diff options
Diffstat (limited to 'fs/reiserfs/fix_node.c')
-rw-r--r-- | fs/reiserfs/fix_node.c | 4051 |
1 files changed, 2079 insertions, 1972 deletions
diff --git a/fs/reiserfs/fix_node.c b/fs/reiserfs/fix_node.c index e4f64be9e15b..2706e2adffab 100644 --- a/fs/reiserfs/fix_node.c +++ b/fs/reiserfs/fix_node.c | |||
@@ -34,14 +34,12 @@ | |||
34 | ** | 34 | ** |
35 | **/ | 35 | **/ |
36 | 36 | ||
37 | |||
38 | #include <linux/config.h> | 37 | #include <linux/config.h> |
39 | #include <linux/time.h> | 38 | #include <linux/time.h> |
40 | #include <linux/string.h> | 39 | #include <linux/string.h> |
41 | #include <linux/reiserfs_fs.h> | 40 | #include <linux/reiserfs_fs.h> |
42 | #include <linux/buffer_head.h> | 41 | #include <linux/buffer_head.h> |
43 | 42 | ||
44 | |||
45 | /* To make any changes in the tree we find a node, that contains item | 43 | /* To make any changes in the tree we find a node, that contains item |
46 | to be changed/deleted or position in the node we insert a new item | 44 | to be changed/deleted or position in the node we insert a new item |
47 | to. We call this node S. To do balancing we need to decide what we | 45 | to. We call this node S. To do balancing we need to decide what we |
@@ -56,490 +54,522 @@ | |||
56 | have to have if we do not any shiftings, if we shift to left/right | 54 | have to have if we do not any shiftings, if we shift to left/right |
57 | neighbor or to both. */ | 55 | neighbor or to both. */ |
58 | 56 | ||
59 | |||
60 | /* taking item number in virtual node, returns number of item, that it has in source buffer */ | 57 | /* taking item number in virtual node, returns number of item, that it has in source buffer */ |
61 | static inline int old_item_num (int new_num, int affected_item_num, int mode) | 58 | static inline int old_item_num(int new_num, int affected_item_num, int mode) |
62 | { | 59 | { |
63 | if (mode == M_PASTE || mode == M_CUT || new_num < affected_item_num) | 60 | if (mode == M_PASTE || mode == M_CUT || new_num < affected_item_num) |
64 | return new_num; | 61 | return new_num; |
65 | 62 | ||
66 | if (mode == M_INSERT) { | 63 | if (mode == M_INSERT) { |
67 | 64 | ||
68 | RFALSE( new_num == 0, | 65 | RFALSE(new_num == 0, |
69 | "vs-8005: for INSERT mode and item number of inserted item"); | 66 | "vs-8005: for INSERT mode and item number of inserted item"); |
70 | 67 | ||
71 | return new_num - 1; | 68 | return new_num - 1; |
72 | } | 69 | } |
73 | 70 | ||
74 | RFALSE( mode != M_DELETE, | 71 | RFALSE(mode != M_DELETE, |
75 | "vs-8010: old_item_num: mode must be M_DELETE (mode = \'%c\'", mode); | 72 | "vs-8010: old_item_num: mode must be M_DELETE (mode = \'%c\'", |
76 | /* delete mode */ | 73 | mode); |
77 | return new_num + 1; | 74 | /* delete mode */ |
75 | return new_num + 1; | ||
78 | } | 76 | } |
79 | 77 | ||
80 | static void create_virtual_node (struct tree_balance * tb, int h) | 78 | static void create_virtual_node(struct tree_balance *tb, int h) |
81 | { | 79 | { |
82 | struct item_head * ih; | 80 | struct item_head *ih; |
83 | struct virtual_node * vn = tb->tb_vn; | 81 | struct virtual_node *vn = tb->tb_vn; |
84 | int new_num; | 82 | int new_num; |
85 | struct buffer_head * Sh; /* this comes from tb->S[h] */ | 83 | struct buffer_head *Sh; /* this comes from tb->S[h] */ |
86 | 84 | ||
87 | Sh = PATH_H_PBUFFER (tb->tb_path, h); | 85 | Sh = PATH_H_PBUFFER(tb->tb_path, h); |
88 | 86 | ||
89 | /* size of changed node */ | 87 | /* size of changed node */ |
90 | vn->vn_size = MAX_CHILD_SIZE (Sh) - B_FREE_SPACE (Sh) + tb->insert_size[h]; | 88 | vn->vn_size = |
89 | MAX_CHILD_SIZE(Sh) - B_FREE_SPACE(Sh) + tb->insert_size[h]; | ||
91 | 90 | ||
92 | /* for internal nodes array if virtual items is not created */ | 91 | /* for internal nodes array if virtual items is not created */ |
93 | if (h) { | 92 | if (h) { |
94 | vn->vn_nr_item = (vn->vn_size - DC_SIZE) / (DC_SIZE + KEY_SIZE); | 93 | vn->vn_nr_item = (vn->vn_size - DC_SIZE) / (DC_SIZE + KEY_SIZE); |
95 | return; | 94 | return; |
96 | } | ||
97 | |||
98 | /* number of items in virtual node */ | ||
99 | vn->vn_nr_item = B_NR_ITEMS (Sh) + ((vn->vn_mode == M_INSERT)? 1 : 0) - ((vn->vn_mode == M_DELETE)? 1 : 0); | ||
100 | |||
101 | /* first virtual item */ | ||
102 | vn->vn_vi = (struct virtual_item *)(tb->tb_vn + 1); | ||
103 | memset (vn->vn_vi, 0, vn->vn_nr_item * sizeof (struct virtual_item)); | ||
104 | vn->vn_free_ptr += vn->vn_nr_item * sizeof (struct virtual_item); | ||
105 | |||
106 | |||
107 | /* first item in the node */ | ||
108 | ih = B_N_PITEM_HEAD (Sh, 0); | ||
109 | |||
110 | /* define the mergeability for 0-th item (if it is not being deleted) */ | ||
111 | if (op_is_left_mergeable (&(ih->ih_key), Sh->b_size) && (vn->vn_mode != M_DELETE || vn->vn_affected_item_num)) | ||
112 | vn->vn_vi[0].vi_type |= VI_TYPE_LEFT_MERGEABLE; | ||
113 | |||
114 | /* go through all items those remain in the virtual node (except for the new (inserted) one) */ | ||
115 | for (new_num = 0; new_num < vn->vn_nr_item; new_num ++) { | ||
116 | int j; | ||
117 | struct virtual_item * vi = vn->vn_vi + new_num; | ||
118 | int is_affected = ((new_num != vn->vn_affected_item_num) ? 0 : 1); | ||
119 | |||
120 | |||
121 | if (is_affected && vn->vn_mode == M_INSERT) | ||
122 | continue; | ||
123 | |||
124 | /* get item number in source node */ | ||
125 | j = old_item_num (new_num, vn->vn_affected_item_num, vn->vn_mode); | ||
126 | |||
127 | vi->vi_item_len += ih_item_len(ih + j) + IH_SIZE; | ||
128 | vi->vi_ih = ih + j; | ||
129 | vi->vi_item = B_I_PITEM (Sh, ih + j); | ||
130 | vi->vi_uarea = vn->vn_free_ptr; | ||
131 | |||
132 | // FIXME: there is no check, that item operation did not | ||
133 | // consume too much memory | ||
134 | vn->vn_free_ptr += op_create_vi (vn, vi, is_affected, tb->insert_size [0]); | ||
135 | if (tb->vn_buf + tb->vn_buf_size < vn->vn_free_ptr) | ||
136 | reiserfs_panic (tb->tb_sb, "vs-8030: create_virtual_node: " | ||
137 | "virtual node space consumed"); | ||
138 | |||
139 | if (!is_affected) | ||
140 | /* this is not being changed */ | ||
141 | continue; | ||
142 | |||
143 | if (vn->vn_mode == M_PASTE || vn->vn_mode == M_CUT) { | ||
144 | vn->vn_vi[new_num].vi_item_len += tb->insert_size[0]; | ||
145 | vi->vi_new_data = vn->vn_data; // pointer to data which is going to be pasted | ||
146 | } | 95 | } |
147 | } | ||
148 | |||
149 | |||
150 | /* virtual inserted item is not defined yet */ | ||
151 | if (vn->vn_mode == M_INSERT) { | ||
152 | struct virtual_item * vi = vn->vn_vi + vn->vn_affected_item_num; | ||
153 | |||
154 | RFALSE( vn->vn_ins_ih == 0, | ||
155 | "vs-8040: item header of inserted item is not specified"); | ||
156 | vi->vi_item_len = tb->insert_size[0]; | ||
157 | vi->vi_ih = vn->vn_ins_ih; | ||
158 | vi->vi_item = vn->vn_data; | ||
159 | vi->vi_uarea = vn->vn_free_ptr; | ||
160 | |||
161 | op_create_vi (vn, vi, 0/*not pasted or cut*/, tb->insert_size [0]); | ||
162 | } | ||
163 | |||
164 | /* set right merge flag we take right delimiting key and check whether it is a mergeable item */ | ||
165 | if (tb->CFR[0]) { | ||
166 | struct reiserfs_key * key; | ||
167 | |||
168 | key = B_N_PDELIM_KEY (tb->CFR[0], tb->rkey[0]); | ||
169 | if (op_is_left_mergeable (key, Sh->b_size) && (vn->vn_mode != M_DELETE || | ||
170 | vn->vn_affected_item_num != B_NR_ITEMS (Sh) - 1)) | ||
171 | vn->vn_vi[vn->vn_nr_item-1].vi_type |= VI_TYPE_RIGHT_MERGEABLE; | ||
172 | 96 | ||
173 | #ifdef CONFIG_REISERFS_CHECK | 97 | /* number of items in virtual node */ |
174 | if (op_is_left_mergeable (key, Sh->b_size) && | 98 | vn->vn_nr_item = |
175 | !(vn->vn_mode != M_DELETE || vn->vn_affected_item_num != B_NR_ITEMS (Sh) - 1) ) { | 99 | B_NR_ITEMS(Sh) + ((vn->vn_mode == M_INSERT) ? 1 : 0) - |
176 | /* we delete last item and it could be merged with right neighbor's first item */ | 100 | ((vn->vn_mode == M_DELETE) ? 1 : 0); |
177 | if (!(B_NR_ITEMS (Sh) == 1 && is_direntry_le_ih (B_N_PITEM_HEAD (Sh, 0)) && | 101 | |
178 | I_ENTRY_COUNT (B_N_PITEM_HEAD (Sh, 0)) == 1)) { | 102 | /* first virtual item */ |
179 | /* node contains more than 1 item, or item is not directory item, or this item contains more than 1 entry */ | 103 | vn->vn_vi = (struct virtual_item *)(tb->tb_vn + 1); |
180 | print_block (Sh, 0, -1, -1); | 104 | memset(vn->vn_vi, 0, vn->vn_nr_item * sizeof(struct virtual_item)); |
181 | reiserfs_panic (tb->tb_sb, "vs-8045: create_virtual_node: rdkey %k, affected item==%d (mode==%c) Must be %c", | 105 | vn->vn_free_ptr += vn->vn_nr_item * sizeof(struct virtual_item); |
182 | key, vn->vn_affected_item_num, vn->vn_mode, M_DELETE); | 106 | |
183 | } else | 107 | /* first item in the node */ |
184 | /* we can delete directory item, that has only one directory entry in it */ | 108 | ih = B_N_PITEM_HEAD(Sh, 0); |
185 | ; | 109 | |
110 | /* define the mergeability for 0-th item (if it is not being deleted) */ | ||
111 | if (op_is_left_mergeable(&(ih->ih_key), Sh->b_size) | ||
112 | && (vn->vn_mode != M_DELETE || vn->vn_affected_item_num)) | ||
113 | vn->vn_vi[0].vi_type |= VI_TYPE_LEFT_MERGEABLE; | ||
114 | |||
115 | /* go through all items those remain in the virtual node (except for the new (inserted) one) */ | ||
116 | for (new_num = 0; new_num < vn->vn_nr_item; new_num++) { | ||
117 | int j; | ||
118 | struct virtual_item *vi = vn->vn_vi + new_num; | ||
119 | int is_affected = | ||
120 | ((new_num != vn->vn_affected_item_num) ? 0 : 1); | ||
121 | |||
122 | if (is_affected && vn->vn_mode == M_INSERT) | ||
123 | continue; | ||
124 | |||
125 | /* get item number in source node */ | ||
126 | j = old_item_num(new_num, vn->vn_affected_item_num, | ||
127 | vn->vn_mode); | ||
128 | |||
129 | vi->vi_item_len += ih_item_len(ih + j) + IH_SIZE; | ||
130 | vi->vi_ih = ih + j; | ||
131 | vi->vi_item = B_I_PITEM(Sh, ih + j); | ||
132 | vi->vi_uarea = vn->vn_free_ptr; | ||
133 | |||
134 | // FIXME: there is no check, that item operation did not | ||
135 | // consume too much memory | ||
136 | vn->vn_free_ptr += | ||
137 | op_create_vi(vn, vi, is_affected, tb->insert_size[0]); | ||
138 | if (tb->vn_buf + tb->vn_buf_size < vn->vn_free_ptr) | ||
139 | reiserfs_panic(tb->tb_sb, | ||
140 | "vs-8030: create_virtual_node: " | ||
141 | "virtual node space consumed"); | ||
142 | |||
143 | if (!is_affected) | ||
144 | /* this is not being changed */ | ||
145 | continue; | ||
146 | |||
147 | if (vn->vn_mode == M_PASTE || vn->vn_mode == M_CUT) { | ||
148 | vn->vn_vi[new_num].vi_item_len += tb->insert_size[0]; | ||
149 | vi->vi_new_data = vn->vn_data; // pointer to data which is going to be pasted | ||
150 | } | ||
186 | } | 151 | } |
152 | |||
153 | /* virtual inserted item is not defined yet */ | ||
154 | if (vn->vn_mode == M_INSERT) { | ||
155 | struct virtual_item *vi = vn->vn_vi + vn->vn_affected_item_num; | ||
156 | |||
157 | RFALSE(vn->vn_ins_ih == 0, | ||
158 | "vs-8040: item header of inserted item is not specified"); | ||
159 | vi->vi_item_len = tb->insert_size[0]; | ||
160 | vi->vi_ih = vn->vn_ins_ih; | ||
161 | vi->vi_item = vn->vn_data; | ||
162 | vi->vi_uarea = vn->vn_free_ptr; | ||
163 | |||
164 | op_create_vi(vn, vi, 0 /*not pasted or cut */ , | ||
165 | tb->insert_size[0]); | ||
166 | } | ||
167 | |||
168 | /* set right merge flag we take right delimiting key and check whether it is a mergeable item */ | ||
169 | if (tb->CFR[0]) { | ||
170 | struct reiserfs_key *key; | ||
171 | |||
172 | key = B_N_PDELIM_KEY(tb->CFR[0], tb->rkey[0]); | ||
173 | if (op_is_left_mergeable(key, Sh->b_size) | ||
174 | && (vn->vn_mode != M_DELETE | ||
175 | || vn->vn_affected_item_num != B_NR_ITEMS(Sh) - 1)) | ||
176 | vn->vn_vi[vn->vn_nr_item - 1].vi_type |= | ||
177 | VI_TYPE_RIGHT_MERGEABLE; | ||
178 | |||
179 | #ifdef CONFIG_REISERFS_CHECK | ||
180 | if (op_is_left_mergeable(key, Sh->b_size) && | ||
181 | !(vn->vn_mode != M_DELETE | ||
182 | || vn->vn_affected_item_num != B_NR_ITEMS(Sh) - 1)) { | ||
183 | /* we delete last item and it could be merged with right neighbor's first item */ | ||
184 | if (! | ||
185 | (B_NR_ITEMS(Sh) == 1 | ||
186 | && is_direntry_le_ih(B_N_PITEM_HEAD(Sh, 0)) | ||
187 | && I_ENTRY_COUNT(B_N_PITEM_HEAD(Sh, 0)) == 1)) { | ||
188 | /* node contains more than 1 item, or item is not directory item, or this item contains more than 1 entry */ | ||
189 | print_block(Sh, 0, -1, -1); | ||
190 | reiserfs_panic(tb->tb_sb, | ||
191 | "vs-8045: create_virtual_node: rdkey %k, affected item==%d (mode==%c) Must be %c", | ||
192 | key, vn->vn_affected_item_num, | ||
193 | vn->vn_mode, M_DELETE); | ||
194 | } else | ||
195 | /* we can delete directory item, that has only one directory entry in it */ | ||
196 | ; | ||
197 | } | ||
187 | #endif | 198 | #endif |
188 | |||
189 | } | ||
190 | } | ||
191 | 199 | ||
200 | } | ||
201 | } | ||
192 | 202 | ||
193 | /* using virtual node check, how many items can be shifted to left | 203 | /* using virtual node check, how many items can be shifted to left |
194 | neighbor */ | 204 | neighbor */ |
195 | static void check_left (struct tree_balance * tb, int h, int cur_free) | 205 | static void check_left(struct tree_balance *tb, int h, int cur_free) |
196 | { | 206 | { |
197 | int i; | 207 | int i; |
198 | struct virtual_node * vn = tb->tb_vn; | 208 | struct virtual_node *vn = tb->tb_vn; |
199 | struct virtual_item * vi; | 209 | struct virtual_item *vi; |
200 | int d_size, ih_size; | 210 | int d_size, ih_size; |
201 | 211 | ||
202 | RFALSE( cur_free < 0, "vs-8050: cur_free (%d) < 0", cur_free); | 212 | RFALSE(cur_free < 0, "vs-8050: cur_free (%d) < 0", cur_free); |
203 | 213 | ||
204 | /* internal level */ | 214 | /* internal level */ |
205 | if (h > 0) { | 215 | if (h > 0) { |
206 | tb->lnum[h] = cur_free / (DC_SIZE + KEY_SIZE); | 216 | tb->lnum[h] = cur_free / (DC_SIZE + KEY_SIZE); |
207 | return; | 217 | return; |
208 | } | 218 | } |
209 | 219 | ||
210 | /* leaf level */ | 220 | /* leaf level */ |
211 | 221 | ||
212 | if (!cur_free || !vn->vn_nr_item) { | 222 | if (!cur_free || !vn->vn_nr_item) { |
213 | /* no free space or nothing to move */ | 223 | /* no free space or nothing to move */ |
214 | tb->lnum[h] = 0; | 224 | tb->lnum[h] = 0; |
215 | tb->lbytes = -1; | 225 | tb->lbytes = -1; |
216 | return; | 226 | return; |
217 | } | 227 | } |
218 | 228 | ||
219 | RFALSE( !PATH_H_PPARENT (tb->tb_path, 0), | 229 | RFALSE(!PATH_H_PPARENT(tb->tb_path, 0), |
220 | "vs-8055: parent does not exist or invalid"); | 230 | "vs-8055: parent does not exist or invalid"); |
221 | 231 | ||
222 | vi = vn->vn_vi; | 232 | vi = vn->vn_vi; |
223 | if ((unsigned int)cur_free >= (vn->vn_size - ((vi->vi_type & VI_TYPE_LEFT_MERGEABLE) ? IH_SIZE : 0))) { | 233 | if ((unsigned int)cur_free >= |
224 | /* all contents of S[0] fits into L[0] */ | 234 | (vn->vn_size - |
235 | ((vi->vi_type & VI_TYPE_LEFT_MERGEABLE) ? IH_SIZE : 0))) { | ||
236 | /* all contents of S[0] fits into L[0] */ | ||
225 | 237 | ||
226 | RFALSE( vn->vn_mode == M_INSERT || vn->vn_mode == M_PASTE, | 238 | RFALSE(vn->vn_mode == M_INSERT || vn->vn_mode == M_PASTE, |
227 | "vs-8055: invalid mode or balance condition failed"); | 239 | "vs-8055: invalid mode or balance condition failed"); |
228 | 240 | ||
229 | tb->lnum[0] = vn->vn_nr_item; | 241 | tb->lnum[0] = vn->vn_nr_item; |
230 | tb->lbytes = -1; | 242 | tb->lbytes = -1; |
231 | return; | 243 | return; |
232 | } | ||
233 | |||
234 | |||
235 | d_size = 0, ih_size = IH_SIZE; | ||
236 | |||
237 | /* first item may be merge with last item in left neighbor */ | ||
238 | if (vi->vi_type & VI_TYPE_LEFT_MERGEABLE) | ||
239 | d_size = -((int)IH_SIZE), ih_size = 0; | ||
240 | |||
241 | tb->lnum[0] = 0; | ||
242 | for (i = 0; i < vn->vn_nr_item; i ++, ih_size = IH_SIZE, d_size = 0, vi ++) { | ||
243 | d_size += vi->vi_item_len; | ||
244 | if (cur_free >= d_size) { | ||
245 | /* the item can be shifted entirely */ | ||
246 | cur_free -= d_size; | ||
247 | tb->lnum[0] ++; | ||
248 | continue; | ||
249 | } | 244 | } |
250 | 245 | ||
251 | /* the item cannot be shifted entirely, try to split it */ | 246 | d_size = 0, ih_size = IH_SIZE; |
252 | /* check whether L[0] can hold ih and at least one byte of the item body */ | 247 | |
253 | if (cur_free <= ih_size) { | 248 | /* first item may be merge with last item in left neighbor */ |
254 | /* cannot shift even a part of the current item */ | 249 | if (vi->vi_type & VI_TYPE_LEFT_MERGEABLE) |
255 | tb->lbytes = -1; | 250 | d_size = -((int)IH_SIZE), ih_size = 0; |
256 | return; | 251 | |
252 | tb->lnum[0] = 0; | ||
253 | for (i = 0; i < vn->vn_nr_item; | ||
254 | i++, ih_size = IH_SIZE, d_size = 0, vi++) { | ||
255 | d_size += vi->vi_item_len; | ||
256 | if (cur_free >= d_size) { | ||
257 | /* the item can be shifted entirely */ | ||
258 | cur_free -= d_size; | ||
259 | tb->lnum[0]++; | ||
260 | continue; | ||
261 | } | ||
262 | |||
263 | /* the item cannot be shifted entirely, try to split it */ | ||
264 | /* check whether L[0] can hold ih and at least one byte of the item body */ | ||
265 | if (cur_free <= ih_size) { | ||
266 | /* cannot shift even a part of the current item */ | ||
267 | tb->lbytes = -1; | ||
268 | return; | ||
269 | } | ||
270 | cur_free -= ih_size; | ||
271 | |||
272 | tb->lbytes = op_check_left(vi, cur_free, 0, 0); | ||
273 | if (tb->lbytes != -1) | ||
274 | /* count partially shifted item */ | ||
275 | tb->lnum[0]++; | ||
276 | |||
277 | break; | ||
257 | } | 278 | } |
258 | cur_free -= ih_size; | ||
259 | |||
260 | tb->lbytes = op_check_left (vi, cur_free, 0, 0); | ||
261 | if (tb->lbytes != -1) | ||
262 | /* count partially shifted item */ | ||
263 | tb->lnum[0] ++; | ||
264 | |||
265 | break; | ||
266 | } | ||
267 | |||
268 | return; | ||
269 | } | ||
270 | 279 | ||
280 | return; | ||
281 | } | ||
271 | 282 | ||
272 | /* using virtual node check, how many items can be shifted to right | 283 | /* using virtual node check, how many items can be shifted to right |
273 | neighbor */ | 284 | neighbor */ |
274 | static void check_right (struct tree_balance * tb, int h, int cur_free) | 285 | static void check_right(struct tree_balance *tb, int h, int cur_free) |
275 | { | 286 | { |
276 | int i; | 287 | int i; |
277 | struct virtual_node * vn = tb->tb_vn; | 288 | struct virtual_node *vn = tb->tb_vn; |
278 | struct virtual_item * vi; | 289 | struct virtual_item *vi; |
279 | int d_size, ih_size; | 290 | int d_size, ih_size; |
280 | 291 | ||
281 | RFALSE( cur_free < 0, "vs-8070: cur_free < 0"); | 292 | RFALSE(cur_free < 0, "vs-8070: cur_free < 0"); |
282 | 293 | ||
283 | /* internal level */ | 294 | /* internal level */ |
284 | if (h > 0) { | 295 | if (h > 0) { |
285 | tb->rnum[h] = cur_free / (DC_SIZE + KEY_SIZE); | 296 | tb->rnum[h] = cur_free / (DC_SIZE + KEY_SIZE); |
286 | return; | 297 | return; |
287 | } | ||
288 | |||
289 | /* leaf level */ | ||
290 | |||
291 | if (!cur_free || !vn->vn_nr_item) { | ||
292 | /* no free space */ | ||
293 | tb->rnum[h] = 0; | ||
294 | tb->rbytes = -1; | ||
295 | return; | ||
296 | } | ||
297 | |||
298 | RFALSE( !PATH_H_PPARENT (tb->tb_path, 0), | ||
299 | "vs-8075: parent does not exist or invalid"); | ||
300 | |||
301 | vi = vn->vn_vi + vn->vn_nr_item - 1; | ||
302 | if ((unsigned int)cur_free >= (vn->vn_size - ((vi->vi_type & VI_TYPE_RIGHT_MERGEABLE) ? IH_SIZE : 0))) { | ||
303 | /* all contents of S[0] fits into R[0] */ | ||
304 | |||
305 | RFALSE( vn->vn_mode == M_INSERT || vn->vn_mode == M_PASTE, | ||
306 | "vs-8080: invalid mode or balance condition failed"); | ||
307 | |||
308 | tb->rnum[h] = vn->vn_nr_item; | ||
309 | tb->rbytes = -1; | ||
310 | return; | ||
311 | } | ||
312 | |||
313 | d_size = 0, ih_size = IH_SIZE; | ||
314 | |||
315 | /* last item may be merge with first item in right neighbor */ | ||
316 | if (vi->vi_type & VI_TYPE_RIGHT_MERGEABLE) | ||
317 | d_size = -(int)IH_SIZE, ih_size = 0; | ||
318 | |||
319 | tb->rnum[0] = 0; | ||
320 | for (i = vn->vn_nr_item - 1; i >= 0; i --, d_size = 0, ih_size = IH_SIZE, vi --) { | ||
321 | d_size += vi->vi_item_len; | ||
322 | if (cur_free >= d_size) { | ||
323 | /* the item can be shifted entirely */ | ||
324 | cur_free -= d_size; | ||
325 | tb->rnum[0] ++; | ||
326 | continue; | ||
327 | } | 298 | } |
328 | 299 | ||
329 | /* check whether R[0] can hold ih and at least one byte of the item body */ | 300 | /* leaf level */ |
330 | if ( cur_free <= ih_size ) { /* cannot shift even a part of the current item */ | 301 | |
331 | tb->rbytes = -1; | 302 | if (!cur_free || !vn->vn_nr_item) { |
332 | return; | 303 | /* no free space */ |
304 | tb->rnum[h] = 0; | ||
305 | tb->rbytes = -1; | ||
306 | return; | ||
333 | } | 307 | } |
334 | |||
335 | /* R[0] can hold the header of the item and at least one byte of its body */ | ||
336 | cur_free -= ih_size; /* cur_free is still > 0 */ | ||
337 | |||
338 | tb->rbytes = op_check_right (vi, cur_free); | ||
339 | if (tb->rbytes != -1) | ||
340 | /* count partially shifted item */ | ||
341 | tb->rnum[0] ++; | ||
342 | |||
343 | break; | ||
344 | } | ||
345 | |||
346 | return; | ||
347 | } | ||
348 | 308 | ||
309 | RFALSE(!PATH_H_PPARENT(tb->tb_path, 0), | ||
310 | "vs-8075: parent does not exist or invalid"); | ||
311 | |||
312 | vi = vn->vn_vi + vn->vn_nr_item - 1; | ||
313 | if ((unsigned int)cur_free >= | ||
314 | (vn->vn_size - | ||
315 | ((vi->vi_type & VI_TYPE_RIGHT_MERGEABLE) ? IH_SIZE : 0))) { | ||
316 | /* all contents of S[0] fits into R[0] */ | ||
317 | |||
318 | RFALSE(vn->vn_mode == M_INSERT || vn->vn_mode == M_PASTE, | ||
319 | "vs-8080: invalid mode or balance condition failed"); | ||
320 | |||
321 | tb->rnum[h] = vn->vn_nr_item; | ||
322 | tb->rbytes = -1; | ||
323 | return; | ||
324 | } | ||
325 | |||
326 | d_size = 0, ih_size = IH_SIZE; | ||
327 | |||
328 | /* last item may be merge with first item in right neighbor */ | ||
329 | if (vi->vi_type & VI_TYPE_RIGHT_MERGEABLE) | ||
330 | d_size = -(int)IH_SIZE, ih_size = 0; | ||
331 | |||
332 | tb->rnum[0] = 0; | ||
333 | for (i = vn->vn_nr_item - 1; i >= 0; | ||
334 | i--, d_size = 0, ih_size = IH_SIZE, vi--) { | ||
335 | d_size += vi->vi_item_len; | ||
336 | if (cur_free >= d_size) { | ||
337 | /* the item can be shifted entirely */ | ||
338 | cur_free -= d_size; | ||
339 | tb->rnum[0]++; | ||
340 | continue; | ||
341 | } | ||
342 | |||
343 | /* check whether R[0] can hold ih and at least one byte of the item body */ | ||
344 | if (cur_free <= ih_size) { /* cannot shift even a part of the current item */ | ||
345 | tb->rbytes = -1; | ||
346 | return; | ||
347 | } | ||
348 | |||
349 | /* R[0] can hold the header of the item and at least one byte of its body */ | ||
350 | cur_free -= ih_size; /* cur_free is still > 0 */ | ||
351 | |||
352 | tb->rbytes = op_check_right(vi, cur_free); | ||
353 | if (tb->rbytes != -1) | ||
354 | /* count partially shifted item */ | ||
355 | tb->rnum[0]++; | ||
356 | |||
357 | break; | ||
358 | } | ||
359 | |||
360 | return; | ||
361 | } | ||
349 | 362 | ||
350 | /* | 363 | /* |
351 | * from - number of items, which are shifted to left neighbor entirely | 364 | * from - number of items, which are shifted to left neighbor entirely |
352 | * to - number of item, which are shifted to right neighbor entirely | 365 | * to - number of item, which are shifted to right neighbor entirely |
353 | * from_bytes - number of bytes of boundary item (or directory entries) which are shifted to left neighbor | 366 | * from_bytes - number of bytes of boundary item (or directory entries) which are shifted to left neighbor |
354 | * to_bytes - number of bytes of boundary item (or directory entries) which are shifted to right neighbor */ | 367 | * to_bytes - number of bytes of boundary item (or directory entries) which are shifted to right neighbor */ |
