diff options
Diffstat (limited to 'fs/ntfs/file.c')
-rw-r--r-- | fs/ntfs/file.c | 2247 |
1 files changed, 2215 insertions, 32 deletions
diff --git a/fs/ntfs/file.c b/fs/ntfs/file.c index be9fd1dd423d..cf2a0e2330df 100644 --- a/fs/ntfs/file.c +++ b/fs/ntfs/file.c | |||
@@ -19,11 +19,24 @@ | |||
19 | * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | 19 | * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
20 | */ | 20 | */ |
21 | 21 | ||
22 | #include <linux/pagemap.h> | ||
23 | #include <linux/buffer_head.h> | 22 | #include <linux/buffer_head.h> |
23 | #include <linux/pagemap.h> | ||
24 | #include <linux/pagevec.h> | ||
25 | #include <linux/sched.h> | ||
26 | #include <linux/swap.h> | ||
27 | #include <linux/uio.h> | ||
28 | #include <linux/writeback.h> | ||
24 | 29 | ||
30 | #include <asm/page.h> | ||
31 | #include <asm/uaccess.h> | ||
32 | |||
33 | #include "attrib.h" | ||
34 | #include "bitmap.h" | ||
25 | #include "inode.h" | 35 | #include "inode.h" |
26 | #include "debug.h" | 36 | #include "debug.h" |
37 | #include "lcnalloc.h" | ||
38 | #include "malloc.h" | ||
39 | #include "mft.h" | ||
27 | #include "ntfs.h" | 40 | #include "ntfs.h" |
28 | 41 | ||
29 | /** | 42 | /** |
@@ -56,6 +69,2176 @@ static int ntfs_file_open(struct inode *vi, struct file *filp) | |||
56 | #ifdef NTFS_RW | 69 | #ifdef NTFS_RW |
57 | 70 | ||
58 | /** | 71 | /** |
72 | * ntfs_attr_extend_initialized - extend the initialized size of an attribute | ||
73 | * @ni: ntfs inode of the attribute to extend | ||
74 | * @new_init_size: requested new initialized size in bytes | ||
75 | * @cached_page: store any allocated but unused page here | ||
76 | * @lru_pvec: lru-buffering pagevec of the caller | ||
77 | * | ||
78 | * Extend the initialized size of an attribute described by the ntfs inode @ni | ||
79 | * to @new_init_size bytes. This involves zeroing any non-sparse space between | ||
80 | * the old initialized size and @new_init_size both in the page cache and on | ||
81 | * disk (if relevant complete pages are zeroed in the page cache then these may | ||
82 | * simply be marked dirty for later writeout). There is one caveat and that is | ||
83 | * that if any uptodate page cache pages between the old initialized size and | ||
84 | * the smaller of @new_init_size and the file size (vfs inode->i_size) are in | ||
85 | * memory, these need to be marked dirty without being zeroed since they could | ||
86 | * be non-zero due to mmap() based writes. | ||
87 | * | ||
88 | * As a side-effect, the file size (vfs inode->i_size) may be incremented as, | ||
89 | * in the resident attribute case, it is tied to the initialized size and, in | ||
90 | * the non-resident attribute case, it may not fall below the initialized size. | ||
91 | * | ||
92 | * Note that if the attribute is resident, we do not need to touch the page | ||
93 | * cache at all. This is because if the page cache page is not uptodate we | ||
94 | * bring it uptodate later, when doing the write to the mft record since we | ||
95 | * then already have the page mapped. And if the page is uptodate, the | ||
96 | * non-initialized region will already have been zeroed when the page was | ||
97 | * brought uptodate and the region may in fact already have been overwritten | ||
98 | * with new data via mmap() based writes, so we cannot just zero it. And since | ||
99 | * POSIX specifies that the behaviour of resizing a file whilst it is mmap()ped | ||
100 | * is unspecified, we choose not to do zeroing and thus we do not need to touch | ||
101 | * the page at all. For a more detailed explanation see ntfs_truncate() which | ||
102 | * is in fs/ntfs/inode.c. | ||
103 | * | ||
104 | * @cached_page and @lru_pvec are just optimisations for dealing with multiple | ||
105 | * pages. | ||
106 | * | ||
107 | * Return 0 on success and -errno on error. In the case that an error is | ||
108 | * encountered it is possible that the initialized size will already have been | ||
109 | * incremented some way towards @new_init_size but it is guaranteed that if | ||
110 | * this is the case, the necessary zeroing will also have happened and that all | ||
111 | * metadata is self-consistent. | ||
112 | * | ||
113 | * Locking: This function locks the mft record of the base ntfs inode and | ||
114 | * maintains the lock throughout execution of the function. This is required | ||
115 | * so that the initialized size of the attribute can be modified safely. | ||
116 | */ | ||
117 | static int ntfs_attr_extend_initialized(ntfs_inode *ni, const s64 new_init_size, | ||
118 | struct page **cached_page, struct pagevec *lru_pvec) | ||
119 | { | ||
120 | s64 old_init_size; | ||
121 | loff_t old_i_size; | ||
122 | pgoff_t index, end_index; | ||
123 | unsigned long flags; | ||
124 | struct inode *vi = VFS_I(ni); | ||
125 | ntfs_inode *base_ni; | ||
126 | MFT_RECORD *m = NULL; | ||
127 | ATTR_RECORD *a; | ||
128 | ntfs_attr_search_ctx *ctx = NULL; | ||
129 | struct address_space *mapping; | ||
130 | struct page *page = NULL; | ||
131 | u8 *kattr; | ||
132 | int err; | ||
133 | u32 attr_len; | ||
134 | |||
135 | read_lock_irqsave(&ni->size_lock, flags); | ||
136 | old_init_size = ni->initialized_size; | ||
137 | old_i_size = i_size_read(vi); | ||
138 | BUG_ON(new_init_size > ni->allocated_size); | ||
139 | read_unlock_irqrestore(&ni->size_lock, flags); | ||
140 | ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, " | ||
141 | "old_initialized_size 0x%llx, " | ||
142 | "new_initialized_size 0x%llx, i_size 0x%llx.", | ||
143 | vi->i_ino, (unsigned)le32_to_cpu(ni->type), | ||
144 | (unsigned long long)old_init_size, | ||
145 | (unsigned long long)new_init_size, old_i_size); | ||
146 | if (!NInoAttr(ni)) | ||
147 | base_ni = ni; | ||
148 | else | ||
149 | base_ni = ni->ext.base_ntfs_ino; | ||
150 | /* Use goto to reduce indentation and we need the label below anyway. */ | ||
151 | if (NInoNonResident(ni)) | ||
152 | goto do_non_resident_extend; | ||
153 | BUG_ON(old_init_size != old_i_size); | ||
154 | m = map_mft_record(base_ni); | ||
155 | if (IS_ERR(m)) { | ||
156 | err = PTR_ERR(m); | ||
157 | m = NULL; | ||
158 | goto err_out; | ||
159 | } | ||
160 | ctx = ntfs_attr_get_search_ctx(base_ni, m); | ||
161 | if (unlikely(!ctx)) { | ||
162 | err = -ENOMEM; | ||
163 | goto err_out; | ||
164 | } | ||
165 | err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, | ||
166 | CASE_SENSITIVE, 0, NULL, 0, ctx); | ||
167 | if (unlikely(err)) { | ||
168 | if (err == -ENOENT) | ||
169 | err = -EIO; | ||
170 | goto err_out; | ||
171 | } | ||
172 | m = ctx->mrec; | ||
173 | a = ctx->attr; | ||
174 | BUG_ON(a->non_resident); | ||
175 | /* The total length of the attribute value. */ | ||
176 | attr_len = le32_to_cpu(a->data.resident.value_length); | ||
177 | BUG_ON(old_i_size != (loff_t)attr_len); | ||
178 | /* | ||
179 | * Do the zeroing in the mft record and update the attribute size in | ||
180 | * the mft record. | ||
181 | */ | ||
182 | kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset); | ||
183 | memset(kattr + attr_len, 0, new_init_size - attr_len); | ||
184 | a->data.resident.value_length = cpu_to_le32((u32)new_init_size); | ||
185 | /* Finally, update the sizes in the vfs and ntfs inodes. */ | ||
186 | write_lock_irqsave(&ni->size_lock, flags); | ||
187 | i_size_write(vi, new_init_size); | ||
188 | ni->initialized_size = new_init_size; | ||
189 | write_unlock_irqrestore(&ni->size_lock, flags); | ||
190 | goto done; | ||
191 | do_non_resident_extend: | ||
192 | /* | ||
193 | * If the new initialized size @new_init_size exceeds the current file | ||
194 | * size (vfs inode->i_size), we need to extend the file size to the | ||
195 | * new initialized size. | ||
196 | */ | ||
197 | if (new_init_size > old_i_size) { | ||
198 | m = map_mft_record(base_ni); | ||
199 | if (IS_ERR(m)) { | ||
200 | err = PTR_ERR(m); | ||
201 | m = NULL; | ||
202 | goto err_out; | ||
203 | } | ||
204 | ctx = ntfs_attr_get_search_ctx(base_ni, m); | ||
205 | if (unlikely(!ctx)) { | ||
206 | err = -ENOMEM; | ||
207 | goto err_out; | ||
208 | } | ||
209 | err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, | ||
210 | CASE_SENSITIVE, 0, NULL, 0, ctx); | ||
211 | if (unlikely(err)) { | ||
212 | if (err == -ENOENT) | ||
213 | err = -EIO; | ||
214 | goto err_out; | ||
215 | } | ||
216 | m = ctx->mrec; | ||
217 | a = ctx->attr; | ||
218 | BUG_ON(!a->non_resident); | ||
219 | BUG_ON(old_i_size != (loff_t) | ||
220 | sle64_to_cpu(a->data.non_resident.data_size)); | ||
221 | a->data.non_resident.data_size = cpu_to_sle64(new_init_size); | ||
222 | flush_dcache_mft_record_page(ctx->ntfs_ino); | ||
223 | mark_mft_record_dirty(ctx->ntfs_ino); | ||
224 | /* Update the file size in the vfs inode. */ | ||
225 | i_size_write(vi, new_init_size); | ||
226 | ntfs_attr_put_search_ctx(ctx); | ||
227 | ctx = NULL; | ||
228 | unmap_mft_record(base_ni); | ||
229 | m = NULL; | ||
230 | } | ||
231 | mapping = vi->i_mapping; | ||
232 | index = old_init_size >> PAGE_CACHE_SHIFT; | ||
233 | end_index = (new_init_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; | ||
234 | do { | ||
235 | /* | ||
236 | * Read the page. If the page is not present, this will zero | ||
237 | * the uninitialized regions for us. | ||
238 | */ | ||
239 | page = read_cache_page(mapping, index, | ||
240 | (filler_t*)mapping->a_ops->readpage, NULL); | ||
241 | if (IS_ERR(page)) { | ||
242 | err = PTR_ERR(page); | ||
243 | goto init_err_out; | ||
244 | } | ||
245 | wait_on_page_locked(page); | ||
246 | if (unlikely(!PageUptodate(page) || PageError(page))) { | ||
247 | page_cache_release(page); | ||
248 | err = -EIO; | ||
249 | goto init_err_out; | ||
250 | } | ||
251 | /* | ||
252 | * Update the initialized size in the ntfs inode. This is | ||
253 | * enough to make ntfs_writepage() work. | ||
254 | */ | ||
255 | write_lock_irqsave(&ni->size_lock, flags); | ||
256 | ni->initialized_size = (index + 1) << PAGE_CACHE_SHIFT; | ||
257 | if (ni->initialized_size > new_init_size) | ||
258 | ni->initialized_size = new_init_size; | ||
259 | write_unlock_irqrestore(&ni->size_lock, flags); | ||
260 | /* Set the page dirty so it gets written out. */ | ||
261 | set_page_dirty(page); | ||
262 | page_cache_release(page); | ||
263 | /* | ||
264 | * Play nice with the vm and the rest of the system. This is | ||
265 | * very much needed as we can potentially be modifying the | ||
266 | * initialised size from a very small value to a really huge | ||
267 | * value, e.g. | ||
268 | * f = open(somefile, O_TRUNC); | ||
269 | * truncate(f, 10GiB); | ||
270 | * seek(f, 10GiB); | ||
271 | * write(f, 1); | ||
272 | * And this would mean we would be marking dirty hundreds of | ||
273 | * thousands of pages or as in the above example more than | ||
274 | * two and a half million pages! | ||
275 | * | ||
276 | * TODO: For sparse pages could optimize this workload by using | ||
