aboutsummaryrefslogtreecommitdiffstats
path: root/fs/ocfs2/alloc.c
diff options
context:
space:
mode:
Diffstat (limited to 'fs/ocfs2/alloc.c')
-rw-r--r--fs/ocfs2/alloc.c2446
1 files changed, 1963 insertions, 483 deletions
diff --git a/fs/ocfs2/alloc.c b/fs/ocfs2/alloc.c
index f27e5378caf2..a96696867576 100644
--- a/fs/ocfs2/alloc.c
+++ b/fs/ocfs2/alloc.c
@@ -47,62 +47,230 @@
47 47
48#include "buffer_head_io.h" 48#include "buffer_head_io.h"
49 49
50static int ocfs2_extent_contig(struct inode *inode, 50static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc);
51 struct ocfs2_extent_rec *ext,
52 u64 blkno);
53 51
54static int ocfs2_create_new_meta_bhs(struct ocfs2_super *osb, 52/*
55 handle_t *handle, 53 * Structures which describe a path through a btree, and functions to
56 struct inode *inode, 54 * manipulate them.
57 int wanted, 55 *
58 struct ocfs2_alloc_context *meta_ac, 56 * The idea here is to be as generic as possible with the tree
59 struct buffer_head *bhs[]); 57 * manipulation code.
58 */
59struct ocfs2_path_item {
60 struct buffer_head *bh;
61 struct ocfs2_extent_list *el;
62};
60 63
61static int ocfs2_add_branch(struct ocfs2_super *osb, 64#define OCFS2_MAX_PATH_DEPTH 5
62 handle_t *handle,
63 struct inode *inode,
64 struct buffer_head *fe_bh,
65 struct buffer_head *eb_bh,
66 struct buffer_head *last_eb_bh,
67 struct ocfs2_alloc_context *meta_ac);
68 65
69static int ocfs2_shift_tree_depth(struct ocfs2_super *osb, 66struct ocfs2_path {
70 handle_t *handle, 67 int p_tree_depth;
71 struct inode *inode, 68 struct ocfs2_path_item p_node[OCFS2_MAX_PATH_DEPTH];
72 struct buffer_head *fe_bh, 69};
73 struct ocfs2_alloc_context *meta_ac,
74 struct buffer_head **ret_new_eb_bh);
75 70
76static int ocfs2_do_insert_extent(struct ocfs2_super *osb, 71#define path_root_bh(_path) ((_path)->p_node[0].bh)
77 handle_t *handle, 72#define path_root_el(_path) ((_path)->p_node[0].el)
78 struct inode *inode, 73#define path_leaf_bh(_path) ((_path)->p_node[(_path)->p_tree_depth].bh)
79 struct buffer_head *fe_bh, 74#define path_leaf_el(_path) ((_path)->p_node[(_path)->p_tree_depth].el)
80 u64 blkno, 75#define path_num_items(_path) ((_path)->p_tree_depth + 1)
81 u32 new_clusters);
82 76
83static int ocfs2_find_branch_target(struct ocfs2_super *osb, 77/*
84 struct inode *inode, 78 * Reset the actual path elements so that we can re-use the structure
85 struct buffer_head *fe_bh, 79 * to build another path. Generally, this involves freeing the buffer
86 struct buffer_head **target_bh); 80 * heads.
81 */
82static void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root)
83{
84 int i, start = 0, depth = 0;
85 struct ocfs2_path_item *node;
87 86
88static int ocfs2_find_new_last_ext_blk(struct ocfs2_super *osb, 87 if (keep_root)
89 struct inode *inode, 88 start = 1;
90 struct ocfs2_dinode *fe,
91 unsigned int new_i_clusters,
92 struct buffer_head *old_last_eb,
93 struct buffer_head **new_last_eb);
94 89
95static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc); 90 for(i = start; i < path_num_items(path); i++) {
91 node = &path->p_node[i];
96 92
97static int ocfs2_extent_contig(struct inode *inode, 93 brelse(node->bh);
98 struct ocfs2_extent_rec *ext, 94 node->bh = NULL;
99 u64 blkno) 95 node->el = NULL;
96 }
97
98 /*
99 * Tree depth may change during truncate, or insert. If we're
100 * keeping the root extent list, then make sure that our path
101 * structure reflects the proper depth.
102 */
103 if (keep_root)
104 depth = le16_to_cpu(path_root_el(path)->l_tree_depth);
105
106 path->p_tree_depth = depth;
107}
108
109static void ocfs2_free_path(struct ocfs2_path *path)
110{
111 if (path) {
112 ocfs2_reinit_path(path, 0);
113 kfree(path);
114 }
115}
116
117/*
118 * Make the *dest path the same as src and re-initialize src path to
119 * have a root only.
120 */
121static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src)
122{
123 int i;
124
125 BUG_ON(path_root_bh(dest) != path_root_bh(src));
126
127 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
128 brelse(dest->p_node[i].bh);
129
130 dest->p_node[i].bh = src->p_node[i].bh;
131 dest->p_node[i].el = src->p_node[i].el;
132
133 src->p_node[i].bh = NULL;
134 src->p_node[i].el = NULL;
135 }
136}
137
138/*
139 * Insert an extent block at given index.
140 *
141 * This will not take an additional reference on eb_bh.
142 */
143static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index,
144 struct buffer_head *eb_bh)
145{
146 struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data;
147
148 /*
149 * Right now, no root bh is an extent block, so this helps
150 * catch code errors with dinode trees. The assertion can be
151 * safely removed if we ever need to insert extent block
152 * structures at the root.
153 */
154 BUG_ON(index == 0);
155
156 path->p_node[index].bh = eb_bh;
157 path->p_node[index].el = &eb->h_list;
158}
159
160static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh,
161 struct ocfs2_extent_list *root_el)
162{
163 struct ocfs2_path *path;
164
165 BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH);
166
167 path = kzalloc(sizeof(*path), GFP_NOFS);
168 if (path) {
169 path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth);
170 get_bh(root_bh);
171 path_root_bh(path) = root_bh;
172 path_root_el(path) = root_el;
173 }
174
175 return path;
176}
177
178/*
179 * Allocate and initialize a new path based on a disk inode tree.
180 */
181static struct ocfs2_path *ocfs2_new_inode_path(struct buffer_head *di_bh)
182{
183 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
184 struct ocfs2_extent_list *el = &di->id2.i_list;
185
186 return ocfs2_new_path(di_bh, el);
187}
188
189/*
190 * Convenience function to journal all components in a path.
191 */
192static int ocfs2_journal_access_path(struct inode *inode, handle_t *handle,
193 struct ocfs2_path *path)
194{
195 int i, ret = 0;
196
197 if (!path)
198 goto out;
199
200 for(i = 0; i < path_num_items(path); i++) {
201 ret = ocfs2_journal_access(handle, inode, path->p_node[i].bh,
202 OCFS2_JOURNAL_ACCESS_WRITE);
203 if (ret < 0) {
204 mlog_errno(ret);
205 goto out;
206 }
207 }
208
209out:
210 return ret;
211}
212
213enum ocfs2_contig_type {
214 CONTIG_NONE = 0,
215 CONTIG_LEFT,
216 CONTIG_RIGHT
217};
218
219static int ocfs2_block_extent_contig(struct super_block *sb,
220 struct ocfs2_extent_rec *ext,
221 u64 blkno)
100{ 222{
101 return blkno == (le64_to_cpu(ext->e_blkno) + 223 return blkno == (le64_to_cpu(ext->e_blkno) +
102 ocfs2_clusters_to_blocks(inode->i_sb, 224 ocfs2_clusters_to_blocks(sb,
103 le32_to_cpu(ext->e_clusters))); 225 le32_to_cpu(ext->e_clusters)));
104} 226}
105 227
228static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left,
229 struct ocfs2_extent_rec *right)
230{
231 return (le32_to_cpu(left->e_cpos) + le32_to_cpu(left->e_clusters) ==
232 le32_to_cpu(right->e_cpos));
233}
234
235static enum ocfs2_contig_type
236 ocfs2_extent_contig(struct inode *inode,
237 struct ocfs2_extent_rec *ext,
238 struct ocfs2_extent_rec *insert_rec)
239{
240 u64 blkno = le64_to_cpu(insert_rec->e_blkno);
241
242 if (ocfs2_extents_adjacent(ext, insert_rec) &&
243 ocfs2_block_extent_contig(inode->i_sb, ext, blkno))
244 return CONTIG_RIGHT;
245
246 blkno = le64_to_cpu(ext->e_blkno);
247 if (ocfs2_extents_adjacent(insert_rec, ext) &&
248 ocfs2_block_extent_contig(inode->i_sb, insert_rec, blkno))
249 return CONTIG_LEFT;
250
251 return CONTIG_NONE;
252}
253
254/*
255 * NOTE: We can have pretty much any combination of contiguousness and
256 * appending.
257 *
258 * The usefulness of APPEND_TAIL is more in that it lets us know that
259 * we'll have to update the path to that leaf.
260 */
261enum ocfs2_append_type {
262 APPEND_NONE = 0,
263 APPEND_TAIL,
264};
265
266struct ocfs2_insert_type {
267 enum ocfs2_append_type ins_appending;
268 enum ocfs2_contig_type ins_contig;
269 int ins_contig_index;
270 int ins_free_records;
271 int ins_tree_depth;
272};
273
106/* 274/*
107 * How many free extents have we got before we need more meta data? 275 * How many free extents have we got before we need more meta data?
108 */ 276 */
@@ -242,6 +410,28 @@ bail:
242} 410}
243 411
244/* 412/*
413 * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth().
414 *
415 * Returns the sum of the rightmost extent rec logical offset and
416 * cluster count.
417 *
418 * ocfs2_add_branch() uses this to determine what logical cluster
419 * value should be populated into the leftmost new branch records.
420 *
421 * ocfs2_shift_tree_depth() uses this to determine the # clusters
422 * value for the new topmost tree record.
423 */
424static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list *el)
425{
426 int i;
427
428 i = le16_to_cpu(el->l_next_free_rec) - 1;
429
430 return le32_to_cpu(el->l_recs[i].e_cpos) +
431 le32_to_cpu(el->l_recs[i].e_clusters);
432}
433
434/*
245 * Add an entire tree branch to our inode. eb_bh is the extent block 435 * Add an entire tree branch to our inode. eb_bh is the extent block
246 * to start at, if we don't want to start the branch at the dinode 436 * to start at, if we don't want to start the branch at the dinode
247 * structure. 437 * structure.
@@ -268,6 +458,7 @@ static int ocfs2_add_branch(struct ocfs2_super *osb,
268 struct ocfs2_extent_block *eb; 458 struct ocfs2_extent_block *eb;
269 struct ocfs2_extent_list *eb_el; 459 struct ocfs2_extent_list *eb_el;
270 struct ocfs2_extent_list *el; 460 struct ocfs2_extent_list *el;
461 u32 new_cpos;
271 462
272 mlog_entry_void(); 463 mlog_entry_void();
273 464
@@ -302,6 +493,9 @@ static int ocfs2_add_branch(struct ocfs2_super *osb,
302 goto bail; 493 goto bail;
303 } 494 }
304 495
496 eb = (struct ocfs2_extent_block *)last_eb_bh->b_data;
497 new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list);
498
305 /* Note: new_eb_bhs[new_blocks - 1] is the guy which will be 499 /* Note: new_eb_bhs[new_blocks - 1] is the guy which will be
306 * linked with the rest of the tree. 500 * linked with the rest of the tree.
307 * conversly, new_eb_bhs[0] is the new bottommost leaf. 501 * conversly, new_eb_bhs[0] is the new bottommost leaf.
@@ -330,7 +524,11 @@ static int ocfs2_add_branch(struct ocfs2_super *osb,
330 eb->h_next_leaf_blk = 0; 524 eb->h_next_leaf_blk = 0;
331 eb_el->l_tree_depth = cpu_to_le16(i); 525 eb_el->l_tree_depth = cpu_to_le16(i);
332 eb_el->l_next_free_rec = cpu_to_le16(1); 526 eb_el->l_next_free_rec = cpu_to_le16(1);
333 eb_el->l_recs[0].e_cpos = fe->i_clusters; 527 /*
528 * This actually counts as an empty extent as
529 * c_clusters == 0
530 */
531 eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos);
334 eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno); 532 eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno);
335 eb_el->l_recs[0].e_clusters = cpu_to_le32(0); 533 eb_el->l_recs[0].e_clusters = cpu_to_le32(0);
336 if (!eb_el->l_tree_depth) 534 if (!eb_el->l_tree_depth)
@@ -376,7 +574,7 @@ static int ocfs2_add_branch(struct ocfs2_super *osb,
376 * either be on the fe, or the extent block passed in. */ 574 * either be on the fe, or the extent block passed in. */
377 i = le16_to_cpu(el->l_next_free_rec); 575 i = le16_to_cpu(el->l_next_free_rec);
378 el->l_recs[i].e_blkno = cpu_to_le64(next_blkno); 576 el->l_recs[i].e_blkno = cpu_to_le64(next_blkno);
379 el->l_recs[i].e_cpos = fe->i_clusters; 577 el->l_recs[i].e_cpos = cpu_to_le32(new_cpos);
380 el->l_recs[i].e_clusters = 0; 578 el->l_recs[i].e_clusters = 0;
381 le16_add_cpu(&el->l_next_free_rec, 1); 579 le16_add_cpu(&el->l_next_free_rec, 1);
382 580
@@ -425,6 +623,7 @@ static int ocfs2_shift_tree_depth(struct ocfs2_super *osb,
425 struct buffer_head **ret_new_eb_bh) 623 struct buffer_head **ret_new_eb_bh)
426{ 624{
427 int status, i; 625 int status, i;
626 u32 new_clusters;
428 struct buffer_head *new_eb_bh = NULL; 627 struct buffer_head *new_eb_bh = NULL;
429 struct ocfs2_dinode *fe; 628 struct ocfs2_dinode *fe;
430 struct ocfs2_extent_block *eb; 629 struct ocfs2_extent_block *eb;
@@ -480,11 +679,13 @@ static int ocfs2_shift_tree_depth(struct ocfs2_super *osb,
480 goto bail; 679 goto bail;
481 } 680 }
482 681
682 new_clusters = ocfs2_sum_rightmost_rec(eb_el);
683
483 /* update fe now */ 684 /* update fe now */
484 le16_add_cpu(&fe_el->l_tree_depth, 1); 685 le16_add_cpu(&fe_el->l_tree_depth, 1);
485 fe_el->l_recs[0].e_cpos = 0; 686 fe_el->l_recs[0].e_cpos = 0;
486 fe_el->l_recs[0].e_blkno = eb->h_blkno; 687 fe_el->l_recs[0].e_blkno = eb->h_blkno;
487 fe_el->l_recs[0].e_clusters = fe->i_clusters; 688 fe_el->l_recs[0].e_clusters = cpu_to_le32(new_clusters);
488 for(i = 1; i < le16_to_cpu(fe_el->l_next_free_rec); i++) { 689 for(i = 1; i < le16_to_cpu(fe_el->l_next_free_rec); i++) {
489 fe_el->l_recs[i].e_cpos = 0; 690 fe_el->l_recs[i].e_cpos = 0;
490 fe_el->l_recs[i].e_clusters = 0; 691 fe_el->l_recs[i].e_clusters = 0;
@@ -515,199 +716,6 @@ bail:
515} 716}
516 717
517/* 718/*
518 * Expects the tree to already have room in the rightmost leaf for the
519 * extent. Updates all the extent blocks (and the dinode) on the way
520 * down.