355 | static int get_num_ver (int mode, struct tree_balance * tb, int h, | 368 | static int get_num_ver(int mode, struct tree_balance *tb, int h, |
356 | int from, int from_bytes, | 369 | int from, int from_bytes, |
357 | int to, int to_bytes, | 370 | int to, int to_bytes, short *snum012, int flow) |
358 | short * snum012, int flow | ||
359 | ) | ||
360 | { | 371 | { |
361 | int i; | 372 | int i; |
362 | int cur_free; | 373 | int cur_free; |
363 | // int bytes; | 374 | // int bytes; |
364 | int units; | 375 | int units; |
365 | struct virtual_node * vn = tb->tb_vn; | 376 | struct virtual_node *vn = tb->tb_vn; |
366 | // struct virtual_item * vi; | 377 | // struct virtual_item * vi; |
367 | 378 | ||
368 | int total_node_size, max_node_size, current_item_size; | 379 | int total_node_size, max_node_size, current_item_size; |
369 | int needed_nodes; | 380 | int needed_nodes; |
370 | int start_item, /* position of item we start filling node from */ | 381 | int start_item, /* position of item we start filling node from */ |
371 | end_item, /* position of item we finish filling node by */ | 382 | end_item, /* position of item we finish filling node by */ |
372 | start_bytes,/* number of first bytes (entries for directory) of start_item-th item | 383 | start_bytes, /* number of first bytes (entries for directory) of start_item-th item |
373 | we do not include into node that is being filled */ | 384 | we do not include into node that is being filled */ |
374 | end_bytes; /* number of last bytes (entries for directory) of end_item-th item | 385 | end_bytes; /* number of last bytes (entries for directory) of end_item-th item |
375 | we do node include into node that is being filled */ | 386 | we do node include into node that is being filled */ |
376 | int split_item_positions[2]; /* these are positions in virtual item of | 387 | int split_item_positions[2]; /* these are positions in virtual item of |
377 | items, that are split between S[0] and | 388 | items, that are split between S[0] and |
378 | S1new and S1new and S2new */ | 389 | S1new and S1new and S2new */ |
379 | 390 | ||
380 | split_item_positions[0] = -1; | 391 | split_item_positions[0] = -1; |
381 | split_item_positions[1] = -1; | 392 | split_item_positions[1] = -1; |
382 | 393 | ||
383 | /* We only create additional nodes if we are in insert or paste mode | 394 | /* We only create additional nodes if we are in insert or paste mode |
384 | or we are in replace mode at the internal level. If h is 0 and | 395 | or we are in replace mode at the internal level. If h is 0 and |
385 | the mode is M_REPLACE then in fix_nodes we change the mode to | 396 | the mode is M_REPLACE then in fix_nodes we change the mode to |
386 | paste or insert before we get here in the code. */ | 397 | paste or insert before we get here in the code. */ |
387 | RFALSE( tb->insert_size[h] < 0 || (mode != M_INSERT && mode != M_PASTE), | 398 | RFALSE(tb->insert_size[h] < 0 || (mode != M_INSERT && mode != M_PASTE), |
388 | "vs-8100: insert_size < 0 in overflow"); | 399 | "vs-8100: insert_size < 0 in overflow"); |
389 | 400 | ||
390 | max_node_size = MAX_CHILD_SIZE (PATH_H_PBUFFER (tb->tb_path, h)); | 401 | max_node_size = MAX_CHILD_SIZE(PATH_H_PBUFFER(tb->tb_path, h)); |
391 | 402 | ||
392 | /* snum012 [0-2] - number of items, that lay | 403 | /* snum012 [0-2] - number of items, that lay |
393 | to S[0], first new node and second new node */ | 404 | to S[0], first new node and second new node */ |
394 | snum012[3] = -1; /* s1bytes */ | 405 | snum012[3] = -1; /* s1bytes */ |
395 | snum012[4] = -1; /* s2bytes */ | 406 | snum012[4] = -1; /* s2bytes */ |
396 | 407 | ||
397 | /* internal level */ | 408 | /* internal level */ |
398 | if (h > 0) { | 409 | if (h > 0) { |
399 | i = ((to - from) * (KEY_SIZE + DC_SIZE) + DC_SIZE); | 410 | i = ((to - from) * (KEY_SIZE + DC_SIZE) + DC_SIZE); |
400 | if (i == max_node_size) | 411 | if (i == max_node_size) |
401 | return 1; | 412 | return 1; |
402 | return (i / max_node_size + 1); | 413 | return (i / max_node_size + 1); |
403 | } | ||
404 | |||
405 | /* leaf level */ | ||
406 | needed_nodes = 1; | ||
407 | total_node_size = 0; | ||
408 | cur_free = max_node_size; | ||
409 | |||
410 | // start from 'from'-th item | ||
411 | start_item = from; | ||
412 | // skip its first 'start_bytes' units | ||
413 | start_bytes = ((from_bytes != -1) ? from_bytes : 0); | ||
414 | |||
415 | // last included item is the 'end_item'-th one | ||
416 | end_item = vn->vn_nr_item - to - 1; | ||
417 | // do not count last 'end_bytes' units of 'end_item'-th item | ||
418 | end_bytes = (to_bytes != -1) ? to_bytes : 0; | ||
419 | |||
420 | /* go through all item beginning from the start_item-th item and ending by | ||
421 | the end_item-th item. Do not count first 'start_bytes' units of | ||
422 | 'start_item'-th item and last 'end_bytes' of 'end_item'-th item */ | ||
423 | |||
424 | for (i = start_item; i <= end_item; i ++) { | ||
425 | struct virtual_item * vi = vn->vn_vi + i; | ||
426 | int skip_from_end = ((i == end_item) ? end_bytes : 0); | ||
427 | |||
428 | RFALSE( needed_nodes > 3, "vs-8105: too many nodes are needed"); | ||
429 | |||
430 | /* get size of current item */ | ||
431 | current_item_size = vi->vi_item_len; | ||
432 | |||
433 | /* do not take in calculation head part (from_bytes) of from-th item */ | ||
434 | current_item_size -= op_part_size (vi, 0/*from start*/, start_bytes); | ||
435 | |||
436 | /* do not take in calculation tail part of last item */ | ||
437 | current_item_size -= op_part_size (vi, 1/*from end*/, skip_from_end); | ||
438 | |||
439 | /* if item fits into current node entierly */ | ||
440 | if (total_node_size + current_item_size <= max_node_size) { | ||
441 | snum012[needed_nodes - 1] ++; | ||
442 | total_node_size += current_item_size; | ||
443 | start_bytes = 0; | ||
444 | continue; | ||
445 | } | 414 | } |
446 | 415 | ||
447 | if (current_item_size > max_node_size) { | 416 | /* leaf level */ |
448 | /* virtual item length is longer, than max size of item in | 417 | needed_nodes = 1; |
449 | a node. It is impossible for direct item */ | 418 | total_node_size = 0; |
450 | RFALSE( is_direct_le_ih (vi->vi_ih), | 419 | cur_free = max_node_size; |
451 | "vs-8110: " | 420 | |
452 | "direct item length is %d. It can not be longer than %d", | 421 | // start from 'from'-th item |
453 | current_item_size, max_node_size); | 422 | start_item = from; |
454 | /* we will try to split it */ | 423 | // skip its first 'start_bytes' units |
455 | flow = 1; | 424 | start_bytes = ((from_bytes != -1) ? from_bytes : 0); |
425 | |||
426 | // last included item is the 'end_item'-th one | ||
427 | end_item = vn->vn_nr_item - to - 1; | ||
428 | // do not count last 'end_bytes' units of 'end_item'-th item | ||
429 | end_bytes = (to_bytes != -1) ? to_bytes : 0; | ||
430 | |||
431 | /* go through all item beginning from the start_item-th item and ending by | ||
432 | the end_item-th item. Do not count first 'start_bytes' units of | ||
433 | 'start_item'-th item and last 'end_bytes' of 'end_item'-th item */ | ||
434 | |||
435 | for (i = start_item; i <= end_item; i++) { | ||
436 | struct virtual_item *vi = vn->vn_vi + i; | ||
437 | int skip_from_end = ((i == end_item) ? end_bytes : 0); | ||
438 | |||
439 | RFALSE(needed_nodes > 3, "vs-8105: too many nodes are needed"); | ||
440 | |||
441 | /* get size of current item */ | ||
442 | current_item_size = vi->vi_item_len; | ||
443 | |||
444 | /* do not take in calculation head part (from_bytes) of from-th item */ | ||
445 | current_item_size -= | ||
446 | op_part_size(vi, 0 /*from start */ , start_bytes); | ||
447 | |||
448 | /* do not take in calculation tail part of last item */ | ||
449 | current_item_size -= | ||
450 | op_part_size(vi, 1 /*from end */ , skip_from_end); | ||
451 | |||
452 | /* if item fits into current node entierly */ | ||
453 | if (total_node_size + current_item_size <= max_node_size) { | ||
454 | snum012[needed_nodes - 1]++; | ||
455 | total_node_size += current_item_size; | ||
456 | start_bytes = 0; | ||
457 | continue; | ||
458 | } | ||
459 | |||
460 | if (current_item_size > max_node_size) { | ||
461 | /* virtual item length is longer, than max size of item in | ||
462 | a node. It is impossible for direct item */ | ||
463 | RFALSE(is_direct_le_ih(vi->vi_ih), | ||
464 | "vs-8110: " | ||
465 | "direct item length is %d. It can not be longer than %d", | ||
466 | current_item_size, max_node_size); | ||
467 | /* we will try to split it */ | ||
468 | flow = 1; | ||
469 | } | ||
470 | |||
471 | if (!flow) { | ||
472 | /* as we do not split items, take new node and continue */ | ||
473 | needed_nodes++; | ||
474 | i--; | ||
475 | total_node_size = 0; | ||
476 | continue; | ||
477 | } | ||
478 | // calculate number of item units which fit into node being | ||
479 | // filled | ||
480 | { | ||
481 | int free_space; | ||
482 | |||
483 | free_space = max_node_size - total_node_size - IH_SIZE; | ||
484 | units = | ||
485 | op_check_left(vi, free_space, start_bytes, | ||
486 | skip_from_end); | ||
487 | if (units == -1) { | ||
488 | /* nothing fits into current node, take new node and continue */ | ||
489 | needed_nodes++, i--, total_node_size = 0; | ||
490 | continue; | ||
491 | } | ||
492 | } | ||
493 | |||
494 | /* something fits into the current node */ | ||
495 | //if (snum012[3] != -1 || needed_nodes != 1) | ||
496 | // reiserfs_panic (tb->tb_sb, "vs-8115: get_num_ver: too many nodes required"); | ||
497 | //snum012[needed_nodes - 1 + 3] = op_unit_num (vi) - start_bytes - units; | ||
498 | start_bytes += units; | ||
499 | snum012[needed_nodes - 1 + 3] = units; | ||
500 | |||
501 | if (needed_nodes > 2) | ||
502 | reiserfs_warning(tb->tb_sb, "vs-8111: get_num_ver: " | ||
503 | "split_item_position is out of boundary"); | ||
504 | snum012[needed_nodes - 1]++; | ||
505 | split_item_positions[needed_nodes - 1] = i; | ||
506 | needed_nodes++; | ||
507 | /* continue from the same item with start_bytes != -1 */ | ||
508 | start_item = i; | ||
509 | i--; | ||
510 | total_node_size = 0; | ||
456 | } | 511 | } |
457 | 512 | ||
458 | if (!flow) { | 513 | // sum012[4] (if it is not -1) contains number of units of which |
459 | /* as we do not split items, take new node and continue */ | 514 | // are to be in S1new, snum012[3] - to be in S0. They are supposed |
460 | needed_nodes ++; i --; total_node_size = 0; | 515 | // to be S1bytes and S2bytes correspondingly, so recalculate |
461 | continue; | 516 | if (snum012[4] > 0) { |
517 | int split_item_num; | ||
518 | int bytes_to_r, bytes_to_l; | ||
519 | int bytes_to_S1new; | ||
520 | |||
521 | split_item_num = split_item_positions[1]; | ||
522 | bytes_to_l = | ||
523 | ((from == split_item_num | ||
524 | && from_bytes != -1) ? from_bytes : 0); | ||
525 | bytes_to_r = | ||
526 | ((end_item == split_item_num | ||
527 | && end_bytes != -1) ? end_bytes : 0); | ||
528 | bytes_to_S1new = | ||
529 | ((split_item_positions[0] == | ||
530 | split_item_positions[1]) ? snum012[3] : 0); | ||
531 | |||
532 | // s2bytes | ||
533 | snum012[4] = | ||
534 | op_unit_num(&vn->vn_vi[split_item_num]) - snum012[4] - | ||
535 | bytes_to_r - bytes_to_l - bytes_to_S1new; | ||
536 | |||
537 | if (vn->vn_vi[split_item_num].vi_index != TYPE_DIRENTRY && | ||
538 | vn->vn_vi[split_item_num].vi_index != TYPE_INDIRECT) | ||
539 | reiserfs_warning(tb->tb_sb, "vs-8115: get_num_ver: not " | ||
540 | "directory or indirect item"); | ||
462 | } | 541 | } |
463 | 542 | ||
464 | // calculate number of item units which fit into node being | 543 | /* now we know S2bytes, calculate S1bytes */ |
465 | // filled | 544 | if (snum012[3] > 0) { |
466 | { | 545 | int split_item_num; |
467 | int free_space; | 546 | int bytes_to_r, bytes_to_l; |
468 | 547 | int bytes_to_S2new; | |
469 | free_space = max_node_size - total_node_size - IH_SIZE; | 548 | |
470 | units = op_check_left (vi, free_space, start_bytes, skip_from_end); | 549 | split_item_num = split_item_positions[0]; |
471 | if (units == -1) { | 550 | bytes_to_l = |
472 | /* nothing fits into current node, take new node and continue */ | 551 | ((from == split_item_num |
473 | needed_nodes ++, i--, total_node_size = 0; | 552 | && from_bytes != -1) ? from_bytes : 0); |
474 | continue; | 553 | bytes_to_r = |
475 | } | 554 | ((end_item == split_item_num |
555 | && end_bytes != -1) ? end_bytes : 0); | ||
556 | bytes_to_S2new = | ||
557 | ((split_item_positions[0] == split_item_positions[1] | ||
558 | && snum012[4] != -1) ? snum012[4] : 0); | ||
559 | |||
560 | // s1bytes | ||
561 | snum012[3] = | ||
562 | op_unit_num(&vn->vn_vi[split_item_num]) - snum012[3] - | ||
563 | bytes_to_r - bytes_to_l - bytes_to_S2new; | ||
476 | } | 564 | } |
477 | 565 | ||
478 | /* something fits into the current node */ | 566 | return needed_nodes; |
479 | //if (snum012[3] != -1 || needed_nodes != 1) | ||
480 | // reiserfs_panic (tb->tb_sb, "vs-8115: get_num_ver: too many nodes required"); | ||
481 | //snum012[needed_nodes - 1 + 3] = op_unit_num (vi) - start_bytes - units; | ||
482 | start_bytes += units; | ||
483 | snum012[needed_nodes - 1 + 3] = units; | ||
484 | |||
485 | if (needed_nodes > 2) | ||
486 | reiserfs_warning (tb->tb_sb, "vs-8111: get_num_ver: " | ||
487 | "split_item_position is out of boundary"); | ||
488 | snum012[needed_nodes - 1] ++; | ||
489 | split_item_positions[needed_nodes - 1] = i; | ||
490 | needed_nodes ++; | ||
491 | /* continue from the same item with start_bytes != -1 */ | ||
492 | start_item = i; | ||
493 | i --; | ||
494 | total_node_size = 0; | ||
495 | } | ||
496 | |||
497 | // sum012[4] (if it is not -1) contains number of units of which | ||
498 | // are to be in S1new, snum012[3] - to be in S0. They are supposed | ||
499 | // to be S1bytes and S2bytes correspondingly, so recalculate | ||
500 | if (snum012[4] > 0) { | ||
501 | int split_item_num; | ||
502 | int bytes_to_r, bytes_to_l; | ||
503 | int bytes_to_S1new; | ||
504 | |||
505 | split_item_num = split_item_positions[1]; | ||
506 | bytes_to_l = ((from == split_item_num && from_bytes != -1) ? from_bytes : 0); | ||
507 | bytes_to_r = ((end_item == split_item_num && end_bytes != -1) ? end_bytes : 0); | ||
508 | bytes_to_S1new = ((split_item_positions[0] == split_item_positions[1]) ? snum012[3] : 0); | ||
509 | |||
510 | // s2bytes | ||
511 | snum012[4] = op_unit_num (&vn->vn_vi[split_item_num]) - snum012[4] - bytes_to_r - bytes_to_l - bytes_to_S1new; | ||
512 | |||
513 | if (vn->vn_vi[split_item_num].vi_index != TYPE_DIRENTRY && | ||
514 | vn->vn_vi[split_item_num].vi_index != TYPE_INDIRECT) | ||
515 | reiserfs_warning (tb->tb_sb, "vs-8115: get_num_ver: not " | ||
516 | "directory or indirect item"); | ||
517 | } | ||
518 | |||
519 | /* now we know S2bytes, calculate S1bytes */ | ||
520 | if (snum012[3] > 0) { | ||
521 | int split_item_num; | ||
522 | int bytes_to_r, bytes_to_l; | ||
523 | int bytes_to_S2new; | ||
524 | |||
525 | split_item_num = split_item_positions[0]; | ||
526 | bytes_to_l = ((from == split_item_num && from_bytes != -1) ? from_bytes : 0); | ||
527 | bytes_to_r = ((end_item == split_item_num && end_bytes != -1) ? end_bytes : 0); | ||
528 | bytes_to_S2new = ((split_item_positions[0] == split_item_positions[1] && snum012[4] != -1) ? snum012[4] : 0); | ||
529 | |||
530 | // s1bytes | ||
531 | snum012[3] = op_unit_num (&vn->vn_vi[split_item_num]) - snum012[3] - bytes_to_r - bytes_to_l - bytes_to_S2new; | ||
532 | } | ||
533 | |||
534 | return needed_nodes; | ||
535 | } | 567 | } |
536 | 568 | ||
537 | |||
538 | #ifdef CONFIG_REISERFS_CHECK | 569 | #ifdef CONFIG_REISERFS_CHECK |
539 | extern struct tree_balance * cur_tb; | 570 | extern struct tree_balance *cur_tb; |
540 | #endif | 571 | #endif |
541 | 572 | ||
542 | |||
543 | /* Set parameters for balancing. | 573 | /* Set parameters for balancing. |
544 | * Performs write of results of analysis of balancing into structure tb, | 574 | * Performs write of results of analysis of balancing into structure tb, |
545 | * where it will later be used by the functions that actually do the balancing. | 575 | * where it will later be used by the functions that actually do the balancing. |
@@ -557,131 +587,130 @@ extern struct tree_balance * cur_tb; | |||
557 | * s1bytes number of bytes which flow to the first new node when S[0] splits (this number is contained in s012 array) | 587 | * s1bytes number of bytes which flow to the first new node when S[0] splits (this number is contained in s012 array) |
558 | */ | 588 | */ |
559 | 589 | ||
560 | static void set_parameters (struct tree_balance * tb, int h, int lnum, | 590 | static void set_parameters(struct tree_balance *tb, int h, int lnum, |
561 | int rnum, int blk_num, short * s012, int lb, int rb) | 591 | int rnum, int blk_num, short *s012, int lb, int rb) |
562 | { | 592 | { |
563 | 593 | ||
564 | tb->lnum[h] = lnum; | 594 | tb->lnum[h] = lnum; |
565 | tb->rnum[h] = rnum; | 595 | tb->rnum[h] = rnum; |
566 | tb->blknum[h] = blk_num; | 596 | tb->blknum[h] = blk_num; |
567 | 597 | ||
568 | if (h == 0) | 598 | if (h == 0) { /* only for leaf level */ |
569 | { /* only for leaf level */ | 599 | if (s012 != NULL) { |
570 | if (s012 != NULL) | 600 | tb->s0num = *s012++, |
571 | { | 601 | tb->s1num = *s012++, tb->s2num = *s012++; |
572 | tb->s0num = * s012 ++, | 602 | tb->s1bytes = *s012++; |
573 | tb->s1num = * s012 ++, | 603 | tb->s2bytes = *s012; |
574 | tb->s2num = * s012 ++; | 604 | } |
575 | tb->s1bytes = * s012 ++; | 605 | tb->lbytes = lb; |
576 | tb->s2bytes = * s012; | 606 | tb->rbytes = rb; |
577 | } | 607 | } |
578 | tb->lbytes = lb; | 608 | PROC_INFO_ADD(tb->tb_sb, lnum[h], lnum); |
579 | tb->rbytes = rb; | 609 | PROC_INFO_ADD(tb->tb_sb, rnum[h], rnum); |
580 | } | ||
581 | PROC_INFO_ADD( tb -> tb_sb, lnum[ h ], lnum ); | ||
582 | PROC_INFO_ADD( tb -> tb_sb, rnum[ h ], rnum ); | ||
583 | |||
584 | PROC_INFO_ADD( tb -> tb_sb, lbytes[ h ], lb ); | ||
585 | PROC_INFO_ADD( tb -> tb_sb, rbytes[ h ], rb ); | ||
586 | } | ||
587 | |||
588 | 610 | ||
611 | PROC_INFO_ADD(tb->tb_sb, lbytes[h], lb); | ||
612 | PROC_INFO_ADD(tb->tb_sb, rbytes[h], rb); | ||
613 | } | ||
589 | 614 | ||
590 | /* check, does node disappear if we shift tb->lnum[0] items to left | 615 | /* check, does node disappear if we shift tb->lnum[0] items to left |
591 | neighbor and tb->rnum[0] to the right one. */ | 616 | neighbor and tb->rnum[0] to the right one. */ |
592 | static int is_leaf_removable (struct tree_balance * tb) | 617 | static int is_leaf_removable(struct tree_balance *tb) |
593 | { | 618 | { |
594 | struct virtual_node * vn = tb->tb_vn; | 619 | struct virtual_node *vn = tb->tb_vn; |
595 | int to_left, to_right; | 620 | int to_left, to_right; |
596 | int size; | 621 | int size; |
597 | int remain_items; | 622 | int remain_items; |
598 | 623 | ||
599 | /* number of items, that will be shifted to left (right) neighbor | 624 | /* number of items, that will be shifted to left (right) neighbor |
600 | entirely */ | 625 | entirely */ |
601 | to_left = tb->lnum[0] - ((tb->lbytes != -1) ? 1 : 0); | 626 | to_left = tb->lnum[0] - ((tb->lbytes != -1) ? 1 : 0); |
602 | to_right = tb->rnum[0] - ((tb->rbytes != -1) ? 1 : 0); | 627 | to_right = tb->rnum[0] - ((tb->rbytes != -1) ? 1 : 0); |
603 | remain_items = vn->vn_nr_item; | 628 | remain_items = vn->vn_nr_item; |
604 | 629 | ||
605 | /* how many items remain in S[0] after shiftings to neighbors */ | 630 | /* how many items remain in S[0] after shiftings to neighbors */ |
606 | remain_items -= (to_left + to_right); | 631 | remain_items -= (to_left + to_right); |
607 | 632 | ||
608 | if (remain_items < 1) { | 633 | if (remain_items < 1) { |
609 | /* all content of node can be shifted to neighbors */ | 634 | /* all content of node can be shifted to neighbors */ |
610 | set_parameters (tb, 0, to_left, vn->vn_nr_item - to_left, 0, NULL, -1, -1); | 635 | set_parameters(tb, 0, to_left, vn->vn_nr_item - to_left, 0, |
611 | return 1; | 636 | NULL, -1, -1); |
612 | } | 637 | return 1; |
613 | 638 | } | |
614 | if (remain_items > 1 || tb->lbytes == -1 || tb->rbytes == -1) | ||
615 | /* S[0] is not removable */ | ||
616 | return 0; | ||
617 | |||
618 | /* check, whether we can divide 1 remaining item between neighbors */ | ||
619 | |||
620 | /* get size of remaining item (in item units) */ | ||
621 | size = op_unit_num (&(vn->vn_vi[to_left])); | ||
622 | |||
623 | if (tb->lbytes + tb->rbytes >= size) { | ||
624 | set_parameters (tb, 0, to_left + 1, to_right + 1, 0, NULL, tb->lbytes, -1); | ||
625 | return 1; | ||
626 | } | ||
627 | |||
628 | return 0; | ||
629 | } | ||
630 | 639 | ||
640 | if (remain_items > 1 || tb->lbytes == -1 || tb->rbytes == -1) | ||
641 | /* S[0] is not removable */ | ||
642 | return 0; | ||
643 | |||
644 | /* check, whether we can divide 1 remaining item between neighbors */ | ||
645 | |||
646 | /* get size of remaining item (in item units) */ | ||
647 | size = op_unit_num(&(vn->vn_vi[to_left])); | ||
648 | |||
649 | if (tb->lbytes + tb->rbytes >= size) { | ||
650 | set_parameters(tb, 0, to_left + 1, to_right + 1, 0, NULL, | ||
651 | tb->lbytes, -1); | ||
652 | return 1; | ||
653 | } | ||
654 | |||
655 | return 0; | ||
656 | } | ||
631 | 657 | ||
632 | /* check whether L, S, R can be joined in one node */ | 658 | /* check whether L, S, R can be joined in one node */ |
633 | static int are_leaves_removable (struct tree_balance * tb, int lfree, int rfree) | 659 | static int are_leaves_removable(struct tree_balance *tb, int lfree, int rfree) |
634 | { | 660 | { |
635 | struct virtual_node * vn = tb->tb_vn; | 661 | struct virtual_node *vn = tb->tb_vn; |
636 | int ih_size; | 662 | int ih_size; |
637 | struct buffer_head *S0; | 663 | struct buffer_head *S0; |
638 | 664 | ||
639 | S0 = PATH_H_PBUFFER (tb->tb_path, 0); | 665 | S0 = PATH_H_PBUFFER(tb->tb_path, 0); |
640 | 666 | ||
641 | ih_size = 0; | 667 | ih_size = 0; |
642 | if (vn->vn_nr_item) { | 668 | if (vn->vn_nr_item) { |
643 | if (vn->vn_vi[0].vi_type & VI_TYPE_LEFT_MERGEABLE) | 669 | if (vn->vn_vi[0].vi_type & VI_TYPE_LEFT_MERGEABLE) |
644 | ih_size += IH_SIZE; | 670 | ih_size += IH_SIZE; |
645 | 671 | ||
646 | if (vn->vn_vi[vn->vn_nr_item-1].vi_type & VI_TYPE_RIGHT_MERGEABLE) | 672 | if (vn->vn_vi[vn->vn_nr_item - 1]. |
647 | ih_size += IH_SIZE; | 673 | vi_type & VI_TYPE_RIGHT_MERGEABLE) |
648 | } else { | 674 | ih_size += IH_SIZE; |
649 | /* there was only one item and it will be deleted */ | 675 | } else { |
650 | struct item_head * ih; | 676 | /* there was only one item and it will be deleted */ |
651 | 677 | struct item_head *ih; | |
652 | RFALSE( B_NR_ITEMS (S0) != 1, | 678 | |
653 | "vs-8125: item number must be 1: it is %d", B_NR_ITEMS(S0)); | 679 | RFALSE(B_NR_ITEMS(S0) != 1, |
654 | 680 | "vs-8125: item number must be 1: it is %d", | |
655 | ih = B_N_PITEM_HEAD (S0, 0); | 681 | B_NR_ITEMS(S0)); |
656 | if (tb->CFR[0] && !comp_short_le_keys (&(ih->ih_key), B_N_PDELIM_KEY (tb->CFR[0], tb->rkey[0]))) | 682 | |
657 | if (is_direntry_le_ih (ih)) { | 683 | ih = B_N_PITEM_HEAD(S0, 0); |
658 | /* Directory must be in correct state here: that is | 684 | if (tb->CFR[0] |
659 | somewhere at the left side should exist first directory | 685 | && !comp_short_le_keys(&(ih->ih_key), |
660 | item. But the item being deleted can not be that first | 686 | B_N_PDELIM_KEY(tb->CFR[0], |
661 | one because its right neighbor is item of the same | 687 | tb->rkey[0]))) |
662 | directory. (But first item always gets deleted in last | 688 | if (is_direntry_le_ih(ih)) { |
663 | turn). So, neighbors of deleted item can be merged, so | 689 | /* Directory must be in correct state here: that is |
664 | we can save ih_size */ | 690 | somewhere at the left side should exist first directory |
665 | ih_size = IH_SIZE; | 691 | item. But the item being deleted can not be that first |