277 | * the FsMisc / MiscFs page bit as a "PageIsSparse" bit. This | ||
278 | * would be set in readpage for sparse pages and here we would | ||
279 | * not need to mark dirty any pages which have this bit set. | ||
280 | * The only caveat is that we have to clear the bit everywhere | ||
281 | * where we allocate any clusters that lie in the page or that | ||
282 | * contain the page. | ||
283 | * | ||
284 | * TODO: An even greater optimization would be for us to only | ||
285 | * call readpage() on pages which are not in sparse regions as | ||
286 | * determined from the runlist. This would greatly reduce the | ||
287 | * number of pages we read and make dirty in the case of sparse | ||
288 | * files. | ||
289 | */ | ||
290 | balance_dirty_pages_ratelimited(mapping); | ||
291 | cond_resched(); | ||
292 | } while (++index < end_index); | ||
293 | read_lock_irqsave(&ni->size_lock, flags); | ||
294 | BUG_ON(ni->initialized_size != new_init_size); | ||
295 | read_unlock_irqrestore(&ni->size_lock, flags); | ||
296 | /* Now bring in sync the initialized_size in the mft record. */ | ||
297 | m = map_mft_record(base_ni); | ||
298 | if (IS_ERR(m)) { | ||
299 | err = PTR_ERR(m); | ||
300 | m = NULL; | ||
301 | goto init_err_out; | ||
302 | } | ||
303 | ctx = ntfs_attr_get_search_ctx(base_ni, m); | ||
304 | if (unlikely(!ctx)) { | ||
305 | err = -ENOMEM; | ||
306 | goto init_err_out; | ||
307 | } | ||
308 | err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, | ||
309 | CASE_SENSITIVE, 0, NULL, 0, ctx); | ||
310 | if (unlikely(err)) { | ||
311 | if (err == -ENOENT) | ||
312 | err = -EIO; | ||
313 | goto init_err_out; | ||
314 | } | ||
315 | m = ctx->mrec; | ||
316 | a = ctx->attr; | ||
317 | BUG_ON(!a->non_resident); | ||
318 | a->data.non_resident.initialized_size = cpu_to_sle64(new_init_size); | ||
319 | done: | ||
320 | flush_dcache_mft_record_page(ctx->ntfs_ino); | ||
321 | mark_mft_record_dirty(ctx->ntfs_ino); | ||
322 | if (ctx) | ||
323 | ntfs_attr_put_search_ctx(ctx); | ||
324 | if (m) | ||
325 | unmap_mft_record(base_ni); | ||
326 | ntfs_debug("Done, initialized_size 0x%llx, i_size 0x%llx.", | ||
327 | (unsigned long long)new_init_size, i_size_read(vi)); | ||
328 | return 0; | ||
329 | init_err_out: | ||
330 | write_lock_irqsave(&ni->size_lock, flags); | ||
331 | ni->initialized_size = old_init_size; | ||
332 | write_unlock_irqrestore(&ni->size_lock, flags); | ||
333 | err_out: | ||
334 | if (ctx) | ||
335 | ntfs_attr_put_search_ctx(ctx); | ||
336 | if (m) | ||
337 | unmap_mft_record(base_ni); | ||
338 | ntfs_debug("Failed. Returning error code %i.", err); | ||
339 | return err; | ||
340 | } | ||
341 | |||
342 | /** | ||
343 | * ntfs_fault_in_pages_readable - | ||
344 | * | ||
345 | * Fault a number of userspace pages into pagetables. | ||
346 | * | ||
347 | * Unlike include/linux/pagemap.h::fault_in_pages_readable(), this one copes | ||
348 | * with more than two userspace pages as well as handling the single page case | ||
349 | * elegantly. | ||
350 | * | ||
351 | * If you find this difficult to understand, then think of the while loop being | ||
352 | * the following code, except that we do without the integer variable ret: | ||
353 | * | ||
354 | * do { | ||
355 | * ret = __get_user(c, uaddr); | ||
356 | * uaddr += PAGE_SIZE; | ||
357 | * } while (!ret && uaddr < end); | ||
358 | * | ||
359 | * Note, the final __get_user() may well run out-of-bounds of the user buffer, | ||
360 | * but _not_ out-of-bounds of the page the user buffer belongs to, and since | ||
361 | * this is only a read and not a write, and since it is still in the same page, | ||
362 | * it should not matter and this makes the code much simpler. | ||
363 | */ | ||
364 | static inline void ntfs_fault_in_pages_readable(const char __user *uaddr, | ||
365 | int bytes) | ||
366 | { | ||
367 | const char __user *end; | ||
368 | volatile char c; | ||
369 | |||
370 | /* Set @end to the first byte outside the last page we care about. */ | ||
371 | end = (const char __user*)PAGE_ALIGN((ptrdiff_t __user)uaddr + bytes); | ||
372 | |||
373 | while (!__get_user(c, uaddr) && (uaddr += PAGE_SIZE, uaddr < end)) | ||
374 | ; | ||
375 | } | ||
376 | |||
377 | /** | ||
378 | * ntfs_fault_in_pages_readable_iovec - | ||
379 | * | ||
380 | * Same as ntfs_fault_in_pages_readable() but operates on an array of iovecs. | ||
381 | */ | ||
382 | static inline void ntfs_fault_in_pages_readable_iovec(const struct iovec *iov, | ||
383 | size_t iov_ofs, int bytes) | ||
384 | { | ||
385 | do { | ||
386 | const char __user *buf; | ||
387 | unsigned len; | ||
388 | |||
389 | buf = iov->iov_base + iov_ofs; | ||
390 | len = iov->iov_len - iov_ofs; | ||
391 | if (len > bytes) | ||
392 | len = bytes; | ||
393 | ntfs_fault_in_pages_readable(buf, len); | ||
394 | bytes -= len; | ||
395 | iov++; | ||
396 | iov_ofs = 0; | ||
397 | } while (bytes); | ||
398 | } | ||
399 | |||
400 | /** | ||
401 | * __ntfs_grab_cache_pages - obtain a number of locked pages | ||
402 | * @mapping: address space mapping from which to obtain page cache pages | ||
403 | * @index: starting index in @mapping at which to begin obtaining pages | ||
404 | * @nr_pages: number of page cache pages to obtain | ||
405 | * @pages: array of pages in which to return the obtained page cache pages | ||
406 | * @cached_page: allocated but as yet unused page | ||
407 | * @lru_pvec: lru-buffering pagevec of caller | ||
408 | * | ||
409 | * Obtain @nr_pages locked page cache pages from the mapping @maping and | ||
410 | * starting at index @index. | ||
411 | * | ||
412 | * If a page is newly created, increment its refcount and add it to the | ||
413 | * caller's lru-buffering pagevec @lru_pvec. | ||
414 | * | ||
415 | * This is the same as mm/filemap.c::__grab_cache_page(), except that @nr_pages | ||
416 | * are obtained at once instead of just one page and that 0 is returned on | ||
417 | * success and -errno on error. | ||
418 | * | ||
419 | * Note, the page locks are obtained in ascending page index order. | ||
420 | */ | ||
421 | static inline int __ntfs_grab_cache_pages(struct address_space *mapping, | ||
422 | pgoff_t index, const unsigned nr_pages, struct page **pages, | ||
423 | struct page **cached_page, struct pagevec *lru_pvec) | ||
424 | { | ||
425 | int err, nr; | ||
426 | |||
427 | BUG_ON(!nr_pages); | ||
428 | err = nr = 0; | ||
429 | do { | ||
430 | pages[nr] = find_lock_page(mapping, index); | ||
431 | if (!pages[nr]) { | ||
432 | if (!*cached_page) { | ||
433 | *cached_page = page_cache_alloc(mapping); | ||
434 | if (unlikely(!*cached_page)) { | ||
435 | err = -ENOMEM; | ||
436 | goto err_out; | ||
437 | } | ||
438 | } | ||
439 | err = add_to_page_cache(*cached_page, mapping, index, | ||
440 | GFP_KERNEL); | ||
441 | if (unlikely(err)) { | ||
442 | if (err == -EEXIST) | ||
443 | continue; | ||
444 | goto err_out; | ||
445 | } | ||
446 | pages[nr] = *cached_page; | ||
447 | page_cache_get(*cached_page); | ||
448 | if (unlikely(!pagevec_add(lru_pvec, *cached_page))) | ||
449 | __pagevec_lru_add(lru_pvec); | ||
450 | *cached_page = NULL; | ||
451 | } | ||
452 | index++; | ||
453 | nr++; | ||
454 | } while (nr < nr_pages); | ||
455 | out: | ||
456 | return err; | ||
457 | err_out: | ||
458 | while (nr > 0) { | ||
459 | unlock_page(pages[--nr]); | ||
460 | page_cache_release(pages[nr]); | ||
461 | } | ||
462 | goto out; | ||
463 | } | ||
464 | |||
465 | static inline int ntfs_submit_bh_for_read(struct buffer_head *bh) | ||
466 | { | ||
467 | lock_buffer(bh); | ||
468 | get_bh(bh); | ||
469 | bh->b_end_io = end_buffer_read_sync; | ||
470 | return submit_bh(READ, bh); | ||
471 | } | ||
472 | |||
473 | /** | ||
474 | * ntfs_prepare_pages_for_non_resident_write - prepare pages for receiving data | ||
475 | * @pages: array of destination pages | ||
476 | * @nr_pages: number of pages in @pages | ||
477 | * @pos: byte position in file at which the write begins | ||
478 | * @bytes: number of bytes to be written | ||
479 | * | ||
480 | * This is called for non-resident attributes from ntfs_file_buffered_write() | ||
481 | * with i_sem held on the inode (@pages[0]->mapping->host). There are | ||
482 | * @nr_pages pages in @pages which are locked but not kmap()ped. The source | ||
483 | * data has not yet been copied into the @pages. | ||
484 | * | ||
485 | * Need to fill any holes with actual clusters, allocate buffers if necessary, | ||
486 | * ensure all the buffers are mapped, and bring uptodate any buffers that are | ||
487 | * only partially being written to. | ||
488 | * | ||
489 | * If @nr_pages is greater than one, we are guaranteed that the cluster size is | ||
490 | * greater than PAGE_CACHE_SIZE, that all pages in @pages are entirely inside | ||
491 | * the same cluster and that they are the entirety of that cluster, and that | ||
492 | * the cluster is sparse, i.e. we need to allocate a cluster to fill the hole. | ||
493 | * | ||
494 | * i_size is not to be modified yet. | ||
495 | * | ||
496 | * Return 0 on success or -errno on error. | ||
497 | */ | ||
498 | static int ntfs_prepare_pages_for_non_resident_write(struct page **pages, | ||
499 | unsigned nr_pages, s64 pos, size_t bytes) | ||
500 | { | ||
501 | VCN vcn, highest_vcn = 0, cpos, cend, bh_cpos, bh_cend; | ||
502 | LCN lcn; | ||
503 | s64 bh_pos, vcn_len, end, initialized_size; | ||
504 | sector_t lcn_block; | ||
505 | struct page *page; | ||
506 | struct inode *vi; | ||
507 | ntfs_inode *ni, *base_ni = NULL; | ||
508 | ntfs_volume *vol; | ||
509 | runlist_element *rl, *rl2; | ||
510 | struct buffer_head *bh, *head, *wait[2], **wait_bh = wait; | ||
511 | ntfs_attr_search_ctx *ctx = NULL; | ||
512 | MFT_RECORD *m = NULL; | ||
513 | ATTR_RECORD *a = NULL; | ||
514 | unsigned long flags; | ||
515 | u32 attr_rec_len = 0; | ||
516 | unsigned blocksize, u; | ||
517 | int err, mp_size; | ||
518 | BOOL rl_write_locked, was_hole, is_retry; | ||
519 | unsigned char blocksize_bits; | ||
520 | struct { | ||
521 | u8 runlist_merged:1; | ||
522 | u8 mft_attr_mapped:1; | ||
523 | u8 mp_rebuilt:1; | ||
524 | u8 attr_switched:1; | ||
525 | } status = { 0, 0, 0, 0 }; | ||
526 | |||
527 | BUG_ON(!nr_pages); | ||
528 | BUG_ON(!pages); | ||
529 | BUG_ON(!*pages); | ||
530 | vi = pages[0]->mapping->host; | ||
531 | ni = NTFS_I(vi); | ||
532 | vol = ni->vol; | ||
533 | ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page " | ||
534 | "index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%x.", | ||
535 | vi->i_ino, ni->type, pages[0]->index, nr_pages, | ||
536 | (long long)pos, bytes); | ||
537 | blocksize_bits = vi->i_blkbits; | ||
538 | blocksize = 1 << blocksize_bits; | ||
539 | u = 0; | ||
540 | do { | ||
541 | struct page *page = pages[u]; | ||
542 | /* | ||
543 | * create_empty_buffers() will create uptodate/dirty buffers if | ||
544 | * the page is uptodate/dirty. | ||
545 | */ | ||