521 */
522static int ocfs2_do_insert_extent(struct ocfs2_super *osb,
523 handle_t *handle,
524 struct inode *inode,
525 struct buffer_head *fe_bh,
526 u64 start_blk,
527 u32 new_clusters)
528{
529 int status, i, num_bhs = 0;
530 u64 next_blkno;
531 u16 next_free;
532 struct buffer_head **eb_bhs = NULL;
533 struct ocfs2_dinode *fe;
534 struct ocfs2_extent_block *eb;
535 struct ocfs2_extent_list *el;
536
537 mlog_entry_void();
538
539 status = ocfs2_journal_access(handle, inode, fe_bh,
540 OCFS2_JOURNAL_ACCESS_WRITE);
541 if (status < 0) {
542 mlog_errno(status);
543 goto bail;
544 }
545
546 fe = (struct ocfs2_dinode *) fe_bh->b_data;
547 el = &fe->id2.i_list;
548 if (el->l_tree_depth) {
549 /* This is another operation where we want to be
550 * careful about our tree updates. An error here means
551 * none of the previous changes we made should roll
552 * forward. As a result, we have to record the buffers
553 * for this part of the tree in an array and reserve a
554 * journal write to them before making any changes. */
555 num_bhs = le16_to_cpu(fe->id2.i_list.l_tree_depth);
556 eb_bhs = kcalloc(num_bhs, sizeof(struct buffer_head *),
557 GFP_KERNEL);
558 if (!eb_bhs) {
559 status = -ENOMEM;
560 mlog_errno(status);
561 goto bail;
562 }
563
564 i = 0;
565 while(el->l_tree_depth) {
566 next_free = le16_to_cpu(el->l_next_free_rec);
567 if (next_free == 0) {
568 ocfs2_error(inode->i_sb,
569 "Dinode %llu has a bad extent list",
570 (unsigned long long)OCFS2_I(inode)->ip_blkno);
571 status = -EIO;
572 goto bail;
573 }
574 next_blkno = le64_to_cpu(el->l_recs[next_free - 1].e_blkno);
575
576 BUG_ON(i >= num_bhs);
577 status = ocfs2_read_block(osb, next_blkno, &eb_bhs[i],
578 OCFS2_BH_CACHED, inode);
579 if (status < 0) {
580 mlog_errno(status);
581 goto bail;
582 }
583 eb = (struct ocfs2_extent_block *) eb_bhs[i]->b_data;
584 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
585 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb,
586 eb);
587 status = -EIO;
588 goto bail;
589 }
590
591 status = ocfs2_journal_access(handle, inode, eb_bhs[i],
592 OCFS2_JOURNAL_ACCESS_WRITE);
593 if (status < 0) {
594 mlog_errno(status);
595 goto bail;
596 }
597
598 el = &eb->h_list;
599 i++;
600 /* When we leave this loop, eb_bhs[num_bhs - 1] will
601 * hold the bottom-most leaf extent block. */
602 }
603 BUG_ON(el->l_tree_depth);
604
605 el = &fe->id2.i_list;
606 /* If we have tree depth, then the fe update is
607 * trivial, and we want to switch el out for the
608 * bottom-most leaf in order to update it with the
609 * actual extent data below. */
610 next_free = le16_to_cpu(el->l_next_free_rec);
611 if (next_free == 0) {
612 ocfs2_error(inode->i_sb,
613 "Dinode %llu has a bad extent list",
614 (unsigned long long)OCFS2_I(inode)->ip_blkno);
615 status = -EIO;
616 goto bail;
617 }
618 le32_add_cpu(&el->l_recs[next_free - 1].e_clusters,
619 new_clusters);
620 /* (num_bhs - 1) to avoid the leaf */
621 for(i = 0; i < (num_bhs - 1); i++) {
622 eb = (struct ocfs2_extent_block *) eb_bhs[i]->b_data;
623 el = &eb->h_list;
624
625 /* finally, make our actual change to the
626 * intermediate extent blocks. */
627 next_free = le16_to_cpu(el->l_next_free_rec);
628 le32_add_cpu(&el->l_recs[next_free - 1].e_clusters,
629 new_clusters);
630
631 status = ocfs2_journal_dirty(handle, eb_bhs[i]);
632 if (status < 0)
633 mlog_errno(status);
634 }
635 BUG_ON(i != (num_bhs - 1));
636 /* note that the leaf block wasn't touched in
637 * the loop above */
638 eb = (struct ocfs2_extent_block *) eb_bhs[num_bhs - 1]->b_data;
639 el = &eb->h_list;
640 BUG_ON(el->l_tree_depth);
641 }
642
643 /* yay, we can finally add the actual extent now! */
644 i = le16_to_cpu(el->l_next_free_rec) - 1;
645 if (le16_to_cpu(el->l_next_free_rec) &&
646 ocfs2_extent_contig(inode, &el->l_recs[i], start_blk)) {
647 le32_add_cpu(&el->l_recs[i].e_clusters, new_clusters);
648 } else if (le16_to_cpu(el->l_next_free_rec) &&
649 (le32_to_cpu(el->l_recs[i].e_clusters) == 0)) {
650 /* having an empty extent at eof is legal. */
651 if (el->l_recs[i].e_cpos != fe->i_clusters) {
652 ocfs2_error(inode->i_sb,
653 "Dinode %llu trailing extent is bad: "
654 "cpos (%u) != number of clusters (%u)",
655 (unsigned long long)OCFS2_I(inode)->ip_blkno,
656 le32_to_cpu(el->l_recs[i].e_cpos),
657 le32_to_cpu(fe->i_clusters));
658 status = -EIO;
659 goto bail;
660 }
661 el->l_recs[i].e_blkno = cpu_to_le64(start_blk);
662 el->l_recs[i].e_clusters = cpu_to_le32(new_clusters);
663 } else {
664 /* No contiguous record, or no empty record at eof, so
665 * we add a new one. */
666
667 BUG_ON(le16_to_cpu(el->l_next_free_rec) >=
668 le16_to_cpu(el->l_count));
669 i = le16_to_cpu(el->l_next_free_rec);
670
671 el->l_recs[i].e_blkno = cpu_to_le64(start_blk);
672 el->l_recs[i].e_clusters = cpu_to_le32(new_clusters);
673 el->l_recs[i].e_cpos = fe->i_clusters;
674 le16_add_cpu(&el->l_next_free_rec, 1);
675 }
676
677 /*
678 * extent_map errors are not fatal, so they are ignored outside
679 * of flushing the thing.
680 */
681 status = ocfs2_extent_map_append(inode, &el->l_recs[i],
682 new_clusters);
683 if (status) {
684 mlog_errno(status);
685 ocfs2_extent_map_drop(inode, le32_to_cpu(fe->i_clusters));
686 }
687
688 status = ocfs2_journal_dirty(handle, fe_bh);
689 if (status < 0)
690 mlog_errno(status);
691 if (fe->id2.i_list.l_tree_depth) {
692 status = ocfs2_journal_dirty(handle, eb_bhs[num_bhs - 1]);
693 if (status < 0)
694 mlog_errno(status);
695 }
696
697 status = 0;
698bail:
699 if (eb_bhs) {
700 for (i = 0; i < num_bhs; i++)
701 if (eb_bhs[i])
702 brelse(eb_bhs[i]);
703 kfree(eb_bhs);
704 }
705
706 mlog_exit(status);
707 return status;
708}
709
710/*
711 * Should only be called when there is no space left in any of the 719 * Should only be called when there is no space left in any of the
712 * leaf nodes. What we want to do is find the lowest tree depth 720 * leaf nodes. What we want to do is find the lowest tree depth
713 * non-leaf extent block with room for new records. There are three 721 * non-leaf extent block with room for new records. There are three
@@ -807,53 +815,1523 @@ bail:
807 return status; 815 return status;
808} 816}
809 817
810/* the caller needs to update fe->i_clusters */ 818static inline int ocfs2_is_empty_extent(struct ocfs2_extent_rec *rec)
811int ocfs2_insert_extent(struct ocfs2_super *osb,
812 handle_t *handle,
813 struct inode *inode,
814 struct buffer_head *fe_bh,
815 u64 start_blk,
816 u32 new_clusters,
817 struct ocfs2_alloc_context *meta_ac)
818{ 819{
819 int status, i, shift; 820 return !rec->e_clusters;
820 struct buffer_head *last_eb_bh = NULL; 821}
822
823/*
824 * This function will discard the rightmost extent record.
825 */
826static void ocfs2_shift_records_right(struct ocfs2_extent_list *el)
827{
828 int next_free = le16_to_cpu(el->l_next_free_rec);
829 int count = le16_to_cpu(el->l_count);
830 unsigned int num_bytes;
831
832 BUG_ON(!next_free);
833 /* This will cause us to go off the end of our extent list. */
834 BUG_ON(next_free >= count);
835
836 num_bytes = sizeof(struct ocfs2_extent_rec) * next_free;
837
838 memmove(&el->l_recs[1], &el->l_recs[0], num_bytes);
839}
840
841static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el,
842 struct ocfs2_extent_rec *insert_rec)
843{
844 int i, insert_index, next_free, has_empty, num_bytes;
845 u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos);
846 struct ocfs2_extent_rec *rec;
847
848 next_free = le16_to_cpu(el->l_next_free_rec);
849 has_empty = ocfs2_is_empty_extent(&el->l_recs[0]);
850
851 BUG_ON(!next_free);
852
853 /* The tree code before us didn't allow enough room in the leaf. */
854 if (el->l_next_free_rec == el->l_count && !has_empty)
855 BUG();
856
857 /*
858 * The easiest way to approach this is to just remove the
859 * empty extent and temporarily decrement next_free.
860 */
861 if (has_empty) {
862 /*
863 * If next_free was 1 (only an empty extent), this
864 * loop won't execute, which is fine. We still want
865 * the decrement above to happen.
866 */
867 for(i = 0; i < (next_free - 1); i++)
868 el->l_recs[i] = el->l_recs[i+1];
869
870 next_free--;
871 }
872
873 /*
874 * Figure out what the new record index should be.
875 */
876 for(i = 0; i < next_free; i++) {
877 rec = &el->l_recs[i];
878
879 if (insert_cpos < le32_to_cpu(rec->e_cpos))
880 break;
881 }
882 insert_index = i;
883
884 mlog(0, "ins %u: index %d, has_empty %d, next_free %d, count %d\n",
885 insert_cpos, insert_index, has_empty, next_free, le16_to_cpu(el->l_count));
886
887 BUG_ON(insert_index < 0);
888 BUG_ON(insert_index >= le16_to_cpu(el->l_count));
889 BUG_ON(insert_index > next_free);
890
891 /*
892 * No need to memmove if we're just adding to the tail.
893 */
894 if (insert_index != next_free) {
895 BUG_ON(next_free >= le16_to_cpu(el->l_count));
896
897 num_bytes = next_free - insert_index;
898 num_bytes *= sizeof(struct ocfs2_extent_rec);
899 memmove(&el->l_recs[insert_index + 1],
900 &el->l_recs[insert_index],
901 num_bytes);
902 }
903
904 /*
905 * Either we had an empty extent, and need to re-increment or
906 * there was no empty extent on a non full rightmost leaf node,
907 * in which case we still need to increment.
908 */
909 next_free++;
910 el->l_next_free_rec = cpu_to_le16(next_free);
911 /*
912 * Make sure none of the math above just messed up our tree.
913 */
914 BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count));
915
916 el->l_recs[insert_index] = *insert_rec;
917
918}
919
920/*
921 * Create an empty extent record .
922 *
923 * l_next_free_rec may be updated.
924 *
925 * If an empty extent already exists do nothing.
926 */
927static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el)
928{
929 int next_free = le16_to_cpu(el->l_next_free_rec);
930
931 if (next_free == 0)
932 goto set_and_inc;
933
934 if (ocfs2_is_empty_extent(&el->l_recs[0]))
935 return;
936
937 mlog_bug_on_msg(el->l_count == el->l_next_free_rec,
938 "Asked to create an empty extent in a full list:\n"
939 "count = %u, tree depth = %u",
940 le16_to_cpu(el->l_count),
941 le16_to_cpu(el->l_tree_depth));
942
943 ocfs2_shift_records_right(el);
944
945set_and_inc:
946 le16_add_cpu(&el->l_next_free_rec, 1);
947 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
948}
949
950/*
951 * For a rotation which involves two leaf nodes, the "root node" is
952 * the lowest level tree node which contains a path to both leafs. This
953 * resulting set of information can be used to form a complete "subtree"
954 *
955 * This function is passed two full paths from the dinode down to a
956 * pair of adjacent leaves. It's task is to figure out which path
957 * index contains the subtree root - this can be the root index itself
958 * in a worst-case rotation.