666 | 692 | one because its right neighbor is item of the same | |
667 | /* we might check that left neighbor exists and is of the | 693 | directory. (But first item always gets deleted in last |
668 | same directory */ | 694 | turn). So, neighbors of deleted item can be merged, so |
669 | RFALSE(le_ih_k_offset (ih) == DOT_OFFSET, | 695 | we can save ih_size */ |
670 | "vs-8130: first directory item can not be removed until directory is not empty"); | 696 | ih_size = IH_SIZE; |
671 | } | 697 | |
672 | 698 | /* we might check that left neighbor exists and is of the | |
673 | } | 699 | same directory */ |
674 | 700 | RFALSE(le_ih_k_offset(ih) == DOT_OFFSET, | |
675 | if (MAX_CHILD_SIZE (S0) + vn->vn_size <= rfree + lfree + ih_size) { | 701 | "vs-8130: first directory item can not be removed until directory is not empty"); |
676 | set_parameters (tb, 0, -1, -1, -1, NULL, -1, -1); | 702 | } |
677 | PROC_INFO_INC( tb -> tb_sb, leaves_removable ); | ||
678 | return 1; | ||
679 | } | ||
680 | return 0; | ||
681 | |||
682 | } | ||
683 | 703 | ||
704 | } | ||
705 | |||
706 | if (MAX_CHILD_SIZE(S0) + vn->vn_size <= rfree + lfree + ih_size) { | ||
707 | set_parameters(tb, 0, -1, -1, -1, NULL, -1, -1); | ||
708 | PROC_INFO_INC(tb->tb_sb, leaves_removable); | ||
709 | return 1; | ||
710 | } | ||
711 | return 0; | ||
684 | 712 | ||
713 | } | ||
685 | 714 | ||
686 | /* when we do not split item, lnum and rnum are numbers of entire items */ | 715 | /* when we do not split item, lnum and rnum are numbers of entire items */ |
687 | #define SET_PAR_SHIFT_LEFT \ | 716 | #define SET_PAR_SHIFT_LEFT \ |
@@ -704,7 +733,6 @@ else \ | |||
704 | -1, -1);\ | 733 | -1, -1);\ |
705 | } | 734 | } |
706 | 735 | ||
707 | |||
708 | #define SET_PAR_SHIFT_RIGHT \ | 736 | #define SET_PAR_SHIFT_RIGHT \ |
709 | if (h)\ | 737 | if (h)\ |
710 | {\ | 738 | {\ |
@@ -724,214 +752,199 @@ else \ | |||
724 | -1, -1);\ | 752 | -1, -1);\ |
725 | } | 753 | } |
726 | 754 | ||
727 | 755 | static void free_buffers_in_tb(struct tree_balance *p_s_tb) | |
728 | static void free_buffers_in_tb ( | 756 | { |
729 | struct tree_balance * p_s_tb | 757 | int n_counter; |
730 | ) { | 758 | |
731 | int n_counter; | 759 | decrement_counters_in_path(p_s_tb->tb_path); |
732 | 760 | ||
733 | decrement_counters_in_path(p_s_tb->tb_path); | 761 | for (n_counter = 0; n_counter < MAX_HEIGHT; n_counter++) { |
734 | 762 | decrement_bcount(p_s_tb->L[n_counter]); | |
735 | for ( n_counter = 0; n_counter < MAX_HEIGHT; n_counter++ ) { | 763 | p_s_tb->L[n_counter] = NULL; |
736 | decrement_bcount(p_s_tb->L[n_counter]); | 764 | decrement_bcount(p_s_tb->R[n_counter]); |
737 | p_s_tb->L[n_counter] = NULL; | 765 | p_s_tb->R[n_counter] = NULL; |
738 | decrement_bcount(p_s_tb->R[n_counter]); | 766 | decrement_bcount(p_s_tb->FL[n_counter]); |
739 | p_s_tb->R[n_counter] = NULL; | 767 | p_s_tb->FL[n_counter] = NULL; |
740 | decrement_bcount(p_s_tb->FL[n_counter]); | 768 | decrement_bcount(p_s_tb->FR[n_counter]); |
741 | p_s_tb->FL[n_counter] = NULL; | 769 | p_s_tb->FR[n_counter] = NULL; |
742 | decrement_bcount(p_s_tb->FR[n_counter]); | 770 | decrement_bcount(p_s_tb->CFL[n_counter]); |
743 | p_s_tb->FR[n_counter] = NULL; | 771 | p_s_tb->CFL[n_counter] = NULL; |
744 | decrement_bcount(p_s_tb->CFL[n_counter]); | 772 | decrement_bcount(p_s_tb->CFR[n_counter]); |
745 | p_s_tb->CFL[n_counter] = NULL; | 773 | p_s_tb->CFR[n_counter] = NULL; |
746 | decrement_bcount(p_s_tb->CFR[n_counter]); | 774 | } |
747 | p_s_tb->CFR[n_counter] = NULL; | ||
748 | } | ||
749 | } | 775 | } |
750 | 776 | ||
751 | |||
752 | /* Get new buffers for storing new nodes that are created while balancing. | 777 | /* Get new buffers for storing new nodes that are created while balancing. |
753 | * Returns: SCHEDULE_OCCURRED - schedule occurred while the function worked; | 778 | * Returns: SCHEDULE_OCCURRED - schedule occurred while the function worked; |
754 | * CARRY_ON - schedule didn't occur while the function worked; | 779 | * CARRY_ON - schedule didn't occur while the function worked; |
755 | * NO_DISK_SPACE - no disk space. | 780 | * NO_DISK_SPACE - no disk space. |
756 | */ | 781 | */ |
757 | /* The function is NOT SCHEDULE-SAFE! */ | 782 | /* The function is NOT SCHEDULE-SAFE! */ |
758 | static int get_empty_nodes( | 783 | static int get_empty_nodes(struct tree_balance *p_s_tb, int n_h) |
759 | struct tree_balance * p_s_tb, | 784 | { |
760 | int n_h | 785 | struct buffer_head *p_s_new_bh, |
761 | ) { | 786 | *p_s_Sh = PATH_H_PBUFFER(p_s_tb->tb_path, n_h); |
762 | struct buffer_head * p_s_new_bh, | 787 | b_blocknr_t *p_n_blocknr, a_n_blocknrs[MAX_AMOUNT_NEEDED] = { 0, }; |
763 | * p_s_Sh = PATH_H_PBUFFER (p_s_tb->tb_path, n_h); | 788 | int n_counter, n_number_of_freeblk, n_amount_needed, /* number of needed empty blocks */ |
764 | b_blocknr_t * p_n_blocknr, | 789 | n_retval = CARRY_ON; |
765 | a_n_blocknrs[MAX_AMOUNT_NEEDED] = {0, }; | 790 | struct super_block *p_s_sb = p_s_tb->tb_sb; |
766 | int n_counter, | 791 | |
767 | n_number_of_freeblk, | 792 | /* number_of_freeblk is the number of empty blocks which have been |
768 | n_amount_needed,/* number of needed empty blocks */ | 793 | acquired for use by the balancing algorithm minus the number of |
769 | n_retval = CARRY_ON; | 794 | empty blocks used in the previous levels of the analysis, |
770 | struct super_block * p_s_sb = p_s_tb->tb_sb; | 795 | number_of_freeblk = tb->cur_blknum can be non-zero if a schedule occurs |
771 | 796 | after empty blocks are acquired, and the balancing analysis is | |
772 | 797 | then restarted, amount_needed is the number needed by this level | |
773 | /* number_of_freeblk is the number of empty blocks which have been | 798 | (n_h) of the balancing analysis. |
774 | acquired for use by the balancing algorithm minus the number of | 799 | |
775 | empty blocks used in the previous levels of the analysis, | 800 | Note that for systems with many processes writing, it would be |
776 | number_of_freeblk = tb->cur_blknum can be non-zero if a schedule occurs | 801 | more layout optimal to calculate the total number needed by all |
777 | after empty blocks are acquired, and the balancing analysis is | 802 | levels and then to run reiserfs_new_blocks to get all of them at once. */ |
778 | then restarted, amount_needed is the number needed by this level | 803 | |
779 | (n_h) of the balancing analysis. | 804 | /* Initiate number_of_freeblk to the amount acquired prior to the restart of |
780 | 805 | the analysis or 0 if not restarted, then subtract the amount needed | |
781 | Note that for systems with many processes writing, it would be | 806 | by all of the levels of the tree below n_h. */ |
782 | more layout optimal to calculate the total number needed by all | 807 | /* blknum includes S[n_h], so we subtract 1 in this calculation */ |
783 | levels and then to run reiserfs_new_blocks to get all of them at once. */ | 808 | for (n_counter = 0, n_number_of_freeblk = p_s_tb->cur_blknum; |
784 | 809 | n_counter < n_h; n_counter++) | |
785 | /* Initiate number_of_freeblk to the amount acquired prior to the restart of | 810 | n_number_of_freeblk -= |
786 | the analysis or 0 if not restarted, then subtract the amount needed | 811 | (p_s_tb->blknum[n_counter]) ? (p_s_tb->blknum[n_counter] - |
787 | by all of the levels of the tree below n_h. */ | 812 | 1) : 0; |
788 | /* blknum includes S[n_h], so we subtract 1 in this calculation */ | 813 | |
789 | for ( n_counter = 0, n_number_of_freeblk = p_s_tb->cur_blknum; n_counter < n_h; n_counter++ ) | 814 | /* Allocate missing empty blocks. */ |
790 | n_number_of_freeblk -= ( p_s_tb->blknum[n_counter] ) ? (p_s_tb->blknum[n_counter] - 1) : 0; | 815 | /* if p_s_Sh == 0 then we are getting a new root */ |
791 | 816 | n_amount_needed = (p_s_Sh) ? (p_s_tb->blknum[n_h] - 1) : 1; | |
792 | /* Allocate missing empty blocks. */ | 817 | /* Amount_needed = the amount that we need more than the amount that we have. */ |
793 | /* if p_s_Sh == 0 then we are getting a new root */ | 818 | if (n_amount_needed > n_number_of_freeblk) |
794 | n_amount_needed = ( p_s_Sh ) ? (p_s_tb->blknum[n_h] - 1) : 1; | 819 | n_amount_needed -= n_number_of_freeblk; |
795 | /* Amount_needed = the amount that we need more than the amount that we have. */ | 820 | else /* If we have enough already then there is nothing to do. */ |
796 | if ( n_amount_needed > n_number_of_freeblk ) | 821 | return CARRY_ON; |
797 | n_amount_needed -= n_number_of_freeblk; | 822 | |
798 | else /* If we have enough already then there is nothing to do. */ | 823 | /* No need to check quota - is not allocated for blocks used for formatted nodes */ |
799 | return CARRY_ON; | 824 | if (reiserfs_new_form_blocknrs(p_s_tb, a_n_blocknrs, |
800 | 825 | n_amount_needed) == NO_DISK_SPACE) | |
801 | /* No need to check quota - is not allocated for blocks used for formatted nodes */ | 826 | return NO_DISK_SPACE; |
802 | if (reiserfs_new_form_blocknrs (p_s_tb, a_n_blocknrs, | 827 | |
803 | n_amount_needed) == NO_DISK_SPACE) | 828 | /* for each blocknumber we just got, get a buffer and stick it on FEB */ |
804 | return NO_DISK_SPACE; | 829 | for (p_n_blocknr = a_n_blocknrs, n_counter = 0; |
805 | 830 | n_counter < n_amount_needed; p_n_blocknr++, n_counter++) { | |
806 | /* for each blocknumber we just got, get a buffer and stick it on FEB */ | 831 | |
807 | for ( p_n_blocknr = a_n_blocknrs, n_counter = 0; n_counter < n_amount_needed; | 832 | RFALSE(!*p_n_blocknr, |
808 | p_n_blocknr++, n_counter++ ) { | 833 | "PAP-8135: reiserfs_new_blocknrs failed when got new blocks"); |
809 | 834 | ||
810 | RFALSE( ! *p_n_blocknr, | 835 | p_s_new_bh = sb_getblk(p_s_sb, *p_n_blocknr); |
811 | "PAP-8135: reiserfs_new_blocknrs failed when got new blocks"); | 836 | RFALSE(buffer_dirty(p_s_new_bh) || |
812 | 837 | buffer_journaled(p_s_new_bh) || | |
813 | p_s_new_bh = sb_getblk(p_s_sb, *p_n_blocknr); | 838 | buffer_journal_dirty(p_s_new_bh), |
814 | RFALSE (buffer_dirty (p_s_new_bh) || | 839 | "PAP-8140: journlaled or dirty buffer %b for the new block", |
815 | buffer_journaled (p_s_new_bh) || | 840 | p_s_new_bh); |
816 | buffer_journal_dirty (p_s_new_bh), | 841 | |
817 | "PAP-8140: journlaled or dirty buffer %b for the new block", | 842 | /* Put empty buffers into the array. */ |
818 | p_s_new_bh); | 843 | RFALSE(p_s_tb->FEB[p_s_tb->cur_blknum], |
819 | 844 | "PAP-8141: busy slot for new buffer"); | |
820 | /* Put empty buffers into the array. */ | 845 | |
821 | RFALSE (p_s_tb->FEB[p_s_tb->cur_blknum], | 846 | set_buffer_journal_new(p_s_new_bh); |
822 | "PAP-8141: busy slot for new buffer"); | 847 | p_s_tb->FEB[p_s_tb->cur_blknum++] = p_s_new_bh; |
823 | 848 | } | |
824 | set_buffer_journal_new (p_s_new_bh); | 849 | |
825 | p_s_tb->FEB[p_s_tb->cur_blknum++] = p_s_new_bh; | 850 | if (n_retval == CARRY_ON && FILESYSTEM_CHANGED_TB(p_s_tb)) |
826 | } | 851 | n_retval = REPEAT_SEARCH; |
827 | |||
828 | if ( n_retval == CARRY_ON && FILESYSTEM_CHANGED_TB (p_s_tb) ) | ||
829 | n_retval = REPEAT_SEARCH ; | ||
830 | |||
831 | return n_retval; | ||
832 | } | ||
833 | 852 | ||
853 | return n_retval; | ||
854 | } | ||
834 | 855 | ||
835 | /* Get free space of the left neighbor, which is stored in the parent | 856 | /* Get free space of the left neighbor, which is stored in the parent |
836 | * node of the left neighbor. */ | 857 | * node of the left neighbor. */ |
837 | static int get_lfree (struct tree_balance * tb, int h) | 858 | static int get_lfree(struct tree_balance *tb, int h) |
838 | { | 859 | { |
839 | struct buffer_head * l, * f; | 860 | struct buffer_head *l, *f; |
840 | int order; | 861 | int order; |
841 | 862 | ||
842 | if ((f = PATH_H_PPARENT (tb->tb_path, h)) == 0 || (l = tb->FL[h]) == 0) | 863 | if ((f = PATH_H_PPARENT(tb->tb_path, h)) == 0 || (l = tb->FL[h]) == 0) |
843 | return 0; | 864 | return 0; |
844 | 865 | ||
845 | if (f == l) | 866 | if (f == l) |
846 | order = PATH_H_B_ITEM_ORDER (tb->tb_path, h) - 1; | 867 | order = PATH_H_B_ITEM_ORDER(tb->tb_path, h) - 1; |
847 | else { | 868 | else { |
848 | order = B_NR_ITEMS (l); | 869 | order = B_NR_ITEMS(l); |
849 | f = l; | 870 | f = l; |
850 | } | 871 | } |
851 | 872 | ||
852 | return (MAX_CHILD_SIZE(f) - dc_size(B_N_CHILD(f,order))); | 873 | return (MAX_CHILD_SIZE(f) - dc_size(B_N_CHILD(f, order))); |
853 | } | 874 | } |
854 | 875 | ||
855 | |||
856 | /* Get free space of the right neighbor, | 876 | /* Get free space of the right neighbor, |
857 | * which is stored in the parent node of the right neighbor. | 877 | * which is stored in the parent node of the right neighbor. |
858 | */ | 878 | */ |
859 | static int get_rfree (struct tree_balance * tb, int h) | 879 | static int get_rfree(struct tree_balance *tb, int h) |
860 | { | 880 | { |
861 | struct buffer_head * r, * f; | 881 | struct buffer_head *r, *f; |
862 | int order; | 882 | int order; |
863 | 883 | ||
864 | if ((f = PATH_H_PPARENT (tb->tb_path, h)) == 0 || (r = tb->FR[h]) == 0) | 884 | if ((f = PATH_H_PPARENT(tb->tb_path, h)) == 0 || (r = tb->FR[h]) == 0) |
865 | return 0; | 885 | return 0; |
866 | 886 | ||
867 | if (f == r) | 887 | if (f == r) |
868 | order = PATH_H_B_ITEM_ORDER (tb->tb_path, h) + 1; | 888 | order = PATH_H_B_ITEM_ORDER(tb->tb_path, h) + 1; |
869 | else { | 889 | else { |
870 | order = 0; | 890 | order = 0; |
871 | f = r; | 891 | f = r; |
872 | } | 892 | } |
873 | 893 | ||
874 | return (MAX_CHILD_SIZE(f) - dc_size( B_N_CHILD(f,order))); | 894 | return (MAX_CHILD_SIZE(f) - dc_size(B_N_CHILD(f, order))); |
875 | 895 | ||
876 | } | 896 | } |
877 | 897 | ||
878 | |||
879 | /* Check whether left neighbor is in memory. */ | 898 | /* Check whether left neighbor is in memory. */ |
880 | static int is_left_neighbor_in_cache( | 899 | static int is_left_neighbor_in_cache(struct tree_balance *p_s_tb, int n_h) |
881 | struct tree_balance * p_s_tb, | 900 | { |
882 | int n_h | 901 | struct buffer_head *p_s_father, *left; |
883 | ) { | 902 | struct super_block *p_s_sb = p_s_tb->tb_sb; |
884 | struct buffer_head * p_s_father, * left; | 903 | b_blocknr_t n_left_neighbor_blocknr; |
885 | struct super_block * p_s_sb = p_s_tb->tb_sb; | 904 | int n_left_neighbor_position; |
886 | b_blocknr_t n_left_neighbor_blocknr; | 905 | |
887 | int n_left_neighbor_position; | 906 | if (!p_s_tb->FL[n_h]) /* Father of the left neighbor does not exist. */ |
888 | 907 | return 0; | |
889 | if ( ! p_s_tb->FL[n_h] ) /* Father of the left neighbor does not exist. */ | 908 | |
890 | return 0; | 909 | /* Calculate father of the node to be balanced. */ |
891 | 910 | p_s_father = PATH_H_PBUFFER(p_s_tb->tb_path, n_h + 1); | |
892 | /* Calculate father of the node to be balanced. */ | 911 | |
893 | p_s_father = PATH_H_PBUFFER(p_s_tb->tb_path, n_h + 1); | 912 | RFALSE(!p_s_father || |
894 | 913 | !B_IS_IN_TREE(p_s_father) || | |
895 | RFALSE( ! p_s_father || | 914 | !B_IS_IN_TREE(p_s_tb->FL[n_h]) || |
896 | ! B_IS_IN_TREE (p_s_father) || | 915 | !buffer_uptodate(p_s_father) || |
897 | ! B_IS_IN_TREE (p_s_tb->FL[n_h]) || | 916 | !buffer_uptodate(p_s_tb->FL[n_h]), |
898 | ! buffer_uptodate (p_s_father) || | 917 | "vs-8165: F[h] (%b) or FL[h] (%b) is invalid", |
899 | ! buffer_uptodate (p_s_tb->FL[n_h]), | 918 | p_s_father, p_s_tb->FL[n_h]); |
900 | "vs-8165: F[h] (%b) or FL[h] (%b) is invalid", | 919 | |
901 | p_s_father, p_s_tb->FL[n_h]); | 920 | /* Get position of the pointer to the left neighbor into the left father. */ |
902 | 921 | n_left_neighbor_position = (p_s_father == p_s_tb->FL[n_h]) ? | |
903 | 922 | p_s_tb->lkey[n_h] : B_NR_ITEMS(p_s_tb->FL[n_h]); | |
904 | /* Get position of the pointer to the left neighbor into the left father. */ | 923 | /* Get left neighbor block number. */ |
905 | n_left_neighbor_position = ( p_s_father == p_s_tb->FL[n_h] ) ? | 924 | n_left_neighbor_blocknr = |
906 | p_s_tb->lkey[n_h] : B_NR_ITEMS (p_s_tb->FL[n_h]); | 925 | B_N_CHILD_NUM(p_s_tb->FL[n_h], n_left_neighbor_position); |
907 | /* Get left neighbor block number. */ | 926 | /* Look for the left neighbor in the cache. */ |
908 | n_left_neighbor_blocknr = B_N_CHILD_NUM(p_s_tb->FL[n_h], n_left_neighbor_position); | 927 | if ((left = sb_find_get_block(p_s_sb, n_left_neighbor_blocknr))) { |
909 | /* Look for the left neighbor in the cache. */ | 928 | |
910 | if ( (left = sb_find_get_block(p_s_sb, n_left_neighbor_blocknr)) ) { | 929 | RFALSE(buffer_uptodate(left) && !B_IS_IN_TREE(left), |
911 | 930 | "vs-8170: left neighbor (%b %z) is not in the tree", | |
912 | RFALSE( buffer_uptodate (left) && ! B_IS_IN_TREE(left), | 931 | left, left); |
913 | "vs-8170: left neighbor (%b %z) is not in the tree", left, left); | 932 | put_bh(left); |
914 | put_bh(left) ; | 933 | return 1; |
915 | return 1; | 934 | } |
916 | } | ||
917 | |||
918 | return 0; | ||
919 | } | ||
920 | 935 | ||
936 | return 0; | ||
937 | } | ||
921 | 938 | ||
922 | #define LEFT_PARENTS 'l' | 939 | #define LEFT_PARENTS 'l' |
923 | #define RIGHT_PARENTS 'r' | 940 | #define RIGHT_PARENTS 'r' |
924 | 941 | ||
925 | 942 | static void decrement_key(struct cpu_key *p_s_key) | |
926 | static void decrement_key (struct cpu_key * p_s_key) | ||
927 | { | 943 | { |
928 | // call item specific function for this key | 944 | // call item specific function for this key |
929 | item_ops[cpu_key_k_type (p_s_key)]->decrement_key (p_s_key); | 945 | item_ops[cpu_key_k_type(p_s_key)]->decrement_key(p_s_key); |
930 | } | 946 | } |
931 | 947 | ||
932 | |||
933 | |||
934 | |||
935 | /* Calculate far left/right parent of the left/right neighbor of the current node, that | 948 | /* Calculate far left/right parent of the left/right neighbor of the current node, that |
936 | * is calculate the left/right (FL[h]/FR[h]) neighbor of the parent F[h]. | 949 | * is calculate the left/right (FL[h]/FR[h]) neighbor of the parent F[h]. |
937 | * Calculate left/right common parent of the current node and L[h]/R[h]. | 950 | * Calculate left/right common parent of the current node and L[h]/R[h]. |
@@ -940,111 +953,121 @@ static void decrement_key (struct cpu_key * p_s_key) | |||
940 | SCHEDULE_OCCURRED - schedule occurred while the function worked; | 953 | SCHEDULE_OCCURRED - schedule occurred while the function worked; |
941 | * CARRY_ON - schedule didn't occur while the function worked; | 954 | * CARRY_ON - schedule didn't occur while the function worked; |
942 | */ | 955 | */ |
943 | static int get_far_parent (struct tree_balance * p_s_tb, | 956 | static int get_far_parent(struct tree_balance *p_s_tb, |
944 | int n_h, | 957 | int n_h, |
945 | struct buffer_head ** pp_s_father, | 958 | struct buffer_head **pp_s_father, |
946 | struct buffer_head ** pp_s_com_father, | 959 | struct buffer_head **pp_s_com_father, char c_lr_par) |
947 | char c_lr_par) | ||
948 | { | 960 | { |
949 | struct buffer_head * p_s_parent; | 961 | struct buffer_head *p_s_parent; |
950 | INITIALIZE_PATH (s_path_to_neighbor_father); | 962 | INITIALIZE_PATH(s_path_to_neighbor_father); |
951 | struct path * p_s_path = p_s_tb->tb_path; | 963 | struct path *p_s_path = p_s_tb->tb_path; |
952 | struct cpu_key s_lr_father_key; | 964 | struct cpu_key s_lr_father_key; |
953 | int n_counter, | 965 | int n_counter, |
954 | n_position = INT_MAX, | 966 | n_position = INT_MAX, |
955 | n_first_last_position = 0, | 967 | n_first_last_position = 0, |
956 | n_path_offset = PATH_H_PATH_OFFSET(p_s_path, n_h); | 968 | n_path_offset = PATH_H_PATH_OFFSET(p_s_path, n_h); |
957 | 969 | ||
958 | /* Starting from F[n_h] go upwards in the tree, and look for the common | 970 | /* Starting from F[n_h] go upwards in the tree, and look for the common |
959 | ancestor of F[n_h], and its neighbor l/r, that should be obtained. */ | 971 | ancestor of F[n_h], and its neighbor l/r, that should be obtained. */ |
960 | 972 | ||
961 | n_counter = n_path_offset; | 973 | n_counter = n_path_offset; |
962 | 974 | ||
963 | RFALSE( n_counter < FIRST_PATH_ELEMENT_OFFSET, | 975 | RFALSE(n_counter < FIRST_PATH_ELEMENT_OFFSET, |
964 | "PAP-8180: invalid path length"); | 976 | "PAP-8180: invalid path length"); |
965 | 977 | ||
966 | 978 | for (; n_counter > FIRST_PATH_ELEMENT_OFFSET; n_counter--) { | |
967 | for ( ; n_counter > FIRST_PATH_ELEMENT_OFFSET; n_counter-- ) { | 979 | /* Check whether parent of the current buffer in the path is really parent in the tree. */ |
968 | /* Check whether parent of the current buffer in the path is really parent in the tree. */ | 980 | if (!B_IS_IN_TREE |
969 | if ( ! B_IS_IN_TREE(p_s_parent = PATH_OFFSET_PBUFFER(p_s_path, n_counter - 1)) ) | 981 | (p_s_parent = PATH_OFFSET_PBUFFER(p_s_path, n_counter - 1))) |
970 | return REPEAT_SEARCH; | 982 | return REPEAT_SEARCH; |
971 | /* Check whether position in the parent is correct. */ | 983 | /* Check whether position in the parent is correct. */ |
972 | if ( (n_position = PATH_OFFSET_POSITION(p_s_path, n_counter - 1)) > B_NR_ITEMS(p_s_parent) ) | 984 | if ((n_position = |
973 | return REPEAT_SEARCH; | 985 | PATH_OFFSET_POSITION(p_s_path, |
974 | /* Check whether parent at the path really points to the child. */ | 986 | n_counter - 1)) > |
975 | if ( B_N_CHILD_NUM(p_s_parent, n_position) != | 987 | B_NR_ITEMS(p_s_parent)) |
976 | PATH_OFFSET_PBUFFER(p_s_path, n_counter)->b_blocknr ) | 988 | return REPEAT_SEARCH; |
977 | return REPEAT_SEARCH; | 989 | /* Check whether parent at the path really points to the child. */ |
978 | /* Return delimiting key if position in the parent is not equal to first/last one. */ | 990 | if (B_N_CHILD_NUM(p_s_parent, n_position) != |
979 | if ( c_lr_par == RIGHT_PARENTS ) | 991 | PATH_OFFSET_PBUFFER(p_s_path, n_counter)->b_blocknr) |
980 | n_first_last_position = B_NR_ITEMS (p_s_parent); | 992 | return REPEAT_SEARCH; |
981 | if ( n_position != n_first_last_position ) { | 993 | /* Return delimiting key if position in the parent is not equal to first/last one. */ |
982 | *pp_s_com_father = p_s_parent; | 994 | if (c_lr_par == RIGHT_PARENTS) |
983 | get_bh(*pp_s_com_father) ; | 995 | n_first_last_position = B_NR_ITEMS(p_s_parent); |
984 | /*(*pp_s_com_father = p_s_parent)->b_count++;*/ | 996 | if (n_position != n_first_last_position) { |
985 | break; | 997 | *pp_s_com_father = p_s_parent; |
998 | get_bh(*pp_s_com_father); | ||
999 | /*(*pp_s_com_father = p_s_parent)->b_count++; */ | ||
1000 | break; | ||
1001 | } | ||
986 | } | 1002 | } |
987 | } | 1003 | |
988 | 1004 | /* if we are in the root of the tree, then there is no common father */ | |
989 | /* if we are in the root of the tree, then there is no common father */ | 1005 | if (n_counter == FIRST_PATH_ELEMENT_OFFSET) { |
990 | if ( n_counter == FIRST_PATH_ELEMENT_OFFSET ) { | 1006 | /* Check whether first buffer in the path is the root of the tree. */ |
991 | /* Check whether first buffer in the path is the root of the tree. */ | 1007 | if (PATH_OFFSET_PBUFFER |
992 | if ( PATH_OFFSET_PBUFFER(p_s_tb->tb_path, FIRST_PATH_ELEMENT_OFFSET)->b_blocknr == | 1008 | (p_s_tb->tb_path, |
993 | SB_ROOT_BLOCK (p_s_tb->tb_sb) ) { | 1009 | FIRST_PATH_ELEMENT_OFFSET)->b_blocknr == |
994 | *pp_s_father = *pp_s_com_father = NULL; | 1010 | SB_ROOT_BLOCK(p_s_tb->tb_sb)) { |
995 | return CARRY_ON; | 1011 | *pp_s_father = *pp_s_com_father = NULL; |
1012 | return CARRY_ON; | ||
1013 | } | ||
1014 | return REPEAT_SEARCH; | ||
996 | } | 1015 | } |
997 | return REPEAT_SEARCH; | ||
998 | } | ||
999 | 1016 | ||
1000 | RFALSE( B_LEVEL (*pp_s_com_father) <= DISK_LEAF_NODE_LEVEL, | 1017 | RFALSE(B_LEVEL(*pp_s_com_father) <= DISK_LEAF_NODE_LEVEL, |
1001 | "PAP-8185: (%b %z) level too small", | 1018 | "PAP-8185: (%b %z) level too small", |
1002 | *pp_s_com_father, *pp_s_com_father); | 1019 | *pp_s_com_father, *pp_s_com_father); |
1003 | 1020 | ||
1004 | /* Check whether the common parent is locked. */ | 1021 | /* Check whether the common parent is locked. */ |