546 | if (!page_has_buffers(page)) { | ||
547 | create_empty_buffers(page, blocksize, 0); | ||
548 | if (unlikely(!page_has_buffers(page))) | ||
549 | return -ENOMEM; | ||
550 | } | ||
551 | } while (++u < nr_pages); | ||
552 | rl_write_locked = FALSE; | ||
553 | rl = NULL; | ||
554 | err = 0; | ||
555 | vcn = lcn = -1; | ||
556 | vcn_len = 0; | ||
557 | lcn_block = -1; | ||
558 | was_hole = FALSE; | ||
559 | cpos = pos >> vol->cluster_size_bits; | ||
560 | end = pos + bytes; | ||
561 | cend = (end + vol->cluster_size - 1) >> vol->cluster_size_bits; | ||
562 | /* | ||
563 | * Loop over each page and for each page over each buffer. Use goto to | ||
564 | * reduce indentation. | ||
565 | */ | ||
566 | u = 0; | ||
567 | do_next_page: | ||
568 | page = pages[u]; | ||
569 | bh_pos = (s64)page->index << PAGE_CACHE_SHIFT; | ||
570 | bh = head = page_buffers(page); | ||
571 | do { | ||
572 | VCN cdelta; | ||
573 | s64 bh_end; | ||
574 | unsigned bh_cofs; | ||
575 | |||
576 | /* Clear buffer_new on all buffers to reinitialise state. */ | ||
577 | if (buffer_new(bh)) | ||
578 | clear_buffer_new(bh); | ||
579 | bh_end = bh_pos + blocksize; | ||
580 | bh_cpos = bh_pos >> vol->cluster_size_bits; | ||
581 | bh_cofs = bh_pos & vol->cluster_size_mask; | ||
582 | if (buffer_mapped(bh)) { | ||
583 | /* | ||
584 | * The buffer is already mapped. If it is uptodate, | ||
585 | * ignore it. | ||
586 | */ | ||
587 | if (buffer_uptodate(bh)) | ||
588 | continue; | ||
589 | /* | ||
590 | * The buffer is not uptodate. If the page is uptodate | ||
591 | * set the buffer uptodate and otherwise ignore it. | ||
592 | */ | ||
593 | if (PageUptodate(page)) { | ||
594 | set_buffer_uptodate(bh); | ||
595 | continue; | ||
596 | } | ||
597 | /* | ||
598 | * Neither the page nor the buffer are uptodate. If | ||
599 | * the buffer is only partially being written to, we | ||
600 | * need to read it in before the write, i.e. now. | ||
601 | */ | ||
602 | if ((bh_pos < pos && bh_end > pos) || | ||
603 | (bh_pos < end && bh_end > end)) { | ||
604 | /* | ||
605 | * If the buffer is fully or partially within | ||
606 | * the initialized size, do an actual read. | ||
607 | * Otherwise, simply zero the buffer. | ||
608 | */ | ||
609 | read_lock_irqsave(&ni->size_lock, flags); | ||
610 | initialized_size = ni->initialized_size; | ||
611 | read_unlock_irqrestore(&ni->size_lock, flags); | ||
612 | if (bh_pos < initialized_size) { | ||
613 | ntfs_submit_bh_for_read(bh); | ||
614 | *wait_bh++ = bh; | ||
615 | } else { | ||
616 | u8 *kaddr = kmap_atomic(page, KM_USER0); | ||
617 | memset(kaddr + bh_offset(bh), 0, | ||
618 | blocksize); | ||
619 | kunmap_atomic(kaddr, KM_USER0); | ||
620 | flush_dcache_page(page); | ||
621 | set_buffer_uptodate(bh); | ||
622 | } | ||
623 | } | ||
624 | continue; | ||
625 | } | ||
626 | /* Unmapped buffer. Need to map it. */ | ||
627 | bh->b_bdev = vol->sb->s_bdev; | ||
628 | /* | ||
629 | * If the current buffer is in the same clusters as the map | ||
630 | * cache, there is no need to check the runlist again. The | ||
631 | * map cache is made up of @vcn, which is the first cached file | ||
632 | * cluster, @vcn_len which is the number of cached file | ||
633 | * clusters, @lcn is the device cluster corresponding to @vcn, | ||
634 | * and @lcn_block is the block number corresponding to @lcn. | ||
635 | */ | ||
636 | cdelta = bh_cpos - vcn; | ||
637 | if (likely(!cdelta || (cdelta > 0 && cdelta < vcn_len))) { | ||
638 | map_buffer_cached: | ||
639 | BUG_ON(lcn < 0); | ||
640 | bh->b_blocknr = lcn_block + | ||
641 | (cdelta << (vol->cluster_size_bits - | ||
642 | blocksize_bits)) + | ||
643 | (bh_cofs >> blocksize_bits); | ||
644 | set_buffer_mapped(bh); | ||
645 | /* | ||
646 | * If the page is uptodate so is the buffer. If the | ||
647 | * buffer is fully outside the write, we ignore it if | ||
648 | * it was already allocated and we mark it dirty so it | ||
649 | * gets written out if we allocated it. On the other | ||
650 | * hand, if we allocated the buffer but we are not | ||
651 | * marking it dirty we set buffer_new so we can do | ||
652 | * error recovery. | ||
653 | */ | ||
654 | if (PageUptodate(page)) { | ||
655 | if (!buffer_uptodate(bh)) | ||
656 | set_buffer_uptodate(bh); | ||
657 | if (unlikely(was_hole)) { | ||
658 | /* We allocated the buffer. */ | ||
659 | unmap_underlying_metadata(bh->b_bdev, | ||
660 | bh->b_blocknr); | ||
661 | if (bh_end <= pos || bh_pos >= end) | ||
662 | mark_buffer_dirty(bh); | ||
663 | else | ||
664 | set_buffer_new(bh); | ||
665 | } | ||
666 | continue; | ||
667 | } | ||
668 | /* Page is _not_ uptodate. */ | ||
669 | if (likely(!was_hole)) { | ||
670 | /* | ||
671 | * Buffer was already allocated. If it is not | ||
672 | * uptodate and is only partially being written | ||
673 | * to, we need to read it in before the write, | ||
674 | * i.e. now. | ||
675 | */ | ||
676 | if (!buffer_uptodate(bh) && ((bh_pos < pos && | ||
677 | bh_end > pos) || | ||
678 | (bh_end > end && | ||
679 | bh_end > end))) { | ||
680 | /* | ||
681 | * If the buffer is fully or partially | ||
682 | * within the initialized size, do an | ||
683 | * actual read. Otherwise, simply zero | ||
684 | * the buffer. | ||
685 | */ | ||
686 | read_lock_irqsave(&ni->size_lock, | ||
687 | flags); | ||
688 | initialized_size = ni->initialized_size; | ||
689 | read_unlock_irqrestore(&ni->size_lock, | ||
690 | flags); | ||
691 | if (bh_pos < initialized_size) { | ||
692 | ntfs_submit_bh_for_read(bh); | ||
693 | *wait_bh++ = bh; | ||
694 | } else { | ||
695 | u8 *kaddr = kmap_atomic(page, | ||
696 | KM_USER0); | ||
697 | memset(kaddr + bh_offset(bh), | ||
698 | 0, blocksize); | ||
699 | kunmap_atomic(kaddr, KM_USER0); | ||
700 | flush_dcache_page(page); | ||
701 | set_buffer_uptodate(bh); | ||
702 | } | ||
703 | } | ||
704 | continue; | ||
705 | } | ||
706 | /* We allocated the buffer. */ | ||
707 | unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr); | ||
708 | /* | ||
709 | * If the buffer is fully outside the write, zero it, | ||
710 | * set it uptodate, and mark it dirty so it gets | ||
711 | * written out. If it is partially being written to, | ||
712 | * zero region surrounding the write but leave it to | ||
713 | * commit write to do anything else. Finally, if the | ||
714 | * buffer is fully being overwritten, do nothing. | ||
715 | */ | ||
716 | if (bh_end <= pos || bh_pos >= end) { | ||
717 | if (!buffer_uptodate(bh)) { | ||
718 | u8 *kaddr = kmap_atomic(page, KM_USER0); | ||
719 | memset(kaddr + bh_offset(bh), 0, | ||
720 | blocksize); | ||
721 | kunmap_atomic(kaddr, KM_USER0); | ||
722 | flush_dcache_page(page); | ||
723 | set_buffer_uptodate(bh); | ||
724 | } | ||
725 | mark_buffer_dirty(bh); | ||
726 | continue; | ||
727 | } | ||
728 | set_buffer_new(bh); | ||
729 | if (!buffer_uptodate(bh) && | ||
730 | (bh_pos < pos || bh_end > end)) { | ||
731 | u8 *kaddr; | ||
732 | unsigned pofs; | ||
733 | |||
734 | kaddr = kmap_atomic(page, KM_USER0); | ||
735 | if (bh_pos < pos) { | ||
736 | pofs = bh_pos & ~PAGE_CACHE_MASK; | ||
737 | memset(kaddr + pofs, 0, pos - bh_pos); | ||
738 | } | ||
739 | if (bh_end > end) { | ||
740 | pofs = end & ~PAGE_CACHE_MASK; | ||
741 | memset(kaddr + pofs, 0, bh_end - end); | ||
742 | } | ||
743 | kunmap_atomic(kaddr, KM_USER0); | ||
744 | flush_dcache_page(page); | ||
745 | } | ||
746 | continue; | ||
747 | } | ||
748 | /* | ||
749 | * Slow path: this is the first buffer in the cluster. If it | ||
750 | * is outside allocated size and is not uptodate, zero it and | ||
751 | * set it uptodate. | ||
752 | */ | ||
753 | read_lock_irqsave(&ni->size_lock, flags); | ||
754 | initialized_size = ni->allocated_size; | ||
755 | read_unlock_irqrestore(&ni->size_lock, flags); | ||
756 | if (bh_pos > initialized_size) { | ||
757 | if (PageUptodate(page)) { | ||
758 | if (!buffer_uptodate(bh)) | ||
759 | set_buffer_uptodate(bh); | ||
760 | } else if (!buffer_uptodate(bh)) { | ||
761 | u8 *kaddr = kmap_atomic(page, KM_USER0); | ||
762 | memset(kaddr + bh_offset(bh), 0, blocksize); | ||
763 | kunmap_atomic(kaddr, KM_USER0); | ||
764 | flush_dcache_page(page); | ||
765 | set_buffer_uptodate(bh); | ||
766 | } | ||
767 | continue; | ||
768 | } | ||
769 | is_retry = FALSE; | ||
770 | if (!rl) { | ||
771 | down_read(&ni->runlist.lock); | ||
772 | retry_remap: | ||
773 | rl = ni->runlist.rl; | ||
774 | } | ||
775 | if (likely(rl != NULL)) { | ||
776 | /* Seek to element containing target cluster. */ | ||
777 | while (rl->length && rl[1].vcn <= bh_cpos) | ||
778 | rl++; | ||
779 | lcn = ntfs_rl_vcn_to_lcn(rl, bh_cpos); | ||
780 | if (likely(lcn >= 0)) { | ||
781 | /* | ||
782 | * Successful remap, setup the map cache and | ||
783 | * use that to deal with the buffer. | ||
784 | */ | ||
785 | was_hole = FALSE; | ||
786 | vcn = bh_cpos; | ||
787 | vcn_len = rl[1].vcn - vcn; | ||
788 | lcn_block = lcn << (vol->cluster_size_bits - | ||
789 | blocksize_bits); | ||
790 | /* | ||
791 | * If the number of remaining clusters in the | ||
792 | * @pages is smaller or equal to the number of | ||
793 | * cached clusters, unlock the runlist as the | ||
794 | * map cache will be used from now on. | ||
795 | */ | ||
796 | if (likely(vcn + vcn_len >= cend)) { | ||
797 | if (rl_write_locked) { | ||
798 | up_write(&ni->runlist.lock); | ||
799 | rl_write_locked = FALSE; | ||
800 | } else | ||
801 | up_read(&ni->runlist.lock); | ||
802 | rl = NULL; | ||
803 | } | ||
804 | goto map_buffer_cached; | ||
805 | } | ||
806 | } else | ||
807 | lcn = LCN_RL_NOT_MAPPED; | ||
808 | /* | ||
809 | * If it is not a hole and not out of bounds, the runlist is | ||
810 | * probably unmapped so try to map it now. | ||
811 | */ | ||
812 | if (unlikely(lcn != LCN_HOLE && lcn != LCN_ENOENT)) { | ||
813 | if (likely(!is_retry && lcn == LCN_RL_NOT_MAPPED)) { | ||
814 | /* Attempt to map runlist. */ | ||
815 | if (!rl_write_locked) { | ||
816 | /* | ||
817 | * We need the runlist locked for | ||
818 | * writing, so if it is locked for | ||
819 | * reading relock it now and retry in | ||
820 | * case it changed whilst we dropped | ||
821 | * the lock. | ||
822 | */ | ||
823 | up_read(&ni->runlist.lock); | ||
824 | down_write(&ni->runlist.lock); | ||
825 | rl_write_locked = TRUE; | ||
826 | goto retry_remap; | ||
827 | } | ||
828 | err = ntfs_map_runlist_nolock(ni, bh_cpos, | ||
829 | NULL); | ||
830 | if (likely(!err)) { | ||
831 | is_retry = TRUE; | ||
832 | goto retry_remap; | ||
833 | } | ||
834 | /* | ||
835 | * If @vcn is out of bounds, pretend @lcn is | ||
836 | * LCN_ENOENT. As long as the buffer is out | ||
837 | * of bounds this will work fine. | ||
838 | */ | ||
839 | if (err == -ENOENT) { | ||
840 | lcn = LCN_ENOENT; | ||
841 | err = 0; | ||
842 | goto rl_not_mapped_enoent; | ||
843 | } | ||
844 | } else | ||
845 | err = -EIO; | ||
846 | /* Failed to map the buffer, even after retrying. */ | ||