959 *
960 * The array index of the subtree root is passed back.
961 */
962static int ocfs2_find_subtree_root(struct inode *inode,
963 struct ocfs2_path *left,
964 struct ocfs2_path *right)
965{
966 int i = 0;
967
968 /*
969 * Check that the caller passed in two paths from the same tree.
970 */
971 BUG_ON(path_root_bh(left) != path_root_bh(right));
972
973 do {
974 i++;
975
976 /*
977 * The caller didn't pass two adjacent paths.
978 */
979 mlog_bug_on_msg(i > left->p_tree_depth,
980 "Inode %lu, left depth %u, right depth %u\n"
981 "left leaf blk %llu, right leaf blk %llu\n",
982 inode->i_ino, left->p_tree_depth,
983 right->p_tree_depth,
984 (unsigned long long)path_leaf_bh(left)->b_blocknr,
985 (unsigned long long)path_leaf_bh(right)->b_blocknr);
986 } while (left->p_node[i].bh->b_blocknr ==
987 right->p_node[i].bh->b_blocknr);
988
989 return i - 1;
990}
991
992typedef void (path_insert_t)(void *, struct buffer_head *);
993
994/*
995 * Traverse a btree path in search of cpos, starting at root_el.
996 *
997 * This code can be called with a cpos larger than the tree, in which
998 * case it will return the rightmost path.
999 */
1000static int __ocfs2_find_path(struct inode *inode,
1001 struct ocfs2_extent_list *root_el, u32 cpos,
1002 path_insert_t *func, void *data)
1003{
1004 int i, ret = 0;
1005 u32 range;
1006 u64 blkno;
821 struct buffer_head *bh = NULL; 1007 struct buffer_head *bh = NULL;
822 struct ocfs2_dinode *fe;
823 struct ocfs2_extent_block *eb; 1008 struct ocfs2_extent_block *eb;
824 struct ocfs2_extent_list *el; 1009 struct ocfs2_extent_list *el;
1010 struct ocfs2_extent_rec *rec;
1011 struct ocfs2_inode_info *oi = OCFS2_I(inode);
825 1012
826 mlog_entry_void(); 1013 el = root_el;
1014 while (el->l_tree_depth) {
1015 if (le16_to_cpu(el->l_next_free_rec) == 0) {
1016 ocfs2_error(inode->i_sb,
1017 "Inode %llu has empty extent list at "
1018 "depth %u\n",
1019 (unsigned long long)oi->ip_blkno,
1020 le16_to_cpu(el->l_tree_depth));
1021 ret = -EROFS;
1022 goto out;
827 1023
828 mlog(0, "add %u clusters starting at block %llu to inode %llu\n", 1024 }
829 new_clusters, (unsigned long long)start_blk,
830 (unsigned long long)OCFS2_I(inode)->ip_blkno);
831 1025
832 fe = (struct ocfs2_dinode *) fe_bh->b_data; 1026 for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) {
833 el = &fe->id2.i_list; 1027 rec = &el->l_recs[i];
1028
1029 /*
1030 * In the case that cpos is off the allocation
1031 * tree, this should just wind up returning the
1032 * rightmost record.
1033 */
1034 range = le32_to_cpu(rec->e_cpos) +
1035 le32_to_cpu(rec->e_clusters);
1036 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
1037 break;
1038 }
834 1039
835 if (el->l_tree_depth) { 1040 blkno = le64_to_cpu(el->l_recs[i].e_blkno);
836 /* jump to end of tree */ 1041 if (blkno == 0) {
837 status = ocfs2_read_block(osb, le64_to_cpu(fe->i_last_eb_blk), 1042 ocfs2_error(inode->i_sb,
838 &last_eb_bh, OCFS2_BH_CACHED, inode); 1043 "Inode %llu has bad blkno in extent list "
839 if (status < 0) { 1044 "at depth %u (index %d)\n",
840 mlog_exit(status); 1045 (unsigned long long)oi->ip_blkno,
841 goto bail; 1046 le16_to_cpu(el->l_tree_depth), i);
1047 ret = -EROFS;
1048 goto out;
842 } 1049 }
843 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data; 1050
1051 brelse(bh);
1052 bh = NULL;
1053 ret = ocfs2_read_block(OCFS2_SB(inode->i_sb), blkno,
1054 &bh, OCFS2_BH_CACHED, inode);
1055 if (ret) {
1056 mlog_errno(ret);
1057 goto out;
1058 }
1059
1060 eb = (struct ocfs2_extent_block *) bh->b_data;
844 el = &eb->h_list; 1061 el = &eb->h_list;
1062 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
1063 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
1064 ret = -EIO;
1065 goto out;
1066 }
1067
1068 if (le16_to_cpu(el->l_next_free_rec) >
1069 le16_to_cpu(el->l_count)) {
1070 ocfs2_error(inode->i_sb,
1071 "Inode %llu has bad count in extent list "
1072 "at block %llu (next free=%u, count=%u)\n",
1073 (unsigned long long)oi->ip_blkno,
1074 (unsigned long long)bh->b_blocknr,
1075 le16_to_cpu(el->l_next_free_rec),
1076 le16_to_cpu(el->l_count));
1077 ret = -EROFS;
1078 goto out;
1079 }
1080
1081 if (func)
1082 func(data, bh);
1083 }
1084
1085out:
1086 /*
1087 * Catch any trailing bh that the loop didn't handle.
1088 */
1089 brelse(bh);
1090
1091 return ret;
1092}
1093
1094/*
1095 * Given an initialized path (that is, it has a valid root extent
1096 * list), this function will traverse the btree in search of the path
1097 * which would contain cpos.
1098 *
1099 * The path traveled is recorded in the path structure.
1100 *
1101 * Note that this will not do any comparisons on leaf node extent
1102 * records, so it will work fine in the case that we just added a tree
1103 * branch.
1104 */
1105struct find_path_data {
1106 int index;
1107 struct ocfs2_path *path;
1108};
1109static void find_path_ins(void *data, struct buffer_head *bh)
1110{
1111 struct find_path_data *fp = data;
1112
1113 get_bh(bh);
1114 ocfs2_path_insert_eb(fp->path, fp->index, bh);
1115 fp->index++;
1116}
1117static int ocfs2_find_path(struct inode *inode, struct ocfs2_path *path,
1118 u32 cpos)
1119{
1120 struct find_path_data data;
1121
1122 data.index = 1;
1123 data.path = path;
1124 return __ocfs2_find_path(inode, path_root_el(path), cpos,
1125 find_path_ins, &data);
1126}
1127
1128static void find_leaf_ins(void *data, struct buffer_head *bh)
1129{
1130 struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data;
1131 struct ocfs2_extent_list *el = &eb->h_list;
1132 struct buffer_head **ret = data;
1133
1134 /* We want to retain only the leaf block. */
1135 if (le16_to_cpu(el->l_tree_depth) == 0) {
1136 get_bh(bh);
1137 *ret = bh;
1138 }
1139}
1140/*
1141 * Find the leaf block in the tree which would contain cpos. No
1142 * checking of the actual leaf is done.
1143 *
1144 * Some paths want to call this instead of allocating a path structure
1145 * and calling ocfs2_find_path().
1146 *
1147 * This function doesn't handle non btree extent lists.
1148 */
1149static int ocfs2_find_leaf(struct inode *inode,
1150 struct ocfs2_extent_list *root_el, u32 cpos,
1151 struct buffer_head **leaf_bh)
1152{
1153 int ret;
1154 struct buffer_head *bh = NULL;
1155
1156 ret = __ocfs2_find_path(inode, root_el, cpos, find_leaf_ins, &bh);
1157 if (ret) {
1158 mlog_errno(ret);
1159 goto out;
1160 }
1161
1162 *leaf_bh = bh;
1163out:
1164 return ret;
1165}
1166
1167/*
1168 * Adjust the adjacent records (left_rec, right_rec) involved in a rotation.
1169 *
1170 * Basically, we've moved stuff around at the bottom of the tree and
1171 * we need to fix up the extent records above the changes to reflect
1172 * the new changes.
1173 *
1174 * left_rec: the record on the left.
1175 * left_child_el: is the child list pointed to by left_rec
1176 * right_rec: the record to the right of left_rec
1177 * right_child_el: is the child list pointed to by right_rec
1178 *
1179 * By definition, this only works on interior nodes.
1180 */
1181static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec,
1182 struct ocfs2_extent_list *left_child_el,
1183 struct ocfs2_extent_rec *right_rec,
1184 struct ocfs2_extent_list *right_child_el)
1185{
1186 u32 left_clusters, right_end;
1187
1188 /*
1189 * Interior nodes never have holes. Their cpos is the cpos of
1190 * the leftmost record in their child list. Their cluster
1191 * count covers the full theoretical range of their child list
1192 * - the range between their cpos and the cpos of the record
1193 * immediately to their right.
1194 */
1195 left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos);
1196 left_clusters -= le32_to_cpu(left_rec->e_cpos);
1197 left_rec->e_clusters = cpu_to_le32(left_clusters);
1198
1199 /*
1200 * Calculate the rightmost cluster count boundary before
1201 * moving cpos - we will need to adjust e_clusters after
1202 * updating e_cpos to keep the same highest cluster count.
1203 */
1204 right_end = le32_to_cpu(right_rec->e_cpos);
1205 right_end += le32_to_cpu(right_rec->e_clusters);
1206
1207 right_rec->e_cpos = left_rec->e_cpos;
1208 le32_add_cpu(&right_rec->e_cpos, left_clusters);
1209
1210 right_end -= le32_to_cpu(right_rec->e_cpos);
1211 right_rec->e_clusters = cpu_to_le32(right_end);
1212}
1213
1214/*
1215 * Adjust the adjacent root node records involved in a
1216 * rotation. left_el_blkno is passed in as a key so that we can easily
1217 * find it's index in the root list.
1218 */
1219static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el,
1220 struct ocfs2_extent_list *left_el,
1221 struct ocfs2_extent_list *right_el,
1222 u64 left_el_blkno)
1223{
1224 int i;
1225
1226 BUG_ON(le16_to_cpu(root_el->l_tree_depth) <=
1227 le16_to_cpu(left_el->l_tree_depth));
1228
1229 for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) {
1230 if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno)
1231 break;
1232 }
1233
1234 /*
1235 * The path walking code should have never returned a root and
1236 * two paths which are not adjacent.
1237 */
1238 BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1));
1239
1240 ocfs2_adjust_adjacent_records(&root_el->l_recs[i], left_el,
1241 &root_el->l_recs[i + 1], right_el);
1242}
1243
1244/*
1245 * We've changed a leaf block (in right_path) and need to reflect that
1246 * change back up the subtree.
1247 *
1248 * This happens in multiple places:
1249 * - When we've moved an extent record from the left path leaf to the right
1250 * path leaf to make room for an empty extent in the left path leaf.
1251 * - When our insert into the right path leaf is at the leftmost edge
1252 * and requires an update of the path immediately to it's left. This
1253 * can occur at the end of some types of rotation and appending inserts.
1254 */
1255static void ocfs2_complete_edge_insert(struct inode *inode, handle_t *handle,
1256 struct ocfs2_path *left_path,
1257 struct ocfs2_path *right_path,
1258 int subtree_index)
1259{
1260 int ret, i, idx;
1261 struct ocfs2_extent_list *el, *left_el, *right_el;
1262 struct ocfs2_extent_rec *left_rec, *right_rec;
1263 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
1264
1265 /*
1266 * Update the counts and position values within all the
1267 * interior nodes to reflect the leaf rotation we just did.
1268 *
1269 * The root node is handled below the loop.
1270 *
1271 * We begin the loop with right_el and left_el pointing to the
1272 * leaf lists and work our way up.
1273 *
1274 * NOTE: within this loop, left_el and right_el always refer
1275 * to the *child* lists.
1276 */
1277 left_el = path_leaf_el(left_path);
1278 right_el = path_leaf_el(right_path);
1279 for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) {
1280 mlog(0, "Adjust records at index %u\n", i);
1281
1282 /*
1283 * One nice property of knowing that all of these
1284 * nodes are below the root is that we only deal with
1285 * the leftmost right node record and the rightmost
1286 * left node record.
1287 */
1288 el = left_path->p_node[i].el;
1289 idx = le16_to_cpu(left_el->l_next_free_rec) - 1;
1290 left_rec = &el->l_recs[idx];
1291
1292 el = right_path->p_node[i].el;
1293 right_rec = &el->l_recs[0];
1294
1295 ocfs2_adjust_adjacent_records(left_rec, left_el, right_rec,
1296 right_el);
1297
1298 ret = ocfs2_journal_dirty(handle, left_path->p_node[i].bh);
1299 if (ret)
1300 mlog_errno(ret);
1301
1302 ret = ocfs2_journal_dirty(handle, right_path->p_node[i].bh);
1303 if (ret)
1304 mlog_errno(ret);
1305
1306 /*
1307 * Setup our list pointers now so that the current
1308 * parents become children in the next iteration.
1309 */
1310 left_el = left_path->p_node[i].el;
1311 right_el = right_path->p_node[i].el;
1312 }
1313
1314 /*
1315 * At the root node, adjust the two adjacent records which
1316 * begin our path to the leaves.
1317 */
1318
1319 el = left_path->p_node[subtree_index].el;
1320 left_el = left_path->p_node[subtree_index + 1].el;
1321 right_el = right_path->p_node[subtree_index + 1].el;
1322
1323 ocfs2_adjust_root_records(el, left_el, right_el,
1324 left_path->p_node[subtree_index + 1].bh->b_blocknr);
1325
1326 root_bh = left_path->p_node[subtree_index].bh;
1327
1328 ret = ocfs2_journal_dirty(handle, root_bh);
1329 if (ret)
1330 mlog_errno(ret);
1331}
1332
1333static int ocfs2_rotate_subtree_right(struct inode *inode,
1334 handle_t *handle,
1335 struct ocfs2_path *left_path,
1336 struct ocfs2_path *right_path,
1337 int subtree_index)
1338{
1339 int ret, i;
1340 struct buffer_head *right_leaf_bh;
1341 struct buffer_head *left_leaf_bh = NULL;
1342 struct buffer_head *root_bh;
1343 struct ocfs2_extent_list *right_el, *left_el;
1344 struct ocfs2_extent_rec move_rec;
1345
1346 left_leaf_bh = path_leaf_bh(left_path);
1347 left_el = path_leaf_el(left_path);
1348
1349 if (left_el->l_next_free_rec != left_el->l_count) {
1350 ocfs2_error(inode->i_sb,
1351 "Inode %llu has non-full interior leaf node %llu"
1352 "(next free = %u)",
1353 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1354 (unsigned long long)left_leaf_bh->b_blocknr,
1355 le16_to_cpu(left_el->l_next_free_rec));
1356 return -EROFS;
1357 }
1358
1359 /*
1360 * This extent block may already have an empty record, so we
1361 * return early if so.