1005 | 1022 | ||
1006 | if ( buffer_locked (*pp_s_com_father) ) { | 1023 | if (buffer_locked(*pp_s_com_father)) { |
1007 | __wait_on_buffer(*pp_s_com_father); | 1024 | __wait_on_buffer(*pp_s_com_father); |
1008 | if ( FILESYSTEM_CHANGED_TB (p_s_tb) ) { | 1025 | if (FILESYSTEM_CHANGED_TB(p_s_tb)) { |
1009 | decrement_bcount(*pp_s_com_father); | 1026 | decrement_bcount(*pp_s_com_father); |
1010 | return REPEAT_SEARCH; | 1027 | return REPEAT_SEARCH; |
1028 | } | ||
1011 | } | 1029 | } |
1012 | } | ||
1013 | |||
1014 | /* So, we got common parent of the current node and its left/right neighbor. | ||
1015 | Now we are geting the parent of the left/right neighbor. */ | ||
1016 | 1030 | ||
1017 | /* Form key to get parent of the left/right neighbor. */ | 1031 | /* So, we got common parent of the current node and its left/right neighbor. |
1018 | le_key2cpu_key (&s_lr_father_key, B_N_PDELIM_KEY(*pp_s_com_father, ( c_lr_par == LEFT_PARENTS ) ? | 1032 | Now we are geting the parent of the left/right neighbor. */ |
1019 | (p_s_tb->lkey[n_h - 1] = n_position - 1) : (p_s_tb->rkey[n_h - 1] = n_position))); | ||
1020 | 1033 | ||
1034 | /* Form key to get parent of the left/right neighbor. */ | ||
1035 | le_key2cpu_key(&s_lr_father_key, | ||
1036 | B_N_PDELIM_KEY(*pp_s_com_father, | ||
1037 | (c_lr_par == | ||
1038 | LEFT_PARENTS) ? (p_s_tb->lkey[n_h - 1] = | ||
1039 | n_position - | ||
1040 | 1) : (p_s_tb->rkey[n_h - | ||
1041 | 1] = | ||
1042 | n_position))); | ||
1021 | 1043 | ||
1022 | if ( c_lr_par == LEFT_PARENTS ) | 1044 | if (c_lr_par == LEFT_PARENTS) |
1023 | decrement_key(&s_lr_father_key); | 1045 | decrement_key(&s_lr_father_key); |
1024 | 1046 | ||
1025 | if (search_by_key(p_s_tb->tb_sb, &s_lr_father_key, &s_path_to_neighbor_father, n_h + 1) == IO_ERROR) | 1047 | if (search_by_key |
1026 | // path is released | 1048 | (p_s_tb->tb_sb, &s_lr_father_key, &s_path_to_neighbor_father, |
1027 | return IO_ERROR; | 1049 | n_h + 1) == IO_ERROR) |
1050 | // path is released | ||
1051 | return IO_ERROR; | ||
1028 | 1052 | ||
1029 | if ( FILESYSTEM_CHANGED_TB (p_s_tb) ) { | 1053 | if (FILESYSTEM_CHANGED_TB(p_s_tb)) { |
1030 | decrement_counters_in_path(&s_path_to_neighbor_father); | 1054 | decrement_counters_in_path(&s_path_to_neighbor_father); |
1031 | decrement_bcount(*pp_s_com_father); | 1055 | decrement_bcount(*pp_s_com_father); |
1032 | return REPEAT_SEARCH; | 1056 | return REPEAT_SEARCH; |
1033 | } | 1057 | } |
1034 | 1058 | ||
1035 | *pp_s_father = PATH_PLAST_BUFFER(&s_path_to_neighbor_father); | 1059 | *pp_s_father = PATH_PLAST_BUFFER(&s_path_to_neighbor_father); |
1036 | 1060 | ||
1037 | RFALSE( B_LEVEL (*pp_s_father) != n_h + 1, | 1061 | RFALSE(B_LEVEL(*pp_s_father) != n_h + 1, |
1038 | "PAP-8190: (%b %z) level too small", *pp_s_father, *pp_s_father); | 1062 | "PAP-8190: (%b %z) level too small", *pp_s_father, *pp_s_father); |
1039 | RFALSE( s_path_to_neighbor_father.path_length < FIRST_PATH_ELEMENT_OFFSET, | 1063 | RFALSE(s_path_to_neighbor_father.path_length < |
1040 | "PAP-8192: path length is too small"); | 1064 | FIRST_PATH_ELEMENT_OFFSET, "PAP-8192: path length is too small"); |
1041 | 1065 | ||
1042 | s_path_to_neighbor_father.path_length--; | 1066 | s_path_to_neighbor_father.path_length--; |
1043 | decrement_counters_in_path(&s_path_to_neighbor_father); | 1067 | decrement_counters_in_path(&s_path_to_neighbor_father); |
1044 | return CARRY_ON; | 1068 | return CARRY_ON; |
1045 | } | 1069 | } |
1046 | 1070 | ||
1047 | |||
1048 | /* Get parents of neighbors of node in the path(S[n_path_offset]) and common parents of | 1071 | /* Get parents of neighbors of node in the path(S[n_path_offset]) and common parents of |
1049 | * S[n_path_offset] and L[n_path_offset]/R[n_path_offset]: F[n_path_offset], FL[n_path_offset], | 1072 | * S[n_path_offset] and L[n_path_offset]/R[n_path_offset]: F[n_path_offset], FL[n_path_offset], |
1050 | * FR[n_path_offset], CFL[n_path_offset], CFR[n_path_offset]. | 1073 | * FR[n_path_offset], CFL[n_path_offset], CFR[n_path_offset]. |
@@ -1052,122 +1075,127 @@ static int get_far_parent (struct tree_balance * p_s_tb, | |||
1052 | * Returns: SCHEDULE_OCCURRED - schedule occurred while the function worked; | 1075 | * Returns: SCHEDULE_OCCURRED - schedule occurred while the function worked; |
1053 | * CARRY_ON - schedule didn't occur while the function worked; | 1076 | * CARRY_ON - schedule didn't occur while the function worked; |
1054 | */ | 1077 | */ |
1055 | static int get_parents (struct tree_balance * p_s_tb, int n_h) | 1078 | static int get_parents(struct tree_balance *p_s_tb, int n_h) |
1056 | { | 1079 | { |
1057 | struct path * p_s_path = p_s_tb->tb_path; | 1080 | struct path *p_s_path = p_s_tb->tb_path; |
1058 | int n_position, | 1081 | int n_position, |
1059 | n_ret_value, | 1082 | n_ret_value, |
1060 | n_path_offset = PATH_H_PATH_OFFSET(p_s_tb->tb_path, n_h); | 1083 | n_path_offset = PATH_H_PATH_OFFSET(p_s_tb->tb_path, n_h); |
1061 | struct buffer_head * p_s_curf, | 1084 | struct buffer_head *p_s_curf, *p_s_curcf; |
1062 | * p_s_curcf; | 1085 | |
1063 | 1086 | /* Current node is the root of the tree or will be root of the tree */ | |
1064 | /* Current node is the root of the tree or will be root of the tree */ | 1087 | if (n_path_offset <= FIRST_PATH_ELEMENT_OFFSET) { |
1065 | if ( n_path_offset <= FIRST_PATH_ELEMENT_OFFSET ) { | 1088 | /* The root can not have parents. |
1066 | /* The root can not have parents. | 1089 | Release nodes which previously were obtained as parents of the current node neighbors. */ |
1067 | Release nodes which previously were obtained as parents of the current node neighbors. */ | 1090 | decrement_bcount(p_s_tb->FL[n_h]); |
1091 | decrement_bcount(p_s_tb->CFL[n_h]); | ||
1092 | decrement_bcount(p_s_tb->FR[n_h]); | ||
1093 | decrement_bcount(p_s_tb->CFR[n_h]); | ||
1094 | p_s_tb->FL[n_h] = p_s_tb->CFL[n_h] = p_s_tb->FR[n_h] = | ||
1095 | p_s_tb->CFR[n_h] = NULL; | ||
1096 | return CARRY_ON; | ||
1097 | } | ||
1098 | |||
1099 | /* Get parent FL[n_path_offset] of L[n_path_offset]. */ | ||
1100 | if ((n_position = PATH_OFFSET_POSITION(p_s_path, n_path_offset - 1))) { | ||
1101 | /* Current node is not the first child of its parent. */ | ||
1102 | /*(p_s_curf = p_s_curcf = PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1))->b_count += 2; */ | ||
1103 | p_s_curf = p_s_curcf = | ||
1104 | PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1); | ||
1105 | get_bh(p_s_curf); | ||
1106 | get_bh(p_s_curf); | ||
1107 | p_s_tb->lkey[n_h] = n_position - 1; | ||
1108 | } else { | ||
1109 | /* Calculate current parent of L[n_path_offset], which is the left neighbor of the current node. | ||
1110 | Calculate current common parent of L[n_path_offset] and the current node. Note that | ||
1111 | CFL[n_path_offset] not equal FL[n_path_offset] and CFL[n_path_offset] not equal F[n_path_offset]. | ||
1112 | Calculate lkey[n_path_offset]. */ | ||
1113 | if ((n_ret_value = get_far_parent(p_s_tb, n_h + 1, &p_s_curf, | ||
1114 | &p_s_curcf, | ||
1115 | LEFT_PARENTS)) != CARRY_ON) | ||
1116 | return n_ret_value; | ||
1117 | } | ||
1118 | |||
1068 | decrement_bcount(p_s_tb->FL[n_h]); | 1119 | decrement_bcount(p_s_tb->FL[n_h]); |
1120 | p_s_tb->FL[n_h] = p_s_curf; /* New initialization of FL[n_h]. */ | ||
1069 | decrement_bcount(p_s_tb->CFL[n_h]); | 1121 | decrement_bcount(p_s_tb->CFL[n_h]); |
1070 | decrement_bcount(p_s_tb->FR[n_h]); | 1122 | p_s_tb->CFL[n_h] = p_s_curcf; /* New initialization of CFL[n_h]. */ |
1071 | decrement_bcount(p_s_tb->CFR[n_h]); | 1123 | |
1072 | p_s_tb->FL[n_h] = p_s_tb->CFL[n_h] = p_s_tb->FR[n_h] = p_s_tb->CFR[n_h] = NULL; | 1124 | RFALSE((p_s_curf && !B_IS_IN_TREE(p_s_curf)) || |
1073 | return CARRY_ON; | 1125 | (p_s_curcf && !B_IS_IN_TREE(p_s_curcf)), |
1074 | } | 1126 | "PAP-8195: FL (%b) or CFL (%b) is invalid", p_s_curf, p_s_curcf); |
1075 | |||
1076 | /* Get parent FL[n_path_offset] of L[n_path_offset]. */ | ||
1077 | if ( (n_position = PATH_OFFSET_POSITION(p_s_path, n_path_offset - 1)) ) { | ||
1078 | /* Current node is not the first child of its parent. */ | ||
1079 | /*(p_s_curf = p_s_curcf = PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1))->b_count += 2;*/ | ||
1080 | p_s_curf = p_s_curcf = PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1); | ||
1081 | get_bh(p_s_curf) ; | ||
1082 | get_bh(p_s_curf) ; | ||
1083 | p_s_tb->lkey[n_h] = n_position - 1; | ||
1084 | } | ||
1085 | else { | ||
1086 | /* Calculate current parent of L[n_path_offset], which is the left neighbor of the current node. | ||
1087 | Calculate current common parent of L[n_path_offset] and the current node. Note that | ||
1088 | CFL[n_path_offset] not equal FL[n_path_offset] and CFL[n_path_offset] not equal F[n_path_offset]. | ||
1089 | Calculate lkey[n_path_offset]. */ | ||
1090 | if ( (n_ret_value = get_far_parent(p_s_tb, n_h + 1, &p_s_curf, | ||
1091 | &p_s_curcf, LEFT_PARENTS)) != CARRY_ON ) | ||
1092 | return n_ret_value; | ||
1093 | } | ||
1094 | |||
1095 | decrement_bcount(p_s_tb->FL[n_h]); | ||
1096 | p_s_tb->FL[n_h] = p_s_curf; /* New initialization of FL[n_h]. */ | ||
1097 | decrement_bcount(p_s_tb->CFL[n_h]); | ||
1098 | p_s_tb->CFL[n_h] = p_s_curcf; /* New initialization of CFL[n_h]. */ | ||
1099 | |||
1100 | RFALSE( (p_s_curf && !B_IS_IN_TREE (p_s_curf)) || | ||
1101 | (p_s_curcf && !B_IS_IN_TREE (p_s_curcf)), | ||
1102 | "PAP-8195: FL (%b) or CFL (%b) is invalid", p_s_curf, p_s_curcf); | ||
1103 | 1127 | ||
1104 | /* Get parent FR[n_h] of R[n_h]. */ | 1128 | /* Get parent FR[n_h] of R[n_h]. */ |
1105 | 1129 | ||
1106 | /* Current node is the last child of F[n_h]. FR[n_h] != F[n_h]. */ | 1130 | /* Current node is the last child of F[n_h]. FR[n_h] != F[n_h]. */ |
1107 | if ( n_position == B_NR_ITEMS (PATH_H_PBUFFER(p_s_path, n_h + 1)) ) { | 1131 | if (n_position == B_NR_ITEMS(PATH_H_PBUFFER(p_s_path, n_h + 1))) { |
1108 | /* Calculate current parent of R[n_h], which is the right neighbor of F[n_h]. | 1132 | /* Calculate current parent of R[n_h], which is the right neighbor of F[n_h]. |
1109 | Calculate current common parent of R[n_h] and current node. Note that CFR[n_h] | 1133 | Calculate current common parent of R[n_h] and current node. Note that CFR[n_h] |
1110 | not equal FR[n_path_offset] and CFR[n_h] not equal F[n_h]. */ | 1134 | not equal FR[n_path_offset] and CFR[n_h] not equal F[n_h]. */ |
1111 | if ( (n_ret_value = get_far_parent(p_s_tb, n_h + 1, &p_s_curf, &p_s_curcf, RIGHT_PARENTS)) != CARRY_ON ) | 1135 | if ((n_ret_value = |
1112 | return n_ret_value; | 1136 | get_far_parent(p_s_tb, n_h + 1, &p_s_curf, &p_s_curcf, |
1113 | } | 1137 | RIGHT_PARENTS)) != CARRY_ON) |
1114 | else { | 1138 | return n_ret_value; |
1139 | } else { | ||
1115 | /* Current node is not the last child of its parent F[n_h]. */ | 1140 | /* Current node is not the last child of its parent F[n_h]. */ |
1116 | /*(p_s_curf = p_s_curcf = PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1))->b_count += 2;*/ | 1141 | /*(p_s_curf = p_s_curcf = PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1))->b_count += 2; */ |
1117 | p_s_curf = p_s_curcf = PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1); | 1142 | p_s_curf = p_s_curcf = |
1118 | get_bh(p_s_curf) ; | 1143 | PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1); |
1119 | get_bh(p_s_curf) ; | 1144 | get_bh(p_s_curf); |
1120 | p_s_tb->rkey[n_h] = n_position; | 1145 | get_bh(p_s_curf); |
1121 | } | 1146 | p_s_tb->rkey[n_h] = n_position; |
1122 | 1147 | } | |
1123 | decrement_bcount(p_s_tb->FR[n_h]); | ||
1124 | p_s_tb->FR[n_h] = p_s_curf; /* New initialization of FR[n_path_offset]. */ | ||
1125 | |||
1126 | decrement_bcount(p_s_tb->CFR[n_h]); | ||
1127 | p_s_tb->CFR[n_h] = p_s_curcf; /* New initialization of CFR[n_path_offset]. */ | ||
1128 | |||
1129 | RFALSE( (p_s_curf && !B_IS_IN_TREE (p_s_curf)) || | ||
1130 | (p_s_curcf && !B_IS_IN_TREE (p_s_curcf)), | ||
1131 | "PAP-8205: FR (%b) or CFR (%b) is invalid", p_s_curf, p_s_curcf); | ||
1132 | |||
1133 | return CARRY_ON; | ||
1134 | } | ||
1135 | 1148 | ||
1149 | decrement_bcount(p_s_tb->FR[n_h]); | ||
1150 | p_s_tb->FR[n_h] = p_s_curf; /* New initialization of FR[n_path_offset]. */ | ||
1151 | |||
1152 | decrement_bcount(p_s_tb->CFR[n_h]); | ||
1153 | p_s_tb->CFR[n_h] = p_s_curcf; /* New initialization of CFR[n_path_offset]. */ | ||
1154 | |||
1155 | RFALSE((p_s_curf && !B_IS_IN_TREE(p_s_curf)) || | ||
1156 | (p_s_curcf && !B_IS_IN_TREE(p_s_curcf)), | ||
1157 | "PAP-8205: FR (%b) or CFR (%b) is invalid", p_s_curf, p_s_curcf); | ||
1158 | |||
1159 | return CARRY_ON; | ||
1160 | } | ||
1136 | 1161 | ||
1137 | /* it is possible to remove node as result of shiftings to | 1162 | /* it is possible to remove node as result of shiftings to |
1138 | neighbors even when we insert or paste item. */ | 1163 | neighbors even when we insert or paste item. */ |
1139 | static inline int can_node_be_removed (int mode, int lfree, int sfree, int rfree, struct tree_balance * tb, int h) | 1164 | static inline int can_node_be_removed(int mode, int lfree, int sfree, int rfree, |
1165 | struct tree_balance *tb, int h) | ||
1140 | { | 1166 | { |
1141 | struct buffer_head * Sh = PATH_H_PBUFFER (tb->tb_path, h); | 1167 | struct buffer_head *Sh = PATH_H_PBUFFER(tb->tb_path, h); |
1142 | int levbytes = tb->insert_size[h]; | 1168 | int levbytes = tb->insert_size[h]; |
1143 | struct item_head * ih; | 1169 | struct item_head *ih; |
1144 | struct reiserfs_key * r_key = NULL; | 1170 | struct reiserfs_key *r_key = NULL; |
1145 | 1171 | ||
1146 | ih = B_N_PITEM_HEAD (Sh, 0); | 1172 | ih = B_N_PITEM_HEAD(Sh, 0); |
1147 | if ( tb->CFR[h] ) | 1173 | if (tb->CFR[h]) |
1148 | r_key = B_N_PDELIM_KEY(tb->CFR[h],tb->rkey[h]); | 1174 | r_key = B_N_PDELIM_KEY(tb->CFR[h], tb->rkey[h]); |
1149 | 1175 | ||
1150 | if ( | 1176 | if (lfree + rfree + sfree < MAX_CHILD_SIZE(Sh) + levbytes |
1151 | lfree + rfree + sfree < MAX_CHILD_SIZE(Sh) + levbytes | 1177 | /* shifting may merge items which might save space */ |
1152 | /* shifting may merge items which might save space */ | 1178 | - |
1153 | - (( ! h && op_is_left_mergeable (&(ih->ih_key), Sh->b_size) ) ? IH_SIZE : 0) | 1179 | ((!h |
1154 | - (( ! h && r_key && op_is_left_mergeable (r_key, Sh->b_size) ) ? IH_SIZE : 0) | 1180 | && op_is_left_mergeable(&(ih->ih_key), Sh->b_size)) ? IH_SIZE : 0) |
1155 | + (( h ) ? KEY_SIZE : 0)) | 1181 | - |
1156 | { | 1182 | ((!h && r_key |
1157 | /* node can not be removed */ | 1183 | && op_is_left_mergeable(r_key, Sh->b_size)) ? IH_SIZE : 0) |
1158 | if (sfree >= levbytes ) { /* new item fits into node S[h] without any shifting */ | 1184 | + ((h) ? KEY_SIZE : 0)) { |
1159 | if ( ! h ) | 1185 | /* node can not be removed */ |
1160 | tb->s0num = B_NR_ITEMS(Sh) + ((mode == M_INSERT ) ? 1 : 0); | 1186 | if (sfree >= levbytes) { /* new item fits into node S[h] without any shifting */ |
1161 | set_parameters (tb, h, 0, 0, 1, NULL, -1, -1); | 1187 | if (!h) |
1162 | return NO_BALANCING_NEEDED; | 1188 | tb->s0num = |
1189 | B_NR_ITEMS(Sh) + | ||
1190 | ((mode == M_INSERT) ? 1 : 0); | ||
1191 | set_parameters(tb, h, 0, 0, 1, NULL, -1, -1); | ||
1192 | return NO_BALANCING_NEEDED; | ||
1193 | } | ||
1163 | } | 1194 | } |
1164 | } | 1195 | PROC_INFO_INC(tb->tb_sb, can_node_be_removed[h]); |
1165 | PROC_INFO_INC( tb -> tb_sb, can_node_be_removed[ h ] ); | 1196 | return !NO_BALANCING_NEEDED; |
1166 | return !NO_BALANCING_NEEDED; | ||
1167 | } | 1197 | } |
1168 | 1198 | ||
1169 | |||
1170 | |||
1171 | /* Check whether current node S[h] is balanced when increasing its size by | 1199 | /* Check whether current node S[h] is balanced when increasing its size by |
1172 | * Inserting or Pasting. | 1200 | * Inserting or Pasting. |
1173 | * Calculate parameters for balancing for current level h. | 1201 | * Calculate parameters for balancing for current level h. |
@@ -1182,154 +1210,157 @@ static inline int can_node_be_removed (int mode, int lfree, int sfree, int rfree | |||
1182 | * -2 - no disk space. | 1210 | * -2 - no disk space. |
1183 | */ | 1211 | */ |
1184 | /* ip means Inserting or Pasting */ | 1212 | /* ip means Inserting or Pasting */ |
1185 | static int ip_check_balance (struct tree_balance * tb, int h) | 1213 | static int ip_check_balance(struct tree_balance *tb, int h) |
1186 | { | 1214 | { |
1187 | struct virtual_node * vn = tb->tb_vn; | 1215 | struct virtual_node *vn = tb->tb_vn; |
1188 | int levbytes, /* Number of bytes that must be inserted into (value | 1216 | int levbytes, /* Number of bytes that must be inserted into (value |
1189 | is negative if bytes are deleted) buffer which | 1217 | is negative if bytes are deleted) buffer which |
1190 | contains node being balanced. The mnemonic is | 1218 | contains node being balanced. The mnemonic is |
1191 | that the attempted change in node space used level | 1219 | that the attempted change in node space used level |
1192 | is levbytes bytes. */ | 1220 | is levbytes bytes. */ |
1193 | n_ret_value; | 1221 | n_ret_value; |
1194 | 1222 | ||
1195 | int lfree, sfree, rfree /* free space in L, S and R */; | 1223 | int lfree, sfree, rfree /* free space in L, S and R */ ; |
1196 | 1224 | ||
1197 | /* nver is short for number of vertixes, and lnver is the number if | 1225 | /* nver is short for number of vertixes, and lnver is the number if |
1198 | we shift to the left, rnver is the number if we shift to the | 1226 | we shift to the left, rnver is the number if we shift to the |
1199 | right, and lrnver is the number if we shift in both directions. | 1227 | right, and lrnver is the number if we shift in both directions. |
1200 | The goal is to minimize first the number of vertixes, and second, | 1228 | The goal is to minimize first the number of vertixes, and second, |
1201 | the number of vertixes whose contents are changed by shifting, | 1229 | the number of vertixes whose contents are changed by shifting, |
1202 | and third the number of uncached vertixes whose contents are | 1230 | and third the number of uncached vertixes whose contents are |
1203 | changed by shifting and must be read from disk. */ | 1231 | changed by shifting and must be read from disk. */ |
1204 | int nver, lnver, rnver, lrnver; | 1232 | int nver, lnver, rnver, lrnver; |
1205 | 1233 | ||
1206 | /* used at leaf level only, S0 = S[0] is the node being balanced, | 1234 | /* used at leaf level only, S0 = S[0] is the node being balanced, |
1207 | sInum [ I = 0,1,2 ] is the number of items that will | 1235 | sInum [ I = 0,1,2 ] is the number of items that will |
1208 | remain in node SI after balancing. S1 and S2 are new | 1236 | remain in node SI after balancing. S1 and S2 are new |
1209 | nodes that might be created. */ | 1237 | nodes that might be created. */ |
1210 | 1238 | ||
1211 | /* we perform 8 calls to get_num_ver(). For each call we calculate five parameters. | 1239 | /* we perform 8 calls to get_num_ver(). For each call we calculate five parameters. |
1212 | where 4th parameter is s1bytes and 5th - s2bytes | 1240 | where 4th parameter is s1bytes and 5th - s2bytes |
1213 | */ | 1241 | */ |
1214 | short snum012[40] = {0,}; /* s0num, s1num, s2num for 8 cases | 1242 | short snum012[40] = { 0, }; /* s0num, s1num, s2num for 8 cases |
1215 | 0,1 - do not shift and do not shift but bottle | 1243 | 0,1 - do not shift and do not shift but bottle |
1216 | 2 - shift only whole item to left | 1244 | 2 - shift only whole item to left |
1217 | 3 - shift to left and bottle as much as possible | 1245 | 3 - shift to left and bottle as much as possible |
1218 | 4,5 - shift to right (whole items and as much as possible | 1246 | 4,5 - shift to right (whole items and as much as possible |
1219 | 6,7 - shift to both directions (whole items and as much as possible) | 1247 | 6,7 - shift to both directions (whole items and as much as possible) |
1220 | */ | 1248 | */ |
1221 | 1249 | ||
1222 | /* Sh is the node whose balance is currently being checked */ | 1250 | /* Sh is the node whose balance is currently being checked */ |
1223 | struct buffer_head * Sh; | 1251 | struct buffer_head *Sh; |
1224 | 1252 | ||
1225 | Sh = PATH_H_PBUFFER (tb->tb_path, h); | 1253 | Sh = PATH_H_PBUFFER(tb->tb_path, h); |
1226 | levbytes = tb->insert_size[h]; | 1254 | levbytes = tb->insert_size[h]; |
1227 | 1255 | ||
1228 | /* Calculate balance parameters for creating new root. */ | 1256 | /* Calculate balance parameters for creating new root. */ |
1229 | if ( ! Sh ) { | 1257 | if (!Sh) { |
1230 | if ( ! h ) | 1258 | if (!h) |
1231 | reiserfs_panic (tb->tb_sb, "vs-8210: ip_check_balance: S[0] can not be 0"); | 1259 | reiserfs_panic(tb->tb_sb, |
1232 | switch ( n_ret_value = get_empty_nodes (tb, h) ) { | 1260 | "vs-8210: ip_check_balance: S[0] can not be 0"); |
1233 | case CARRY_ON: | 1261 | switch (n_ret_value = get_empty_nodes(tb, h)) { |
1234 | set_parameters (tb, h, 0, 0, 1, NULL, -1, -1); | 1262 | case CARRY_ON: |
1235 | return NO_BALANCING_NEEDED; /* no balancing for higher levels needed */ | 1263 | set_parameters(tb, h, 0, 0, 1, NULL, -1, -1); |
1236 | 1264 | return NO_BALANCING_NEEDED; /* no balancing for higher levels needed */ | |
1237 | case NO_DISK_SPACE: | 1265 | |
1238 | case REPEAT_SEARCH: | 1266 | case NO_DISK_SPACE: |
1239 | return n_ret_value; | 1267 | case REPEAT_SEARCH: |
1240 | default: | 1268 | return n_ret_value; |
1241 | reiserfs_panic(tb->tb_sb, "vs-8215: ip_check_balance: incorrect return value of get_empty_nodes"); | 1269 | default: |
1270 | reiserfs_panic(tb->tb_sb, | ||
1271 | "vs-8215: ip_check_balance: incorrect return value of get_empty_nodes"); | ||
1272 | } | ||
1242 | } | 1273 | } |
1243 | } | ||
1244 | |||
1245 | if ( (n_ret_value = get_parents (tb, h)) != CARRY_ON ) /* get parents of S[h] neighbors. */ | ||
1246 | return n_ret_value; | ||
1247 | |||
1248 | sfree = B_FREE_SPACE (Sh); | ||
1249 | |||
1250 | /* get free space of neighbors */ | ||
1251 | rfree = get_rfree (tb, h); | ||
1252 | lfree = get_lfree (tb, h); | ||
1253 | |||
1254 | if (can_node_be_removed (vn->vn_mode, lfree, sfree, rfree, tb, h) == NO_BALANCING_NEEDED) | ||
1255 | /* and new item fits into node S[h] without any shifting */ | ||
1256 | return NO_BALANCING_NEEDED; | ||
1257 | |||
1258 | create_virtual_node (tb, h); | ||
1259 | |||
1260 | /* | ||
1261 | determine maximal number of items we can shift to the left neighbor (in tb structure) | ||
1262 | and the maximal number of bytes that can flow to the left neighbor | ||
1263 | from the left most liquid item that cannot be shifted from S[0] entirely (returned value) | ||
1264 | */ | ||
1265 | check_left (tb, h, lfree); | ||
1266 | |||
1267 | /* | ||
1268 | determine maximal number of items we can shift to the right neighbor (in tb structure) | ||
1269 | and the maximal number of bytes that can flow to the right neighbor | ||
1270 | from the right most liquid item that cannot be shifted from S[0] entirely (returned value) | ||
1271 | */ | ||
1272 | check_right (tb, h, rfree); | ||
1273 | |||
1274 | |||
1275 | /* all contents of internal node S[h] can be moved into its | ||
1276 | neighbors, S[h] will be removed after balancing */ | ||
1277 | if (h && (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1)) { | ||
1278 | int to_r; | ||
1279 | |||
1280 | /* Since we are working on internal nodes, and our internal | ||
1281 | nodes have fixed size entries, then we can balance by the | ||
1282 | number of items rather than the space they consume. In this | ||
1283 | routine we set the left node equal to the right node, | ||
1284 | allowing a difference of less than or equal to 1 child | ||
1285 | pointer. */ | ||
1286 | to_r = ((MAX_NR_KEY(Sh)<<1)+2-tb->lnum[h]-tb->rnum[h]+vn->vn_nr_item+1)/2 - | ||
1287 | (MAX_NR_KEY(Sh) + 1 - tb->rnum[h]); | ||
