diff options
Diffstat (limited to 'fs/reiserfs/fix_node.c')
-rw-r--r-- | fs/reiserfs/fix_node.c | 2518 |
1 files changed, 2518 insertions, 0 deletions
diff --git a/fs/reiserfs/fix_node.c b/fs/reiserfs/fix_node.c new file mode 100644 index 000000000000..e4f64be9e15b --- /dev/null +++ b/fs/reiserfs/fix_node.c | |||
@@ -0,0 +1,2518 @@ | |||
1 | /* | ||
2 | * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README | ||
3 | */ | ||
4 | |||
5 | /** | ||
6 | ** old_item_num | ||
7 | ** old_entry_num | ||
8 | ** set_entry_sizes | ||
9 | ** create_virtual_node | ||
10 | ** check_left | ||
11 | ** check_right | ||
12 | ** directory_part_size | ||
13 | ** get_num_ver | ||
14 | ** set_parameters | ||
15 | ** is_leaf_removable | ||
16 | ** are_leaves_removable | ||
17 | ** get_empty_nodes | ||
18 | ** get_lfree | ||
19 | ** get_rfree | ||
20 | ** is_left_neighbor_in_cache | ||
21 | ** decrement_key | ||
22 | ** get_far_parent | ||
23 | ** get_parents | ||
24 | ** can_node_be_removed | ||
25 | ** ip_check_balance | ||
26 | ** dc_check_balance_internal | ||
27 | ** dc_check_balance_leaf | ||
28 | ** dc_check_balance | ||
29 | ** check_balance | ||
30 | ** get_direct_parent | ||
31 | ** get_neighbors | ||
32 | ** fix_nodes | ||
33 | ** | ||
34 | ** | ||
35 | **/ | ||
36 | |||
37 | |||
38 | #include <linux/config.h> | ||
39 | #include <linux/time.h> | ||
40 | #include <linux/string.h> | ||
41 | #include <linux/reiserfs_fs.h> | ||
42 | #include <linux/buffer_head.h> | ||
43 | |||
44 | |||
45 | /* To make any changes in the tree we find a node, that contains item | ||
46 | to be changed/deleted or position in the node we insert a new item | ||
47 | to. We call this node S. To do balancing we need to decide what we | ||
48 | will shift to left/right neighbor, or to a new node, where new item | ||
49 | will be etc. To make this analysis simpler we build virtual | ||
50 | node. Virtual node is an array of items, that will replace items of | ||
51 | node S. (For instance if we are going to delete an item, virtual | ||
52 | node does not contain it). Virtual node keeps information about | ||
53 | item sizes and types, mergeability of first and last items, sizes | ||
54 | of all entries in directory item. We use this array of items when | ||
55 | calculating what we can shift to neighbors and how many nodes we | ||
56 | have to have if we do not any shiftings, if we shift to left/right | ||
57 | neighbor or to both. */ | ||
58 | |||
59 | |||
60 | /* taking item number in virtual node, returns number of item, that it has in source buffer */ | ||
61 | static inline int old_item_num (int new_num, int affected_item_num, int mode) | ||
62 | { | ||
63 | if (mode == M_PASTE || mode == M_CUT || new_num < affected_item_num) | ||
64 | return new_num; | ||
65 | |||
66 | if (mode == M_INSERT) { | ||
67 | |||
68 | RFALSE( new_num == 0, | ||
69 | "vs-8005: for INSERT mode and item number of inserted item"); | ||
70 | |||
71 | return new_num - 1; | ||
72 | } | ||
73 | |||
74 | RFALSE( mode != M_DELETE, | ||
75 | "vs-8010: old_item_num: mode must be M_DELETE (mode = \'%c\'", mode); | ||
76 | /* delete mode */ | ||
77 | return new_num + 1; | ||
78 | } | ||
79 | |||
80 | static void create_virtual_node (struct tree_balance * tb, int h) | ||
81 | { | ||
82 | struct item_head * ih; | ||
83 | struct virtual_node * vn = tb->tb_vn; | ||
84 | int new_num; | ||
85 | struct buffer_head * Sh; /* this comes from tb->S[h] */ | ||
86 | |||
87 | Sh = PATH_H_PBUFFER (tb->tb_path, h); | ||
88 | |||
89 | /* size of changed node */ | ||
90 | vn->vn_size = MAX_CHILD_SIZE (Sh) - B_FREE_SPACE (Sh) + tb->insert_size[h]; | ||
91 | |||
92 | /* for internal nodes array if virtual items is not created */ | ||
93 | if (h) { | ||
94 | vn->vn_nr_item = (vn->vn_size - DC_SIZE) / (DC_SIZE + KEY_SIZE); | ||
95 | return; | ||
96 | } | ||
97 | |||
98 | /* number of items in virtual node */ | ||
99 | vn->vn_nr_item = B_NR_ITEMS (Sh) + ((vn->vn_mode == M_INSERT)? 1 : 0) - ((vn->vn_mode == M_DELETE)? 1 : 0); | ||
100 | |||
101 | /* first virtual item */ | ||
102 | vn->vn_vi = (struct virtual_item *)(tb->tb_vn + 1); | ||
103 | memset (vn->vn_vi, 0, vn->vn_nr_item * sizeof (struct virtual_item)); | ||
104 | vn->vn_free_ptr += vn->vn_nr_item * sizeof (struct virtual_item); | ||
105 | |||
106 | |||
107 | /* first item in the node */ | ||
108 | ih = B_N_PITEM_HEAD (Sh, 0); | ||
109 | |||
110 | /* define the mergeability for 0-th item (if it is not being deleted) */ | ||
111 | if (op_is_left_mergeable (&(ih->ih_key), Sh->b_size) && (vn->vn_mode != M_DELETE || vn->vn_affected_item_num)) | ||
112 | vn->vn_vi[0].vi_type |= VI_TYPE_LEFT_MERGEABLE; | ||
113 | |||
114 | /* go through all items those remain in the virtual node (except for the new (inserted) one) */ | ||
115 | for (new_num = 0; new_num < vn->vn_nr_item; new_num ++) { | ||
116 | int j; | ||
117 | struct virtual_item * vi = vn->vn_vi + new_num; | ||
118 | int is_affected = ((new_num != vn->vn_affected_item_num) ? 0 : 1); | ||
119 | |||
120 | |||
121 | if (is_affected && vn->vn_mode == M_INSERT) | ||
122 | continue; | ||
123 | |||
124 | /* get item number in source node */ | ||
125 | j = old_item_num (new_num, vn->vn_affected_item_num, vn->vn_mode); | ||
126 | |||
127 | vi->vi_item_len += ih_item_len(ih + j) + IH_SIZE; | ||
128 | vi->vi_ih = ih + j; | ||
129 | vi->vi_item = B_I_PITEM (Sh, ih + j); | ||
130 | vi->vi_uarea = vn->vn_free_ptr; | ||
131 | |||
132 | // FIXME: there is no check, that item operation did not | ||
133 | // consume too much memory | ||
134 | vn->vn_free_ptr += op_create_vi (vn, vi, is_affected, tb->insert_size [0]); | ||
135 | if (tb->vn_buf + tb->vn_buf_size < vn->vn_free_ptr) | ||
136 | reiserfs_panic (tb->tb_sb, "vs-8030: create_virtual_node: " | ||
137 | "virtual node space consumed"); | ||
138 | |||
139 | if (!is_affected) | ||
140 | /* this is not being changed */ | ||
141 | continue; | ||
142 | |||
143 | if (vn->vn_mode == M_PASTE || vn->vn_mode == M_CUT) { | ||
144 | vn->vn_vi[new_num].vi_item_len += tb->insert_size[0]; | ||
145 | vi->vi_new_data = vn->vn_data; // pointer to data which is going to be pasted | ||
146 | } | ||
147 | } | ||
148 | |||
149 | |||
150 | /* virtual inserted item is not defined yet */ | ||
151 | if (vn->vn_mode == M_INSERT) { | ||
152 | struct virtual_item * vi = vn->vn_vi + vn->vn_affected_item_num; | ||
153 | |||
154 | RFALSE( vn->vn_ins_ih == 0, | ||
155 | "vs-8040: item header of inserted item is not specified"); | ||
156 | vi->vi_item_len = tb->insert_size[0]; | ||
157 | vi->vi_ih = vn->vn_ins_ih; | ||
158 | vi->vi_item = vn->vn_data; | ||
159 | vi->vi_uarea = vn->vn_free_ptr; | ||
160 | |||
161 | op_create_vi (vn, vi, 0/*not pasted or cut*/, tb->insert_size [0]); | ||
162 | } | ||
163 | |||
164 | /* set right merge flag we take right delimiting key and check whether it is a mergeable item */ | ||
165 | if (tb->CFR[0]) { | ||
166 | struct reiserfs_key * key; | ||
167 | |||
168 | key = B_N_PDELIM_KEY (tb->CFR[0], tb->rkey[0]); | ||
169 | if (op_is_left_mergeable (key, Sh->b_size) && (vn->vn_mode != M_DELETE || | ||
170 | vn->vn_affected_item_num != B_NR_ITEMS (Sh) - 1)) | ||
171 | vn->vn_vi[vn->vn_nr_item-1].vi_type |= VI_TYPE_RIGHT_MERGEABLE; | ||
172 | |||
173 | #ifdef CONFIG_REISERFS_CHECK | ||
174 | if (op_is_left_mergeable (key, Sh->b_size) && | ||
175 | !(vn->vn_mode != M_DELETE || vn->vn_affected_item_num != B_NR_ITEMS (Sh) - 1) ) { | ||
176 | /* we delete last item and it could be merged with right neighbor's first item */ | ||
177 | if (!(B_NR_ITEMS (Sh) == 1 && is_direntry_le_ih (B_N_PITEM_HEAD (Sh, 0)) && | ||
178 | I_ENTRY_COUNT (B_N_PITEM_HEAD (Sh, 0)) == 1)) { | ||
179 | /* node contains more than 1 item, or item is not directory item, or this item contains more than 1 entry */ | ||
180 | print_block (Sh, 0, -1, -1); | ||
181 | reiserfs_panic (tb->tb_sb, "vs-8045: create_virtual_node: rdkey %k, affected item==%d (mode==%c) Must be %c", | ||
182 | key, vn->vn_affected_item_num, vn->vn_mode, M_DELETE); | ||
183 | } else | ||
184 | /* we can delete directory item, that has only one directory entry in it */ | ||
185 | ; | ||
186 | } | ||
187 | #endif | ||
188 | |||
189 | } | ||
190 | } | ||
191 | |||
192 | |||
193 | /* using virtual node check, how many items can be shifted to left | ||
194 | neighbor */ | ||
195 | static void check_left (struct tree_balance * tb, int h, int cur_free) | ||
196 | { | ||
197 | int i; | ||
198 | struct virtual_node * vn = tb->tb_vn; | ||
199 | struct virtual_item * vi; | ||
200 | int d_size, ih_size; | ||
201 | |||
202 | RFALSE( cur_free < 0, "vs-8050: cur_free (%d) < 0", cur_free); | ||
203 | |||
204 | /* internal level */ | ||
205 | if (h > 0) { | ||
206 | tb->lnum[h] = cur_free / (DC_SIZE + KEY_SIZE); | ||
207 | return; | ||
208 | } | ||
209 | |||
210 | /* leaf level */ | ||
211 | |||
212 | if (!cur_free || !vn->vn_nr_item) { | ||
213 | /* no free space or nothing to move */ | ||
214 | tb->lnum[h] = 0; | ||
215 | tb->lbytes = -1; | ||
216 | return; | ||
217 | } | ||
218 | |||
219 | RFALSE( !PATH_H_PPARENT (tb->tb_path, 0), | ||
220 | "vs-8055: parent does not exist or invalid"); | ||
221 | |||
222 | vi = vn->vn_vi; | ||
223 | if ((unsigned int)cur_free >= (vn->vn_size - ((vi->vi_type & VI_TYPE_LEFT_MERGEABLE) ? IH_SIZE : 0))) { | ||
224 | /* all contents of S[0] fits into L[0] */ | ||
225 | |||
226 | RFALSE( vn->vn_mode == M_INSERT || vn->vn_mode == M_PASTE, | ||
227 | "vs-8055: invalid mode or balance condition failed"); | ||
228 | |||
229 | tb->lnum[0] = vn->vn_nr_item; | ||
230 | tb->lbytes = -1; | ||
231 | return; | ||
232 | } | ||
233 | |||
234 | |||
235 | d_size = 0, ih_size = IH_SIZE; | ||
236 | |||
237 | /* first item may be merge with last item in left neighbor */ | ||
238 | if (vi->vi_type & VI_TYPE_LEFT_MERGEABLE) | ||
239 | d_size = -((int)IH_SIZE), ih_size = 0; | ||
240 | |||
241 | tb->lnum[0] = 0; | ||
242 | for (i = 0; i < vn->vn_nr_item; i ++, ih_size = IH_SIZE, d_size = 0, vi ++) { | ||
243 | d_size += vi->vi_item_len; | ||
244 | if (cur_free >= d_size) { | ||
245 | /* the item can be shifted entirely */ | ||
246 | cur_free -= d_size; | ||
247 | tb->lnum[0] ++; | ||
248 | continue; | ||
249 | } | ||
250 | |||
251 | /* the item cannot be shifted entirely, try to split it */ | ||
252 | /* check whether L[0] can hold ih and at least one byte of the item body */ | ||
253 | if (cur_free <= ih_size) { | ||
254 | /* cannot shift even a part of the current item */ | ||
255 | tb->lbytes = -1; | ||
256 | return; | ||
257 | } | ||
258 | cur_free -= ih_size; | ||
259 | |||
260 | tb->lbytes = op_check_left (vi, cur_free, 0, 0); | ||
261 | if (tb->lbytes != -1) | ||
262 | /* count partially shifted item */ | ||
263 | tb->lnum[0] ++; | ||
264 | |||
265 | break; | ||
266 | } | ||
267 | |||
268 | return; | ||
269 | } | ||
270 | |||
271 | |||
272 | /* using virtual node check, how many items can be shifted to right | ||
273 | neighbor */ | ||
274 | static void check_right (struct tree_balance * tb, int h, int cur_free) | ||
275 | { | ||
276 | int i; | ||
277 | struct virtual_node * vn = tb->tb_vn; | ||
278 | struct virtual_item * vi; | ||
279 | int d_size, ih_size; | ||
280 | |||
281 | RFALSE( cur_free < 0, "vs-8070: cur_free < 0"); | ||
282 | |||
283 | /* internal level */ | ||
284 | if (h > 0) { | ||
285 | tb->rnum[h] = cur_free / (DC_SIZE + KEY_SIZE); | ||
286 | return; | ||
287 | } | ||
288 | |||
289 | /* leaf level */ | ||
290 | |||
291 | if (!cur_free || !vn->vn_nr_item) { | ||
292 | /* no free space */ | ||
293 | tb->rnum[h] = 0; | ||
294 | tb->rbytes = -1; | ||
295 | return; | ||
296 | } | ||
297 | |||
298 | RFALSE( !PATH_H_PPARENT (tb->tb_path, 0), | ||
299 | "vs-8075: parent does not exist or invalid"); | ||
300 | |||
301 | vi = vn->vn_vi + vn->vn_nr_item - 1; | ||
302 | if ((unsigned int)cur_free >= (vn->vn_size - ((vi->vi_type & VI_TYPE_RIGHT_MERGEABLE) ? IH_SIZE : 0))) { | ||
303 | /* all contents of S[0] fits into R[0] */ | ||
304 | |||
305 | RFALSE( vn->vn_mode == M_INSERT || vn->vn_mode == M_PASTE, | ||
306 | "vs-8080: invalid mode or balance condition failed"); | ||
307 | |||
308 | tb->rnum[h] = vn->vn_nr_item; | ||
309 | tb->rbytes = -1; | ||
310 | return; | ||
311 | } | ||
312 | |||
313 | d_size = 0, ih_size = IH_SIZE; | ||
314 | |||
315 | /* last item may be merge with first item in right neighbor */ | ||
316 | if (vi->vi_type & VI_TYPE_RIGHT_MERGEABLE) | ||
317 | d_size = -(int)IH_SIZE, ih_size = 0; | ||
318 | |||
319 | tb->rnum[0] = 0; | ||
320 | for (i = vn->vn_nr_item - 1; i >= 0; i --, d_size = 0, ih_size = IH_SIZE, vi --) { | ||
321 | d_size += vi->vi_item_len; | ||
322 | if (cur_free >= d_size) { | ||
323 | /* the item can be shifted entirely */ | ||
324 | cur_free -= d_size; | ||
325 | tb->rnum[0] ++; | ||
326 | continue; | ||
327 | } | ||
328 | |||
329 | /* check whether R[0] can hold ih and at least one byte of the item body */ | ||
330 | if ( cur_free <= ih_size ) { /* cannot shift even a part of the current item */ | ||
331 | tb->rbytes = -1; | ||
332 | return; | ||
333 | } | ||
334 | |||
335 | /* R[0] can hold the header of the item and at least one byte of its body */ | ||
