;*/ | ||
| 1080 | p_s_curf = p_s_curcf = PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1); | ||
| 1081 | get_bh(p_s_curf) ; | ||
| 1082 | get_bh(p_s_curf) ; | ||
| 1083 | p_s_tb->lkey[n_h] = n_position - 1; | ||
| 1084 | } | ||
| 1085 | else { | ||
| 1086 | /* Calculate current parent of L[n_path_offset], which is the left neighbor of the current node. | ||
| 1087 | Calculate current common parent of L[n_path_offset] and the current node. Note that | ||
| 1088 | CFL[n_path_offset] not equal FL[n_path_offset] and CFL[n_path_offset] not equal F[n_path_offset]. | ||
| 1089 | Calculate lkey[n_path_offset]. */ | ||
| 1090 | if ( (n_ret_value = get_far_parent(p_s_tb, n_h + 1, &p_s_curf, | ||
| 1091 | &p_s_curcf, LEFT_PARENTS)) != CARRY_ON ) | ||
| 1092 | return n_ret_value; | ||
| 1093 | } | ||
| 1094 | |||
| 1095 | decrement_bcount(p_s_tb->FL[n_h]); | ||
| 1096 | p_s_tb->FL[n_h] = p_s_curf; /* New initialization of FL[n_h]. */ | ||
| 1097 | decrement_bcount(p_s_tb->CFL[n_h]); | ||
| 1098 | p_s_tb->CFL[n_h] = p_s_curcf; /* New initialization of CFL[n_h]. */ | ||
| 1099 | |||
| 1100 | RFALSE( (p_s_curf && !B_IS_IN_TREE (p_s_curf)) || | ||
| 1101 | (p_s_curcf && !B_IS_IN_TREE (p_s_curcf)), | ||
| 1102 | "PAP-8195: FL (%b) or CFL (%b) is invalid", p_s_curf, p_s_curcf); | ||
| 1103 | 1127 | ||
| 1104 | /* Get parent FR[n_h] of R[n_h]. */ | 1128 | /* Get parent FR[n_h] of R[n_h]. */ |
| 1105 | 1129 | ||
| 1106 | /* Current node is the last child of F[n_h]. FR[n_h] != F[n_h]. */ | 1130 | /* Current node is the last child of F[n_h]. FR[n_h] != F[n_h]. */ |
| 1107 | if ( n_position == B_NR_ITEMS (PATH_H_PBUFFER(p_s_path, n_h + 1)) ) { | 1131 | if (n_position == B_NR_ITEMS(PATH_H_PBUFFER(p_s_path, n_h + 1))) { |
| 1108 | /* Calculate current parent of R[n_h], which is the right neighbor of F[n_h]. | 1132 | /* Calculate current parent of R[n_h], which is the right neighbor of F[n_h]. |
| 1109 | Calculate current common parent of R[n_h] and current node. Note that CFR[n_h] | 1133 | Calculate current common parent of R[n_h] and current node. Note that CFR[n_h] |
| 1110 | not equal FR[n_path_offset] and CFR[n_h] not equal F[n_h]. */ | 1134 | not equal FR[n_path_offset] and CFR[n_h] not equal F[n_h]. */ |
| 1111 | if ( (n_ret_value = get_far_parent(p_s_tb, n_h + 1, &p_s_curf, &p_s_curcf, RIGHT_PARENTS)) != CARRY_ON ) | 1135 | if ((n_ret_value = |
| 1112 | return n_ret_value; | 1136 | get_far_parent(p_s_tb, n_h + 1, &p_s_curf, &p_s_curcf, |
| 1113 | } | 1137 | RIGHT_PARENTS)) != CARRY_ON) |
| 1114 | else { | 1138 | return n_ret_value; |
| 1139 | } else { | ||
| 1115 | /* Current node is not the last child of its parent F[n_h]. */ | 1140 | /* Current node is not the last child of its parent F[n_h]. */ |
| 1116 | /*(p_s_curf = p_s_curcf = PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1))->b_count += 2;*/ | 1141 | /*(p_s_curf = p_s_curcf = PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1))->b_count += 2; */ |
| 1117 | p_s_curf = p_s_curcf = PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1); | 1142 | p_s_curf = p_s_curcf = |
| 1118 | get_bh(p_s_curf) ; | 1143 | PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1); |
| 1119 | get_bh(p_s_curf) ; | 1144 | get_bh(p_s_curf); |
| 1120 | p_s_tb->rkey[n_h] = n_position; | 1145 | get_bh(p_s_curf); |
| 1121 | } | 1146 | p_s_tb->rkey[n_h] = n_position; |
| 1122 | 1147 | } | |
| 1123 | decrement_bcount(p_s_tb->FR[n_h]); | ||
| 1124 | p_s_tb->FR[n_h] = p_s_curf; /* New initialization of FR[n_path_offset]. */ | ||
| 1125 | |||
| 1126 | decrement_bcount(p_s_tb->CFR[n_h]); | ||
| 1127 | p_s_tb->CFR[n_h] = p_s_curcf; /* New initialization of CFR[n_path_offset]. */ | ||
| 1128 | |||
| 1129 | RFALSE( (p_s_curf && !B_IS_IN_TREE (p_s_curf)) || | ||
| 1130 | (p_s_curcf && !B_IS_IN_TREE (p_s_curcf)), | ||
| 1131 | "PAP-8205: FR (%b) or CFR (%b) is invalid", p_s_curf, p_s_curcf); | ||
| 1132 | |||
| 1133 | return CARRY_ON; | ||
| 1134 | } | ||
| 1135 | 1148 | ||
| 1149 | decrement_bcount(p_s_tb->FR[n_h]); | ||
| 1150 | p_s_tb->FR[n_h] = p_s_curf; /* New initialization of FR[n_path_offset]. */ | ||
| 1151 | |||
| 1152 | decrement_bcount(p_s_tb->CFR[n_h]); | ||
| 1153 | p_s_tb->CFR[n_h] = p_s_curcf; /* New initialization of CFR[n_path_offset]. */ | ||
| 1154 | |||
| 1155 | RFALSE((p_s_curf && !B_IS_IN_TREE(p_s_curf)) || | ||
| 1156 | (p_s_curcf && !B_IS_IN_TREE(p_s_curcf)), | ||
| 1157 | "PAP-8205: FR (%b) or CFR (%b) is invalid", p_s_curf, p_s_curcf); | ||
| 1158 | |||
| 1159 | return CARRY_ON; | ||
| 1160 | } | ||
| 1136 | 1161 | ||
| 1137 | /* it is possible to remove node as result of shiftings to | 1162 | /* it is possible to remove node as result of shiftings to |
| 1138 | neighbors even when we insert or paste item. */ | 1163 | neighbors even when we insert or paste item. */ |
| 1139 | static inline int can_node_be_removed (int mode, int lfree, int sfree, int rfree, struct tree_balance * tb, int h) | 1164 | static inline int can_node_be_removed(int mode, int lfree, int sfree, int rfree, |
| 1165 | struct tree_balance *tb, int h) | ||
| 1140 | { | 1166 | { |
| 1141 | struct buffer_head * Sh = PATH_H_PBUFFER (tb->tb_path, h); | 1167 | struct buffer_head *Sh = PATH_H_PBUFFER(tb->tb_path, h); |
| 1142 | int levbytes = tb->insert_size[h]; | 1168 | int levbytes = tb->insert_size[h]; |
| 1143 | struct item_head * ih; | 1169 | struct item_head *ih; |
| 1144 | struct reiserfs_key * r_key = NULL; | 1170 | struct reiserfs_key *r_key = NULL; |
| 1145 | 1171 | ||
| 1146 | ih = B_N_PITEM_HEAD (Sh, 0); | 1172 | ih = B_N_PITEM_HEAD(Sh, 0); |
| 1147 | if ( tb->CFR[h] ) | 1173 | if (tb->CFR[h]) |
| 1148 | r_key = B_N_PDELIM_KEY(tb->CFR[h],tb->rkey[h]); | 1174 | r_key = B_N_PDELIM_KEY(tb->CFR[h], tb->rkey[h]); |
| 1149 | 1175 | ||
| 1150 | if ( | 1176 | if (lfree + rfree + sfree < MAX_CHILD_SIZE(Sh) + levbytes |
| 1151 | lfree + rfree + sfree < MAX_CHILD_SIZE(Sh) + levbytes | 1177 | /* shifting may merge items which might save space */ |
| 1152 | /* shifting may merge items which might save space */ | 1178 | - |
| 1153 | - (( ! h && op_is_left_mergeable (&(ih->ih_key), Sh->b_size) ) ? IH_SIZE : 0) | 1179 | ((!h |
| 1154 | - (( ! h && r_key && op_is_left_mergeable (r_key, Sh->b_size) ) ? IH_SIZE : 0) | 1180 | && op_is_left_mergeable(&(ih->ih_key), Sh->b_size)) ? IH_SIZE : 0) |
| 1155 | + (( h ) ? KEY_SIZE : 0)) | 1181 | - |
| 1156 | { | 1182 | ((!h && r_key |
| 1157 | /* node can not be removed */ | 1183 | && op_is_left_mergeable(r_key, Sh->b_size)) ? IH_SIZE : 0) |
| 1158 | if (sfree >= levbytes ) { /* new item fits into node S[h] without any shifting */ | 1184 | + ((h) ? KEY_SIZE : 0)) { |
| 1159 | if ( ! h ) | 1185 | /* node can not be removed */ |
| 1160 | tb->s0num = B_NR_ITEMS(Sh) + ((mode == M_INSERT ) ? 1 : 0); | 1186 | if (sfree >= levbytes) { /* new item fits into node S[h] without any shifting */ |
| 1161 | set_parameters (tb, h, 0, 0, 1, NULL, -1, -1); | 1187 | if (!h) |
| 1162 | return NO_BALANCING_NEEDED; | 1188 | tb->s0num = |
| 1189 | B_NR_ITEMS(Sh) + | ||
| 1190 | ((mode == M_INSERT) ? 1 : 0); | ||
| 1191 | set_parameters(tb, h, 0, 0, 1, NULL, -1, -1); | ||
| 1192 | return NO_BALANCING_NEEDED; | ||
| 1193 | } | ||
| 1163 | } | 1194 | } |
| 1164 | } | 1195 | PROC_INFO_INC(tb->tb_sb, can_node_be_removed[h]); |
| 1165 | PROC_INFO_INC( tb -> tb_sb, can_node_be_removed[ h ] ); | 1196 | return !NO_BALANCING_NEEDED; |
| 1166 | return !NO_BALANCING_NEEDED; | ||
| 1167 | } | 1197 | } |
| 1168 | 1198 | ||
| 1169 | |||
| 1170 | |||
| 1171 | /* Check whether current node S[h] is balanced when increasing its size by | 1199 | /* Check whether current node S[h] is balanced when increasing its size by |
| 1172 | * Inserting or Pasting. | 1200 | * Inserting or Pasting. |
| 1173 | * Calculate parameters for balancing for current level h. | 1201 | * Calculate parameters for balancing for current level h. |
| @@ -1182,154 +1210,157 @@ static inline int can_node_be_removed (int mode, int lfree, int sfree, int rfree | |||
| 1182 | * -2 - no disk space. | 1210 | * -2 - no disk space. |
| 1183 | */ | 1211 | */ |
| 1184 | /* ip means Inserting or Pasting */ | 1212 | /* ip means Inserting or Pasting */ |
| 1185 | static int ip_check_balance (struct tree_balance * tb, int h) | 1213 | static int ip_check_balance(struct tree_balance *tb, int h) |
| 1186 | { | 1214 | { |
| 1187 | struct virtual_node * vn = tb->tb_vn; | 1215 | struct virtual_node *vn = tb->tb_vn; |
| 1188 | int levbytes, /* Number of bytes that must be inserted into (value | 1216 | int levbytes, /* Number of bytes that must be inserted into (value |
| 1189 | is negative if bytes are deleted) buffer which | 1217 | is negative if bytes are deleted) buffer which |
| 1190 | contains node being balanced. The mnemonic is | 1218 | contains node being balanced. The mnemonic is |
| 1191 | that the attempted change in node space used level | 1219 | that the attempted change in node space used level |
| 1192 | is levbytes bytes. */ | 1220 | is levbytes bytes. */ |
| 1193 | n_ret_value; | 1221 | n_ret_value; |
| 1194 | 1222 | ||
| 1195 | int lfree, sfree, rfree /* free space in L, S and R */; | 1223 | int lfree, sfree, rfree /* free space in L, S and R */ ; |
| 1196 | 1224 | ||
| 1197 | /* nver is short for number of vertixes, and lnver is the number if | 1225 | /* nver is short for number of vertixes, and lnver is the number if |
| 1198 | we shift to the left, rnver is the number if we shift to the | 1226 | we shift to the left, rnver is the number if we shift to the |
| 1199 | right, and lrnver is the number if we shift in both directions. | 1227 | right, and lrnver is the number if we shift in both directions. |
| 1200 | The goal is to minimize first the number of vertixes, and second, | 1228 | The goal is to minimize first the number of vertixes, and second, |
| 1201 | the number of vertixes whose contents are changed by shifting, | 1229 | the number of vertixes whose contents are changed by shifting, |
| 1202 | and third the number of uncached vertixes whose contents are | 1230 | and third the number of uncached vertixes whose contents are |
| 1203 | changed by shifting and must be read from disk. */ | 1231 | changed by shifting and must be read from disk. */ |
| 1204 | int nver, lnver, rnver, lrnver; | 1232 | int nver, lnver, rnver, lrnver; |
| 1205 | 1233 | ||
| 1206 | /* used at leaf level only, S0 = S[0] is the node being balanced, | 1234 | /* used at leaf level only, S0 = S[0] is the node being balanced, |
| 1207 | sInum [ I = 0,1,2 ] is the number of items that will | 1235 | sInum [ I = 0,1,2 ] is the number of items that will |
| 1208 | remain in node SI after balancing. S1 and S2 are new | 1236 | remain in node SI after balancing. S1 and S2 are new |
| 1209 | nodes that might be created. */ | 1237 | nodes that might be created. */ |
| 1210 | 1238 | ||
| 1211 | /* we perform 8 calls to get_num_ver(). For each call we calculate five parameters. | 1239 | /* we perform 8 calls to get_num_ver(). For each call we calculate five parameters. |
| 1212 | where 4th parameter is s1bytes and 5th - s2bytes | 1240 | where 4th parameter is s1bytes and 5th - s2bytes |
| 1213 | */ | 1241 | */ |
| 1214 | short snum012[40] = {0,}; /* s0num, s1num, s2num for 8 cases | 1242 | short snum012[40] = { 0, }; /* s0num, s1num, s2num for 8 cases |
| 1215 | 0,1 - do not shift and do not shift but bottle | 1243 | 0,1 - do not shift and do not shift but bottle |
| 1216 | 2 - shift only whole item to left | 1244 | 2 - shift only whole item to left |
| 1217 | 3 - shift to left and bottle as much as possible | 1245 | 3 - shift to left and bottle as much as possible |
| 1218 | 4,5 - shift to right (whole items and as much as possible | 1246 | 4,5 - shift to right (whole items and as much as possible |
| 1219 | 6,7 - shift to both directions (whole items and as much as possible) | 1247 | 6,7 - shift to both directions (whole items and as much as possible) |
| 1220 | */ | 1248 | */ |
| 1221 | 1249 | ||
| 1222 | /* Sh is the node whose balance is currently being checked */ | 1250 | /* Sh is the node whose balance is currently being checked */ |
| 1223 | struct buffer_head * Sh; | 1251 | struct buffer_head *Sh; |
| 1224 | 1252 | ||
| 1225 | Sh = PATH_H_PBUFFER (tb->tb_path, h); | 1253 | Sh = PATH_H_PBUFFER(tb->tb_path, h); |
| 1226 | levbytes = tb->insert_size[h]; | 1254 | levbytes = tb->insert_size[h]; |
| 1227 | 1255 | ||
| 1228 | /* Calculate balance parameters for creating new root. */ | 1256 | /* Calculate balance parameters for creating new root. */ |
| 1229 | if ( ! Sh ) { | 1257 | if (!Sh) { |
| 1230 | if ( ! h ) | 1258 | if (!h) |
| 1231 | reiserfs_panic (tb->tb_sb, "vs-8210: ip_check_balance: S[0] can not be 0"); | 1259 | reiserfs_panic(tb->tb_sb, |
| 1232 | switch ( n_ret_value = get_empty_nodes (tb, h) ) { | 1260 | "vs-8210: ip_check_balance: S[0] can not be 0"); |
| 1233 | case CARRY_ON: | 1261 | switch (n_ret_value = get_empty_nodes(tb, h)) { |
| 1234 | set_parameters (tb, h, 0, 0, 1, NULL, -1, -1); | 1262 | case CARRY_ON: |
| 1235 | return NO_BALANCING_NEEDED; /* no balancing for higher levels needed */ | 1263 | set_parameters(tb, h, 0, 0, 1, NULL, -1, -1); |
| 1236 | 1264 | return NO_BALANCING_NEEDED; /* no balancing for higher levels needed */ | |
| 1237 | case NO_DISK_SPACE: | 1265 | |
| 1238 | case REPEAT_SEARCH: | 1266 | case NO_DISK_SPACE: |
| 1239 | return n_ret_value; | 1267 | case REPEAT_SEARCH: |
| 1240 | default: | 1268 | return n_ret_value; |
| 1241 | reiserfs_panic(tb->tb_sb, "vs-8215: ip_check_balance: incorrect return value of get_empty_nodes"); | 1269 | default: |
| 1270 | reiserfs_panic(tb->tb_sb, | ||
| 1271 | "vs-8215: ip_check_balance: incorrect return value of get_empty_nodes"); | ||
| 1272 | } | ||
| 1242 | } | 1273 | } |
| 1243 | } | ||
| 1244 | |||
| 1245 | if ( (n_ret_value = get_parents (tb, h)) != CARRY_ON ) /* get parents of S[h] neighbors. */ | ||
| 1246 | return n_ret_value; | ||
| 1247 | |||
| 1248 | sfree = B_FREE_SPACE (Sh); | ||
| 1249 | |||
| 1250 | /* get free space of neighbors */ | ||
| 1251 | rfree = get_rfree (tb, h); | ||
| 1252 | lfree = get_lfree (tb, h); | ||
| 1253 | |||
| 1254 | if (can_node_be_removed (vn->vn_mode, lfree, sfree, rfree, tb, h) == NO_BALANCING_NEEDED) | ||
| 1255 | /* and new item fits into node S[h] without any shifting */ | ||