1288 | set_parameters (tb, h, vn->vn_nr_item + 1 - to_r, to_r, 0, NULL, -1, -1); | ||
1289 | return CARRY_ON; | ||
1290 | } | ||
1291 | |||
1292 | /* this checks balance condition, that any two neighboring nodes can not fit in one node */ | ||
1293 | RFALSE( h && | ||
1294 | ( tb->lnum[h] >= vn->vn_nr_item + 1 || | ||
1295 | tb->rnum[h] >= vn->vn_nr_item + 1), | ||
1296 | "vs-8220: tree is not balanced on internal level"); | ||
1297 | RFALSE( ! h && ((tb->lnum[h] >= vn->vn_nr_item && (tb->lbytes == -1)) || | ||
1298 | (tb->rnum[h] >= vn->vn_nr_item && (tb->rbytes == -1)) ), | ||
1299 | "vs-8225: tree is not balanced on leaf level"); | ||
1300 | |||
1301 | /* all contents of S[0] can be moved into its neighbors | ||
1302 | S[0] will be removed after balancing. */ | ||
1303 | if (!h && is_leaf_removable (tb)) | ||
1304 | return CARRY_ON; | ||
1305 | 1274 | ||
1275 | if ((n_ret_value = get_parents(tb, h)) != CARRY_ON) /* get parents of S[h] neighbors. */ | ||
1276 | return n_ret_value; | ||
1306 | 1277 | ||
1307 | /* why do we perform this check here rather than earlier?? | 1278 | sfree = B_FREE_SPACE(Sh); |
1308 | Answer: we can win 1 node in some cases above. Moreover we | 1279 | |
1309 | checked it above, when we checked, that S[0] is not removable | 1280 | /* get free space of neighbors */ |
1310 | in principle */ | 1281 | rfree = get_rfree(tb, h); |
1311 | if (sfree >= levbytes) { /* new item fits into node S[h] without any shifting */ | 1282 | lfree = get_lfree(tb, h); |
1312 | if ( ! h ) | 1283 | |
1313 | tb->s0num = vn->vn_nr_item; | 1284 | if (can_node_be_removed(vn->vn_mode, lfree, sfree, rfree, tb, h) == |
1314 | set_parameters (tb, h, 0, 0, 1, NULL, -1, -1); | 1285 | NO_BALANCING_NEEDED) |
1315 | return NO_BALANCING_NEEDED; | 1286 | /* and new item fits into node S[h] without any shifting */ |
1316 | } | 1287 | return NO_BALANCING_NEEDED; |
1317 | 1288 | ||
1289 | create_virtual_node(tb, h); | ||
1318 | 1290 | ||
1319 | { | 1291 | /* |
1320 | int lpar, rpar, nset, lset, rset, lrset; | 1292 | determine maximal number of items we can shift to the left neighbor (in tb structure) |
1321 | /* | 1293 | and the maximal number of bytes that can flow to the left neighbor |
1322 | * regular overflowing of the node | 1294 | from the left most liquid item that cannot be shifted from S[0] entirely (returned value) |
1323 | */ | 1295 | */ |
1296 | check_left(tb, h, lfree); | ||
1324 | 1297 | ||
1325 | /* get_num_ver works in 2 modes (FLOW & NO_FLOW) | 1298 | /* |
1326 | lpar, rpar - number of items we can shift to left/right neighbor (including splitting item) | 1299 | determine maximal number of items we can shift to the right neighbor (in tb structure) |
1327 | nset, lset, rset, lrset - shows, whether flowing items give better packing | 1300 | and the maximal number of bytes that can flow to the right neighbor |
1328 | */ | 1301 | from the right most liquid item that cannot be shifted from S[0] entirely (returned value) |
1302 | */ | ||
1303 | check_right(tb, h, rfree); | ||
1304 | |||
1305 | /* all contents of internal node S[h] can be moved into its | ||
1306 | neighbors, S[h] will be removed after balancing */ | ||
1307 | if (h && (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1)) { | ||
1308 | int to_r; | ||
1309 | |||
1310 | /* Since we are working on internal nodes, and our internal | ||
1311 | nodes have fixed size entries, then we can balance by the | ||
1312 | number of items rather than the space they consume. In this | ||
1313 | routine we set the left node equal to the right node, | ||
1314 | allowing a difference of less than or equal to 1 child | ||
1315 | pointer. */ | ||
1316 | to_r = | ||
1317 | ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] - tb->rnum[h] + | ||
1318 | vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 - | ||
1319 | tb->rnum[h]); | ||
1320 | set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r, 0, NULL, | ||
1321 | -1, -1); | ||
1322 | return CARRY_ON; | ||
1323 | } | ||
1324 | |||
1325 | /* this checks balance condition, that any two neighboring nodes can not fit in one node */ | ||
1326 | RFALSE(h && | ||
1327 | (tb->lnum[h] >= vn->vn_nr_item + 1 || | ||
1328 | tb->rnum[h] >= vn->vn_nr_item + 1), | ||
1329 | "vs-8220: tree is not balanced on internal level"); | ||
1330 | RFALSE(!h && ((tb->lnum[h] >= vn->vn_nr_item && (tb->lbytes == -1)) || | ||
1331 | (tb->rnum[h] >= vn->vn_nr_item && (tb->rbytes == -1))), | ||
1332 | "vs-8225: tree is not balanced on leaf level"); | ||
1333 | |||
1334 | /* all contents of S[0] can be moved into its neighbors | ||
1335 | S[0] will be removed after balancing. */ | ||
1336 | if (!h && is_leaf_removable(tb)) | ||
1337 | return CARRY_ON; | ||
1338 | |||
1339 | /* why do we perform this check here rather than earlier?? | ||
1340 | Answer: we can win 1 node in some cases above. Moreover we | ||
1341 | checked it above, when we checked, that S[0] is not removable | ||
1342 | in principle */ | ||
1343 | if (sfree >= levbytes) { /* new item fits into node S[h] without any shifting */ | ||
1344 | if (!h) | ||
1345 | tb->s0num = vn->vn_nr_item; | ||
1346 | set_parameters(tb, h, 0, 0, 1, NULL, -1, -1); | ||
1347 | return NO_BALANCING_NEEDED; | ||
1348 | } | ||
1349 | |||
1350 | { | ||
1351 | int lpar, rpar, nset, lset, rset, lrset; | ||
1352 | /* | ||
1353 | * regular overflowing of the node | ||
1354 | */ | ||
1355 | |||
1356 | /* get_num_ver works in 2 modes (FLOW & NO_FLOW) | ||
1357 | lpar, rpar - number of items we can shift to left/right neighbor (including splitting item) | ||
1358 | nset, lset, rset, lrset - shows, whether flowing items give better packing | ||
1359 | */ | ||
1329 | #define FLOW 1 | 1360 | #define FLOW 1 |
1330 | #define NO_FLOW 0 /* do not any splitting */ | 1361 | #define NO_FLOW 0 /* do not any splitting */ |
1331 | 1362 | ||
1332 | /* we choose one the following */ | 1363 | /* we choose one the following */ |
1333 | #define NOTHING_SHIFT_NO_FLOW 0 | 1364 | #define NOTHING_SHIFT_NO_FLOW 0 |
1334 | #define NOTHING_SHIFT_FLOW 5 | 1365 | #define NOTHING_SHIFT_FLOW 5 |
1335 | #define LEFT_SHIFT_NO_FLOW 10 | 1366 | #define LEFT_SHIFT_NO_FLOW 10 |
@@ -1339,164 +1370,173 @@ static int ip_check_balance (struct tree_balance * tb, int h) | |||
1339 | #define LR_SHIFT_NO_FLOW 30 | 1370 | #define LR_SHIFT_NO_FLOW 30 |
1340 | #define LR_SHIFT_FLOW 35 | 1371 | #define LR_SHIFT_FLOW 35 |
1341 | 1372 | ||
1373 | lpar = tb->lnum[h]; | ||
1374 | rpar = tb->rnum[h]; | ||
1375 | |||
1376 | /* calculate number of blocks S[h] must be split into when | ||
1377 | nothing is shifted to the neighbors, | ||
1378 | as well as number of items in each part of the split node (s012 numbers), | ||
1379 | and number of bytes (s1bytes) of the shared drop which flow to S1 if any */ | ||
1380 | nset = NOTHING_SHIFT_NO_FLOW; | ||
1381 | nver = get_num_ver(vn->vn_mode, tb, h, | ||
1382 | 0, -1, h ? vn->vn_nr_item : 0, -1, | ||
1383 | snum012, NO_FLOW); | ||
1384 | |||
1385 | if (!h) { | ||
1386 | int nver1; | ||
1387 | |||
1388 | /* note, that in this case we try to bottle between S[0] and S1 (S1 - the first new node) */ | ||
1389 | nver1 = get_num_ver(vn->vn_mode, tb, h, | ||
1390 | 0, -1, 0, -1, | ||
1391 | snum012 + NOTHING_SHIFT_FLOW, FLOW); | ||
1392 | if (nver > nver1) | ||
1393 | nset = NOTHING_SHIFT_FLOW, nver = nver1; | ||
1394 | } | ||
1342 | 1395 | ||
1343 | lpar = tb->lnum[h]; | 1396 | /* calculate number of blocks S[h] must be split into when |
1344 | rpar = tb->rnum[h]; | 1397 | l_shift_num first items and l_shift_bytes of the right most |
1345 | 1398 | liquid item to be shifted are shifted to the left neighbor, | |
1346 | 1399 | as well as number of items in each part of the splitted node (s012 numbers), | |
1347 | /* calculate number of blocks S[h] must be split into when | 1400 | and number of bytes (s1bytes) of the shared drop which flow to S1 if any |
1348 | nothing is shifted to the neighbors, | 1401 | */ |
1349 | as well as number of items in each part of the split node (s012 numbers), | 1402 | lset = LEFT_SHIFT_NO_FLOW; |
1350 | and number of bytes (s1bytes) of the shared drop which flow to S1 if any */ | 1403 | lnver = get_num_ver(vn->vn_mode, tb, h, |
1351 | nset = NOTHING_SHIFT_NO_FLOW; | 1404 | lpar - ((h || tb->lbytes == -1) ? 0 : 1), |
1352 | nver = get_num_ver (vn->vn_mode, tb, h, | 1405 | -1, h ? vn->vn_nr_item : 0, -1, |
1353 | 0, -1, h?vn->vn_nr_item:0, -1, | 1406 | snum012 + LEFT_SHIFT_NO_FLOW, NO_FLOW); |
1354 | snum012, NO_FLOW); | 1407 | if (!h) { |
1355 | 1408 | int lnver1; | |
1356 | if (!h) | 1409 | |
1357 | { | 1410 | lnver1 = get_num_ver(vn->vn_mode, tb, h, |
1358 | int nver1; | 1411 | lpar - |
1359 | 1412 | ((tb->lbytes != -1) ? 1 : 0), | |
1360 | /* note, that in this case we try to bottle between S[0] and S1 (S1 - the first new node) */ | 1413 | tb->lbytes, 0, -1, |
1361 | nver1 = get_num_ver (vn->vn_mode, tb, h, | 1414 | snum012 + LEFT_SHIFT_FLOW, FLOW); |
1362 | 0, -1, 0, -1, | 1415 | if (lnver > lnver1) |
1363 | snum012 + NOTHING_SHIFT_FLOW, FLOW); | 1416 | lset = LEFT_SHIFT_FLOW, lnver = lnver1; |
1364 | if (nver > nver1) | 1417 | } |
1365 | nset = NOTHING_SHIFT_FLOW, nver = nver1; | ||
1366 | } | ||
1367 | |||
1368 | |||
1369 | /* calculate number of blocks S[h] must be split into when | ||
1370 | l_shift_num first items and l_shift_bytes of the right most | ||
1371 | liquid item to be shifted are shifted to the left neighbor, | ||
1372 | as well as number of items in each part of the splitted node (s012 numbers), | ||
1373 | and number of bytes (s1bytes) of the shared drop which flow to S1 if any | ||
1374 | */ | ||
1375 | lset = LEFT_SHIFT_NO_FLOW; | ||
1376 | lnver = get_num_ver (vn->vn_mode, tb, h, | ||
1377 | lpar - (( h || tb->lbytes == -1 ) ? 0 : 1), -1, h ? vn->vn_nr_item:0, -1, | ||
1378 | snum012 + LEFT_SHIFT_NO_FLOW, NO_FLOW); | ||
1379 | if (!h) | ||
1380 | { | ||
1381 | int lnver1; | ||
1382 | |||
1383 | lnver1 = get_num_ver (vn->vn_mode, tb, h, | ||
1384 | lpar - ((tb->lbytes != -1) ? 1 : 0), tb->lbytes, 0, -1, | ||
1385 | snum012 + LEFT_SHIFT_FLOW, FLOW); | ||
1386 | if (lnver > lnver1) | ||
1387 | lset = LEFT_SHIFT_FLOW, lnver = lnver1; | ||
1388 | } | ||
1389 | |||
1390 | |||
1391 | /* calculate number of blocks S[h] must be split into when | ||
1392 | r_shift_num first items and r_shift_bytes of the left most | ||
1393 | liquid item to be shifted are shifted to the right neighbor, | ||
1394 | as well as number of items in each part of the splitted node (s012 numbers), | ||
1395 | and number of bytes (s1bytes) of the shared drop which flow to S1 if any | ||
1396 | */ | ||
1397 | rset = RIGHT_SHIFT_NO_FLOW; | ||
1398 | rnver = get_num_ver (vn->vn_mode, tb, h, | ||
1399 | 0, -1, h ? (vn->vn_nr_item-rpar) : (rpar - (( tb->rbytes != -1 ) ? 1 : 0)), -1, | ||
1400 | snum012 + RIGHT_SHIFT_NO_FLOW, NO_FLOW); | ||
1401 | if (!h) | ||
1402 | { | ||
1403 | int rnver1; | ||
1404 | |||
1405 | rnver1 = get_num_ver (vn->vn_mode, tb, h, | ||
1406 | 0, -1, (rpar - ((tb->rbytes != -1) ? 1 : 0)), tb->rbytes, | ||
1407 | snum012 + RIGHT_SHIFT_FLOW, FLOW); | ||
1408 | |||
1409 | if (rnver > rnver1) | ||
1410 | rset = RIGHT_SHIFT_FLOW, rnver = rnver1; | ||
1411 | } | ||
1412 | |||
1413 | |||
1414 | /* calculate number of blocks S[h] must be split into when | ||
1415 | items are shifted in both directions, | ||
1416 | as well as number of items in each part of the splitted node (s012 numbers), | ||
1417 | and number of bytes (s1bytes) of the shared drop which flow to S1 if any | ||
1418 | */ | ||
1419 | lrset = LR_SHIFT_NO_FLOW; | ||
1420 | lrnver = get_num_ver (vn->vn_mode, tb, h, | ||
1421 | lpar - ((h || tb->lbytes == -1) ? 0 : 1), -1, h ? (vn->vn_nr_item-rpar):(rpar - ((tb->rbytes != -1) ? 1 : 0)), -1, | ||
1422 | snum012 + LR_SHIFT_NO_FLOW, NO_FLOW); | ||
1423 | if (!h) | ||
1424 | { | ||
1425 | int lrnver1; | ||
1426 | |||
1427 | lrnver1 = get_num_ver (vn->vn_mode, tb, h, | ||
1428 | lpar - ((tb->lbytes != -1) ? 1 : 0), tb->lbytes, (rpar - ((tb->rbytes != -1) ? 1 : 0)), tb->rbytes, | ||
1429 | snum012 + LR_SHIFT_FLOW, FLOW); | ||
1430 | if (lrnver > lrnver1) | ||
1431 | lrset = LR_SHIFT_FLOW, lrnver = lrnver1; | ||
1432 | } | ||
1433 | |||
1434 | |||
1435 | 1418 | ||
1436 | /* Our general shifting strategy is: | 1419 | /* calculate number of blocks S[h] must be split into when |
1437 | 1) to minimized number of new nodes; | 1420 | r_shift_num first items and r_shift_bytes of the left most |
1438 | 2) to minimized number of neighbors involved in shifting; | 1421 | liquid item to be shifted are shifted to the right neighbor, |
1439 | 3) to minimized number of disk reads; */ | 1422 | as well as number of items in each part of the splitted node (s012 numbers), |
1423 | and number of bytes (s1bytes) of the shared drop which flow to S1 if any | ||
1424 | */ | ||
1425 | rset = RIGHT_SHIFT_NO_FLOW; | ||
1426 | rnver = get_num_ver(vn->vn_mode, tb, h, | ||
1427 | 0, -1, | ||
1428 | h ? (vn->vn_nr_item - rpar) : (rpar - | ||
1429 | ((tb-> | ||
1430 | rbytes != | ||
1431 | -1) ? 1 : | ||
1432 | 0)), -1, | ||
1433 | snum012 + RIGHT_SHIFT_NO_FLOW, NO_FLOW); | ||
1434 | if (!h) { | ||
1435 | int rnver1; | ||
1436 | |||
1437 | rnver1 = get_num_ver(vn->vn_mode, tb, h, | ||
1438 | 0, -1, | ||
1439 | (rpar - | ||
1440 | ((tb->rbytes != -1) ? 1 : 0)), | ||
1441 | tb->rbytes, | ||
1442 | snum012 + RIGHT_SHIFT_FLOW, FLOW); | ||
1443 | |||
1444 | if (rnver > rnver1) | ||
1445 | rset = RIGHT_SHIFT_FLOW, rnver = rnver1; | ||
1446 | } | ||
1440 | 1447 | ||
1441 | /* we can win TWO or ONE nodes by shifting in both directions */ | 1448 | /* calculate number of blocks S[h] must be split into when |
1442 | if (lrnver < lnver && lrnver < rnver) | 1449 | items are shifted in both directions, |
1443 | { | 1450 | as well as number of items in each part of the splitted node (s012 numbers), |
1444 | RFALSE( h && | 1451 | and number of bytes (s1bytes) of the shared drop which flow to S1 if any |
1445 | (tb->lnum[h] != 1 || | 1452 | */ |
1446 | tb->rnum[h] != 1 || | 1453 | lrset = LR_SHIFT_NO_FLOW; |
1447 | lrnver != 1 || rnver != 2 || lnver != 2 || h != 1), | 1454 | lrnver = get_num_ver(vn->vn_mode, tb, h, |
1448 | "vs-8230: bad h"); | 1455 | lpar - ((h || tb->lbytes == -1) ? 0 : 1), |
1449 | if (lrset == LR_SHIFT_FLOW) | 1456 | -1, |
1450 | set_parameters (tb, h, tb->lnum[h], tb->rnum[h], lrnver, snum012 + lrset, | 1457 | h ? (vn->vn_nr_item - rpar) : (rpar - |
1451 | tb->lbytes, tb->rbytes); | 1458 | ((tb-> |
1452 | else | 1459 | rbytes != |
1453 | set_parameters (tb, h, tb->lnum[h] - ((tb->lbytes == -1) ? 0 : 1), | 1460 | -1) ? 1 : |
1454 | tb->rnum[h] - ((tb->rbytes == -1) ? 0 : 1), lrnver, snum012 + lrset, -1, -1); | 1461 | 0)), -1, |
1455 | 1462 | snum012 + LR_SHIFT_NO_FLOW, NO_FLOW); | |
1456 | return CARRY_ON; | 1463 | if (!h) { |
1457 | } | 1464 | int lrnver1; |
1465 | |||
1466 | lrnver1 = get_num_ver(vn->vn_mode, tb, h, | ||
1467 | lpar - | ||
1468 | ((tb->lbytes != -1) ? 1 : 0), | ||
1469 | tb->lbytes, | ||
1470 | (rpar - | ||
1471 | ((tb->rbytes != -1) ? 1 : 0)), | ||
1472 | tb->rbytes, | ||
1473 | snum012 + LR_SHIFT_FLOW, FLOW); | ||
1474 | if (lrnver > lrnver1) | ||
1475 | lrset = LR_SHIFT_FLOW, lrnver = lrnver1; | ||
1476 | } | ||
1458 | 1477 | ||
1459 | /* if shifting doesn't lead to better packing then don't shift */ | 1478 | /* Our general shifting strategy is: |
1460 | if (nver == lrnver) | 1479 | 1) to minimized number of new nodes; |
1461 | { | 1480 | 2) to minimized number of neighbors involved in shifting; |
1462 | set_parameters (tb, h, 0, 0, nver, snum012 + nset, -1, -1); | 1481 | 3) to minimized number of disk reads; */ |
1463 | return CARRY_ON; | 1482 | |
1464 | } | 1483 | /* we can win TWO or ONE nodes by shifting in both directions */ |
1484 | if (lrnver < lnver && lrnver < rnver) { | ||
1485 | RFALSE(h && | ||
1486 | (tb->lnum[h] != 1 || | ||
1487 | tb->rnum[h] != 1 || | ||
1488 | lrnver != 1 || rnver != 2 || lnver != 2 | ||
1489 | || h != 1), "vs-8230: bad h"); | ||
1490 | if (lrset == LR_SHIFT_FLOW) | ||
1491 | set_parameters(tb, h, tb->lnum[h], tb->rnum[h], | ||
1492 | lrnver, snum012 + lrset, | ||
1493 | tb->lbytes, tb->rbytes); | ||
1494 | else | ||
1495 | set_parameters(tb, h, | ||
1496 | tb->lnum[h] - | ||
1497 | ((tb->lbytes == -1) ? 0 : 1), | ||
1498 | tb->rnum[h] - | ||
1499 | ((tb->rbytes == -1) ? 0 : 1), | ||
1500 | lrnver, snum012 + lrset, -1, -1); | ||
1501 | |||
1502 | return CARRY_ON; | ||
1503 | } | ||
1465 | 1504 | ||
1505 | /* if shifting doesn't lead to better packing then don't shift */ | ||
1506 | if (nver == lrnver) { | ||
1507 | set_parameters(tb, h, 0, 0, nver, snum012 + nset, -1, | ||
1508 | -1); | ||
1509 | return CARRY_ON; | ||
1510 | } | ||
1466 | 1511 | ||
1467 | /* now we know that for better packing shifting in only one | 1512 | /* now we know that for better packing shifting in only one |
1468 | direction either to the left or to the right is required */ | 1513 | direction either to the left or to the right is required */ |
1469 | 1514 | ||
1470 | /* if shifting to the left is better than shifting to the right */ | 1515 | /* if shifting to the left is better than shifting to the right */ |
1471 | if (lnver < rnver) | 1516 | if (lnver < rnver) { |
1472 | { | 1517 | SET_PAR_SHIFT_LEFT; |
1473 | SET_PAR_SHIFT_LEFT; | 1518 | return CARRY_ON; |
1474 | return CARRY_ON; | 1519 | } |
1475 | } | ||
1476 | 1520 | ||
1477 | /* if shifting to the right is better than shifting to the left */ | 1521 | /* if shifting to the right is better than shifting to the left */ |
1478 | if (lnver > rnver) | 1522 | if (lnver > rnver) { |
1479 | { | 1523 | SET_PAR_SHIFT_RIGHT; |
1480 | SET_PAR_SHIFT_RIGHT; | 1524 | return CARRY_ON; |
1481 | return CARRY_ON; | 1525 | } |
1482 | } | ||
1483 | 1526 | ||
1527 | /* now shifting in either direction gives the same number | ||
1528 | of nodes and we can make use of the cached neighbors */ | ||
1529 | if (is_left_neighbor_in_cache(tb, h)) { | ||
1530 | SET_PAR_SHIFT_LEFT; | ||
1531 | return CARRY_ON; | ||
1532 | } | ||
1484 | 1533 | ||
1485 | /* now shifting in either direction gives the same number | 1534 | /* shift to the right independently on whether the right neighbor in cache or not */ |
1486 | of nodes and we can make use of the cached neighbors */ | 1535 | SET_PAR_SHIFT_RIGHT; |
1487 | if (is_left_neighbor_in_cache (tb,h)) | 1536 | return CARRY_ON; |
1488 | { | ||
1489 | SET_PAR_SHIFT_LEFT; | ||
1490 | return CARRY_ON; | ||
1491 | } | 1537 | } |
1492 | |||
1493 | /* shift to the right independently on whether the right neighbor in cache or not */ | ||
1494 | SET_PAR_SHIFT_RIGHT; | ||
1495 | return CARRY_ON; | ||
1496 | } | ||
1497 | } | 1538 | } |
1498 | 1539 | ||
1499 | |||
1500 | /* Check whether current node S[h] is balanced when Decreasing its size by | 1540 | /* Check whether current node S[h] is balanced when Decreasing its size by |
1501 | * Deleting or Cutting for INTERNAL node of S+tree. | 1541 | * Deleting or Cutting for INTERNAL node of S+tree. |
1502 | * Calculate parameters for balancing for current level h. | 1542 | * Calculate parameters for balancing for current level h. |
@@ -1513,157 +1553,173 @@ static int ip_check_balance (struct tree_balance * tb, int h) | |||
1513 | * Note: Items of internal nodes have fixed size, so the balance condition for | 1553 | * Note: Items of internal nodes have fixed size, so the balance condition for |
1514 | * the internal part of S+tree is as for the B-trees. | 1554 | * the internal part of S+tree is as for the B-trees. |
1515 | */ | 1555 | */ |
1516 | static int dc_check_balance_internal (struct tree_balance * tb, int h) | 1556 | static int dc_check_balance_internal(struct tree_balance *tb, int h) |
1517 | { | 1557 | { |
1518 | struct virtual_node * vn = tb->tb_vn; | 1558 | struct virtual_node *vn = tb->tb_vn; |
1519 | 1559 | ||
1520 | /* Sh is the node whose balance is currently being checked, | 1560 | /* Sh is the node whose balance is currently being checked, |
1521 | and Fh is its father. */ | 1561 | and Fh is its father. */ |
1522 | struct buffer_head * Sh, * Fh; | 1562 | struct buffer_head *Sh, *Fh; |
1523 | int maxsize, | 1563 | int maxsize, n_ret_value; |
1524 | n_ret_value; | 1564 | int lfree, rfree /* free space in L and R */ ; |
1525 | int lfree, rfree /* free space in L and R */; | ||
1526 | 1565 | ||
1527 | Sh = PATH_H_PBUFFER (tb->tb_path, h); | 1566 | Sh = PATH_H_PBUFFER(tb->tb_path, h); |
1528 | Fh = PATH_H_PPARENT (tb->tb_path, h); | 1567 | Fh = PATH_H_PPARENT(tb->tb_path, h); |
1529 | 1568 | ||
1530 | maxsize = MAX_CHILD_SIZE(Sh); | 1569 | maxsize = MAX_CHILD_SIZE(Sh); |
1531 | 1570 | ||
1532 | /* using tb->insert_size[h], which is negative in this case, create_virtual_node calculates: */ | 1571 | /* using tb->insert_size[h], which is negative in this case, create_virtual_node calculates: */ |
1533 | /* new_nr_item = number of items node would have if operation is */ | 1572 | /* new_nr_item = number of items node would have if operation is */ |
1534 | /* performed without balancing (new_nr_item); */ | 1573 | /* performed without balancing (new_nr_item); */ |
1535 | create_virtual_node (tb, h); | 1574 | create_virtual_node(tb, h); |
1536 | 1575 | ||
1537 | if ( ! Fh ) | 1576 | if (!Fh) { /* S[h] is the root. */ |
1538 | { /* S[h] is the root. */ | 1577 | if (vn->vn_nr_item > 0) { |
1539 | if ( vn->vn_nr_item > 0 ) | 1578 | set_parameters(tb, h, 0, 0, 1, NULL, -1, -1); |
1540 | { | 1579 | return NO_BALANCING_NEEDED; /* no balancing for higher levels needed */ |
1541 | set_parameters (tb, h, 0, 0, 1, NULL, -1, -1); | 1580 | } |
1542 | return NO_BALANCING_NEEDED; /* no balancing for higher levels needed */ | 1581 | /* new_nr_item == 0. |
1582 | * Current root will be deleted resulting in | ||
1583 | * decrementing the tree height. */ | ||
1584 | set_parameters(tb, h, 0, 0, 0, NULL, -1, -1); | ||
1585 | return CARRY_ON; | ||
1586 | } | ||
1587 | |||
1588 | if ((n_ret_value = get_parents(tb, h)) != CARRY_ON) | ||
1589 | return n_ret_value; | ||
1590 | |||
1591 | /* get free space of neighbors */ | ||
1592 | rfree = get_rfree(tb, h); | ||
1593 | lfree = get_lfree(tb, h); | ||
1594 | |||
1595 | /* determine maximal number of items we can fit into neighbors */ | ||
1596 | check_left(tb, h, lfree); | ||
1597 | check_right(tb, h, rfree); | ||
1598 | |||
1599 | if (vn->vn_nr_item >= MIN_NR_KEY(Sh)) { /* Balance condition for the internal node is valid. | ||
1600 | * In this case we balance only if it leads to better packing. */ | ||
1601 | if (vn->vn_nr_item == MIN_NR_KEY(Sh)) { /* Here we join S[h] with one of its neighbors, | ||
1602 | * which is impossible with greater values of new_nr_item. */ | ||
1603 | if (tb->lnum[h] >= vn->vn_nr_item + 1) { | ||
1604 | /* All contents of S[h] can be moved to L[h]. */ | ||
1605 | int n; | ||
1606 | int order_L; | ||
1607 | |||
1608 | order_L = | ||
1609 | ((n = | ||
1610 | PATH_H_B_ITEM_ORDER(tb->tb_path, | ||
1611 | h)) == | ||
1612 | 0) ? B_NR_ITEMS(tb->FL[h]) : n - 1; | ||
1613 | n = dc_size(B_N_CHILD(tb->FL[h], order_L)) / | ||
1614 | (DC_SIZE + KEY_SIZE); | ||
1615 | set_parameters(tb, h, -n - 1, 0, 0, NULL, -1, | ||
1616 | -1); | ||
1617 | return CARRY_ON; | ||
1618 | } | ||
1619 | |||
1620 | if (tb->rnum[h] >= vn->vn_nr_item + 1) { | ||
1621 | /* All contents of S[h] can be moved to R[h]. */ | ||
1622 | int n; | ||
1623 | int order_R; | ||
1624 | |||
1625 | order_R = | ||
1626 | ((n = | ||
1627 | PATH_H_B_ITEM_ORDER(tb->tb_path, | ||
1628 | h)) == | ||
1629 | B_NR_ITEMS(Fh)) ? 0 : n + 1; | ||
1630 | n = dc_size(B_N_CHILD(tb->FR[h], order_R)) / | ||
1631 | (DC_SIZE + KEY_SIZE); | ||
1632 | set_parameters(tb, h, 0, -n - 1, 0, NULL, -1, | ||
1633 | -1); | ||
1634 | return CARRY_ON; | ||
1635 | } | ||