1362 */
1363 if (ocfs2_is_empty_extent(&left_el->l_recs[0]))
1364 return 0;
1365
1366 root_bh = left_path->p_node[subtree_index].bh;
1367 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
1368
1369 ret = ocfs2_journal_access(handle, inode, root_bh,
1370 OCFS2_JOURNAL_ACCESS_WRITE);
1371 if (ret) {
1372 mlog_errno(ret);
1373 goto out;
1374 }
1375
1376 for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
1377 ret = ocfs2_journal_access(handle, inode,
1378 right_path->p_node[i].bh,
1379 OCFS2_JOURNAL_ACCESS_WRITE);
1380 if (ret) {
1381 mlog_errno(ret);
1382 goto out;
1383 }
1384
1385 ret = ocfs2_journal_access(handle, inode,
1386 left_path->p_node[i].bh,
1387 OCFS2_JOURNAL_ACCESS_WRITE);
1388 if (ret) {
1389 mlog_errno(ret);
1390 goto out;
1391 }
1392 }
1393
1394 right_leaf_bh = path_leaf_bh(right_path);
1395 right_el = path_leaf_el(right_path);
1396
1397 /* This is a code error, not a disk corruption. */
1398 mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails "
1399 "because rightmost leaf block %llu is empty\n",
1400 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1401 (unsigned long long)right_leaf_bh->b_blocknr);
1402
1403 ocfs2_create_empty_extent(right_el);
1404
1405 ret = ocfs2_journal_dirty(handle, right_leaf_bh);
1406 if (ret) {
1407 mlog_errno(ret);
1408 goto out;
1409 }
1410
1411 /* Do the copy now. */
1412 i = le16_to_cpu(left_el->l_next_free_rec) - 1;
1413 move_rec = left_el->l_recs[i];
1414 right_el->l_recs[0] = move_rec;
1415
1416 /*
1417 * Clear out the record we just copied and shift everything
1418 * over, leaving an empty extent in the left leaf.
1419 *
1420 * We temporarily subtract from next_free_rec so that the
1421 * shift will lose the tail record (which is now defunct).
1422 */
1423 le16_add_cpu(&left_el->l_next_free_rec, -1);
1424 ocfs2_shift_records_right(left_el);
1425 memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1426 le16_add_cpu(&left_el->l_next_free_rec, 1);
1427
1428 ret = ocfs2_journal_dirty(handle, left_leaf_bh);
1429 if (ret) {
1430 mlog_errno(ret);
1431 goto out;
1432 }
1433
1434 ocfs2_complete_edge_insert(inode, handle, left_path, right_path,
1435 subtree_index);
1436
1437out:
1438 return ret;
1439}
1440
1441/*
1442 * Given a full path, determine what cpos value would return us a path
1443 * containing the leaf immediately to the left of the current one.
1444 *
1445 * Will return zero if the path passed in is already the leftmost path.
1446 */
1447static int ocfs2_find_cpos_for_left_leaf(struct super_block *sb,
1448 struct ocfs2_path *path, u32 *cpos)
1449{
1450 int i, j, ret = 0;
1451 u64 blkno;
1452 struct ocfs2_extent_list *el;
1453
1454 *cpos = 0;
1455
1456 blkno = path_leaf_bh(path)->b_blocknr;
1457
1458 /* Start at the tree node just above the leaf and work our way up. */
1459 i = path->p_tree_depth - 1;
1460 while (i >= 0) {
1461 el = path->p_node[i].el;
1462
1463 /*
1464 * Find the extent record just before the one in our
1465 * path.
1466 */
1467 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
1468 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
1469 if (j == 0) {
1470 if (i == 0) {
1471 /*
1472 * We've determined that the
1473 * path specified is already
1474 * the leftmost one - return a
1475 * cpos of zero.
1476 */
1477 goto out;
1478 }
1479 /*
1480 * The leftmost record points to our
1481 * leaf - we need to travel up the
1482 * tree one level.
1483 */
1484 goto next_node;
1485 }
1486
1487 *cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos);
1488 *cpos = *cpos + le32_to_cpu(el->l_recs[j - 1].e_clusters) - 1;
1489 goto out;
1490 }
1491 }
1492
1493 /*
1494 * If we got here, we never found a valid node where
1495 * the tree indicated one should be.
1496 */
1497 ocfs2_error(sb,
1498 "Invalid extent tree at extent block %llu\n",
1499 (unsigned long long)blkno);
1500 ret = -EROFS;
1501 goto out;
1502
1503next_node:
1504 blkno = path->p_node[i].bh->b_blocknr;
1505 i--;
1506 }
1507
1508out:
1509 return ret;
1510}
1511
1512static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth,
1513 struct ocfs2_path *path)
1514{
1515 int credits = (path->p_tree_depth - subtree_depth) * 2 + 1;
1516
1517 if (handle->h_buffer_credits < credits)
1518 return ocfs2_extend_trans(handle, credits);
1519
1520 return 0;
1521}
1522
1523/*
1524 * Trap the case where we're inserting into the theoretical range past
1525 * the _actual_ left leaf range. Otherwise, we'll rotate a record
1526 * whose cpos is less than ours into the right leaf.
1527 *
1528 * It's only necessary to look at the rightmost record of the left
1529 * leaf because the logic that calls us should ensure that the
1530 * theoretical ranges in the path components above the leaves are
1531 * correct.
1532 */
1533static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path,
1534 u32 insert_cpos)
1535{
1536 struct ocfs2_extent_list *left_el;
1537 struct ocfs2_extent_rec *rec;
1538 int next_free;
1539
1540 left_el = path_leaf_el(left_path);
1541 next_free = le16_to_cpu(left_el->l_next_free_rec);
1542 rec = &left_el->l_recs[next_free - 1];
1543
1544 if (insert_cpos > le32_to_cpu(rec->e_cpos))
1545 return 1;
1546 return 0;
1547}
1548
1549/*
1550 * Rotate all the records in a btree right one record, starting at insert_cpos.
1551 *
1552 * The path to the rightmost leaf should be passed in.
1553 *
1554 * The array is assumed to be large enough to hold an entire path (tree depth).
1555 *
1556 * Upon succesful return from this function:
1557 *
1558 * - The 'right_path' array will contain a path to the leaf block
1559 * whose range contains e_cpos.
1560 * - That leaf block will have a single empty extent in list index 0.
1561 * - In the case that the rotation requires a post-insert update,
1562 * *ret_left_path will contain a valid path which can be passed to
1563 * ocfs2_insert_path().
1564 */
1565static int ocfs2_rotate_tree_right(struct inode *inode,
1566 handle_t *handle,
1567 u32 insert_cpos,
1568 struct ocfs2_path *right_path,
1569 struct ocfs2_path **ret_left_path)
1570{
1571 int ret, start;
1572 u32 cpos;
1573 struct ocfs2_path *left_path = NULL;
1574
1575 *ret_left_path = NULL;
1576
1577 left_path = ocfs2_new_path(path_root_bh(right_path),
1578 path_root_el(right_path));
1579 if (!left_path) {
1580 ret = -ENOMEM;
1581 mlog_errno(ret);
1582 goto out;
1583 }
1584
1585 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path, &cpos);
1586 if (ret) {
1587 mlog_errno(ret);
1588 goto out;
1589 }
1590
1591 mlog(0, "Insert: %u, first left path cpos: %u\n", insert_cpos, cpos);
1592
1593 /*
1594 * What we want to do here is:
1595 *
1596 * 1) Start with the rightmost path.
1597 *
1598 * 2) Determine a path to the leaf block directly to the left
1599 * of that leaf.
1600 *
1601 * 3) Determine the 'subtree root' - the lowest level tree node
1602 * which contains a path to both leaves.
1603 *
1604 * 4) Rotate the subtree.
1605 *
1606 * 5) Find the next subtree by considering the left path to be
1607 * the new right path.
1608 *
1609 * The check at the top of this while loop also accepts
1610 * insert_cpos == cpos because cpos is only a _theoretical_
1611 * value to get us the left path - insert_cpos might very well
1612 * be filling that hole.
1613 *
1614 * Stop at a cpos of '0' because we either started at the
1615 * leftmost branch (i.e., a tree with one branch and a
1616 * rotation inside of it), or we've gone as far as we can in
1617 * rotating subtrees.
1618 */
1619 while (cpos && insert_cpos <= cpos) {
1620 mlog(0, "Rotating a tree: ins. cpos: %u, left path cpos: %u\n",
1621 insert_cpos, cpos);
1622
1623 ret = ocfs2_find_path(inode, left_path, cpos);
1624 if (ret) {
1625 mlog_errno(ret);
1626 goto out;
1627 }
1628
1629 mlog_bug_on_msg(path_leaf_bh(left_path) ==
1630 path_leaf_bh(right_path),
1631 "Inode %lu: error during insert of %u "
1632 "(left path cpos %u) results in two identical "
1633 "paths ending at %llu\n",
1634 inode->i_ino, insert_cpos, cpos,
1635 (unsigned long long)
1636 path_leaf_bh(left_path)->b_blocknr);
1637
1638 if (ocfs2_rotate_requires_path_adjustment(left_path,
1639 insert_cpos)) {
1640 mlog(0, "Path adjustment required\n");
1641
1642 /*
1643 * We've rotated the tree as much as we
1644 * should. The rest is up to
1645 * ocfs2_insert_path() to complete, after the
1646 * record insertion. We indicate this
1647 * situation by returning the left path.
1648 *
1649 * The reason we don't adjust the records here
1650 * before the record insert is that an error
1651 * later might break the rule where a parent
1652 * record e_cpos will reflect the actual
1653 * e_cpos of the 1st nonempty record of the
1654 * child list.
1655 */
1656 *ret_left_path = left_path;
1657 goto out_ret_path;
1658 }
1659
1660 start = ocfs2_find_subtree_root(inode, left_path, right_path);
1661
1662 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
1663 start,
1664 (unsigned long long) right_path->p_node[start].bh->b_blocknr,
1665 right_path->p_tree_depth);
1666
1667 ret = ocfs2_extend_rotate_transaction(handle, start,
1668 right_path);
1669 if (ret) {
1670 mlog_errno(ret);
1671 goto out;
1672 }
1673
1674 ret = ocfs2_rotate_subtree_right(inode, handle, left_path,
1675 right_path, start);
1676 if (ret) {
1677 mlog_errno(ret);
1678 goto out;
1679 }
1680
1681 /*
1682 * There is no need to re-read the next right path
1683 * as we know that it'll be our current left
1684 * path. Optimize by copying values instead.
1685 */
1686 ocfs2_mv_path(right_path, left_path);
1687
1688 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path,
1689 &cpos);
1690 if (ret) {
1691 mlog_errno(ret);
1692 goto out;
1693 }
1694 }
1695
1696out:
1697 ocfs2_free_path(left_path);
1698
1699out_ret_path:
1700 return ret;
1701}
1702
1703/*
1704 * Do the final bits of extent record insertion at the target leaf
1705 * list. If this leaf is part of an allocation tree, it is assumed
1706 * that the tree above has been prepared.
1707 */
1708static void ocfs2_insert_at_leaf(struct ocfs2_extent_rec *insert_rec,
1709 struct ocfs2_extent_list *el,
1710 struct ocfs2_insert_type *insert,
1711 struct inode *inode)
1712{
1713 int i = insert->ins_contig_index;
1714 unsigned int range;
1715 struct ocfs2_extent_rec *rec;
1716
1717 BUG_ON(el->l_tree_depth);
1718
1719 /*
1720 * Contiguous insert - either left or right.
1721 */
1722 if (insert->ins_contig != CONTIG_NONE) {
1723 rec = &el->l_recs[i];
1724 if (insert->ins_contig == CONTIG_LEFT) {
1725 rec->e_blkno = insert_rec->e_blkno;
1726 rec->e_cpos = insert_rec->e_cpos;
1727 }
1728 le32_add_cpu(&rec->e_clusters,
1729 le32_to_cpu(insert_rec->e_clusters));
1730 return;
1731 }
1732
1733 /*
1734 * Handle insert into an empty leaf.
1735 */
1736 if (le16_to_cpu(el->l_next_free_rec) == 0 ||
1737 ((le16_to_cpu(el->l_next_free_rec) == 1) &&
1738 ocfs2_is_empty_extent(&el->l_recs[0]))) {
1739 el->l_recs[0] = *insert_rec;
1740 el->l_next_free_rec = cpu_to_le16(1);
1741 return;
1742 }
1743
1744 /*
1745 * Appending insert.
1746 */
1747 if (insert->ins_appending == APPEND_TAIL) {
1748 i = le16_to_cpu(el->l_next_free_rec) - 1;
1749 rec = &el->l_recs[i];
1750 range = le32_to_cpu(rec->e_cpos) + le32_to_cpu(rec->e_clusters);
1751 BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range);
1752
1753 mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >=
1754 le16_to_cpu(el->l_count),
1755 "inode %lu, depth %u, count %u, next free %u, "
1756 "rec.cpos %u, rec.clusters %u, "
1757 "insert.cpos %u, insert.clusters %u\n",
1758 inode->i_ino,
1759 le16_to_cpu(el->l_tree_depth),
1760 le16_to_cpu(el->l_count),
1761 le16_to_cpu(el->l_next_free_rec),
1762 le32_to_cpu(el->l_recs[i].e_cpos),
1763 le32_to_cpu(el->l_recs[i].e_clusters),
1764 le32_to_cpu(insert_rec->e_cpos),
1765 le32_to_cpu(insert_rec->e_clusters));
1766 i++;
1767 el->l_recs[i] = *insert_rec;
1768 le16_add_cpu(&el->l_next_free_rec, 1);
1769 return;
1770 }
1771
1772 /*
1773 * Ok, we have to rotate.