847 | bh->b_blocknr = -1; | ||
848 | ntfs_error(vol->sb, "Failed to write to inode 0x%lx, " | ||
849 | "attribute type 0x%x, vcn 0x%llx, " | ||
850 | "vcn offset 0x%x, because its " | ||
851 | "location on disk could not be " | ||
852 | "determined%s (error code %i).", | ||
853 | ni->mft_no, ni->type, | ||
854 | (unsigned long long)bh_cpos, | ||
855 | (unsigned)bh_pos & | ||
856 | vol->cluster_size_mask, | ||
857 | is_retry ? " even after retrying" : "", | ||
858 | err); | ||
859 | break; | ||
860 | } | ||
861 | rl_not_mapped_enoent: | ||
862 | /* | ||
863 | * The buffer is in a hole or out of bounds. We need to fill | ||
864 | * the hole, unless the buffer is in a cluster which is not | ||
865 | * touched by the write, in which case we just leave the buffer | ||
866 | * unmapped. This can only happen when the cluster size is | ||
867 | * less than the page cache size. | ||
868 | */ | ||
869 | if (unlikely(vol->cluster_size < PAGE_CACHE_SIZE)) { | ||
870 | bh_cend = (bh_end + vol->cluster_size - 1) >> | ||
871 | vol->cluster_size_bits; | ||
872 | if ((bh_cend <= cpos || bh_cpos >= cend)) { | ||
873 | bh->b_blocknr = -1; | ||
874 | /* | ||
875 | * If the buffer is uptodate we skip it. If it | ||
876 | * is not but the page is uptodate, we can set | ||
877 | * the buffer uptodate. If the page is not | ||
878 | * uptodate, we can clear the buffer and set it | ||
879 | * uptodate. Whether this is worthwhile is | ||
880 | * debatable and this could be removed. | ||
881 | */ | ||
882 | if (PageUptodate(page)) { | ||
883 | if (!buffer_uptodate(bh)) | ||
884 | set_buffer_uptodate(bh); | ||
885 | } else if (!buffer_uptodate(bh)) { | ||
886 | u8 *kaddr = kmap_atomic(page, KM_USER0); | ||
887 | memset(kaddr + bh_offset(bh), 0, | ||
888 | blocksize); | ||
889 | kunmap_atomic(kaddr, KM_USER0); | ||
890 | flush_dcache_page(page); | ||
891 | set_buffer_uptodate(bh); | ||
892 | } | ||
893 | continue; | ||
894 | } | ||
895 | } | ||
896 | /* | ||
897 | * Out of bounds buffer is invalid if it was not really out of | ||
898 | * bounds. | ||
899 | */ | ||
900 | BUG_ON(lcn != LCN_HOLE); | ||
901 | /* | ||
902 | * We need the runlist locked for writing, so if it is locked | ||
903 | * for reading relock it now and retry in case it changed | ||
904 | * whilst we dropped the lock. | ||
905 | */ | ||
906 | BUG_ON(!rl); | ||
907 | if (!rl_write_locked) { | ||
908 | up_read(&ni->runlist.lock); | ||
909 | down_write(&ni->runlist.lock); | ||
910 | rl_write_locked = TRUE; | ||
911 | goto retry_remap; | ||
912 | } | ||
913 | /* Find the previous last allocated cluster. */ | ||
914 | BUG_ON(rl->lcn != LCN_HOLE); | ||
915 | lcn = -1; | ||
916 | rl2 = rl; | ||
917 | while (--rl2 >= ni->runlist.rl) { | ||
918 | if (rl2->lcn >= 0) { | ||
919 | lcn = rl2->lcn + rl2->length; | ||
920 | break; | ||
921 | } | ||
922 | } | ||
923 | rl2 = ntfs_cluster_alloc(vol, bh_cpos, 1, lcn, DATA_ZONE, | ||
924 | FALSE); | ||
925 | if (IS_ERR(rl2)) { | ||
926 | err = PTR_ERR(rl2); | ||
927 | ntfs_debug("Failed to allocate cluster, error code %i.", | ||
928 | err); | ||
929 | break; | ||
930 | } | ||
931 | lcn = rl2->lcn; | ||
932 | rl = ntfs_runlists_merge(ni->runlist.rl, rl2); | ||
933 | if (IS_ERR(rl)) { | ||
934 | err = PTR_ERR(rl); | ||
935 | if (err != -ENOMEM) | ||
936 | err = -EIO; | ||
937 | if (ntfs_cluster_free_from_rl(vol, rl2)) { | ||
938 | ntfs_error(vol->sb, "Failed to release " | ||
939 | "allocated cluster in error " | ||
940 | "code path. Run chkdsk to " | ||
941 | "recover the lost cluster."); | ||
942 | NVolSetErrors(vol); | ||
943 | } | ||
944 | ntfs_free(rl2); | ||
945 | break; | ||
946 | } | ||
947 | ni->runlist.rl = rl; | ||
948 | status.runlist_merged = 1; | ||
949 | ntfs_debug("Allocated cluster, lcn 0x%llx.", lcn); | ||
950 | /* Map and lock the mft record and get the attribute record. */ | ||
951 | if (!NInoAttr(ni)) | ||
952 | base_ni = ni; | ||
953 | else | ||
954 | base_ni = ni->ext.base_ntfs_ino; | ||
955 | m = map_mft_record(base_ni); | ||
956 | if (IS_ERR(m)) { | ||
957 | err = PTR_ERR(m); | ||
958 | break; | ||
959 | } | ||
960 | ctx = ntfs_attr_get_search_ctx(base_ni, m); | ||
961 | if (unlikely(!ctx)) { | ||
962 | err = -ENOMEM; | ||
963 | unmap_mft_record(base_ni); | ||
964 | break; | ||
965 | } | ||
966 | status.mft_attr_mapped = 1; | ||
967 | err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, | ||
968 | CASE_SENSITIVE, bh_cpos, NULL, 0, ctx); | ||
969 | if (unlikely(err)) { | ||
970 | if (err == -ENOENT) | ||
971 | err = -EIO; | ||
972 | break; | ||
973 | } | ||
974 | m = ctx->mrec; | ||
975 | a = ctx->attr; | ||
976 | /* | ||
977 | * Find the runlist element with which the attribute extent | ||
978 | * starts. Note, we cannot use the _attr_ version because we | ||
979 | * have mapped the mft record. That is ok because we know the | ||
980 | * runlist fragment must be mapped already to have ever gotten | ||
981 | * here, so we can just use the _rl_ version. | ||
982 | */ | ||
983 | vcn = sle64_to_cpu(a->data.non_resident.lowest_vcn); | ||
984 | rl2 = ntfs_rl_find_vcn_nolock(rl, vcn); | ||
985 | BUG_ON(!rl2); | ||
986 | BUG_ON(!rl2->length); | ||
987 | BUG_ON(rl2->lcn < LCN_HOLE); | ||
988 | highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn); | ||
989 | /* | ||
990 | * If @highest_vcn is zero, calculate the real highest_vcn | ||
991 | * (which can really be zero). | ||
992 | */ | ||
993 | if (!highest_vcn) | ||
994 | highest_vcn = (sle64_to_cpu( | ||
995 | a->data.non_resident.allocated_size) >> | ||
996 | vol->cluster_size_bits) - 1; | ||
997 | /* | ||
998 | * Determine the size of the mapping pairs array for the new | ||
999 | * extent, i.e. the old extent with the hole filled. | ||
1000 | */ | ||
1001 | mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, vcn, | ||
1002 | highest_vcn); | ||
1003 | if (unlikely(mp_size <= 0)) { | ||
1004 | if (!(err = mp_size)) | ||
1005 | err = -EIO; | ||
1006 | ntfs_debug("Failed to get size for mapping pairs " | ||
1007 | "array, error code %i.", err); | ||
1008 | break; | ||
1009 | } | ||
1010 | /* | ||
1011 | * Resize the attribute record to fit the new mapping pairs | ||
1012 | * array. | ||
1013 | */ | ||
1014 | attr_rec_len = le32_to_cpu(a->length); | ||
1015 | err = ntfs_attr_record_resize(m, a, mp_size + le16_to_cpu( | ||
1016 | a->data.non_resident.mapping_pairs_offset)); | ||
1017 | if (unlikely(err)) { | ||
1018 | BUG_ON(err != -ENOSPC); | ||
1019 | // TODO: Deal with this by using the current attribute | ||
1020 | // and fill it with as much of the mapping pairs | ||
1021 | // array as possible. Then loop over each attribute | ||
1022 | // extent rewriting the mapping pairs arrays as we go | ||
1023 | // along and if when we reach the end we have not | ||
1024 | // enough space, try to resize the last attribute | ||
1025 | // extent and if even that fails, add a new attribute | ||
1026 | // extent. | ||
1027 | // We could also try to resize at each step in the hope | ||
1028 | // that we will not need to rewrite every single extent. | ||
1029 | // Note, we may need to decompress some extents to fill | ||
1030 | // the runlist as we are walking the extents... | ||
1031 | ntfs_error(vol->sb, "Not enough space in the mft " | ||
1032 | "record for the extended attribute " | ||
1033 | "record. This case is not " | ||
1034 | "implemented yet."); | ||
1035 | err = -EOPNOTSUPP; | ||
1036 | break ; | ||
1037 | } | ||
1038 | status.mp_rebuilt = 1; | ||
1039 | /* | ||
1040 | * Generate the mapping pairs array directly into the attribute | ||
1041 | * record. | ||
1042 | */ | ||
1043 | err = ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu( | ||
1044 | a->data.non_resident.mapping_pairs_offset), | ||
1045 | mp_size, rl2, vcn, highest_vcn, NULL); | ||
1046 | if (unlikely(err)) { | ||
1047 | ntfs_error(vol->sb, "Cannot fill hole in inode 0x%lx, " | ||
1048 | "attribute type 0x%x, because building " | ||
1049 | "the mapping pairs failed with error " | ||
1050 | "code %i.", vi->i_ino, | ||
1051 | (unsigned)le32_to_cpu(ni->type), err); | ||
1052 | err = -EIO; | ||
1053 | break; | ||
1054 | } | ||
1055 | /* Update the highest_vcn but only if it was not set. */ | ||
1056 | if (unlikely(!a->data.non_resident.highest_vcn)) | ||
1057 | a->data.non_resident.highest_vcn = | ||
1058 | cpu_to_sle64(highest_vcn); | ||
1059 | /* | ||
1060 | * If the attribute is sparse/compressed, update the compressed | ||
1061 | * size in the ntfs_inode structure and the attribute record. | ||
1062 | */ | ||
1063 | if (likely(NInoSparse(ni) || NInoCompressed(ni))) { | ||
1064 | /* | ||
1065 | * If we are not in the first attribute extent, switch | ||
1066 | * to it, but first ensure the changes will make it to | ||
1067 | * disk later. | ||
1068 | */ | ||
1069 | if (a->data.non_resident.lowest_vcn) { | ||
1070 | flush_dcache_mft_record_page(ctx->ntfs_ino); | ||
1071 | mark_mft_record_dirty(ctx->ntfs_ino); | ||
1072 | ntfs_attr_reinit_search_ctx(ctx); | ||
1073 | err = ntfs_attr_lookup(ni->type, ni->name, | ||
1074 | ni->name_len, CASE_SENSITIVE, | ||
1075 | 0, NULL, 0, ctx); | ||
1076 | if (unlikely(err)) { | ||
1077 | status.attr_switched = 1; | ||
1078 | break; | ||
1079 | } | ||
1080 | /* @m is not used any more so do not set it. */ | ||
1081 | a = ctx->attr; | ||
1082 | } | ||
1083 | write_lock_irqsave(&ni->size_lock, flags); | ||
1084 | ni->itype.compressed.size += vol->cluster_size; | ||
1085 | a->data.non_resident.compressed_size = | ||
1086 | cpu_to_sle64(ni->itype.compressed.size); | ||
1087 | write_unlock_irqrestore(&ni->size_lock, flags); | ||
1088 | } | ||
1089 | /* Ensure the changes make it to disk. */ | ||
1090 | flush_dcache_mft_record_page(ctx->ntfs_ino); | ||
1091 | mark_mft_record_dirty(ctx->ntfs_ino); | ||
1092 | ntfs_attr_put_search_ctx(ctx); | ||
1093 | unmap_mft_record(base_ni); | ||
1094 | /* Successfully filled the hole. */ | ||
1095 | status.runlist_merged = 0; | ||
1096 | status.mft_attr_mapped = 0; | ||
1097 | status.mp_rebuilt = 0; | ||
1098 | /* Setup the map cache and use that to deal with the buffer. */ | ||
1099 | was_hole = TRUE; | ||
1100 | vcn = bh_cpos; | ||
1101 | vcn_len = 1; | ||
1102 | lcn_block = lcn << (vol->cluster_size_bits - blocksize_bits); | ||
1103 | cdelta = 0; | ||
1104 | /* | ||
1105 | * If the number of remaining clusters in the @pages is smaller | ||
1106 | * or equal to the number of cached clusters, unlock the | ||
1107 | * runlist as the map cache will be used from now on. | ||
1108 | */ | ||
1109 | if (likely(vcn + vcn_len >= cend)) { | ||
1110 | up_write(&ni->runlist.lock); | ||
1111 | rl_write_locked = FALSE; | ||
1112 | rl = NULL; | ||
1113 | } | ||
1114 | goto map_buffer_cached; | ||
1115 | } while (bh_pos += blocksize, (bh = bh->b_this_page) != head); | ||
1116 | /* If there are no errors, do the next page. */ | ||
1117 | if (likely(!err && ++u < nr_pages)) | ||