1636 | } | ||
1637 | |||
1638 | if (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1) { | ||
1639 | /* All contents of S[h] can be moved to the neighbors (L[h] & R[h]). */ | ||
1640 | int to_r; | ||
1641 | |||
1642 | to_r = | ||
1643 | ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] - | ||
1644 | tb->rnum[h] + vn->vn_nr_item + 1) / 2 - | ||
1645 | (MAX_NR_KEY(Sh) + 1 - tb->rnum[h]); | ||
1646 | set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r, | ||
1647 | 0, NULL, -1, -1); | ||
1648 | return CARRY_ON; | ||
1649 | } | ||
1650 | |||
1651 | /* Balancing does not lead to better packing. */ | ||
1652 | set_parameters(tb, h, 0, 0, 1, NULL, -1, -1); | ||
1653 | return NO_BALANCING_NEEDED; | ||
1543 | } | 1654 | } |
1544 | /* new_nr_item == 0. | 1655 | |
1545 | * Current root will be deleted resulting in | 1656 | /* Current node contain insufficient number of items. Balancing is required. */ |
1546 | * decrementing the tree height. */ | 1657 | /* Check whether we can merge S[h] with left neighbor. */ |
1547 | set_parameters (tb, h, 0, 0, 0, NULL, -1, -1); | 1658 | if (tb->lnum[h] >= vn->vn_nr_item + 1) |
1548 | return CARRY_ON; | 1659 | if (is_left_neighbor_in_cache(tb, h) |
1549 | } | 1660 | || tb->rnum[h] < vn->vn_nr_item + 1 || !tb->FR[h]) { |
1550 | 1661 | int n; | |
1551 | if ( (n_ret_value = get_parents(tb,h)) != CARRY_ON ) | 1662 | int order_L; |
1552 | return n_ret_value; | 1663 | |
1553 | 1664 | order_L = | |
1554 | 1665 | ((n = | |
1555 | /* get free space of neighbors */ | 1666 | PATH_H_B_ITEM_ORDER(tb->tb_path, |
1556 | rfree = get_rfree (tb, h); | 1667 | h)) == |
1557 | lfree = get_lfree (tb, h); | 1668 | 0) ? B_NR_ITEMS(tb->FL[h]) : n - 1; |
1558 | 1669 | n = dc_size(B_N_CHILD(tb->FL[h], order_L)) / (DC_SIZE + | |
1559 | /* determine maximal number of items we can fit into neighbors */ | 1670 | KEY_SIZE); |
1560 | check_left (tb, h, lfree); | 1671 | set_parameters(tb, h, -n - 1, 0, 0, NULL, -1, -1); |
1561 | check_right (tb, h, rfree); | 1672 | return CARRY_ON; |
1562 | 1673 | } | |
1563 | 1674 | ||
1564 | if ( vn->vn_nr_item >= MIN_NR_KEY(Sh) ) | 1675 | /* Check whether we can merge S[h] with right neighbor. */ |
1565 | { /* Balance condition for the internal node is valid. | 1676 | if (tb->rnum[h] >= vn->vn_nr_item + 1) { |
1566 | * In this case we balance only if it leads to better packing. */ | 1677 | int n; |
1567 | if ( vn->vn_nr_item == MIN_NR_KEY(Sh) ) | 1678 | int order_R; |
1568 | { /* Here we join S[h] with one of its neighbors, | 1679 | |
1569 | * which is impossible with greater values of new_nr_item. */ | 1680 | order_R = |
1570 | if ( tb->lnum[h] >= vn->vn_nr_item + 1 ) | 1681 | ((n = |
1571 | { | 1682 | PATH_H_B_ITEM_ORDER(tb->tb_path, |
1572 | /* All contents of S[h] can be moved to L[h]. */ | 1683 | h)) == B_NR_ITEMS(Fh)) ? 0 : (n + 1); |
1573 | int n; | 1684 | n = dc_size(B_N_CHILD(tb->FR[h], order_R)) / (DC_SIZE + |
1574 | int order_L; | 1685 | KEY_SIZE); |
1575 | 1686 | set_parameters(tb, h, 0, -n - 1, 0, NULL, -1, -1); | |
1576 | order_L = ((n=PATH_H_B_ITEM_ORDER(tb->tb_path, h))==0) ? B_NR_ITEMS(tb->FL[h]) : n - 1; | 1687 | return CARRY_ON; |
1577 | n = dc_size(B_N_CHILD(tb->FL[h],order_L)) / (DC_SIZE + KEY_SIZE); | ||
1578 | set_parameters (tb, h, -n-1, 0, 0, NULL, -1, -1); | ||
1579 | return CARRY_ON; | ||
1580 | } | ||
1581 | |||
1582 | if ( tb->rnum[h] >= vn->vn_nr_item + 1 ) | ||
1583 | { | ||
1584 | /* All contents of S[h] can be moved to R[h]. */ | ||
1585 | int n; | ||
1586 | int order_R; | ||
1587 | |||
1588 | order_R = ((n=PATH_H_B_ITEM_ORDER(tb->tb_path, h))==B_NR_ITEMS(Fh)) ? 0 : n + 1; | ||
1589 | n = dc_size(B_N_CHILD(tb->FR[h],order_R)) / (DC_SIZE + KEY_SIZE); | ||
1590 | set_parameters (tb, h, 0, -n-1, 0, NULL, -1, -1); | ||
1591 | return CARRY_ON; | ||
1592 | } | ||
1593 | } | 1688 | } |
1594 | 1689 | ||
1595 | if (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1) | 1690 | /* All contents of S[h] can be moved to the neighbors (L[h] & R[h]). */ |
1596 | { | 1691 | if (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1) { |
1597 | /* All contents of S[h] can be moved to the neighbors (L[h] & R[h]). */ | 1692 | int to_r; |
1598 | int to_r; | 1693 | |
1694 | to_r = | ||
1695 | ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] - tb->rnum[h] + | ||
1696 | vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 - | ||
1697 | tb->rnum[h]); | ||
1698 | set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r, 0, NULL, | ||
1699 | -1, -1); | ||
1700 | return CARRY_ON; | ||
1701 | } | ||
1599 | 1702 | ||
1600 | to_r = ((MAX_NR_KEY(Sh)<<1)+2-tb->lnum[h]-tb->rnum[h]+vn->vn_nr_item+1)/2 - | 1703 | /* For internal nodes try to borrow item from a neighbor */ |
1601 | (MAX_NR_KEY(Sh) + 1 - tb->rnum[h]); | 1704 | RFALSE(!tb->FL[h] && !tb->FR[h], "vs-8235: trying to borrow for root"); |
1602 | set_parameters (tb, h, vn->vn_nr_item + 1 - to_r, to_r, 0, NULL, -1, -1); | 1705 | |
1603 | return CARRY_ON; | 1706 | /* Borrow one or two items from caching neighbor */ |
1707 | if (is_left_neighbor_in_cache(tb, h) || !tb->FR[h]) { | ||
1708 | int from_l; | ||
1709 | |||
1710 | from_l = | ||
1711 | (MAX_NR_KEY(Sh) + 1 - tb->lnum[h] + vn->vn_nr_item + | ||
1712 | 1) / 2 - (vn->vn_nr_item + 1); | ||
1713 | set_parameters(tb, h, -from_l, 0, 1, NULL, -1, -1); | ||
1714 | return CARRY_ON; | ||
1604 | } | 1715 | } |
1605 | 1716 | ||
1606 | /* Balancing does not lead to better packing. */ | 1717 | set_parameters(tb, h, 0, |
1607 | set_parameters (tb, h, 0, 0, 1, NULL, -1, -1); | 1718 | -((MAX_NR_KEY(Sh) + 1 - tb->rnum[h] + vn->vn_nr_item + |
1608 | return NO_BALANCING_NEEDED; | 1719 | 1) / 2 - (vn->vn_nr_item + 1)), 1, NULL, -1, -1); |
1609 | } | ||
1610 | |||
1611 | /* Current node contain insufficient number of items. Balancing is required. */ | ||
1612 | /* Check whether we can merge S[h] with left neighbor. */ | ||
1613 | if (tb->lnum[h] >= vn->vn_nr_item + 1) | ||
1614 | if (is_left_neighbor_in_cache (tb,h) || tb->rnum[h] < vn->vn_nr_item + 1 || !tb->FR[h]) | ||
1615 | { | ||
1616 | int n; | ||
1617 | int order_L; | ||
1618 | |||
1619 | order_L = ((n=PATH_H_B_ITEM_ORDER(tb->tb_path, h))==0) ? B_NR_ITEMS(tb->FL[h]) : n - 1; | ||
1620 | n = dc_size(B_N_CHILD(tb->FL[h],order_L)) / (DC_SIZE + KEY_SIZE); | ||
1621 | set_parameters (tb, h, -n-1, 0, 0, NULL, -1, -1); | ||
1622 | return CARRY_ON; | 1720 | return CARRY_ON; |
1623 | } | ||
1624 | |||
1625 | /* Check whether we can merge S[h] with right neighbor. */ | ||
1626 | if (tb->rnum[h] >= vn->vn_nr_item + 1) | ||
1627 | { | ||
1628 | int n; | ||
1629 | int order_R; | ||
1630 | |||
1631 | order_R = ((n=PATH_H_B_ITEM_ORDER(tb->tb_path, h))==B_NR_ITEMS(Fh)) ? 0 : (n + 1); | ||
1632 | n = dc_size(B_N_CHILD(tb->FR[h],order_R)) / (DC_SIZE + KEY_SIZE); | ||
1633 | set_parameters (tb, h, 0, -n-1, 0, NULL, -1, -1); | ||
1634 | return CARRY_ON; | ||
1635 | } | ||
1636 | |||
1637 | /* All contents of S[h] can be moved to the neighbors (L[h] & R[h]). */ | ||
1638 | if (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1) | ||
1639 | { | ||
1640 | int to_r; | ||
1641 | |||
1642 | to_r = ((MAX_NR_KEY(Sh)<<1)+2-tb->lnum[h]-tb->rnum[h]+vn->vn_nr_item+1)/2 - | ||
1643 | (MAX_NR_KEY(Sh) + 1 - tb->rnum[h]); | ||
1644 | set_parameters (tb, h, vn->vn_nr_item + 1 - to_r, to_r, 0, NULL, -1, -1); | ||
1645 | return CARRY_ON; | ||
1646 | } | ||
1647 | |||
1648 | /* For internal nodes try to borrow item from a neighbor */ | ||
1649 | RFALSE( !tb->FL[h] && !tb->FR[h], "vs-8235: trying to borrow for root"); | ||
1650 | |||
1651 | /* Borrow one or two items from caching neighbor */ | ||
1652 | if (is_left_neighbor_in_cache (tb,h) || !tb->FR[h]) | ||
1653 | { | ||
1654 | int from_l; | ||
1655 | |||
1656 | from_l = (MAX_NR_KEY(Sh) + 1 - tb->lnum[h] + vn->vn_nr_item + 1) / 2 - (vn->vn_nr_item + 1); | ||
1657 | set_parameters (tb, h, -from_l, 0, 1, NULL, -1, -1); | ||
1658 | return CARRY_ON; | ||
1659 | } | ||
1660 | |||
1661 | set_parameters (tb, h, 0, -((MAX_NR_KEY(Sh)+1-tb->rnum[h]+vn->vn_nr_item+1)/2-(vn->vn_nr_item+1)), 1, | ||
1662 | NULL, -1, -1); | ||
1663 | return CARRY_ON; | ||
1664 | } | 1721 | } |
1665 | 1722 | ||
1666 | |||
1667 | /* Check whether current node S[h] is balanced when Decreasing its size by | 1723 | /* Check whether current node S[h] is balanced when Decreasing its size by |
1668 | * Deleting or Truncating for LEAF node of S+tree. | 1724 | * Deleting or Truncating for LEAF node of S+tree. |
1669 | * Calculate parameters for balancing for current level h. | 1725 | * Calculate parameters for balancing for current level h. |
@@ -1677,90 +1733,86 @@ static int dc_check_balance_internal (struct tree_balance * tb, int h) | |||
1677 | * -1 - no balancing for higher levels needed; | 1733 | * -1 - no balancing for higher levels needed; |
1678 | * -2 - no disk space. | 1734 | * -2 - no disk space. |
1679 | */ | 1735 | */ |
1680 | static int dc_check_balance_leaf (struct tree_balance * tb, int h) | 1736 | static int dc_check_balance_leaf(struct tree_balance *tb, int h) |
1681 | { | 1737 | { |
1682 | struct virtual_node * vn = tb->tb_vn; | 1738 | struct virtual_node *vn = tb->tb_vn; |
1683 | 1739 | ||
1684 | /* Number of bytes that must be deleted from | 1740 | /* Number of bytes that must be deleted from |
1685 | (value is negative if bytes are deleted) buffer which | 1741 | (value is negative if bytes are deleted) buffer which |
1686 | contains node being balanced. The mnemonic is that the | 1742 | contains node being balanced. The mnemonic is that the |
1687 | attempted change in node space used level is levbytes bytes. */ | 1743 | attempted change in node space used level is levbytes bytes. */ |
1688 | int levbytes; | 1744 | int levbytes; |
1689 | /* the maximal item size */ | 1745 | /* the maximal item size */ |
1690 | int maxsize, | 1746 | int maxsize, n_ret_value; |
1691 | n_ret_value; | 1747 | /* S0 is the node whose balance is currently being checked, |
1692 | /* S0 is the node whose balance is currently being checked, | 1748 | and F0 is its father. */ |
1693 | and F0 is its father. */ | 1749 | struct buffer_head *S0, *F0; |
1694 | struct buffer_head * S0, * F0; | 1750 | int lfree, rfree /* free space in L and R */ ; |
1695 | int lfree, rfree /* free space in L and R */; | 1751 | |
1696 | 1752 | S0 = PATH_H_PBUFFER(tb->tb_path, 0); | |
1697 | S0 = PATH_H_PBUFFER (tb->tb_path, 0); | 1753 | F0 = PATH_H_PPARENT(tb->tb_path, 0); |
1698 | F0 = PATH_H_PPARENT (tb->tb_path, 0); | ||
1699 | |||
1700 | levbytes = tb->insert_size[h]; | ||
1701 | |||
1702 | maxsize = MAX_CHILD_SIZE(S0); /* maximal possible size of an item */ | ||
1703 | |||
1704 | if ( ! F0 ) | ||
1705 | { /* S[0] is the root now. */ | ||
1706 | |||
1707 | RFALSE( -levbytes >= maxsize - B_FREE_SPACE (S0), | ||
1708 | "vs-8240: attempt to create empty buffer tree"); | ||
1709 | |||
1710 | set_parameters (tb, h, 0, 0, 1, NULL, -1, -1); | ||
1711 | return NO_BALANCING_NEEDED; | ||
1712 | } | ||
1713 | |||
1714 | if ( (n_ret_value = get_parents(tb,h)) != CARRY_ON ) | ||
1715 | return n_ret_value; | ||
1716 | |||
1717 | /* get free space of neighbors */ | ||
1718 | rfree = get_rfree (tb, h); | ||
1719 | lfree = get_lfree (tb, h); | ||
1720 | |||
1721 | create_virtual_node (tb, h); | ||
1722 | |||
1723 | /* if 3 leaves can be merge to one, set parameters and return */ | ||
1724 | if (are_leaves_removable (tb, lfree, rfree)) | ||
1725 | return CARRY_ON; | ||
1726 | |||
1727 | /* determine maximal number of items we can shift to the left/right neighbor | ||
1728 | and the maximal number of bytes that can flow to the left/right neighbor | ||
1729 | from the left/right most liquid item that cannot be shifted from S[0] entirely | ||
1730 | */ | ||
1731 | check_left (tb, h, lfree); | ||
1732 | check_right (tb, h, rfree); | ||
1733 | |||
1734 | /* check whether we can merge S with left neighbor. */ | ||
1735 | if (tb->lnum[0] >= vn->vn_nr_item && tb->lbytes == -1) | ||
1736 | if (is_left_neighbor_in_cache (tb,h) || | ||
1737 | ((tb->rnum[0] - ((tb->rbytes == -1) ? 0 : 1)) < vn->vn_nr_item) || /* S can not be merged with R */ | ||
1738 | !tb->FR[h]) { | ||
1739 | |||
1740 | RFALSE( !tb->FL[h], "vs-8245: dc_check_balance_leaf: FL[h] must exist"); | ||
1741 | |||
1742 | /* set parameter to merge S[0] with its left neighbor */ | ||
1743 | set_parameters (tb, h, -1, 0, 0, NULL, -1, -1); | ||
1744 | return CARRY_ON; | ||
1745 | } | ||
1746 | |||
1747 | /* check whether we can merge S[0] with right neighbor. */ | ||
1748 | if (tb->rnum[0] >= vn->vn_nr_item && tb->rbytes == -1) { | ||
1749 | set_parameters (tb, h, 0, -1, 0, NULL, -1, -1); | ||
1750 | return CARRY_ON; | ||
1751 | } | ||
1752 | |||
1753 | /* All contents of S[0] can be moved to the neighbors (L[0] & R[0]). Set parameters and return */ | ||
1754 | if (is_leaf_removable (tb)) | ||
1755 | return CARRY_ON; | ||
1756 | |||
1757 | /* Balancing is not required. */ | ||
1758 | tb->s0num = vn->vn_nr_item; | ||
1759 | set_parameters (tb, h, 0, 0, 1, NULL, -1, -1); | ||
1760 | return NO_BALANCING_NEEDED; | ||
1761 | } | ||
1762 | 1754 | ||
1755 | levbytes = tb->insert_size[h]; | ||
1763 | 1756 | ||
1757 | maxsize = MAX_CHILD_SIZE(S0); /* maximal possible size of an item */ | ||
1758 | |||
1759 | if (!F0) { /* S[0] is the root now. */ | ||
1760 | |||
1761 | RFALSE(-levbytes >= maxsize - B_FREE_SPACE(S0), | ||
1762 | "vs-8240: attempt to create empty buffer tree"); | ||
1763 | |||
1764 | set_parameters(tb, h, 0, 0, 1, NULL, -1, -1); | ||
1765 | return NO_BALANCING_NEEDED; | ||
1766 | } | ||
1767 | |||
1768 | if ((n_ret_value = get_parents(tb, h)) != CARRY_ON) | ||
1769 | return n_ret_value; | ||
1770 | |||
1771 | /* get free space of neighbors */ | ||
1772 | rfree = get_rfree(tb, h); | ||
1773 | lfree = get_lfree(tb, h); | ||
1774 | |||
1775 | create_virtual_node(tb, h); | ||
1776 | |||
1777 | /* if 3 leaves can be merge to one, set parameters and return */ | ||
1778 | if (are_leaves_removable(tb, lfree, rfree)) | ||
1779 | return CARRY_ON; | ||
1780 | |||
1781 | /* determine maximal number of items we can shift to the left/right neighbor | ||
1782 | and the maximal number of bytes that can flow to the left/right neighbor | ||
1783 | from the left/right most liquid item that cannot be shifted from S[0] entirely | ||
1784 | */ | ||
1785 | check_left(tb, h, lfree); | ||
1786 | check_right(tb, h, rfree); | ||
1787 | |||
1788 | /* check whether we can merge S with left neighbor. */ | ||
1789 | if (tb->lnum[0] >= vn->vn_nr_item && tb->lbytes == -1) | ||
1790 | if (is_left_neighbor_in_cache(tb, h) || ((tb->rnum[0] - ((tb->rbytes == -1) ? 0 : 1)) < vn->vn_nr_item) || /* S can not be merged with R */ | ||
1791 | !tb->FR[h]) { | ||
1792 | |||
1793 | RFALSE(!tb->FL[h], | ||
1794 | "vs-8245: dc_check_balance_leaf: FL[h] must exist"); | ||
1795 | |||
1796 | /* set parameter to merge S[0] with its left neighbor */ | ||
1797 | set_parameters(tb, h, -1, 0, 0, NULL, -1, -1); | ||
1798 | return CARRY_ON; | ||
1799 | } | ||
1800 | |||
1801 | /* check whether we can merge S[0] with right neighbor. */ | ||
1802 | if (tb->rnum[0] >= vn->vn_nr_item && tb->rbytes == -1) { | ||
1803 | set_parameters(tb, h, 0, -1, 0, NULL, -1, -1); | ||
1804 | return CARRY_ON; | ||
1805 | } | ||
1806 | |||
1807 | /* All contents of S[0] can be moved to the neighbors (L[0] & R[0]). Set parameters and return */ | ||
1808 | if (is_leaf_removable(tb)) | ||
1809 | return CARRY_ON; | ||
1810 | |||
1811 | /* Balancing is not required. */ | ||
1812 | tb->s0num = vn->vn_nr_item; | ||
1813 | set_parameters(tb, h, 0, 0, 1, NULL, -1, -1); | ||
1814 | return NO_BALANCING_NEEDED; | ||
1815 | } | ||
1764 | 1816 | ||
1765 | /* Check whether current node S[h] is balanced when Decreasing its size by | 1817 | /* Check whether current node S[h] is balanced when Decreasing its size by |
1766 | * Deleting or Cutting. | 1818 | * Deleting or Cutting. |
@@ -1775,18 +1827,17 @@ static int dc_check_balance_leaf (struct tree_balance * tb, int h) | |||
1775 | * -1 - no balancing for higher levels needed; | 1827 | * -1 - no balancing for higher levels needed; |
1776 | * -2 - no disk space. | 1828 | * -2 - no disk space. |
1777 | */ | 1829 | */ |
1778 | static int dc_check_balance (struct tree_balance * tb, int h) | 1830 | static int dc_check_balance(struct tree_balance *tb, int h) |
1779 | { | 1831 | { |
1780 | RFALSE( ! (PATH_H_PBUFFER (tb->tb_path, h)), "vs-8250: S is not initialized"); | 1832 | RFALSE(!(PATH_H_PBUFFER(tb->tb_path, h)), |
1833 | "vs-8250: S is not initialized"); | ||
1781 | 1834 | ||
1782 | if ( h ) | 1835 | if (h) |
1783 | return dc_check_balance_internal (tb, h); | 1836 | return dc_check_balance_internal(tb, h); |
1784 | else | 1837 | else |
1785 | return dc_check_balance_leaf (tb, h); | 1838 | return dc_check_balance_leaf(tb, h); |
1786 | } | 1839 | } |
1787 | 1840 | ||
1788 | |||
1789 | |||
1790 | /* Check whether current node S[h] is balanced. | 1841 | /* Check whether current node S[h] is balanced. |
1791 | * Calculate parameters for balancing for current level h. | 1842 | * Calculate parameters for balancing for current level h. |
1792 | * Parameters: | 1843 | * Parameters: |
@@ -1805,83 +1856,80 @@ static int dc_check_balance (struct tree_balance * tb, int h) | |||
1805 | * -1 - no balancing for higher levels needed; | 1856 | * -1 - no balancing for higher levels needed; |
1806 | * -2 - no disk space. | 1857 | * -2 - no disk space. |
1807 | */ | 1858 | */ |
1808 | static int check_balance (int mode, | 1859 | static int check_balance(int mode, |
1809 | struct tree_balance * tb, | 1860 | struct tree_balance *tb, |
1810 | int h, | 1861 | int h, |
1811 | int inum, | 1862 | int inum, |
1812 | int pos_in_item, | 1863 | int pos_in_item, |
1813 | struct item_head * ins_ih, | 1864 | struct item_head *ins_ih, const void *data) |
1814 | const void * data | ||
1815 | ) | ||
1816 | { | 1865 | { |
1817 | struct virtual_node * vn; | 1866 | struct virtual_node *vn; |
1818 | 1867 | ||
1819 | vn = tb->tb_vn = (struct virtual_node *)(tb->vn_buf); | 1868 | vn = tb->tb_vn = (struct virtual_node *)(tb->vn_buf); |
1820 | vn->vn_free_ptr = (char *)(tb->tb_vn + 1); | 1869 | vn->vn_free_ptr = (char *)(tb->tb_vn + 1); |
1821 | vn->vn_mode = mode; | 1870 | vn->vn_mode = mode; |
1822 | vn->vn_affected_item_num = inum; | 1871 | vn->vn_affected_item_num = inum; |
1823 | vn->vn_pos_in_item = pos_in_item; | 1872 | vn->vn_pos_in_item = pos_in_item; |
1824 | vn->vn_ins_ih = ins_ih; | 1873 | vn->vn_ins_ih = ins_ih; |
1825 | vn->vn_data = data; | 1874 | vn->vn_data = data; |
1826 | 1875 | ||
1827 | RFALSE( mode == M_INSERT && !vn->vn_ins_ih, | 1876 | RFALSE(mode == M_INSERT && !vn->vn_ins_ih, |
1828 | "vs-8255: ins_ih can not be 0 in insert mode"); | 1877 | "vs-8255: ins_ih can not be 0 in insert mode"); |
1829 | 1878 | ||
1830 | if ( tb->insert_size[h] > 0 ) | 1879 | if (tb->insert_size[h] > 0) |
1831 | /* Calculate balance parameters when size of node is increasing. */ | 1880 | /* Calculate balance parameters when size of node is increasing. */ |
1832 | return ip_check_balance (tb, h); | 1881 | return ip_check_balance(tb, h); |
1833 | 1882 | ||
1834 | /* Calculate balance parameters when size of node is decreasing. */ | 1883 | /* Calculate balance parameters when size of node is decreasing. */ |
1835 | return dc_check_balance (tb, h); | 1884 | return dc_check_balance(tb, h); |
1836 | } | 1885 | } |
1837 | 1886 | ||
1887 | /* Check whether parent at the path is the really parent of the current node.*/ | ||
1888 | static int get_direct_parent(struct tree_balance *p_s_tb, int n_h) | ||
1889 | { | ||
1890 | struct buffer_head *p_s_bh; | ||
1891 | struct path *p_s_path = p_s_tb->tb_path; | ||
1892 | int n_position, | ||
1893 | n_path_offset = PATH_H_PATH_OFFSET(p_s_tb->tb_path, n_h); | ||
1894 | |||
1895 | /* We are in the root or in the new root. */ | ||
1896 | if (n_path_offset <= FIRST_PATH_ELEMENT_OFFSET) { | ||
1897 | |||
1898 | RFALSE(n_path_offset < FIRST_PATH_ELEMENT_OFFSET - 1, | ||
1899 | "PAP-8260: invalid offset in the path"); | ||
1900 | |||
1901 | if (PATH_OFFSET_PBUFFER(p_s_path, FIRST_PATH_ELEMENT_OFFSET)-> | ||
1902 | b_blocknr == SB_ROOT_BLOCK(p_s_tb->tb_sb)) { | ||
1903 | /* Root is not changed. */ | ||
1904 | PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1) = NULL; | ||
1905 | PATH_OFFSET_POSITION(p_s_path, n_path_offset - 1) = 0; | ||
1906 | return CARRY_ON; | ||
1907 | } | ||
1908 | return REPEAT_SEARCH; /* Root is changed and we must recalculate the path. */ | ||
1909 | } | ||
1910 | |||
1911 | if (!B_IS_IN_TREE | ||
1912 | (p_s_bh = PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1))) | ||
1913 | return REPEAT_SEARCH; /* Parent in the path is not in the tree. */ | ||
1838 | 1914 | ||
1915 | if ((n_position = | ||
1916 | PATH_OFFSET_POSITION(p_s_path, | ||
1917 | n_path_offset - 1)) > B_NR_ITEMS(p_s_bh)) | ||
1918 | return REPEAT_SEARCH; | ||
1839 | 1919 | ||
1840 | /* Check whether parent at the path is the really parent of the current node.*/ | 1920 | if (B_N_CHILD_NUM(p_s_bh, n_position) != |
1841 | static int get_direct_parent( | 1921 | PATH_OFFSET_PBUFFER(p_s_path, n_path_offset)->b_blocknr) |
1842 | struct tree_balance * p_s_tb, | 1922 | /* Parent in the path is not parent of the current node in the tree. */ |
1843 | int n_h | 1923 | return REPEAT_SEARCH; |
1844 | ) { | 1924 | |
1845 | struct buffer_head * p_s_bh; | 1925 | if (buffer_locked(p_s_bh)) { |
1846 | struct path * p_s_path = p_s_tb->tb_path; | 1926 | __wait_on_buffer(p_s_bh); |
1847 | int n_position, | 1927 | if (FILESYSTEM_CHANGED_TB(p_s_tb)) |
1848 | n_path_offset = PATH_H_PATH_OFFSET(p_s_tb->tb_path, n_h); | 1928 | return REPEAT_SEARCH; |
1849 | |||
1850 | /* We are in the root or in the new root. */ | ||
1851 | if ( n_path_offset <= FIRST_PATH_ELEMENT_OFFSET ) { | ||
1852 | |||
1853 | RFALSE( n_path_offset < FIRST_PATH_ELEMENT_OFFSET - 1, | ||
1854 | "PAP-8260: invalid offset in the path"); | ||
1855 | |||
1856 | if ( PATH_OFFSET_PBUFFER(p_s_path, FIRST_PATH_ELEMENT_OFFSET)->b_blocknr == | ||
1857 | SB_ROOT_BLOCK (p_s_tb->tb_sb) ) { | ||
1858 | /* Root is not changed. */ | ||
1859 | PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1) = NULL; | ||
1860 | PATH_OFFSET_POSITION(p_s_path, n_path_offset - 1) = 0; | ||
1861 | return CARRY_ON; | ||
1862 | } | 1929 | } |
1863 | return REPEAT_SEARCH; /* Root is changed and we must recalculate the path. */ | ||
1864 | } | ||
1865 | |||
1866 | if ( ! B_IS_IN_TREE(p_s_bh = PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1)) ) | ||
1867 | return REPEAT_SEARCH; /* Parent in the path is not in the tree. */ | ||
1868 | |||
1869 | if ( (n_position = PATH_OFFSET_POSITION(p_s_path, n_path_offset - 1)) > B_NR_ITEMS(p_s_bh) ) | ||
1870 | return REPEAT_SEARCH; | ||
1871 | |||
1872 | if ( B_N_CHILD_NUM(p_s_bh, n_position) != PATH_OFFSET_PBUFFER(p_s_path, n_path_offset)->b_blocknr ) | ||
1873 | /* Parent in the path is not parent of the current node in the tree. */ | ||
1874 | return REPEAT_SEARCH; | ||
1875 | |||
1876 | if ( buffer_locked(p_s_bh) ) { | ||
1877 | __wait_on_buffer(p_s_bh); | ||
1878 | if ( FILESYSTEM_CHANGED_TB (p_s_tb) ) | ||
1879 | return REPEAT_SEARCH; | ||
1880 | } | ||
1881 | |||
1882 | return CARRY_ON; /* Parent in the path is unlocked and really parent of the current node. */ | ||
1883 | } | ||
1884 | 1930 | ||
1931 | return CARRY_ON; /* Parent in the path is unlocked and really parent of the current node. */ | ||
1932 | } | ||
1885 | 1933 | ||
1886 | /* Using lnum[n_h] and rnum[n_h] we should determine what neighbors | 1934 | /* Using lnum[n_h] and rnum[n_h] we should determine what neighbors |
1887 | * of S[n_h] we | 1935 | * of S[n_h] we |
@@ -1889,356 +1937,401 @@ static int get_direct_parent( | |||