| 1256 | return NO_BALANCING_NEEDED; | ||
| 1257 | |||
| 1258 | create_virtual_node (tb, h); | ||
| 1259 | |||
| 1260 | /* | ||
| 1261 | determine maximal number of items we can shift to the left neighbor (in tb structure) | ||
| 1262 | and the maximal number of bytes that can flow to the left neighbor | ||
| 1263 | from the left most liquid item that cannot be shifted from S[0] entirely (returned value) | ||
| 1264 | */ | ||
| 1265 | check_left (tb, h, lfree); | ||
| 1266 | |||
| 1267 | /* | ||
| 1268 | determine maximal number of items we can shift to the right neighbor (in tb structure) | ||
| 1269 | and the maximal number of bytes that can flow to the right neighbor | ||
| 1270 | from the right most liquid item that cannot be shifted from S[0] entirely (returned value) | ||
| 1271 | */ | ||
| 1272 | check_right (tb, h, rfree); | ||
| 1273 | |||
| 1274 | |||
| 1275 | /* all contents of internal node S[h] can be moved into its | ||
| 1276 | neighbors, S[h] will be removed after balancing */ | ||
| 1277 | if (h && (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1)) { | ||
| 1278 | int to_r; | ||
| 1279 | |||
| 1280 | /* Since we are working on internal nodes, and our internal | ||
| 1281 | nodes have fixed size entries, then we can balance by the | ||
| 1282 | number of items rather than the space they consume. In this | ||
| 1283 | routine we set the left node equal to the right node, | ||
| 1284 | allowing a difference of less than or equal to 1 child | ||
| 1285 | pointer. */ | ||
| 1286 | to_r = ((MAX_NR_KEY(Sh)<<1)+2-tb->lnum[h]-tb->rnum[h]+vn->vn_nr_item+1)/2 - | ||
| 1287 | (MAX_NR_KEY(Sh) + 1 - tb->rnum[h]); | ||
| 1288 | set_parameters (tb, h, vn->vn_nr_item + 1 - to_r, to_r, 0, NULL, -1, -1); | ||
| 1289 | return CARRY_ON; | ||
| 1290 | } | ||
| 1291 | |||
| 1292 | /* this checks balance condition, that any two neighboring nodes can not fit in one node */ | ||
| 1293 | RFALSE( h && | ||
| 1294 | ( tb->lnum[h] >= vn->vn_nr_item + 1 || | ||
| 1295 | tb->rnum[h] >= vn->vn_nr_item + 1), | ||
| 1296 | "vs-8220: tree is not balanced on internal level"); | ||
| 1297 | RFALSE( ! h && ((tb->lnum[h] >= vn->vn_nr_item && (tb->lbytes == -1)) || | ||
| 1298 | (tb->rnum[h] >= vn->vn_nr_item && (tb->rbytes == -1)) ), | ||
| 1299 | "vs-8225: tree is not balanced on leaf level"); | ||
| 1300 | |||
| 1301 | /* all contents of S[0] can be moved into its neighbors | ||
| 1302 | S[0] will be removed after balancing. */ | ||
| 1303 | if (!h && is_leaf_removable (tb)) | ||
| 1304 | return CARRY_ON; | ||
| 1305 | 1274 | ||
| 1275 | if ((n_ret_value = get_parents(tb, h)) != CARRY_ON) /* get parents of S[h] neighbors. */ | ||
| 1276 | return n_ret_value; | ||
| 1306 | 1277 | ||
| 1307 | /* why do we perform this check here rather than earlier?? | 1278 | sfree = B_FREE_SPACE(Sh); |
| 1308 | Answer: we can win 1 node in some cases above. Moreover we | 1279 | |
| 1309 | checked it above, when we checked, that S[0] is not removable | 1280 | /* get free space of neighbors */ |
| 1310 | in principle */ | 1281 | rfree = get_rfree(tb, h); |
| 1311 | if (sfree >= levbytes) { /* new item fits into node S[h] without any shifting */ | 1282 | lfree = get_lfree(tb, h); |
| 1312 | if ( ! h ) | 1283 | |
| 1313 | tb->s0num = vn->vn_nr_item; | 1284 | if (can_node_be_removed(vn->vn_mode, lfree, sfree, rfree, tb, h) == |
| 1314 | set_parameters (tb, h, 0, 0, 1, NULL, -1, -1); | 1285 | NO_BALANCING_NEEDED) |
| 1315 | return NO_BALANCING_NEEDED; | 1286 | /* and new item fits into node S[h] without any shifting */ |
| 1316 | } | 1287 | return NO_BALANCING_NEEDED; |
| 1317 | 1288 | ||
| 1289 | create_virtual_node(tb, h); | ||
| 1318 | 1290 | ||
| 1319 | { | 1291 | /* |
| 1320 | int lpar, rpar, nset, lset, rset, lrset; | 1292 | determine maximal number of items we can shift to the left neighbor (in tb structure) |
| 1321 | /* | 1293 | and the maximal number of bytes that can flow to the left neighbor |
| 1322 | * regular overflowing of the node | 1294 | from the left most liquid item that cannot be shifted from S[0] entirely (returned value) |
| 1323 | */ | 1295 | */ |
| 1296 | check_left(tb, h, lfree); | ||
| 1324 | 1297 | ||
| 1325 | /* get_num_ver works in 2 modes (FLOW & NO_FLOW) | 1298 | /* |
| 1326 | lpar, rpar - number of items we can shift to left/right neighbor (including splitting item) | 1299 | determine maximal number of items we can shift to the right neighbor (in tb structure) |
| 1327 | nset, lset, rset, lrset - shows, whether flowing items give better packing | 1300 | and the maximal number of bytes that can flow to the right neighbor |
| 1328 | */ | 1301 | from the right most liquid item that cannot be shifted from S[0] entirely (returned value) |
| 1302 | */ | ||
| 1303 | check_right(tb, h, rfree); | ||
| 1304 | |||
| 1305 | /* all contents of internal node S[h] can be moved into its | ||
| 1306 | neighbors, S[h] will be removed after balancing */ | ||
| 1307 | if (h && (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1)) { | ||
| 1308 | int to_r; | ||
| 1309 | |||
| 1310 | /* Since we are working on internal nodes, and our internal | ||
| 1311 | nodes have fixed size entries, then we can balance by the | ||
| 1312 | number of items rather than the space they consume. In this | ||
| 1313 | routine we set the left node equal to the right node, | ||
| 1314 | allowing a difference of less than or equal to 1 child | ||
| 1315 | pointer. */ | ||
| 1316 | to_r = | ||
| 1317 | ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] - tb->rnum[h] + | ||
| 1318 | vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 - | ||
| 1319 | tb->rnum[h]); | ||
| 1320 | set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r, 0, NULL, | ||
| 1321 | -1, -1); | ||
| 1322 | return CARRY_ON; | ||
| 1323 | } | ||
| 1324 | |||
| 1325 | /* this checks balance condition, that any two neighboring nodes can not fit in one node */ | ||
| 1326 | RFALSE(h && | ||
| 1327 | (tb->lnum[h] >= vn->vn_nr_item + 1 || | ||
| 1328 | tb->rnum[h] >= vn->vn_nr_item + 1), | ||
| 1329 | "vs-8220: tree is not balanced on internal level"); | ||
| 1330 | RFALSE(!h && ((tb->lnum[h] >= vn->vn_nr_item && (tb->lbytes == -1)) || | ||
| 1331 | (tb->rnum[h] >= vn->vn_nr_item && (tb->rbytes == -1))), | ||
| 1332 | "vs-8225: tree is not balanced on leaf level"); | ||
| 1333 | |||
| 1334 | /* all contents of S[0] can be moved into its neighbors | ||
| 1335 | S[0] will be removed after balancing. */ | ||
| 1336 | if (!h && is_leaf_removable(tb)) | ||
| 1337 | return CARRY_ON; | ||
| 1338 | |||
| 1339 | /* why do we perform this check here rather than earlier?? | ||
| 1340 | Answer: we can win 1 node in some cases above. Moreover we | ||
| 1341 | checked it above, when we checked, that S[0] is not removable | ||
| 1342 | in principle */ | ||
| 1343 | if (sfree >= levbytes) { /* new item fits into node S[h] without any shifting */ | ||
| 1344 | if (!h) | ||
| 1345 | tb->s0num = vn->vn_nr_item; | ||
| 1346 | set_parameters(tb, h, 0, 0, 1, NULL, -1, -1); | ||
| 1347 | return NO_BALANCING_NEEDED; | ||
| 1348 | } | ||
| 1349 | |||
| 1350 | { | ||
| 1351 | int lpar, rpar, nset, lset, rset, lrset; | ||
| 1352 | /* | ||
| 1353 | * regular overflowing of the node | ||
| 1354 | */ | ||
| 1355 | |||
| 1356 | /* get_num_ver works in 2 modes (FLOW & NO_FLOW) | ||
| 1357 | lpar, rpar - number of items we can shift to left/right neighbor (including splitting item) | ||
| 1358 | nset, lset, rset, lrset - shows, whether flowing items give better packing | ||
| 1359 | */ | ||
| 1329 | #define FLOW 1 | 1360 | #define FLOW 1 |
| 1330 | #define NO_FLOW 0 /* do not any splitting */ | 1361 | #define NO_FLOW 0 /* do not any splitting */ |
| 1331 | 1362 | ||
| 1332 | /* we choose one the following */ | 1363 | /* we choose one the following */ |
| 1333 | #define NOTHING_SHIFT_NO_FLOW 0 | 1364 | #define NOTHING_SHIFT_NO_FLOW 0 |
| 1334 | #define NOTHING_SHIFT_FLOW 5 | 1365 | #define NOTHING_SHIFT_FLOW 5 |
| 1335 | #define LEFT_SHIFT_NO_FLOW 10 | 1366 | #define LEFT_SHIFT_NO_FLOW 10 |
| @@ -1339,164 +1370,173 @@ static int ip_check_balance (struct tree_balance * tb, int h) | |||
| 1339 | #define LR_SHIFT_NO_FLOW 30 | 1370 | #define LR_SHIFT_NO_FLOW 30 |
| 1340 | #define LR_SHIFT_FLOW 35 | 1371 | #define LR_SHIFT_FLOW 35 |
| 1341 | 1372 | ||
| 1373 | lpar = tb->lnum[h]; | ||
| 1374 | rpar = tb->rnum[h]; | ||
| 1375 | |||
| 1376 | /* calculate number of blocks S[h] must be split into when | ||
| 1377 | nothing is shifted to the neighbors, | ||
| 1378 | as well as number of items in each part of the split node (s012 numbers), | ||
| 1379 | and number of bytes (s1bytes) of the shared drop which flow to S1 if any */ | ||
| 1380 | nset = NOTHING_SHIFT_NO_FLOW; | ||
| 1381 | nver = get_num_ver(vn->vn_mode, tb, h, | ||
| 1382 | 0, -1, h ? vn->vn_nr_item : 0, -1, | ||
| 1383 | snum012, NO_FLOW); | ||
| 1384 | |||
| 1385 | if (!h) { | ||
| 1386 | int nver1; | ||
| 1387 | |||
| 1388 | /* note, that in this case we try to bottle between S[0] and S1 (S1 - the first new node) */ | ||
| 1389 | nver1 = get_num_ver(vn->vn_mode, tb, h, | ||
| 1390 | 0, -1, 0, -1, | ||
| 1391 | snum012 + NOTHING_SHIFT_FLOW, FLOW); | ||
| 1392 | if (nver > nver1) | ||
| 1393 | nset = NOTHING_SHIFT_FLOW, nver = nver1; | ||
| 1394 | } | ||
| 1342 | 1395 | ||
| 1343 | lpar = tb->lnum[h]; | 1396 | /* calculate number of blocks S[h] must be split into when |
| 1344 | rpar = tb->rnum[h]; | 1397 | l_shift_num first items and l_shift_bytes of the right most |
| 1345 | 1398 | liquid item to be shifted are shifted to the left neighbor, | |
| 1346 | 1399 | as well as number of items in each part of the splitted node (s012 numbers), | |
| 1347 | /* calculate number of blocks S[h] must be split into when | 1400 | and number of bytes (s1bytes) of the shared drop which flow to S1 if any |
| 1348 | nothing is shifted to the neighbors, | 1401 | */ |
| 1349 | as well as number of items in each part of the split node (s012 numbers), | 1402 | lset = LEFT_SHIFT_NO_FLOW; |
| 1350 | and number of bytes (s1bytes) of the shared drop which flow to S1 if any */ | 1403 | lnver = get_num_ver(vn->vn_mode, tb, h, |
| 1351 | nset = NOTHING_SHIFT_NO_FLOW; | 1404 | lpar - ((h || tb->lbytes == -1) ? 0 : 1), |
| 1352 | nver = get_num_ver (vn->vn_mode, tb, h, | 1405 | -1, h ? vn->vn_nr_item : 0, -1, |
| 1353 | 0, -1, h?vn->vn_nr_item:0, -1, | 1406 | snum012 + LEFT_SHIFT_NO_FLOW, NO_FLOW); |
| 1354 | snum012, NO_FLOW); | 1407 | if (!h) { |
| 1355 | 1408 | int lnver1; | |
| 1356 | if (!h) | 1409 | |
| 1357 | { | 1410 | lnver1 = get_num_ver(vn->vn_mode, tb, h, |
| 1358 | int nver1; | 1411 | lpar - |
| 1359 | 1412 | ((tb->lbytes != -1) ? 1 : 0), | |
| 1360 | /* note, that in this case we try to bottle between S[0] and S1 (S1 - the first new node) */ | 1413 | tb->lbytes, 0, -1, |
| 1361 | nver1 = get_num_ver (vn->vn_mode, tb, h, | 1414 | snum012 + LEFT_SHIFT_FLOW, FLOW); |
| 1362 | 0, -1, 0, -1, | 1415 | if (lnver > lnver1) |
| 1363 | snum012 + NOTHING_SHIFT_FLOW, FLOW); | 1416 | lset = LEFT_SHIFT_FLOW, lnver = lnver1; |
| 1364 | if (nver > nver1) | 1417 | } |
| 1365 | nset = NOTHING_SHIFT_FLOW, nver = nver1; | ||
| 1366 | } | ||
| 1367 | |||
| 1368 | |||
| 1369 | /* calculate number of blocks S[h] must be split into when | ||
| 1370 | l_shift_num first items and l_shift_bytes of the right most | ||
| 1371 | liquid item to be shifted are shifted to the left neighbor, | ||
| 1372 | as well as number of items in each part of the splitted node (s012 numbers), | ||
| 1373 | and number of bytes (s1bytes) of the shared drop which flow to S1 if any | ||
| 1374 | */ | ||
| 1375 | lset = LEFT_SHIFT_NO_FLOW; | ||
| 1376 | lnver = get_num_ver (vn->vn_mode, tb, h, | ||
| 1377 | lpar - (( h || tb->lbytes == -1 ) ? 0 : 1), -1, h ? vn->vn_nr_item:0, -1, | ||
| 1378 | snum012 + LEFT_SHIFT_NO_FLOW, NO_FLOW); | ||
| 1379 | if (!h) | ||
| 1380 | { | ||
| 1381 | int lnver1; | ||
| 1382 | |||
| 1383 | lnver1 = get_num_ver (vn->vn_mode, tb, h, | ||
| 1384 | lpar - ((tb->lbytes != -1) ? 1 : 0), tb->lbytes, 0, -1, | ||
| 1385 | snum012 + LEFT_SHIFT_FLOW, FLOW); | ||
| 1386 | if (lnver > lnver1) | ||
| 1387 | lset = LEFT_SHIFT_FLOW, lnver = lnver1; | ||
| 1388 | } | ||
| 1389 | |||
| 1390 | |||
| 1391 | /* calculate number of blocks S[h] must be split into when | ||
| 1392 | r_shift_num first items and r_shift_bytes of the left most | ||
| 1393 | liquid item to be shifted are shifted to the right neighbor, | ||
| 1394 | as well as number of items in each part of the splitted node (s012 numbers), | ||
| 1395 | and number of bytes (s1bytes) of the shared drop which flow to S1 if any | ||
| 1396 | */ | ||
| 1397 | rset = RIGHT_SHIFT_NO_FLOW; | ||
| 1398 | rnver = get_num_ver (vn->vn_mode, tb, h, | ||
| 1399 | 0, -1, h ? (vn->vn_nr_item-rpar) : (rpar - (( tb->rbytes != -1 ) ? 1 : 0)), -1, | ||
| 1400 | snum012 + RIGHT_SHIFT_NO_FLOW, NO_FLOW); | ||
| 1401 | if (!h) | ||
| 1402 | { | ||
| 1403 | int rnver1; | ||
| 1404 | |||
| 1405 | rnver1 = get_num_ver (vn->vn_mode, tb, h, | ||
| 1406 | 0, -1, (rpar - ((tb->rbytes != -1) ? 1 : 0)), tb->rbytes, | ||
| 1407 | snum012 + RIGHT_SHIFT_FLOW, FLOW); | ||
| 1408 | |||
| 1409 | if (rnver > rnver1) | ||
| 1410 | rset = RIGHT_SHIFT_FLOW, rnver = rnver1; | ||
| 1411 | } | ||
| 1412 | |||
| 1413 | |||
| 1414 | /* calculate number of blocks S[h] must be split into when | ||
| 1415 | items are shifted in both directions, | ||
| 1416 | as well as number of items in each part of the splitted node (s012 numbers), | ||
| 1417 | and number of bytes (s1bytes) of the shared drop which flow to S1 if any | ||
| 1418 | */ | ||
| 1419 | lrset = LR_SHIFT_NO_FLOW; | ||
| 1420 | lrnver = get_num_ver (vn->vn_mode, tb, h, | ||
| 1421 | lpar - ((h || tb->lbytes == -1) ? 0 : 1), -1, h ? (vn->vn_nr_item-rpar):(rpar - ((tb->rbytes != -1) ? 1 : 0)), -1, | ||
| 1422 | snum012 + LR_SHIFT_NO_FLOW, NO_FLOW); | ||
| 1423 | if (!h) | ||
| 1424 | { | ||
| 1425 | int lrnver1; | ||
| 1426 | |||
| 1427 | lrnver1 = get_num_ver (vn->vn_mode, tb, h, | ||
| 1428 | lpar - ((tb->lbytes != -1) ? 1 : 0), tb->lbytes, (rpar - ((tb->rbytes != -1) ? 1 : 0)), tb->rbytes, | ||
| 1429 | snum012 + LR_SHIFT_FLOW, FLOW); | ||
| 1430 | if (lrnver > lrnver1) | ||
| 1431 | lrset = LR_SHIFT_FLOW, lrnver = lrnver1; | ||
| 1432 | } | ||
| 1433 | |||
| 1434 | |||