1118 | goto do_next_page; | ||
1119 | /* If there are no errors, release the runlist lock if we took it. */ | ||
1120 | if (likely(!err)) { | ||
1121 | if (unlikely(rl_write_locked)) { | ||
1122 | up_write(&ni->runlist.lock); | ||
1123 | rl_write_locked = FALSE; | ||
1124 | } else if (unlikely(rl)) | ||
1125 | up_read(&ni->runlist.lock); | ||
1126 | rl = NULL; | ||
1127 | } | ||
1128 | /* If we issued read requests, let them complete. */ | ||
1129 | read_lock_irqsave(&ni->size_lock, flags); | ||
1130 | initialized_size = ni->initialized_size; | ||
1131 | read_unlock_irqrestore(&ni->size_lock, flags); | ||
1132 | while (wait_bh > wait) { | ||
1133 | bh = *--wait_bh; | ||
1134 | wait_on_buffer(bh); | ||
1135 | if (likely(buffer_uptodate(bh))) { | ||
1136 | page = bh->b_page; | ||
1137 | bh_pos = ((s64)page->index << PAGE_CACHE_SHIFT) + | ||
1138 | bh_offset(bh); | ||
1139 | /* | ||
1140 | * If the buffer overflows the initialized size, need | ||
1141 | * to zero the overflowing region. | ||
1142 | */ | ||
1143 | if (unlikely(bh_pos + blocksize > initialized_size)) { | ||
1144 | u8 *kaddr; | ||
1145 | int ofs = 0; | ||
1146 | |||
1147 | if (likely(bh_pos < initialized_size)) | ||
1148 | ofs = initialized_size - bh_pos; | ||
1149 | kaddr = kmap_atomic(page, KM_USER0); | ||
1150 | memset(kaddr + bh_offset(bh) + ofs, 0, | ||
1151 | blocksize - ofs); | ||
1152 | kunmap_atomic(kaddr, KM_USER0); | ||
1153 | flush_dcache_page(page); | ||
1154 | } | ||
1155 | } else /* if (unlikely(!buffer_uptodate(bh))) */ | ||
1156 | err = -EIO; | ||
1157 | } | ||
1158 | if (likely(!err)) { | ||
1159 | /* Clear buffer_new on all buffers. */ | ||
1160 | u = 0; | ||
1161 | do { | ||
1162 | bh = head = page_buffers(pages[u]); | ||
1163 | do { | ||
1164 | if (buffer_new(bh)) | ||
1165 | clear_buffer_new(bh); | ||
1166 | } while ((bh = bh->b_this_page) != head); | ||
1167 | } while (++u < nr_pages); | ||
1168 | ntfs_debug("Done."); | ||
1169 | return err; | ||
1170 | } | ||
1171 | if (status.attr_switched) { | ||
1172 | /* Get back to the attribute extent we modified. */ | ||
1173 | ntfs_attr_reinit_search_ctx(ctx); | ||
1174 | if (ntfs_attr_lookup(ni->type, ni->name, ni->name_len, | ||
1175 | CASE_SENSITIVE, bh_cpos, NULL, 0, ctx)) { | ||
1176 | ntfs_error(vol->sb, "Failed to find required " | ||
1177 | "attribute extent of attribute in " | ||
1178 | "error code path. Run chkdsk to " | ||
1179 | "recover."); | ||
1180 | write_lock_irqsave(&ni->size_lock, flags); | ||
1181 | ni->itype.compressed.size += vol->cluster_size; | ||
1182 | write_unlock_irqrestore(&ni->size_lock, flags); | ||
1183 | flush_dcache_mft_record_page(ctx->ntfs_ino); | ||
1184 | mark_mft_record_dirty(ctx->ntfs_ino); | ||
1185 | /* | ||
1186 | * The only thing that is now wrong is the compressed | ||
1187 | * size of the base attribute extent which chkdsk | ||
1188 | * should be able to fix. | ||
1189 | */ | ||
1190 | NVolSetErrors(vol); | ||
1191 | } else { | ||
1192 | m = ctx->mrec; | ||
1193 | a = ctx->attr; | ||
1194 | status.attr_switched = 0; | ||
1195 | } | ||
1196 | } | ||
1197 | /* | ||
1198 | * If the runlist has been modified, need to restore it by punching a | ||
1199 | * hole into it and we then need to deallocate the on-disk cluster as | ||
1200 | * well. Note, we only modify the runlist if we are able to generate a | ||
1201 | * new mapping pairs array, i.e. only when the mapped attribute extent | ||
1202 | * is not switched. | ||
1203 | */ | ||
1204 | if (status.runlist_merged && !status.attr_switched) { | ||
1205 | BUG_ON(!rl_write_locked); | ||
1206 | /* Make the file cluster we allocated sparse in the runlist. */ | ||
1207 | if (ntfs_rl_punch_nolock(vol, &ni->runlist, bh_cpos, 1)) { | ||
1208 | ntfs_error(vol->sb, "Failed to punch hole into " | ||
1209 | "attribute runlist in error code " | ||
1210 | "path. Run chkdsk to recover the " | ||
1211 | "lost cluster."); | ||
1212 | make_bad_inode(vi); | ||
1213 | make_bad_inode(VFS_I(base_ni)); | ||
1214 | NVolSetErrors(vol); | ||
1215 | } else /* if (success) */ { | ||
1216 | status.runlist_merged = 0; | ||
1217 | /* | ||
1218 | * Deallocate the on-disk cluster we allocated but only | ||
1219 | * if we succeeded in punching its vcn out of the | ||
1220 | * runlist. | ||
1221 | */ | ||
1222 | down_write(&vol->lcnbmp_lock); | ||
1223 | if (ntfs_bitmap_clear_bit(vol->lcnbmp_ino, lcn)) { | ||
1224 | ntfs_error(vol->sb, "Failed to release " | ||
1225 | "allocated cluster in error " | ||
1226 | "code path. Run chkdsk to " | ||
1227 | "recover the lost cluster."); | ||
1228 | NVolSetErrors(vol); | ||
1229 | } | ||
1230 | up_write(&vol->lcnbmp_lock); | ||
1231 | } | ||
1232 | } | ||
1233 | /* | ||
1234 | * Resize the attribute record to its old size and rebuild the mapping | ||
1235 | * pairs array. Note, we only can do this if the runlist has been | ||
1236 | * restored to its old state which also implies that the mapped | ||
1237 | * attribute extent is not switched. | ||
1238 | */ | ||
1239 | if (status.mp_rebuilt && !status.runlist_merged) { | ||
1240 | if (ntfs_attr_record_resize(m, a, attr_rec_len)) { | ||
1241 | ntfs_error(vol->sb, "Failed to restore attribute " | ||
1242 | "record in error code path. Run " | ||
1243 | "chkdsk to recover."); | ||
1244 | make_bad_inode(vi); | ||
1245 | make_bad_inode(VFS_I(base_ni)); | ||
1246 | NVolSetErrors(vol); | ||
1247 | } else /* if (success) */ { | ||
1248 | if (ntfs_mapping_pairs_build(vol, (u8*)a + | ||
1249 | le16_to_cpu(a->data.non_resident. | ||
1250 | mapping_pairs_offset), attr_rec_len - | ||
1251 | le16_to_cpu(a->data.non_resident. | ||
1252 | mapping_pairs_offset), ni->runlist.rl, | ||
1253 | vcn, highest_vcn, NULL)) { | ||
1254 | ntfs_error(vol->sb, "Failed to restore " | ||
1255 | "mapping pairs array in error " | ||
1256 | "code path. Run chkdsk to " | ||
1257 | "recover."); | ||
1258 | make_bad_inode(vi); | ||
1259 | make_bad_inode(VFS_I(base_ni)); | ||
1260 | NVolSetErrors(vol); | ||
1261 | } | ||
1262 | flush_dcache_mft_record_page(ctx->ntfs_ino); | ||
1263 | mark_mft_record_dirty(ctx->ntfs_ino); | ||
1264 | } | ||
1265 | } | ||
1266 | /* Release the mft record and the attribute. */ | ||
1267 | if (status.mft_attr_mapped) { | ||
1268 | ntfs_attr_put_search_ctx(ctx); | ||
1269 | unmap_mft_record(base_ni); | ||
1270 | } | ||
1271 | /* Release the runlist lock. */ | ||
1272 | if (rl_write_locked) | ||
1273 | up_write(&ni->runlist.lock); | ||
1274 | else if (rl) | ||
1275 | up_read(&ni->runlist.lock); | ||
1276 | /* | ||
1277 | * Zero out any newly allocated blocks to avoid exposing stale data. | ||
1278 | * If BH_New is set, we know that the block was newly allocated above | ||
1279 | * and that it has not been fully zeroed and marked dirty yet. | ||
1280 | */ | ||
1281 | nr_pages = u; | ||
1282 | u = 0; | ||
1283 | end = bh_cpos << vol->cluster_size_bits; | ||
1284 | do { | ||
1285 | page = pages[u]; | ||
1286 | bh = head = page_buffers(page); | ||
1287 | do { | ||
1288 | if (u == nr_pages && | ||
1289 | ((s64)page->index << PAGE_CACHE_SHIFT) + | ||
1290 | bh_offset(bh) >= end) | ||
1291 | break; | ||
1292 | if (!buffer_new(bh)) | ||
1293 | continue; | ||
1294 | clear_buffer_new(bh); | ||
1295 | if (!buffer_uptodate(bh)) { | ||
1296 | if (PageUptodate(page)) | ||
1297 | set_buffer_uptodate(bh); | ||
1298 | else { | ||
1299 | u8 *kaddr = kmap_atomic(page, KM_USER0); | ||
1300 | memset(kaddr + bh_offset(bh), 0, | ||
1301 | blocksize); | ||
1302 | kunmap_atomic(kaddr, KM_USER0); | ||
1303 | flush_dcache_page(page); | ||
1304 | set_buffer_uptodate(bh); | ||
1305 | } | ||
1306 | } | ||
1307 | mark_buffer_dirty(bh); | ||
1308 | } while ((bh = bh->b_this_page) != head); | ||
1309 | } while (++u <= nr_pages); | ||
1310 | ntfs_error(vol->sb, "Failed. Returning error code %i.", err); | ||
1311 | return err; | ||
1312 | } | ||
1313 | |||
1314 | /* | ||
1315 | * Copy as much as we can into the pages and return the number of bytes which | ||
1316 | * were sucessfully copied. If a fault is encountered then clear the pages | ||
1317 | * out to (ofs + bytes) and return the number of bytes which were copied. | ||
1318 | */ | ||
1319 | static inline size_t ntfs_copy_from_user(struct page **pages, | ||
1320 | unsigned nr_pages, unsigned ofs, const char __user *buf, | ||
1321 | size_t bytes) | ||
1322 | { | ||
1323 | struct page **last_page = pages + nr_pages; | ||
1324 | char *kaddr; | ||
1325 | size_t total = 0; | ||
1326 | unsigned len; | ||
1327 | int left; | ||
1328 | |||
1329 | do { | ||
1330 | len = PAGE_CACHE_SIZE - ofs; | ||
1331 | if (len > bytes) | ||
1332 | len = bytes; | ||
1333 | kaddr = kmap_atomic(*pages, KM_USER0); | ||
1334 | left = __copy_from_user_inatomic(kaddr + ofs, buf, len); | ||
1335 | kunmap_atomic(kaddr, KM_USER0); | ||
1336 | if (unlikely(left)) { | ||
1337 | /* Do it the slow way. */ | ||
1338 | kaddr = kmap(*pages); | ||
1339 | left = __copy_from_user(kaddr + ofs, buf, len); | ||
1340 | kunmap(*pages); | ||
1341 | if (unlikely(left)) | ||
1342 | goto err_out; | ||
1343 | } | ||
1344 | total += len; | ||
1345 | bytes -= len; | ||
1346 | if (!bytes) | ||
1347 | break; | ||
1348 | buf += len; | ||
1349 | ofs = 0; | ||
1350 | } while (++pages < last_page); | ||
1351 | out: | ||
1352 | return total; | ||
1353 | err_out: | ||
1354 | total += len - left; | ||
1355 | /* Zero the rest of the target like __copy_from_user(). */ | ||
1356 | while (++pages < last_page) { | ||
1357 | bytes -= len; | ||
1358 | if (!bytes) | ||
1359 | break; | ||
1360 | len = PAGE_CACHE_SIZE; | ||
1361 | if (len > bytes) | ||
1362 | len = bytes; | ||
1363 | kaddr = kmap_atomic(*pages, KM_USER0); | ||
1364 | memset(kaddr, 0, len); | ||
1365 | kunmap_atomic(kaddr, KM_USER0); | ||
1366 | } | ||
1367 | goto out; | ||
1368 | } | ||
1369 | |||
1370 | static size_t __ntfs_copy_from_user_iovec(char *vaddr, | ||
1371 | const struct iovec *iov, size_t iov_ofs, size_t bytes) | ||
1372 | { | ||
1373 | size_t total = 0; | ||
1374 | |||
1375 | while (1) { | ||
1376 | const char __user *buf = iov->iov_base + iov_ofs; | ||
1377 | unsigned len; | ||
1378 | size_t left; | ||
1379 | |||
1380 | len = iov->iov_len - iov_ofs; | ||
1381 | if (len > bytes) | ||
1382 | len = bytes; | ||
1383 | left = __copy_from_user_inatomic(vaddr, buf, len); | ||
1384 | total += len; | ||
1385 | bytes -= len; | ||
1386 | vaddr += len; | ||
1387 | if (unlikely(left)) { | ||
1388 | /* | ||
1389 | * Zero the rest of the target like __copy_from_user(). | ||
1390 | */ | ||
1391 | memset(vaddr, 0, bytes); | ||
1392 | total -= left; | ||
1393 | break; | ||
1394 | } | ||
1395 | if (!bytes) | ||
1396 | break; | ||
1397 | iov++; | ||
1398 | iov_ofs = 0; | ||
1399 | } | ||
1400 | return total; | ||
1401 | } | ||
1402 | |||
1403 | static inline void ntfs_set_next_iovec(const struct iovec **iovp, | ||
1404 | size_t *iov_ofsp, size_t bytes) | ||
1405 | { | ||
1406 | const struct iovec *iov = *iovp; | ||