1774 *
1775 * At this point, it is safe to assume that inserting into an
1776 * empty leaf and appending to a leaf have both been handled
1777 * above.
1778 *
1779 * This leaf needs to have space, either by the empty 1st
1780 * extent record, or by virtue of an l_next_rec < l_count.
1781 */
1782 ocfs2_rotate_leaf(el, insert_rec);
1783}
1784
1785static inline void ocfs2_update_dinode_clusters(struct inode *inode,
1786 struct ocfs2_dinode *di,
1787 u32 clusters)
1788{
1789 le32_add_cpu(&di->i_clusters, clusters);
1790 spin_lock(&OCFS2_I(inode)->ip_lock);
1791 OCFS2_I(inode)->ip_clusters = le32_to_cpu(di->i_clusters);
1792 spin_unlock(&OCFS2_I(inode)->ip_lock);
1793}
1794
1795static int ocfs2_append_rec_to_path(struct inode *inode, handle_t *handle,
1796 struct ocfs2_extent_rec *insert_rec,
1797 struct ocfs2_path *right_path,
1798 struct ocfs2_path **ret_left_path)
1799{
1800 int ret, i, next_free;
1801 struct buffer_head *bh;
1802 struct ocfs2_extent_list *el;
1803 struct ocfs2_path *left_path = NULL;
1804
1805 *ret_left_path = NULL;
1806
1807 /*
1808 * If our appending insert is at the leftmost edge of a leaf,
1809 * then we might need to update the rightmost records of the
1810 * neighboring path.
1811 */
1812 el = path_leaf_el(right_path);
1813 next_free = le16_to_cpu(el->l_next_free_rec);
1814 if (next_free == 0 ||
1815 (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) {
1816 u32 left_cpos;
1817
1818 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path,
1819 &left_cpos);
1820 if (ret) {
1821 mlog_errno(ret);
1822 goto out;
1823 }
1824
1825 mlog(0, "Append may need a left path update. cpos: %u, "
1826 "left_cpos: %u\n", le32_to_cpu(insert_rec->e_cpos),
1827 left_cpos);
1828
1829 /*
1830 * No need to worry if the append is already in the
1831 * leftmost leaf.
1832 */
1833 if (left_cpos) {
1834 left_path = ocfs2_new_path(path_root_bh(right_path),
1835 path_root_el(right_path));
1836 if (!left_path) {
1837 ret = -ENOMEM;
1838 mlog_errno(ret);
1839 goto out;
1840 }
1841
1842 ret = ocfs2_find_path(inode, left_path, left_cpos);
1843 if (ret) {
1844 mlog_errno(ret);
1845 goto out;
1846 }
1847
1848 /*
1849 * ocfs2_insert_path() will pass the left_path to the
1850 * journal for us.
1851 */
1852 }
1853 }
1854
1855 ret = ocfs2_journal_access_path(inode, handle, right_path);
1856 if (ret) {
1857 mlog_errno(ret);
1858 goto out;
1859 }
1860
1861 el = path_root_el(right_path);
1862 bh = path_root_bh(right_path);
1863 i = 0;
1864 while (1) {
1865 next_free = le16_to_cpu(el->l_next_free_rec);
1866 if (next_free == 0) {
1867 ocfs2_error(inode->i_sb,
1868 "Dinode %llu has a bad extent list",
1869 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1870 ret = -EIO;
1871 goto out;
1872 }
1873
1874 el->l_recs[next_free - 1].e_clusters = insert_rec->e_cpos;
1875 le32_add_cpu(&el->l_recs[next_free - 1].e_clusters,
1876 le32_to_cpu(insert_rec->e_clusters));
1877 le32_add_cpu(&el->l_recs[next_free - 1].e_clusters,
1878 -le32_to_cpu(el->l_recs[next_free - 1].e_cpos));
1879
1880 ret = ocfs2_journal_dirty(handle, bh);
1881 if (ret)
1882 mlog_errno(ret);
1883
1884 if (++i >= right_path->p_tree_depth)
1885 break;
1886
1887 bh = right_path->p_node[i].bh;
1888 el = right_path->p_node[i].el;
1889 }
1890
1891 *ret_left_path = left_path;
1892 ret = 0;
1893out:
1894 if (ret != 0)
1895 ocfs2_free_path(left_path);
1896
1897 return ret;
1898}
1899
1900/*
1901 * This function only does inserts on an allocation b-tree. For dinode
1902 * lists, ocfs2_insert_at_leaf() is called directly.
1903 *
1904 * right_path is the path we want to do the actual insert
1905 * in. left_path should only be passed in if we need to update that
1906 * portion of the tree after an edge insert.
1907 */
1908static int ocfs2_insert_path(struct inode *inode,
1909 handle_t *handle,
1910 struct ocfs2_path *left_path,
1911 struct ocfs2_path *right_path,
1912 struct ocfs2_extent_rec *insert_rec,
1913 struct ocfs2_insert_type *insert)
1914{
1915 int ret, subtree_index;
1916 struct buffer_head *leaf_bh = path_leaf_bh(right_path);
1917 struct ocfs2_extent_list *el;
1918
1919 /*
1920 * Pass both paths to the journal. The majority of inserts
1921 * will be touching all components anyway.
1922 */
1923 ret = ocfs2_journal_access_path(inode, handle, right_path);
1924 if (ret < 0) {
1925 mlog_errno(ret);
1926 goto out;
1927 }
1928
1929 if (left_path) {
1930 int credits = handle->h_buffer_credits;
1931
1932 /*
1933 * There's a chance that left_path got passed back to
1934 * us without being accounted for in the
1935 * journal. Extend our transaction here to be sure we
1936 * can change those blocks.
1937 */
1938 credits += left_path->p_tree_depth;
1939
1940 ret = ocfs2_extend_trans(handle, credits);
1941 if (ret < 0) {
1942 mlog_errno(ret);
1943 goto out;
1944 }
1945
1946 ret = ocfs2_journal_access_path(inode, handle, left_path);
1947 if (ret < 0) {
1948 mlog_errno(ret);
1949 goto out;
1950 }
1951 }
1952
1953 el = path_leaf_el(right_path);
1954
1955 ocfs2_insert_at_leaf(insert_rec, el, insert, inode);
1956 ret = ocfs2_journal_dirty(handle, leaf_bh);
1957 if (ret)
1958 mlog_errno(ret);
1959
1960 if (left_path) {
1961 /*
1962 * The rotate code has indicated that we need to fix
1963 * up portions of the tree after the insert.
1964 *
1965 * XXX: Should we extend the transaction here?
1966 */
1967 subtree_index = ocfs2_find_subtree_root(inode, left_path,
1968 right_path);
1969 ocfs2_complete_edge_insert(inode, handle, left_path,
1970 right_path, subtree_index);
1971 }
1972
1973 ret = 0;
1974out:
1975 return ret;
1976}
1977
1978static int ocfs2_do_insert_extent(struct inode *inode,
1979 handle_t *handle,
1980 struct buffer_head *di_bh,
1981 struct ocfs2_extent_rec *insert_rec,
1982 struct ocfs2_insert_type *type)
1983{
1984 int ret, rotate = 0;
1985 u32 cpos;
1986 struct ocfs2_path *right_path = NULL;
1987 struct ocfs2_path *left_path = NULL;
1988 struct ocfs2_dinode *di;
1989 struct ocfs2_extent_list *el;
1990
1991 di = (struct ocfs2_dinode *) di_bh->b_data;
1992 el = &di->id2.i_list;
1993
1994 ret = ocfs2_journal_access(handle, inode, di_bh,
1995 OCFS2_JOURNAL_ACCESS_WRITE);
1996 if (ret) {
1997 mlog_errno(ret);
1998 goto out;
1999 }
2000
2001 if (le16_to_cpu(el->l_tree_depth) == 0) {
2002 ocfs2_insert_at_leaf(insert_rec, el, type, inode);
2003 goto out_update_clusters;
2004 }
2005
2006 right_path = ocfs2_new_inode_path(di_bh);
2007 if (!right_path) {
2008 ret = -ENOMEM;
2009 mlog_errno(ret);
2010 goto out;
2011 }
2012
2013 /*
2014 * Determine the path to start with. Rotations need the
2015 * rightmost path, everything else can go directly to the
2016 * target leaf.
2017 */
2018 cpos = le32_to_cpu(insert_rec->e_cpos);
2019 if (type->ins_appending == APPEND_NONE &&
2020 type->ins_contig == CONTIG_NONE) {
2021 rotate = 1;
2022 cpos = UINT_MAX;
2023 }
2024
2025 ret = ocfs2_find_path(inode, right_path, cpos);
2026 if (ret) {
2027 mlog_errno(ret);
2028 goto out;
2029 }
2030
2031 /*
2032 * Rotations and appends need special treatment - they modify
2033 * parts of the tree's above them.
2034 *
2035 * Both might pass back a path immediate to the left of the
2036 * one being inserted to. This will be cause
2037 * ocfs2_insert_path() to modify the rightmost records of
2038 * left_path to account for an edge insert.
2039 *
2040 * XXX: When modifying this code, keep in mind that an insert
2041 * can wind up skipping both of these two special cases...
2042 */
2043 if (rotate) {
2044 ret = ocfs2_rotate_tree_right(inode, handle,
2045 le32_to_cpu(insert_rec->e_cpos),
2046 right_path, &left_path);
2047 if (ret) {
2048 mlog_errno(ret);
2049 goto out;
2050 }
2051 } else if (type->ins_appending == APPEND_TAIL
2052 && type->ins_contig != CONTIG_LEFT) {
2053 ret = ocfs2_append_rec_to_path(inode, handle, insert_rec,
2054 right_path, &left_path);
2055 if (ret) {
2056 mlog_errno(ret);
2057 goto out;
2058 }
2059 }
2060
2061 ret = ocfs2_insert_path(inode, handle, left_path, right_path,
2062 insert_rec, type);
2063 if (ret) {
2064 mlog_errno(ret);
2065 goto out;
2066 }
2067
2068out_update_clusters:
2069 ocfs2_update_dinode_clusters(inode, di,
2070 le32_to_cpu(insert_rec->e_clusters));
2071
2072 ret = ocfs2_journal_dirty(handle, di_bh);
2073 if (ret)
2074 mlog_errno(ret);
2075
2076out:
2077 ocfs2_free_path(left_path);
2078 ocfs2_free_path(right_path);
2079
2080 return ret;
2081}
2082
2083static void ocfs2_figure_contig_type(struct inode *inode,
2084 struct ocfs2_insert_type *insert,
2085 struct ocfs2_extent_list *el,
2086 struct ocfs2_extent_rec *insert_rec)
2087{
2088 int i;
2089 enum ocfs2_contig_type contig_type = CONTIG_NONE;
2090
2091 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
2092 contig_type = ocfs2_extent_contig(inode, &el->l_recs[i],
2093 insert_rec);
2094 if (contig_type != CONTIG_NONE) {
2095 insert->ins_contig_index = i;
2096 break;
2097 }
2098 }
2099 insert->ins_contig = contig_type;
2100}
2101
2102/*
2103 * This should only be called against the righmost leaf extent list.
2104 *
2105 * ocfs2_figure_appending_type() will figure out whether we'll have to
2106 * insert at the tail of the rightmost leaf.
2107 *
2108 * This should also work against the dinode list for tree's with 0
2109 * depth. If we consider the dinode list to be the rightmost leaf node
2110 * then the logic here makes sense.
2111 */
2112static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert,
2113 struct ocfs2_extent_list *el,
2114 struct ocfs2_extent_rec *insert_rec)
2115{
2116 int i;
2117 u32 cpos = le32_to_cpu(insert_rec->e_cpos);
2118 struct ocfs2_extent_rec *rec;
2119
2120 insert->ins_appending = APPEND_NONE;
2121
2122 BUG_ON(el->l_tree_depth);
2123
2124 if (!el->l_next_free_rec)
2125 goto set_tail_append;
2126
2127 if (ocfs2_is_empty_extent(&el->l_recs[0])) {
2128 /* Were all records empty? */
2129 if (le16_to_cpu(el->l_next_free_rec) == 1)
2130 goto set_tail_append;
845 } 2131 }
846 2132
847 /* Can we allocate without adding/shifting tree bits? */
848 i = le16_to_cpu(el->l_next_free_rec) - 1; 2133 i = le16_to_cpu(el->l_next_free_rec) - 1;
849 if (le16_to_cpu(el->l_next_free_rec) == 0 2134 rec = &el->l_recs[i];
850 || (le16_to_cpu(el->l_next_free_rec) < le16_to_cpu(el->l_count)) 2135
851 || le32_to_cpu(el->l_recs[i].e_clusters) == 0 2136 if (cpos >= (le32_to_cpu(rec->e_cpos) + le32_to_cpu(rec->e_clusters)))
852 || ocfs2_extent_contig(inode, &el->l_recs[i], start_blk)) 2137 goto set_tail_append;
853 goto out_add;
854 2138
855 mlog(0, "ocfs2_allocate_extent: couldn't do a simple add, traversing " 2139 return;
856 "tree now.\n"); 2140
2141set_tail_append:
2142 insert->ins_appending = APPEND_TAIL;
2143}
2144
2145/*
2146 * Helper function called at the begining of an insert.
2147 *
2148 * This computes a few things that are commonly used in the process of
2149 * inserting into the btree:
2150 * - Whether the new extent is contiguous with an existing one.
2151 * - The current tree depth.
2152 * - Whether the insert is an appending one.
2153 * - The total # of free records in the tree.
2154 *
2155 * All of the information is stored on the ocfs2_insert_type
2156 * structure.