| 1435 | 1418 | ||
| 1436 | /* Our general shifting strategy is: | 1419 | /* calculate number of blocks S[h] must be split into when |
| 1437 | 1) to minimized number of new nodes; | 1420 | r_shift_num first items and r_shift_bytes of the left most |
| 1438 | 2) to minimized number of neighbors involved in shifting; | 1421 | liquid item to be shifted are shifted to the right neighbor, |
| 1439 | 3) to minimized number of disk reads; */ | 1422 | as well as number of items in each part of the splitted node (s012 numbers), |
| 1423 | and number of bytes (s1bytes) of the shared drop which flow to S1 if any | ||
| 1424 | */ | ||
| 1425 | rset = RIGHT_SHIFT_NO_FLOW; | ||
| 1426 | rnver = get_num_ver(vn->vn_mode, tb, h, | ||
| 1427 | 0, -1, | ||
| 1428 | h ? (vn->vn_nr_item - rpar) : (rpar - | ||
| 1429 | ((tb-> | ||
| 1430 | rbytes != | ||
| 1431 | -1) ? 1 : | ||
| 1432 | 0)), -1, | ||
| 1433 | snum012 + RIGHT_SHIFT_NO_FLOW, NO_FLOW); | ||
| 1434 | if (!h) { | ||
| 1435 | int rnver1; | ||
| 1436 | |||
| 1437 | rnver1 = get_num_ver(vn->vn_mode, tb, h, | ||
| 1438 | 0, -1, | ||
| 1439 | (rpar - | ||
| 1440 | ((tb->rbytes != -1) ? 1 : 0)), | ||
| 1441 | tb->rbytes, | ||
| 1442 | snum012 + RIGHT_SHIFT_FLOW, FLOW); | ||
| 1443 | |||
| 1444 | if (rnver > rnver1) | ||
| 1445 | rset = RIGHT_SHIFT_FLOW, rnver = rnver1; | ||
| 1446 | } | ||
| 1440 | 1447 | ||
| 1441 | /* we can win TWO or ONE nodes by shifting in both directions */ | 1448 | /* calculate number of blocks S[h] must be split into when |
| 1442 | if (lrnver < lnver && lrnver < rnver) | 1449 | items are shifted in both directions, |
| 1443 | { | 1450 | as well as number of items in each part of the splitted node (s012 numbers), |
| 1444 | RFALSE( h && | 1451 | and number of bytes (s1bytes) of the shared drop which flow to S1 if any |
| 1445 | (tb->lnum[h] != 1 || | 1452 | */ |
| 1446 | tb->rnum[h] != 1 || | 1453 | lrset = LR_SHIFT_NO_FLOW; |
| 1447 | lrnver != 1 || rnver != 2 || lnver != 2 || h != 1), | 1454 | lrnver = get_num_ver(vn->vn_mode, tb, h, |
| 1448 | "vs-8230: bad h"); | 1455 | lpar - ((h || tb->lbytes == -1) ? 0 : 1), |
| 1449 | if (lrset == LR_SHIFT_FLOW) | 1456 | -1, |
| 1450 | set_parameters (tb, h, tb->lnum[h], tb->rnum[h], lrnver, snum012 + lrset, | 1457 | h ? (vn->vn_nr_item - rpar) : (rpar - |
| 1451 | tb->lbytes, tb->rbytes); | 1458 | ((tb-> |
| 1452 | else | 1459 | rbytes != |
| 1453 | set_parameters (tb, h, tb->lnum[h] - ((tb->lbytes == -1) ? 0 : 1), | 1460 | -1) ? 1 : |
| 1454 | tb->rnum[h] - ((tb->rbytes == -1) ? 0 : 1), lrnver, snum012 + lrset, -1, -1); | 1461 | 0)), -1, |
| 1455 | 1462 | snum012 + LR_SHIFT_NO_FLOW, NO_FLOW); | |
| 1456 | return CARRY_ON; | 1463 | if (!h) { |
| 1457 | } | 1464 | int lrnver1; |
| 1465 | |||
| 1466 | lrnver1 = get_num_ver(vn->vn_mode, tb, h, | ||
| 1467 | lpar - | ||
| 1468 | ((tb->lbytes != -1) ? 1 : 0), | ||
| 1469 | tb->lbytes, | ||
| 1470 | (rpar - | ||
| 1471 | ((tb->rbytes != -1) ? 1 : 0)), | ||
| 1472 | tb->rbytes, | ||
| 1473 | snum012 + LR_SHIFT_FLOW, FLOW); | ||
| 1474 | if (lrnver > lrnver1) | ||
| 1475 | lrset = LR_SHIFT_FLOW, lrnver = lrnver1; | ||
| 1476 | } | ||
| 1458 | 1477 | ||
| 1459 | /* if shifting doesn't lead to better packing then don't shift */ | 1478 | /* Our general shifting strategy is: |
| 1460 | if (nver == lrnver) | 1479 | 1) to minimized number of new nodes; |
| 1461 | { | 1480 | 2) to minimized number of neighbors involved in shifting; |
| 1462 | set_parameters (tb, h, 0, 0, nver, snum012 + nset, -1, -1); | 1481 | 3) to minimized number of disk reads; */ |
| 1463 | return CARRY_ON; | 1482 | |
| 1464 | } | 1483 | /* we can win TWO or ONE nodes by shifting in both directions */ |
| 1484 | if (lrnver < lnver && lrnver < rnver) { | ||
| 1485 | RFALSE(h && | ||
| 1486 | (tb->lnum[h] != 1 || | ||
| 1487 | tb->rnum[h] != 1 || | ||
| 1488 | lrnver != 1 || rnver != 2 || lnver != 2 | ||
| 1489 | || h != 1), "vs-8230: bad h"); | ||
| 1490 | if (lrset == LR_SHIFT_FLOW) | ||
| 1491 | set_parameters(tb, h, tb->lnum[h], tb->rnum[h], | ||
| 1492 | lrnver, snum012 + lrset, | ||
| 1493 | tb->lbytes, tb->rbytes); | ||
| 1494 | else | ||
| 1495 | set_parameters(tb, h, | ||
| 1496 | tb->lnum[h] - | ||
| 1497 | ((tb->lbytes == -1) ? 0 : 1), | ||
| 1498 | tb->rnum[h] - | ||
| 1499 | ((tb->rbytes == -1) ? 0 : 1), | ||
| 1500 | lrnver, snum012 + lrset, -1, -1); | ||
| 1501 | |||
| 1502 | return CARRY_ON; | ||
| 1503 | } | ||
| 1465 | 1504 | ||
| 1505 | /* if shifting doesn't lead to better packing then don't shift */ | ||
| 1506 | if (nver == lrnver) { | ||
| 1507 | set_parameters(tb, h, 0, 0, nver, snum012 + nset, -1, | ||
| 1508 | -1); | ||
| 1509 | return CARRY_ON; | ||
| 1510 | } | ||
| 1466 | 1511 | ||
| 1467 | /* now we know that for better packing shifting in only one | 1512 | /* now we know that for better packing shifting in only one |
| 1468 | direction either to the left or to the right is required */ | 1513 | direction either to the left or to the right is required */ |
| 1469 | 1514 | ||
| 1470 | /* if shifting to the left is better than shifting to the right */ | 1515 | /* if shifting to the left is better than shifting to the right */ |
| 1471 | if (lnver < rnver) | 1516 | if (lnver < rnver) { |
| 1472 | { | 1517 | SET_PAR_SHIFT_LEFT; |
| 1473 | SET_PAR_SHIFT_LEFT; | 1518 | return CARRY_ON; |
| 1474 | return CARRY_ON; | 1519 | } |
| 1475 | } | ||
| 1476 | 1520 | ||
| 1477 | /* if shifting to the right is better than shifting to the left */ | 1521 | /* if shifting to the right is better than shifting to the left */ |
| 1478 | if (lnver > rnver) | 1522 | if (lnver > rnver) { |
| 1479 | { | 1523 | SET_PAR_SHIFT_RIGHT; |
| 1480 | SET_PAR_SHIFT_RIGHT; | 1524 | return CARRY_ON; |
| 1481 | return CARRY_ON; | 1525 | } |
| 1482 | } | ||
| 1483 | 1526 | ||
| 1527 | /* now shifting in either direction gives the same number | ||
| 1528 | of nodes and we can make use of the cached neighbors */ | ||
| 1529 | if (is_left_neighbor_in_cache(tb, h)) { | ||
| 1530 | SET_PAR_SHIFT_LEFT; | ||
| 1531 | return CARRY_ON; | ||
| 1532 | } | ||
| 1484 | 1533 | ||
| 1485 | /* now shifting in either direction gives the same number | 1534 | /* shift to the right independently on whether the right neighbor in cache or not */ |
| 1486 | of nodes and we can make use of the cached neighbors */ | 1535 | SET_PAR_SHIFT_RIGHT; |
| 1487 | if (is_left_neighbor_in_cache (tb,h)) | 1536 | return CARRY_ON; |
| 1488 | { | ||
| 1489 | SET_PAR_SHIFT_LEFT; | ||
| 1490 | return CARRY_ON; | ||
| 1491 | } | 1537 | } |
| 1492 | |||
| 1493 | /* shift to the right independently on whether the right neighbor in cache or not */ | ||
| 1494 | SET_PAR_SHIFT_RIGHT; | ||
| 1495 | return CARRY_ON; | ||
| 1496 | } | ||
| 1497 | } | 1538 | } |
| 1498 | 1539 | ||
| 1499 | |||
| 1500 | /* Check whether current node S[h] is balanced when Decreasing its size by | 1540 | /* Check whether current node S[h] is balanced when Decreasing its size by |
| 1501 | * Deleting or Cutting for INTERNAL node of S+tree. | 1541 | * Deleting or Cutting for INTERNAL node of S+tree. |
| 1502 | * Calculate parameters for balancing for current level h. | 1542 | * Calculate parameters for balancing for current level h. |
| @@ -1513,157 +1553,173 @@ static int ip_check_balance (struct tree_balance * tb, int h) | |||
| 1513 | * Note: Items of internal nodes have fixed size, so the balance condition for | 1553 | * Note: Items of internal nodes have fixed size, so the balance condition for |
| 1514 | * the internal part of S+tree is as for the B-trees. | 1554 | * the internal part of S+tree is as for the B-trees. |
| 1515 | */ | 1555 | */ |
| 1516 | static int dc_check_balance_internal (struct tree_balance * tb, int h) | 1556 | static int dc_check_balance_internal(struct tree_balance *tb, int h) |
| 1517 | { | 1557 | { |
| 1518 | struct virtual_node * vn = tb->tb_vn; | 1558 | struct virtual_node *vn = tb->tb_vn; |
| 1519 | 1559 | ||
| 1520 | /* Sh is the node whose balance is currently being checked, | 1560 | /* Sh is the node whose balance is currently being checked, |
| 1521 | and Fh is its father. */ | 1561 | and Fh is its father. */ |
| 1522 | struct buffer_head * Sh, * Fh; | 1562 | struct buffer_head *Sh, *Fh; |
| 1523 | int maxsize, | 1563 | int maxsize, n_ret_value; |
| 1524 | n_ret_value; | 1564 | int lfree, rfree /* free space in L and R */ ; |
| 1525 | int lfree, rfree /* free space in L and R */; | ||
| 1526 | 1565 | ||
| 1527 | Sh = PATH_H_PBUFFER (tb->tb_path, h); | 1566 | Sh = PATH_H_PBUFFER(tb->tb_path, h); |
| 1528 | Fh = PATH_H_PPARENT (tb->tb_path, h); | 1567 | Fh = PATH_H_PPARENT(tb->tb_path, h); |
| 1529 | 1568 | ||
| 1530 | maxsize = MAX_CHILD_SIZE(Sh); | 1569 | maxsize = MAX_CHILD_SIZE(Sh); |
| 1531 | 1570 | ||
| 1532 | /* using tb->insert_size[h], which is negative in this case, create_virtual_node calculates: */ | 1571 | /* using tb->insert_size[h], which is negative in this case, create_virtual_node calculates: */ |
| 1533 | /* new_nr_item = number of items node would have if operation is */ | 1572 | /* new_nr_item = number of items node would have if operation is */ |
| 1534 | /* performed without balancing (new_nr_item); */ | 1573 | /* performed without balancing (new_nr_item); */ |
| 1535 | create_virtual_node (tb, h); | 1574 | create_virtual_node(tb, h); |
| 1536 | 1575 | ||
| 1537 | if ( ! Fh ) | 1576 | if (!Fh) { /* S[h] is the root. */ |
| 1538 | { /* S[h] is the root. */ | 1577 | if (vn->vn_nr_item > 0) { |
| 1539 | if ( vn->vn_nr_item > 0 ) | 1578 | set_parameters(tb, h, 0, 0, 1, NULL, -1, -1); |
| 1540 | { | 1579 | return NO_BALANCING_NEEDED; /* no balancing for higher levels needed */ |
| 1541 | set_parameters (tb, h, 0, 0, 1, NULL, -1, -1); | 1580 | } |
| 1542 | return NO_BALANCING_NEEDED; /* no balancing for higher levels needed */ | 1581 | /* new_nr_item == 0. |
| 1582 | * Current root will be deleted resulting in | ||
| 1583 | * decrementing the tree height. */ | ||
| 1584 | set_parameters(tb, h, 0, 0, 0, NULL, -1, -1); | ||
| 1585 | return CARRY_ON; | ||
| 1586 | } | ||
| 1587 | |||
| 1588 | if ((n_ret_value = get_parents(tb, h)) != CARRY_ON) | ||
| 1589 | return n_ret_value; | ||
| 1590 | |||
| 1591 | /* get free space of neighbors */ | ||
| 1592 | rfree = get_rfree(tb, h); | ||
| 1593 | lfree = get_lfree(tb, h); | ||
| 1594 | |||
| 1595 | /* determine maximal number of items we can fit into neighbors */ | ||
| 1596 | check_left(tb, h, lfree); | ||
| 1597 | check_right(tb, h, rfree); | ||
| 1598 | |||
| 1599 | if (vn->vn_nr_item >= MIN_NR_KEY(Sh)) { /* Balance condition for the internal node is valid. | ||
| 1600 | * In this case we balance only if it leads to better packing. */ | ||
| 1601 | if (vn->vn_nr_item == MIN_NR_KEY(Sh)) { /* Here we join S[h] with one of its neighbors, | ||
| 1602 | * which is impossible with greater values of new_nr_item. */ | ||
| 1603 | if (tb->lnum[h] >= vn->vn_nr_item + 1) { | ||
| 1604 | /* All contents of S[h] can be moved to L[h]. */ | ||
| 1605 | int n; | ||
| 1606 | int order_L; | ||
| 1607 | |||
| 1608 | order_L = | ||
| 1609 | ((n = | ||
| 1610 | PATH_H_B_ITEM_ORDER(tb->tb_path, | ||
| 1611 | h)) == | ||
| 1612 | 0) ? B_NR_ITEMS(tb->FL[h]) : n - 1; | ||
| 1613 | n = dc_size(B_N_CHILD(tb->FL[h], order_L)) / | ||
| 1614 | (DC_SIZE + KEY_SIZE); | ||
| 1615 | set_parameters(tb, h, -n - 1, 0, 0, NULL, -1, | ||
| 1616 | -1); | ||
| 1617 | return CARRY_ON; | ||
| 1618 | } | ||
| 1619 | |||
| 1620 | if (tb->rnum[h] >= vn->vn_nr_item + 1) { | ||
| 1621 | /* All contents of S[h] can be moved to R[h]. */ | ||
| 1622 | int n; | ||
| 1623 | int order_R; | ||
| 1624 | |||
| 1625 | order_R = | ||
| 1626 | ((n = | ||
| 1627 | PATH_H_B_ITEM_ORDER(tb->tb_path, | ||
| 1628 | h)) == | ||
| 1629 | B_NR_ITEMS(Fh)) ? 0 : n + 1; | ||
| 1630 | n = dc_size(B_N_CHILD(tb->FR[h], order_R)) / | ||
| 1631 | (DC_SIZE + KEY_SIZE); | ||
| 1632 | set_parameters(tb, h, 0, -n - 1, 0, NULL, -1, | ||
| 1633 | -1); | ||
| 1634 | return CARRY_ON; | ||
| 1635 | } | ||
| 1636 | } | ||
| 1637 | |||
| 1638 | if (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1) { | ||
| 1639 | /* All contents of S[h] can be moved to the neighbors (L[h] & R[h]). */ | ||
| 1640 | int to_r; | ||
| 1641 | |||
| 1642 | to_r = | ||
| 1643 | ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] - | ||
| 1644 | tb->rnum[h] + vn->vn_nr_item + 1) / 2 - | ||
| 1645 | (MAX_NR_KEY(Sh) + 1 - tb->rnum[h]); | ||
| 1646 | set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r, | ||
| 1647 | 0, NULL, -1, -1); | ||
| 1648 | return CARRY_ON; | ||
| 1649 | } | ||
| 1650 | |||
| 1651 | /* Balancing does not lead to better packing. */ | ||
| 1652 | set_parameters(tb, h, 0, 0, 1, NULL, -1, -1); | ||
| 1653 | return NO_BALANCING_NEEDED; | ||
| 1543 | } | 1654 | } |
| 1544 | /* new_nr_item == 0. | 1655 | |
| 1545 | * Current root will be deleted resulting in | 1656 | /* Current node contain insufficient number of items. Balancing is required. */ |
| 1546 | * decrementing the tree height. */ | 1657 | /* Check whether we can merge S[h] with left neighbor. */ |
| 1547 | set_parameters (tb, h, 0, 0, 0, NULL, -1, -1); | 1658 | if (tb->lnum[h] >= vn->vn_nr_item + 1) |
| 1548 | return CARRY_ON; | 1659 | if (is_left_neighbor_in_cache(tb, h) |
| 1549 | } | 1660 | || tb->rnum[h] < vn->vn_nr_item + 1 || !tb->FR[h]) { |
| 1550 | 1661 | int n; | |
| 1551 | if ( (n_ret_value = get_parents(tb,h)) != CARRY_ON ) | 1662 | int order_L; |
| 1552 | return n_ret_value; | 1663 | |
| 1553 | 1664 | order_L = | |
| 1554 | 1665 | ((n = | |
| 1555 | /* get free space of neighbors */ | 1666 | PATH_H_B_ITEM_ORDER(tb->tb_path, |
| 1556 | rfree = get_rfree (tb, h); | 1667 | h)) == |
| 1557 | lfree = get_lfree (tb, h); | 1668 | 0) ? B_NR_ITEMS(tb->FL[h]) : n - 1; |
| 1558 | 1669 | n = dc_size(B_N_CHILD(tb->FL[h], order_L)) / (DC_SIZE + | |
| 1559 | /* determine maximal number of items we can fit into neighbors */ | 1670 | KEY_SIZE); |
| 1560 | check_left (tb, h, lfree); | 1671 | set_parameters(tb, h, -n - 1, 0, 0, NULL, -1, -1); |
| 1561 | check_right (tb, h, rfree); | 1672 | return CARRY_ON; |
| 1562 | 1673 | } | |
| 1563 | 1674 | ||
| 1564 | if ( vn->vn_nr_item >= MIN_NR_KEY(Sh) ) | 1675 | /* Check whether we can merge S[h] with right neighbor. */ |
| 1565 | { /* Balance condition for the internal node is valid. | 1676 | if (tb->rnum[h] >= vn->vn_nr_item + 1) { |