336 | cur_free -= ih_size; /* cur_free is still > 0 */ | ||
337 | |||
338 | tb->rbytes = op_check_right (vi, cur_free); | ||
339 | if (tb->rbytes != -1) | ||
340 | /* count partially shifted item */ | ||
341 | tb->rnum[0] ++; | ||
342 | |||
343 | break; | ||
344 | } | ||
345 | |||
346 | return; | ||
347 | } | ||
348 | |||
349 | |||
350 | /* | ||
351 | * from - number of items, which are shifted to left neighbor entirely | ||
352 | * to - number of item, which are shifted to right neighbor entirely | ||
353 | * from_bytes - number of bytes of boundary item (or directory entries) which are shifted to left neighbor | ||
354 | * to_bytes - number of bytes of boundary item (or directory entries) which are shifted to right neighbor */ | ||
355 | static int get_num_ver (int mode, struct tree_balance * tb, int h, | ||
356 | int from, int from_bytes, | ||
357 | int to, int to_bytes, | ||
358 | short * snum012, int flow | ||
359 | ) | ||
360 | { | ||
361 | int i; | ||
362 | int cur_free; | ||
363 | // int bytes; | ||
364 | int units; | ||
365 | struct virtual_node * vn = tb->tb_vn; | ||
366 | // struct virtual_item * vi; | ||
367 | |||
368 | int total_node_size, max_node_size, current_item_size; | ||
369 | int needed_nodes; | ||
370 | int start_item, /* position of item we start filling node from */ | ||
371 | end_item, /* position of item we finish filling node by */ | ||
372 | start_bytes,/* number of first bytes (entries for directory) of start_item-th item | ||
373 | we do not include into node that is being filled */ | ||
374 | end_bytes; /* number of last bytes (entries for directory) of end_item-th item | ||
375 | we do node include into node that is being filled */ | ||
376 | int split_item_positions[2]; /* these are positions in virtual item of | ||
377 | items, that are split between S[0] and | ||
378 | S1new and S1new and S2new */ | ||
379 | |||
380 | split_item_positions[0] = -1; | ||
381 | split_item_positions[1] = -1; | ||
382 | |||
383 | /* We only create additional nodes if we are in insert or paste mode | ||
384 | or we are in replace mode at the internal level. If h is 0 and | ||
385 | the mode is M_REPLACE then in fix_nodes we change the mode to | ||
386 | paste or insert before we get here in the code. */ | ||
387 | RFALSE( tb->insert_size[h] < 0 || (mode != M_INSERT && mode != M_PASTE), | ||
388 | "vs-8100: insert_size < 0 in overflow"); | ||
389 | |||
390 | max_node_size = MAX_CHILD_SIZE (PATH_H_PBUFFER (tb->tb_path, h)); | ||
391 | |||
392 | /* snum012 [0-2] - number of items, that lay | ||
393 | to S[0], first new node and second new node */ | ||
394 | snum012[3] = -1; /* s1bytes */ | ||
395 | snum012[4] = -1; /* s2bytes */ | ||
396 | |||
397 | /* internal level */ | ||
398 | if (h > 0) { | ||
399 | i = ((to - from) * (KEY_SIZE + DC_SIZE) + DC_SIZE); | ||
400 | if (i == max_node_size) | ||
401 | return 1; | ||
402 | return (i / max_node_size + 1); | ||
403 | } | ||
404 | |||
405 | /* leaf level */ | ||
406 | needed_nodes = 1; | ||
407 | total_node_size = 0; | ||
408 | cur_free = max_node_size; | ||
409 | |||
410 | // start from 'from'-th item | ||
411 | start_item = from; | ||
412 | // skip its first 'start_bytes' units | ||
413 | start_bytes = ((from_bytes != -1) ? from_bytes : 0); | ||
414 | |||
415 | // last included item is the 'end_item'-th one | ||
416 | end_item = vn->vn_nr_item - to - 1; | ||
417 | // do not count last 'end_bytes' units of 'end_item'-th item | ||
418 | end_bytes = (to_bytes != -1) ? to_bytes : 0; | ||
419 | |||
420 | /* go through all item beginning from the start_item-th item and ending by | ||
421 | the end_item-th item. Do not count first 'start_bytes' units of | ||
422 | 'start_item'-th item and last 'end_bytes' of 'end_item'-th item */ | ||
423 | |||
424 | for (i = start_item; i <= end_item; i ++) { | ||
425 | struct virtual_item * vi = vn->vn_vi + i; | ||
426 | int skip_from_end = ((i == end_item) ? end_bytes : 0); | ||
427 | |||
428 | RFALSE( needed_nodes > 3, "vs-8105: too many nodes are needed"); | ||
429 | |||
430 | /* get size of current item */ | ||
431 | current_item_size = vi->vi_item_len; | ||
432 | |||
433 | /* do not take in calculation head part (from_bytes) of from-th item */ | ||
434 | current_item_size -= op_part_size (vi, 0/*from start*/, start_bytes); | ||
435 | |||
436 | /* do not take in calculation tail part of last item */ | ||
437 | current_item_size -= op_part_size (vi, 1/*from end*/, skip_from_end); | ||
438 | |||
439 | /* if item fits into current node entierly */ | ||
440 | if (total_node_size + current_item_size <= max_node_size) { | ||
441 | snum012[needed_nodes - 1] ++; | ||
442 | total_node_size += current_item_size; | ||
443 | start_bytes = 0; | ||
444 | continue; | ||
445 | } | ||
446 | |||
447 | if (current_item_size > max_node_size) { | ||
448 | /* virtual item length is longer, than max size of item in | ||
449 | a node. It is impossible for direct item */ | ||
450 | RFALSE( is_direct_le_ih (vi->vi_ih), | ||
451 | "vs-8110: " | ||
452 | "direct item length is %d. It can not be longer than %d", | ||
453 | current_item_size, max_node_size); | ||
454 | /* we will try to split it */ | ||
455 | flow = 1; | ||
456 | } | ||
457 | |||
458 | if (!flow) { | ||
459 | /* as we do not split items, take new node and continue */ | ||
460 | needed_nodes ++; i --; total_node_size = 0; | ||
461 | continue; | ||
462 | } | ||
463 | |||
464 | // calculate number of item units which fit into node being | ||
465 | // filled | ||
466 | { | ||
467 | int free_space; | ||
468 | |||
469 | free_space = max_node_size - total_node_size - IH_SIZE; | ||
470 | units = op_check_left (vi, free_space, start_bytes, skip_from_end); | ||
471 | if (units == -1) { | ||
472 | /* nothing fits into current node, take new node and continue */ | ||
473 | needed_nodes ++, i--, total_node_size = 0; | ||
474 | continue; | ||
475 | } | ||
476 | } | ||
477 | |||
478 | /* something fits into the current node */ | ||
479 | //if (snum012[3] != -1 || needed_nodes != 1) | ||
480 | // reiserfs_panic (tb->tb_sb, "vs-8115: get_num_ver: too many nodes required"); | ||
481 | //snum012[needed_nodes - 1 + 3] = op_unit_num (vi) - start_bytes - units; | ||
482 | start_bytes += units; | ||
483 | snum012[needed_nodes - 1 + 3] = units; | ||
484 | |||
485 | if (needed_nodes > 2) | ||
486 | reiserfs_warning (tb->tb_sb, "vs-8111: get_num_ver: " | ||
487 | "split_item_position is out of boundary"); | ||
488 | snum012[needed_nodes - 1] ++; | ||
489 | split_item_positions[needed_nodes - 1] = i; | ||
490 | needed_nodes ++; | ||
491 | /* continue from the same item with start_bytes != -1 */ | ||
492 | start_item = i; | ||
493 | i --; | ||
494 | total_node_size = 0; | ||
495 | } | ||
496 | |||
497 | // sum012[4] (if it is not -1) contains number of units of which | ||
498 | // are to be in S1new, snum012[3] - to be in S0. They are supposed | ||
499 | // to be S1bytes and S2bytes correspondingly, so recalculate | ||
500 | if (snum012[4] > 0) { | ||
501 | int split_item_num; | ||
502 | int bytes_to_r, bytes_to_l; | ||
503 | int bytes_to_S1new; | ||
504 | |||
505 | split_item_num = split_item_positions[1]; | ||
506 | bytes_to_l = ((from == split_item_num && from_bytes != -1) ? from_bytes : 0); | ||
507 | bytes_to_r = ((end_item == split_item_num && end_bytes != -1) ? end_bytes : 0); | ||
508 | bytes_to_S1new = ((split_item_positions[0] == split_item_positions[1]) ? snum012[3] : 0); | ||
509 | |||
510 | // s2bytes | ||
511 | snum012[4] = op_unit_num (&vn->vn_vi[split_item_num]) - snum012[4] - bytes_to_r - bytes_to_l - bytes_to_S1new; | ||
512 | |||
513 | if (vn->vn_vi[split_item_num].vi_index != TYPE_DIRENTRY && | ||
514 | vn->vn_vi[split_item_num].vi_index != TYPE_INDIRECT) | ||
515 | reiserfs_warning (tb->tb_sb, "vs-8115: get_num_ver: not " | ||
516 | "directory or indirect item"); | ||
517 | } | ||
518 | |||
519 | /* now we know S2bytes, calculate S1bytes */ | ||
520 | if (snum012[3] > 0) { | ||
521 | int split_item_num; | ||
522 | int bytes_to_r, bytes_to_l; | ||
523 | int bytes_to_S2new; | ||
524 | |||
525 | split_item_num = split_item_positions[0]; | ||
526 | bytes_to_l = ((from == split_item_num && from_bytes != -1) ? from_bytes : 0); | ||
527 | bytes_to_r = ((end_item == split_item_num && end_bytes != -1) ? end_bytes : 0); | ||
528 | bytes_to_S2new = ((split_item_positions[0] == split_item_positions[1] && snum012[4] != -1) ? snum012[4] : 0); | ||
529 | |||
530 | // s1bytes | ||
531 | snum012[3] = op_unit_num (&vn->vn_vi[split_item_num]) - snum012[3] - bytes_to_r - bytes_to_l - bytes_to_S2new; | ||
532 | } | ||
533 | |||
534 | return needed_nodes; | ||
535 | } | ||
536 | |||
537 | |||
538 | #ifdef CONFIG_REISERFS_CHECK | ||
539 | extern struct tree_balance * cur_tb; | ||
540 | #endif | ||
541 | |||
542 | |||
543 | /* Set parameters for balancing. | ||
544 | * Performs write of results of analysis of balancing into structure tb, | ||
545 | * where it will later be used by the functions that actually do the balancing. | ||
546 | * Parameters: | ||
547 | * tb tree_balance structure; | ||
548 | * h current level of the node; | ||
549 | * lnum number of items from S[h] that must be shifted to L[h]; | ||
550 | * rnum number of items from S[h] that must be shifted to R[h]; | ||
551 | * blk_num number of blocks that S[h] will be splitted into; | ||
552 | * s012 number of items that fall into splitted nodes. | ||
553 | * lbytes number of bytes which flow to the left neighbor from the item that is not | ||
554 | * not shifted entirely | ||
555 | * rbytes number of bytes which flow to the right neighbor from the item that is not | ||
556 | * not shifted entirely | ||
557 | * s1bytes number of bytes which flow to the first new node when S[0] splits (this number is contained in s012 array) | ||
558 | */ | ||
559 | |||
560 | static void set_parameters (struct tree_balance * tb, int h, int lnum, | ||
561 | int rnum, int blk_num, short * s012, int lb, int rb) | ||
562 | { | ||
563 | |||
564 | tb->lnum[h] = lnum; | ||
565 | tb->rnum[h] = rnum; | ||
566 | tb->blknum[h] = blk_num; | ||
567 | |||
568 | if (h == 0) | ||
569 | { /* only for leaf level */ | ||
570 | if (s012 != NULL) | ||
571 | { | ||
572 | tb->s0num = * s012 ++, | ||
573 | tb->s1num = * s012 ++, | ||
574 | tb->s2num = * s012 ++; | ||
575 | tb->s1bytes = * s012 ++; | ||
576 | tb->s2bytes = * s012; | ||
577 | } | ||
578 | tb->lbytes = lb; | ||
579 | tb->rbytes = rb; | ||
580 | } | ||
581 | PROC_INFO_ADD( tb -> tb_sb, lnum[ h ], lnum ); | ||
582 | PROC_INFO_ADD( tb -> tb_sb, rnum[ h ], rnum ); | ||
583 | |||
584 | PROC_INFO_ADD( tb -> tb_sb, lbytes[ h ], lb ); | ||
585 | PROC_INFO_ADD( tb -> tb_sb, rbytes[ h ], rb ); | ||
586 | } | ||
587 | |||
588 | |||
589 | |||
590 | /* check, does node disappear if we shift tb->lnum[0] items to left | ||
591 | neighbor and tb->rnum[0] to the right one. */ | ||
592 | static int is_leaf_removable (struct tree_balance * tb) | ||
593 | { | ||
594 | struct virtual_node * vn = tb->tb_vn; | ||
595 | int to_left, to_right; | ||
596 | int size; | ||
597 | int remain_items; | ||
598 | |||
599 | /* number of items, that will be shifted to left (right) neighbor | ||
600 | entirely */ | ||
601 | to_left = tb->lnum[0] - ((tb->lbytes != -1) ? 1 : 0); | ||
602 | to_right = tb->rnum[0] - ((tb->rbytes != -1) ? 1 : 0); | ||
603 | remain_items = vn->vn_nr_item; | ||
604 | |||
605 | /* how many items remain in S[0] after shiftings to neighbors */ | ||
606 | remain_items -= (to_left + to_right); | ||
607 | |||
608 | if (remain_items < 1) { | ||
609 | /* all content of node can be shifted to neighbors */ | ||
610 | set_parameters (tb, 0, to_left, vn->vn_nr_item - to_left, 0, NULL, -1, -1); | ||
611 | return 1; | ||
612 | } | ||
613 | |||
614 | if (remain_items > 1 || tb->lbytes == -1 || tb->rbytes == -1) | ||
615 | /* S[0] is not removable */ | ||
616 | return 0; | ||
617 | |||
618 | /* check, whether we can divide 1 remaining item between neighbors */ | ||
619 | |||
620 | /* get size of remaining item (in item units) */ | ||
621 | size = op_unit_num (&(vn->vn_vi[to_left])); | ||
622 | |||
623 | if (tb->lbytes + tb->rbytes >= size) { | ||
624 | set_parameters (tb, 0, to_left + 1, to_right + 1, 0, NULL, tb->lbytes, -1); | ||
625 | return 1; | ||
626 | } | ||
627 | |||
628 | return 0; | ||
629 | } | ||
630 | |||
631 | |||
632 | /* check whether L, S, R can be joined in one node */ | ||
633 | static int are_leaves_removable (struct tree_balance * tb, int lfree, int rfree) | ||
634 | { | ||
635 | struct virtual_node * vn = tb->tb_vn; | ||
636 | int ih_size; | ||
637 | struct buffer_head *S0; | ||
638 | |||
639 | S0 = PATH_H_PBUFFER (tb->tb_path, 0); | ||
640 | |||
641 | ih_size = 0; | ||
642 | if (vn->vn_nr_item) { | ||
643 | if (vn->vn_vi[0].vi_type & VI_TYPE_LEFT_MERGEABLE) | ||
644 | ih_size += IH_SIZE; | ||
645 | |||
646 | if (vn->vn_vi[vn->vn_nr_item-1].vi_type & VI_TYPE_RIGHT_MERGEABLE) | ||
647 | ih_size += IH_SIZE; | ||
648 | } else { | ||
649 | /* there was only one item and it will be deleted */ | ||
650 | struct item_head * ih; | ||
651 | |||
652 | RFALSE( B_NR_ITEMS (S0) != 1, | ||
653 | "vs-8125: item number must be 1: it is %d", B_NR_ITEMS(S0)); | ||