2157 */
2158static int ocfs2_figure_insert_type(struct inode *inode,
2159 struct buffer_head *di_bh,
2160 struct buffer_head **last_eb_bh,
2161 struct ocfs2_extent_rec *insert_rec,
2162 struct ocfs2_insert_type *insert)
2163{
2164 int ret;
2165 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
2166 struct ocfs2_extent_block *eb;
2167 struct ocfs2_extent_list *el;
2168 struct ocfs2_path *path = NULL;
2169 struct buffer_head *bh = NULL;
2170
2171 el = &di->id2.i_list;
2172 insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth);
2173
2174 if (el->l_tree_depth) {
2175 /*
2176 * If we have tree depth, we read in the
2177 * rightmost extent block ahead of time as
2178 * ocfs2_figure_insert_type() and ocfs2_add_branch()
2179 * may want it later.
2180 */
2181 ret = ocfs2_read_block(OCFS2_SB(inode->i_sb),
2182 le64_to_cpu(di->i_last_eb_blk), &bh,
2183 OCFS2_BH_CACHED, inode);
2184 if (ret) {
2185 mlog_exit(ret);
2186 goto out;
2187 }
2188 eb = (struct ocfs2_extent_block *) bh->b_data;
2189 el = &eb->h_list;
2190 }
2191
2192 /*
2193 * Unless we have a contiguous insert, we'll need to know if
2194 * there is room left in our allocation tree for another
2195 * extent record.
2196 *
2197 * XXX: This test is simplistic, we can search for empty
2198 * extent records too.
2199 */
2200 insert->ins_free_records = le16_to_cpu(el->l_count) -
2201 le16_to_cpu(el->l_next_free_rec);
2202
2203 if (!insert->ins_tree_depth) {
2204 ocfs2_figure_contig_type(inode, insert, el, insert_rec);
2205 ocfs2_figure_appending_type(insert, el, insert_rec);
2206 return 0;
2207 }
2208
2209 path = ocfs2_new_inode_path(di_bh);
2210 if (!path) {
2211 ret = -ENOMEM;
2212 mlog_errno(ret);
2213 goto out;
2214 }
2215
2216 /*
2217 * In the case that we're inserting past what the tree
2218 * currently accounts for, ocfs2_find_path() will return for
2219 * us the rightmost tree path. This is accounted for below in
2220 * the appending code.
2221 */
2222 ret = ocfs2_find_path(inode, path, le32_to_cpu(insert_rec->e_cpos));
2223 if (ret) {
2224 mlog_errno(ret);
2225 goto out;
2226 }
2227
2228 el = path_leaf_el(path);
2229
2230 /*
2231 * Now that we have the path, there's two things we want to determine:
2232 * 1) Contiguousness (also set contig_index if this is so)
2233 *
2234 * 2) Are we doing an append? We can trivially break this up
2235 * into two types of appends: simple record append, or a
2236 * rotate inside the tail leaf.
2237 */
2238 ocfs2_figure_contig_type(inode, insert, el, insert_rec);
2239
2240 /*
2241 * The insert code isn't quite ready to deal with all cases of
2242 * left contiguousness. Specifically, if it's an insert into
2243 * the 1st record in a leaf, it will require the adjustment of
2244 * e_clusters on the last record of the path directly to it's
2245 * left. For now, just catch that case and fool the layers
2246 * above us. This works just fine for tree_depth == 0, which
2247 * is why we allow that above.
2248 */
2249 if (insert->ins_contig == CONTIG_LEFT &&
2250 insert->ins_contig_index == 0)
2251 insert->ins_contig = CONTIG_NONE;
2252
2253 /*
2254 * Ok, so we can simply compare against last_eb to figure out
2255 * whether the path doesn't exist. This will only happen in
2256 * the case that we're doing a tail append, so maybe we can
2257 * take advantage of that information somehow.
2258 */
2259 if (le64_to_cpu(di->i_last_eb_blk) == path_leaf_bh(path)->b_blocknr) {
2260 /*
2261 * Ok, ocfs2_find_path() returned us the rightmost
2262 * tree path. This might be an appending insert. There are
2263 * two cases:
2264 * 1) We're doing a true append at the tail:
2265 * -This might even be off the end of the leaf
2266 * 2) We're "appending" by rotating in the tail
2267 */
2268 ocfs2_figure_appending_type(insert, el, insert_rec);
2269 }
2270
2271out:
2272 ocfs2_free_path(path);
2273
2274 if (ret == 0)
2275 *last_eb_bh = bh;
2276 else
2277 brelse(bh);
2278 return ret;
2279}
2280
2281/*
2282 * Insert an extent into an inode btree.
2283 *
2284 * The caller needs to update fe->i_clusters
2285 */
2286int ocfs2_insert_extent(struct ocfs2_super *osb,
2287 handle_t *handle,
2288 struct inode *inode,
2289 struct buffer_head *fe_bh,
2290 u32 cpos,
2291 u64 start_blk,
2292 u32 new_clusters,
2293 struct ocfs2_alloc_context *meta_ac)
2294{
2295 int status, shift;
2296 struct buffer_head *last_eb_bh = NULL;
2297 struct buffer_head *bh = NULL;
2298 struct ocfs2_insert_type insert = {0, };
2299 struct ocfs2_extent_rec rec;
2300
2301 mlog(0, "add %u clusters at position %u to inode %llu\n",
2302 new_clusters, cpos, (unsigned long long)OCFS2_I(inode)->ip_blkno);
2303
2304 mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) &&
2305 (OCFS2_I(inode)->ip_clusters != cpos),
2306 "Device %s, asking for sparse allocation: inode %llu, "
2307 "cpos %u, clusters %u\n",
2308 osb->dev_str,
2309 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos,
2310 OCFS2_I(inode)->ip_clusters);
2311
2312 rec.e_cpos = cpu_to_le32(cpos);
2313 rec.e_blkno = cpu_to_le64(start_blk);
2314 rec.e_clusters = cpu_to_le32(new_clusters);
2315
2316 status = ocfs2_figure_insert_type(inode, fe_bh, &last_eb_bh, &rec,
2317 &insert);
2318 if (status < 0) {
2319 mlog_errno(status);
2320 goto bail;
2321 }
2322
2323 mlog(0, "Insert.appending: %u, Insert.Contig: %u, "
2324 "Insert.contig_index: %d, Insert.free_records: %d, "
2325 "Insert.tree_depth: %d\n",
2326 insert.ins_appending, insert.ins_contig, insert.ins_contig_index,
2327 insert.ins_free_records, insert.ins_tree_depth);
2328
2329 /*
2330 * Avoid growing the tree unless we're out of records and the
2331 * insert type requres one.
2332 */
2333 if (insert.ins_contig != CONTIG_NONE || insert.ins_free_records)
2334 goto out_add;
857 2335
858 shift = ocfs2_find_branch_target(osb, inode, fe_bh, &bh); 2336 shift = ocfs2_find_branch_target(osb, inode, fe_bh, &bh);
859 if (shift < 0) { 2337 if (shift < 0) {
@@ -866,13 +2344,9 @@ int ocfs2_insert_extent(struct ocfs2_super *osb,
866 * and didn't find room for any more extents - we need to add 2344 * and didn't find room for any more extents - we need to add
867 * another tree level */ 2345 * another tree level */
868 if (shift) { 2346 if (shift) {
869 /* if we hit a leaf, we'd better be empty :) */
870 BUG_ON(le16_to_cpu(el->l_next_free_rec) !=
871 le16_to_cpu(el->l_count));
872 BUG_ON(bh); 2347 BUG_ON(bh);
873 mlog(0, "ocfs2_allocate_extent: need to shift tree depth " 2348 mlog(0, "need to shift tree depth "
874 "(current = %u)\n", 2349 "(current = %d)\n", insert.ins_tree_depth);
875 le16_to_cpu(fe->id2.i_list.l_tree_depth));
876 2350
877 /* ocfs2_shift_tree_depth will return us a buffer with 2351 /* ocfs2_shift_tree_depth will return us a buffer with
878 * the new extent block (so we can pass that to 2352 * the new extent block (so we can pass that to
@@ -883,15 +2357,16 @@ int ocfs2_insert_extent(struct ocfs2_super *osb,
883 mlog_errno(status); 2357 mlog_errno(status);
884 goto bail; 2358 goto bail;
885 } 2359 }
2360 insert.ins_tree_depth++;
886 /* Special case: we have room now if we shifted from 2361 /* Special case: we have room now if we shifted from
887 * tree_depth 0 */ 2362 * tree_depth 0 */
888 if (fe->id2.i_list.l_tree_depth == cpu_to_le16(1)) 2363 if (insert.ins_tree_depth == 1)
889 goto out_add; 2364 goto out_add;
890 } 2365 }
891 2366
892 /* call ocfs2_add_branch to add the final part of the tree with 2367 /* call ocfs2_add_branch to add the final part of the tree with
893 * the new data. */ 2368 * the new data. */
894 mlog(0, "ocfs2_allocate_extent: add branch. bh = %p\n", bh); 2369 mlog(0, "add branch. bh = %p\n", bh);
895 status = ocfs2_add_branch(osb, handle, inode, fe_bh, bh, last_eb_bh, 2370 status = ocfs2_add_branch(osb, handle, inode, fe_bh, bh, last_eb_bh,
896 meta_ac); 2371 meta_ac);
897 if (status < 0) { 2372 if (status < 0) {
@@ -900,9 +2375,8 @@ int ocfs2_insert_extent(struct ocfs2_super *osb,
900 } 2375 }
901 2376
902out_add: 2377out_add:
903 /* Finally, we can add clusters. */ 2378 /* Finally, we can add clusters. This might rotate the tree for us. */
904 status = ocfs2_do_insert_extent(osb, handle, inode, fe_bh, 2379 status = ocfs2_do_insert_extent(inode, handle, fe_bh, &rec, &insert);
905 start_blk, new_clusters);
906 if (status < 0) 2380 if (status < 0)
907 mlog_errno(status); 2381 mlog_errno(status);
908 2382
@@ -1447,140 +2921,141 @@ int ocfs2_truncate_log_init(struct ocfs2_super *osb)
1447 * block will be deleted, and if it will, what the new last extent 2921 * block will be deleted, and if it will, what the new last extent
1448 * block will be so we can update his h_next_leaf_blk field, as well 2922 * block will be so we can update his h_next_leaf_blk field, as well
1449 * as the dinodes i_last_eb_blk */ 2923 * as the dinodes i_last_eb_blk */
1450static int ocfs2_find_new_last_ext_blk(struct ocfs2_super *osb, 2924static int ocfs2_find_new_last_ext_blk(struct inode *inode,
1451 struct inode *inode,
1452 struct ocfs2_dinode *fe,
1453 u32 new_i_clusters, 2925 u32 new_i_clusters,
1454 struct buffer_head *old_last_eb, 2926 struct ocfs2_path *path,
1455 struct buffer_head **new_last_eb) 2927 struct buffer_head **new_last_eb)
1456{ 2928{
1457 int i, status = 0; 2929 int ret = 0;
1458 u64 block = 0; 2930 u32 cpos;
1459 struct ocfs2_extent_block *eb; 2931 struct ocfs2_extent_block *eb;
1460 struct ocfs2_extent_list *el; 2932 struct ocfs2_extent_list *el;
1461 struct buffer_head *bh = NULL; 2933 struct buffer_head *bh = NULL;
1462 2934
1463 *new_last_eb = NULL; 2935 *new_last_eb = NULL;
1464 2936
1465 if (!OCFS2_IS_VALID_DINODE(fe)) {
1466 OCFS2_RO_ON_INVALID_DINODE(inode->i_sb, fe);
1467 status = -EIO;
1468 goto bail;
1469 }
1470
1471 /* we have no tree, so of course, no last_eb. */ 2937 /* we have no tree, so of course, no last_eb. */
1472 if (!fe->id2.i_list.l_tree_depth) 2938 if (!path->p_tree_depth)
1473 goto bail; 2939 goto out;
1474 2940
1475 /* trunc to zero special case - this makes tree_depth = 0 2941 /* trunc to zero special case - this makes tree_depth = 0
1476 * regardless of what it is. */ 2942 * regardless of what it is. */
1477 if (!new_i_clusters) 2943 if (!new_i_clusters)
1478 goto bail; 2944 goto out;
1479 2945
1480 eb = (struct ocfs2_extent_block *) old_last_eb->b_data; 2946 el = path_leaf_el(path);
1481 el = &(eb->h_list);
1482 BUG_ON(!el->l_next_free_rec); 2947 BUG_ON(!el->l_next_free_rec);
1483 2948
1484 /* Make sure that this guy will actually be empty after we 2949 /* Make sure that this guy will actually be empty after we
1485 * clear away the data. */ 2950 * clear away the data. */
1486 if (le32_to_cpu(el->l_recs[0].e_cpos) < new_i_clusters) 2951 if (ocfs2_is_empty_extent(&el->l_recs[0])) {
1487 goto bail; 2952 if (le16_to_cpu(el->l_next_free_rec) > 1 &&
2953 le32_to_cpu(el->l_recs[1].e_cpos) < new_i_clusters)
2954 goto out;
2955 } else if (le32_to_cpu(el->l_recs[0].e_cpos) < new_i_clusters)
2956 goto out;
1488 2957
1489 /* Ok, at this point, we know that last_eb will definitely 2958 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos);
1490 * change, so lets traverse the tree and find the second to 2959 if (ret) {
1491 * last extent block. */ 2960 mlog_errno(ret);
1492 el = &(fe->id2.i_list); 2961 goto out;
1493 /* go down the tree, */ 2962 }
1494 do {
1495 for(i = (le16_to_cpu(el->l_next_free_rec) - 1); i >= 0; i--) {
1496 if (le32_to_cpu(el->l_recs[i].e_cpos) <
1497 new_i_clusters) {
1498 block = le64_to_cpu(el->l_recs[i].e_blkno);
1499 break;
1500 }
1501 }
1502 BUG_ON(i < 0);
1503 2963
1504 if (bh) { 2964 ret = ocfs2_find_leaf(inode, path_root_el(path), cpos, &bh);
1505 brelse(bh); 2965 if (ret) {
1506 bh = NULL; 2966 mlog_errno(ret);
1507 } 2967 goto out;
2968 }
1508 2969
1509 status = ocfs2_read_block(osb, block, &bh, OCFS2_BH_CACHED, 2970 eb = (struct ocfs2_extent_block *) bh->b_data;
1510 inode); 2971 el = &eb->h_list;
1511 if (status < 0) { 2972 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
1512 mlog_errno(status); 2973 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
1513 goto bail; 2974 ret = -EROFS;
1514 } 2975 goto out;
1515 eb = (struct ocfs2_extent_block *) bh->b_data; 2976 }
1516 el = &eb->h_list;
1517 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
1518 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
1519 status = -EIO;
1520 goto bail;
1521 }
1522 } while (el->l_tree_depth);
1523 2977
1524 *new_last_eb = bh; 2978 *new_last_eb = bh;
1525 get_bh(*new_last_eb); 2979 get_bh(*new_last_eb);
1526 mlog(0, "returning block %llu\n", 2980 mlog(0, "returning block %llu, (cpos: %u)\n",
1527 (unsigned long long)le64_to_cpu(eb->h_blkno)); 2981 (unsigned long long)le64_to_cpu(eb->h_blkno), cpos);
1528bail: 2982out:
1529 if (bh) 2983 brelse(bh);
1530 brelse(bh);
1531 2984
1532 return status; 2985 return ret;
1533} 2986}
1534 2987
1535static int ocfs2_do_truncate(struct ocfs2_super *osb, 2988static int ocfs2_do_truncate(struct ocfs2_super *osb,
1536 unsigned int clusters_to_del, 2989 unsigned int clusters_to_del,
1537 struct inode *inode, 2990 struct inode *inode,
1538 struct buffer_head *fe_bh, 2991 struct buffer_head *fe_bh,
1539 struct buffer_head *old_last_eb_bh,
1540 handle_t *handle, 2992 handle_t *handle,
1541 struct ocfs2_truncate_context *tc) 2993 struct ocfs2_truncate_context *tc,
2994 struct ocfs2_path *path)
1542{ 2995{
1543 int status, i, depth; 2996 int status, i, index;
1544 struct ocfs2_dinode *fe; 2997 struct ocfs2_dinode *fe;
1545 struct ocfs2_extent_block *eb; 2998 struct ocfs2_extent_block *eb;
1546 struct ocfs2_extent_block *last_eb = NULL; 2999 struct ocfs2_extent_block *last_eb = NULL;
1547 struct ocfs2_extent_list *el; 3000 struct ocfs2_extent_list *el;
1548 struct buffer_head *eb_bh = NULL; 3001 struct buffer_head *eb_bh = NULL;
1549 struct buffer_head *last_eb_bh = NULL; 3002 struct buffer_head *last_eb_bh = NULL;
1550 u64 next_eb = 0;
1551 u64 delete_blk = 0; 3003 u64 delete_blk = 0;
1552 3004
1553 fe = (struct ocfs2_dinode *) fe_bh->b_data; 3005 fe = (struct ocfs2_dinode *) fe_bh->b_data;
1554 3006
1555 status = ocfs2_find_new_last_ext_blk(osb, 3007 status = ocfs2_find_new_last_ext_blk(inode,
1556 inode,
1557 fe,
1558 le32_to_cpu(fe->i_clusters) - 3008 le32_to_cpu(fe->i_clusters) -
1559 clusters_to_del, 3009 clusters_to_del,
1560 old_last_eb_bh, 3010 path, &last_eb_bh);
1561 &last_eb_bh);
1562 if (status < 0) { 3011 if (status < 0) {
1563 mlog_errno(status); 3012 mlog_errno(status);
1564 goto bail; 3013 goto bail;
1565 } 3014 }
1566 if (last_eb_bh) 3015
3016 /*
3017 * Each component will be touched, so we might as well journal
3018 * here to avoid having to handle errors later.