| 1566 | * In this case we balance only if it leads to better packing. */ | 1677 | int n; |
| 1567 | if ( vn->vn_nr_item == MIN_NR_KEY(Sh) ) | 1678 | int order_R; |
| 1568 | { /* Here we join S[h] with one of its neighbors, | 1679 | |
| 1569 | * which is impossible with greater values of new_nr_item. */ | 1680 | order_R = |
| 1570 | if ( tb->lnum[h] >= vn->vn_nr_item + 1 ) | 1681 | ((n = |
| 1571 | { | 1682 | PATH_H_B_ITEM_ORDER(tb->tb_path, |
| 1572 | /* All contents of S[h] can be moved to L[h]. */ | 1683 | h)) == B_NR_ITEMS(Fh)) ? 0 : (n + 1); |
| 1573 | int n; | 1684 | n = dc_size(B_N_CHILD(tb->FR[h], order_R)) / (DC_SIZE + |
| 1574 | int order_L; | 1685 | KEY_SIZE); |
| 1575 | 1686 | set_parameters(tb, h, 0, -n - 1, 0, NULL, -1, -1); | |
| 1576 | order_L = ((n=PATH_H_B_ITEM_ORDER(tb->tb_path, h))==0) ? B_NR_ITEMS(tb->FL[h]) : n - 1; | 1687 | return CARRY_ON; |
| 1577 | n = dc_size(B_N_CHILD(tb->FL[h],order_L)) / (DC_SIZE + KEY_SIZE); | ||
| 1578 | set_parameters (tb, h, -n-1, 0, 0, NULL, -1, -1); | ||
| 1579 | return CARRY_ON; | ||
| 1580 | } | ||
| 1581 | |||
| 1582 | if ( tb->rnum[h] >= vn->vn_nr_item + 1 ) | ||
| 1583 | { | ||
| 1584 | /* All contents of S[h] can be moved to R[h]. */ | ||
| 1585 | int n; | ||
| 1586 | int order_R; | ||
| 1587 | |||
| 1588 | order_R = ((n=PATH_H_B_ITEM_ORDER(tb->tb_path, h))==B_NR_ITEMS(Fh)) ? 0 : n + 1; | ||
| 1589 | n = dc_size(B_N_CHILD(tb->FR[h],order_R)) / (DC_SIZE + KEY_SIZE); | ||
| 1590 | set_parameters (tb, h, 0, -n-1, 0, NULL, -1, -1); | ||
| 1591 | return CARRY_ON; | ||
| 1592 | } | ||
| 1593 | } | 1688 | } |
| 1594 | 1689 | ||
| 1595 | if (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1) | 1690 | /* All contents of S[h] can be moved to the neighbors (L[h] & R[h]). */ |
| 1596 | { | 1691 | if (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1) { |
| 1597 | /* All contents of S[h] can be moved to the neighbors (L[h] & R[h]). */ | 1692 | int to_r; |
| 1598 | int to_r; | 1693 | |
| 1694 | to_r = | ||
| 1695 | ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] - tb->rnum[h] + | ||
| 1696 | vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 - | ||
| 1697 | tb->rnum[h]); | ||
| 1698 | set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r, 0, NULL, | ||
| 1699 | -1, -1); | ||
| 1700 | return CARRY_ON; | ||
| 1701 | } | ||
| 1599 | 1702 | ||
| 1600 | to_r = ((MAX_NR_KEY(Sh)<<1)+2-tb->lnum[h]-tb->rnum[h]+vn->vn_nr_item+1)/2 - | 1703 | /* For internal nodes try to borrow item from a neighbor */ |
| 1601 | (MAX_NR_KEY(Sh) + 1 - tb->rnum[h]); | 1704 | RFALSE(!tb->FL[h] && !tb->FR[h], "vs-8235: trying to borrow for root"); |
| 1602 | set_parameters (tb, h, vn->vn_nr_item + 1 - to_r, to_r, 0, NULL, -1, -1); | 1705 | |
| 1603 | return CARRY_ON; | 1706 | /* Borrow one or two items from caching neighbor */ |
| 1707 | if (is_left_neighbor_in_cache(tb, h) || !tb->FR[h]) { | ||
| 1708 | int from_l; | ||
| 1709 | |||
| 1710 | from_l = | ||
| 1711 | (MAX_NR_KEY(Sh) + 1 - tb->lnum[h] + vn->vn_nr_item + | ||
| 1712 | 1) / 2 - (vn->vn_nr_item + 1); | ||
| 1713 | set_parameters(tb, h, -from_l, 0, 1, NULL, -1, -1); | ||
| 1714 | return CARRY_ON; | ||
| 1604 | } | 1715 | } |
| 1605 | 1716 | ||
| 1606 | /* Balancing does not lead to better packing. */ | 1717 | set_parameters(tb, h, 0, |
| 1607 | set_parameters (tb, h, 0, 0, 1, NULL, -1, -1); | 1718 | -((MAX_NR_KEY(Sh) + 1 - tb->rnum[h] + vn->vn_nr_item + |
| 1608 | return NO_BALANCING_NEEDED; | 1719 | 1) / 2 - (vn->vn_nr_item + 1)), 1, NULL, -1, -1); |
| 1609 | } | ||
| 1610 | |||
| 1611 | /* Current node contain insufficient number of items. Balancing is required. */ | ||
| 1612 | /* Check whether we can merge S[h] with left neighbor. */ | ||
| 1613 | if (tb->lnum[h] >= vn->vn_nr_item + 1) | ||
| 1614 | if (is_left_neighbor_in_cache (tb,h) || tb->rnum[h] < vn->vn_nr_item + 1 || !tb->FR[h]) | ||
| 1615 | { | ||
| 1616 | int n; | ||
| 1617 | int order_L; | ||
| 1618 | |||
| 1619 | order_L = ((n=PATH_H_B_ITEM_ORDER(tb->tb_path, h))==0) ? B_NR_ITEMS(tb->FL[h]) : n - 1; | ||
| 1620 | n = dc_size(B_N_CHILD(tb->FL[h],order_L)) / (DC_SIZE + KEY_SIZE); | ||
| 1621 | set_parameters (tb, h, -n-1, 0, 0, NULL, -1, -1); | ||
| 1622 | return CARRY_ON; | 1720 | return CARRY_ON; |
| 1623 | } | ||
| 1624 | |||
| 1625 | /* Check whether we can merge S[h] with right neighbor. */ | ||
| 1626 | if (tb->rnum[h] >= vn->vn_nr_item + 1) | ||
| 1627 | { | ||
| 1628 | int n; | ||
| 1629 | int order_R; | ||
| 1630 | |||
| 1631 | order_R = ((n=PATH_H_B_ITEM_ORDER(tb->tb_path, h))==B_NR_ITEMS(Fh)) ? 0 : (n + 1); | ||
| 1632 | n = dc_size(B_N_CHILD(tb->FR[h],order_R)) / (DC_SIZE + KEY_SIZE); | ||
| 1633 | set_parameters (tb, h, 0, -n-1, 0, NULL, -1, -1); | ||
| 1634 | return CARRY_ON; | ||
| 1635 | } | ||
| 1636 | |||
| 1637 | /* All contents of S[h] can be moved to the neighbors (L[h] & R[h]). */ | ||
| 1638 | if (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1) | ||
| 1639 | { | ||
| 1640 | int to_r; | ||
| 1641 | |||
| 1642 | to_r = ((MAX_NR_KEY(Sh)<<1)+2-tb->lnum[h]-tb->rnum[h]+vn->vn_nr_item+1)/2 - | ||
| 1643 | (MAX_NR_KEY(Sh) + 1 - tb->rnum[h]); | ||
| 1644 | set_parameters (tb, h, vn->vn_nr_item + 1 - to_r, to_r, 0, NULL, -1, -1); | ||
| 1645 | return CARRY_ON; | ||
| 1646 | } | ||
| 1647 | |||
| 1648 | /* For internal nodes try to borrow item from a neighbor */ | ||
| 1649 | RFALSE( !tb->FL[h] && !tb->FR[h], "vs-8235: trying to borrow for root"); | ||
| 1650 | |||
| 1651 | /* Borrow one or two items from caching neighbor */ | ||
| 1652 | if (is_left_neighbor_in_cache (tb,h) || !tb->FR[h]) | ||
| 1653 | { | ||
| 1654 | int from_l; | ||
| 1655 | |||
| 1656 | from_l = (MAX_NR_KEY(Sh) + 1 - tb->lnum[h] + vn->vn_nr_item + 1) / 2 - (vn->vn_nr_item + 1); | ||
| 1657 | set_parameters (tb, h, -from_l, 0, 1, NULL, -1, -1); | ||
| 1658 | return CARRY_ON; | ||
| 1659 | } | ||
| 1660 | |||
| 1661 | set_parameters (tb, h, 0, -((MAX_NR_KEY(Sh)+1-tb->rnum[h]+vn->vn_nr_item+1)/2-(vn->vn_nr_item+1)), 1, | ||
| 1662 | NULL, -1, -1); | ||
| 1663 | return CARRY_ON; | ||
| 1664 | } | 1721 | } |
| 1665 | 1722 | ||
| 1666 | |||
| 1667 | /* Check whether current node S[h] is balanced when Decreasing its size by | 1723 | /* Check whether current node S[h] is balanced when Decreasing its size by |
| 1668 | * Deleting or Truncating for LEAF node of S+tree. | 1724 | * Deleting or Truncating for LEAF node of S+tree. |
| 1669 | * Calculate parameters for balancing for current level h. | 1725 | * Calculate parameters for balancing for current level h. |
| @@ -1677,90 +1733,86 @@ static int dc_check_balance_internal (struct tree_balance * tb, int h) | |||
| 1677 | * -1 - no balancing for higher levels needed; | 1733 | * -1 - no balancing for higher levels needed; |
| 1678 | * -2 - no disk space. | 1734 | * -2 - no disk space. |
| 1679 | */ | 1735 | */ |
| 1680 | static int dc_check_balance_leaf (struct tree_balance * tb, int h) | 1736 | static int dc_check_balance_leaf(struct tree_balance *tb, int h) |
| 1681 | { | 1737 | { |
| 1682 | struct virtual_node * vn = tb->tb_vn; | 1738 | struct virtual_node *vn = tb->tb_vn; |
| 1683 | 1739 | ||
| 1684 | /* Number of bytes that must be deleted from | 1740 | /* Number of bytes that must be deleted from |
| 1685 | (value is negative if bytes are deleted) buffer which | 1741 | (value is negative if bytes are deleted) buffer which |
| 1686 | contains node being balanced. The mnemonic is that the | 1742 | contains node being balanced. The mnemonic is that the |
| 1687 | attempted change in node space used level is levbytes bytes. */ | 1743 | attempted change in node space used level is levbytes bytes. */ |
| 1688 | int levbytes; | 1744 | int levbytes; |
| 1689 | /* the maximal item size */ | 1745 | /* the maximal item size */ |
| 1690 | int maxsize, | 1746 | int maxsize, n_ret_value; |
| 1691 | n_ret_value; | 1747 | /* S0 is the node whose balance is currently being checked, |
| 1692 | /* S0 is the node whose balance is currently being checked, | 1748 | and F0 is its father. */ |
| 1693 | and F0 is its father. */ | 1749 | struct buffer_head *S0, *F0; |
| 1694 | struct buffer_head * S0, * F0; | 1750 | int lfree, rfree /* free space in L and R */ ; |
| 1695 | int lfree, rfree /* free space in L and R */; | 1751 | |
| 1696 | 1752 | S0 = PATH_H_PBUFFER(tb->tb_path, 0); | |
| 1697 | S0 = PATH_H_PBUFFER (tb->tb_path, 0); | 1753 | F0 = PATH_H_PPARENT(tb->tb_path, 0); |
| 1698 | F0 = PATH_H_PPARENT (tb->tb_path, 0); | ||
| 1699 | |||
| 1700 | levbytes = tb->insert_size[h]; | ||
| 1701 | |||
| 1702 | maxsize = MAX_CHILD_SIZE(S0); /* maximal possible size of an item */ | ||
| 1703 | |||
| 1704 | if ( ! F0 ) | ||
| 1705 | { /* S[0] is the root now. */ | ||
| 1706 | |||
| 1707 | RFALSE( -levbytes >= maxsize - B_FREE_SPACE (S0), | ||
| 1708 | "vs-8240: attempt to create empty buffer tree"); | ||
| 1709 | |||
| 1710 | set_parameters (tb, h, 0, 0, 1, NULL, -1, -1); | ||
| 1711 | return NO_BALANCING_NEEDED; | ||
| 1712 | } | ||
| 1713 | |||
| 1714 | if ( (n_ret_value = get_parents(tb,h)) != CARRY_ON ) | ||
| 1715 | return n_ret_value; | ||
| 1716 | |||
| 1717 | /* get free space of neighbors */ | ||
| 1718 | rfree = get_rfree (tb, h); | ||
| 1719 | lfree = get_lfree (tb, h); | ||
| 1720 | |||
| 1721 | create_virtual_node (tb, h); | ||
| 1722 | |||
| 1723 | /* if 3 leaves can be merge to one, set parameters and return */ | ||
| 1724 | if (are_leaves_removable (tb, lfree, rfree)) | ||
| 1725 | return CARRY_ON; | ||
| 1726 | |||
| 1727 | /* determine maximal number of items we can shift to the left/right neighbor | ||
| 1728 | and the maximal number of bytes that can flow to the left/right neighbor | ||
| 1729 | from the left/right most liquid item that cannot be shifted from S[0] entirely | ||
| 1730 | */ | ||
| 1731 | check_left (tb, h, lfree); | ||
| 1732 | check_right (tb, h, rfree); | ||
| 1733 | |||
| 1734 | /* check whether we can merge S with left neighbor. */ | ||
| 1735 | if (tb->lnum[0] >= vn->vn_nr_item && tb->lbytes == -1) | ||
| 1736 | if (is_left_neighbor_in_cache (tb,h) || | ||
| 1737 | ((tb->rnum[0] - ((tb->rbytes == -1) ? 0 : 1)) < vn->vn_nr_item) || /* S can not be merged with R */ | ||
| 1738 | !tb->FR[h]) { | ||
| 1739 | |||
| 1740 | RFALSE( !tb->FL[h], "vs-8245: dc_check_balance_leaf: FL[h] must exist"); | ||
| 1741 | |||
| 1742 | /* set parameter to merge S[0] with its left neighbor */ | ||
| 1743 | set_parameters (tb, h, -1, 0, 0, NULL, -1, -1); | ||
| 1744 | return CARRY_ON; | ||
| 1745 | } | ||
| 1746 | |||
| 1747 | /* check whether we can merge S[0] with right neighbor. */ | ||
| 1748 | if (tb->rnum[0] >= vn->vn_nr_item && tb->rbytes == -1) { | ||
| 1749 | set_parameters (tb, h, 0, -1, 0, NULL, -1, -1); | ||
| 1750 | return CARRY_ON; | ||
| 1751 | } | ||
| 1752 | |||
| 1753 | /* All contents of S[0] can be moved to the neighbors (L[0] & R[0]). Set parameters and return */ | ||
| 1754 | if (is_leaf_removable (tb)) | ||
| 1755 | return CARRY_ON; | ||
| 1756 | |||
| 1757 | /* Balancing is not required. */ | ||
| 1758 | tb->s0num = vn->vn_nr_item; | ||
| 1759 | set_parameters (tb, h, 0, 0, 1, NULL, -1, -1); | ||
| 1760 | return NO_BALANCING_NEEDED; | ||
| 1761 | } | ||
| 1762 | 1754 | ||
| 1755 | levbytes = tb->insert_size[h]; | ||
| 1763 | 1756 | ||
| 1757 | maxsize = MAX_CHILD_SIZE(S0); /* maximal possible size of an item */ | ||
| 1758 | |||
| 1759 | if (!F0) { /* S[0] is the root now. */ | ||
| 1760 | |||
| 1761 | RFALSE(-levbytes >= maxsize - B_FREE_SPACE(S0), | ||
| 1762 | "vs-8240: attempt to create empty buffer tree"); | ||
| 1763 | |||
| 1764 | set_parameters(tb, h, 0, 0, 1, NULL, -1, -1); | ||
| 1765 | return NO_BALANCING_NEEDED; | ||
| 1766 | } | ||
| 1767 | |||
| 1768 | if ((n_ret_value = get_parents(tb, h)) != CARRY_ON) | ||
| 1769 | return n_ret_value; | ||
| 1770 | |||
| 1771 | /* get free space of neighbors */ | ||
| 1772 | rfree = get_rfree(tb, h); | ||
| 1773 | lfree = get_lfree(tb, h); | ||
| 1774 | |||
| 1775 | create_virtual_node(tb, h); | ||
| 1776 | |||
| 1777 | /* if 3 leaves can be merge to one, set parameters and return */ | ||
| 1778 | if (are_leaves_removable(tb, lfree, rfree)) | ||
| 1779 | return CARRY_ON; | ||
| 1780 | |||
| 1781 | /* determine maximal number of items we can shift to the left/right neighbor | ||
| 1782 | and the maximal number of bytes that can flow to the left/right neighbor | ||
| 1783 | from the left/right most liquid item that cannot be shifted from S[0] entirely | ||
| 1784 | */ | ||
| 1785 | check_left(tb, h, lfree); | ||
| 1786 | check_right(tb, h, rfree); | ||
| 1787 | |||
| 1788 | /* check whether we can merge S with left neighbor. */ | ||
| 1789 | if (tb->lnum[0] >= vn->vn_nr_item && tb->lbytes == -1) | ||
| 1790 | if (is_left_neighbor_in_cache(tb, h) || ((tb->rnum[0] - ((tb->rbytes == -1) ? 0 : 1)) < vn->vn_nr_item) || /* S can not be merged with R */ | ||
| 1791 | !tb->FR[h]) { | ||
| 1792 | |||
| 1793 | RFALSE(!tb->FL[h], | ||
| 1794 | "vs-8245: dc_check_balance_leaf: FL[h] must exist"); | ||
| 1795 | |||
| 1796 | /* set parameter to merge S[0] with its left neighbor */ | ||
| 1797 | set_parameters(tb, h, -1, 0, 0, NULL, -1, -1); | ||
| 1798 | return CARRY_ON; | ||
| 1799 | } | ||
| 1800 | |||
| 1801 | /* check whether we can merge S[0] with right neighbor. */ | ||
| 1802 | if (tb->rnum[0] >= vn->vn_nr_item && tb->rbytes == -1) { | ||
| 1803 | set_parameters(tb, h, 0, -1, 0, NULL, -1, -1); | ||
| 1804 | return CARRY_ON; | ||
| 1805 | } | ||
| 1806 | |||
| 1807 | /* All contents of S[0] can be moved to the neighbors (L[0] & R[0]). Set parameters and return */ | ||
| 1808 | if (is_leaf_removable(tb)) | ||
| 1809 | return CARRY_ON; | ||
| 1810 | |||
| 1811 | /* Balancing is not required. */ | ||
| 1812 | tb->s0num = vn->vn_nr_item; | ||
| 1813 | set_parameters(tb, h, 0, 0, 1, NULL, -1, -1); | ||
| 1814 | return NO_BALANCING_NEEDED; | ||
| 1815 | } | ||
| 1764 | 1816 | ||
| 1765 | /* Check whether current node S[h] is balanced when Decreasing its size by | 1817 | /* Check whether current node S[h] is balanced when Decreasing its size by |
| 1766 | * Deleting or Cutting. | 1818 | * Deleting or Cutting. |
| @@ -1775,18 +1827,17 @@ static int dc_check_balance_leaf (struct tree_balance * tb, int h) | |||
| 1775 | * -1 - no balancing for higher levels needed; | 1827 | * -1 - no balancing for higher levels needed; |