654 | |||
655 | ih = B_N_PITEM_HEAD (S0, 0); | ||
656 | if (tb->CFR[0] && !comp_short_le_keys (&(ih->ih_key), B_N_PDELIM_KEY (tb->CFR[0], tb->rkey[0]))) | ||
657 | if (is_direntry_le_ih (ih)) { | ||
658 | /* Directory must be in correct state here: that is | ||
659 | somewhere at the left side should exist first directory | ||
660 | item. But the item being deleted can not be that first | ||
661 | one because its right neighbor is item of the same | ||
662 | directory. (But first item always gets deleted in last | ||
663 | turn). So, neighbors of deleted item can be merged, so | ||
664 | we can save ih_size */ | ||
665 | ih_size = IH_SIZE; | ||
666 | |||
667 | /* we might check that left neighbor exists and is of the | ||
668 | same directory */ | ||
669 | RFALSE(le_ih_k_offset (ih) == DOT_OFFSET, | ||
670 | "vs-8130: first directory item can not be removed until directory is not empty"); | ||
671 | } | ||
672 | |||
673 | } | ||
674 | |||
675 | if (MAX_CHILD_SIZE (S0) + vn->vn_size <= rfree + lfree + ih_size) { | ||
676 | set_parameters (tb, 0, -1, -1, -1, NULL, -1, -1); | ||
677 | PROC_INFO_INC( tb -> tb_sb, leaves_removable ); | ||
678 | return 1; | ||
679 | } | ||
680 | return 0; | ||
681 | |||
682 | } | ||
683 | |||
684 | |||
685 | |||
686 | /* when we do not split item, lnum and rnum are numbers of entire items */ | ||
687 | #define SET_PAR_SHIFT_LEFT \ | ||
688 | if (h)\ | ||
689 | {\ | ||
690 | int to_l;\ | ||
691 | \ | ||
692 | to_l = (MAX_NR_KEY(Sh)+1 - lpar + vn->vn_nr_item + 1) / 2 -\ | ||
693 | (MAX_NR_KEY(Sh) + 1 - lpar);\ | ||
694 | \ | ||
695 | set_parameters (tb, h, to_l, 0, lnver, NULL, -1, -1);\ | ||
696 | }\ | ||
697 | else \ | ||
698 | {\ | ||
699 | if (lset==LEFT_SHIFT_FLOW)\ | ||
700 | set_parameters (tb, h, lpar, 0, lnver, snum012+lset,\ | ||
701 | tb->lbytes, -1);\ | ||
702 | else\ | ||
703 | set_parameters (tb, h, lpar - (tb->lbytes!=-1), 0, lnver, snum012+lset,\ | ||
704 | -1, -1);\ | ||
705 | } | ||
706 | |||
707 | |||
708 | #define SET_PAR_SHIFT_RIGHT \ | ||
709 | if (h)\ | ||
710 | {\ | ||
711 | int to_r;\ | ||
712 | \ | ||
713 | to_r = (MAX_NR_KEY(Sh)+1 - rpar + vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 - rpar);\ | ||
714 | \ | ||
715 | set_parameters (tb, h, 0, to_r, rnver, NULL, -1, -1);\ | ||
716 | }\ | ||
717 | else \ | ||
718 | {\ | ||
719 | if (rset==RIGHT_SHIFT_FLOW)\ | ||
720 | set_parameters (tb, h, 0, rpar, rnver, snum012+rset,\ | ||
721 | -1, tb->rbytes);\ | ||
722 | else\ | ||
723 | set_parameters (tb, h, 0, rpar - (tb->rbytes!=-1), rnver, snum012+rset,\ | ||
724 | -1, -1);\ | ||
725 | } | ||
726 | |||
727 | |||
728 | static void free_buffers_in_tb ( | ||
729 | struct tree_balance * p_s_tb | ||
730 | ) { | ||
731 | int n_counter; | ||
732 | |||
733 | decrement_counters_in_path(p_s_tb->tb_path); | ||
734 | |||
735 | for ( n_counter = 0; n_counter < MAX_HEIGHT; n_counter++ ) { | ||
736 | decrement_bcount(p_s_tb->L[n_counter]); | ||
737 | p_s_tb->L[n_counter] = NULL; | ||
738 | decrement_bcount(p_s_tb->R[n_counter]); | ||
739 | p_s_tb->R[n_counter] = NULL; | ||
740 | decrement_bcount(p_s_tb->FL[n_counter]); | ||
741 | p_s_tb->FL[n_counter] = NULL; | ||
742 | decrement_bcount(p_s_tb->FR[n_counter]); | ||
743 | p_s_tb->FR[n_counter] = NULL; | ||
744 | decrement_bcount(p_s_tb->CFL[n_counter]); | ||
745 | p_s_tb->CFL[n_counter] = NULL; | ||
746 | decrement_bcount(p_s_tb->CFR[n_counter]); | ||
747 | p_s_tb->CFR[n_counter] = NULL; | ||
748 | } | ||
749 | } | ||
750 | |||
751 | |||
752 | /* Get new buffers for storing new nodes that are created while balancing. | ||
753 | * Returns: SCHEDULE_OCCURRED - schedule occurred while the function worked; | ||
754 | * CARRY_ON - schedule didn't occur while the function worked; | ||
755 | * NO_DISK_SPACE - no disk space. | ||
756 | */ | ||
757 | /* The function is NOT SCHEDULE-SAFE! */ | ||
758 | static int get_empty_nodes( | ||
759 | struct tree_balance * p_s_tb, | ||
760 | int n_h | ||
761 | ) { | ||
762 | struct buffer_head * p_s_new_bh, | ||
763 | * p_s_Sh = PATH_H_PBUFFER (p_s_tb->tb_path, n_h); | ||
764 | b_blocknr_t * p_n_blocknr, | ||
765 | a_n_blocknrs[MAX_AMOUNT_NEEDED] = {0, }; | ||
766 | int n_counter, | ||
767 | n_number_of_freeblk, | ||
768 | n_amount_needed,/* number of needed empty blocks */ | ||
769 | n_retval = CARRY_ON; | ||
770 | struct super_block * p_s_sb = p_s_tb->tb_sb; | ||
771 | |||
772 | |||
773 | /* number_of_freeblk is the number of empty blocks which have been | ||
774 | acquired for use by the balancing algorithm minus the number of | ||
775 | empty blocks used in the previous levels of the analysis, | ||
776 | number_of_freeblk = tb->cur_blknum can be non-zero if a schedule occurs | ||
777 | after empty blocks are acquired, and the balancing analysis is | ||
778 | then restarted, amount_needed is the number needed by this level | ||
779 | (n_h) of the balancing analysis. | ||
780 | |||
781 | Note that for systems with many processes writing, it would be | ||
782 | more layout optimal to calculate the total number needed by all | ||
783 | levels and then to run reiserfs_new_blocks to get all of them at once. */ | ||
784 | |||
785 | /* Initiate number_of_freeblk to the amount acquired prior to the restart of | ||
786 | the analysis or 0 if not restarted, then subtract the amount needed | ||
787 | by all of the levels of the tree below n_h. */ | ||
788 | /* blknum includes S[n_h], so we subtract 1 in this calculation */ | ||
789 | for ( n_counter = 0, n_number_of_freeblk = p_s_tb->cur_blknum; n_counter < n_h; n_counter++ ) | ||
790 | n_number_of_freeblk -= ( p_s_tb->blknum[n_counter] ) ? (p_s_tb->blknum[n_counter] - 1) : 0; | ||
791 | |||
792 | /* Allocate missing empty blocks. */ | ||
793 | /* if p_s_Sh == 0 then we are getting a new root */ | ||
794 | n_amount_needed = ( p_s_Sh ) ? (p_s_tb->blknum[n_h] - 1) : 1; | ||
795 | /* Amount_needed = the amount that we need more than the amount that we have. */ | ||
796 | if ( n_amount_needed > n_number_of_freeblk ) | ||
797 | n_amount_needed -= n_number_of_freeblk; | ||
798 | else /* If we have enough already then there is nothing to do. */ | ||
799 | return CARRY_ON; | ||
800 | |||
801 | /* No need to check quota - is not allocated for blocks used for formatted nodes */ | ||
802 | if (reiserfs_new_form_blocknrs (p_s_tb, a_n_blocknrs, | ||
803 | n_amount_needed) == NO_DISK_SPACE) | ||
804 | return NO_DISK_SPACE; | ||
805 | |||
806 | /* for each blocknumber we just got, get a buffer and stick it on FEB */ | ||
807 | for ( p_n_blocknr = a_n_blocknrs, n_counter = 0; n_counter < n_amount_needed; | ||
808 | p_n_blocknr++, n_counter++ ) { | ||
809 | |||
810 | RFALSE( ! *p_n_blocknr, | ||
811 | "PAP-8135: reiserfs_new_blocknrs failed when got new blocks"); | ||
812 | |||
813 | p_s_new_bh = sb_getblk(p_s_sb, *p_n_blocknr); | ||
814 | RFALSE (buffer_dirty (p_s_new_bh) || | ||
815 | buffer_journaled (p_s_new_bh) || | ||
816 | buffer_journal_dirty (p_s_new_bh), | ||
817 | "PAP-8140: journlaled or dirty buffer %b for the new block", | ||
818 | p_s_new_bh); | ||
819 | |||
820 | /* Put empty buffers into the array. */ | ||
821 | RFALSE (p_s_tb->FEB[p_s_tb->cur_blknum], | ||
822 | "PAP-8141: busy slot for new buffer"); | ||
823 | |||
824 | set_buffer_journal_new (p_s_new_bh); | ||
825 | p_s_tb->FEB[p_s_tb->cur_blknum++] = p_s_new_bh; | ||
826 | } | ||
827 | |||
828 | if ( n_retval == CARRY_ON && FILESYSTEM_CHANGED_TB (p_s_tb) ) | ||
829 | n_retval = REPEAT_SEARCH ; | ||
830 | |||
831 | return n_retval; | ||
832 | } | ||
833 | |||
834 | |||
835 | /* Get free space of the left neighbor, which is stored in the parent | ||
836 | * node of the left neighbor. */ | ||
837 | static int get_lfree (struct tree_balance * tb, int h) | ||
838 | { | ||
839 | struct buffer_head * l, * f; | ||
840 | int order; | ||
841 | |||
842 | if ((f = PATH_H_PPARENT (tb->tb_path, h)) == 0 || (l = tb->FL[h]) == 0) | ||
843 | return 0; | ||
844 | |||
845 | if (f == l) | ||
846 | order = PATH_H_B_ITEM_ORDER (tb->tb_path, h) - 1; | ||
847 | else { | ||
848 | order = B_NR_ITEMS (l); | ||
849 | f = l; | ||
850 | } | ||
851 | |||
852 | return (MAX_CHILD_SIZE(f) - dc_size(B_N_CHILD(f,order))); | ||
853 | } | ||
854 | |||
855 | |||
856 | /* Get free space of the right neighbor, | ||
857 | * which is stored in the parent node of the right neighbor. | ||
858 | */ | ||
859 | static int get_rfree (struct tree_balance * tb, int h) | ||
860 | { | ||
861 | struct buffer_head * r, * f; | ||
862 | int order; | ||
863 | |||
864 | if ((f = PATH_H_PPARENT (tb->tb_path, h)) == 0 || (r = tb->FR[h]) == 0) | ||
865 | return 0; | ||
866 | |||
867 | if (f == r) | ||
868 | order = PATH_H_B_ITEM_ORDER (tb->tb_path, h) + 1; | ||
869 | else { | ||
870 | order = 0; | ||
871 | f = r; | ||
872 | } | ||
873 | |||
874 | return (MAX_CHILD_SIZE(f) - dc_size( B_N_CHILD(f,order))); | ||
875 | |||
876 | } | ||
877 | |||
878 | |||
879 | /* Check whether left neighbor is in memory. */ | ||
880 | static int is_left_neighbor_in_cache( | ||
881 | struct tree_balance * p_s_tb, | ||
882 | int n_h | ||
883 | ) { | ||
884 | struct buffer_head * p_s_father, * left; | ||
885 | struct super_block * p_s_sb = p_s_tb->tb_sb; | ||
886 | b_blocknr_t n_left_neighbor_blocknr; | ||
887 | int n_left_neighbor_position; | ||
888 | |||
889 | if ( ! p_s_tb->FL[n_h] ) /* Father of the left neighbor does not exist. */ | ||
890 | return 0; | ||
891 | |||
892 | /* Calculate father of the node to be balanced. */ | ||
893 | p_s_father = PATH_H_PBUFFER(p_s_tb->tb_path, n_h + 1); | ||
894 | |||
895 | RFALSE( ! p_s_father || | ||
896 | ! B_IS_IN_TREE (p_s_father) || | ||
897 | ! B_IS_IN_TREE (p_s_tb->FL[n_h]) || | ||
898 | ! buffer_uptodate (p_s_father) || | ||
899 | ! buffer_uptodate (p_s_tb->FL[n_h]), | ||
900 | "vs-8165: F[h] (%b) or FL[h] (%b) is invalid", | ||
901 | p_s_father, p_s_tb->FL[n_h]); | ||
902 | |||
903 | |||
904 | /* Get position of the pointer to the left neighbor into the left father. */ | ||
905 | n_left_neighbor_position = ( p_s_father == p_s_tb->FL[n_h] ) ? | ||
906 | p_s_tb->lkey[n_h] : B_NR_ITEMS (p_s_tb->FL[n_h]); | ||
907 | /* Get left neighbor block number. */ | ||
908 | n_left_neighbor_blocknr = B_N_CHILD_NUM(p_s_tb->FL[n_h], n_left_neighbor_position); | ||
909 | /* Look for the left neighbor in the cache. */ | ||
910 | if ( (left = sb_find_get_block(p_s_sb, n_left_neighbor_blocknr)) ) { | ||
911 | |||
912 | RFALSE( buffer_uptodate (left) && ! B_IS_IN_TREE(left), | ||
913 | "vs-8170: left neighbor (%b %z) is not in the tree", left, left); | ||
914 | put_bh(left) ; | ||
915 | return 1; | ||
916 | } | ||
917 | |||
918 | return 0; | ||
919 | } | ||
920 | |||
921 | |||
922 | #define LEFT_PARENTS 'l' | ||
923 | #define RIGHT_PARENTS 'r' | ||
924 | |||
925 | |||
926 | static void decrement_key (struct cpu_key * p_s_key) | ||
927 | { | ||
928 | // call item specific function for this key | ||
929 | item_ops[cpu_key_k_type (p_s_key)]->decrement_key (p_s_key); | ||
930 | } | ||
931 | |||
932 | |||
933 | |||
934 | |||
935 | /* Calculate far left/right parent of the left/right neighbor of the current node, that | ||
936 | * is calculate the left/right (FL[h]/FR[h]) neighbor of the parent F[h]. | ||
937 | * Calculate left/right common parent of the current node and L[h]/R[h]. | ||
938 | * Calculate left/right delimiting key position. | ||
939 | * Returns: PATH_INCORRECT - path in the tree is not correct; | ||
940 | SCHEDULE_OCCURRED - schedule occurred while the function worked; | ||
941 | * CARRY_ON - schedule didn't occur while the function worked; | ||
942 | */ | ||
943 | static int get_far_parent (struct tree_balance * p_s_tb, | ||
944 | int n_h, | ||
945 | struct buffer_head ** pp_s_father, | ||
946 | struct buffer_head ** pp_s_com_father, | ||
947 | char c_lr_par) | ||
948 | { | ||
949 | struct buffer_head * p_s_parent; | ||
950 | INITIALIZE_PATH (s_path_to_neighbor_father); | ||
951 | struct path * p_s_path = p_s_tb->tb_path; | ||
952 | struct cpu_key s_lr_father_key; | ||
953 | int n_counter, | ||
954 | n_position = INT_MAX, | ||
955 | n_first_last_position = 0, | ||
956 | n_path_offset = PATH_H_PATH_OFFSET(p_s_path, n_h); | ||
957 | |||
958 | /* Starting from F[n_h] go upwards in the tree, and look for the common | ||
959 | ancestor of F[n_h], and its neighbor l/r, that should be obtained. */ | ||
960 | |||
961 | n_counter = n_path_offset; | ||
962 | |||
963 | RFALSE( n_counter < FIRST_PATH_ELEMENT_OFFSET, | ||
964 | "PAP-8180: invalid path length"); | ||
965 | |||
966 | |||
967 | for ( ; n_counter > FIRST_PATH_ELEMENT_OFFSET; n_counter-- ) { | ||
968 | /* Check whether parent of the current buffer in the path is really parent in the tree. */ | ||
969 | if ( ! B_IS_IN_TREE(p_s_parent = PATH_OFFSET_PBUFFER(p_s_path, n_counter - 1)) ) | ||
970 | return REPEAT_SEARCH; | ||
971 | /* Check whether position in the parent is correct. */ | ||
972 | if ( (n_position = PATH_OFFSET_POSITION(p_s_path, n_counter - 1)) > B_NR_ITEMS(p_s_parent) ) | ||
973 | return REPEAT_SEARCH; | ||
974 | /* Check whether parent at the path really points to the child. */ | ||
975 | if ( B_N_CHILD_NUM(p_s_parent, n_position) != | ||