1407 | size_t iov_ofs = *iov_ofsp; | ||
1408 | |||
1409 | while (bytes) { | ||
1410 | unsigned len; | ||
1411 | |||
1412 | len = iov->iov_len - iov_ofs; | ||
1413 | if (len > bytes) | ||
1414 | len = bytes; | ||
1415 | bytes -= len; | ||
1416 | iov_ofs += len; | ||
1417 | if (iov->iov_len == iov_ofs) { | ||
1418 | iov++; | ||
1419 | iov_ofs = 0; | ||
1420 | } | ||
1421 | } | ||
1422 | *iovp = iov; | ||
1423 | *iov_ofsp = iov_ofs; | ||
1424 | } | ||
1425 | |||
1426 | /* | ||
1427 | * This has the same side-effects and return value as ntfs_copy_from_user(). | ||
1428 | * The difference is that on a fault we need to memset the remainder of the | ||
1429 | * pages (out to offset + bytes), to emulate ntfs_copy_from_user()'s | ||
1430 | * single-segment behaviour. | ||
1431 | * | ||
1432 | * We call the same helper (__ntfs_copy_from_user_iovec()) both when atomic and | ||
1433 | * when not atomic. This is ok because __ntfs_copy_from_user_iovec() calls | ||
1434 | * __copy_from_user_inatomic() and it is ok to call this when non-atomic. In | ||
1435 | * fact, the only difference between __copy_from_user_inatomic() and | ||
1436 | * __copy_from_user() is that the latter calls might_sleep(). And on many | ||
1437 | * architectures __copy_from_user_inatomic() is just defined to | ||
1438 | * __copy_from_user() so it makes no difference at all on those architectures. | ||
1439 | */ | ||
1440 | static inline size_t ntfs_copy_from_user_iovec(struct page **pages, | ||
1441 | unsigned nr_pages, unsigned ofs, const struct iovec **iov, | ||
1442 | size_t *iov_ofs, size_t bytes) | ||
1443 | { | ||
1444 | struct page **last_page = pages + nr_pages; | ||
1445 | char *kaddr; | ||
1446 | size_t copied, len, total = 0; | ||
1447 | |||
1448 | do { | ||
1449 | len = PAGE_CACHE_SIZE - ofs; | ||
1450 | if (len > bytes) | ||
1451 | len = bytes; | ||
1452 | kaddr = kmap_atomic(*pages, KM_USER0); | ||
1453 | copied = __ntfs_copy_from_user_iovec(kaddr + ofs, | ||
1454 | *iov, *iov_ofs, len); | ||
1455 | kunmap_atomic(kaddr, KM_USER0); | ||
1456 | if (unlikely(copied != len)) { | ||
1457 | /* Do it the slow way. */ | ||
1458 | kaddr = kmap(*pages); | ||
1459 | copied = __ntfs_copy_from_user_iovec(kaddr + ofs, | ||
1460 | *iov, *iov_ofs, len); | ||
1461 | kunmap(*pages); | ||
1462 | if (unlikely(copied != len)) | ||
1463 | goto err_out; | ||
1464 | } | ||
1465 | total += len; | ||
1466 | bytes -= len; | ||
1467 | if (!bytes) | ||
1468 | break; | ||
1469 | ntfs_set_next_iovec(iov, iov_ofs, len); | ||
1470 | ofs = 0; | ||
1471 | } while (++pages < last_page); | ||
1472 | out: | ||
1473 | return total; | ||
1474 | err_out: | ||
1475 | total += copied; | ||
1476 | /* Zero the rest of the target like __copy_from_user(). */ | ||
1477 | while (++pages < last_page) { | ||
1478 | bytes -= len; | ||
1479 | if (!bytes) | ||
1480 | break; | ||
1481 | len = PAGE_CACHE_SIZE; | ||
1482 | if (len > bytes) | ||
1483 | len = bytes; | ||
1484 | kaddr = kmap_atomic(*pages, KM_USER0); | ||
1485 | memset(kaddr, 0, len); | ||
1486 | kunmap_atomic(kaddr, KM_USER0); | ||
1487 | } | ||
1488 | goto out; | ||
1489 | } | ||
1490 | |||
1491 | static inline void ntfs_flush_dcache_pages(struct page **pages, | ||
1492 | unsigned nr_pages) | ||
1493 | { | ||
1494 | BUG_ON(!nr_pages); | ||
1495 | do { | ||
1496 | /* | ||
1497 | * Warning: Do not do the decrement at the same time as the | ||
1498 | * call because flush_dcache_page() is a NULL macro on i386 | ||
1499 | * and hence the decrement never happens. | ||
1500 | */ | ||
1501 | flush_dcache_page(pages[nr_pages]); | ||
1502 | } while (--nr_pages > 0); | ||
1503 | } | ||
1504 | |||
1505 | /** | ||
1506 | * ntfs_commit_pages_after_non_resident_write - commit the received data | ||
1507 | * @pages: array of destination pages | ||
1508 | * @nr_pages: number of pages in @pages | ||
1509 | * @pos: byte position in file at which the write begins | ||
1510 | * @bytes: number of bytes to be written | ||
1511 | * | ||
1512 | * See description of ntfs_commit_pages_after_write(), below. | ||
1513 | */ | ||
1514 | static inline int ntfs_commit_pages_after_non_resident_write( | ||
1515 | struct page **pages, const unsigned nr_pages, | ||
1516 | s64 pos, size_t bytes) | ||
1517 | { | ||
1518 | s64 end, initialized_size; | ||
1519 | struct inode *vi; | ||
1520 | ntfs_inode *ni, *base_ni; | ||
1521 | struct buffer_head *bh, *head; | ||
1522 | ntfs_attr_search_ctx *ctx; | ||
1523 | MFT_RECORD *m; | ||
1524 | ATTR_RECORD *a; | ||
1525 | unsigned long flags; | ||
1526 | unsigned blocksize, u; | ||
1527 | int err; | ||
1528 | |||
1529 | vi = pages[0]->mapping->host; | ||
1530 | ni = NTFS_I(vi); | ||
1531 | blocksize = 1 << vi->i_blkbits; | ||
1532 | end = pos + bytes; | ||
1533 | u = 0; | ||
1534 | do { | ||
1535 | s64 bh_pos; | ||
1536 | struct page *page; | ||
1537 | BOOL partial; | ||
1538 | |||
1539 | page = pages[u]; | ||
1540 | bh_pos = (s64)page->index << PAGE_CACHE_SHIFT; | ||
1541 | bh = head = page_buffers(page); | ||
1542 | partial = FALSE; | ||
1543 | do { | ||
1544 | s64 bh_end; | ||
1545 | |||
1546 | bh_end = bh_pos + blocksize; | ||
1547 | if (bh_end <= pos || bh_pos >= end) { | ||
1548 | if (!buffer_uptodate(bh)) | ||
1549 | partial = TRUE; | ||
1550 | } else { | ||
1551 | set_buffer_uptodate(bh); | ||
1552 | mark_buffer_dirty(bh); | ||
1553 | } | ||
1554 | } while (bh_pos += blocksize, (bh = bh->b_this_page) != head); | ||
1555 | /* | ||
1556 | * If all buffers are now uptodate but the page is not, set the | ||
1557 | * page uptodate. | ||
1558 | */ | ||
1559 | if (!partial && !PageUptodate(page)) | ||
1560 | SetPageUptodate(page); | ||
1561 | } while (++u < nr_pages); | ||
1562 | /* | ||
1563 | * Finally, if we do not need to update initialized_size or i_size we | ||
1564 | * are finished. | ||
1565 | */ | ||
1566 | read_lock_irqsave(&ni->size_lock, flags); | ||
1567 | initialized_size = ni->initialized_size; | ||
1568 | read_unlock_irqrestore(&ni->size_lock, flags); | ||
1569 | if (end <= initialized_size) { | ||
1570 | ntfs_debug("Done."); | ||
1571 | return 0; | ||
1572 | } | ||
1573 | /* | ||
1574 | * Update initialized_size/i_size as appropriate, both in the inode and | ||
1575 | * the mft record. | ||
1576 | */ | ||
1577 | if (!NInoAttr(ni)) | ||
1578 | base_ni = ni; | ||
1579 | else | ||
1580 | base_ni = ni->ext.base_ntfs_ino; | ||
1581 | /* Map, pin, and lock the mft record. */ | ||
1582 | m = map_mft_record(base_ni); | ||
1583 | if (IS_ERR(m)) { | ||
1584 | err = PTR_ERR(m); | ||
1585 | m = NULL; | ||
1586 | ctx = NULL; | ||
1587 | goto err_out; | ||
1588 | } | ||
1589 | BUG_ON(!NInoNonResident(ni)); | ||
1590 | ctx = ntfs_attr_get_search_ctx(base_ni, m); | ||
1591 | if (unlikely(!ctx)) { | ||
1592 | err = -ENOMEM; | ||
1593 | goto err_out; | ||
1594 | } | ||
1595 | err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, | ||
1596 | CASE_SENSITIVE, 0, NULL, 0, ctx); | ||
1597 | if (unlikely(err)) { | ||
1598 | if (err == -ENOENT) | ||
1599 | err = -EIO; | ||
1600 | goto err_out; | ||
1601 | } | ||
1602 | a = ctx->attr; | ||
1603 | BUG_ON(!a->non_resident); | ||
1604 | write_lock_irqsave(&ni->size_lock, flags); | ||
1605 | BUG_ON(end > ni->allocated_size); | ||
1606 | ni->initialized_size = end; | ||
1607 | a->data.non_resident.initialized_size = cpu_to_sle64(end); | ||
1608 | if (end > i_size_read(vi)) { | ||
1609 | i_size_write(vi, end); | ||
1610 | a->data.non_resident.data_size = | ||
1611 | a->data.non_resident.initialized_size; | ||
1612 | } | ||
1613 | write_unlock_irqrestore(&ni->size_lock, flags); | ||
1614 | /* Mark the mft record dirty, so it gets written back. */ | ||
1615 | flush_dcache_mft_record_page(ctx->ntfs_ino); | ||
1616 | mark_mft_record_dirty(ctx->ntfs_ino); | ||
1617 | ntfs_attr_put_search_ctx(ctx); | ||
1618 | unmap_mft_record(base_ni); | ||
1619 | ntfs_debug("Done."); | ||
1620 | return 0; | ||
1621 | err_out: | ||
1622 | if (ctx) | ||
1623 | ntfs_attr_put_search_ctx(ctx); | ||
1624 | if (m) | ||
1625 | unmap_mft_record(base_ni); | ||
1626 | ntfs_error(vi->i_sb, "Failed to update initialized_size/i_size (error " | ||
1627 | "code %i).", err); | ||
1628 | if (err != -ENOMEM) { | ||
1629 | NVolSetErrors(ni->vol); | ||
1630 | make_bad_inode(VFS_I(base_ni)); | ||
1631 | make_bad_inode(vi); | ||
1632 | } | ||
1633 | return err; | ||
1634 | } | ||
1635 | |||
1636 | /** | ||
1637 | * ntfs_commit_pages_after_write - commit the received data | ||
1638 | * @pages: array of destination pages | ||
1639 | * @nr_pages: number of pages in @pages | ||
1640 | * @pos: byte position in file at which the write begins | ||
1641 | * @bytes: number of bytes to be written | ||
1642 | * | ||
1643 | * This is called from ntfs_file_buffered_write() with i_sem held on the inode | ||
1644 | * (@pages[0]->mapping->host). There are @nr_pages pages in @pages which are | ||
1645 | * locked but not kmap()ped. The source data has already been copied into the | ||
1646 | * @page. ntfs_prepare_pages_for_non_resident_write() has been called before | ||
1647 | * the data was copied (for non-resident attributes only) and it returned | ||
1648 | * success. | ||
1649 | * | ||
1650 | * Need to set uptodate and mark dirty all buffers within the boundary of the | ||
1651 | * write. If all buffers in a page are uptodate we set the page uptodate, too. | ||
1652 | * | ||
1653 | * Setting the buffers dirty ensures that they get written out later when | ||
1654 | * ntfs_writepage() is invoked by the VM. | ||
1655 | * | ||
1656 | * Finally, we need to update i_size and initialized_size as appropriate both | ||
1657 | * in the inode and the mft record. | ||
1658 | * | ||
1659 | * This is modelled after fs/buffer.c::generic_commit_write(), which marks | ||
1660 | * buffers uptodate and dirty, sets the page uptodate if all buffers in the | ||
1661 | * page are uptodate, and updates i_size if the end of io is beyond i_size. In | ||
1662 | * that case, it also marks the inode dirty. | ||
1663 | * | ||
1664 | * If things have gone as outlined in | ||
1665 | * ntfs_prepare_pages_for_non_resident_write(), we do not need to do any page | ||
1666 | * content modifications here for non-resident attributes. For resident | ||
1667 | * attributes we need to do the uptodate bringing here which we combine with | ||
1668 | * the copying into the mft record which means we save one atomic kmap. | ||
1669 | * | ||
1670 | * Return 0 on success or -errno on error. | ||
1671 | */ | ||
1672 | static int ntfs_commit_pages_after_write(struct page **pages, | ||
1673 | const unsigned nr_pages, s64 pos, size_t bytes) | ||
1674 | { | ||
1675 | s64 end, initialized_size; | ||
1676 | loff_t i_size; | ||
1677 | struct inode *vi; | ||
1678 | ntfs_inode *ni, *base_ni; | ||
1679 | struct page *page; | ||
1680 | ntfs_attr_search_ctx *ctx; | ||
1681 | MFT_RECORD *m; | ||
1682 | ATTR_RECORD *a; | ||