1889 | * Returns: SCHEDULE_OCCURRED - schedule occurred while the function worked; | 1937 | * Returns: SCHEDULE_OCCURRED - schedule occurred while the function worked; |
1890 | * CARRY_ON - schedule didn't occur while the function worked; | 1938 | * CARRY_ON - schedule didn't occur while the function worked; |
1891 | */ | 1939 | */ |
1892 | static int get_neighbors( | 1940 | static int get_neighbors(struct tree_balance *p_s_tb, int n_h) |
1893 | struct tree_balance * p_s_tb, | 1941 | { |
1894 | int n_h | 1942 | int n_child_position, |
1895 | ) { | 1943 | n_path_offset = PATH_H_PATH_OFFSET(p_s_tb->tb_path, n_h + 1); |
1896 | int n_child_position, | 1944 | unsigned long n_son_number; |
1897 | n_path_offset = PATH_H_PATH_OFFSET(p_s_tb->tb_path, n_h + 1); | 1945 | struct super_block *p_s_sb = p_s_tb->tb_sb; |
1898 | unsigned long n_son_number; | 1946 | struct buffer_head *p_s_bh; |
1899 | struct super_block * p_s_sb = p_s_tb->tb_sb; | 1947 | |
1900 | struct buffer_head * p_s_bh; | 1948 | PROC_INFO_INC(p_s_sb, get_neighbors[n_h]); |
1901 | 1949 | ||
1902 | 1950 | if (p_s_tb->lnum[n_h]) { | |
1903 | PROC_INFO_INC( p_s_sb, get_neighbors[ n_h ] ); | 1951 | /* We need left neighbor to balance S[n_h]. */ |
1904 | 1952 | PROC_INFO_INC(p_s_sb, need_l_neighbor[n_h]); | |
1905 | if ( p_s_tb->lnum[n_h] ) { | 1953 | p_s_bh = PATH_OFFSET_PBUFFER(p_s_tb->tb_path, n_path_offset); |
1906 | /* We need left neighbor to balance S[n_h]. */ | 1954 | |
1907 | PROC_INFO_INC( p_s_sb, need_l_neighbor[ n_h ] ); | 1955 | RFALSE(p_s_bh == p_s_tb->FL[n_h] && |
1908 | p_s_bh = PATH_OFFSET_PBUFFER(p_s_tb->tb_path, n_path_offset); | 1956 | !PATH_OFFSET_POSITION(p_s_tb->tb_path, n_path_offset), |
1909 | 1957 | "PAP-8270: invalid position in the parent"); | |
1910 | RFALSE( p_s_bh == p_s_tb->FL[n_h] && | 1958 | |
1911 | ! PATH_OFFSET_POSITION(p_s_tb->tb_path, n_path_offset), | 1959 | n_child_position = |
1912 | "PAP-8270: invalid position in the parent"); | 1960 | (p_s_bh == |
1913 | 1961 | p_s_tb->FL[n_h]) ? p_s_tb->lkey[n_h] : B_NR_ITEMS(p_s_tb-> | |
1914 | n_child_position = ( p_s_bh == p_s_tb->FL[n_h] ) ? p_s_tb->lkey[n_h] : B_NR_ITEMS (p_s_tb->FL[n_h]); | 1962 | FL[n_h]); |
1915 | n_son_number = B_N_CHILD_NUM(p_s_tb->FL[n_h], n_child_position); | 1963 | n_son_number = B_N_CHILD_NUM(p_s_tb->FL[n_h], n_child_position); |
1916 | p_s_bh = sb_bread(p_s_sb, n_son_number); | 1964 | p_s_bh = sb_bread(p_s_sb, n_son_number); |
1917 | if (!p_s_bh) | 1965 | if (!p_s_bh) |
1918 | return IO_ERROR; | 1966 | return IO_ERROR; |
1919 | if ( FILESYSTEM_CHANGED_TB (p_s_tb) ) { | 1967 | if (FILESYSTEM_CHANGED_TB(p_s_tb)) { |
1920 | decrement_bcount(p_s_bh); | 1968 | decrement_bcount(p_s_bh); |
1921 | PROC_INFO_INC( p_s_sb, get_neighbors_restart[ n_h ] ); | 1969 | PROC_INFO_INC(p_s_sb, get_neighbors_restart[n_h]); |
1922 | return REPEAT_SEARCH; | 1970 | return REPEAT_SEARCH; |
1971 | } | ||
1972 | |||
1973 | RFALSE(!B_IS_IN_TREE(p_s_tb->FL[n_h]) || | ||
1974 | n_child_position > B_NR_ITEMS(p_s_tb->FL[n_h]) || | ||
1975 | B_N_CHILD_NUM(p_s_tb->FL[n_h], n_child_position) != | ||
1976 | p_s_bh->b_blocknr, "PAP-8275: invalid parent"); | ||
1977 | RFALSE(!B_IS_IN_TREE(p_s_bh), "PAP-8280: invalid child"); | ||
1978 | RFALSE(!n_h && | ||
1979 | B_FREE_SPACE(p_s_bh) != | ||
1980 | MAX_CHILD_SIZE(p_s_bh) - | ||
1981 | dc_size(B_N_CHILD(p_s_tb->FL[0], n_child_position)), | ||
1982 | "PAP-8290: invalid child size of left neighbor"); | ||
1983 | |||
1984 | decrement_bcount(p_s_tb->L[n_h]); | ||
1985 | p_s_tb->L[n_h] = p_s_bh; | ||
1923 | } | 1986 | } |
1924 | 1987 | ||
1925 | RFALSE( ! B_IS_IN_TREE(p_s_tb->FL[n_h]) || | 1988 | if (p_s_tb->rnum[n_h]) { /* We need right neighbor to balance S[n_path_offset]. */ |
1926 | n_child_position > B_NR_ITEMS(p_s_tb->FL[n_h]) || | 1989 | PROC_INFO_INC(p_s_sb, need_r_neighbor[n_h]); |
1927 | B_N_CHILD_NUM(p_s_tb->FL[n_h], n_child_position) != | 1990 | p_s_bh = PATH_OFFSET_PBUFFER(p_s_tb->tb_path, n_path_offset); |
1928 | p_s_bh->b_blocknr, "PAP-8275: invalid parent"); | 1991 | |
1929 | RFALSE( ! B_IS_IN_TREE(p_s_bh), "PAP-8280: invalid child"); | 1992 | RFALSE(p_s_bh == p_s_tb->FR[n_h] && |
1930 | RFALSE( ! n_h && | 1993 | PATH_OFFSET_POSITION(p_s_tb->tb_path, |
1931 | B_FREE_SPACE (p_s_bh) != MAX_CHILD_SIZE (p_s_bh) - dc_size(B_N_CHILD (p_s_tb->FL[0],n_child_position)), | 1994 | n_path_offset) >= |
1932 | "PAP-8290: invalid child size of left neighbor"); | 1995 | B_NR_ITEMS(p_s_bh), |
1933 | 1996 | "PAP-8295: invalid position in the parent"); | |
1934 | decrement_bcount(p_s_tb->L[n_h]); | 1997 | |
1935 | p_s_tb->L[n_h] = p_s_bh; | 1998 | n_child_position = |
1936 | } | 1999 | (p_s_bh == p_s_tb->FR[n_h]) ? p_s_tb->rkey[n_h] + 1 : 0; |
1937 | 2000 | n_son_number = B_N_CHILD_NUM(p_s_tb->FR[n_h], n_child_position); | |
1938 | 2001 | p_s_bh = sb_bread(p_s_sb, n_son_number); | |
1939 | if ( p_s_tb->rnum[n_h] ) { /* We need right neighbor to balance S[n_path_offset]. */ | 2002 | if (!p_s_bh) |
1940 | PROC_INFO_INC( p_s_sb, need_r_neighbor[ n_h ] ); | 2003 | return IO_ERROR; |
1941 | p_s_bh = PATH_OFFSET_PBUFFER(p_s_tb->tb_path, n_path_offset); | 2004 | if (FILESYSTEM_CHANGED_TB(p_s_tb)) { |
1942 | 2005 | decrement_bcount(p_s_bh); | |
1943 | RFALSE( p_s_bh == p_s_tb->FR[n_h] && | 2006 | PROC_INFO_INC(p_s_sb, get_neighbors_restart[n_h]); |
1944 | PATH_OFFSET_POSITION(p_s_tb->tb_path, n_path_offset) >= B_NR_ITEMS(p_s_bh), | 2007 | return REPEAT_SEARCH; |
1945 | "PAP-8295: invalid position in the parent"); | 2008 | } |
1946 | 2009 | decrement_bcount(p_s_tb->R[n_h]); | |
1947 | n_child_position = ( p_s_bh == p_s_tb->FR[n_h] ) ? p_s_tb->rkey[n_h] + 1 : 0; | 2010 | p_s_tb->R[n_h] = p_s_bh; |
1948 | n_son_number = B_N_CHILD_NUM(p_s_tb->FR[n_h], n_child_position); | 2011 | |
1949 | p_s_bh = sb_bread(p_s_sb, n_son_number); | 2012 | RFALSE(!n_h |
1950 | if (!p_s_bh) | 2013 | && B_FREE_SPACE(p_s_bh) != |
1951 | return IO_ERROR; | 2014 | MAX_CHILD_SIZE(p_s_bh) - |
1952 | if ( FILESYSTEM_CHANGED_TB (p_s_tb) ) { | 2015 | dc_size(B_N_CHILD(p_s_tb->FR[0], n_child_position)), |
1953 | decrement_bcount(p_s_bh); | 2016 | "PAP-8300: invalid child size of right neighbor (%d != %d - %d)", |
1954 | PROC_INFO_INC( p_s_sb, get_neighbors_restart[ n_h ] ); | 2017 | B_FREE_SPACE(p_s_bh), MAX_CHILD_SIZE(p_s_bh), |
1955 | return REPEAT_SEARCH; | 2018 | dc_size(B_N_CHILD(p_s_tb->FR[0], n_child_position))); |
2019 | |||
1956 | } | 2020 | } |
1957 | decrement_bcount(p_s_tb->R[n_h]); | 2021 | return CARRY_ON; |
1958 | p_s_tb->R[n_h] = p_s_bh; | ||
1959 | |||
1960 | RFALSE( ! n_h && B_FREE_SPACE (p_s_bh) != MAX_CHILD_SIZE (p_s_bh) - dc_size(B_N_CHILD (p_s_tb->FR[0],n_child_position)), | ||
1961 | "PAP-8300: invalid child size of right neighbor (%d != %d - %d)", | ||
1962 | B_FREE_SPACE (p_s_bh), MAX_CHILD_SIZE (p_s_bh), | ||
1963 | dc_size(B_N_CHILD (p_s_tb->FR[0],n_child_position))); | ||
1964 | |||
1965 | } | ||
1966 | return CARRY_ON; | ||
1967 | } | 2022 | } |
1968 | 2023 | ||
1969 | #ifdef CONFIG_REISERFS_CHECK | 2024 | #ifdef CONFIG_REISERFS_CHECK |
1970 | void * reiserfs_kmalloc (size_t size, int flags, struct super_block * s) | 2025 | void *reiserfs_kmalloc(size_t size, int flags, struct super_block *s) |
1971 | { | 2026 | { |
1972 | void * vp; | 2027 | void *vp; |
1973 | static size_t malloced; | 2028 | static size_t malloced; |
1974 | 2029 | ||
1975 | 2030 | vp = kmalloc(size, flags); | |
1976 | vp = kmalloc (size, flags); | 2031 | if (vp) { |
1977 | if (vp) { | 2032 | REISERFS_SB(s)->s_kmallocs += size; |
1978 | REISERFS_SB(s)->s_kmallocs += size; | 2033 | if (REISERFS_SB(s)->s_kmallocs > malloced + 200000) { |
1979 | if (REISERFS_SB(s)->s_kmallocs > malloced + 200000) { | 2034 | reiserfs_warning(s, |
1980 | reiserfs_warning (s, | 2035 | "vs-8301: reiserfs_kmalloc: allocated memory %d", |
1981 | "vs-8301: reiserfs_kmalloc: allocated memory %d", | 2036 | REISERFS_SB(s)->s_kmallocs); |
1982 | REISERFS_SB(s)->s_kmallocs); | 2037 | malloced = REISERFS_SB(s)->s_kmallocs; |
1983 | malloced = REISERFS_SB(s)->s_kmallocs; | 2038 | } |
1984 | } | 2039 | } |
1985 | } | 2040 | return vp; |
1986 | return vp; | ||
1987 | } | 2041 | } |
1988 | 2042 | ||
1989 | void reiserfs_kfree (const void * vp, size_t size, struct super_block * s) | 2043 | void reiserfs_kfree(const void *vp, size_t size, struct super_block *s) |
1990 | { | 2044 | { |
1991 | kfree (vp); | 2045 | kfree(vp); |
1992 | 2046 | ||
1993 | REISERFS_SB(s)->s_kmallocs -= size; | 2047 | REISERFS_SB(s)->s_kmallocs -= size; |
1994 | if (REISERFS_SB(s)->s_kmallocs < 0) | 2048 | if (REISERFS_SB(s)->s_kmallocs < 0) |
1995 | reiserfs_warning (s, "vs-8302: reiserfs_kfree: allocated memory %d", | 2049 | reiserfs_warning(s, |
1996 | REISERFS_SB(s)->s_kmallocs); | 2050 | "vs-8302: reiserfs_kfree: allocated memory %d", |
2051 | REISERFS_SB(s)->s_kmallocs); | ||
1997 | 2052 | ||
1998 | } | 2053 | } |
1999 | #endif | 2054 | #endif |
2000 | 2055 | ||
2001 | 2056 | static int get_virtual_node_size(struct super_block *sb, struct buffer_head *bh) | |
2002 | static int get_virtual_node_size (struct super_block * sb, struct buffer_head * bh) | ||
2003 | { | 2057 | { |
2004 | int max_num_of_items; | 2058 | int max_num_of_items; |
2005 | int max_num_of_entries; | 2059 | int max_num_of_entries; |
2006 | unsigned long blocksize = sb->s_blocksize; | 2060 | unsigned long blocksize = sb->s_blocksize; |
2007 | 2061 | ||
2008 | #define MIN_NAME_LEN 1 | 2062 | #define MIN_NAME_LEN 1 |
2009 | 2063 | ||
2010 | max_num_of_items = (blocksize - BLKH_SIZE) / (IH_SIZE + MIN_ITEM_LEN); | 2064 | max_num_of_items = (blocksize - BLKH_SIZE) / (IH_SIZE + MIN_ITEM_LEN); |
2011 | max_num_of_entries = (blocksize - BLKH_SIZE - IH_SIZE) / | 2065 | max_num_of_entries = (blocksize - BLKH_SIZE - IH_SIZE) / |
2012 | (DEH_SIZE + MIN_NAME_LEN); | 2066 | (DEH_SIZE + MIN_NAME_LEN); |
2013 | 2067 | ||
2014 | return sizeof(struct virtual_node) + | 2068 | return sizeof(struct virtual_node) + |
2015 | max(max_num_of_items * sizeof (struct virtual_item), | 2069 | max(max_num_of_items * sizeof(struct virtual_item), |
2016 | sizeof (struct virtual_item) + sizeof(struct direntry_uarea) + | 2070 | sizeof(struct virtual_item) + sizeof(struct direntry_uarea) + |
2017 | (max_num_of_entries - 1) * sizeof (__u16)); | 2071 | (max_num_of_entries - 1) * sizeof(__u16)); |
2018 | } | 2072 | } |
2019 | 2073 | ||
2020 | |||
2021 | |||
2022 | /* maybe we should fail balancing we are going to perform when kmalloc | 2074 | /* maybe we should fail balancing we are going to perform when kmalloc |
2023 | fails several times. But now it will loop until kmalloc gets | 2075 | fails several times. But now it will loop until kmalloc gets |
2024 | required memory */ | 2076 | required memory */ |
2025 | static int get_mem_for_virtual_node (struct tree_balance * tb) | 2077 | static int get_mem_for_virtual_node(struct tree_balance *tb) |
2026 | { | 2078 | { |
2027 | int check_fs = 0; | 2079 | int check_fs = 0; |
2028 | int size; | 2080 | int size; |
2029 | char * buf; | 2081 | char *buf; |
2030 | 2082 | ||
2031 | size = get_virtual_node_size (tb->tb_sb, PATH_PLAST_BUFFER (tb->tb_path)); | 2083 | size = get_virtual_node_size(tb->tb_sb, PATH_PLAST_BUFFER(tb->tb_path)); |
2032 | 2084 | ||
2033 | if (size > tb->vn_buf_size) { | 2085 | if (size > tb->vn_buf_size) { |
2034 | /* we have to allocate more memory for virtual node */ | 2086 | /* we have to allocate more memory for virtual node */ |
2035 | if (tb->vn_buf) { | 2087 | if (tb->vn_buf) { |
2036 | /* free memory allocated before */ | 2088 | /* free memory allocated before */ |
2037 | reiserfs_kfree (tb->vn_buf, tb->vn_buf_size, tb->tb_sb); | 2089 | reiserfs_kfree(tb->vn_buf, tb->vn_buf_size, tb->tb_sb); |
2038 | /* this is not needed if kfree is atomic */ | 2090 | /* this is not needed if kfree is atomic */ |
2039 | check_fs = 1; | 2091 | check_fs = 1; |
2040 | } | 2092 | } |
2041 | 2093 | ||
2042 | /* virtual node requires now more memory */ | 2094 | /* virtual node requires now more memory */ |
2043 | tb->vn_buf_size = size; | 2095 | tb->vn_buf_size = size; |
2044 | 2096 | ||
2045 | /* get memory for virtual item */ | 2097 | /* get memory for virtual item */ |
2046 | buf = reiserfs_kmalloc(size, GFP_ATOMIC | __GFP_NOWARN, tb->tb_sb); | 2098 | buf = |
2047 | if ( ! buf ) { | 2099 | reiserfs_kmalloc(size, GFP_ATOMIC | __GFP_NOWARN, |
2048 | /* getting memory with GFP_KERNEL priority may involve | 2100 | tb->tb_sb); |
2049 | balancing now (due to indirect_to_direct conversion on | 2101 | if (!buf) { |
2050 | dcache shrinking). So, release path and collected | 2102 | /* getting memory with GFP_KERNEL priority may involve |
2051 | resources here */ | 2103 | balancing now (due to indirect_to_direct conversion on |
2052 | free_buffers_in_tb (tb); | 2104 | dcache shrinking). So, release path and collected |
2053 | buf = reiserfs_kmalloc(size, GFP_NOFS, tb->tb_sb); | 2105 | resources here */ |
2054 | if ( !buf ) { | 2106 | free_buffers_in_tb(tb); |
2107 | buf = reiserfs_kmalloc(size, GFP_NOFS, tb->tb_sb); | ||
2108 | if (!buf) { | ||
2055 | #ifdef CONFIG_REISERFS_CHECK | 2109 | #ifdef CONFIG_REISERFS_CHECK |
2056 | reiserfs_warning (tb->tb_sb, | 2110 | reiserfs_warning(tb->tb_sb, |
2057 | "vs-8345: get_mem_for_virtual_node: " | 2111 | "vs-8345: get_mem_for_virtual_node: " |
2058 | "kmalloc failed. reiserfs kmalloced %d bytes", | 2112 | "kmalloc failed. reiserfs kmalloced %d bytes", |
2059 | REISERFS_SB(tb->tb_sb)->s_kmallocs); | 2113 | REISERFS_SB(tb->tb_sb)-> |
2114 | s_kmallocs); | ||
2060 | #endif | 2115 | #endif |
2061 | tb->vn_buf_size = 0; | 2116 | tb->vn_buf_size = 0; |
2062 | } | 2117 | } |
2063 | tb->vn_buf = buf; | 2118 | tb->vn_buf = buf; |
2064 | schedule() ; | 2119 | schedule(); |
2065 | return REPEAT_SEARCH; | 2120 | return REPEAT_SEARCH; |
2066 | } | 2121 | } |
2067 | 2122 | ||
2068 | tb->vn_buf = buf; | 2123 | tb->vn_buf = buf; |
2069 | } | 2124 | } |
2070 | 2125 | ||
2071 | if ( check_fs && FILESYSTEM_CHANGED_TB (tb) ) | 2126 | if (check_fs && FILESYSTEM_CHANGED_TB(tb)) |
2072 | return REPEAT_SEARCH; | 2127 | return REPEAT_SEARCH; |
2073 | 2128 | ||
2074 | return CARRY_ON; | 2129 | return CARRY_ON; |
2075 | } | 2130 | } |
2076 | 2131 | ||
2077 | |||
2078 | #ifdef CONFIG_REISERFS_CHECK | 2132 | #ifdef CONFIG_REISERFS_CHECK |
2079 | static void tb_buffer_sanity_check (struct super_block * p_s_sb, | 2133 | static void tb_buffer_sanity_check(struct super_block *p_s_sb, |
2080 | struct buffer_head * p_s_bh, | 2134 | struct buffer_head *p_s_bh, |
2081 | const char *descr, int level) { | 2135 | const char *descr, int level) |
2082 | if (p_s_bh) { | ||
2083 | if (atomic_read (&(p_s_bh->b_count)) <= 0) { | ||
2084 | |||
2085 | reiserfs_panic (p_s_sb, "jmacd-1: tb_buffer_sanity_check(): negative or zero reference counter for buffer %s[%d] (%b)\n", descr, level, p_s_bh); | ||
2086 | } | ||
2087 | |||
2088 | if ( ! buffer_uptodate (p_s_bh) ) { | ||
2089 | reiserfs_panic (p_s_sb, "jmacd-2: tb_buffer_sanity_check(): buffer is not up to date %s[%d] (%b)\n", descr, level, p_s_bh); | ||
2090 | } | ||
2091 | |||
2092 | if ( ! B_IS_IN_TREE (p_s_bh) ) { | ||
2093 | reiserfs_panic (p_s_sb, "jmacd-3: tb_buffer_sanity_check(): buffer is not in tree %s[%d] (%b)\n", descr, level, p_s_bh); | ||
2094 | } | ||
2095 | |||
2096 | if (p_s_bh->b_bdev != p_s_sb->s_bdev) { | ||
2097 | reiserfs_panic (p_s_sb, "jmacd-4: tb_buffer_sanity_check(): buffer has wrong device %s[%d] (%b)\n", descr, level, p_s_bh); | ||
2098 | } | ||
2099 | |||
2100 | if (p_s_bh->b_size != p_s_sb->s_blocksize) { | ||
2101 | reiserfs_panic (p_s_sb, "jmacd-5: tb_buffer_sanity_check(): buffer has wrong blocksize %s[%d] (%b)\n", descr, level, p_s_bh); | ||
2102 | } | ||
2103 | |||
2104 | if (p_s_bh->b_blocknr > SB_BLOCK_COUNT(p_s_sb)) { | ||
2105 | reiserfs_panic (p_s_sb, "jmacd-6: tb_buffer_sanity_check(): buffer block number too high %s[%d] (%b)\n", descr, level, p_s_bh); | ||
2106 | } | ||
2107 | } | ||
2108 | } | ||
2109 | #else | ||
2110 | static void tb_buffer_sanity_check (struct super_block * p_s_sb, | ||
2111 | struct buffer_head * p_s_bh, | ||
2112 | const char *descr, int level) | ||
2113 | {;} | ||
2114 | #endif | ||
2115 | |||
2116 | static int clear_all_dirty_bits(struct super_block *s, | ||
2117 | struct buffer_head *bh) { | ||
2118 | return reiserfs_prepare_for_journal(s, bh, 0) ; | ||
2119 | } | ||
2120 | |||
2121 | static int wait_tb_buffers_until_unlocked (struct tree_balance * p_s_tb) | ||
2122 | { | 2136 | { |
2123 | struct buffer_head * locked; | 2137 | if (p_s_bh) { |
2124 | #ifdef CONFIG_REISERFS_CHECK | 2138 | if (atomic_read(&(p_s_bh->b_count)) <= 0) { |
2125 | int repeat_counter = 0; | ||
2126 | #endif | ||
2127 | int i; | ||
2128 | 2139 | ||
2129 | do { | 2140 | reiserfs_panic(p_s_sb, |
2130 | 2141 | "jmacd-1: tb_buffer_sanity_check(): negative or zero reference counter for buffer %s[%d] (%b)\n", | |
2131 | locked = NULL; | 2142 | descr, level, p_s_bh); |
2132 | |||
2133 | for ( i = p_s_tb->tb_path->path_length; !locked && i > ILLEGAL_PATH_ELEMENT_OFFSET; i-- ) { | ||
2134 | if ( PATH_OFFSET_PBUFFER (p_s_tb->tb_path, i) ) { | ||
2135 | /* if I understand correctly, we can only be sure the last buffer | ||
2136 | ** in the path is in the tree --clm | ||
2137 | */ | ||
2138 | #ifdef CONFIG_REISERFS_CHECK | ||
2139 | if (PATH_PLAST_BUFFER(p_s_tb->tb_path) == | ||
2140 | PATH_OFFSET_PBUFFER(p_s_tb->tb_path, i)) { | ||
2141 | tb_buffer_sanity_check (p_s_tb->tb_sb, | ||
2142 | PATH_OFFSET_PBUFFER (p_s_tb->tb_path, i), | ||
2143 | "S", | ||
2144 | p_s_tb->tb_path->path_length - i); | ||
2145 | } | 2143 | } |
2146 | #endif | ||
2147 | if (!clear_all_dirty_bits(p_s_tb->tb_sb, | ||
2148 | PATH_OFFSET_PBUFFER (p_s_tb->tb_path, i))) | ||
2149 | { | ||
2150 | locked = PATH_OFFSET_PBUFFER (p_s_tb->tb_path, i); | ||
2151 | } | ||
2152 | } | ||
2153 | } | ||
2154 | 2144 | ||
2155 | for ( i = 0; !locked && i < MAX_HEIGHT && p_s_tb->insert_size[i]; i++ ) { | 2145 | if (!buffer_uptodate(p_s_bh)) { |
2146 | reiserfs_panic(p_s_sb, | ||
2147 | "jmacd-2: tb_buffer_sanity_check(): buffer is not up to date %s[%d] (%b)\n", | ||
2148 | descr, level, p_s_bh); | ||
2149 | } | ||
2156 | 2150 | ||
2157 | if (p_s_tb->lnum[i] ) { | 2151 | if (!B_IS_IN_TREE(p_s_bh)) { |
2152 | reiserfs_panic(p_s_sb, | ||
2153 | "jmacd-3: tb_buffer_sanity_check(): buffer is not in tree %s[%d] (%b)\n", | ||
2154 | descr, level, p_s_bh); | ||
2155 | } | ||
2158 | 2156 | ||
2159 | if ( p_s_tb->L[i] ) { | 2157 | if (p_s_bh->b_bdev != p_s_sb->s_bdev) { |
2160 | tb_buffer_sanity_check (p_s_tb->tb_sb, p_s_tb->L[i], "L", i); | 2158 | reiserfs_panic(p_s_sb, |
2161 | if (!clear_all_dirty_bits(p_s_tb->tb_sb, p_s_tb->L[i])) | 2159 | "jmacd-4: tb_buffer_sanity_check(): buffer has wrong device %s[%d] (%b)\n", |
2162 | locked = p_s_tb->L[i]; | 2160 | descr, level, p_s_bh); |
2163 | } | 2161 | } |
2164 | 2162 | ||
2165 | if ( !locked && p_s_tb->FL[i] ) { | 2163 | if (p_s_bh->b_size != p_s_sb->s_blocksize) { |
2166 | tb_buffer_sanity_check (p_s_tb->tb_sb, p_s_tb->FL[i], "FL", i); | 2164 | reiserfs_panic(p_s_sb, |
2167 | if (!clear_all_dirty_bits(p_s_tb->tb_sb, p_s_tb->FL[i])) | 2165 | "jmacd-5: tb_buffer_sanity_check(): buffer has wrong blocksize %s[%d] (%b)\n", |
2168 | locked = p_s_tb->FL[i]; | 2166 | descr, level, p_s_bh); |
2169 | } | 2167 | } |
2170 | 2168 | ||
2171 | if ( !locked && p_s_tb->CFL[i] ) { | 2169 | if (p_s_bh->b_blocknr > SB_BLOCK_COUNT(p_s_sb)) { |
2172 | tb_buffer_sanity_check (p_s_tb->tb_sb, p_s_tb->CFL[i], "CFL", i); | 2170 | reiserfs_panic(p_s_sb, |
2173 | if (!clear_all_dirty_bits(p_s_tb->tb_sb, p_s_tb->CFL[i])) | 2171 | "jmacd-6: tb_buffer_sanity_check(): buffer block number too high %s[%d] (%b)\n", |
2174 | locked = p_s_tb->CFL[i]; | 2172 | descr, level, p_s_bh); |
2175 | } | 2173 | } |
2174 | } | ||
2175 | } | ||
2176 | #else | ||
2177 | static void tb_buffer_sanity_check(struct super_block *p_s_sb, | ||
2178 | struct buffer_head *p_s_bh, | ||
2179 | const char *descr, int level) | ||
2180 | {; | ||
2181 | } | ||
2182 | #endif | ||
2176 | 2183 | ||
2177 | } | 2184 | static int clear_all_dirty_bits(struct super_block *s, struct buffer_head *bh) |
2185 | { | ||
2186 | return reiserfs_prepare_for_journal(s, bh, 0); | ||
2187 | } | ||
2178 | 2188 | ||
2179 | if ( !locked && (p_s_tb->rnum[i]) ) { | 2189 | static int wait_tb_buffers_until_unlocked(struct tree_balance *p_s_tb) |
2190 | { | ||
2191 | struct buffer_head *locked; | ||
2192 | #ifdef CONFIG_REISERFS_CHECK | ||
2193 | int repeat_counter = 0; | ||
2194 | #endif | ||
2195 | int i; | ||
2180 | 2196 | ||
2181 | if ( p_s_tb->R[i] ) { | 2197 | do { |
2182 | tb_buffer_sanity_check (p_s_tb->tb_sb, p_s_tb->R[i], "R", i); | ||
2183 | if (!clear_all_dirty_bits(p_s_tb->tb_sb, p_s_tb->R[i])) | ||
2184 | locked = p_s_tb->R[i]; | ||
2185 | } | ||
2186 | 2198 | ||
2187 | 2199 | locked = NULL; | |
2188 | if ( !locked && p_s_tb->FR[i] ) { | 2200 | |
2189 | tb_buffer_sanity_check (p_s_tb->tb_sb, p_s_tb->FR[i], "FR", i); | 2201 | for (i = p_s_tb->tb_path->path_length; |
2190 | if (!clear_all_dirty_bits(p_s_tb->tb_sb, p_s_tb->FR[i])) | 2202 | !locked && i > ILLEGAL_PATH_ELEMENT_OFFSET; i--) { |
2191 | locked = p_s_tb->FR[i]; | 2203 | if (PATH_OFFSET_PBUFFER(p_s_tb->tb_path, i)) { |
2204 | /* if I understand correctly, we can only be sure the last buffer | ||
2205 | ** in the path is in the tree --clm | ||
2206 | */ | ||
2207 | #ifdef CONFIG_REISERFS_CHECK | ||
2208 | if (PATH_PLAST_BUFFER(p_s_tb->tb_path) == | ||
2209 | PATH_OFFSET_PBUFFER(p_s_tb->tb_path, i)) { | ||
2210 | tb_buffer_sanity_check(p_s_tb->tb_sb, | ||
2211 | PATH_OFFSET_PBUFFER | ||
2212 | (p_s_tb->tb_path, | ||
2213 | i), "S", | ||
2214 | p_s_tb->tb_path-> | ||
2215 | path_length - i); | ||
2216 | } | ||
2217 | #endif | ||
2218 | if (!clear_all_dirty_bits(p_s_tb->tb_sb, | ||
2219 | PATH_OFFSET_PBUFFER | ||
2220 | (p_s_tb->tb_path, | ||
2221 | i))) { | ||
2222 | locked = | ||
2223 | PATH_OFFSET_PBUFFER(p_s_tb->tb_path, | ||
2224 | i); | ||
2225 | } | ||
2226 | } | ||
2192 | } | 2227 | } |
2193 | 2228 | ||
2194 | if ( !locked && p_s_tb->CFR[i] ) { | 2229 | for (i = 0; !locked && i < MAX_HEIGHT && p_s_tb->insert_size[i]; |
2195 | tb_buffer_sanity_check (p_s_tb->tb_sb, p_s_tb->CFR[i], "CFR", i); | 2230 | i++) { |
2196 | if (!clear_all_dirty_bits(p_s_tb->tb_sb, p_s_tb->CFR[i])) | 2231 | |
2197 | locked = p_s_tb->CFR[i]; | 2232 | if (p_s_tb->lnum[i]) { |
2233 | |||
2234 | if (p_s_tb->L[i]) { | ||
2235 | tb_buffer_sanity_check(p_s_tb->tb_sb, | ||
2236 | p_s_tb->L[i], | ||
2237 | "L", i); | ||
2238 | if (!clear_all_dirty_bits | ||
2239 | (p_s_tb->tb_sb, p_s_tb->L[i])) | ||
2240 | locked = p_s_tb->L[i]; | ||
2241 | } | ||
2242 | |||
2243 | if (!locked && p_s_tb->FL[i]) { | ||
2244 | tb_buffer_sanity_check(p_s_tb->tb_sb, | ||
2245 | p_s_tb->FL[i], | ||
2246 | "FL", i); | ||
2247 | if (!clear_all_dirty_bits | ||
2248 | (p_s_tb->tb_sb, p_s_tb->FL[i])) | ||
2249 | locked = p_s_tb->FL[i]; | ||
2250 | } | ||
2251 | |||
2252 | if (!locked && p_s_tb->CFL[i]) { | ||
2253 | tb_buffer_sanity_check(p_s_tb->tb_sb, | ||
2254 | p_s_tb->CFL[i], | ||
2255 | "CFL", i); | ||
2256 | if (!clear_all_dirty_bits | ||
2257 | (p_s_tb->tb_sb, p_s_tb->CFL[i])) | ||
2258 | locked = p_s_tb->CFL[i]; | ||
2259 | } | ||
2260 | |||
2261 | } | ||
2262 | |||
2263 | if (!locked && (p_s_tb->rnum[i])) { | ||
2264 | |||
2265 | if (p_s_tb->R[i]) { | ||
2266 | tb_buffer_sanity_check(p_s_tb->tb_sb, | ||
2267 | p_s_tb->R[i], | ||
2268 | "R", i); | ||
2269 | if (!clear_all_dirty_bits | ||
2270 | (p_s_tb->tb_sb, p_s_tb->R[i])) | ||
2271 | locked = p_s_tb->R[i]; | ||
2272 | } | ||
2273 | |||
2274 | if (!locked && p_s_tb->FR[i]) { | ||
2275 | tb_buffer_sanity_check(p_s_tb->tb_sb, | ||
2276 | p_s_tb->FR[i], | ||
2277 | "FR", i); | ||
2278 | if (!clear_all_dirty_bits | ||