976 | PATH_OFFSET_PBUFFER(p_s_path, n_counter)->b_blocknr ) | ||
977 | return REPEAT_SEARCH; | ||
978 | /* Return delimiting key if position in the parent is not equal to first/last one. */ | ||
979 | if ( c_lr_par == RIGHT_PARENTS ) | ||
980 | n_first_last_position = B_NR_ITEMS (p_s_parent); | ||
981 | if ( n_position != n_first_last_position ) { | ||
982 | *pp_s_com_father = p_s_parent; | ||
983 | get_bh(*pp_s_com_father) ; | ||
984 | /*(*pp_s_com_father = p_s_parent)->b_count++;*/ | ||
985 | break; | ||
986 | } | ||
987 | } | ||
988 | |||
989 | /* if we are in the root of the tree, then there is no common father */ | ||
990 | if ( n_counter == FIRST_PATH_ELEMENT_OFFSET ) { | ||
991 | /* Check whether first buffer in the path is the root of the tree. */ | ||
992 | if ( PATH_OFFSET_PBUFFER(p_s_tb->tb_path, FIRST_PATH_ELEMENT_OFFSET)->b_blocknr == | ||
993 | SB_ROOT_BLOCK (p_s_tb->tb_sb) ) { | ||
994 | *pp_s_father = *pp_s_com_father = NULL; | ||
995 | return CARRY_ON; | ||
996 | } | ||
997 | return REPEAT_SEARCH; | ||
998 | } | ||
999 | |||
1000 | RFALSE( B_LEVEL (*pp_s_com_father) <= DISK_LEAF_NODE_LEVEL, | ||
1001 | "PAP-8185: (%b %z) level too small", | ||
1002 | *pp_s_com_father, *pp_s_com_father); | ||
1003 | |||
1004 | /* Check whether the common parent is locked. */ | ||
1005 | |||
1006 | if ( buffer_locked (*pp_s_com_father) ) { | ||
1007 | __wait_on_buffer(*pp_s_com_father); | ||
1008 | if ( FILESYSTEM_CHANGED_TB (p_s_tb) ) { | ||
1009 | decrement_bcount(*pp_s_com_father); | ||
1010 | return REPEAT_SEARCH; | ||
1011 | } | ||
1012 | } | ||
1013 | |||
1014 | /* So, we got common parent of the current node and its left/right neighbor. | ||
1015 | Now we are geting the parent of the left/right neighbor. */ | ||
1016 | |||
1017 | /* Form key to get parent of the left/right neighbor. */ | ||
1018 | le_key2cpu_key (&s_lr_father_key, B_N_PDELIM_KEY(*pp_s_com_father, ( c_lr_par == LEFT_PARENTS ) ? | ||
1019 | (p_s_tb->lkey[n_h - 1] = n_position - 1) : (p_s_tb->rkey[n_h - 1] = n_position))); | ||
1020 | |||
1021 | |||
1022 | if ( c_lr_par == LEFT_PARENTS ) | ||
1023 | decrement_key(&s_lr_father_key); | ||
1024 | |||
1025 | if (search_by_key(p_s_tb->tb_sb, &s_lr_father_key, &s_path_to_neighbor_father, n_h + 1) == IO_ERROR) | ||
1026 | // path is released | ||
1027 | return IO_ERROR; | ||
1028 | |||
1029 | if ( FILESYSTEM_CHANGED_TB (p_s_tb) ) { | ||
1030 | decrement_counters_in_path(&s_path_to_neighbor_father); | ||
1031 | decrement_bcount(*pp_s_com_father); | ||
1032 | return REPEAT_SEARCH; | ||
1033 | } | ||
1034 | |||
1035 | *pp_s_father = PATH_PLAST_BUFFER(&s_path_to_neighbor_father); | ||
1036 | |||
1037 | RFALSE( B_LEVEL (*pp_s_father) != n_h + 1, | ||
1038 | "PAP-8190: (%b %z) level too small", *pp_s_father, *pp_s_father); | ||
1039 | RFALSE( s_path_to_neighbor_father.path_length < FIRST_PATH_ELEMENT_OFFSET, | ||
1040 | "PAP-8192: path length is too small"); | ||
1041 | |||
1042 | s_path_to_neighbor_father.path_length--; | ||
1043 | decrement_counters_in_path(&s_path_to_neighbor_father); | ||
1044 | return CARRY_ON; | ||
1045 | } | ||
1046 | |||
1047 | |||
1048 | /* Get parents of neighbors of node in the path(S[n_path_offset]) and common parents of | ||
1049 | * S[n_path_offset] and L[n_path_offset]/R[n_path_offset]: F[n_path_offset], FL[n_path_offset], | ||
1050 | * FR[n_path_offset], CFL[n_path_offset], CFR[n_path_offset]. | ||
1051 | * Calculate numbers of left and right delimiting keys position: lkey[n_path_offset], rkey[n_path_offset]. | ||
1052 | * Returns: SCHEDULE_OCCURRED - schedule occurred while the function worked; | ||
1053 | * CARRY_ON - schedule didn't occur while the function worked; | ||
1054 | */ | ||
1055 | static int get_parents (struct tree_balance * p_s_tb, int n_h) | ||
1056 | { | ||
1057 | struct path * p_s_path = p_s_tb->tb_path; | ||
1058 | int n_position, | ||
1059 | n_ret_value, | ||
1060 | n_path_offset = PATH_H_PATH_OFFSET(p_s_tb->tb_path, n_h); | ||
1061 | struct buffer_head * p_s_curf, | ||
1062 | * p_s_curcf; | ||
1063 | |||
1064 | /* Current node is the root of the tree or will be root of the tree */ | ||
1065 | if ( n_path_offset <= FIRST_PATH_ELEMENT_OFFSET ) { | ||
1066 | /* The root can not have parents. | ||
1067 | Release nodes which previously were obtained as parents of the current node neighbors. */ | ||
1068 | decrement_bcount(p_s_tb->FL[n_h]); | ||
1069 | decrement_bcount(p_s_tb->CFL[n_h]); | ||
1070 | decrement_bcount(p_s_tb->FR[n_h]); | ||
1071 | decrement_bcount(p_s_tb->CFR[n_h]); | ||
1072 | p_s_tb->FL[n_h] = p_s_tb->CFL[n_h] = p_s_tb->FR[n_h] = p_s_tb->CFR[n_h] = NULL; | ||
1073 | return CARRY_ON; | ||
1074 | } | ||
1075 | |||
1076 | /* Get parent FL[n_path_offset] of L[n_path_offset]. */ | ||
1077 | if ( (n_position = PATH_OFFSET_POSITION(p_s_path, n_path_offset - 1)) ) { | ||
1078 | /* Current node is not the first child of its parent. */ | ||
1079 | /*(p_s_curf = p_s_curcf = PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1))->b_count += 2;*/ | ||
1080 | p_s_curf = p_s_curcf = PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1); | ||
1081 | get_bh(p_s_curf) ; | ||
1082 | get_bh(p_s_curf) ; | ||
1083 | p_s_tb->lkey[n_h] = n_position - 1; | ||
1084 | } | ||
1085 | else { | ||
1086 | /* Calculate current parent of L[n_path_offset], which is the left neighbor of the current node. | ||
1087 | Calculate current common parent of L[n_path_offset] and the current node. Note that | ||
1088 | CFL[n_path_offset] not equal FL[n_path_offset] and CFL[n_path_offset] not equal F[n_path_offset]. | ||
1089 | Calculate lkey[n_path_offset]. */ | ||
1090 | if ( (n_ret_value = get_far_parent(p_s_tb, n_h + 1, &p_s_curf, | ||
1091 | &p_s_curcf, LEFT_PARENTS)) != CARRY_ON ) | ||
1092 | return n_ret_value; | ||
1093 | } | ||
1094 | |||
1095 | decrement_bcount(p_s_tb->FL[n_h]); | ||
1096 | p_s_tb->FL[n_h] = p_s_curf; /* New initialization of FL[n_h]. */ | ||
1097 | decrement_bcount(p_s_tb->CFL[n_h]); | ||
1098 | p_s_tb->CFL[n_h] = p_s_curcf; /* New initialization of CFL[n_h]. */ | ||
1099 | |||
1100 | RFALSE( (p_s_curf && !B_IS_IN_TREE (p_s_curf)) || | ||
1101 | (p_s_curcf && !B_IS_IN_TREE (p_s_curcf)), | ||
1102 | "PAP-8195: FL (%b) or CFL (%b) is invalid", p_s_curf, p_s_curcf); | ||
1103 | |||
1104 | /* Get parent FR[n_h] of R[n_h]. */ | ||
1105 | |||
1106 | /* Current node is the last child of F[n_h]. FR[n_h] != F[n_h]. */ | ||
1107 | if ( n_position == B_NR_ITEMS (PATH_H_PBUFFER(p_s_path, n_h + 1)) ) { | ||
1108 | /* Calculate current parent of R[n_h], which is the right neighbor of F[n_h]. | ||
1109 | Calculate current common parent of R[n_h] and current node. Note that CFR[n_h] | ||
1110 | not equal FR[n_path_offset] and CFR[n_h] not equal F[n_h]. */ | ||
1111 | if ( (n_ret_value = get_far_parent(p_s_tb, n_h + 1, &p_s_curf, &p_s_curcf, RIGHT_PARENTS)) != CARRY_ON ) | ||
1112 | return n_ret_value; | ||
1113 | } | ||
1114 | else { | ||
1115 | /* Current node is not the last child of its parent F[n_h]. */ | ||
1116 | /*(p_s_curf = p_s_curcf = PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1))->b_count += 2;*/ | ||
1117 | p_s_curf = p_s_curcf = PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1); | ||
1118 | get_bh(p_s_curf) ; | ||
1119 | get_bh(p_s_curf) ; | ||
1120 | p_s_tb->rkey[n_h] = n_position; | ||
1121 | } | ||
1122 | |||
1123 | decrement_bcount(p_s_tb->FR[n_h]); | ||
1124 | p_s_tb->FR[n_h] = p_s_curf; /* New initialization of FR[n_path_offset]. */ | ||
1125 | |||
1126 | decrement_bcount(p_s_tb->CFR[n_h]); | ||
1127 | p_s_tb->CFR[n_h] = p_s_curcf; /* New initialization of CFR[n_path_offset]. */ | ||
1128 | |||
1129 | RFALSE( (p_s_curf && !B_IS_IN_TREE (p_s_curf)) || | ||
1130 | (p_s_curcf && !B_IS_IN_TREE (p_s_curcf)), | ||
1131 | "PAP-8205: FR (%b) or CFR (%b) is invalid", p_s_curf, p_s_curcf); | ||
1132 | |||
1133 | return CARRY_ON; | ||
1134 | } | ||
1135 | |||
1136 | |||
1137 | /* it is possible to remove node as result of shiftings to | ||
1138 | neighbors even when we insert or paste item. */ | ||
1139 | static inline int can_node_be_removed (int mode, int lfree, int sfree, int rfree, struct tree_balance * tb, int h) | ||
1140 | { | ||
1141 | struct buffer_head * Sh = PATH_H_PBUFFER (tb->tb_path, h); | ||
1142 | int levbytes = tb->insert_size[h]; | ||
1143 | struct item_head * ih; | ||
1144 | struct reiserfs_key * r_key = NULL; | ||
1145 | |||
1146 | ih = B_N_PITEM_HEAD (Sh, 0); | ||
1147 | if ( tb->CFR[h] ) | ||
1148 | r_key = B_N_PDELIM_KEY(tb->CFR[h],tb->rkey[h]); | ||
1149 | |||
1150 | if ( | ||
1151 | lfree + rfree + sfree < MAX_CHILD_SIZE(Sh) + levbytes | ||
1152 | /* shifting may merge items which might save space */ | ||
1153 | - (( ! h && op_is_left_mergeable (&(ih->ih_key), Sh->b_size) ) ? IH_SIZE : 0) | ||
1154 | - (( ! h && r_key && op_is_left_mergeable (r_key, Sh->b_size) ) ? IH_SIZE : 0) | ||
1155 | + (( h ) ? KEY_SIZE : 0)) | ||
1156 | { | ||
1157 | /* node can not be removed */ | ||
1158 | if (sfree >= levbytes ) { /* new item fits into node S[h] without any shifting */ | ||
1159 | if ( ! h ) | ||
1160 | tb->s0num = B_NR_ITEMS(Sh) + ((mode == M_INSERT ) ? 1 : 0); | ||
1161 | set_parameters (tb, h, 0, 0, 1, NULL, -1, -1); | ||
1162 | return NO_BALANCING_NEEDED; | ||
1163 | } | ||
1164 | } | ||
1165 | PROC_INFO_INC( tb -> tb_sb, can_node_be_removed[ h ] ); | ||
1166 | return !NO_BALANCING_NEEDED; | ||
1167 | } | ||
1168 | |||
1169 | |||
1170 | |||
1171 | /* Check whether current node S[h] is balanced when increasing its size by | ||
1172 | * Inserting or Pasting. | ||
1173 | * Calculate parameters for balancing for current level h. | ||
1174 | * Parameters: | ||
1175 | * tb tree_balance structure; | ||
1176 | * h current level of the node; | ||
1177 | * inum item number in S[h]; | ||
1178 | * mode i - insert, p - paste; | ||
1179 | * Returns: 1 - schedule occurred; | ||
1180 | * 0 - balancing for higher levels needed; | ||
1181 | * -1 - no balancing for higher levels needed; | ||
1182 | * -2 - no disk space. | ||
1183 | */ | ||
1184 | /* ip means Inserting or Pasting */ | ||
1185 | static int ip_check_balance (struct tree_balance * tb, int h) | ||
1186 | { | ||
1187 | struct virtual_node * vn = tb->tb_vn; | ||
1188 | int levbytes, /* Number of bytes that must be inserted into (value | ||
1189 | is negative if bytes are deleted) buffer which | ||
1190 | contains node being balanced. The mnemonic is | ||
1191 | that the attempted change in node space used level | ||
1192 | is levbytes bytes. */ | ||
1193 | n_ret_value; | ||
1194 | |||
1195 | int lfree, sfree, rfree /* free space in L, S and R */; | ||
1196 | |||
1197 | /* nver is short for number of vertixes, and lnver is the number if | ||
1198 | we shift to the left, rnver is the number if we shift to the | ||
1199 | right, and lrnver is the number if we shift in both directions. | ||
1200 | The goal is to minimize first the number of vertixes, and second, | ||
1201 | the number of vertixes whose contents are changed by shifting, | ||
1202 | and third the number of uncached vertixes whose contents are | ||
1203 | changed by shifting and must be read from disk. */ | ||
1204 | int nver, lnver, rnver, lrnver; | ||
1205 | |||
1206 | /* used at leaf level only, S0 = S[0] is the node being balanced, | ||
1207 | sInum [ I = 0,1,2 ] is the number of items that will | ||
1208 | remain in node SI after balancing. S1 and S2 are new | ||
1209 | nodes that might be created. */ | ||
1210 | |||
1211 | /* we perform 8 calls to get_num_ver(). For each call we calculate five parameters. | ||
1212 | where 4th parameter is s1bytes and 5th - s2bytes | ||
1213 | */ | ||
1214 | short snum012[40] = {0,}; /* s0num, s1num, s2num for 8 cases | ||
1215 | 0,1 - do not shift and do not shift but bottle | ||
1216 | 2 - shift only whole item to left | ||
1217 | 3 - shift to left and bottle as much as possible | ||
1218 | 4,5 - shift to right (whole items and as much as possible | ||
1219 | 6,7 - shift to both directions (whole items and as much as possible) | ||
1220 | */ | ||
1221 | |||
1222 | /* Sh is the node whose balance is currently being checked */ | ||
1223 | struct buffer_head * Sh; | ||
1224 | |||
1225 | Sh = PATH_H_PBUFFER (tb->tb_path, h); | ||
1226 | levbytes = tb->insert_size[h]; | ||
1227 | |||
1228 | /* Calculate balance parameters for creating new root. */ | ||
1229 | if ( ! Sh ) { | ||
1230 | if ( ! h ) | ||
1231 | reiserfs_panic (tb->tb_sb, "vs-8210: ip_check_balance: S[0] can not be 0"); | ||
1232 | switch ( n_ret_value = get_empty_nodes (tb, h) ) { | ||
1233 | case CARRY_ON: | ||
1234 | set_parameters (tb, h, 0, 0, 1, NULL, -1, -1); | ||
1235 | return NO_BALANCING_NEEDED; /* no balancing for higher levels needed */ | ||
1236 | |||
1237 | case NO_DISK_SPACE: | ||
1238 | case REPEAT_SEARCH: | ||
1239 | return n_ret_value; | ||
1240 | default: | ||
1241 | reiserfs_panic(tb->tb_sb, "vs-8215: ip_check_balance: incorrect return value of get_empty_nodes"); | ||
1242 | } | ||
1243 | } | ||
1244 | |||
1245 | if ( (n_ret_value = get_parents (tb, h)) != CARRY_ON ) /* get parents of S[h] neighbors. */ | ||
1246 | return n_ret_value; | ||
1247 | |||
1248 | sfree = B_FREE_SPACE (Sh); | ||