1683 | char *kattr, *kaddr; | ||
1684 | unsigned long flags; | ||
1685 | u32 attr_len; | ||
1686 | int err; | ||
1687 | |||
1688 | BUG_ON(!nr_pages); | ||
1689 | BUG_ON(!pages); | ||
1690 | page = pages[0]; | ||
1691 | BUG_ON(!page); | ||
1692 | vi = page->mapping->host; | ||
1693 | ni = NTFS_I(vi); | ||
1694 | ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page " | ||
1695 | "index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%x.", | ||
1696 | vi->i_ino, ni->type, page->index, nr_pages, | ||
1697 | (long long)pos, bytes); | ||
1698 | if (NInoNonResident(ni)) | ||
1699 | return ntfs_commit_pages_after_non_resident_write(pages, | ||
1700 | nr_pages, pos, bytes); | ||
1701 | BUG_ON(nr_pages > 1); | ||
1702 | /* | ||
1703 | * Attribute is resident, implying it is not compressed, encrypted, or | ||
1704 | * sparse. | ||
1705 | */ | ||
1706 | if (!NInoAttr(ni)) | ||
1707 | base_ni = ni; | ||
1708 | else | ||
1709 | base_ni = ni->ext.base_ntfs_ino; | ||
1710 | BUG_ON(NInoNonResident(ni)); | ||
1711 | /* Map, pin, and lock the mft record. */ | ||
1712 | m = map_mft_record(base_ni); | ||
1713 | if (IS_ERR(m)) { | ||
1714 | err = PTR_ERR(m); | ||
1715 | m = NULL; | ||
1716 | ctx = NULL; | ||
1717 | goto err_out; | ||
1718 | } | ||
1719 | ctx = ntfs_attr_get_search_ctx(base_ni, m); | ||
1720 | if (unlikely(!ctx)) { | ||
1721 | err = -ENOMEM; | ||
1722 | goto err_out; | ||
1723 | } | ||
1724 | err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, | ||
1725 | CASE_SENSITIVE, 0, NULL, 0, ctx); | ||
1726 | if (unlikely(err)) { | ||
1727 | if (err == -ENOENT) | ||
1728 | err = -EIO; | ||
1729 | goto err_out; | ||
1730 | } | ||
1731 | a = ctx->attr; | ||
1732 | BUG_ON(a->non_resident); | ||
1733 | /* The total length of the attribute value. */ | ||
1734 | attr_len = le32_to_cpu(a->data.resident.value_length); | ||
1735 | i_size = i_size_read(vi); | ||
1736 | BUG_ON(attr_len != i_size); | ||
1737 | BUG_ON(pos > attr_len); | ||
1738 | end = pos + bytes; | ||
1739 | BUG_ON(end > le32_to_cpu(a->length) - | ||
1740 | le16_to_cpu(a->data.resident.value_offset)); | ||
1741 | kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset); | ||
1742 | kaddr = kmap_atomic(page, KM_USER0); | ||
1743 | /* Copy the received data from the page to the mft record. */ | ||
1744 | memcpy(kattr + pos, kaddr + pos, bytes); | ||
1745 | /* Update the attribute length if necessary. */ | ||
1746 | if (end > attr_len) { | ||
1747 | attr_len = end; | ||
1748 | a->data.resident.value_length = cpu_to_le32(attr_len); | ||
1749 | } | ||
1750 | /* | ||
1751 | * If the page is not uptodate, bring the out of bounds area(s) | ||
1752 | * uptodate by copying data from the mft record to the page. | ||
1753 | */ | ||
1754 | if (!PageUptodate(page)) { | ||
1755 | if (pos > 0) | ||
1756 | memcpy(kaddr, kattr, pos); | ||
1757 | if (end < attr_len) | ||
1758 | memcpy(kaddr + end, kattr + end, attr_len - end); | ||
1759 | /* Zero the region outside the end of the attribute value. */ | ||
1760 | memset(kaddr + attr_len, 0, PAGE_CACHE_SIZE - attr_len); | ||
1761 | flush_dcache_page(page); | ||
1762 | SetPageUptodate(page); | ||
1763 | } | ||
1764 | kunmap_atomic(kaddr, KM_USER0); | ||
1765 | /* Update initialized_size/i_size if necessary. */ | ||
1766 | read_lock_irqsave(&ni->size_lock, flags); | ||
1767 | initialized_size = ni->initialized_size; | ||
1768 | BUG_ON(end > ni->allocated_size); | ||
1769 | read_unlock_irqrestore(&ni->size_lock, flags); | ||
1770 | BUG_ON(initialized_size != i_size); | ||
1771 | if (end > initialized_size) { | ||
1772 | unsigned long flags; | ||
1773 | |||
1774 | write_lock_irqsave(&ni->size_lock, flags); | ||
1775 | ni->initialized_size = end; | ||
1776 | i_size_write(vi, end); | ||
1777 | write_unlock_irqrestore(&ni->size_lock, flags); | ||
1778 | } | ||
1779 | /* Mark the mft record dirty, so it gets written back. */ | ||
1780 | flush_dcache_mft_record_page(ctx->ntfs_ino); | ||
1781 | mark_mft_record_dirty(ctx->ntfs_ino); | ||
1782 | ntfs_attr_put_search_ctx(ctx); | ||
1783 | unmap_mft_record(base_ni); | ||
1784 | ntfs_debug("Done."); | ||
1785 | return 0; | ||
1786 | err_out: | ||
1787 | if (err == -ENOMEM) { | ||
1788 | ntfs_warning(vi->i_sb, "Error allocating memory required to " | ||
1789 | "commit the write."); | ||
1790 | if (PageUptodate(page)) { | ||
1791 | ntfs_warning(vi->i_sb, "Page is uptodate, setting " | ||
1792 | "dirty so the write will be retried " | ||
1793 | "later on by the VM."); | ||
1794 | /* | ||
1795 | * Put the page on mapping->dirty_pages, but leave its | ||
1796 | * buffers' dirty state as-is. | ||
1797 | */ | ||
1798 | __set_page_dirty_nobuffers(page); | ||
1799 | err = 0; | ||
1800 | } else | ||
1801 | ntfs_error(vi->i_sb, "Page is not uptodate. Written " | ||
1802 | "data has been lost."); | ||
1803 | } else { | ||
1804 | ntfs_error(vi->i_sb, "Resident attribute commit write failed " | ||
1805 | "with error %i.", err); | ||
1806 | NVolSetErrors(ni->vol); | ||
1807 | make_bad_inode(VFS_I(base_ni)); | ||
1808 | make_bad_inode(vi); | ||
1809 | } | ||
1810 | if (ctx) | ||
1811 | ntfs_attr_put_search_ctx(ctx); | ||
1812 | if (m) | ||
1813 | unmap_mft_record(base_ni); | ||
1814 | return err; | ||
1815 | } | ||
1816 | |||
1817 | /** | ||
1818 | * ntfs_file_buffered_write - | ||
1819 | * | ||
1820 | * Locking: The vfs is holding ->i_sem on the inode. | ||
1821 | */ | ||
1822 | static ssize_t ntfs_file_buffered_write(struct kiocb *iocb, | ||
1823 | const struct iovec *iov, unsigned long nr_segs, | ||
1824 | loff_t pos, loff_t *ppos, size_t count) | ||
1825 | { | ||
1826 | struct file *file = iocb->ki_filp; | ||
1827 | struct address_space *mapping = file->f_mapping; | ||
1828 | struct inode *vi = mapping->host; | ||
1829 | ntfs_inode *ni = NTFS_I(vi); | ||
1830 | ntfs_volume *vol = ni->vol; | ||
1831 | struct page *pages[NTFS_MAX_PAGES_PER_CLUSTER]; | ||
1832 | struct page *cached_page = NULL; | ||
1833 | char __user *buf = NULL; | ||
1834 | s64 end, ll; | ||
1835 | VCN last_vcn; | ||
1836 | LCN lcn; | ||
1837 | unsigned long flags; | ||
1838 | size_t bytes, iov_ofs; | ||
1839 | ssize_t status, written; | ||
1840 | unsigned nr_pages; | ||
1841 | int err; | ||
1842 | struct pagevec lru_pvec; | ||
1843 | |||
1844 | ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, " | ||
1845 | "pos 0x%llx, count 0x%lx.", | ||
1846 | vi->i_ino, (unsigned)le32_to_cpu(ni->type), | ||
1847 | (unsigned long long)pos, (unsigned long)count); | ||
1848 | if (unlikely(!count)) | ||
1849 | return 0; | ||
1850 | BUG_ON(NInoMstProtected(ni)); | ||
1851 | /* | ||
1852 | * If the attribute is not an index root and it is encrypted or | ||
1853 | * compressed, we cannot write to it yet. Note we need to check for | ||
1854 | * AT_INDEX_ALLOCATION since this is the type of both directory and | ||
1855 | * index inodes. | ||
1856 | */ | ||
1857 | if (ni->type != AT_INDEX_ALLOCATION) { | ||
1858 | /* If file is encrypted, deny access, just like NT4. */ | ||
1859 | if (NInoEncrypted(ni)) { | ||
1860 | ntfs_debug("Denying write access to encrypted file."); | ||
1861 | return -EACCES; | ||
1862 | } | ||
1863 | if (NInoCompressed(ni)) { | ||
1864 | ntfs_error(vi->i_sb, "Writing to compressed files is " | ||
1865 | "not implemented yet. Sorry."); | ||
1866 | return -EOPNOTSUPP; | ||
1867 | } | ||
1868 | } | ||
1869 | /* | ||
1870 | * If a previous ntfs_truncate() failed, repeat it and abort if it | ||
1871 | * fails again. | ||
1872 | */ | ||
1873 | if (unlikely(NInoTruncateFailed(ni))) { | ||
1874 | down_write(&vi->i_alloc_sem); | ||
1875 | err = ntfs_truncate(vi); | ||
1876 | up_write(&vi->i_alloc_sem); | ||
1877 | if (err || NInoTruncateFailed(ni)) { | ||
1878 | if (!err) | ||
1879 | err = -EIO; | ||
1880 | ntfs_error(vol->sb, "Cannot perform write to inode " | ||
1881 | "0x%lx, attribute type 0x%x, because " | ||
1882 | "ntfs_truncate() failed (error code " | ||
1883 | "%i).", vi->i_ino, | ||
1884 | (unsigned)le32_to_cpu(ni->type), err); | ||
1885 | return err; | ||
1886 | } | ||
1887 | } | ||
1888 | /* The first byte after the write. */ | ||
1889 | end = pos + count; | ||
1890 | /* | ||
1891 | * If the write goes beyond the allocated size, extend the allocation | ||
1892 | * to cover the whole of the write, rounded up to the nearest cluster. | ||
1893 | */ | ||
1894 | read_lock_irqsave(&ni->size_lock, flags); | ||
1895 | ll = ni->allocated_size; | ||
1896 | read_unlock_irqrestore(&ni->size_lock, flags); | ||
1897 | if (end > ll) { | ||
1898 | /* Extend the allocation without changing the data size. */ | ||
1899 | ll = ntfs_attr_extend_allocation(ni, end, -1, pos); | ||
1900 | if (likely(ll >= 0)) { | ||
1901 | BUG_ON(pos >= ll); | ||
1902 | /* If the extension was partial truncate the write. */ | ||
1903 | if (end > ll) { | ||
1904 | ntfs_debug("Truncating write to inode 0x%lx, " | ||
1905 | "attribute type 0x%x, because " | ||
1906 | "the allocation was only " | ||
1907 | "partially extended.", | ||
1908 | vi->i_ino, (unsigned) | ||
1909 | le32_to_cpu(ni->type)); | ||
1910 | end = ll; | ||
1911 | count = ll - pos; | ||
1912 | } | ||
1913 | } else { | ||
1914 | err = ll; | ||
1915 | read_lock_irqsave(&ni->size_lock, flags); | ||
1916 | ll = ni->allocated_size; | ||
1917 | read_unlock_irqrestore(&ni->size_lock, flags); | ||
1918 | /* Perform a partial write if possible or fail. */ | ||
1919 | if (pos < ll) { | ||
1920 | ntfs_debug("Truncating write to inode 0x%lx, " | ||
1921 | "attribute type 0x%x, because " | ||
1922 | "extending the allocation " | ||
1923 | "failed (error code %i).", | ||
1924 | vi->i_ino, (unsigned) | ||
1925 | le32_to_cpu(ni->type), err); | ||
1926 | end = ll; | ||
1927 | count = ll - pos; | ||
1928 | } else { | ||
1929 | ntfs_error(vol->sb, "Cannot perform write to " | ||
1930 | "inode 0x%lx, attribute type " | ||
1931 | "0x%x, because extending the " | ||
1932 | "allocation failed (error " | ||
1933 | "code %i).", vi->i_ino, | ||
1934 | (unsigned) | ||
1935 | le32_to_cpu(ni->type), err); | ||
1936 | return err; | ||
1937 | } | ||
1938 | } | ||
1939 | } | ||
1940 | pagevec_init(&lru_pvec, 0); | ||
1941 | written = 0; | ||
1942 | /* | ||
1943 | * If the write starts beyond the initialized size, extend it up to the | ||
1944 | * beginning of the write and initialize all non-sparse space between | ||
1945 | * the old initialized size and the new one. This automatically also | ||
1946 | * increments the vfs inode->i_size to keep it above or equal to the | ||
1947 | * initialized_size. | ||
1948 | */ | ||
1949 | read_lock_irqsave(&ni->size_lock, flags); | ||
1950 | ll = ni->initialized_size; | ||
1951 | read_unlock_irqrestore(&ni->size_lock, flags); | ||
1952 | if (pos > ll) { | ||
1953 | err = ntfs_attr_extend_initialized(ni, pos, &cached_page, | ||
1954 | &lru_pvec); | ||
1955 | if (err < 0) { | ||
1956 | ntfs_error(vol->sb, "Cannot perform write to inode " | ||