| 1776 | * -2 - no disk space. | 1828 | * -2 - no disk space. |
| 1777 | */ | 1829 | */ |
| 1778 | static int dc_check_balance (struct tree_balance * tb, int h) | 1830 | static int dc_check_balance(struct tree_balance *tb, int h) |
| 1779 | { | 1831 | { |
| 1780 | RFALSE( ! (PATH_H_PBUFFER (tb->tb_path, h)), "vs-8250: S is not initialized"); | 1832 | RFALSE(!(PATH_H_PBUFFER(tb->tb_path, h)), |
| 1833 | "vs-8250: S is not initialized"); | ||
| 1781 | 1834 | ||
| 1782 | if ( h ) | 1835 | if (h) |
| 1783 | return dc_check_balance_internal (tb, h); | 1836 | return dc_check_balance_internal(tb, h); |
| 1784 | else | 1837 | else |
| 1785 | return dc_check_balance_leaf (tb, h); | 1838 | return dc_check_balance_leaf(tb, h); |
| 1786 | } | 1839 | } |
| 1787 | 1840 | ||
| 1788 | |||
| 1789 | |||
| 1790 | /* Check whether current node S[h] is balanced. | 1841 | /* Check whether current node S[h] is balanced. |
| 1791 | * Calculate parameters for balancing for current level h. | 1842 | * Calculate parameters for balancing for current level h. |
| 1792 | * Parameters: | 1843 | * Parameters: |
| @@ -1805,83 +1856,80 @@ static int dc_check_balance (struct tree_balance * tb, int h) | |||
| 1805 | * -1 - no balancing for higher levels needed; | 1856 | * -1 - no balancing for higher levels needed; |
| 1806 | * -2 - no disk space. | 1857 | * -2 - no disk space. |
| 1807 | */ | 1858 | */ |
| 1808 | static int check_balance (int mode, | 1859 | static int check_balance(int mode, |
| 1809 | struct tree_balance * tb, | 1860 | struct tree_balance *tb, |
| 1810 | int h, | 1861 | int h, |
| 1811 | int inum, | 1862 | int inum, |
| 1812 | int pos_in_item, | 1863 | int pos_in_item, |
| 1813 | struct item_head * ins_ih, | 1864 | struct item_head *ins_ih, const void *data) |
| 1814 | const void * data | ||
| 1815 | ) | ||
| 1816 | { | 1865 | { |
| 1817 | struct virtual_node * vn; | 1866 | struct virtual_node *vn; |
| 1818 | 1867 | ||
| 1819 | vn = tb->tb_vn = (struct virtual_node *)(tb->vn_buf); | 1868 | vn = tb->tb_vn = (struct virtual_node *)(tb->vn_buf); |
| 1820 | vn->vn_free_ptr = (char *)(tb->tb_vn + 1); | 1869 | vn->vn_free_ptr = (char *)(tb->tb_vn + 1); |
| 1821 | vn->vn_mode = mode; | 1870 | vn->vn_mode = mode; |
| 1822 | vn->vn_affected_item_num = inum; | 1871 | vn->vn_affected_item_num = inum; |
| 1823 | vn->vn_pos_in_item = pos_in_item; | 1872 | vn->vn_pos_in_item = pos_in_item; |
| 1824 | vn->vn_ins_ih = ins_ih; | 1873 | vn->vn_ins_ih = ins_ih; |
| 1825 | vn->vn_data = data; | 1874 | vn->vn_data = data; |
| 1826 | 1875 | ||
| 1827 | RFALSE( mode == M_INSERT && !vn->vn_ins_ih, | 1876 | RFALSE(mode == M_INSERT && !vn->vn_ins_ih, |
| 1828 | "vs-8255: ins_ih can not be 0 in insert mode"); | 1877 | "vs-8255: ins_ih can not be 0 in insert mode"); |
| 1829 | 1878 | ||
| 1830 | if ( tb->insert_size[h] > 0 ) | 1879 | if (tb->insert_size[h] > 0) |
| 1831 | /* Calculate balance parameters when size of node is increasing. */ | 1880 | /* Calculate balance parameters when size of node is increasing. */ |
| 1832 | return ip_check_balance (tb, h); | 1881 | return ip_check_balance(tb, h); |
| 1833 | 1882 | ||
| 1834 | /* Calculate balance parameters when size of node is decreasing. */ | 1883 | /* Calculate balance parameters when size of node is decreasing. */ |
| 1835 | return dc_check_balance (tb, h); | 1884 | return dc_check_balance(tb, h); |
| 1836 | } | 1885 | } |
| 1837 | 1886 | ||
| 1887 | /* Check whether parent at the path is the really parent of the current node.*/ | ||
| 1888 | static int get_direct_parent(struct tree_balance *p_s_tb, int n_h) | ||
| 1889 | { | ||
| 1890 | struct buffer_head *p_s_bh; | ||
| 1891 | struct path *p_s_path = p_s_tb->tb_path; | ||
| 1892 | int n_position, | ||
| 1893 | n_path_offset = PATH_H_PATH_OFFSET(p_s_tb->tb_path, n_h); | ||
| 1894 | |||
| 1895 | /* We are in the root or in the new root. */ | ||
| 1896 | if (n_path_offset <= FIRST_PATH_ELEMENT_OFFSET) { | ||
| 1897 | |||
| 1898 | RFALSE(n_path_offset < FIRST_PATH_ELEMENT_OFFSET - 1, | ||
| 1899 | "PAP-8260: invalid offset in the path"); | ||
| 1900 | |||
| 1901 | if (PATH_OFFSET_PBUFFER(p_s_path, FIRST_PATH_ELEMENT_OFFSET)-> | ||
| 1902 | b_blocknr == SB_ROOT_BLOCK(p_s_tb->tb_sb)) { | ||
| 1903 | /* Root is not changed. */ | ||
| 1904 | PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1) = NULL; | ||
| 1905 | PATH_OFFSET_POSITION(p_s_path, n_path_offset - 1) = 0; | ||
| 1906 | return CARRY_ON; | ||
| 1907 | } | ||
| 1908 | return REPEAT_SEARCH; /* Root is changed and we must recalculate the path. */ | ||
| 1909 | } | ||
| 1910 | |||
| 1911 | if (!B_IS_IN_TREE | ||
| 1912 | (p_s_bh = PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1))) | ||
| 1913 | return REPEAT_SEARCH; /* Parent in the path is not in the tree. */ | ||
| 1838 | 1914 | ||
| 1915 | if ((n_position = | ||
| 1916 | PATH_OFFSET_POSITION(p_s_path, | ||
| 1917 | n_path_offset - 1)) > B_NR_ITEMS(p_s_bh)) | ||
| 1918 | return REPEAT_SEARCH; | ||
| 1839 | 1919 | ||
| 1840 | /* Check whether parent at the path is the really parent of the current node.*/ | 1920 | if (B_N_CHILD_NUM(p_s_bh, n_position) != |
| 1841 | static int get_direct_parent( | 1921 | PATH_OFFSET_PBUFFER(p_s_path, n_path_offset)->b_blocknr) |
| 1842 | struct tree_balance * p_s_tb, | 1922 | /* Parent in the path is not parent of the current node in the tree. */ |
| 1843 | int n_h | 1923 | return REPEAT_SEARCH; |
| 1844 | ) { | 1924 | |
| 1845 | struct buffer_head * p_s_bh; | 1925 | if (buffer_locked(p_s_bh)) { |
| 1846 | struct path * p_s_path = p_s_tb->tb_path; | 1926 | __wait_on_buffer(p_s_bh); |
| 1847 | int n_position, | 1927 | if (FILESYSTEM_CHANGED_TB(p_s_tb)) |
| 1848 | n_path_offset = PATH_H_PATH_OFFSET(p_s_tb->tb_path, n_h); | 1928 | return REPEAT_SEARCH; |
| 1849 | |||
| 1850 | /* We are in the root or in the new root. */ | ||
| 1851 | if ( n_path_offset <= FIRST_PATH_ELEMENT_OFFSET ) { | ||
| 1852 | |||
| 1853 | RFALSE( n_path_offset < FIRST_PATH_ELEMENT_OFFSET - 1, | ||
| 1854 | "PAP-8260: invalid offset in the path"); | ||
| 1855 | |||
| 1856 | if ( PATH_OFFSET_PBUFFER(p_s_path, FIRST_PATH_ELEMENT_OFFSET)->b_blocknr == | ||
| 1857 | SB_ROOT_BLOCK (p_s_tb->tb_sb) ) { | ||
| 1858 | /* Root is not changed. */ | ||
| 1859 | PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1) = NULL; | ||
| 1860 | PATH_OFFSET_POSITION(p_s_path, n_path_offset - 1) = 0; | ||
| 1861 | return CARRY_ON; | ||
| 1862 | } | 1929 | } |
| 1863 | return REPEAT_SEARCH; /* Root is changed and we must recalculate the path. */ | ||
| 1864 | } | ||
| 1865 | |||
| 1866 | if ( ! B_IS_IN_TREE(p_s_bh = PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1)) ) | ||
| 1867 | return REPEAT_SEARCH; /* Parent in the path is not in the tree. */ | ||
| 1868 | |||
| 1869 | if ( (n_position = PATH_OFFSET_POSITION(p_s_path, n_path_offset - 1)) > B_NR_ITEMS(p_s_bh) ) | ||
| 1870 | return REPEAT_SEARCH; | ||
| 1871 | |||
| 1872 | if ( B_N_CHILD_NUM(p_s_bh, n_position) != PATH_OFFSET_PBUFFER(p_s_path, n_path_offset)->b_blocknr ) | ||
| 1873 | /* Parent in the path is not parent of the current node in the tree. */ | ||
| 1874 | return REPEAT_SEARCH; | ||
| 1875 | |||
| 1876 | if ( buffer_locked(p_s_bh) ) { | ||
| 1877 | __wait_on_buffer(p_s_bh); | ||
| 1878 | if ( FILESYSTEM_CHANGED_TB (p_s_tb) ) | ||
| 1879 | return REPEAT_SEARCH; | ||
| 1880 | } | ||
| 1881 | |||
| 1882 | return CARRY_ON; /* Parent in the path is unlocked and really parent of the current node. */ | ||
| 1883 | } | ||
| 1884 | 1930 | ||
| 1931 | return CARRY_ON; /* Parent in the path is unlocked and really parent of the current node. */ | ||
| 1932 | } | ||
| 1885 | 1933 | ||
| 1886 | /* Using lnum[n_h] and rnum[n_h] we should determine what neighbors | 1934 | /* Using lnum[n_h] and rnum[n_h] we should determine what neighbors |
| 1887 | * of S[n_h] we | 1935 | * of S[n_h] we |
| @@ -1889,356 +1937,401 @@ static int get_direct_parent( | |||
| 1889 | * Returns: SCHEDULE_OCCURRED - schedule occurred while the function worked; | 1937 | * Returns: SCHEDULE_OCCURRED - schedule occurred while the function worked; |
| 1890 | * CARRY_ON - schedule didn't occur while the function worked; | 1938 | * CARRY_ON - schedule didn't occur while the function worked; |
| 1891 | */ | 1939 | */ |
| 1892 | static int get_neighbors( | 1940 | static int get_neighbors(struct tree_balance *p_s_tb, int n_h) |
| 1893 | struct tree_balance * p_s_tb, | 1941 | { |
| 1894 | int n_h | 1942 | int n_child_position, |
| 1895 | ) { | 1943 | n_path_offset = PATH_H_PATH_OFFSET(p_s_tb->tb_path, n_h + 1); |
| 1896 | int n_child_position, | 1944 | unsigned long n_son_number; |
| 1897 | n_path_offset = PATH_H_PATH_OFFSET(p_s_tb->tb_path, n_h + 1); | 1945 | struct super_block *p_s_sb = p_s_tb->tb_sb; |
| 1898 | unsigned long n_son_number; | 1946 | struct buffer_head *p_s_bh; |
| 1899 | struct super_block * p_s_sb = p_s_tb->tb_sb; | 1947 | |
| 1900 | struct buffer_head * p_s_bh; | 1948 | PROC_INFO_INC(p_s_sb, get_neighbors[n_h]); |
| 1901 | 1949 | ||
| 1902 | 1950 | if (p_s_tb->lnum[n_h]) { | |
| 1903 | PROC_INFO_INC( p_s_sb, get_neighbors[ n_h ] ); | 1951 | /* We need left neighbor to balance S[n_h]. */ |
| 1904 | 1952 | PROC_INFO_INC(p_s_sb, need_l_neighbor[n_h]); | |
| 1905 | if ( p_s_tb->lnum[n_h] ) { | 1953 | p_s_bh = PATH_OFFSET_PBUFFER(p_s_tb->tb_path, n_path_offset); |
| 1906 | /* We need left neighbor to balance S[n_h]. */ | 1954 | |
| 1907 | PROC_INFO_INC( p_s_sb, need_l_neighbor[ n_h ] ); | 1955 | RFALSE(p_s_bh == p_s_tb->FL[n_h] && |
| 1908 | p_s_bh = PATH_OFFSET_PBUFFER(p_s_tb->tb_path, n_path_offset); | 1956 | !PATH_OFFSET_POSITION(p_s_tb->tb_path, n_path_offset), |
| 1909 | 1957 | "PAP-8270: invalid position in the parent"); | |
| 1910 | RFALSE( p_s_bh == p_s_tb->FL[n_h] && | 1958 | |
| 1911 | ! PATH_OFFSET_POSITION(p_s_tb->tb_path, n_path_offset), | 1959 | n_child_position = |
| 1912 | "PAP-8270: invalid position in the parent"); | 1960 | (p_s_bh == |
| 1913 | 1961 | p_s_tb->FL[n_h]) ? p_s_tb->lkey[n_h] : B_NR_ITEMS(p_s_tb-> | |
| 1914 | n_child_position = ( p_s_bh == p_s_tb->FL[n_h] ) ? p_s_tb->lkey[n_h] : B_NR_ITEMS (p_s_tb->FL[n_h]); | 1962 | FL[n_h]); |
| 1915 | n_son_number = B_N_CHILD_NUM(p_s_tb->FL[n_h], n_child_position); | 1963 | n_son_number = B_N_CHILD_NUM(p_s_tb->FL[n_h], n_child_position); |
| 1916 | p_s_bh = sb_bread(p_s_sb, n_son_number); | 1964 | p_s_bh = sb_bread(p_s_sb, n_son_number); |
| 1917 | if (!p_s_bh) | 1965 | if (!p_s_bh) |
| 1918 | return IO_ERROR; | 1966 | return IO_ERROR; |
| 1919 | if ( FILESYSTEM_CHANGED_TB (p_s_tb) ) { | 1967 | if (FILESYSTEM_CHANGED_TB(p_s_tb)) { |
| 1920 | decrement_bcount(p_s_bh); | 1968 | decrement_bcount(p_s_bh); |
| 1921 | PROC_INFO_INC( p_s_sb, get_neighbors_restart[ n_h ] ); | 1969 | PROC_INFO_INC(p_s_sb, get_neighbors_restart[n_h]); |
| 1922 | return REPEAT_SEARCH; | 1970 | return REPEAT_SEARCH; |
| 1971 | } | ||
| 1972 | |||
| 1973 | RFALSE(!B_IS_IN_TREE(p_s_tb->FL[n_h]) || | ||
| 1974 | n_child_position > B_NR_ITEMS(p_s_tb->FL[n_h]) || | ||
| 1975 | B_N_CHILD_NUM(p_s_tb->FL[n_h], n_child_position) != | ||
| 1976 | p_s_bh->b_blocknr, "PAP-8275: invalid parent"); | ||
| 1977 | RFALSE(!B_IS_IN_TREE(p_s_bh), "PAP-8280: invalid child"); | ||
| 1978 | RFALSE(!n_h && | ||
| 1979 | B_FREE_SPACE(p_s_bh) != | ||
| 1980 | MAX_CHILD_SIZE(p_s_bh) - | ||
| 1981 | dc_size(B_N_CHILD(p_s_tb->FL[0], n_child_position)), | ||
| 1982 | "PAP-8290: invalid child size of left neighbor"); | ||
| 1983 | |||
| 1984 | decrement_bcount(p_s_tb->L[n_h]); | ||
| 1985 | p_s_tb->L[n_h] = p_s_bh; | ||
| 1923 | } | 1986 | } |
| 1924 | 1987 | ||
| 1925 | RFALSE( ! B_IS_IN_TREE(p_s_tb->FL[n_h]) || | 1988 | if (p_s_tb->rnum[n_h]) { /* We need right neighbor to balance S[n_path_offset]. */ |
| 1926 | n_child_position > B_NR_ITEMS(p_s_tb->FL[n_h]) || | 1989 | PROC_INFO_INC(p_s_sb, need_r_neighbor[n_h]); |
| 1927 | B_N_CHILD_NUM(p_s_tb->FL[n_h], n_child_position) != | 1990 | p_s_bh = PATH_OFFSET_PBUFFER(p_s_tb->tb_path, n_path_offset); |
| 1928 | p_s_bh->b_blocknr, "PAP-8275: invalid parent"); | 1991 | |
| 1929 | RFALSE( ! B_IS_IN_TREE(p_s_bh), "PAP-8280: invalid child"); | 1992 | RFALSE(p_s_bh == p_s_tb->FR[n_h] && |
| 1930 | RFALSE( ! n_h && | 1993 | PATH_OFFSET_POSITION(p_s_tb->tb_path, |
| 1931 | B_FREE_SPACE (p_s_bh) != MAX_CHILD_SIZE (p_s_bh) - dc_size(B_N_CHILD (p_s_tb->FL[0],n_child_position)), | 1994 | n_path_offset) >= |
| 1932 | "PAP-8290: invalid child size of left neighbor"); | 1995 | B_NR_ITEMS(p_s_bh), |
| 1933 | 1996 | "PAP-8295: invalid position in the parent"); | |
| 1934 | decrement_bcount(p_s_tb->L[n_h]); | 1997 | |
| 1935 | p_s_tb->L[n_h] = p_s_bh; | 1998 | n_child_position = |
| 1936 | } | 1999 | (p_s_bh == p_s_tb->FR[n_h]) ? p_s_tb->rkey[n_h] + 1 : 0; |
| 1937 | 2000 | n_son_number = B_N_CHILD_NUM(p_s_tb->FR[n_h], n_child_position); | |
| 1938 | 2001 | p_s_bh = sb_bread(p_s_sb, n_son_number); | |
| 1939 | if ( p_s_tb->rnum[n_h] ) { /* We need right neighbor to balance S[n_path_offset]. */ | 2002 | if (!p_s_bh) |
| 1940 | PROC_INFO_INC( p_s_sb, need_r_neighbor[ n_h ] ); | 2003 | return IO_ERROR; |
| 1941 | p_s_bh = PATH_OFFSET_PBUFFER(p_s_tb->tb_path, n_path_offset); | 2004 | if (FILESYSTEM_CHANGED_TB(p_s_tb)) { |
| 1942 | 2005 | decrement_bcount(p_s_bh); | |
| 1943 | RFALSE( p_s_bh == p_s_tb->FR[n_h] && | 2006 | PROC_INFO_INC(p_s_sb, get_neighbors_restart[n_h]); |
| 1944 | PATH_OFFSET_POSITION(p_s_tb->tb_path, n_path_offset) >= B_NR_ITEMS(p_s_bh), | 2007 | return REPEAT_SEARCH; |
| 1945 | "PAP-8295: invalid position in the parent"); | 2008 | } |
| 1946 | 2009 | decrement_bcount(p_s_tb->R[n_h]); | |
| 1947 | n_child_position = ( p_s_bh == p_s_tb->FR[n_h] ) ? p_s_tb->rkey[n_h] + 1 : 0; | 2010 | p_s_tb->R[n_h] = p_s_bh; |
| 1948 | n_son_number = B_N_CHILD_NUM(p_s_tb->FR[n_h], n_child_position); | 2011 | |
| 1949 | p_s_bh = sb_bread(p_s_sb, n_son_number); | 2012 | RFALSE(!n_h |
| 1950 | if (!p_s_bh) | 2013 | && B_FREE_SPACE(p_s_bh) != |
| 1951 | return IO_ERROR; | 2014 | MAX_CHILD_SIZE(p_s_bh) - |
| 1952 | if ( FILESYSTEM_CHANGED_TB (p_s_tb) ) { | 2015 | dc_size(B_N_CHILD(p_s_tb->FR[0], n_child_position)), |
| 1953 | decrement_bcount(p_s_bh); | 2016 | "PAP-8300: invalid child size of right neighbor (%d != %d - %d)", |