3019 */
3020 for (i = 0; i < path_num_items(path); i++) {
3021 status = ocfs2_journal_access(handle, inode,
3022 path->p_node[i].bh,
3023 OCFS2_JOURNAL_ACCESS_WRITE);
3024 if (status < 0) {
3025 mlog_errno(status);
3026 goto bail;
3027 }
3028 }
3029
3030 if (last_eb_bh) {
3031 status = ocfs2_journal_access(handle, inode, last_eb_bh,
3032 OCFS2_JOURNAL_ACCESS_WRITE);
3033 if (status < 0) {
3034 mlog_errno(status);
3035 goto bail;
3036 }
3037
1567 last_eb = (struct ocfs2_extent_block *) last_eb_bh->b_data; 3038 last_eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
3039 }
1568 3040
1569 status = ocfs2_journal_access(handle, inode, fe_bh, 3041 el = &(fe->id2.i_list);
1570 OCFS2_JOURNAL_ACCESS_WRITE); 3042
1571 if (status < 0) { 3043 /*
1572 mlog_errno(status); 3044 * Lower levels depend on this never happening, but it's best
3045 * to check it up here before changing the tree.
3046 */
3047 if (el->l_tree_depth && ocfs2_is_empty_extent(&el->l_recs[0])) {
3048 ocfs2_error(inode->i_sb,
3049 "Inode %lu has an empty extent record, depth %u\n",
3050 inode->i_ino, le16_to_cpu(el->l_tree_depth));
1573 goto bail; 3051 goto bail;
1574 } 3052 }
1575 el = &(fe->id2.i_list);
1576 3053
1577 spin_lock(&OCFS2_I(inode)->ip_lock); 3054 spin_lock(&OCFS2_I(inode)->ip_lock);
1578 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters) - 3055 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters) -
1579 clusters_to_del; 3056 clusters_to_del;
1580 spin_unlock(&OCFS2_I(inode)->ip_lock); 3057 spin_unlock(&OCFS2_I(inode)->ip_lock);
1581 le32_add_cpu(&fe->i_clusters, -clusters_to_del); 3058 le32_add_cpu(&fe->i_clusters, -clusters_to_del);
1582 fe->i_mtime = cpu_to_le64(CURRENT_TIME.tv_sec);
1583 fe->i_mtime_nsec = cpu_to_le32(CURRENT_TIME.tv_nsec);
1584 3059
1585 i = le16_to_cpu(el->l_next_free_rec) - 1; 3060 i = le16_to_cpu(el->l_next_free_rec) - 1;
1586 3061
@@ -1589,26 +3064,34 @@ static int ocfs2_do_truncate(struct ocfs2_super *osb,
1589 /* tree depth zero, we can just delete the clusters, otherwise 3064 /* tree depth zero, we can just delete the clusters, otherwise
1590 * we need to record the offset of the next level extent block 3065 * we need to record the offset of the next level extent block
1591 * as we may overwrite it. */ 3066 * as we may overwrite it. */
1592 if (!el->l_tree_depth) 3067 if (!el->l_tree_depth) {
1593 delete_blk = le64_to_cpu(el->l_recs[i].e_blkno) 3068 delete_blk = le64_to_cpu(el->l_recs[i].e_blkno)
1594 + ocfs2_clusters_to_blocks(osb->sb, 3069 + ocfs2_clusters_to_blocks(osb->sb,
1595 le32_to_cpu(el->l_recs[i].e_clusters)); 3070 le32_to_cpu(el->l_recs[i].e_clusters));
1596 else
1597 next_eb = le64_to_cpu(el->l_recs[i].e_blkno);
1598 3071
1599 if (!el->l_recs[i].e_clusters) { 3072 if (!el->l_recs[i].e_clusters) {
1600 /* if we deleted the whole extent record, then clear 3073 /* if we deleted the whole extent record, then clear
1601 * out the other fields and update the extent 3074 * out the other fields and update the extent
1602 * list. For depth > 0 trees, we've already recorded 3075 * list.
1603 * the extent block in 'next_eb' */ 3076 */
1604 el->l_recs[i].e_cpos = 0; 3077 el->l_recs[i].e_cpos = 0;
1605 el->l_recs[i].e_blkno = 0; 3078 el->l_recs[i].e_blkno = 0;
1606 BUG_ON(!el->l_next_free_rec); 3079 BUG_ON(!el->l_next_free_rec);
1607 le16_add_cpu(&el->l_next_free_rec, -1); 3080 le16_add_cpu(&el->l_next_free_rec, -1);
3081
3082 /*
3083 * The leftmost record might be an empty extent -
3084 * delete it here too.
3085 */
3086 if (i == 1 && ocfs2_is_empty_extent(&el->l_recs[0])) {
3087 el->l_recs[0].e_cpos = 0;
3088 el->l_recs[0].e_blkno = 0;
3089 el->l_next_free_rec = 0;
3090 }
3091 }
1608 } 3092 }
1609 3093
1610 depth = le16_to_cpu(el->l_tree_depth); 3094 if (le32_to_cpu(fe->i_clusters) == 0) {
1611 if (!fe->i_clusters) {
1612 /* trunc to zero is a special case. */ 3095 /* trunc to zero is a special case. */
1613 el->l_tree_depth = 0; 3096 el->l_tree_depth = 0;
1614 fe->i_last_eb_blk = 0; 3097 fe->i_last_eb_blk = 0;
@@ -1625,12 +3108,6 @@ static int ocfs2_do_truncate(struct ocfs2_super *osb,
1625 /* If there will be a new last extent block, then by 3108 /* If there will be a new last extent block, then by
1626 * definition, there cannot be any leaves to the right of 3109 * definition, there cannot be any leaves to the right of
1627 * him. */ 3110 * him. */
1628 status = ocfs2_journal_access(handle, inode, last_eb_bh,
1629 OCFS2_JOURNAL_ACCESS_WRITE);
1630 if (status < 0) {
1631 mlog_errno(status);
1632 goto bail;
1633 }
1634 last_eb->h_next_leaf_blk = 0; 3111 last_eb->h_next_leaf_blk = 0;
1635 status = ocfs2_journal_dirty(handle, last_eb_bh); 3112 status = ocfs2_journal_dirty(handle, last_eb_bh);
1636 if (status < 0) { 3113 if (status < 0) {
@@ -1639,33 +3116,25 @@ static int ocfs2_do_truncate(struct ocfs2_super *osb,
1639 } 3116 }
1640 } 3117 }
1641 3118
3119 index = 1;
1642 /* if our tree depth > 0, update all the tree blocks below us. */ 3120 /* if our tree depth > 0, update all the tree blocks below us. */
1643 while (depth) { 3121 while (index <= path->p_tree_depth) {
1644 mlog(0, "traveling tree (depth = %d, next_eb = %llu)\n", 3122 eb_bh = path->p_node[index].bh;
1645 depth, (unsigned long long)next_eb);
1646 status = ocfs2_read_block(osb, next_eb, &eb_bh,
1647 OCFS2_BH_CACHED, inode);
1648 if (status < 0) {
1649 mlog_errno(status);
1650 goto bail;
1651 }
1652 eb = (struct ocfs2_extent_block *)eb_bh->b_data; 3123 eb = (struct ocfs2_extent_block *)eb_bh->b_data;
1653 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) { 3124 el = path->p_node[index].el;
1654 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
1655 status = -EIO;
1656 goto bail;
1657 }
1658 el = &(eb->h_list);
1659 3125
1660 status = ocfs2_journal_access(handle, inode, eb_bh, 3126 mlog(0, "traveling tree (index = %d, extent block: %llu)\n",
1661 OCFS2_JOURNAL_ACCESS_WRITE); 3127 index, (unsigned long long)eb_bh->b_blocknr);
1662 if (status < 0) {
1663 mlog_errno(status);
1664 goto bail;
1665 }
1666 3128
1667 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0); 3129 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
1668 BUG_ON(depth != (le16_to_cpu(el->l_tree_depth) + 1)); 3130 if (index !=
3131 (path->p_tree_depth - le16_to_cpu(el->l_tree_depth))) {
3132 ocfs2_error(inode->i_sb,
3133 "Inode %lu has invalid ext. block %llu\n",
3134 inode->i_ino,
3135 (unsigned long long)eb_bh->b_blocknr);
3136 goto bail;
3137 }
1669 3138
1670 i = le16_to_cpu(el->l_next_free_rec) - 1; 3139 i = le16_to_cpu(el->l_next_free_rec) - 1;
1671 3140
@@ -1680,7 +3149,6 @@ static int ocfs2_do_truncate(struct ocfs2_super *osb,
1680 BUG_ON(le32_to_cpu(el->l_recs[i].e_clusters) < clusters_to_del); 3149 BUG_ON(le32_to_cpu(el->l_recs[i].e_clusters) < clusters_to_del);
1681 le32_add_cpu(&el->l_recs[i].e_clusters, -clusters_to_del); 3150 le32_add_cpu(&el->l_recs[i].e_clusters, -clusters_to_del);
1682 3151
1683 next_eb = le64_to_cpu(el->l_recs[i].e_blkno);
1684 /* bottom-most block requires us to delete data.*/ 3152 /* bottom-most block requires us to delete data.*/
1685 if (!el->l_tree_depth) 3153 if (!el->l_tree_depth)
1686 delete_blk = le64_to_cpu(el->l_recs[i].e_blkno) 3154 delete_blk = le64_to_cpu(el->l_recs[i].e_blkno)
@@ -1692,6 +3160,12 @@ static int ocfs2_do_truncate(struct ocfs2_super *osb,
1692 BUG_ON(!el->l_next_free_rec); 3160 BUG_ON(!el->l_next_free_rec);
1693 le16_add_cpu(&el->l_next_free_rec, -1); 3161 le16_add_cpu(&el->l_next_free_rec, -1);
1694 } 3162 }
3163 if (i == 1 && ocfs2_is_empty_extent(&el->l_recs[0])) {
3164 el->l_recs[0].e_cpos = 0;
3165 el->l_recs[0].e_blkno = 0;
3166 el->l_next_free_rec = 0;
3167 }
3168
1695 mlog(0, "extent block %llu, after: record %d: " 3169 mlog(0, "extent block %llu, after: record %d: "
1696 "(%u, %u, %llu), next = %u\n", 3170 "(%u, %u, %llu), next = %u\n",
1697 (unsigned long long)le64_to_cpu(eb->h_blkno), i, 3171 (unsigned long long)le64_to_cpu(eb->h_blkno), i,
@@ -1714,6 +3188,22 @@ static int ocfs2_do_truncate(struct ocfs2_super *osb,
1714 BUG_ON(el->l_recs[0].e_clusters); 3188 BUG_ON(el->l_recs[0].e_clusters);
1715 BUG_ON(el->l_recs[0].e_cpos); 3189 BUG_ON(el->l_recs[0].e_cpos);
1716 BUG_ON(el->l_recs[0].e_blkno); 3190 BUG_ON(el->l_recs[0].e_blkno);
3191
3192 /*
3193 * We need to remove this extent block from
3194 * the list above it.