1249 | |||
1250 | /* get free space of neighbors */ | ||
1251 | rfree = get_rfree (tb, h); | ||
1252 | lfree = get_lfree (tb, h); | ||
1253 | |||
1254 | if (can_node_be_removed (vn->vn_mode, lfree, sfree, rfree, tb, h) == NO_BALANCING_NEEDED) | ||
1255 | /* and new item fits into node S[h] without any shifting */ | ||
1256 | return NO_BALANCING_NEEDED; | ||
1257 | |||
1258 | create_virtual_node (tb, h); | ||
1259 | |||
1260 | /* | ||
1261 | determine maximal number of items we can shift to the left neighbor (in tb structure) | ||
1262 | and the maximal number of bytes that can flow to the left neighbor | ||
1263 | from the left most liquid item that cannot be shifted from S[0] entirely (returned value) | ||
1264 | */ | ||
1265 | check_left (tb, h, lfree); | ||
1266 | |||
1267 | /* | ||
1268 | determine maximal number of items we can shift to the right neighbor (in tb structure) | ||
1269 | and the maximal number of bytes that can flow to the right neighbor | ||
1270 | from the right most liquid item that cannot be shifted from S[0] entirely (returned value) | ||
1271 | */ | ||
1272 | check_right (tb, h, rfree); | ||
1273 | |||
1274 | |||
1275 | /* all contents of internal node S[h] can be moved into its | ||
1276 | neighbors, S[h] will be removed after balancing */ | ||
1277 | if (h && (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1)) { | ||
1278 | int to_r; | ||
1279 | |||
1280 | /* Since we are working on internal nodes, and our internal | ||
1281 | nodes have fixed size entries, then we can balance by the | ||
1282 | number of items rather than the space they consume. In this | ||
1283 | routine we set the left node equal to the right node, | ||
1284 | allowing a difference of less than or equal to 1 child | ||
1285 | pointer. */ | ||
1286 | to_r = ((MAX_NR_KEY(Sh)<<1)+2-tb->lnum[h]-tb->rnum[h]+vn->vn_nr_item+1)/2 - | ||
1287 | (MAX_NR_KEY(Sh) + 1 - tb->rnum[h]); | ||
1288 | set_parameters (tb, h, vn->vn_nr_item + 1 - to_r, to_r, 0, NULL, -1, -1); | ||
1289 | return CARRY_ON; | ||
1290 | } | ||
1291 | |||
1292 | /* this checks balance condition, that any two neighboring nodes can not fit in one node */ | ||
1293 | RFALSE( h && | ||
1294 | ( tb->lnum[h] >= vn->vn_nr_item + 1 || | ||
1295 | tb->rnum[h] >= vn->vn_nr_item + 1), | ||
1296 | "vs-8220: tree is not balanced on internal level"); | ||
1297 | RFALSE( ! h && ((tb->lnum[h] >= vn->vn_nr_item && (tb->lbytes == -1)) || | ||
1298 | (tb->rnum[h] >= vn->vn_nr_item && (tb->rbytes == -1)) ), | ||
1299 | "vs-8225: tree is not balanced on leaf level"); | ||
1300 | |||
1301 | /* all contents of S[0] can be moved into its neighbors | ||
1302 | S[0] will be removed after balancing. */ | ||
1303 | if (!h && is_leaf_removable (tb)) | ||
1304 | return CARRY_ON; | ||
1305 | |||
1306 | |||
1307 | /* why do we perform this check here rather than earlier?? | ||
1308 | Answer: we can win 1 node in some cases above. Moreover we | ||
1309 | checked it above, when we checked, that S[0] is not removable | ||
1310 | in principle */ | ||
1311 | if (sfree >= levbytes) { /* new item fits into node S[h] without any shifting */ | ||
1312 | if ( ! h ) | ||
1313 | tb->s0num = vn->vn_nr_item; | ||
1314 | set_parameters (tb, h, 0, 0, 1, NULL, -1, -1); | ||
1315 | return NO_BALANCING_NEEDED; | ||
1316 | } | ||
1317 | |||
1318 | |||
1319 | { | ||
1320 | int lpar, rpar, nset, lset, rset, lrset; | ||
1321 | /* | ||
1322 | * regular overflowing of the node | ||
1323 | */ | ||
1324 | |||
1325 | /* get_num_ver works in 2 modes (FLOW & NO_FLOW) | ||
1326 | lpar, rpar - number of items we can shift to left/right neighbor (including splitting item) | ||
1327 | nset, lset, rset, lrset - shows, whether flowing items give better packing | ||
1328 | */ | ||
1329 | #define FLOW 1 | ||
1330 | #define NO_FLOW 0 /* do not any splitting */ | ||
1331 | |||
1332 | /* we choose one the following */ | ||
1333 | #define NOTHING_SHIFT_NO_FLOW 0 | ||
1334 | #define NOTHING_SHIFT_FLOW 5 | ||
1335 | #define LEFT_SHIFT_NO_FLOW 10 | ||
1336 | #define LEFT_SHIFT_FLOW 15 | ||
1337 | #define RIGHT_SHIFT_NO_FLOW 20 | ||
1338 | #define RIGHT_SHIFT_FLOW 25 | ||
1339 | #define LR_SHIFT_NO_FLOW 30 | ||
1340 | #define LR_SHIFT_FLOW 35 | ||
1341 | |||
1342 | |||
1343 | lpar = tb->lnum[h]; | ||
1344 | rpar = tb->rnum[h]; | ||
1345 | |||
1346 | |||
1347 | /* calculate number of blocks S[h] must be split into when | ||
1348 | nothing is shifted to the neighbors, | ||
1349 | as well as number of items in each part of the split node (s012 numbers), | ||
1350 | and number of bytes (s1bytes) of the shared drop which flow to S1 if any */ | ||
1351 | nset = NOTHING_SHIFT_NO_FLOW; | ||
1352 | nver = get_num_ver (vn->vn_mode, tb, h, | ||
1353 | 0, -1, h?vn->vn_nr_item:0, -1, | ||
1354 | snum012, NO_FLOW); | ||
1355 | |||
1356 | if (!h) | ||
1357 | { | ||
1358 | int nver1; | ||
1359 | |||
1360 | /* note, that in this case we try to bottle between S[0] and S1 (S1 - the first new node) */ | ||
1361 | nver1 = get_num_ver (vn->vn_mode, tb, h, | ||
1362 | 0, -1, 0, -1, | ||
1363 | snum012 + NOTHING_SHIFT_FLOW, FLOW); | ||
1364 | if (nver > nver1) | ||
1365 | nset = NOTHING_SHIFT_FLOW, nver = nver1; | ||
1366 | } | ||
1367 | |||
1368 | |||
1369 | /* calculate number of blocks S[h] must be split into when | ||
1370 | l_shift_num first items and l_shift_bytes of the right most | ||
1371 | liquid item to be shifted are shifted to the left neighbor, | ||
1372 | as well as number of items in each part of the splitted node (s012 numbers), | ||
1373 | and number of bytes (s1bytes) of the shared drop which flow to S1 if any | ||
1374 | */ | ||
1375 | lset = LEFT_SHIFT_NO_FLOW; | ||
1376 | lnver = get_num_ver (vn->vn_mode, tb, h, | ||
1377 | lpar - (( h || tb->lbytes == -1 ) ? 0 : 1), -1, h ? vn->vn_nr_item:0, -1, | ||
1378 | snum012 + LEFT_SHIFT_NO_FLOW, NO_FLOW); | ||
1379 | if (!h) | ||
1380 | { | ||
1381 | int lnver1; | ||
1382 | |||
1383 | lnver1 = get_num_ver (vn->vn_mode, tb, h, | ||
1384 | lpar - ((tb->lbytes != -1) ? 1 : 0), tb->lbytes, 0, -1, | ||
1385 | snum012 + LEFT_SHIFT_FLOW, FLOW); | ||
1386 | if (lnver > lnver1) | ||
1387 | lset = LEFT_SHIFT_FLOW, lnver = lnver1; | ||
1388 | } | ||
1389 | |||
1390 | |||
1391 | /* calculate number of blocks S[h] must be split into when | ||
1392 | r_shift_num first items and r_shift_bytes of the left most | ||
1393 | liquid item to be shifted are shifted to the right neighbor, | ||
1394 | as well as number of items in each part of the splitted node (s012 numbers), | ||
1395 | and number of bytes (s1bytes) of the shared drop which flow to S1 if any | ||
1396 | */ | ||
1397 | rset = RIGHT_SHIFT_NO_FLOW; | ||
1398 | rnver = get_num_ver (vn->vn_mode, tb, h, | ||
1399 | 0, -1, h ? (vn->vn_nr_item-rpar) : (rpar - (( tb->rbytes != -1 ) ? 1 : 0)), -1, | ||
1400 | snum012 + RIGHT_SHIFT_NO_FLOW, NO_FLOW); | ||
1401 | if (!h) | ||
1402 | { | ||
1403 | int rnver1; | ||
1404 | |||
1405 | rnver1 = get_num_ver (vn->vn_mode, tb, h, | ||
1406 | 0, -1, (rpar - ((tb->rbytes != -1) ? 1 : 0)), tb->rbytes, | ||
1407 | snum012 + RIGHT_SHIFT_FLOW, FLOW); | ||
1408 | |||
1409 | if (rnver > rnver1) | ||
1410 | rset = RIGHT_SHIFT_FLOW, rnver = rnver1; | ||
1411 | } | ||
1412 | |||
1413 | |||
1414 | /* calculate number of blocks S[h] must be split into when | ||
1415 | items are shifted in both directions, | ||
1416 | as well as number of items in each part of the splitted node (s012 numbers), | ||
1417 | and number of bytes (s1bytes) of the shared drop which flow to S1 if any | ||
1418 | */ | ||
1419 | lrset = LR_SHIFT_NO_FLOW; | ||
1420 | lrnver = get_num_ver (vn->vn_mode, tb, h, | ||
1421 | lpar - ((h || tb->lbytes == -1) ? 0 : 1), -1, h ? (vn->vn_nr_item-rpar):(rpar - ((tb->rbytes != -1) ? 1 : 0)), -1, | ||
1422 | snum012 + LR_SHIFT_NO_FLOW, NO_FLOW); | ||
1423 | if (!h) | ||
1424 | { | ||
1425 | int lrnver1; | ||
1426 | |||
1427 | lrnver1 = get_num_ver (vn->vn_mode, tb, h, | ||
1428 | lpar - ((tb->lbytes != -1) ? 1 : 0), tb->lbytes, (rpar - ((tb->rbytes != -1) ? 1 : 0)), tb->rbytes, | ||
1429 | snum012 + LR_SHIFT_FLOW, FLOW); | ||
1430 | if (lrnver > lrnver1) | ||
1431 | lrset = LR_SHIFT_FLOW, lrnver = lrnver1; | ||
1432 | } | ||
1433 | |||
1434 | |||
1435 | |||
1436 | /* Our general shifting strategy is: | ||
1437 | 1) to minimized number of new nodes; | ||
1438 | 2) to minimized number of neighbors involved in shifting; | ||
1439 | 3) to minimized number of disk reads; */ | ||
1440 | |||
1441 | /* we can win TWO or ONE nodes by shifting in both directions */ | ||
1442 | if (lrnver < lnver && lrnver < rnver) | ||
1443 | { | ||
1444 | RFALSE( h && | ||
1445 | (tb->lnum[h] != 1 || | ||
1446 | tb->rnum[h] != 1 || | ||
1447 | lrnver != 1 || rnver != 2 || lnver != 2 || h != 1), | ||
1448 | "vs-8230: bad h"); | ||
1449 | if (lrset == LR_SHIFT_FLOW) | ||
1450 | set_parameters (tb, h, tb->lnum[h], tb->rnum[h], lrnver, snum012 + lrset, | ||
1451 | tb->lbytes, tb->rbytes); | ||
1452 | else | ||
1453 | set_parameters (tb, h, tb->lnum[h] - ((tb->lbytes == -1) ? 0 : 1), | ||
1454 | tb->rnum[h] - ((tb->rbytes == -1) ? 0 : 1), lrnver, snum012 + lrset, -1, -1); | ||
1455 | |||
1456 | return CARRY_ON; | ||
1457 | } | ||
1458 | |||
1459 | /* if shifting doesn't lead to better packing then don't shift */ | ||
1460 | if (nver == lrnver) | ||
1461 | { | ||
1462 | set_parameters (tb, h, 0, 0, nver, snum012 + nset, -1, -1); | ||
1463 | return CARRY_ON; | ||
1464 | } | ||
1465 | |||
1466 | |||
1467 | /* now we know that for better packing shifting in only one | ||
1468 | direction either to the left or to the right is required */ | ||
1469 | |||
1470 | /* if shifting to the left is better than shifting to the right */ | ||
1471 | if (lnver < rnver) | ||
1472 | { | ||
1473 | SET_PAR_SHIFT_LEFT; | ||
1474 | return CARRY_ON; | ||
1475 | } | ||
1476 | |||
1477 | /* if shifting to the right is better than shifting to the left */ | ||
1478 | if (lnver > rnver) | ||
1479 | { | ||
1480 | SET_PAR_SHIFT_RIGHT; | ||
1481 | return CARRY_ON; | ||
1482 | } | ||
1483 | |||
1484 | |||
1485 | /* now shifting in either direction gives the same number | ||
1486 | of nodes and we can make use of the cached neighbors */ | ||
1487 | if (is_left_neighbor_in_cache (tb,h)) | ||
1488 | { | ||
1489 | SET_PAR_SHIFT_LEFT; | ||
1490 | return CARRY_ON; | ||
1491 | } | ||
1492 | |||
1493 | /* shift to the right independently on whether the right neighbor in cache or not */ | ||
1494 | SET_PAR_SHIFT_RIGHT; | ||
1495 | return CARRY_ON; | ||
1496 | } | ||
1497 | } | ||
1498 | |||
1499 | |||
1500 | /* Check whether current node S[h] is balanced when Decreasing its size by | ||
1501 | * Deleting or Cutting for INTERNAL node of S+tree. | ||
1502 | * Calculate parameters for balancing for current level h. | ||
1503 | * Parameters: | ||
1504 | * tb tree_balance structure; | ||
1505 | * h current level of the node; | ||
1506 | * inum item number in S[h]; | ||
1507 | * mode i - insert, p - paste; | ||
1508 | * Returns: 1 - schedule occurred; | ||
1509 | * 0 - balancing for higher levels needed; | ||
1510 | * -1 - no balancing for higher levels needed; | ||
1511 | * -2 - no disk space. | ||
1512 | * | ||
1513 | * Note: Items of internal nodes have fixed size, so the balance condition for | ||
1514 | * the internal part of S+tree is as for the B-trees. | ||
1515 | */ | ||
1516 | static int dc_check_balance_internal (struct tree_balance * tb, int h) | ||
1517 | { | ||
1518 | struct virtual_node * vn = tb->tb_vn; | ||
1519 | |||
1520 | /* Sh is the node whose balance is currently being checked, | ||
1521 | and Fh is its father. */ | ||
1522 | struct buffer_head * Sh, * Fh; | ||
1523 | int maxsize, | ||
1524 | n_ret_value; | ||
1525 | int lfree, rfree /* free space in L and R */; | ||
1526 | |||
1527 | Sh = PATH_H_PBUFFER (tb->tb_path, h); | ||
1528 | Fh = PATH_H_PPARENT (tb->tb_path, h); | ||
1529 | |||
1530 | maxsize = MAX_CHILD_SIZE(Sh); | ||
1531 | |||
1532 | /* using tb->insert_size[h], which is negative in this case, create_virtual_node calculates: */ | ||
1533 | /* new_nr_item = number of items node would have if operation is */ | ||
1534 | /* performed without balancing (new_nr_item); */ | ||
1535 | create_virtual_node (tb, h); | ||
1536 | |||
1537 | if ( ! Fh ) | ||
1538 | { /* S[h] is the root. */ | ||
1539 | if ( vn->vn_nr_item > 0 ) | ||
1540 | { | ||
1541 | set_parameters (tb, h, 0, 0, 1, NULL, -1, -1); | ||
1542 | return NO_BALANCING_NEEDED; /* no balancing for higher levels needed */ | ||
1543 | } | ||
1544 | /* new_nr_item == 0. | ||
1545 | * Current root will be deleted resulting in | ||
1546 | * decrementing the tree height. */ | ||
1547 | set_parameters (tb, h, 0, 0, 0, NULL, -1, -1); | ||
1548 | return CARRY_ON; | ||
1549 | } | ||
1550 | |||
1551 | if ( (n_ret_value = get_parents(tb,h)) != CARRY_ON ) | ||
1552 | return n_ret_value; | ||
1553 | |||
1554 | |||
1555 | /* get free space of neighbors */ | ||
1556 | rfree = get_rfree (tb, h); | ||
1557 | lfree = get_lfree (tb, h); | ||
1558 | |||
1559 | /* determine maximal number of items we can fit into neighbors */ | ||
1560 | check_left (tb, h, lfree); | ||
1561 | check_right (tb, h, rfree); | ||
1562 | |||