| 1954 | PROC_INFO_INC( p_s_sb, get_neighbors_restart[ n_h ] ); | 2017 | B_FREE_SPACE(p_s_bh), MAX_CHILD_SIZE(p_s_bh), |
| 1955 | return REPEAT_SEARCH; | 2018 | dc_size(B_N_CHILD(p_s_tb->FR[0], n_child_position))); |
| 2019 | |||
| 1956 | } | 2020 | } |
| 1957 | decrement_bcount(p_s_tb->R[n_h]); | 2021 | return CARRY_ON; |
| 1958 | p_s_tb->R[n_h] = p_s_bh; | ||
| 1959 | |||
| 1960 | RFALSE( ! n_h && B_FREE_SPACE (p_s_bh) != MAX_CHILD_SIZE (p_s_bh) - dc_size(B_N_CHILD (p_s_tb->FR[0],n_child_position)), | ||
| 1961 | "PAP-8300: invalid child size of right neighbor (%d != %d - %d)", | ||
| 1962 | B_FREE_SPACE (p_s_bh), MAX_CHILD_SIZE (p_s_bh), | ||
| 1963 | dc_size(B_N_CHILD (p_s_tb->FR[0],n_child_position))); | ||
| 1964 | |||
| 1965 | } | ||
| 1966 | return CARRY_ON; | ||
| 1967 | } | 2022 | } |
| 1968 | 2023 | ||
| 1969 | #ifdef CONFIG_REISERFS_CHECK | 2024 | #ifdef CONFIG_REISERFS_CHECK |
| 1970 | void * reiserfs_kmalloc (size_t size, int flags, struct super_block * s) | 2025 | void *reiserfs_kmalloc(size_t size, int flags, struct super_block *s) |
| 1971 | { | 2026 | { |
| 1972 | void * vp; | 2027 | void *vp; |
| 1973 | static size_t malloced; | 2028 | static size_t malloced; |
| 1974 | 2029 | ||
| 1975 | 2030 | vp = kmalloc(size, flags); | |
| 1976 | vp = kmalloc (size, flags); | 2031 | if (vp) { |
| 1977 | if (vp) { | 2032 | REISERFS_SB(s)->s_kmallocs += size; |
| 1978 | REISERFS_SB(s)->s_kmallocs += size; | 2033 | if (REISERFS_SB(s)->s_kmallocs > malloced + 200000) { |
| 1979 | if (REISERFS_SB(s)->s_kmallocs > malloced + 200000) { | 2034 | reiserfs_warning(s, |
| 1980 | reiserfs_warning (s, | 2035 | "vs-8301: reiserfs_kmalloc: allocated memory %d", |
| 1981 | "vs-8301: reiserfs_kmalloc: allocated memory %d", | 2036 | REISERFS_SB(s)->s_kmallocs); |
| 1982 | REISERFS_SB(s)->s_kmallocs); | 2037 | malloced = REISERFS_SB(s)->s_kmallocs; |
| 1983 | malloced = REISERFS_SB(s)->s_kmallocs; | 2038 | } |
| 1984 | } | 2039 | } |
| 1985 | } | 2040 | return vp; |
| 1986 | return vp; | ||
| 1987 | } | 2041 | } |
| 1988 | 2042 | ||
| 1989 | void reiserfs_kfree (const void * vp, size_t size, struct super_block * s) | 2043 | void reiserfs_kfree(const void *vp, size_t size, struct super_block *s) |
| 1990 | { | 2044 | { |
| 1991 | kfree (vp); | 2045 | kfree(vp); |
| 1992 | 2046 | ||
| 1993 | REISERFS_SB(s)->s_kmallocs -= size; | 2047 | REISERFS_SB(s)->s_kmallocs -= size; |
| 1994 | if (REISERFS_SB(s)->s_kmallocs < 0) | 2048 | if (REISERFS_SB(s)->s_kmallocs < 0) |
| 1995 | reiserfs_warning (s, "vs-8302: reiserfs_kfree: allocated memory %d", | 2049 | reiserfs_warning(s, |
| 1996 | REISERFS_SB(s)->s_kmallocs); | 2050 | "vs-8302: reiserfs_kfree: allocated memory %d", |
| 2051 | REISERFS_SB(s)->s_kmallocs); | ||
| 1997 | 2052 | ||
| 1998 | } | 2053 | } |
| 1999 | #endif | 2054 | #endif |
| 2000 | 2055 | ||
| 2001 | 2056 | static int get_virtual_node_size(struct super_block *sb, struct buffer_head *bh) | |
| 2002 | static int get_virtual_node_size (struct super_block * sb, struct buffer_head * bh) | ||
| 2003 | { | 2057 | { |
| 2004 | int max_num_of_items; | 2058 | int max_num_of_items; |
| 2005 | int max_num_of_entries; | 2059 | int max_num_of_entries; |
| 2006 | unsigned long blocksize = sb->s_blocksize; | 2060 | unsigned long blocksize = sb->s_blocksize; |
| 2007 | 2061 | ||
| 2008 | #define MIN_NAME_LEN 1 | 2062 | #define MIN_NAME_LEN 1 |
| 2009 | 2063 | ||
| 2010 | max_num_of_items = (blocksize - BLKH_SIZE) / (IH_SIZE + MIN_ITEM_LEN); | 2064 | max_num_of_items = (blocksize - BLKH_SIZE) / (IH_SIZE + MIN_ITEM_LEN); |
| 2011 | max_num_of_entries = (blocksize - BLKH_SIZE - IH_SIZE) / | 2065 | max_num_of_entries = (blocksize - BLKH_SIZE - IH_SIZE) / |
| 2012 | (DEH_SIZE + MIN_NAME_LEN); | 2066 | (DEH_SIZE + MIN_NAME_LEN); |
| 2013 | 2067 | ||
| 2014 | return sizeof(struct virtual_node) + | 2068 | return sizeof(struct virtual_node) + |
| 2015 | max(max_num_of_items * sizeof (struct virtual_item), | 2069 | max(max_num_of_items * sizeof(struct virtual_item), |
| 2016 | sizeof (struct virtual_item) + sizeof(struct direntry_uarea) + | 2070 | sizeof(struct virtual_item) + sizeof(struct direntry_uarea) + |
| 2017 | (max_num_of_entries - 1) * sizeof (__u16)); | 2071 | (max_num_of_entries - 1) * sizeof(__u16)); |
| 2018 | } | 2072 | } |
| 2019 | 2073 | ||
| 2020 | |||
| 2021 | |||
| 2022 | /* maybe we should fail balancing we are going to perform when kmalloc | 2074 | /* maybe we should fail balancing we are going to perform when kmalloc |
| 2023 | fails several times. But now it will loop until kmalloc gets | 2075 | fails several times. But now it will loop until kmalloc gets |
| 2024 | required memory */ | 2076 | required memory */ |
| 2025 | static int get_mem_for_virtual_node (struct tree_balance * tb) | 2077 | static int get_mem_for_virtual_node(struct tree_balance *tb) |
| 2026 | { | 2078 | { |
| 2027 | int check_fs = 0; | 2079 | int check_fs = 0; |
| 2028 | int size; | 2080 | int size; |
| 2029 | char * buf; | 2081 | char *buf; |
| 2030 | 2082 | ||
| 2031 | size = get_virtual_node_size (tb->tb_sb, PATH_PLAST_BUFFER (tb->tb_path)); | 2083 | size = get_virtual_node_size(tb->tb_sb, PATH_PLAST_BUFFER(tb->tb_path)); |
| 2032 | 2084 | ||
| 2033 | if (size > tb->vn_buf_size) { | 2085 | if (size > tb->vn_buf_size) { |
| 2034 | /* we have to allocate more memory for virtual node */ | 2086 | /* we have to allocate more memory for virtual node */ |
| 2035 | if (tb->vn_buf) { | 2087 | if (tb->vn_buf) { |
| 2036 | /* free memory allocated before */ | 2088 | /* free memory allocated before */ |
| 2037 | reiserfs_kfree (tb->vn_buf, tb->vn_buf_size, tb->tb_sb); | 2089 | reiserfs_kfree(tb->vn_buf, tb->vn_buf_size, tb->tb_sb); |
| 2038 | /* this is not needed if kfree is atomic */ | 2090 | /* this is not needed if kfree is atomic */ |
| 2039 | check_fs = 1; | 2091 | check_fs = 1; |
| 2040 | } | 2092 | } |
| 2041 | 2093 | ||
| 2042 | /* virtual node requires now more memory */ | 2094 | /* virtual node requires now more memory */ |
| 2043 | tb->vn_buf_size = size; | 2095 | tb->vn_buf_size = size; |
| 2044 | 2096 | ||
| 2045 | /* get memory for virtual item */ | 2097 | /* get memory for virtual item */ |
| 2046 | buf = reiserfs_kmalloc(size, GFP_ATOMIC | __GFP_NOWARN, tb->tb_sb); | 2098 | buf = |
| 2047 | if ( ! buf ) { | 2099 | reiserfs_kmalloc(size, GFP_ATOMIC | __GFP_NOWARN, |
| 2048 | /* getting memory with GFP_KERNEL priority may involve | 2100 | tb->tb_sb); |
| 2049 | balancing now (due to indirect_to_direct conversion on | 2101 | if (!buf) { |
| 2050 | dcache shrinking). So, release path and collected | 2102 | /* getting memory with GFP_KERNEL priority may involve |
| 2051 | resources here */ | 2103 | balancing now (due to indirect_to_direct conversion on |
| 2052 | free_buffers_in_tb (tb); | 2104 | dcache shrinking). So, release path and collected |
| 2053 | buf = reiserfs_kmalloc(size, GFP_NOFS, tb->tb_sb); | 2105 | resources here */ |
| 2054 | if ( !buf ) { | 2106 | free_buffers_in_tb(tb); |
| 2107 | buf = reiserfs_kmalloc(size, GFP_NOFS, tb->tb_sb); | ||
| 2108 | if (!buf) { | ||
| 2055 | #ifdef CONFIG_REISERFS_CHECK | 2109 | #ifdef CONFIG_REISERFS_CHECK |
| 2056 | reiserfs_warning (tb->tb_sb, | 2110 | reiserfs_warning(tb->tb_sb, |
| 2057 | "vs-8345: get_mem_for_virtual_node: " | 2111 | "vs-8345: get_mem_for_virtual_node: " |
| 2058 | "kmalloc failed. reiserfs kmalloced %d bytes", | 2112 | "kmalloc failed. reiserfs kmalloced %d bytes", |
| 2059 | REISERFS_SB(tb->tb_sb)->s_kmallocs); | 2113 | REISERFS_SB(tb->tb_sb)-> |
| 2114 | s_kmallocs); | ||
| 2060 | #endif | 2115 | #endif |
| 2061 | tb->vn_buf_size = 0; | 2116 | tb->vn_buf_size = 0; |
| 2062 | } | 2117 | } |
| 2063 | tb->vn_buf = buf; | 2118 | tb->vn_buf = buf; |
| 2064 | schedule() ; | 2119 | schedule(); |
| 2065 | return REPEAT_SEARCH; | 2120 | return REPEAT_SEARCH; |
| 2066 | } | 2121 | } |
| 2067 | 2122 | ||
| 2068 | tb->vn_buf = buf; | 2123 | tb->vn_buf = buf; |
| 2069 | } | 2124 | } |
| 2070 | 2125 | ||
| 2071 | if ( check_fs && FILESYSTEM_CHANGED_TB (tb) ) | 2126 | if (check_fs && FILESYSTEM_CHANGED_TB(tb)) |
| 2072 | return REPEAT_SEARCH; | 2127 | return REPEAT_SEARCH; |
| 2073 | 2128 | ||
| 2074 | return CARRY_ON; | 2129 | return CARRY_ON; |
| 2075 | } | 2130 | } |
| 2076 | 2131 | ||
| 2077 | |||
| 2078 | #ifdef CONFIG_REISERFS_CHECK | 2132 | #ifdef CONFIG_REISERFS_CHECK |
| 2079 | static void tb_buffer_sanity_check (struct super_block * p_s_sb, | 2133 | static void tb_buffer_sanity_check(struct super_block *p_s_sb, |
| 2080 | struct buffer_head * p_s_bh, | 2134 | struct buffer_head *p_s_bh, |
| 2081 | const char *descr, int level) { | 2135 | const char *descr, int level) |
| 2082 | if (p_s_bh) { | ||
| 2083 | if (atomic_read (&(p_s_bh->b_count)) <= 0) { | ||
| 2084 | |||
| 2085 | reiserfs_panic (p_s_sb, "jmacd-1: tb_buffer_sanity_check(): negative or zero reference counter for buffer %s[%d] (%b)\n", descr, level, p_s_bh); | ||
| 2086 | } | ||
| 2087 | |||
| 2088 | if ( ! buffer_uptodate (p_s_bh) ) { | ||
| 2089 | reiserfs_panic (p_s_sb, "jmacd-2: tb_buffer_sanity_check(): buffer is not up to date %s[%d] (%b)\n", descr, level, p_s_bh); | ||
| 2090 | } | ||
| 2091 | |||
| 2092 | if ( ! B_IS_IN_TREE (p_s_bh) ) { | ||
| 2093 | reiserfs_panic (p_s_sb, "jmacd-3: tb_buffer_sanity_check(): buffer is not in tree %s[%d] (%b)\n", descr, level, p_s_bh); | ||
| 2094 | } | ||
| 2095 | |||
| 2096 | if (p_s_bh->b_bdev != p_s_sb->s_bdev) { | ||
| 2097 | reiserfs_panic (p_s_sb, "jmacd-4: tb_buffer_sanity_check(): buffer has wrong device %s[%d] (%b)\n", descr, level, p_s_bh); | ||
| 2098 | } | ||
| 2099 | |||
| 2100 | if (p_s_bh->b_size != p_s_sb->s_blocksize) { | ||
| 2101 | reiserfs_panic (p_s_sb, "jmacd-5: tb_buffer_sanity_check(): buffer has wrong blocksize %s[%d] (%b)\n", descr, level, p_s_bh); | ||
| 2102 | } | ||
| 2103 | |||
| 2104 | if (p_s_bh->b_blocknr > SB_BLOCK_COUNT(p_s_sb)) { | ||
| 2105 | reiserfs_panic (p_s_sb, "jmacd-6: tb_buffer_sanity_check(): buffer block number too high %s[%d] (%b)\n", descr, level, p_s_bh); | ||
| 2106 | } | ||
| 2107 | } | ||
| 2108 | } | ||
| 2109 | #else | ||
| 2110 | static void tb_buffer_sanity_check (struct super_block * p_s_sb, | ||
| 2111 | struct buffer_head * p_s_bh, | ||
| 2112 | const char *descr, int level) | ||
| 2113 | {;} | ||
| 2114 | #endif | ||
| 2115 | |||
| 2116 | static int clear_all_dirty_bits(struct super_block *s, | ||
| 2117 | struct buffer_head *bh) { | ||
| 2118 | return reiserfs_prepare_for_journal(s, bh, 0) ; | ||
| 2119 | } | ||
| 2120 | |||
| 2121 | static int wait_tb_buffers_until_unlocked (struct tree_balance * p_s_tb) | ||
| 2122 | { | 2136 | { |
| 2123 | struct buffer_head * locked; | 2137 | if (p_s_bh) { |
| 2124 | #ifdef CONFIG_REISERFS_CHECK | 2138 | if (atomic_read(&(p_s_bh->b_count)) <= 0) { |
| 2125 | int repeat_counter = 0; | ||
| 2126 | #endif | ||
| 2127 | int i; | ||
| 2128 | 2139 | ||
| 2129 | do { | 2140 | reiserfs_panic(p_s_sb, |
| 2130 | 2141 | "jmacd-1: tb_buffer_sanity_check(): negative or zero reference counter for buffer %s[%d] (%b)\n", | |
| 2131 | locked = NULL; | 2142 | descr, level, p_s_bh); |
| 2132 | |||
| 2133 | for ( i = p_s_tb->tb_path->path_length; !locked && i > ILLEGAL_PATH_ELEMENT_OFFSET; i-- ) { | ||
| 2134 | if ( PATH_OFFSET_PBUFFER (p_s_tb->tb_path, i) ) { | ||
| 2135 | /* if I understand correctly, we can only be sure the last buffer | ||
| 2136 | ** in the path is in the tree --clm | ||
| 2137 | */ | ||
| 2138 | #ifdef CONFIG_REISERFS_CHECK | ||
| 2139 | if (PATH_PLAST_BUFFER(p_s_tb->tb_path) == | ||
| 2140 | PATH_OFFSET_PBUFFER(p_s_tb->tb_path, i)) { | ||
| 2141 | tb_buffer_sanity_check (p_s_tb->tb_sb, | ||
| 2142 | PATH_OFFSET_PBUFFER (p_s_tb->tb_path, i), | ||
| 2143 | "S", | ||
| 2144 | p_s_tb->tb_path->path_length - i); | ||
| 2145 | } | 2143 | } |
| 2146 | #endif | ||
| 2147 | if (!clear_all_dirty_bits(p_s_tb->tb_sb, | ||
| 2148 | PATH_OFFSET_PBUFFER (p_s_tb->tb_path, i))) | ||
| 2149 | { | ||
| 2150 | locked = PATH_OFFSET_PBUFFER (p_s_tb->tb_path, i); | ||
| 2151 | } | ||
| 2152 | } | ||
| 2153 | } | ||
| 2154 | 2144 | ||
| 2155 | for ( i = 0; !locked && i < MAX_HEIGHT && p_s_tb->insert_size[i]; i++ ) { | 2145 | if (!buffer_uptodate(p_s_bh)) { |
| 2146 | reiserfs_panic(p_s_sb, | ||
| 2147 | "jmacd-2: tb_buffer_sanity_check(): buffer is not up to date %s[%d] (%b)\n", | ||
| 2148 | descr, level, p_s_bh); | ||
| 2149 | } | ||
| 2156 | 2150 | ||
| 2157 | if (p_s_tb->lnum[i] ) { | 2151 | if (!B_IS_IN_TREE(p_s_bh)) { |
| 2152 | reiserfs_panic(p_s_sb, | ||
| 2153 | "jmacd-3: tb_buffer_sanity_check(): buffer is not in tree %s[%d] (%b)\n", | ||
| 2154 | descr, level, p_s_bh); | ||
| 2155 | } | ||
| 2158 | 2156 | ||
| 2159 | if ( p_s_tb->L[i] ) { | 2157 | if (p_s_bh->b_bdev != p_s_sb->s_bdev) { |
| 2160 | tb_buffer_sanity_check (p_s_tb->tb_sb, p_s_tb->L[i], "L", i); | 2158 | reiserfs_panic(p_s_sb, |
| 2161 | if (!clear_all_dirty_bits(p_s_tb->tb_sb, p_s_tb->L[i])) | 2159 | "jmacd-4: tb_buffer_sanity_check(): buffer has wrong device %s[%d] (%b)\n", |
| 2162 | locked = p_s_tb->L[i]; | 2160 | descr, level, p_s_bh); |
| 2163 | } | 2161 | } |
| 2164 | 2162 | ||
| 2165 | if ( !locked && p_s_tb->FL[i] ) { | 2163 | if (p_s_bh->b_size != p_s_sb->s_blocksize) { |
| 2166 | tb_buffer_sanity_check (p_s_tb->tb_sb, p_s_tb->FL[i], "FL", i); | 2164 | reiserfs_panic(p_s_sb, |
| 2167 | if (!clear_all_dirty_bits(p_s_tb->tb_sb, p_s_tb->FL[i])) | 2165 | "jmacd-5: tb_buffer_sanity_check(): buffer has wrong blocksize %s[%d] (%b)\n", |
| 2168 | locked = p_s_tb->FL[i]; | 2166 | descr, level, p_s_bh); |
| 2169 | } | 2167 | } |
| 2170 | 2168 | ||
| 2171 | if ( !locked && p_s_tb->CFL[i] ) { | 2169 | if (p_s_bh->b_blocknr > SB_BLOCK_COUNT(p_s_sb)) { |
| 2172 | tb_buffer_sanity_check (p_s_tb->tb_sb, p_s_tb->CFL[i], "CFL", i); | 2170 | reiserfs_panic(p_s_sb, |
| 2173 | if (!clear_all_dirty_bits(p_s_tb->tb_sb, p_s_tb->CFL[i])) | 2171 | "jmacd-6: tb_buffer_sanity_check(): buffer block number too high %s[%d] (%b)\n", |
| 2174 | locked = p_s_tb->CFL[i]; | 2172 | descr, level, p_s_bh); |
| 2175 | } | 2173 | } |
| 2174 | } | ||
| 2175 | } | ||
| 2176 | #else | ||
| 2177 | static void tb_buffer_sanity_check(struct super_block *p_s_sb, | ||
| 2178 | struct buffer_head *p_s_bh, | ||
| 2179 | const char *descr, int level) | ||
| 2180 | {; | ||
| 2181 | } | ||
| 2182 | #endif | ||
| 2176 | 2183 | ||