2279 | (p_s_tb->tb_sb, p_s_tb->FR[i])) | ||
2280 | locked = p_s_tb->FR[i]; | ||
2281 | } | ||
2282 | |||
2283 | if (!locked && p_s_tb->CFR[i]) { | ||
2284 | tb_buffer_sanity_check(p_s_tb->tb_sb, | ||
2285 | p_s_tb->CFR[i], | ||
2286 | "CFR", i); | ||
2287 | if (!clear_all_dirty_bits | ||
2288 | (p_s_tb->tb_sb, p_s_tb->CFR[i])) | ||
2289 | locked = p_s_tb->CFR[i]; | ||
2290 | } | ||
2291 | } | ||
2292 | } | ||
2293 | /* as far as I can tell, this is not required. The FEB list seems | ||
2294 | ** to be full of newly allocated nodes, which will never be locked, | ||
2295 | ** dirty, or anything else. | ||
2296 | ** To be safe, I'm putting in the checks and waits in. For the moment, | ||
2297 | ** they are needed to keep the code in journal.c from complaining | ||
2298 | ** about the buffer. That code is inside CONFIG_REISERFS_CHECK as well. | ||
2299 | ** --clm | ||
2300 | */ | ||
2301 | for (i = 0; !locked && i < MAX_FEB_SIZE; i++) { | ||
2302 | if (p_s_tb->FEB[i]) { | ||
2303 | if (!clear_all_dirty_bits | ||
2304 | (p_s_tb->tb_sb, p_s_tb->FEB[i])) | ||
2305 | locked = p_s_tb->FEB[i]; | ||
2306 | } | ||
2198 | } | 2307 | } |
2199 | } | ||
2200 | } | ||
2201 | /* as far as I can tell, this is not required. The FEB list seems | ||
2202 | ** to be full of newly allocated nodes, which will never be locked, | ||
2203 | ** dirty, or anything else. | ||
2204 | ** To be safe, I'm putting in the checks and waits in. For the moment, | ||
2205 | ** they are needed to keep the code in journal.c from complaining | ||
2206 | ** about the buffer. That code is inside CONFIG_REISERFS_CHECK as well. | ||
2207 | ** --clm | ||
2208 | */ | ||
2209 | for ( i = 0; !locked && i < MAX_FEB_SIZE; i++ ) { | ||
2210 | if ( p_s_tb->FEB[i] ) { | ||
2211 | if (!clear_all_dirty_bits(p_s_tb->tb_sb, p_s_tb->FEB[i])) | ||
2212 | locked = p_s_tb->FEB[i] ; | ||
2213 | } | ||
2214 | } | ||
2215 | 2308 | ||
2216 | if (locked) { | 2309 | if (locked) { |
2217 | #ifdef CONFIG_REISERFS_CHECK | 2310 | #ifdef CONFIG_REISERFS_CHECK |
2218 | repeat_counter++; | 2311 | repeat_counter++; |
2219 | if ( (repeat_counter % 10000) == 0) { | 2312 | if ((repeat_counter % 10000) == 0) { |
2220 | reiserfs_warning (p_s_tb->tb_sb, | 2313 | reiserfs_warning(p_s_tb->tb_sb, |
2221 | "wait_tb_buffers_until_released(): too many " | 2314 | "wait_tb_buffers_until_released(): too many " |
2222 | "iterations waiting for buffer to unlock " | 2315 | "iterations waiting for buffer to unlock " |
2223 | "(%b)", locked); | 2316 | "(%b)", locked); |
2224 | 2317 | ||
2225 | /* Don't loop forever. Try to recover from possible error. */ | 2318 | /* Don't loop forever. Try to recover from possible error. */ |
2226 | 2319 | ||
2227 | return ( FILESYSTEM_CHANGED_TB (p_s_tb) ) ? REPEAT_SEARCH : CARRY_ON; | 2320 | return (FILESYSTEM_CHANGED_TB(p_s_tb)) ? |
2228 | } | 2321 | REPEAT_SEARCH : CARRY_ON; |
2322 | } | ||
2229 | #endif | 2323 | #endif |
2230 | __wait_on_buffer (locked); | 2324 | __wait_on_buffer(locked); |
2231 | if ( FILESYSTEM_CHANGED_TB (p_s_tb) ) { | 2325 | if (FILESYSTEM_CHANGED_TB(p_s_tb)) { |
2232 | return REPEAT_SEARCH; | 2326 | return REPEAT_SEARCH; |
2233 | } | 2327 | } |
2234 | } | 2328 | } |
2235 | 2329 | ||
2236 | } while (locked); | 2330 | } while (locked); |
2237 | 2331 | ||
2238 | return CARRY_ON; | 2332 | return CARRY_ON; |
2239 | } | 2333 | } |
2240 | 2334 | ||
2241 | |||
2242 | /* Prepare for balancing, that is | 2335 | /* Prepare for balancing, that is |
2243 | * get all necessary parents, and neighbors; | 2336 | * get all necessary parents, and neighbors; |
2244 | * analyze what and where should be moved; | 2337 | * analyze what and where should be moved; |
@@ -2267,252 +2360,266 @@ static int wait_tb_buffers_until_unlocked (struct tree_balance * p_s_tb) | |||
2267 | * -1 - if no_disk_space | 2360 | * -1 - if no_disk_space |
2268 | */ | 2361 | */ |
2269 | 2362 | ||
2363 | int fix_nodes(int n_op_mode, struct tree_balance *p_s_tb, struct item_head *p_s_ins_ih, // item head of item being inserted | ||
2364 | const void *data // inserted item or data to be pasted | ||
2365 | ) | ||
2366 | { | ||
2367 | int n_ret_value, n_h, n_item_num = PATH_LAST_POSITION(p_s_tb->tb_path); | ||
2368 | int n_pos_in_item; | ||
2270 | 2369 | ||
2271 | int fix_nodes (int n_op_mode, | 2370 | /* we set wait_tb_buffers_run when we have to restore any dirty bits cleared |
2272 | struct tree_balance * p_s_tb, | 2371 | ** during wait_tb_buffers_run |
2273 | struct item_head * p_s_ins_ih, // item head of item being inserted | 2372 | */ |
2274 | const void * data // inserted item or data to be pasted | 2373 | int wait_tb_buffers_run = 0; |
2275 | ) { | 2374 | struct buffer_head *p_s_tbS0 = PATH_PLAST_BUFFER(p_s_tb->tb_path); |
2276 | int n_ret_value, | ||
2277 | n_h, | ||
2278 | n_item_num = PATH_LAST_POSITION(p_s_tb->tb_path); | ||
2279 | int n_pos_in_item; | ||
2280 | |||
2281 | /* we set wait_tb_buffers_run when we have to restore any dirty bits cleared | ||
2282 | ** during wait_tb_buffers_run | ||
2283 | */ | ||
2284 | int wait_tb_buffers_run = 0 ; | ||
2285 | struct buffer_head * p_s_tbS0 = PATH_PLAST_BUFFER(p_s_tb->tb_path); | ||
2286 | |||
2287 | ++ REISERFS_SB(p_s_tb -> tb_sb) -> s_fix_nodes; | ||
2288 | |||
2289 | n_pos_in_item = p_s_tb->tb_path->pos_in_item; | ||
2290 | |||
2291 | |||
2292 | p_s_tb->fs_gen = get_generation (p_s_tb->tb_sb); | ||
2293 | |||
2294 | /* we prepare and log the super here so it will already be in the | ||
2295 | ** transaction when do_balance needs to change it. | ||
2296 | ** This way do_balance won't have to schedule when trying to prepare | ||
2297 | ** the super for logging | ||
2298 | */ | ||
2299 | reiserfs_prepare_for_journal(p_s_tb->tb_sb, | ||
2300 | SB_BUFFER_WITH_SB(p_s_tb->tb_sb), 1) ; | ||
2301 | journal_mark_dirty(p_s_tb->transaction_handle, p_s_tb->tb_sb, | ||
2302 | SB_BUFFER_WITH_SB(p_s_tb->tb_sb)) ; | ||
2303 | if ( FILESYSTEM_CHANGED_TB (p_s_tb) ) | ||
2304 | return REPEAT_SEARCH; | ||
2305 | |||
2306 | /* if it possible in indirect_to_direct conversion */ | ||
2307 | if (buffer_locked (p_s_tbS0)) { | ||
2308 | __wait_on_buffer (p_s_tbS0); | ||
2309 | if ( FILESYSTEM_CHANGED_TB (p_s_tb) ) | ||
2310 | return REPEAT_SEARCH; | ||
2311 | } | ||
2312 | 2375 | ||
2313 | #ifdef CONFIG_REISERFS_CHECK | 2376 | ++REISERFS_SB(p_s_tb->tb_sb)->s_fix_nodes; |
2314 | if ( cur_tb ) { | 2377 | |
2315 | print_cur_tb ("fix_nodes"); | 2378 | n_pos_in_item = p_s_tb->tb_path->pos_in_item; |
2316 | reiserfs_panic(p_s_tb->tb_sb,"PAP-8305: fix_nodes: there is pending do_balance"); | 2379 | |
2317 | } | 2380 | p_s_tb->fs_gen = get_generation(p_s_tb->tb_sb); |
2318 | |||
2319 | if (!buffer_uptodate (p_s_tbS0) || !B_IS_IN_TREE (p_s_tbS0)) { | ||
2320 | reiserfs_panic (p_s_tb->tb_sb, "PAP-8320: fix_nodes: S[0] (%b %z) is not uptodate " | ||
2321 | "at the beginning of fix_nodes or not in tree (mode %c)", p_s_tbS0, p_s_tbS0, n_op_mode); | ||
2322 | } | ||
2323 | |||
2324 | /* Check parameters. */ | ||
2325 | switch (n_op_mode) { | ||
2326 | case M_INSERT: | ||
2327 | if ( n_item_num <= 0 || n_item_num > B_NR_ITEMS(p_s_tbS0) ) | ||
2328 | reiserfs_panic(p_s_tb->tb_sb,"PAP-8330: fix_nodes: Incorrect item number %d (in S0 - %d) in case of insert", | ||
2329 | n_item_num, B_NR_ITEMS(p_s_tbS0)); | ||
2330 | break; | ||
2331 | case M_PASTE: | ||
2332 | case M_DELETE: | ||
2333 | case M_CUT: | ||
2334 | if ( n_item_num < 0 || n_item_num >= B_NR_ITEMS(p_s_tbS0) ) { | ||
2335 | print_block (p_s_tbS0, 0, -1, -1); | ||
2336 | reiserfs_panic(p_s_tb->tb_sb,"PAP-8335: fix_nodes: Incorrect item number(%d); mode = %c insert_size = %d\n", n_item_num, n_op_mode, p_s_tb->insert_size[0]); | ||
2337 | } | ||
2338 | break; | ||
2339 | default: | ||
2340 | reiserfs_panic(p_s_tb->tb_sb,"PAP-8340: fix_nodes: Incorrect mode of operation"); | ||
2341 | } | ||
2342 | #endif | ||
2343 | 2381 | ||
2344 | if (get_mem_for_virtual_node (p_s_tb) == REPEAT_SEARCH) | 2382 | /* we prepare and log the super here so it will already be in the |
2345 | // FIXME: maybe -ENOMEM when tb->vn_buf == 0? Now just repeat | 2383 | ** transaction when do_balance needs to change it. |
2346 | return REPEAT_SEARCH; | 2384 | ** This way do_balance won't have to schedule when trying to prepare |
2385 | ** the super for logging | ||
2386 | */ | ||
2387 | reiserfs_prepare_for_journal(p_s_tb->tb_sb, | ||
2388 | SB_BUFFER_WITH_SB(p_s_tb->tb_sb), 1); | ||
2389 | journal_mark_dirty(p_s_tb->transaction_handle, p_s_tb->tb_sb, | ||
2390 | SB_BUFFER_WITH_SB(p_s_tb->tb_sb)); | ||
2391 | if (FILESYSTEM_CHANGED_TB(p_s_tb)) | ||
2392 | return REPEAT_SEARCH; | ||
2347 | 2393 | ||
2394 | /* if it possible in indirect_to_direct conversion */ | ||
2395 | if (buffer_locked(p_s_tbS0)) { | ||
2396 | __wait_on_buffer(p_s_tbS0); | ||
2397 | if (FILESYSTEM_CHANGED_TB(p_s_tb)) | ||
2398 | return REPEAT_SEARCH; | ||
2399 | } | ||
2400 | #ifdef CONFIG_REISERFS_CHECK | ||
2401 | if (cur_tb) { | ||
2402 | print_cur_tb("fix_nodes"); | ||
2403 | reiserfs_panic(p_s_tb->tb_sb, | ||
2404 | "PAP-8305: fix_nodes: there is pending do_balance"); | ||
2405 | } | ||
2348 | 2406 | ||
2349 | /* Starting from the leaf level; for all levels n_h of the tree. */ | 2407 | if (!buffer_uptodate(p_s_tbS0) || !B_IS_IN_TREE(p_s_tbS0)) { |
2350 | for ( n_h = 0; n_h < MAX_HEIGHT && p_s_tb->insert_size[n_h]; n_h++ ) { | 2408 | reiserfs_panic(p_s_tb->tb_sb, |
2351 | if ( (n_ret_value = get_direct_parent(p_s_tb, n_h)) != CARRY_ON ) { | 2409 | "PAP-8320: fix_nodes: S[0] (%b %z) is not uptodate " |
2352 | goto repeat; | 2410 | "at the beginning of fix_nodes or not in tree (mode %c)", |
2411 | p_s_tbS0, p_s_tbS0, n_op_mode); | ||
2353 | } | 2412 | } |
2354 | 2413 | ||
2355 | if ( (n_ret_value = check_balance (n_op_mode, p_s_tb, n_h, n_item_num, | 2414 | /* Check parameters. */ |
2356 | n_pos_in_item, p_s_ins_ih, data)) != CARRY_ON ) { | 2415 | switch (n_op_mode) { |
2357 | if ( n_ret_value == NO_BALANCING_NEEDED ) { | 2416 | case M_INSERT: |
2358 | /* No balancing for higher levels needed. */ | 2417 | if (n_item_num <= 0 || n_item_num > B_NR_ITEMS(p_s_tbS0)) |
2359 | if ( (n_ret_value = get_neighbors(p_s_tb, n_h)) != CARRY_ON ) { | 2418 | reiserfs_panic(p_s_tb->tb_sb, |
2360 | goto repeat; | 2419 | "PAP-8330: fix_nodes: Incorrect item number %d (in S0 - %d) in case of insert", |
2420 | n_item_num, B_NR_ITEMS(p_s_tbS0)); | ||
2421 | break; | ||
2422 | case M_PASTE: | ||
2423 | case M_DELETE: | ||
2424 | case M_CUT: | ||
2425 | if (n_item_num < 0 || n_item_num >= B_NR_ITEMS(p_s_tbS0)) { | ||
2426 | print_block(p_s_tbS0, 0, -1, -1); | ||
2427 | reiserfs_panic(p_s_tb->tb_sb, | ||
2428 | "PAP-8335: fix_nodes: Incorrect item number(%d); mode = %c insert_size = %d\n", | ||
2429 | n_item_num, n_op_mode, | ||
2430 | p_s_tb->insert_size[0]); | ||
2361 | } | 2431 | } |
2362 | if ( n_h != MAX_HEIGHT - 1 ) | ||
2363 | p_s_tb->insert_size[n_h + 1] = 0; | ||
2364 | /* ok, analysis and resource gathering are complete */ | ||
2365 | break; | 2432 | break; |
2366 | } | 2433 | default: |
2367 | goto repeat; | 2434 | reiserfs_panic(p_s_tb->tb_sb, |
2435 | "PAP-8340: fix_nodes: Incorrect mode of operation"); | ||
2368 | } | 2436 | } |
2437 | #endif | ||
2369 | 2438 | ||
2370 | if ( (n_ret_value = get_neighbors(p_s_tb, n_h)) != CARRY_ON ) { | 2439 | if (get_mem_for_virtual_node(p_s_tb) == REPEAT_SEARCH) |
2371 | goto repeat; | 2440 | // FIXME: maybe -ENOMEM when tb->vn_buf == 0? Now just repeat |
2372 | } | 2441 | return REPEAT_SEARCH; |
2373 | 2442 | ||
2374 | if ( (n_ret_value = get_empty_nodes(p_s_tb, n_h)) != CARRY_ON ) { | 2443 | /* Starting from the leaf level; for all levels n_h of the tree. */ |
2375 | goto repeat; /* No disk space, or schedule occurred and | 2444 | for (n_h = 0; n_h < MAX_HEIGHT && p_s_tb->insert_size[n_h]; n_h++) { |
2376 | analysis may be invalid and needs to be redone. */ | 2445 | if ((n_ret_value = get_direct_parent(p_s_tb, n_h)) != CARRY_ON) { |
2377 | } | 2446 | goto repeat; |
2378 | 2447 | } | |
2379 | if ( ! PATH_H_PBUFFER(p_s_tb->tb_path, n_h) ) { | ||
2380 | /* We have a positive insert size but no nodes exist on this | ||
2381 | level, this means that we are creating a new root. */ | ||
2382 | 2448 | ||
2383 | RFALSE( p_s_tb->blknum[n_h] != 1, | 2449 | if ((n_ret_value = |
2384 | "PAP-8350: creating new empty root"); | 2450 | check_balance(n_op_mode, p_s_tb, n_h, n_item_num, |
2451 | n_pos_in_item, p_s_ins_ih, | ||
2452 | data)) != CARRY_ON) { | ||
2453 | if (n_ret_value == NO_BALANCING_NEEDED) { | ||
2454 | /* No balancing for higher levels needed. */ | ||
2455 | if ((n_ret_value = | ||
2456 | get_neighbors(p_s_tb, n_h)) != CARRY_ON) { | ||
2457 | goto repeat; | ||
2458 | } | ||
2459 | if (n_h != MAX_HEIGHT - 1) | ||
2460 | p_s_tb->insert_size[n_h + 1] = 0; | ||
2461 | /* ok, analysis and resource gathering are complete */ | ||
2462 | break; | ||
2463 | } | ||
2464 | goto repeat; | ||
2465 | } | ||
2385 | 2466 | ||
2386 | if ( n_h < MAX_HEIGHT - 1 ) | 2467 | if ((n_ret_value = get_neighbors(p_s_tb, n_h)) != CARRY_ON) { |
2387 | p_s_tb->insert_size[n_h + 1] = 0; | 2468 | goto repeat; |
2388 | } | ||
2389 | else | ||
2390 | if ( ! PATH_H_PBUFFER(p_s_tb->tb_path, n_h + 1) ) { | ||
2391 | if ( p_s_tb->blknum[n_h] > 1 ) { | ||
2392 | /* The tree needs to be grown, so this node S[n_h] | ||
2393 | which is the root node is split into two nodes, | ||
2394 | and a new node (S[n_h+1]) will be created to | ||
2395 | become the root node. */ | ||
2396 | |||
2397 | RFALSE( n_h == MAX_HEIGHT - 1, | ||
2398 | "PAP-8355: attempt to create too high of a tree"); | ||
2399 | |||
2400 | p_s_tb->insert_size[n_h + 1] = (DC_SIZE + KEY_SIZE) * (p_s_tb->blknum[n_h] - 1) + DC_SIZE; | ||
2401 | } | 2469 | } |
2402 | else | 2470 | |
2403 | if ( n_h < MAX_HEIGHT - 1 ) | 2471 | if ((n_ret_value = get_empty_nodes(p_s_tb, n_h)) != CARRY_ON) { |
2404 | p_s_tb->insert_size[n_h + 1] = 0; | 2472 | goto repeat; /* No disk space, or schedule occurred and |
2405 | } | 2473 | analysis may be invalid and needs to be redone. */ |
2406 | else | 2474 | } |
2407 | p_s_tb->insert_size[n_h + 1] = (DC_SIZE + KEY_SIZE) * (p_s_tb->blknum[n_h] - 1); | 2475 | |
2408 | } | 2476 | if (!PATH_H_PBUFFER(p_s_tb->tb_path, n_h)) { |
2409 | 2477 | /* We have a positive insert size but no nodes exist on this | |
2410 | if ((n_ret_value = wait_tb_buffers_until_unlocked (p_s_tb)) == CARRY_ON) { | 2478 | level, this means that we are creating a new root. */ |
2411 | if (FILESYSTEM_CHANGED_TB(p_s_tb)) { | 2479 | |
2412 | wait_tb_buffers_run = 1 ; | 2480 | RFALSE(p_s_tb->blknum[n_h] != 1, |
2413 | n_ret_value = REPEAT_SEARCH ; | 2481 | "PAP-8350: creating new empty root"); |
2414 | goto repeat; | 2482 | |
2415 | } else { | 2483 | if (n_h < MAX_HEIGHT - 1) |
2416 | return CARRY_ON; | 2484 | p_s_tb->insert_size[n_h + 1] = 0; |
2485 | } else if (!PATH_H_PBUFFER(p_s_tb->tb_path, n_h + 1)) { | ||
2486 | if (p_s_tb->blknum[n_h] > 1) { | ||
2487 | /* The tree needs to be grown, so this node S[n_h] | ||
2488 | which is the root node is split into two nodes, | ||
2489 | and a new node (S[n_h+1]) will be created to | ||
2490 | become the root node. */ | ||
2491 | |||
2492 | RFALSE(n_h == MAX_HEIGHT - 1, | ||
2493 | "PAP-8355: attempt to create too high of a tree"); | ||
2494 | |||
2495 | p_s_tb->insert_size[n_h + 1] = | ||
2496 | (DC_SIZE + | ||
2497 | KEY_SIZE) * (p_s_tb->blknum[n_h] - 1) + | ||
2498 | DC_SIZE; | ||
2499 | } else if (n_h < MAX_HEIGHT - 1) | ||
2500 | p_s_tb->insert_size[n_h + 1] = 0; | ||
2501 | } else | ||
2502 | p_s_tb->insert_size[n_h + 1] = | ||
2503 | (DC_SIZE + KEY_SIZE) * (p_s_tb->blknum[n_h] - 1); | ||
2417 | } | 2504 | } |
2418 | } else { | ||
2419 | wait_tb_buffers_run = 1 ; | ||
2420 | goto repeat; | ||
2421 | } | ||
2422 | |||
2423 | repeat: | ||
2424 | // fix_nodes was unable to perform its calculation due to | ||
2425 | // filesystem got changed under us, lack of free disk space or i/o | ||
2426 | // failure. If the first is the case - the search will be | ||
2427 | // repeated. For now - free all resources acquired so far except | ||
2428 | // for the new allocated nodes | ||
2429 | { | ||
2430 | int i; | ||
2431 | 2505 | ||
2432 | /* Release path buffers. */ | 2506 | if ((n_ret_value = wait_tb_buffers_until_unlocked(p_s_tb)) == CARRY_ON) { |
2433 | if (wait_tb_buffers_run) { | 2507 | if (FILESYSTEM_CHANGED_TB(p_s_tb)) { |
2434 | pathrelse_and_restore(p_s_tb->tb_sb, p_s_tb->tb_path) ; | 2508 | wait_tb_buffers_run = 1; |
2509 | n_ret_value = REPEAT_SEARCH; | ||
2510 | goto repeat; | ||
2511 | } else { | ||
2512 | return CARRY_ON; | ||
2513 | } | ||
2435 | } else { | 2514 | } else { |
2436 | pathrelse (p_s_tb->tb_path); | 2515 | wait_tb_buffers_run = 1; |
2437 | } | 2516 | goto repeat; |
2438 | /* brelse all resources collected for balancing */ | ||
2439 | for ( i = 0; i < MAX_HEIGHT; i++ ) { | ||
2440 | if (wait_tb_buffers_run) { | ||
2441 | reiserfs_restore_prepared_buffer(p_s_tb->tb_sb, p_s_tb->L[i]); | ||
2442 | reiserfs_restore_prepared_buffer(p_s_tb->tb_sb, p_s_tb->R[i]); | ||
2443 | reiserfs_restore_prepared_buffer(p_s_tb->tb_sb, p_s_tb->FL[i]); | ||
2444 | reiserfs_restore_prepared_buffer(p_s_tb->tb_sb, p_s_tb->FR[i]); | ||
2445 | reiserfs_restore_prepared_buffer(p_s_tb->tb_sb, p_s_tb->CFL[i]); | ||
2446 | reiserfs_restore_prepared_buffer(p_s_tb->tb_sb, p_s_tb->CFR[i]); | ||
2447 | } | ||
2448 | |||
2449 | brelse (p_s_tb->L[i]);p_s_tb->L[i] = NULL; | ||
2450 | brelse (p_s_tb->R[i]);p_s_tb->R[i] = NULL; | ||
2451 | brelse (p_s_tb->FL[i]);p_s_tb->FL[i] = NULL; | ||
2452 | brelse (p_s_tb->FR[i]);p_s_tb->FR[i] = NULL; | ||
2453 | brelse (p_s_tb->CFL[i]);p_s_tb->CFL[i] = NULL; | ||
2454 | brelse (p_s_tb->CFR[i]);p_s_tb->CFR[i] = NULL; | ||
2455 | } | 2517 | } |
2456 | 2518 | ||
2457 | if (wait_tb_buffers_run) { | 2519 | repeat: |
2458 | for ( i = 0; i < MAX_FEB_SIZE; i++ ) { | 2520 | // fix_nodes was unable to perform its calculation due to |
2459 | if ( p_s_tb->FEB[i] ) { | 2521 | // filesystem got changed under us, lack of free disk space or i/o |
2460 | reiserfs_restore_prepared_buffer(p_s_tb->tb_sb, | 2522 | // failure. If the first is the case - the search will be |
2461 | p_s_tb->FEB[i]) ; | 2523 | // repeated. For now - free all resources acquired so far except |
2524 | // for the new allocated nodes | ||
2525 | { | ||
2526 | int i; | ||
2527 | |||
2528 | /* Release path buffers. */ | ||
2529 | if (wait_tb_buffers_run) { | ||
2530 | pathrelse_and_restore(p_s_tb->tb_sb, p_s_tb->tb_path); | ||
2531 | } else { | ||
2532 | pathrelse(p_s_tb->tb_path); | ||
2533 | } | ||
2534 | /* brelse all resources collected for balancing */ | ||
2535 | for (i = 0; i < MAX_HEIGHT; i++) { | ||
2536 | if (wait_tb_buffers_run) { | ||
2537 | reiserfs_restore_prepared_buffer(p_s_tb->tb_sb, | ||
2538 | p_s_tb->L[i]); | ||
2539 | reiserfs_restore_prepared_buffer(p_s_tb->tb_sb, | ||
2540 | p_s_tb->R[i]); | ||
2541 | reiserfs_restore_prepared_buffer(p_s_tb->tb_sb, | ||
2542 | p_s_tb->FL[i]); | ||
2543 | reiserfs_restore_prepared_buffer(p_s_tb->tb_sb, | ||
2544 | p_s_tb->FR[i]); | ||
2545 | reiserfs_restore_prepared_buffer(p_s_tb->tb_sb, | ||
2546 | p_s_tb-> | ||
2547 | CFL[i]); | ||
2548 | reiserfs_restore_prepared_buffer(p_s_tb->tb_sb, | ||
2549 | p_s_tb-> | ||
2550 | CFR[i]); | ||
2551 | } | ||
2552 | |||
2553 | brelse(p_s_tb->L[i]); | ||
2554 | p_s_tb->L[i] = NULL; | ||
2555 | brelse(p_s_tb->R[i]); | ||
2556 | p_s_tb->R[i] = NULL; | ||
2557 | brelse(p_s_tb->FL[i]); | ||
2558 | p_s_tb->FL[i] = NULL; | ||
2559 | brelse(p_s_tb->FR[i]); | ||
2560 | p_s_tb->FR[i] = NULL; | ||
2561 | brelse(p_s_tb->CFL[i]); | ||
2562 | p_s_tb->CFL[i] = NULL; | ||
2563 | brelse(p_s_tb->CFR[i]); | ||
2564 | p_s_tb->CFR[i] = NULL; | ||
2565 | } | ||
2566 | |||
2567 | if (wait_tb_buffers_run) { | ||
2568 | for (i = 0; i < MAX_FEB_SIZE; i++) { | ||
2569 | if (p_s_tb->FEB[i]) { | ||
2570 | reiserfs_restore_prepared_buffer | ||
2571 | (p_s_tb->tb_sb, p_s_tb->FEB[i]); | ||
2572 | } | ||
2573 | } | ||
2462 | } | 2574 | } |
2463 | } | 2575 | return n_ret_value; |
2464 | } | 2576 | } |
2465 | return n_ret_value; | ||
2466 | } | ||
2467 | 2577 | ||
2468 | } | 2578 | } |
2469 | 2579 | ||
2470 | |||
2471 | /* Anatoly will probably forgive me renaming p_s_tb to tb. I just | 2580 | /* Anatoly will probably forgive me renaming p_s_tb to tb. I just |
2472 | wanted to make lines shorter */ | 2581 | wanted to make lines shorter */ |
2473 | void unfix_nodes (struct tree_balance * tb) | 2582 | void unfix_nodes(struct tree_balance *tb) |
2474 | { | 2583 | { |
2475 | int i; | 2584 | int i; |
2476 | |||
2477 | /* Release path buffers. */ | ||
2478 | pathrelse_and_restore (tb->tb_sb, tb->tb_path); | ||
2479 | |||
2480 | /* brelse all resources collected for balancing */ | ||
2481 | for ( i = 0; i < MAX_HEIGHT; i++ ) { | ||
2482 | reiserfs_restore_prepared_buffer (tb->tb_sb, tb->L[i]); | ||
2483 | reiserfs_restore_prepared_buffer (tb->tb_sb, tb->R[i]); | ||
2484 | reiserfs_restore_prepared_buffer (tb->tb_sb, tb->FL[i]); | ||
2485 | reiserfs_restore_prepared_buffer (tb->tb_sb, tb->FR[i]); | ||
2486 | reiserfs_restore_prepared_buffer (tb->tb_sb, tb->CFL[i]); | ||
2487 | reiserfs_restore_prepared_buffer (tb->tb_sb, tb->CFR[i]); | ||
2488 | |||
2489 | brelse (tb->L[i]); | ||
2490 | brelse (tb->R[i]); | ||
2491 | brelse (tb->FL[i]); | ||
2492 | brelse (tb->FR[i]); | ||
2493 | brelse (tb->CFL[i]); | ||
2494 | brelse (tb->CFR[i]); | ||
2495 | } | ||
2496 | |||
2497 | /* deal with list of allocated (used and unused) nodes */ | ||
2498 | for ( i = 0; i < MAX_FEB_SIZE; i++ ) { | ||
2499 | if ( tb->FEB[i] ) { | ||
2500 | b_blocknr_t blocknr = tb->FEB[i]->b_blocknr ; | ||
2501 | /* de-allocated block which was not used by balancing and | ||
2502 | bforget about buffer for it */ | ||
2503 | brelse (tb->FEB[i]); | ||
2504 | reiserfs_free_block (tb->transaction_handle, NULL, blocknr, 0); | ||
2505 | } | ||
2506 | if (tb->used[i]) { | ||
2507 | /* release used as new nodes including a new root */ | ||
2508 | brelse (tb->used[i]); | ||
2509 | } | ||
2510 | } | ||
2511 | 2585 | ||
2512 | if (tb->vn_buf) | 2586 | /* Release path buffers. */ |
2513 | reiserfs_kfree (tb->vn_buf, tb->vn_buf_size, tb->tb_sb); | 2587 | pathrelse_and_restore(tb->tb_sb, tb->tb_path); |
2514 | 2588 | ||
2515 | } | 2589 | /* brelse all resources collected for balancing */ |
2590 | for (i = 0; i < MAX_HEIGHT; i++) { | ||
2591 | reiserfs_restore_prepared_buffer(tb->tb_sb, tb->L[i]); | ||
2592 | reiserfs_restore_prepared_buffer(tb->tb_sb, tb->R[i]); | ||
2593 | reiserfs_restore_prepared_buffer(tb->tb_sb, tb->FL[i]); | ||
2594 | reiserfs_restore_prepared_buffer(tb->tb_sb, tb->FR[i]); | ||
2595 | reiserfs_restore_prepared_buffer(tb->tb_sb, tb->CFL[i]); | ||
2596 | reiserfs_restore_prepared_buffer(tb->tb_sb, tb->CFR[i]); | ||
2597 | |||
2598 | brelse(tb->L[i]); | ||
2599 | brelse(tb->R[i]); | ||
2600 | brelse(tb->FL[i]); | ||
2601 | brelse(tb->FR[i]); | ||
2602 | brelse(tb->CFL[i]); | ||
2603 | brelse(tb->CFR[i]); | ||
2604 | } | ||
2516 | 2605 | ||
2606 | /* deal with list of allocated (used and unused) nodes */ | ||
2607 | for (i = 0; i < MAX_FEB_SIZE; i++) { | ||
2608 | if (tb->FEB[i]) { | ||
2609 | b_blocknr_t blocknr = tb->FEB[i]->b_blocknr; | ||
2610 | /* de-allocated block which was not used by balancing and | ||
2611 | bforget about buffer for it */ | ||
2612 | brelse(tb->FEB[i]); | ||
2613 | reiserfs_free_block(tb->transaction_handle, NULL, | ||
2614 | blocknr, 0); | ||
2615 | } | ||
2616 | if (tb->used[i]) { | ||
2617 | /* release used as new nodes including a new root */ | ||
2618 | brelse(tb->used[i]); | ||
2619 | } | ||
2620 | } | ||
2517 | 2621 | ||
2622 | if (tb->vn_buf) | ||
2623 | reiserfs_kfree(tb->vn_buf, tb->vn_buf_size, tb->tb_sb); | ||
2518 | 2624 | ||
2625 | } | ||