3195 *
3196 * Since we've passed it already in this loop,
3197 * no need to worry about journaling.
3198 */
3199 el = path->p_node[index - 1].el;
3200 i = le16_to_cpu(el->l_next_free_rec) - 1;
3201 BUG_ON(i < 0);
3202 el->l_recs[i].e_cpos = 0;
3203 el->l_recs[i].e_clusters = 0;
3204 el->l_recs[i].e_blkno = 0;
3205 le16_add_cpu(&el->l_next_free_rec, -1);
3206
1717 if (eb->h_suballoc_slot == 0) { 3207 if (eb->h_suballoc_slot == 0) {
1718 /* 3208 /*
1719 * This code only understands how to 3209 * This code only understands how to
@@ -1736,9 +3226,7 @@ static int ocfs2_do_truncate(struct ocfs2_super *osb,
1736 } 3226 }
1737 } 3227 }
1738 } 3228 }
1739 brelse(eb_bh); 3229 index++;
1740 eb_bh = NULL;
1741 depth--;
1742 } 3230 }
1743 3231
1744 BUG_ON(!delete_blk); 3232 BUG_ON(!delete_blk);
@@ -1750,10 +3238,7 @@ static int ocfs2_do_truncate(struct ocfs2_super *osb,
1750 } 3238 }
1751 status = 0; 3239 status = 0;
1752bail: 3240bail:
1753 if (!status) 3241
1754 ocfs2_extent_map_trunc(inode, le32_to_cpu(fe->i_clusters));
1755 else
1756 ocfs2_extent_map_drop(inode, 0);
1757 mlog_exit(status); 3242 mlog_exit(status);
1758 return status; 3243 return status;
1759} 3244}
@@ -1770,82 +3255,70 @@ int ocfs2_commit_truncate(struct ocfs2_super *osb,
1770 struct ocfs2_truncate_context *tc) 3255 struct ocfs2_truncate_context *tc)
1771{ 3256{
1772 int status, i, credits, tl_sem = 0; 3257 int status, i, credits, tl_sem = 0;
1773 u32 clusters_to_del, target_i_clusters; 3258 u32 clusters_to_del, new_highest_cpos, range;
1774 u64 last_eb = 0;
1775 struct ocfs2_dinode *fe;
1776 struct ocfs2_extent_block *eb;
1777 struct ocfs2_extent_list *el; 3259 struct ocfs2_extent_list *el;
1778 struct buffer_head *last_eb_bh;
1779 handle_t *handle = NULL; 3260 handle_t *handle = NULL;
1780 struct inode *tl_inode = osb->osb_tl_inode; 3261 struct inode *tl_inode = osb->osb_tl_inode;
3262 struct ocfs2_path *path = NULL;
1781 3263
1782 mlog_entry_void(); 3264 mlog_entry_void();
1783 3265
1784 down_write(&OCFS2_I(inode)->ip_alloc_sem); 3266 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1785 3267
1786 target_i_clusters = ocfs2_clusters_for_bytes(osb->sb, 3268 new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb,
1787 i_size_read(inode)); 3269 i_size_read(inode));
1788 3270
1789 last_eb_bh = tc->tc_last_eb_bh; 3271 path = ocfs2_new_inode_path(fe_bh);
1790 tc->tc_last_eb_bh = NULL; 3272 if (!path) {
1791 3273 status = -ENOMEM;
1792 fe = (struct ocfs2_dinode *) fe_bh->b_data; 3274 mlog_errno(status);
1793 3275 goto bail;
1794 if (fe->id2.i_list.l_tree_depth) { 3276 }
1795 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
1796 el = &eb->h_list;
1797 } else
1798 el = &fe->id2.i_list;
1799 last_eb = le64_to_cpu(fe->i_last_eb_blk);
1800start: 3277start:
1801 mlog(0, "ocfs2_commit_truncate: fe->i_clusters = %u, " 3278 /*
1802 "last_eb = %llu, fe->i_last_eb_blk = %llu, " 3279 * Truncate always works against the rightmost tree branch.
1803 "fe->id2.i_list.l_tree_depth = %u last_eb_bh = %p\n", 3280 */
1804 le32_to_cpu(fe->i_clusters), (unsigned long long)last_eb, 3281 status = ocfs2_find_path(inode, path, UINT_MAX);
1805 (unsigned long long)le64_to_cpu(fe->i_last_eb_blk), 3282 if (status) {
1806 le16_to_cpu(fe->id2.i_list.l_tree_depth), last_eb_bh); 3283 mlog_errno(status);
1807 3284 goto bail;
1808 if (last_eb != le64_to_cpu(fe->i_last_eb_blk)) {
1809 mlog(0, "last_eb changed!\n");
1810 BUG_ON(!fe->id2.i_list.l_tree_depth);
1811 last_eb = le64_to_cpu(fe->i_last_eb_blk);
1812 /* i_last_eb_blk may have changed, read it if
1813 * necessary. We don't have to worry about the
1814 * truncate to zero case here (where there becomes no
1815 * last_eb) because we never loop back after our work
1816 * is done. */
1817 if (last_eb_bh) {
1818 brelse(last_eb_bh);
1819 last_eb_bh = NULL;
1820 }
1821
1822 status = ocfs2_read_block(osb, last_eb,
1823 &last_eb_bh, OCFS2_BH_CACHED,
1824 inode);
1825 if (status < 0) {
1826 mlog_errno(status);
1827 goto bail;
1828 }
1829 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
1830 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
1831 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
1832 status = -EIO;
1833 goto bail;
1834 }
1835 el = &(eb->h_list);
1836 } 3285 }
1837 3286
1838 /* by now, el will point to the extent list on the bottom most 3287 mlog(0, "inode->ip_clusters = %u, tree_depth = %u\n",
1839 * portion of this tree. */ 3288 OCFS2_I(inode)->ip_clusters, path->p_tree_depth);
3289
3290 /*
3291 * By now, el will point to the extent list on the bottom most
3292 * portion of this tree. Only the tail record is considered in
3293 * each pass.
3294 *
3295 * We handle the following cases, in order:
3296 * - empty extent: delete the remaining branch
3297 * - remove the entire record
3298 * - remove a partial record
3299 * - no record needs to be removed (truncate has completed)
3300 */
3301 el = path_leaf_el(path);
1840 i = le16_to_cpu(el->l_next_free_rec) - 1; 3302 i = le16_to_cpu(el->l_next_free_rec) - 1;
1841 if (le32_to_cpu(el->l_recs[i].e_cpos) >= target_i_clusters) 3303 range = le32_to_cpu(el->l_recs[i].e_cpos) +
3304 le32_to_cpu(el->l_recs[i].e_clusters);
3305 if (i == 0 && ocfs2_is_empty_extent(&el->l_recs[i])) {
3306 clusters_to_del = 0;
3307 } else if (le32_to_cpu(el->l_recs[i].e_cpos) >= new_highest_cpos) {
1842 clusters_to_del = le32_to_cpu(el->l_recs[i].e_clusters); 3308 clusters_to_del = le32_to_cpu(el->l_recs[i].e_clusters);
1843 else 3309 } else if (range > new_highest_cpos) {
1844 clusters_to_del = (le32_to_cpu(el->l_recs[i].e_clusters) + 3310 clusters_to_del = (le32_to_cpu(el->l_recs[i].e_clusters) +
1845 le32_to_cpu(el->l_recs[i].e_cpos)) - 3311 le32_to_cpu(el->l_recs[i].e_cpos)) -
1846 target_i_clusters; 3312 new_highest_cpos;
3313 } else {
3314 status = 0;
3315 goto bail;
3316 }
1847 3317
1848 mlog(0, "clusters_to_del = %u in this pass\n", clusters_to_del); 3318 mlog(0, "clusters_to_del = %u in this pass, tail blk=%llu\n",
3319 clusters_to_del, (unsigned long long)path_leaf_bh(path)->b_blocknr);
3320
3321 BUG_ON(clusters_to_del == 0);
1849 3322
1850 mutex_lock(&tl_inode->i_mutex); 3323 mutex_lock(&tl_inode->i_mutex);
1851 tl_sem = 1; 3324 tl_sem = 1;
@@ -1861,7 +3334,8 @@ start:
1861 } 3334 }
1862 3335
1863 credits = ocfs2_calc_tree_trunc_credits(osb->sb, clusters_to_del, 3336 credits = ocfs2_calc_tree_trunc_credits(osb->sb, clusters_to_del,
1864 fe, el); 3337 (struct ocfs2_dinode *)fe_bh->b_data,
3338 el);
1865 handle = ocfs2_start_trans(osb, credits); 3339 handle = ocfs2_start_trans(osb, credits);
1866 if (IS_ERR(handle)) { 3340 if (IS_ERR(handle)) {
1867 status = PTR_ERR(handle); 3341 status = PTR_ERR(handle);
@@ -1870,13 +3344,8 @@ start:
1870 goto bail; 3344 goto bail;
1871 } 3345 }
1872 3346
1873 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 3347 status = ocfs2_do_truncate(osb, clusters_to_del, inode, fe_bh, handle,
1874 status = ocfs2_mark_inode_dirty(handle, inode, fe_bh); 3348 tc, path);
1875 if (status < 0)
1876 mlog_errno(status);
1877
1878 status = ocfs2_do_truncate(osb, clusters_to_del, inode, fe_bh,
1879 last_eb_bh, handle, tc);
1880 if (status < 0) { 3349 if (status < 0) {
1881 mlog_errno(status); 3350 mlog_errno(status);
1882 goto bail; 3351 goto bail;
@@ -1888,8 +3357,12 @@ start:
1888 ocfs2_commit_trans(osb, handle); 3357 ocfs2_commit_trans(osb, handle);
1889 handle = NULL; 3358 handle = NULL;
1890 3359
1891 BUG_ON(le32_to_cpu(fe->i_clusters) < target_i_clusters); 3360 ocfs2_reinit_path(path, 1);
1892 if (le32_to_cpu(fe->i_clusters) > target_i_clusters) 3361
3362 /*
3363 * Only loop if we still have allocation.
3364 */
3365 if (OCFS2_I(inode)->ip_clusters)
1893 goto start; 3366 goto start;
1894bail: 3367bail:
1895 up_write(&OCFS2_I(inode)->ip_alloc_sem); 3368 up_write(&OCFS2_I(inode)->ip_alloc_sem);
@@ -1902,8 +3375,7 @@ bail:
1902 if (handle) 3375 if (handle)
1903 ocfs2_commit_trans(osb, handle); 3376 ocfs2_commit_trans(osb, handle);
1904 3377
1905 if (last_eb_bh) 3378 ocfs2_free_path(path);
1906 brelse(last_eb_bh);
1907 3379
1908 /* This will drop the ext_alloc cluster lock for us */ 3380 /* This will drop the ext_alloc cluster lock for us */
1909 ocfs2_free_truncate_context(tc); 3381 ocfs2_free_truncate_context(tc);
@@ -1912,7 +3384,6 @@ bail:
1912 return status; 3384 return status;
1913} 3385}
1914 3386
1915
1916/* 3387/*
1917 * Expects the inode to already be locked. This will figure out which 3388 * Expects the inode to already be locked. This will figure out which
1918 * inodes need to be locked and will put them on the returned truncate 3389 * inodes need to be locked and will put them on the returned truncate
@@ -1923,7 +3394,7 @@ int ocfs2_prepare_truncate(struct ocfs2_super *osb,
1923 struct buffer_head *fe_bh, 3394 struct buffer_head *fe_bh,
1924 struct ocfs2_truncate_context **tc) 3395 struct ocfs2_truncate_context **tc)
1925{ 3396{
1926 int status, metadata_delete; 3397 int status, metadata_delete, i;
1927 unsigned int new_i_clusters; 3398 unsigned int new_i_clusters;
1928 struct ocfs2_dinode *fe; 3399 struct ocfs2_dinode *fe;
1929 struct ocfs2_extent_block *eb; 3400 struct ocfs2_extent_block *eb;
@@ -1944,7 +3415,8 @@ int ocfs2_prepare_truncate(struct ocfs2_super *osb,
1944 "%llu\n", fe->i_clusters, new_i_clusters, 3415 "%llu\n", fe->i_clusters, new_i_clusters,
1945 (unsigned long long)fe->i_size); 3416 (unsigned long long)fe->i_size);
1946 3417
1947 if (le32_to_cpu(fe->i_clusters) <= new_i_clusters) { 3418 if (!ocfs2_sparse_alloc(osb) &&
3419 le32_to_cpu(fe->i_clusters) <= new_i_clusters) {
1948 ocfs2_error(inode->i_sb, "Dinode %llu has cluster count " 3420 ocfs2_error(inode->i_sb, "Dinode %llu has cluster count "
1949 "%u and size %llu whereas struct inode has " 3421 "%u and size %llu whereas struct inode has "
1950 "cluster count %u and size %llu which caused an " 3422 "cluster count %u and size %llu which caused an "
@@ -1986,7 +3458,15 @@ int ocfs2_prepare_truncate(struct ocfs2_super *osb,
1986 goto bail; 3458 goto bail;
1987 } 3459 }
1988 el = &(eb->h_list); 3460 el = &(eb->h_list);
1989 if (le32_to_cpu(el->l_recs[0].e_cpos) >= new_i_clusters) 3461
3462 i = 0;
3463 if (ocfs2_is_empty_extent(&el->l_recs[0]))
3464 i = 1;
3465 /*
3466 * XXX: Should we check that next_free_rec contains
3467 * the extent?
3468 */
3469 if (le32_to_cpu(el->l_recs[i].e_cpos) >= new_i_clusters)
1990 metadata_delete = 1; 3470 metadata_delete = 1;
1991 } 3471 }
1992 3472