| 2177 | } | 2184 | static int clear_all_dirty_bits(struct super_block *s, struct buffer_head *bh) |
| 2185 | { | ||
| 2186 | return reiserfs_prepare_for_journal(s, bh, 0); | ||
| 2187 | } | ||
| 2178 | 2188 | ||
| 2179 | if ( !locked && (p_s_tb->rnum[i]) ) { | 2189 | static int wait_tb_buffers_until_unlocked(struct tree_balance *p_s_tb) |
| 2190 | { | ||
| 2191 | struct buffer_head *locked; | ||
| 2192 | #ifdef CONFIG_REISERFS_CHECK | ||
| 2193 | int repeat_counter = 0; | ||
| 2194 | #endif | ||
| 2195 | int i; | ||
| 2180 | 2196 | ||
| 2181 | if ( p_s_tb->R[i] ) { | 2197 | do { |
| 2182 | tb_buffer_sanity_check (p_s_tb->tb_sb, p_s_tb->R[i], "R", i); | ||
| 2183 | if (!clear_all_dirty_bits(p_s_tb->tb_sb, p_s_tb->R[i])) | ||
| 2184 | locked = p_s_tb->R[i]; | ||
| 2185 | } | ||
| 2186 | 2198 | ||
| 2187 | 2199 | locked = NULL; | |
| 2188 | if ( !locked && p_s_tb->FR[i] ) { | 2200 | |
| 2189 | tb_buffer_sanity_check (p_s_tb->tb_sb, p_s_tb->FR[i], "FR", i); | 2201 | for (i = p_s_tb->tb_path->path_length; |
| 2190 | if (!clear_all_dirty_bits(p_s_tb->tb_sb, p_s_tb->FR[i])) | 2202 | !locked && i > ILLEGAL_PATH_ELEMENT_OFFSET; i--) { |
| 2191 | locked = p_s_tb->FR[i]; | 2203 | if (PATH_OFFSET_PBUFFER(p_s_tb->tb_path, i)) { |
| 2204 | /* if I understand correctly, we can only be sure the last buffer | ||
| 2205 | ** in the path is in the tree --clm | ||
| 2206 | */ | ||
| 2207 | #ifdef CONFIG_REISERFS_CHECK | ||
| 2208 | if (PATH_PLAST_BUFFER(p_s_tb->tb_path) == | ||
| 2209 | PATH_OFFSET_PBUFFER(p_s_tb->tb_path, i)) { | ||
| 2210 | tb_buffer_sanity_check(p_s_tb->tb_sb, | ||
| 2211 | PATH_OFFSET_PBUFFER | ||
| 2212 | (p_s_tb->tb_path, | ||
| 2213 | i), "S", | ||
| 2214 | p_s_tb->tb_path-> | ||
| 2215 | path_length - i); | ||
| 2216 | } | ||
| 2217 | #endif | ||
| 2218 | if (!clear_all_dirty_bits(p_s_tb->tb_sb, | ||
| 2219 | PATH_OFFSET_PBUFFER | ||
| 2220 | (p_s_tb->tb_path, | ||
| 2221 | i))) { | ||
| 2222 | locked = | ||
| 2223 | PATH_OFFSET_PBUFFER(p_s_tb->tb_path, | ||
| 2224 | i); | ||
| 2225 | } | ||
| 2226 | } | ||
| 2192 | } | 2227 | } |
| 2193 | 2228 | ||
| 2194 | if ( !locked && p_s_tb->CFR[i] ) { | 2229 | for (i = 0; !locked && i < MAX_HEIGHT && p_s_tb->insert_size[i]; |
| 2195 | tb_buffer_sanity_check (p_s_tb->tb_sb, p_s_tb->CFR[i], "CFR", i); | 2230 | i++) { |
| 2196 | if (!clear_all_dirty_bits(p_s_tb->tb_sb, p_s_tb->CFR[i])) | 2231 | |
| 2197 | locked = p_s_tb->CFR[i]; | 2232 | if (p_s_tb->lnum[i]) { |
| 2233 | |||
| 2234 | if (p_s_tb->L[i]) { | ||
| 2235 | tb_buffer_sanity_check(p_s_tb->tb_sb, | ||
| 2236 | p_s_tb->L[i], | ||
| 2237 | "L", i); | ||
| 2238 | if (!clear_all_dirty_bits | ||
| 2239 | (p_s_tb->tb_sb, p_s_tb->L[i])) | ||
| 2240 | locked = p_s_tb->L[i]; | ||
| 2241 | } | ||
| 2242 | |||
| 2243 | if (!locked && p_s_tb->FL[i]) { | ||
| 2244 | tb_buffer_sanity_check(p_s_tb->tb_sb, | ||
| 2245 | p_s_tb->FL[i], | ||
| 2246 | "FL", i); | ||
| 2247 | if (!clear_all_dirty_bits | ||
| 2248 | (p_s_tb->tb_sb, p_s_tb->FL[i])) | ||
| 2249 | locked = p_s_tb->FL[i]; | ||
| 2250 | } | ||
| 2251 | |||
| 2252 | if (!locked && p_s_tb->CFL[i]) { | ||
| 2253 | tb_buffer_sanity_check(p_s_tb->tb_sb, | ||
| 2254 | p_s_tb->CFL[i], | ||
| 2255 | "CFL", i); | ||
| 2256 | if (!clear_all_dirty_bits | ||
| 2257 | (p_s_tb->tb_sb, p_s_tb->CFL[i])) | ||
| 2258 | locked = p_s_tb->CFL[i]; | ||
| 2259 | } | ||
| 2260 | |||
| 2261 | } | ||
| 2262 | |||
| 2263 | if (!locked && (p_s_tb->rnum[i])) { | ||
| 2264 | |||
| 2265 | if (p_s_tb->R[i]) { | ||
| 2266 | tb_buffer_sanity_check(p_s_tb->tb_sb, | ||
| 2267 | p_s_tb->R[i], | ||
| 2268 | "R", i); | ||
| 2269 | if (!clear_all_dirty_bits | ||
| 2270 | (p_s_tb->tb_sb, p_s_tb->R[i])) | ||
| 2271 | locked = p_s_tb->R[i]; | ||
| 2272 | } | ||
| 2273 | |||
| 2274 | if (!locked && p_s_tb->FR[i]) { | ||
| 2275 | tb_buffer_sanity_check(p_s_tb->tb_sb, | ||
| 2276 | p_s_tb->FR[i], | ||
| 2277 | "FR", i); | ||
| 2278 | if (!clear_all_dirty_bits | ||
| 2279 | (p_s_tb->tb_sb, p_s_tb->FR[i])) | ||
| 2280 | locked = p_s_tb->FR[i]; | ||
| 2281 | } | ||
| 2282 | |||
| 2283 | if (!locked && p_s_tb->CFR[i]) { | ||
| 2284 | tb_buffer_sanity_check(p_s_tb->tb_sb, | ||
| 2285 | p_s_tb->CFR[i], | ||
| 2286 | "CFR", i); | ||
| 2287 | if (!clear_all_dirty_bits | ||
| 2288 | (p_s_tb->tb_sb, p_s_tb->CFR[i])) | ||
| 2289 | locked = p_s_tb->CFR[i]; | ||
| 2290 | } | ||
| 2291 | } | ||
| 2292 | } | ||
| 2293 | /* as far as I can tell, this is not required. The FEB list seems | ||
| 2294 | ** to be full of newly allocated nodes, which will never be locked, | ||
| 2295 | ** dirty, or anything else. | ||
| 2296 | ** To be safe, I'm putting in the checks and waits in. For the moment, | ||
| 2297 | ** they are needed to keep the code in journal.c from complaining | ||
| 2298 | ** about the buffer. That code is inside CONFIG_REISERFS_CHECK as well. | ||
| 2299 | ** --clm | ||
| 2300 | */ | ||
| 2301 | for (i = 0; !locked && i < MAX_FEB_SIZE; i++) { | ||
| 2302 | if (p_s_tb->FEB[i]) { | ||
| 2303 | if (!clear_all_dirty_bits | ||
| 2304 | (p_s_tb->tb_sb, p_s_tb->FEB[i])) | ||
| 2305 | locked = p_s_tb->FEB[i]; | ||
| 2306 | } | ||
| 2198 | } | 2307 | } |
| 2199 | } | ||
| 2200 | } | ||
| 2201 | /* as far as I can tell, this is not required. The FEB list seems | ||
| 2202 | ** to be full of newly allocated nodes, which will never be locked, | ||
| 2203 | ** dirty, or anything else. | ||
| 2204 | ** To be safe, I'm putting in the checks and waits in. For the moment, | ||
| 2205 | ** they are needed to keep the code in journal.c from complaining | ||
| 2206 | ** about the buffer. That code is inside CONFIG_REISERFS_CHECK as well. | ||
| 2207 | ** --clm | ||
| 2208 | */ | ||
| 2209 | for ( i = 0; !locked && i < MAX_FEB_SIZE; i++ ) { | ||
| 2210 | if ( p_s_tb->FEB[i] ) { | ||
| 2211 | if (!clear_all_dirty_bits(p_s_tb->tb_sb, p_s_tb->FEB[i])) | ||
| 2212 | locked = p_s_tb->FEB[i] ; | ||
| 2213 | } | ||
| 2214 | } | ||
| 2215 | 2308 | ||
| 2216 | if (locked) { | 2309 | if (locked) { |
| 2217 | #ifdef CONFIG_REISERFS_CHECK | 2310 | #ifdef CONFIG_REISERFS_CHECK |
| 2218 | repeat_counter++; | 2311 | repeat_counter++; |
| 2219 | if ( (repeat_counter % 10000) == 0) { | 2312 | if ((repeat_counter % 10000) == 0) { |
| 2220 | reiserfs_warning (p_s_tb->tb_sb, | 2313 | reiserfs_warning(p_s_tb->tb_sb, |
| 2221 | "wait_tb_buffers_until_released(): too many " | 2314 | "wait_tb_buffers_until_released(): too many " |
| 2222 | "iterations waiting for buffer to unlock " | 2315 | "iterations waiting for buffer to unlock " |
| 2223 | "(%b)", locked); | 2316 | "(%b)", locked); |
| 2224 | 2317 | ||
| 2225 | /* Don't loop forever. Try to recover from possible error. */ | 2318 | /* Don't loop forever. Try to recover from possible error. */ |
| 2226 | 2319 | ||
| 2227 | return ( FILESYSTEM_CHANGED_TB (p_s_tb) ) ? REPEAT_SEARCH : CARRY_ON; | 2320 | return (FILESYSTEM_CHANGED_TB(p_s_tb)) ? |
| 2228 | } | 2321 | REPEAT_SEARCH : CARRY_ON; |
| 2322 | } | ||
| 2229 | #endif | 2323 | #endif |
| 2230 | __wait_on_buffer (locked); | 2324 | __wait_on_buffer(locked); |
| 2231 | if ( FILESYSTEM_CHANGED_TB (p_s_tb) ) { | 2325 | if (FILESYSTEM_CHANGED_TB(p_s_tb)) { |
| 2232 | return REPEAT_SEARCH; | 2326 | return REPEAT_SEARCH; |
| 2233 | } | 2327 | } |
| 2234 | } | 2328 | } |
| 2235 | 2329 | ||
| 2236 | } while (locked); | 2330 | } while (locked); |
| 2237 | 2331 | ||
| 2238 | return CARRY_ON; | 2332 | return CARRY_ON; |
| 2239 | } | 2333 | } |
| 2240 | 2334 | ||
| 2241 | |||
| 2242 | /* Prepare for balancing, that is | 2335 | /* Prepare for balancing, that is |
| 2243 | * get all necessary parents, and neighbors; | 2336 | * get all necessary parents, and neighbors; |
| 2244 | * analyze what and where should be moved; | 2337 | * analyze what and where should be moved; |
| @@ -2267,252 +2360,266 @@ static int wait_tb_buffers_until_unlocked (struct tree_balance * p_s_tb) | |||
| 2267 | * -1 - if no_disk_space | 2360 | * -1 - if no_disk_space |
| 2268 | */ | 2361 | */ |
| 2269 | 2362 | ||
| 2363 | int fix_nodes(int n_op_mode, struct tree_balance *p_s_tb, struct item_head *p_s_ins_ih, // item head of item being inserted | ||
| 2364 | const void *data // inserted item or data to be pasted | ||
| 2365 | ) | ||
| 2366 | { | ||
| 2367 | int n_ret_value, n_h, n_item_num = PATH_LAST_POSITION(p_s_tb->tb_path); | ||
| 2368 | int n_pos_in_item; | ||
| 2270 | 2369 | ||
| 2271 | int fix_nodes (int n_op_mode, | 2370 | /* we set wait_tb_buffers_run when we have to restore any dirty bits cleared |
| 2272 | struct tree_balance * p_s_tb, | 2371 | ** during wait_tb_buffers_run |
| 2273 | struct item_head * p_s_ins_ih, // item head of item being inserted | 2372 | */ |
| 2274 | const void * data // inserted item or data to be pasted | 2373 | int wait_tb_buffers_run = 0; |
| 2275 | ) { | 2374 | struct buffer_head *p_s_tbS0 = PATH_PLAST_BUFFER(p_s_tb->tb_path); |
| 2276 | int n_ret_value, | ||
| 2277 | n_h, | ||
| 2278 | n_item_num = PATH_LAST_POSITION(p_s_tb->tb_path); | ||
| 2279 | int n_pos_in_item; | ||
| 2280 | |||
| 2281 | /* we set wait_tb_buffers_run when we have to restore any dirty bits cleared | ||
| 2282 | ** during wait_tb_buffers_run | ||
| 2283 | */ | ||
| 2284 | int wait_tb_buffers_run = 0 ; | ||
| 2285 | struct buffer_head * p_s_tbS0 = PATH_PLAST_BUFFER(p_s_tb->tb_path); | ||
| 2286 | |||
| 2287 | ++ REISERFS_SB(p_s_tb -> tb_sb) -> s_fix_nodes; | ||
| 2288 | |||
| 2289 | n_pos_in_item = p_s_tb->tb_path->pos_in_item; | ||
| 2290 | |||
| 2291 | |||
| 2292 | p_s_tb->fs_gen = get_generation (p_s_tb->tb_sb); | ||
| 2293 | |||
| 2294 | /* we prepare and log the super here so it will already be in the | ||
| 2295 | ** transaction when do_balance needs to change it. | ||
| 2296 | ** This way do_balance won't have to schedule when trying to prepare | ||
| 2297 | ** the super for logging | ||
| 2298 | */ | ||
| 2299 | reiserfs_prepare_for_journal(p_s_tb->tb_sb, | ||
| 2300 | SB_BUFFER_WITH_SB(p_s_tb->tb_sb), 1) ; | ||
| 2301 | journal_mark_dirty(p_s_tb->transaction_handle, p_s_tb->tb_sb, | ||
| 2302 | SB_BUFFER_WITH_SB(p_s_tb->tb_sb)) ; | ||
| 2303 | if ( FILESYSTEM_CHANGED_TB (p_s_tb) ) | ||
| 2304 | return REPEAT_SEARCH; | ||
| 2305 | |||
| 2306 | /* if it possible in indirect_to_direct conversion */ | ||
| 2307 | if (buffer_locked (p_s_tbS0)) { | ||
| 2308 | __wait_on_buffer (p_s_tbS0); | ||
| 2309 | if ( FILESYSTEM_CHANGED_TB (p_s_tb) ) | ||
| 2310 | return REPEAT_SEARCH; | ||
| 2311 | } | ||
| 2312 | 2375 | ||
| 2313 | #ifdef CONFIG_REISERFS_CHECK | 2376 | ++REISERFS_SB(p_s_tb->tb_sb)->s_fix_nodes; |
| 2314 | if ( cur_tb ) { | 2377 | |
| 2315 | print_cur_tb ("fix_nodes"); | 2378 | n_pos_in_item = p_s_tb->tb_path->pos_in_item; |
| 2316 | reiserfs_panic(p_s_tb->tb_sb,"PAP-8305: fix_nodes: there is pending do_balance"); | 2379 | |
| 2317 | } | 2380 | p_s_tb->fs_gen = get_generation(p_s_tb->tb_sb); |
| 2318 | |||
| 2319 | if (!buffer_uptodate (p_s_tbS0) || !B_IS_IN_TREE (p_s_tbS0)) { | ||
| 2320 | reiserfs_panic (p_s_tb->tb_sb, "PAP-8320: fix_nodes: S[0] (%b %z) is not uptodate " | ||
| 2321 | "at the beginning of fix_nodes or not in tree (mode %c)", p_s_tbS0, p_s_tbS0, n_op_mode); | ||
| 2322 | } | ||
| 2323 | |||
| 2324 | /* Check parameters. */ | ||
| 2325 | switch (n_op_mode) { | ||
| 2326 | case M_INSERT: | ||
| 2327 | if ( n_item_num <= 0 || n_item_num > B_NR_ITEMS(p_s_tbS0) ) | ||
| 2328 | reiserfs_panic(p_s_tb->tb_sb,"PAP-8330: fix_nodes: Incorrect item number %d (in S0 - %d) in case of insert", | ||
| 2329 | n_item_num, B_NR_ITEMS(p_s_tbS0)); | ||
| 2330 | break; | ||
| 2331 | case M_PASTE: | ||
| 2332 | case M_DELETE: | ||
| 2333 | case M_CUT: | ||
| 2334 | if ( n_item_num < 0 || n_item_num >= B_NR_ITEMS(p_s_tbS0) ) { | ||
| 2335 | print_block (p_s_tbS0, 0, -1, -1); | ||
| 2336 | reiserfs_panic(p_s_tb->tb_sb,"PAP-8335: fix_nodes: Incorrect item number(%d); mode = %c insert_size = %d\n", n_item_num, n_op_mode, p_s_tb->insert_size[0]); | ||
| 2337 | } | ||
| 2338 | break; | ||
| 2339 | default: | ||
| 2340 | reiserfs_panic(p_s_tb->tb_sb,"PAP-8340: fix_nodes: Incorrect mode of operation"); | ||
| 2341 | } | ||
| 2342 | #endif | ||
| 2343 | 2381 | ||
| 2344 | if (get_mem_for_virtual_node (p_s_tb) == REPEAT_SEARCH) | 2382 | /* we prepare and log the super here so it will already be in the |
| 2345 | // FIXME: maybe -ENOMEM when tb->vn_buf == 0? Now just repeat | 2383 | ** transaction when do_balance needs to change it. |
| 2346 | return REPEAT_SEARCH; | 2384 | ** This way do_balance won't have to schedule when trying to prepare |
| 2385 | ** the super for logging | ||
| 2386 | */ | ||
| 2387 | reiserfs_prepare_for_journal(p_s_tb->tb_sb, | ||
| 2388 | SB_BUFFER_WITH_SB(p_s_tb->tb_sb), 1); | ||
| 2389 | journal_mark_dirty(p_s_tb->transaction_handle, p_s_tb->tb_sb, | ||
| 2390 | SB_BUFFER_WITH_SB(p_s_tb->tb_sb)); | ||
| 2391 | if (FILESYSTEM_CHANGED_TB(p_s_tb)) | ||
| 2392 | return REPEAT_SEARCH; | ||
| 2347 | 2393 | ||
| 2394 | /* if it possible in indirect_to_direct conversion */ | ||
| 2395 | if (buffer_locked(p_s_tbS0)) { | ||
| 2396 | __wait_on_buffer(p_s_tbS0); | ||
| 2397 | if (FILESYSTEM_CHANGED_TB(p_s_tb)) | ||
| 2398 | return REPEAT_SEARCH; | ||
| 2399 | } | ||
| 2400 | #ifdef CONFIG_REISERFS_CHECK | ||
| 2401 | if (cur_tb) { | ||
| 2402 | print_cur_tb("fix_nodes"); | ||
| 2403 | reiserfs_panic(p_s_tb->tb_sb, | ||
| 2404 | "PAP-8305: fix_nodes: there is pending do_balance"); | ||
| 2405 | } | ||
| 2348 | 2406 | ||
| 2349 | /* Starting from the leaf level; for all levels n_h of the tree. */ | 2407 | if (!buffer_uptodate(p_s_tbS0) || !B_IS_IN_TREE(p_s_tbS0)) { |
| 2350 | for ( n_h = 0; n_h < MAX_HEIGHT && p_s_tb->insert_size[n_h]; n_h++ ) { | 2408 | reiserfs_panic(p_s_tb->tb_sb, |
| 2351 | if ( (n_ret_value = get_direct_parent(p_s_tb, n_h)) != CARRY_ON ) { | 2409 | "PAP-8320: fix_nodes: S[0] (%b %z) is not uptodate " |
| 2352 | goto repeat; | 2410 | "at the beginning of fix_nodes or not in tree (mode %c)", |
| 2411 | p_s_tbS0, p_s_tbS0, n_op_mode); | ||
| 2353 | } | 2412 | } |
| 2354 | 2413 | ||
| 2355 | if ( (n_ret_value = check_balance (n_op_mode, p_s_tb, n_h, n_item_num, | 2414 | /* Check parameters. */ |
| 2356 | n_pos_in_item, p_s_ins_ih, data)) != CARRY_ON ) { | 2415 | switch (n_op_mode) { |
| 2357 | if ( n_ret_value == NO_BALANCING_NEEDED ) { | 2416 | case M_INSERT: |