1563 | |||
1564 | if ( vn->vn_nr_item >= MIN_NR_KEY(Sh) ) | ||
1565 | { /* Balance condition for the internal node is valid. | ||
1566 | * In this case we balance only if it leads to better packing. */ | ||
1567 | if ( vn->vn_nr_item == MIN_NR_KEY(Sh) ) | ||
1568 | { /* Here we join S[h] with one of its neighbors, | ||
1569 | * which is impossible with greater values of new_nr_item. */ | ||
1570 | if ( tb->lnum[h] >= vn->vn_nr_item + 1 ) | ||
1571 | { | ||
1572 | /* All contents of S[h] can be moved to L[h]. */ | ||
1573 | int n; | ||
1574 | int order_L; | ||
1575 | |||
1576 | order_L = ((n=PATH_H_B_ITEM_ORDER(tb->tb_path, h))==0) ? B_NR_ITEMS(tb->FL[h]) : n - 1; | ||
1577 | n = dc_size(B_N_CHILD(tb->FL[h],order_L)) / (DC_SIZE + KEY_SIZE); | ||
1578 | set_parameters (tb, h, -n-1, 0, 0, NULL, -1, -1); | ||
1579 | return CARRY_ON; | ||
1580 | } | ||
1581 | |||
1582 | if ( tb->rnum[h] >= vn->vn_nr_item + 1 ) | ||
1583 | { | ||
1584 | /* All contents of S[h] can be moved to R[h]. */ | ||
1585 | int n; | ||
1586 | int order_R; | ||
1587 | |||
1588 | order_R = ((n=PATH_H_B_ITEM_ORDER(tb->tb_path, h))==B_NR_ITEMS(Fh)) ? 0 : n + 1; | ||
1589 | n = dc_size(B_N_CHILD(tb->FR[h],order_R)) / (DC_SIZE + KEY_SIZE); | ||
1590 | set_parameters (tb, h, 0, -n-1, 0, NULL, -1, -1); | ||
1591 | return CARRY_ON; | ||
1592 | } | ||
1593 | } | ||
1594 | |||
1595 | if (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1) | ||
1596 | { | ||
1597 | /* All contents of S[h] can be moved to the neighbors (L[h] & R[h]). */ | ||
1598 | int to_r; | ||
1599 | |||
1600 | to_r = ((MAX_NR_KEY(Sh)<<1)+2-tb->lnum[h]-tb->rnum[h]+vn->vn_nr_item+1)/2 - | ||
1601 | (MAX_NR_KEY(Sh) + 1 - tb->rnum[h]); | ||
1602 | set_parameters (tb, h, vn->vn_nr_item + 1 - to_r, to_r, 0, NULL, -1, -1); | ||
1603 | return CARRY_ON; | ||
1604 | } | ||
1605 | |||
1606 | /* Balancing does not lead to better packing. */ | ||
1607 | set_parameters (tb, h, 0, 0, 1, NULL, -1, -1); | ||
1608 | return NO_BALANCING_NEEDED; | ||
1609 | } | ||
1610 | |||
1611 | /* Current node contain insufficient number of items. Balancing is required. */ | ||
1612 | /* Check whether we can merge S[h] with left neighbor. */ | ||
1613 | if (tb->lnum[h] >= vn->vn_nr_item + 1) | ||
1614 | if (is_left_neighbor_in_cache (tb,h) || tb->rnum[h] < vn->vn_nr_item + 1 || !tb->FR[h]) | ||
1615 | { | ||
1616 | int n; | ||
1617 | int order_L; | ||
1618 | |||
1619 | order_L = ((n=PATH_H_B_ITEM_ORDER(tb->tb_path, h))==0) ? B_NR_ITEMS(tb->FL[h]) : n - 1; | ||
1620 | n = dc_size(B_N_CHILD(tb->FL[h],order_L)) / (DC_SIZE + KEY_SIZE); | ||
1621 | set_parameters (tb, h, -n-1, 0, 0, NULL, -1, -1); | ||
1622 | return CARRY_ON; | ||
1623 | } | ||
1624 | |||
1625 | /* Check whether we can merge S[h] with right neighbor. */ | ||
1626 | if (tb->rnum[h] >= vn->vn_nr_item + 1) | ||
1627 | { | ||
1628 | int n; | ||
1629 | int order_R; | ||
1630 | |||
1631 | order_R = ((n=PATH_H_B_ITEM_ORDER(tb->tb_path, h))==B_NR_ITEMS(Fh)) ? 0 : (n + 1); | ||
1632 | n = dc_size(B_N_CHILD(tb->FR[h],order_R)) / (DC_SIZE + KEY_SIZE); | ||
1633 | set_parameters (tb, h, 0, -n-1, 0, NULL, -1, -1); | ||
1634 | return CARRY_ON; | ||
1635 | } | ||
1636 | |||
1637 | /* All contents of S[h] can be moved to the neighbors (L[h] & R[h]). */ | ||
1638 | if (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1) | ||
1639 | { | ||
1640 | int to_r; | ||
1641 | |||
1642 | to_r = ((MAX_NR_KEY(Sh)<<1)+2-tb->lnum[h]-tb->rnum[h]+vn->vn_nr_item+1)/2 - | ||
1643 | (MAX_NR_KEY(Sh) + 1 - tb->rnum[h]); | ||
1644 | set_parameters (tb, h, vn->vn_nr_item + 1 - to_r, to_r, 0, NULL, -1, -1); | ||
1645 | return CARRY_ON; | ||
1646 | } | ||
1647 | |||
1648 | /* For internal nodes try to borrow item from a neighbor */ | ||
1649 | RFALSE( !tb->FL[h] && !tb->FR[h], "vs-8235: trying to borrow for root"); | ||
1650 | |||
1651 | /* Borrow one or two items from caching neighbor */ | ||
1652 | if (is_left_neighbor_in_cache (tb,h) || !tb->FR[h]) | ||
1653 | { | ||
1654 | int from_l; | ||
1655 | |||
1656 | from_l = (MAX_NR_KEY(Sh) + 1 - tb->lnum[h] + vn->vn_nr_item + 1) / 2 - (vn->vn_nr_item + 1); | ||
1657 | set_parameters (tb, h, -from_l, 0, 1, NULL, -1, -1); | ||
1658 | return CARRY_ON; | ||
1659 | } | ||
1660 | |||
1661 | set_parameters (tb, h, 0, -((MAX_NR_KEY(Sh)+1-tb->rnum[h]+vn->vn_nr_item+1)/2-(vn->vn_nr_item+1)), 1, | ||
1662 | NULL, -1, -1); | ||
1663 | return CARRY_ON; | ||
1664 | } | ||
1665 | |||
1666 | |||
1667 | /* Check whether current node S[h] is balanced when Decreasing its size by | ||
1668 | * Deleting or Truncating for LEAF node of S+tree. | ||
1669 | * Calculate parameters for balancing for current level h. | ||
1670 | * Parameters: | ||
1671 | * tb tree_balance structure; | ||
1672 | * h current level of the node; | ||
1673 | * inum item number in S[h]; | ||
1674 | * mode i - insert, p - paste; | ||
1675 | * Returns: 1 - schedule occurred; | ||
1676 | * 0 - balancing for higher levels needed; | ||
1677 | * -1 - no balancing for higher levels needed; | ||
1678 | * -2 - no disk space. | ||
1679 | */ | ||
1680 | static int dc_check_balance_leaf (struct tree_balance * tb, int h) | ||
1681 | { | ||
1682 | struct virtual_node * vn = tb->tb_vn; | ||
1683 | |||
1684 | /* Number of bytes that must be deleted from | ||
1685 | (value is negative if bytes are deleted) buffer which | ||
1686 | contains node being balanced. The mnemonic is that the | ||
1687 | attempted change in node space used level is levbytes bytes. */ | ||
1688 | int levbytes; | ||
1689 | /* the maximal item size */ | ||
1690 | int maxsize, | ||
1691 | n_ret_value; | ||
1692 | /* S0 is the node whose balance is currently being checked, | ||
1693 | and F0 is its father. */ | ||
1694 | struct buffer_head * S0, * F0; | ||
1695 | int lfree, rfree /* free space in L and R */; | ||
1696 | |||
1697 | S0 = PATH_H_PBUFFER (tb->tb_path, 0); | ||
1698 | F0 = PATH_H_PPARENT (tb->tb_path, 0); | ||
1699 | |||
1700 | levbytes = tb->insert_size[h]; | ||
1701 | |||
1702 | maxsize = MAX_CHILD_SIZE(S0); /* maximal possible size of an item */ | ||
1703 | |||
1704 | if ( ! F0 ) | ||
1705 | { /* S[0] is the root now. */ | ||
1706 | |||
1707 | RFALSE( -levbytes >= maxsize - B_FREE_SPACE (S0), | ||
1708 | "vs-8240: attempt to create empty buffer tree"); | ||
1709 | |||
1710 | set_parameters (tb, h, 0, 0, 1, NULL, -1, -1); | ||
1711 | return NO_BALANCING_NEEDED; | ||
1712 | } | ||
1713 | |||
1714 | if ( (n_ret_value = get_parents(tb,h)) != CARRY_ON ) | ||
1715 | return n_ret_value; | ||
1716 | |||
1717 | /* get free space of neighbors */ | ||
1718 | rfree = get_rfree (tb, h); | ||
1719 | lfree = get_lfree (tb, h); | ||
1720 | |||
1721 | create_virtual_node (tb, h); | ||
1722 | |||
1723 | /* if 3 leaves can be merge to one, set parameters and return */ | ||
1724 | if (are_leaves_removable (tb, lfree, rfree)) | ||
1725 | return CARRY_ON; | ||
1726 | |||
1727 | /* determine maximal number of items we can shift to the left/right neighbor | ||
1728 | and the maximal number of bytes that can flow to the left/right neighbor | ||
1729 | from the left/right most liquid item that cannot be shifted from S[0] entirely | ||
1730 | */ | ||
1731 | check_left (tb, h, lfree); | ||
1732 | check_right (tb, h, rfree); | ||
1733 | |||
1734 | /* check whether we can merge S with left neighbor. */ | ||
1735 | if (tb->lnum[0] >= vn->vn_nr_item && tb->lbytes == -1) | ||
1736 | if (is_left_neighbor_in_cache (tb,h) || | ||
1737 | ((tb->rnum[0] - ((tb->rbytes == -1) ? 0 : 1)) < vn->vn_nr_item) || /* S can not be merged with R */ | ||
1738 | !tb->FR[h]) { | ||
1739 | |||
1740 | RFALSE( !tb->FL[h], "vs-8245: dc_check_balance_leaf: FL[h] must exist"); | ||
1741 | |||
1742 | /* set parameter to merge S[0] with its left neighbor */ | ||
1743 | set_parameters (tb, h, -1, 0, 0, NULL, -1, -1); | ||
1744 | return CARRY_ON; | ||
1745 | } | ||
1746 | |||
1747 | /* check whether we can merge S[0] with right neighbor. */ | ||
1748 | if (tb->rnum[0] >= vn->vn_nr_item && tb->rbytes == -1) { | ||
1749 | set_parameters (tb, h, 0, -1, 0, NULL, -1, -1); | ||
1750 | return CARRY_ON; | ||
1751 | } | ||
1752 | |||
1753 | /* All contents of S[0] can be moved to the neighbors (L[0] & R[0]). Set parameters and return */ | ||
1754 | if (is_leaf_removable (tb)) | ||
1755 | return CARRY_ON; | ||
1756 | |||
1757 | /* Balancing is not required. */ | ||
1758 | tb->s0num = vn->vn_nr_item; | ||
1759 | set_parameters (tb, h, 0, 0, 1, NULL, -1, -1); | ||
1760 | return NO_BALANCING_NEEDED; | ||
1761 | } | ||
1762 | |||
1763 | |||
1764 | |||
1765 | /* Check whether current node S[h] is balanced when Decreasing its size by | ||
1766 | * Deleting or Cutting. | ||
1767 | * Calculate parameters for balancing for current level h. | ||
1768 | * Parameters: | ||
1769 | * tb tree_balance structure; | ||
1770 | * h current level of the node; | ||
1771 | * inum item number in S[h]; | ||
1772 | * mode d - delete, c - cut. | ||
1773 | * Returns: 1 - schedule occurred; | ||
1774 | * 0 - balancing for higher levels needed; | ||
1775 | * -1 - no balancing for higher levels needed; | ||
1776 | * -2 - no disk space. | ||
1777 | */ | ||
1778 | static int dc_check_balance (struct tree_balance * tb, int h) | ||
1779 | { | ||
1780 | RFALSE( ! (PATH_H_PBUFFER (tb->tb_path, h)), "vs-8250: S is not initialized"); | ||
1781 | |||
1782 | if ( h ) | ||
1783 | return dc_check_balance_internal (tb, h); | ||
1784 | else | ||
1785 | return dc_check_balance_leaf (tb, h); | ||
1786 | } | ||
1787 | |||
1788 | |||
1789 | |||
1790 | /* Check whether current node S[h] is balanced. | ||
1791 | * Calculate parameters for balancing for current level h. | ||
1792 | * Parameters: | ||
1793 | * | ||
1794 | * tb tree_balance structure: | ||
1795 | * | ||
1796 | * tb is a large structure that must be read about in the header file | ||
1797 | * at the same time as this procedure if the reader is to successfully | ||
1798 | * understand this procedure | ||
1799 | * | ||
1800 | * h current level of the node; | ||
1801 | * inum item number in S[h]; | ||
1802 | * mode i - insert, p - paste, d - delete, c - cut. | ||
1803 | * Returns: 1 - schedule occurred; | ||
1804 | * 0 - balancing for higher levels needed; | ||
1805 | * -1 - no balancing for higher levels needed; | ||
1806 | * -2 - no disk space. | ||
1807 | */ | ||
1808 | static int check_balance (int mode, | ||
1809 | struct tree_balance * tb, | ||
1810 | int h, | ||
1811 | int inum, | ||
1812 | int pos_in_item, | ||
1813 | struct item_head * ins_ih, | ||
1814 | const void * data | ||
1815 | ) | ||
1816 | { | ||
1817 | struct virtual_node * vn; | ||
1818 | |||
1819 | vn = tb->tb_vn = (struct virtual_node *)(tb->vn_buf); | ||
1820 | vn->vn_free_ptr = (char *)(tb->tb_vn + 1); | ||
1821 | vn->vn_mode = mode; | ||
1822 | vn->vn_affected_item_num = inum; | ||
1823 | vn->vn_pos_in_item = pos_in_item; | ||
1824 | vn->vn_ins_ih = ins_ih; | ||
1825 | vn->vn_data = data; | ||
1826 | |||
1827 | RFALSE( mode == M_INSERT && !vn->vn_ins_ih, | ||
1828 | "vs-8255: ins_ih can not be 0 in insert mode"); | ||
1829 | |||
1830 | if ( tb->insert_size[h] > 0 ) | ||
1831 | /* Calculate balance parameters when size of node is increasing. */ | ||
1832 | return ip_check_balance (tb, h); | ||
1833 | |||
1834 | /* Calculate balance parameters when size of node is decreasing. */ | ||
1835 | return dc_check_balance (tb, h); | ||
1836 | } | ||
1837 | |||
1838 | |||
1839 | |||
1840 | /* Check whether parent at the path is the really parent of the current node.*/ | ||
1841 | static int get_direct_parent( | ||
1842 | struct tree_balance * p_s_tb, | ||
1843 | int n_h | ||
1844 | ) { | ||
1845 | struct buffer_head * p_s_bh; | ||
1846 | struct path * p_s_path = p_s_tb->tb_path; | ||
1847 | int n_position, | ||
1848 | n_path_offset = PATH_H_PATH_OFFSET(p_s_tb->tb_path, n_h); | ||
1849 | |||
1850 | /* We are in the root or in the new root. */ | ||
1851 | if ( n_path_offset <= FIRST_PATH_ELEMENT_OFFSET ) { | ||
1852 | |||
1853 | RFALSE( n_path_offset < FIRST_PATH_ELEMENT_OFFSET - 1, | ||
1854 | "PAP-8260: invalid offset in the path"); | ||
1855 | |||
1856 | if ( PATH_OFFSET_PBUFFER(p_s_path, FIRST_PATH_ELEMENT_OFFSET)->b_blocknr == | ||
1857 | SB_ROOT_BLOCK (p_s_tb->tb_sb) ) { | ||
1858 | /* Root is not changed. */ | ||
1859 | PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1) = NULL; | ||
1860 | PATH_OFFSET_POSITION(p_s_path, n_path_offset - 1) = 0; | ||
1861 | return CARRY_ON; | ||
1862 | } | ||
1863 | return REPEAT_SEARCH; /* Root is changed and we must recalculate the path. */ | ||
1864 | } | ||
1865 | |||
1866 | if ( ! B_IS_IN_TREE(p_s_bh = PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1)) ) | ||
1867 | return REPEAT_SEARCH; /* Parent in the path is not in the tree. */ | ||
1868 | |||
1869 | if ( (n_position = PATH_OFFSET_POSITION(p_s_path, n_path_offset - 1)) > B_NR_ITEMS(p_s_bh) ) | ||
1870 | return REPEAT_SEARCH; | ||
1871 | |||
1872 | if ( B_N_CHILD_NUM(p_s_bh, n_position) != PATH_OFFSET_PBUFFER(p_s_path, n_path_offset)->b_blocknr ) | ||
1873 | /* Parent in the path is not parent of the current node in the tree. */ | ||
1874 | return REPEAT_SEARCH; | ||
1875 | |||
1876 | if ( buffer_locked(p_s_bh) ) { | ||
1877 | __wait_on_buffer(p_s_bh); | ||
1878 | if ( FILESYSTEM_CHANGED_TB (p_s_tb) ) | ||
1879 | return REPEAT_SEARCH; | ||
1880 | } | ||
1881 | |||
1882 | return CARRY_ON; /* Parent in the path is unlocked and really parent of the current node. */ | ||
1883 | } | ||
1884 | |||
1885 | |||
1886 | /* Using lnum[n_h] and rnum[n_h] we should determine what neighbors | ||
1887 | * of S[n_h] we | ||
1888 | * need in order to balance S[n_h], and get them if necessary. | ||
1889 | * Returns: SCHEDULE_OCCURRED - schedule occurred while the function worked; | ||
1890 | * CARRY_ON - schedule didn't occur while the function worked; | ||
1891 | */ | ||
1892 | static int get_neighbors( | ||
1893 | struct tree_balance * p_s_tb, | ||
1894 | int n_h | ||
1895 | ) { | ||
1896 | int n_child_position, | ||
1897 | n_path_offset = PATH_H_PATH_OFFSET(p_s_tb->tb_path, n_h + 1); | ||
1898 | unsigned long n_son_number; | ||
1899 | struct super_block * p_s_sb = p_s_tb->tb_sb; | ||
1900 | struct buffer_head * p_s_bh; | ||
1901 | |||
1902 | |||
1903 | PROC_INFO_INC( p_s_sb, get_neighbors[ n_h ] ); | ||
1904 | |||
1905 | if ( p_s_tb->lnum[n_h] ) { | ||
1906 | /* We need left neighbor to balance S[n_h]. */ | ||
1907 | PROC_INFO_INC( p_s_sb, need_l_neighbor[ n_h ] ); | ||
1908 | p_s_bh = PATH_OFFSET_PBUFFER(p_s_tb->tb_path, n_path_offset); | ||
1909 | |||
1910 | RFALSE( p_s_bh == p_s_tb->FL[n_h] && | ||
1911 | ! PATH_OFFSET_POSITION(p_s_tb->tb_path, n_path_offset), | ||
1912 | "PAP-8270: invalid position in the parent"); | ||
1913 | |||
1914 | n_child_position = ( p_s_bh == p_s_tb->FL[n_h] ) ? p_s_tb->lkey[n_h] : B_NR_ITEMS (p_s_tb->FL[n_h]); | ||
1915 | n_son_number = B_N_CHILD_NUM(p_s_tb->FL[n_h], n_child_position); | ||
1916 | p_s_bh = sb_bread(p_s_sb, n_son_number); | ||
1917 | if (!p_s_bh) | ||
1918 | return IO_ERROR; | ||
1919 | if ( FILESYSTEM_CHANGED_TB (p_s_tb) ) { | ||
1920 | decrement_bcount(p_s_bh); | ||
1921 | PROC_INFO_INC( p_s_sb, get_neighbors_restart[ n_h ] ); | ||
1922 | return REPEAT_SEARCH; | ||
1923 | } | ||
1924 | |||
1925 | RFALSE( ! B_IS_IN_TREE(p_s_tb->FL[n_h]) || | ||
1926 | n_child_position > B_NR_ITEMS(p_s_tb->FL[n_h]) || | ||
1927 | B_N_CHILD_NUM(p_s_tb->FL[n_h], n_child_position) != | ||
1928 | p_s_bh->b_blocknr, "PAP-8275: invalid parent"); | ||
1929 | RFALSE( ! B_IS_IN_TREE(p_s_bh), "PAP-8280: invalid child"); | ||
1930 | RFALSE( ! n_h && | ||
1931 | B_FREE_SPACE (p_s_bh) != MAX_CHILD_SIZE (p_s_bh) - dc_size(B_N_CHILD (p_s_tb->FL[0],n_child_position)), | ||
1932 | "PAP-8290: invalid child size of left neighbor"); | ||
1933 | |||
1934 | decrement_bcount(p_s_tb->L[n_h]); | ||
1935 | p_s_tb->L[n_h] = p_s_bh; | ||
1936 | } | ||
1937 | |||
1938 | |||
1939 | if ( p_s_tb->rnum[n_h] ) { /* We need right neighbor to balance S[n_path_offset]. */ | ||
1940 | PROC_INFO_INC( p_s_sb, need_r_neighbor[ n_h ] ); | ||
1941 | p_s_bh = PATH_OFFSET_PBUFFER(p_s_tb->tb_path, n_path_offset); | ||
1942 | |||
1943 | RFALSE( p_s_bh == p_s_tb->FR[n_h] && | ||
1944 | PATH_OFFSET_POSITION(p_s_tb->tb_path, n_path_offset) >= B_NR_ITEMS(p_s_bh), | ||
1945 | "PAP-8295: invalid position in the parent"); | ||
1946 | |||
1947 | n_child_position = ( p_s_bh == p_s_tb->FR[n_h] ) ? p_s_tb->rkey[n_h] + 1 : 0; | ||
1948 | n_son_number = B_N_CHILD_NUM(p_s_tb->FR[n_h], n_child_position); | ||
1949 | p_s_bh = sb_bread(p_s_sb, n_son_number); | ||
1950 | if (!p_s_bh) | ||
1951 | return IO_ERROR; | ||
1952 | if ( FILESYSTEM_CHANGED_TB (p_s_tb) ) { | ||
1953 | decrement_bcount(p_s_bh); | ||
1954 | PROC_INFO_INC( p_s_sb, get_neighbors_restart[ n_h ] ); | ||
1955 | return REPEAT_SEARCH; | ||
1956 | } | ||
1957 | decrement_bcount(p_s_tb->R[n_h]); | ||
1958 | p_s_tb->R[n_h] = p_s_bh; | ||
1959 | |||
1960 | RFALSE( ! n_h && B_FREE_SPACE (p_s_bh) != MAX_CHILD_SIZE (p_s_bh) - dc_size(B_N_CHILD (p_s_tb->FR[0],n_child_position)), | ||
1961 | "PAP-8300: invalid child size of right neighbor (%d != %d - %d)", | ||
1962 | B_FREE_SPACE (p_s_bh), MAX_CHILD_SIZE (p_s_bh), | ||
1963 | dc_size(B_N_CHILD (p_s_tb->FR[0],n_child_position))); | ||
1964 | |||
1965 | } | ||
1966 | return CARRY_ON; | ||
1967 | } | ||
1968 | |||
1969 | #ifdef CONFIG_REISERFS_CHECK | ||
1970 | void * reiserfs_kmalloc (size_t size, int flags, struct super_block * s) | ||
1971 | { | ||
1972 | void * vp; | ||
1973 | static size_t malloced; | ||
1974 | |||
1975 | |||
1976 | vp = kmalloc (size, flags); | ||
1977 | if (vp) { | ||
1978 | REISERFS_SB(s)->s_kmallocs += size; | ||
1979 | if (REISERFS_SB(s)->s_kmallocs > malloced + 200000) { | ||
1980 | reiserfs_warning (s, | ||
1981 | "vs-8301: reiserfs_kmalloc: allocated memory %d", | ||
1982 | REISERFS_SB(s)->s_kmallocs); | ||
1983 | malloced = REISERFS_SB(s)->s_kmallocs; | ||
1984 | } | ||
1985 | } | ||
1986 | return vp; | ||
1987 | } | ||
1988 | |||
1989 | void reiserfs_kfree (const void * vp, size_t size, struct super_block * s) | ||
1990 | { | ||
1991 | kfree (vp); | ||
1992 | |||
1993 | REISERFS_SB(s)->s_kmallocs -= size; | ||
1994 | if (REISERFS_SB(s)->s_kmallocs < 0) | ||
1995 | reiserfs_warning (s, "vs-8302: reiserfs_kfree: allocated memory %d", | ||
1996 | REISERFS_SB(s)->s_kmallocs); | ||
1997 | |||
1998 | } | ||
1999 | #endif | ||
2000 | |||
2001 | |||
2002 | static int get_virtual_node_size (struct super_block * sb, struct buffer_head * bh) | ||
2003 | { | ||
2004 | int max_num_of_items; | ||
2005 | int max_num_of_entries; | ||
2006 | unsigned long blocksize = sb->s_blocksize; | ||
2007 | |||
2008 | #define MIN_NAME_LEN 1 | ||
2009 | |||
2010 | max_num_of_items = (blocksize - BLKH_SIZE) / (IH_SIZE + MIN_ITEM_LEN); | ||
2011 | max_num_of_entries = (blocksize - BLKH_SIZE - IH_SIZE) / | ||
2012 | (DEH_SIZE + MIN_NAME_LEN); | ||
2013 | |||
2014 | return sizeof(struct virtual_node) + | ||
2015 | max(max_num_of_items * sizeof (struct virtual_item), | ||
2016 | sizeof (struct virtual_item) + sizeof(struct direntry_uarea) + | ||
2017 | (max_num_of_entries - 1) * sizeof (__u16)); | ||
2018 | } | ||
2019 | |||
2020 | |||
2021 | |||
2022 | /* maybe we should fail balancing we are going to perform when kmalloc | ||
2023 | fails several times. But now it will loop until kmalloc gets | ||
2024 | required memory */ | ||
2025 | static int get_mem_for_virtual_node (struct tree_balance * tb) | ||
2026 | { | ||
2027 | int check_fs = 0; | ||
2028 | int size; | ||
2029 | char * buf; | ||
2030 | |||
2031 | size = get_virtual_node_size (tb->tb_sb, PATH_PLAST_BUFFER (tb->tb_path)); | ||
2032 | |||
2033 | if (size > tb->vn_buf_size) { | ||
2034 | /* we have to allocate more memory for virtual node */ | ||
2035 | if (tb->vn_buf) { | ||
2036 | /* free memory allocated before */ | ||
2037 | reiserfs_kfree (tb->vn_buf, tb->vn_buf_size, tb->tb_sb); | ||
2038 | /* this is not needed if kfree is atomic */ | ||
2039 | check_fs = 1; | ||
2040 | } | ||
2041 | |||
2042 | /* virtual node requires now more memory */ | ||
2043 | tb->vn_buf_size = size; | ||
2044 | |||
2045 | /* get memory for virtual item */ | ||
2046 | buf = reiserfs_kmalloc(size, GFP_ATOMIC | __GFP_NOWARN, tb->tb_sb); | ||
2047 | if ( ! buf ) { | ||
2048 | /* getting memory with GFP_KERNEL priority may involve | ||
2049 | balancing now (due to indirect_to_direct conversion on | ||
2050 | dcache shrinking). So, release path and collected | ||
2051 | resources here */ | ||
2052 | free_buffers_in_tb (tb); | ||
2053 | buf = reiserfs_kmalloc(size, GFP_NOFS, tb->tb_sb); | ||
2054 | if ( !buf ) { | ||
2055 | #ifdef CONFIG_REISERFS_CHECK | ||
2056 | reiserfs_warning (tb->tb_sb, | ||
2057 | "vs-8345: get_mem_for_virtual_node: " | ||
2058 | "kmalloc failed. reiserfs kmalloced %d bytes", | ||
2059 | REISERFS_SB(tb->tb_sb)->s_kmallocs); | ||
2060 | #endif | ||
2061 | tb->vn_buf_size = 0; | ||
2062 | } | ||
2063 | tb->vn_buf = buf; | ||
2064 | schedule() ; | ||
2065 | return REPEAT_SEARCH; | ||
2066 | } | ||
2067 | |||
2068 | tb->vn_buf = buf; | ||
2069 | } | ||
2070 | |||
2071 | if ( check_fs && FILESYSTEM_CHANGED_TB (tb) ) | ||
2072 | return REPEAT_SEARCH; | ||
2073 | |||
2074 | return CARRY_ON; | ||
2075 | } | ||
2076 | |||
2077 | |||
2078 | #ifdef CONFIG_REISERFS_CHECK | ||
2079 | static void tb_buffer_sanity_check (struct super_block * p_s_sb, | ||
2080 | struct buffer_head * p_s_bh, | ||
2081 | const char *descr, int level) { | ||
2082 | if (p_s_bh) { | ||
2083 | if (atomic_read (&(p_s_bh->b_count)) <= 0) { | ||
2084 | |||
2085 | reiserfs_panic (p_s_sb, "jmacd-1: tb_buffer_sanity_check(): negative or zero reference counter for buffer %s[%d] (%b)\n", descr, level, p_s_bh); | ||
2086 | } | ||
2087 | |||
2088 | if ( ! buffer_uptodate (p_s_bh) ) { | ||
2089 | reiserfs_panic (p_s_sb, "jmacd-2: tb_buffer_sanity_check(): buffer is not up to date %s[%d] (%b)\n", descr, level, p_s_bh); | ||
2090 | } | ||
2091 | |||
2092 | if ( ! B_IS_IN_TREE (p_s_bh) ) { | ||
2093 | reiserfs_panic (p_s_sb, "jmacd-3: tb_buffer_sanity_check(): buffer is not in tree %s[%d] (%b)\n", descr, level, p_s_bh); | ||
2094 | } | ||
2095 | |||
2096 | if (p_s_bh->b_bdev != p_s_sb->s_bdev) { | ||
2097 | reiserfs_panic (p_s_sb, "jmacd-4: tb_buffer_sanity_check(): buffer has wrong device %s[%d] (%b)\n", descr, level, p_s_bh); | ||
2098 | } | ||
2099 | |||
2100 | if (p_s_bh->b_size != p_s_sb->s_blocksize) { | ||
2101 | reiserfs_panic (p_s_sb, "jmacd-5: tb_buffer_sanity_check(): buffer has wrong blocksize %s[%d] (%b)\n", descr, level, p_s_bh); | ||
2102 | } | ||
2103 | |||
2104 | if (p_s_bh->b_blocknr > SB_BLOCK_COUNT(p_s_sb)) { | ||
2105 | reiserfs_panic (p_s_sb, "jmacd-6: tb_buffer_sanity_check(): buffer block number too high %s[%d] (%b)\n", descr, level, p_s_bh); | ||
2106 | } | ||
2107 | } | ||
2108 | } | ||
2109 | #else | ||
2110 | static void tb_buffer_sanity_check (struct super_block * p_s_sb, | ||
2111 | struct buffer_head * p_s_bh, | ||
2112 | const char *descr, int level) | ||
2113 | {;} | ||
2114 | #endif | ||
2115 | |||
2116 | static int clear_all_dirty_bits(struct super_block *s, | ||
2117 | struct buffer_head *bh) { | ||
2118 | return reiserfs_prepare_for_journal(s, bh, 0) ; | ||
2119 | } | ||
2120 | |||
2121 | static int wait_tb_buffers_until_unlocked (struct tree_balance * p_s_tb) | ||
2122 | { | ||
2123 | struct buffer_head * locked; | ||
2124 | #ifdef CONFIG_REISERFS_CHECK | ||
2125 | int repeat_counter = 0; | ||
2126 | #endif | ||
2127 | int i; | ||
2128 | |||
2129 | do { | ||
2130 | |||
2131 | locked = NULL; | ||
2132 | |||
2133 | for ( i = p_s_tb->tb_path->path_length; !locked && i > ILLEGAL_PATH_ELEMENT_OFFSET; i-- ) { | ||
2134 | if ( PATH_OFFSET_PBUFFER (p_s_tb->tb_path, i) ) { | ||
2135 | /* if I understand correctly, we can only be sure the last buffer | ||
2136 | ** in the path is in the tree --clm | ||
2137 | */ | ||
2138 | #ifdef CONFIG_REISERFS_CHECK | ||
2139 | if (PATH_PLAST_BUFFER(p_s_tb->tb_path) == | ||
2140 | PATH_OFFSET_PBUFFER(p_s_tb->tb_path, i)) { | ||
2141 | tb_buffer_sanity_check (p_s_tb->tb_sb, | ||
2142 | PATH_OFFSET_PBUFFER (p_s_tb->tb_path, i), | ||
2143 | "S", | ||
2144 | p_s_tb->tb_path->path_length - i); | ||
2145 | } | ||
2146 | #endif | ||
2147 | if (!clear_all_dirty_bits(p_s_tb->tb_sb, | ||
2148 | PATH_OFFSET_PBUFFER (p_s_tb->tb_path, i))) | ||
2149 | { | ||
2150 | locked = PATH_OFFSET_PBUFFER (p_s_tb->tb_path, i); | ||
2151 | } | ||
2152 | } | ||
2153 | } | ||
2154 | |||
2155 | for ( i = 0; !locked && i < MAX_HEIGHT && p_s_tb->insert_size[i]; i++ ) { | ||
2156 | |||
2157 | if (p_s_tb->lnum[i] ) { | ||
2158 | |||
2159 | if ( p_s_tb->L[i] ) { | ||
2160 | tb_buffer_sanity_check (p_s_tb->tb_sb, p_s_tb->L[i], "L", i); | ||
2161 | if (!clear_all_dirty_bits(p_s_tb->tb_sb, p_s_tb->L[i])) | ||
2162 | locked = p_s_tb->L[i]; | ||
2163 | } | ||
2164 | |||
2165 | if ( !locked && p_s_tb->FL[i] ) { | ||
2166 | tb_buffer_sanity_check (p_s_tb->tb_sb, p_s_tb->FL[i], "FL", i); | ||
2167 | if (!clear_all_dirty_bits(p_s_tb->tb_sb, p_s_tb->FL[i])) | ||
2168 | locked = p_s_tb->FL[i]; | ||
2169 | } | ||
2170 | |||
2171 | if ( !locked && p_s_tb->CFL[i] ) { | ||
2172 | tb_buffer_sanity_check (p_s_tb->tb_sb, p_s_tb->CFL[i], "CFL", i); | ||
2173 | if (!clear_all_dirty_bits(p_s_tb->tb_sb, p_s_tb->CFL[i])) | ||
2174 | locked = p_s_tb->CFL[i]; | ||
2175 | } | ||
2176 | |||
2177 | } | ||
2178 | |||
2179 | if ( !locked && (p_s_tb->rnum[i]) ) { | ||
2180 | |||
2181 | if ( p_s_tb->R[i] ) { | ||
2182 | tb_buffer_sanity_check (p_s_tb->tb_sb, p_s_tb->R[i], "R", i); | ||
2183 | if (!clear_all_dirty_bits(p_s_tb->tb_sb, p_s_tb->R[i])) | ||
2184 | locked = p_s_tb->R[i]; | ||
2185 | } | ||
2186 | |||
2187 | |||
2188 | if ( !locked && p_s_tb->FR[i] ) { | ||
2189 | tb_buffer_sanity_check (p_s_tb->tb_sb, p_s_tb->FR[i], "FR", i); | ||
2190 | if (!clear_all_dirty_bits(p_s_tb->tb_sb, p_s_tb->FR[i])) | ||
2191 | locked = p_s_tb->FR[i]; | ||
2192 | } | ||
2193 | |||
2194 | if ( !locked && p_s_tb->CFR[i] ) { | ||
2195 | tb_buffer_sanity_check (p_s_tb->tb_sb, p_s_tb->CFR[i], "CFR", i); | ||
2196 | if (!clear_all_dirty_bits(p_s_tb->tb_sb, p_s_tb->CFR[i])) | ||
2197 | locked = p_s_tb->CFR[i]; | ||
2198 | } | ||
2199 | } | ||
2200 | } | ||
2201 | /* as far as I can tell, this is not required. The FEB list seems | ||