| 2358 | /* No balancing for higher levels needed. */ | 2417 | if (n_item_num <= 0 || n_item_num > B_NR_ITEMS(p_s_tbS0)) |
| 2359 | if ( (n_ret_value = get_neighbors(p_s_tb, n_h)) != CARRY_ON ) { | 2418 | reiserfs_panic(p_s_tb->tb_sb, |
| 2360 | goto repeat; | 2419 | "PAP-8330: fix_nodes: Incorrect item number %d (in S0 - %d) in case of insert", |
| 2420 | n_item_num, B_NR_ITEMS(p_s_tbS0)); | ||
| 2421 | break; | ||
| 2422 | case M_PASTE: | ||
| 2423 | case M_DELETE: | ||
| 2424 | case M_CUT: | ||
| 2425 | if (n_item_num < 0 || n_item_num >= B_NR_ITEMS(p_s_tbS0)) { | ||
| 2426 | print_block(p_s_tbS0, 0, -1, -1); | ||
| 2427 | reiserfs_panic(p_s_tb->tb_sb, | ||
| 2428 | "PAP-8335: fix_nodes: Incorrect item number(%d); mode = %c insert_size = %d\n", | ||
| 2429 | n_item_num, n_op_mode, | ||
| 2430 | p_s_tb->insert_size[0]); | ||
| 2361 | } | 2431 | } |
| 2362 | if ( n_h != MAX_HEIGHT - 1 ) | ||
| 2363 | p_s_tb->insert_size[n_h + 1] = 0; | ||
| 2364 | /* ok, analysis and resource gathering are complete */ | ||
| 2365 | break; | 2432 | break; |
| 2366 | } | 2433 | default: |
| 2367 | goto repeat; | 2434 | reiserfs_panic(p_s_tb->tb_sb, |
| 2435 | "PAP-8340: fix_nodes: Incorrect mode of operation"); | ||
| 2368 | } | 2436 | } |
| 2437 | #endif | ||
| 2369 | 2438 | ||
| 2370 | if ( (n_ret_value = get_neighbors(p_s_tb, n_h)) != CARRY_ON ) { | 2439 | if (get_mem_for_virtual_node(p_s_tb) == REPEAT_SEARCH) |
| 2371 | goto repeat; | 2440 | // FIXME: maybe -ENOMEM when tb->vn_buf == 0? Now just repeat |
| 2372 | } | 2441 | return REPEAT_SEARCH; |
| 2373 | 2442 | ||
| 2374 | if ( (n_ret_value = get_empty_nodes(p_s_tb, n_h)) != CARRY_ON ) { | 2443 | /* Starting from the leaf level; for all levels n_h of the tree. */ |
| 2375 | goto repeat; /* No disk space, or schedule occurred and | 2444 | for (n_h = 0; n_h < MAX_HEIGHT && p_s_tb->insert_size[n_h]; n_h++) { |
| 2376 | analysis may be invalid and needs to be redone. */ | 2445 | if ((n_ret_value = get_direct_parent(p_s_tb, n_h)) != CARRY_ON) { |
| 2377 | } | 2446 | goto repeat; |
| 2378 | 2447 | } | |
| 2379 | if ( ! PATH_H_PBUFFER(p_s_tb->tb_path, n_h) ) { | ||
| 2380 | /* We have a positive insert size but no nodes exist on this | ||
| 2381 | level, this means that we are creating a new root. */ | ||
| 2382 | 2448 | ||
| 2383 | RFALSE( p_s_tb->blknum[n_h] != 1, | 2449 | if ((n_ret_value = |
| 2384 | "PAP-8350: creating new empty root"); | 2450 | check_balance(n_op_mode, p_s_tb, n_h, n_item_num, |
| 2451 | n_pos_in_item, p_s_ins_ih, | ||
| 2452 | data)) != CARRY_ON) { | ||
| 2453 | if (n_ret_value == NO_BALANCING_NEEDED) { | ||
| 2454 | /* No balancing for higher levels needed. */ | ||
| 2455 | if ((n_ret_value = | ||
| 2456 | get_neighbors(p_s_tb, n_h)) != CARRY_ON) { | ||
| 2457 | goto repeat; | ||
| 2458 | } | ||
| 2459 | if (n_h != MAX_HEIGHT - 1) | ||
| 2460 | p_s_tb->insert_size[n_h + 1] = 0; | ||
| 2461 | /* ok, analysis and resource gathering are complete */ | ||
| 2462 | break; | ||
| 2463 | } | ||
| 2464 | goto repeat; | ||
| 2465 | } | ||
| 2385 | 2466 | ||
| 2386 | if ( n_h < MAX_HEIGHT - 1 ) | 2467 | if ((n_ret_value = get_neighbors(p_s_tb, n_h)) != CARRY_ON) { |
| 2387 | p_s_tb->insert_size[n_h + 1] = 0; | 2468 | goto repeat; |
| 2388 | } | ||
| 2389 | else | ||
| 2390 | if ( ! PATH_H_PBUFFER(p_s_tb->tb_path, n_h + 1) ) { | ||
| 2391 | if ( p_s_tb->blknum[n_h] > 1 ) { | ||
| 2392 | /* The tree needs to be grown, so this node S[n_h] | ||
| 2393 | which is the root node is split into two nodes, | ||
| 2394 | and a new node (S[n_h+1]) will be created to | ||
| 2395 | become the root node. */ | ||
| 2396 | |||
| 2397 | RFALSE( n_h == MAX_HEIGHT - 1, | ||
| 2398 | "PAP-8355: attempt to create too high of a tree"); | ||
| 2399 | |||
| 2400 | p_s_tb->insert_size[n_h + 1] = (DC_SIZE + KEY_SIZE) * (p_s_tb->blknum[n_h] - 1) + DC_SIZE; | ||
| 2401 | } | 2469 | } |
| 2402 | else | 2470 | |
| 2403 | if ( n_h < MAX_HEIGHT - 1 ) | 2471 | if ((n_ret_value = get_empty_nodes(p_s_tb, n_h)) != CARRY_ON) { |
| 2404 | p_s_tb->insert_size[n_h + 1] = 0; | 2472 | goto repeat; /* No disk space, or schedule occurred and |
| 2405 | } | 2473 | analysis may be invalid and needs to be redone. */ |
| 2406 | else | 2474 | } |
| 2407 | p_s_tb->insert_size[n_h + 1] = (DC_SIZE + KEY_SIZE) * (p_s_tb->blknum[n_h] - 1); | 2475 | |
| 2408 | } | 2476 | if (!PATH_H_PBUFFER(p_s_tb->tb_path, n_h)) { |
| 2409 | 2477 | /* We have a positive insert size but no nodes exist on this | |
| 2410 | if ((n_ret_value = wait_tb_buffers_until_unlocked (p_s_tb)) == CARRY_ON) { | 2478 | level, this means that we are creating a new root. */ |
| 2411 | if (FILESYSTEM_CHANGED_TB(p_s_tb)) { | 2479 | |
| 2412 | wait_tb_buffers_run = 1 ; | 2480 | RFALSE(p_s_tb->blknum[n_h] != 1, |
| 2413 | n_ret_value = REPEAT_SEARCH ; | 2481 | "PAP-8350: creating new empty root"); |
| 2414 | goto repeat; | 2482 | |
| 2415 | } else { | 2483 | if (n_h < MAX_HEIGHT - 1) |
| 2416 | return CARRY_ON; | 2484 | p_s_tb->insert_size[n_h + 1] = 0; |
| 2485 | } else if (!PATH_H_PBUFFER(p_s_tb->tb_path, n_h + 1)) { | ||
| 2486 | if (p_s_tb->blknum[n_h] > 1) { | ||
| 2487 | /* The tree needs to be grown, so this node S[n_h] | ||
| 2488 | which is the root node is split into two nodes, | ||
| 2489 | and a new node (S[n_h+1]) will be created to | ||
| 2490 | become the root node. */ | ||
| 2491 | |||
| 2492 | RFALSE(n_h == MAX_HEIGHT - 1, | ||
| 2493 | "PAP-8355: attempt to create too high of a tree"); | ||
| 2494 | |||
| 2495 | p_s_tb->insert_size[n_h + 1] = | ||
| 2496 | (DC_SIZE + | ||
| 2497 | KEY_SIZE) * (p_s_tb->blknum[n_h] - 1) + | ||
| 2498 | DC_SIZE; | ||
| 2499 | } else if (n_h < MAX_HEIGHT - 1) | ||
| 2500 | p_s_tb->insert_size[n_h + 1] = 0; | ||
| 2501 | } else | ||
| 2502 | p_s_tb->insert_size[n_h + 1] = | ||
| 2503 | (DC_SIZE + KEY_SIZE) * (p_s_tb->blknum[n_h] - 1); | ||
| 2417 | } | 2504 | } |
| 2418 | } else { | ||
| 2419 | wait_tb_buffers_run = 1 ; | ||
| 2420 | goto repeat; | ||
| 2421 | } | ||
| 2422 | |||
| 2423 | repeat: | ||
| 2424 | // fix_nodes was unable to perform its calculation due to | ||
| 2425 | // filesystem got changed under us, lack of free disk space or i/o | ||
| 2426 | // failure. If the first is the case - the search will be | ||
| 2427 | // repeated. For now - free all resources acquired so far except | ||
| 2428 | // for the new allocated nodes | ||
| 2429 | { | ||
| 2430 | int i; | ||
| 2431 | 2505 | ||
| 2432 | /* Release path buffers. */ | 2506 | if ((n_ret_value = wait_tb_buffers_until_unlocked(p_s_tb)) == CARRY_ON) { |
| 2433 | if (wait_tb_buffers_run) { | 2507 | if (FILESYSTEM_CHANGED_TB(p_s_tb)) { |
| 2434 | pathrelse_and_restore(p_s_tb->tb_sb, p_s_tb->tb_path) ; | 2508 | wait_tb_buffers_run = 1; |
| 2509 | n_ret_value = REPEAT_SEARCH; | ||
| 2510 | goto repeat; | ||
| 2511 | } else { | ||
| 2512 | return CARRY_ON; | ||
| 2513 | } | ||
| 2435 | } else { | 2514 | } else { |
| 2436 | pathrelse (p_s_tb->tb_path); | 2515 | wait_tb_buffers_run = 1; |
| 2437 | } | 2516 | goto repeat; |
| 2438 | /* brelse all resources collected for balancing */ | ||
| 2439 | for ( i = 0; i < MAX_HEIGHT; i++ ) { | ||
| 2440 | if (wait_tb_buffers_run) { | ||
| 2441 | reiserfs_restore_prepared_buffer(p_s_tb->tb_sb, p_s_tb->L[i]); | ||
| 2442 | reiserfs_restore_prepared_buffer(p_s_tb->tb_sb, p_s_tb->R[i]); | ||
| 2443 | reiserfs_restore_prepared_buffer(p_s_tb->tb_sb, p_s_tb->FL[i]); | ||
| 2444 | reiserfs_restore_prepared_buffer(p_s_tb->tb_sb, p_s_tb->FR[i]); | ||
| 2445 | reiserfs_restore_prepared_buffer(p_s_tb->tb_sb, p_s_tb->CFL[i]); | ||
| 2446 | reiserfs_restore_prepared_buffer(p_s_tb->tb_sb, p_s_tb->CFR[i]); | ||
| 2447 | } | ||
| 2448 | |||
| 2449 | brelse (p_s_tb->L[i]);p_s_tb->L[i] = NULL; | ||
| 2450 | brelse (p_s_tb->R[i]);p_s_tb->R[i] = NULL; | ||
| 2451 | brelse (p_s_tb->FL[i]);p_s_tb->FL[i] = NULL; | ||
| 2452 | brelse (p_s_tb->FR[i]);p_s_tb->FR[i] = NULL; | ||
| 2453 | brelse (p_s_tb->CFL[i]);p_s_tb->CFL[i] = NULL; | ||
| 2454 | brelse (p_s_tb->CFR[i]);p_s_tb->CFR[i] = NULL; | ||
| 2455 | } | 2517 | } |
| 2456 | 2518 | ||
| 2457 | if (wait_tb_buffers_run) { | 2519 | repeat: |
| 2458 | for ( i = 0; i < MAX_FEB_SIZE; i++ ) { | 2520 | // fix_nodes was unable to perform its calculation due to |
| 2459 | if ( p_s_tb->FEB[i] ) { | 2521 | // filesystem got changed under us, lack of free disk space or i/o |
| 2460 | reiserfs_restore_prepared_buffer(p_s_tb->tb_sb, | 2522 | // failure. If the first is the case - the search will be |
| 2461 | p_s_tb->FEB[i]) ; | 2523 | // repeated. For now - free all resources acquired so far except |
| 2524 | // for the new allocated nodes | ||
| 2525 | { | ||
| 2526 | int i; | ||
| 2527 | |||
| 2528 | /* Release path buffers. */ | ||
| 2529 | if (wait_tb_buffers_run) { | ||
| 2530 | pathrelse_and_restore(p_s_tb->tb_sb, p_s_tb->tb_path); | ||
| 2531 | } else { | ||
| 2532 | pathrelse(p_s_tb->tb_path); | ||
| 2533 | } | ||
| 2534 | /* brelse all resources collected for balancing */ | ||
| 2535 | for (i = 0; i < MAX_HEIGHT; i++) { | ||
| 2536 | if (wait_tb_buffers_run) { | ||
| 2537 | reiserfs_restore_prepared_buffer(p_s_tb->tb_sb, | ||
| 2538 | p_s_tb->L[i]); | ||
| 2539 | reiserfs_restore_prepared_buffer(p_s_tb->tb_sb, | ||
| 2540 | p_s_tb->R[i]); | ||
| 2541 | reiserfs_restore_prepared_buffer(p_s_tb->tb_sb, | ||
| 2542 | p_s_tb->FL[i]); | ||
| 2543 | reiserfs_restore_prepared_buffer(p_s_tb->tb_sb, | ||
| 2544 | p_s_tb->FR[i]); | ||
| 2545 | reiserfs_restore_prepared_buffer(p_s_tb->tb_sb, | ||
| 2546 | p_s_tb-> | ||
| 2547 | CFL[i]); | ||
| 2548 | reiserfs_restore_prepared_buffer(p_s_tb->tb_sb, | ||
| 2549 | p_s_tb-> | ||
| 2550 | CFR[i]); | ||
| 2551 | } | ||
| 2552 | |||
| 2553 | brelse(p_s_tb->L[i]); | ||
| 2554 | p_s_tb->L[i] = NULL; | ||
| 2555 | brelse(p_s_tb->R[i]); | ||
| 2556 | p_s_tb->R[i] = NULL; | ||
| 2557 | brelse(p_s_tb->FL[i]); | ||
| 2558 | p_s_tb->FL[i] = NULL; | ||
| 2559 | brelse(p_s_tb->FR[i]); | ||
| 2560 | p_s_tb->FR[i] = NULL; | ||
| 2561 | brelse(p_s_tb->CFL[i]); | ||
| 2562 | p_s_tb->CFL[i] = NULL; | ||
| 2563 | brelse(p_s_tb->CFR[i]); | ||
| 2564 | p_s_tb->CFR[i] = NULL; | ||
| 2565 | } | ||
| 2566 | |||
| 2567 | if (wait_tb_buffers_run) { | ||
| 2568 | for (i = 0; i < MAX_FEB_SIZE; i++) { | ||
| 2569 | if (p_s_tb->FEB[i]) { | ||
| 2570 | reiserfs_restore_prepared_buffer | ||
| 2571 | (p_s_tb->tb_sb, p_s_tb->FEB[i]); | ||
| 2572 | } | ||
| 2573 | } | ||
| 2462 | } | 2574 | } |
| 2463 | } | 2575 | return n_ret_value; |
| 2464 | } | 2576 | } |
| 2465 | return n_ret_value; | ||
| 2466 | } | ||
| 2467 | 2577 | ||
| 2468 | } | 2578 | } |
| 2469 | 2579 | ||
| 2470 | |||
| 2471 | /* Anatoly will probably forgive me renaming p_s_tb to tb. I just | 2580 | /* Anatoly will probably forgive me renaming p_s_tb to tb. I just |
| 2472 | wanted to make lines shorter */ | 2581 | wanted to make lines shorter */ |
| 2473 | void unfix_nodes (struct tree_balance * tb) | 2582 | void unfix_nodes(struct tree_balance *tb) |
| 2474 | { | 2583 | { |
| 2475 | int i; | 2584 | int i; |
| 2476 | |||
| 2477 | /* Release path buffers. */ | ||
| 2478 | pathrelse_and_restore (tb->tb_sb, tb->tb_path); | ||
| 2479 | |||
| 2480 | /* brelse all resources collected for balancing */ | ||
| 2481 | for ( i = 0; i < MAX_HEIGHT; i++ ) { | ||
| 2482 | reiserfs_restore_prepared_buffer (tb->tb_sb, tb->L[i]); | ||
| 2483 | reiserfs_restore_prepared_buffer (tb->tb_sb, tb->R[i]); | ||
| 2484 | reiserfs_restore_prepared_buffer (tb->tb_sb, tb->FL[i]); | ||
| 2485 | reiserfs_restore_prepared_buffer (tb->tb_sb, tb->FR[i]); | ||
| 2486 | reiserfs_restore_prepared_buffer (tb->tb_sb, tb->CFL[i]); | ||
| 2487 | reiserfs_restore_prepared_buffer (tb->tb_sb, tb->CFR[i]); | ||
| 2488 | |||
| 2489 | brelse (tb->L[i]); | ||
| 2490 | brelse (tb->R[i]); | ||
| 2491 | brelse (tb->FL[i]); | ||
| 2492 | brelse (tb->FR[i]); | ||
| 2493 | brelse (tb->CFL[i]); | ||
| 2494 | brelse (tb->CFR[i]); | ||
| 2495 | } | ||
| 2496 | |||
| 2497 | /* deal with list of allocated (used and unused) nodes */ | ||
| 2498 | for ( i = 0; i < MAX_FEB_SIZE; i++ ) { | ||
| 2499 | if ( tb->FEB[i] ) { | ||
| 2500 | b_blocknr_t blocknr = tb->FEB[i]->b_blocknr ; | ||
| 2501 | /* de-allocated block which was not used by balancing and | ||
| 2502 | bforget about buffer for it */ | ||
| 2503 | brelse (tb->FEB[i]); | ||
| 2504 | reiserfs_free_block (tb->transaction_handle, NULL, blocknr, 0); | ||
| 2505 | } | ||
| 2506 | if (tb->used[i]) { | ||
| 2507 | /* release used as new nodes including a new root */ | ||
| 2508 | brelse (tb->used[i]); | ||
| 2509 | } | ||
| 2510 | } | ||
| 2511 | 2585 | ||
| 2512 | if (tb->vn_buf) | 2586 | /* Release path buffers. */ |
| 2513 | reiserfs_kfree (tb->vn_buf, tb->vn_buf_size, tb->tb_sb); | 2587 | pathrelse_and_restore(tb->tb_sb, tb->tb_path); |
| 2514 | 2588 | ||
| 2515 | } | 2589 | /* brelse all resources collected for balancing */ |
| 2590 | for (i = 0; i < MAX_HEIGHT; i++) { | ||
| 2591 | reiserfs_restore_prepared_buffer(tb->tb_sb, tb->L[i]); | ||
| 2592 | reiserfs_restore_prepared_buffer(tb->tb_sb, tb->R[i]); | ||
| 2593 | reiserfs_restore_prepared_buffer(tb->tb_sb, tb->FL[i]); | ||
| 2594 | reiserfs_restore_prepared_buffer(tb->tb_sb, tb->FR[i]); | ||
| 2595 | reiserfs_restore_prepared_buffer(tb->tb_sb, tb->CFL[i]); | ||
| 2596 | reiserfs_restore_prepared_buffer(tb->tb_sb, tb->CFR[i]); | ||
| 2597 | |||
| 2598 | brelse(tb->L[i]); | ||
| 2599 | brelse(tb->R[i]); | ||
| 2600 | brelse(tb->FL[i]); | ||
| 2601 | brelse(tb->FR[i]); | ||
| 2602 | brelse(tb->CFL[i]); | ||
| 2603 | brelse(tb->CFR[i]); | ||
| 2604 | } | ||
| 2516 | 2605 | ||
| 2606 | /* deal with list of allocated (used and unused) nodes */ | ||
| 2607 | for (i = 0; i < MAX_FEB_SIZE; i++) { | ||
| 2608 | if (tb->FEB[i]) { | ||
| 2609 | b_blocknr_t blocknr = tb->FEB[i]->b_blocknr; | ||
| 2610 | /* de-allocated block which was not used by balancing and | ||
| 2611 | bforget about buffer for it */ | ||
| 2612 | brelse(tb->FEB[i]); | ||
| 2613 | reiserfs_free_block(tb->transaction_handle, NULL, | ||
| 2614 | blocknr, 0); | ||
| 2615 | } | ||
| 2616 | if (tb->used[i]) { | ||
| 2617 | /* release used as new nodes including a new root */ | ||
| 2618 | brelse(tb->used[i]); | ||
| 2619 | } | ||
| 2620 | } | ||
| 2517 | 2621 | ||
| 2622 | if (tb->vn_buf) | ||
| 2623 | reiserfs_kfree(tb->vn_buf, tb->vn_buf_size, tb->tb_sb); | ||
| 2518 | 2624 | ||
| 2625 | } | ||