2202 | ** to be full of newly allocated nodes, which will never be locked, | ||
2203 | ** dirty, or anything else. | ||
2204 | ** To be safe, I'm putting in the checks and waits in. For the moment, | ||
2205 | ** they are needed to keep the code in journal.c from complaining | ||
2206 | ** about the buffer. That code is inside CONFIG_REISERFS_CHECK as well. | ||
2207 | ** --clm | ||
2208 | */ | ||
2209 | for ( i = 0; !locked && i < MAX_FEB_SIZE; i++ ) { | ||
2210 | if ( p_s_tb->FEB[i] ) { | ||
2211 | if (!clear_all_dirty_bits(p_s_tb->tb_sb, p_s_tb->FEB[i])) | ||
2212 | locked = p_s_tb->FEB[i] ; | ||
2213 | } | ||
2214 | } | ||
2215 | |||
2216 | if (locked) { | ||
2217 | #ifdef CONFIG_REISERFS_CHECK | ||
2218 | repeat_counter++; | ||
2219 | if ( (repeat_counter % 10000) == 0) { | ||
2220 | reiserfs_warning (p_s_tb->tb_sb, | ||
2221 | "wait_tb_buffers_until_released(): too many " | ||
2222 | "iterations waiting for buffer to unlock " | ||
2223 | "(%b)", locked); | ||
2224 | |||
2225 | /* Don't loop forever. Try to recover from possible error. */ | ||
2226 | |||
2227 | return ( FILESYSTEM_CHANGED_TB (p_s_tb) ) ? REPEAT_SEARCH : CARRY_ON; | ||
2228 | } | ||
2229 | #endif | ||
2230 | __wait_on_buffer (locked); | ||
2231 | if ( FILESYSTEM_CHANGED_TB (p_s_tb) ) { | ||
2232 | return REPEAT_SEARCH; | ||
2233 | } | ||
2234 | } | ||
2235 | |||
2236 | } while (locked); | ||
2237 | |||
2238 | return CARRY_ON; | ||
2239 | } | ||
2240 | |||
2241 | |||
2242 | /* Prepare for balancing, that is | ||
2243 | * get all necessary parents, and neighbors; | ||
2244 | * analyze what and where should be moved; | ||
2245 | * get sufficient number of new nodes; | ||
2246 | * Balancing will start only after all resources will be collected at a time. | ||
2247 | * | ||
2248 | * When ported to SMP kernels, only at the last moment after all needed nodes | ||
2249 | * are collected in cache, will the resources be locked using the usual | ||
2250 | * textbook ordered lock acquisition algorithms. Note that ensuring that | ||
2251 | * this code neither write locks what it does not need to write lock nor locks out of order | ||
2252 | * will be a pain in the butt that could have been avoided. Grumble grumble. -Hans | ||
2253 | * | ||
2254 | * fix is meant in the sense of render unchanging | ||
2255 | * | ||
2256 | * Latency might be improved by first gathering a list of what buffers are needed | ||
2257 | * and then getting as many of them in parallel as possible? -Hans | ||
2258 | * | ||
2259 | * Parameters: | ||
2260 | * op_mode i - insert, d - delete, c - cut (truncate), p - paste (append) | ||
2261 | * tb tree_balance structure; | ||
2262 | * inum item number in S[h]; | ||
2263 | * pos_in_item - comment this if you can | ||
2264 | * ins_ih & ins_sd are used when inserting | ||
2265 | * Returns: 1 - schedule occurred while the function worked; | ||
2266 | * 0 - schedule didn't occur while the function worked; | ||
2267 | * -1 - if no_disk_space | ||
2268 | */ | ||
2269 | |||
2270 | |||
2271 | int fix_nodes (int n_op_mode, | ||
2272 | struct tree_balance * p_s_tb, | ||
2273 | struct item_head * p_s_ins_ih, // item head of item being inserted | ||
2274 | const void * data // inserted item or data to be pasted | ||
2275 | ) { | ||
2276 | int n_ret_value, | ||
2277 | n_h, | ||
2278 | n_item_num = PATH_LAST_POSITION(p_s_tb->tb_path); | ||
2279 | int n_pos_in_item; | ||
2280 | |||
2281 | /* we set wait_tb_buffers_run when we have to restore any dirty bits cleared | ||
2282 | ** during wait_tb_buffers_run | ||
2283 | */ | ||
2284 | int wait_tb_buffers_run = 0 ; | ||
2285 | struct buffer_head * p_s_tbS0 = PATH_PLAST_BUFFER(p_s_tb->tb_path); | ||
2286 | |||
2287 | ++ REISERFS_SB(p_s_tb -> tb_sb) -> s_fix_nodes; | ||
2288 | |||
2289 | n_pos_in_item = p_s_tb->tb_path->pos_in_item; | ||
2290 | |||
2291 | |||
2292 | p_s_tb->fs_gen = get_generation (p_s_tb->tb_sb); | ||
2293 | |||
2294 | /* we prepare and log the super here so it will already be in the | ||
2295 | ** transaction when do_balance needs to change it. | ||
2296 | ** This way do_balance won't have to schedule when trying to prepare | ||
2297 | ** the super for logging | ||
2298 | */ | ||
2299 | reiserfs_prepare_for_journal(p_s_tb->tb_sb, | ||
2300 | SB_BUFFER_WITH_SB(p_s_tb->tb_sb), 1) ; | ||
2301 | journal_mark_dirty(p_s_tb->transaction_handle, p_s_tb->tb_sb, | ||
2302 | SB_BUFFER_WITH_SB(p_s_tb->tb_sb)) ; | ||
2303 | if ( FILESYSTEM_CHANGED_TB (p_s_tb) ) | ||
2304 | return REPEAT_SEARCH; | ||
2305 | |||
2306 | /* if it possible in indirect_to_direct conversion */ | ||
2307 | if (buffer_locked (p_s_tbS0)) { | ||
2308 | __wait_on_buffer (p_s_tbS0); | ||
2309 | if ( FILESYSTEM_CHANGED_TB (p_s_tb) ) | ||
2310 | return REPEAT_SEARCH; | ||
2311 | } | ||
2312 | |||
2313 | #ifdef CONFIG_REISERFS_CHECK | ||
2314 | if ( cur_tb ) { | ||
2315 | print_cur_tb ("fix_nodes"); | ||
2316 | reiserfs_panic(p_s_tb->tb_sb,"PAP-8305: fix_nodes: there is pending do_balance"); | ||
2317 | } | ||
2318 | |||
2319 | if (!buffer_uptodate (p_s_tbS0) || !B_IS_IN_TREE (p_s_tbS0)) { | ||
2320 | reiserfs_panic (p_s_tb->tb_sb, "PAP-8320: fix_nodes: S[0] (%b %z) is not uptodate " | ||
2321 | "at the beginning of fix_nodes or not in tree (mode %c)", p_s_tbS0, p_s_tbS0, n_op_mode); | ||
2322 | } | ||
2323 | |||
2324 | /* Check parameters. */ | ||
2325 | switch (n_op_mode) { | ||
2326 | case M_INSERT: | ||
2327 | if ( n_item_num <= 0 || n_item_num > B_NR_ITEMS(p_s_tbS0) ) | ||
2328 | reiserfs_panic(p_s_tb->tb_sb,"PAP-8330: fix_nodes: Incorrect item number %d (in S0 - %d) in case of insert", | ||
2329 | n_item_num, B_NR_ITEMS(p_s_tbS0)); | ||
2330 | break; | ||
2331 | case M_PASTE: | ||
2332 | case M_DELETE: | ||
2333 | case M_CUT: | ||
2334 | if ( n_item_num < 0 || n_item_num >= B_NR_ITEMS(p_s_tbS0) ) { | ||
2335 | print_block (p_s_tbS0, 0, -1, -1); | ||
2336 | reiserfs_panic(p_s_tb->tb_sb,"PAP-8335: fix_nodes: Incorrect item number(%d); mode = %c insert_size = %d\n", n_item_num, n_op_mode, p_s_tb->insert_size[0]); | ||
2337 | } | ||
2338 | break; | ||
2339 | default: | ||
2340 | reiserfs_panic(p_s_tb->tb_sb,"PAP-8340: fix_nodes: Incorrect mode of operation"); | ||
2341 | } | ||
2342 | #endif | ||
2343 | |||
2344 | if (get_mem_for_virtual_node (p_s_tb) == REPEAT_SEARCH) | ||
2345 | // FIXME: maybe -ENOMEM when tb->vn_buf == 0? Now just repeat | ||
2346 | return REPEAT_SEARCH; | ||
2347 | |||
2348 | |||
2349 | /* Starting from the leaf level; for all levels n_h of the tree. */ | ||
2350 | for ( n_h = 0; n_h < MAX_HEIGHT && p_s_tb->insert_size[n_h]; n_h++ ) { | ||
2351 | if ( (n_ret_value = get_direct_parent(p_s_tb, n_h)) != CARRY_ON ) { | ||
2352 | goto repeat; | ||
2353 | } | ||
2354 | |||
2355 | if ( (n_ret_value = check_balance (n_op_mode, p_s_tb, n_h, n_item_num, | ||
2356 | n_pos_in_item, p_s_ins_ih, data)) != CARRY_ON ) { | ||
2357 | if ( n_ret_value == NO_BALANCING_NEEDED ) { | ||
2358 | /* No balancing for higher levels needed. */ | ||
2359 | if ( (n_ret_value = get_neighbors(p_s_tb, n_h)) != CARRY_ON ) { | ||
2360 | goto repeat; | ||
2361 | } | ||
2362 | if ( n_h != MAX_HEIGHT - 1 ) | ||
2363 | p_s_tb->insert_size[n_h + 1] = 0; | ||
2364 | /* ok, analysis and resource gathering are complete */ | ||
2365 | break; | ||
2366 | } | ||
2367 | goto repeat; | ||
2368 | } | ||
2369 | |||
2370 | if ( (n_ret_value = get_neighbors(p_s_tb, n_h)) != CARRY_ON ) { | ||
2371 | goto repeat; | ||
2372 | } | ||
2373 | |||
2374 | if ( (n_ret_value = get_empty_nodes(p_s_tb, n_h)) != CARRY_ON ) { | ||
2375 | goto repeat; /* No disk space, or schedule occurred and | ||
2376 | analysis may be invalid and needs to be redone. */ | ||
2377 | } | ||
2378 | |||
2379 | if ( ! PATH_H_PBUFFER(p_s_tb->tb_path, n_h) ) { | ||
2380 | /* We have a positive insert size but no nodes exist on this | ||
2381 | level, this means that we are creating a new root. */ | ||
2382 | |||
2383 | RFALSE( p_s_tb->blknum[n_h] != 1, | ||
2384 | "PAP-8350: creating new empty root"); | ||
2385 | |||
2386 | if ( n_h < MAX_HEIGHT - 1 ) | ||
2387 | p_s_tb->insert_size[n_h + 1] = 0; | ||
2388 | } | ||
2389 | else | ||
2390 | if ( ! PATH_H_PBUFFER(p_s_tb->tb_path, n_h + 1) ) { | ||
2391 | if ( p_s_tb->blknum[n_h] > 1 ) { | ||
2392 | /* The tree needs to be grown, so this node S[n_h] | ||
2393 | which is the root node is split into two nodes, | ||
2394 | and a new node (S[n_h+1]) will be created to | ||
2395 | become the root node. */ | ||
2396 | |||
2397 | RFALSE( n_h == MAX_HEIGHT - 1, | ||
2398 | "PAP-8355: attempt to create too high of a tree"); | ||
2399 | |||
2400 | p_s_tb->insert_size[n_h + 1] = (DC_SIZE + KEY_SIZE) * (p_s_tb->blknum[n_h] - 1) + DC_SIZE; | ||
2401 | } | ||
2402 | else | ||
2403 | if ( n_h < MAX_HEIGHT - 1 ) | ||
2404 | p_s_tb->insert_size[n_h + 1] = 0; | ||
2405 | } | ||
2406 | else | ||
2407 | p_s_tb->insert_size[n_h + 1] = (DC_SIZE + KEY_SIZE) * (p_s_tb->blknum[n_h] - 1); | ||
2408 | } | ||
2409 | |||
2410 | if ((n_ret_value = wait_tb_buffers_until_unlocked (p_s_tb)) == CARRY_ON) { | ||
2411 | if (FILESYSTEM_CHANGED_TB(p_s_tb)) { | ||
2412 | wait_tb_buffers_run = 1 ; | ||
2413 | n_ret_value = REPEAT_SEARCH ; | ||
2414 | goto repeat; | ||
2415 | } else { | ||
2416 | return CARRY_ON; | ||
2417 | } | ||
2418 | } else { | ||
2419 | wait_tb_buffers_run = 1 ; | ||
2420 | goto repeat; | ||
2421 | } | ||
2422 | |||
2423 | repeat: | ||
2424 | // fix_nodes was unable to perform its calculation due to | ||
2425 | // filesystem got changed under us, lack of free disk space or i/o | ||
2426 | // failure. If the first is the case - the search will be | ||
2427 | // repeated. For now - free all resources acquired so far except | ||
2428 | // for the new allocated nodes | ||
2429 | { | ||
2430 | int i; | ||
2431 | |||
2432 | /* Release path buffers. */ | ||
2433 | if (wait_tb_buffers_run) { | ||
2434 | pathrelse_and_restore(p_s_tb->tb_sb, p_s_tb->tb_path) ; | ||
2435 | } else { | ||
2436 | pathrelse (p_s_tb->tb_path); | ||
2437 | } | ||
2438 | /* brelse all resources collected for balancing */ | ||
2439 | for ( i = 0; i < MAX_HEIGHT; i++ ) { | ||
2440 | if (wait_tb_buffers_run) { | ||
2441 | reiserfs_restore_prepared_buffer(p_s_tb->tb_sb, p_s_tb->L[i]); | ||
2442 | reiserfs_restore_prepared_buffer(p_s_tb->tb_sb, p_s_tb->R[i]); | ||
2443 | reiserfs_restore_prepared_buffer(p_s_tb->tb_sb, p_s_tb->FL[i]); | ||
2444 | reiserfs_restore_prepared_buffer(p_s_tb->tb_sb, p_s_tb->FR[i]); | ||
2445 | reiserfs_restore_prepared_buffer(p_s_tb->tb_sb, p_s_tb->CFL[i]); | ||
2446 | reiserfs_restore_prepared_buffer(p_s_tb->tb_sb, p_s_tb->CFR[i]); | ||
2447 | } | ||
2448 | |||
2449 | brelse (p_s_tb->L[i]);p_s_tb->L[i] = NULL; | ||
2450 | brelse (p_s_tb->R[i]);p_s_tb->R[i] = NULL; | ||
2451 | brelse (p_s_tb->FL[i]);p_s_tb->FL[i] = NULL; | ||
2452 | brelse (p_s_tb->FR[i]);p_s_tb->FR[i] = NULL; | ||
2453 | brelse (p_s_tb->CFL[i]);p_s_tb->CFL[i] = NULL; | ||
2454 | brelse (p_s_tb->CFR[i]);p_s_tb->CFR[i] = NULL; | ||
2455 | } | ||
2456 | |||
2457 | if (wait_tb_buffers_run) { | ||
2458 | for ( i = 0; i < MAX_FEB_SIZE; i++ ) { | ||
2459 | if ( p_s_tb->FEB[i] ) { | ||
2460 | reiserfs_restore_prepared_buffer(p_s_tb->tb_sb, | ||
2461 | p_s_tb->FEB[i]) ; | ||
2462 | } | ||
2463 | } | ||
2464 | } | ||
2465 | return n_ret_value; | ||
2466 | } | ||
2467 | |||
2468 | } | ||
2469 | |||
2470 | |||
2471 | /* Anatoly will probably forgive me renaming p_s_tb to tb. I just | ||
2472 | wanted to make lines shorter */ | ||
2473 | void unfix_nodes (struct tree_balance * tb) | ||
2474 | { | ||
2475 | int i; | ||
2476 | |||
2477 | /* Release path buffers. */ | ||
2478 | pathrelse_and_restore (tb->tb_sb, tb->tb_path); | ||
2479 | |||
2480 | /* brelse all resources collected for balancing */ | ||
2481 | for ( i = 0; i < MAX_HEIGHT; i++ ) { | ||
2482 | reiserfs_restore_prepared_buffer (tb->tb_sb, tb->L[i]); | ||
2483 | reiserfs_restore_prepared_buffer (tb->tb_sb, tb->R[i]); | ||
2484 | reiserfs_restore_prepared_buffer (tb->tb_sb, tb->FL[i]); | ||
2485 | reiserfs_restore_prepared_buffer (tb->tb_sb, tb->FR[i]); | ||
2486 | reiserfs_restore_prepared_buffer (tb->tb_sb, tb->CFL[i]); | ||
2487 | reiserfs_restore_prepared_buffer (tb->tb_sb, tb->CFR[i]); | ||
2488 | |||
2489 | brelse (tb->L[i]); | ||
2490 | brelse (tb->R[i]); | ||
2491 | brelse (tb->FL[i]); | ||
2492 | brelse (tb->FR[i]); | ||
2493 | brelse (tb->CFL[i]); | ||
2494 | brelse (tb->CFR[i]); | ||
2495 | } | ||
2496 | |||
2497 | /* deal with list of allocated (used and unused) nodes */ | ||
2498 | for ( i = 0; i < MAX_FEB_SIZE; i++ ) { | ||
2499 | if ( tb->FEB[i] ) { | ||
2500 | b_blocknr_t blocknr = tb->FEB[i]->b_blocknr ; | ||
2501 | /* de-allocated block which was not used by balancing and | ||
2502 | bforget about buffer for it */ | ||
2503 | brelse (tb->FEB[i]); | ||
2504 | reiserfs_free_block (tb->transaction_handle, NULL, blocknr, 0); | ||
2505 | } | ||
2506 | if (tb->used[i]) { | ||
2507 | /* release used as new nodes including a new root */ | ||
2508 | brelse (tb->used[i]); | ||
2509 | } | ||
2510 | } | ||
2511 | |||
2512 | if (tb->vn_buf) | ||
2513 | reiserfs_kfree (tb->vn_buf, tb->vn_buf_size, tb->tb_sb); | ||
2514 | |||
2515 | } | ||
2516 | |||
2517 | |||
2518 | |||