1957 | "0x%lx, attribute type 0x%x, because " | ||
1958 | "extending the initialized size " | ||
1959 | "failed (error code %i).", vi->i_ino, | ||
1960 | (unsigned)le32_to_cpu(ni->type), err); | ||
1961 | status = err; | ||
1962 | goto err_out; | ||
1963 | } | ||
1964 | } | ||
1965 | /* | ||
1966 | * Determine the number of pages per cluster for non-resident | ||
1967 | * attributes. | ||
1968 | */ | ||
1969 | nr_pages = 1; | ||
1970 | if (vol->cluster_size > PAGE_CACHE_SIZE && NInoNonResident(ni)) | ||
1971 | nr_pages = vol->cluster_size >> PAGE_CACHE_SHIFT; | ||
1972 | /* Finally, perform the actual write. */ | ||
1973 | last_vcn = -1; | ||
1974 | if (likely(nr_segs == 1)) | ||
1975 | buf = iov->iov_base; | ||
1976 | else | ||
1977 | iov_ofs = 0; /* Offset in the current iovec. */ | ||
1978 | do { | ||
1979 | VCN vcn; | ||
1980 | pgoff_t idx, start_idx; | ||
1981 | unsigned ofs, do_pages, u; | ||
1982 | size_t copied; | ||
1983 | |||
1984 | start_idx = idx = pos >> PAGE_CACHE_SHIFT; | ||
1985 | ofs = pos & ~PAGE_CACHE_MASK; | ||
1986 | bytes = PAGE_CACHE_SIZE - ofs; | ||
1987 | do_pages = 1; | ||
1988 | if (nr_pages > 1) { | ||
1989 | vcn = pos >> vol->cluster_size_bits; | ||
1990 | if (vcn != last_vcn) { | ||
1991 | last_vcn = vcn; | ||
1992 | /* | ||
1993 | * Get the lcn of the vcn the write is in. If | ||
1994 | * it is a hole, need to lock down all pages in | ||
1995 | * the cluster. | ||
1996 | */ | ||
1997 | down_read(&ni->runlist.lock); | ||
1998 | lcn = ntfs_attr_vcn_to_lcn_nolock(ni, pos >> | ||
1999 | vol->cluster_size_bits, FALSE); | ||
2000 | up_read(&ni->runlist.lock); | ||
2001 | if (unlikely(lcn < LCN_HOLE)) { | ||
2002 | status = -EIO; | ||
2003 | if (lcn == LCN_ENOMEM) | ||
2004 | status = -ENOMEM; | ||
2005 | else | ||
2006 | ntfs_error(vol->sb, "Cannot " | ||
2007 | "perform write to " | ||
2008 | "inode 0x%lx, " | ||
2009 | "attribute type 0x%x, " | ||
2010 | "because the attribute " | ||
2011 | "is corrupt.", | ||
2012 | vi->i_ino, (unsigned) | ||
2013 | le32_to_cpu(ni->type)); | ||
2014 | break; | ||
2015 | } | ||
2016 | if (lcn == LCN_HOLE) { | ||
2017 | start_idx = (pos & ~(s64) | ||
2018 | vol->cluster_size_mask) | ||
2019 | >> PAGE_CACHE_SHIFT; | ||
2020 | bytes = vol->cluster_size - (pos & | ||
2021 | vol->cluster_size_mask); | ||
2022 | do_pages = nr_pages; | ||
2023 | } | ||
2024 | } | ||
2025 | } | ||
2026 | if (bytes > count) | ||
2027 | bytes = count; | ||
2028 | /* | ||
2029 | * Bring in the user page(s) that we will copy from _first_. | ||
2030 | * Otherwise there is a nasty deadlock on copying from the same | ||
2031 | * page(s) as we are writing to, without it/them being marked | ||
2032 | * up-to-date. Note, at present there is nothing to stop the | ||
2033 | * pages being swapped out between us bringing them into memory | ||
2034 | * and doing the actual copying. | ||
2035 | */ | ||
2036 | if (likely(nr_segs == 1)) | ||
2037 | ntfs_fault_in_pages_readable(buf, bytes); | ||
2038 | else | ||
2039 | ntfs_fault_in_pages_readable_iovec(iov, iov_ofs, bytes); | ||
2040 | /* Get and lock @do_pages starting at index @start_idx. */ | ||
2041 | status = __ntfs_grab_cache_pages(mapping, start_idx, do_pages, | ||
2042 | pages, &cached_page, &lru_pvec); | ||
2043 | if (unlikely(status)) | ||
2044 | break; | ||
2045 | /* | ||
2046 | * For non-resident attributes, we need to fill any holes with | ||
2047 | * actual clusters and ensure all bufferes are mapped. We also | ||
2048 | * need to bring uptodate any buffers that are only partially | ||
2049 | * being written to. | ||
2050 | */ | ||
2051 | if (NInoNonResident(ni)) { | ||
2052 | status = ntfs_prepare_pages_for_non_resident_write( | ||
2053 | pages, do_pages, pos, bytes); | ||
2054 | if (unlikely(status)) { | ||
2055 | loff_t i_size; | ||
2056 | |||
2057 | do { | ||
2058 | unlock_page(pages[--do_pages]); | ||
2059 | page_cache_release(pages[do_pages]); | ||
2060 | } while (do_pages); | ||
2061 | /* | ||
2062 | * The write preparation may have instantiated | ||
2063 | * allocated space outside i_size. Trim this | ||
2064 | * off again. We can ignore any errors in this | ||
2065 | * case as we will just be waisting a bit of | ||
2066 | * allocated space, which is not a disaster. | ||
2067 | */ | ||
2068 | i_size = i_size_read(vi); | ||
2069 | if (pos + bytes > i_size) | ||
2070 | vmtruncate(vi, i_size); | ||
2071 | break; | ||
2072 | } | ||
2073 | } | ||
2074 | u = (pos >> PAGE_CACHE_SHIFT) - pages[0]->index; | ||
2075 | if (likely(nr_segs == 1)) { | ||
2076 | copied = ntfs_copy_from_user(pages + u, do_pages - u, | ||
2077 | ofs, buf, bytes); | ||
2078 | buf += copied; | ||
2079 | } else | ||
2080 | copied = ntfs_copy_from_user_iovec(pages + u, | ||
2081 | do_pages - u, ofs, &iov, &iov_ofs, | ||
2082 | bytes); | ||
2083 | ntfs_flush_dcache_pages(pages + u, do_pages - u); | ||
2084 | status = ntfs_commit_pages_after_write(pages, do_pages, pos, | ||
2085 | bytes); | ||
2086 | if (likely(!status)) { | ||
2087 | written += copied; | ||
2088 | count -= copied; | ||
2089 | pos += copied; | ||
2090 | if (unlikely(copied != bytes)) | ||
2091 | status = -EFAULT; | ||
2092 | } | ||
2093 | do { | ||
2094 | unlock_page(pages[--do_pages]); | ||
2095 | mark_page_accessed(pages[do_pages]); | ||
2096 | page_cache_release(pages[do_pages]); | ||
2097 | } while (do_pages); | ||
2098 | if (unlikely(status)) | ||
2099 | break; | ||
2100 | balance_dirty_pages_ratelimited(mapping); | ||
2101 | cond_resched(); | ||
2102 | } while (count); | ||
2103 | err_out: | ||
2104 | *ppos = pos; | ||
2105 | if (cached_page) | ||
2106 | page_cache_release(cached_page); | ||
2107 | /* For now, when the user asks for O_SYNC, we actually give O_DSYNC. */ | ||
2108 | if (likely(!status)) { | ||
2109 | if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(vi))) { | ||
2110 | if (!mapping->a_ops->writepage || !is_sync_kiocb(iocb)) | ||
2111 | status = generic_osync_inode(vi, mapping, | ||
2112 | OSYNC_METADATA|OSYNC_DATA); | ||
2113 | } | ||
2114 | } | ||
2115 | pagevec_lru_add(&lru_pvec); | ||
2116 | ntfs_debug("Done. Returning %s (written 0x%lx, status %li).", | ||
2117 | written ? "written" : "status", (unsigned long)written, | ||
2118 | (long)status); | ||
2119 | return written ? written : status; | ||
2120 | } | ||
2121 | |||
2122 | /** | ||
2123 | * ntfs_file_aio_write_nolock - | ||
2124 | */ | ||
2125 | static ssize_t ntfs_file_aio_write_nolock(struct kiocb *iocb, | ||
2126 | const struct iovec *iov, unsigned long nr_segs, loff_t *ppos) | ||
2127 | { | ||
2128 | struct file *file = iocb->ki_filp; | ||
2129 | struct address_space *mapping = file->f_mapping; | ||
2130 | struct inode *inode = mapping->host; | ||
2131 | loff_t pos; | ||
2132 | unsigned long seg; | ||
2133 | size_t count; /* after file limit checks */ | ||
2134 | ssize_t written, err; | ||
2135 | |||
2136 | count = 0; | ||
2137 | for (seg = 0; seg < nr_segs; seg++) { | ||
2138 | const struct iovec *iv = &iov[seg]; | ||
2139 | /* | ||
2140 | * If any segment has a negative length, or the cumulative | ||
2141 | * length ever wraps negative then return -EINVAL. | ||
2142 | */ | ||
2143 | count += iv->iov_len; | ||
2144 | if (unlikely((ssize_t)(count|iv->iov_len) < 0)) | ||
2145 | return -EINVAL; | ||
2146 | if (access_ok(VERIFY_READ, iv->iov_base, iv->iov_len)) | ||
2147 | continue; | ||
2148 | if (!seg) | ||
2149 | return -EFAULT; | ||
2150 | nr_segs = seg; | ||
2151 | count -= iv->iov_len; /* This segment is no good */ | ||
2152 | break; | ||
2153 | } | ||
2154 | pos = *ppos; | ||
2155 | vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE); | ||
2156 | /* We can write back this queue in page reclaim. */ | ||
2157 | current->backing_dev_info = mapping->backing_dev_info; | ||
2158 | written = 0; | ||
2159 | err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode)); | ||
2160 | if (err) | ||
2161 | goto out; | ||
2162 | if (!count) | ||
2163 | goto out; | ||
2164 | err = remove_suid(file->f_dentry); | ||
2165 | if (err) | ||
2166 | goto out; | ||
2167 | inode_update_time(inode, 1); | ||
2168 | written = ntfs_file_buffered_write(iocb, iov, nr_segs, pos, ppos, | ||
2169 | count); | ||
2170 | out: | ||
2171 | current->backing_dev_info = NULL; | ||
2172 | return written ? written : err; | ||
2173 | } | ||
2174 | |||
2175 | /** | ||
2176 | * ntfs_file_aio_write - | ||
2177 | */ | ||
2178 | static ssize_t ntfs_file_aio_write(struct kiocb *iocb, const char __user *buf, | ||
2179 | size_t count, loff_t pos) | ||
2180 | { | ||
2181 | struct file *file = iocb->ki_filp; | ||
2182 | struct address_space *mapping = file->f_mapping; | ||
2183 | struct inode *inode = mapping->host; | ||
2184 | ssize_t ret; | ||
2185 | struct iovec local_iov = { .iov_base = (void __user *)buf, | ||
2186 | .iov_len = count }; | ||
2187 | |||
2188 | BUG_ON(iocb->ki_pos != pos); | ||
2189 | |||
2190 | down(&inode->i_sem); | ||
2191 | ret = ntfs_file_aio_write_nolock(iocb, &local_iov, 1, &iocb->ki_pos); | ||
2192 | up(&inode->i_sem); | ||
2193 | if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { | ||
2194 | int err = sync_page_range(inode, mapping, pos, ret); | ||
2195 | if (err < 0) | ||
2196 | ret = err; | ||
2197 | } | ||
2198 | return ret; | ||
2199 | } | ||
2200 | |||
2201 | /** | ||
2202 | * ntfs_file_writev - | ||
2203 | * | ||
2204 | * Basically the same as generic_file_writev() except that it ends up calling | ||
2205 | * ntfs_file_aio_write_nolock() instead of __generic_file_aio_write_nolock(). | ||
2206 | */ | ||
2207 | static ssize_t ntfs_file_writev(struct file *file, const struct iovec *iov, | ||
2208 | unsigned long nr_segs, loff_t *ppos) | ||
2209 | { | ||
2210 | struct address_space *mapping = file->f_mapping; | ||
2211 | struct inode *inode = mapping->host; | ||
2212 | struct kiocb kiocb; | ||
2213 | ssize_t ret; | ||
2214 | |||
2215 | down(&inode->i_sem); | ||
2216 | init_sync_kiocb(&kiocb, file); | ||
2217 | ret = ntfs_file_aio_write_nolock(&kiocb, iov, nr_segs, ppos); | ||
2218 | if (ret == -EIOCBQUEUED) | ||
2219 | ret = wait_on_sync_kiocb(&kiocb); | ||
2220 | up(&inode->i_sem); | ||
2221 | if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { | ||
2222 | int err = sync_page_range(inode, mapping, *ppos - ret, ret); | ||
2223 | if (err < 0) | ||
2224 | ret = err; | ||
2225 | } | ||
2226 | return ret; | ||
2227 | } | ||
2228 | |||
2229 | /** | ||
2230 | * ntfs_file_write - simple wrapper for ntfs_file_writev() | ||
2231 | */ | ||
2232 | static ssize_t ntfs_file_write(struct file *file, const char __user *buf, | ||
2233 | size_t count, loff_t *ppos) | ||
2234 | { | ||
2235 | struct iovec local_iov = { .iov_base = (void __user *)buf, | ||
2236 | .iov_len = count }; | ||
2237 | |||
2238 | return ntfs_file_writev(file, &local_iov, 1, ppos); | ||
2239 | } | ||
2240 | |||
2241 | /** | ||
59 | * ntfs_file_fsync - sync a file to disk | 2242 | * ntfs_file_fsync - sync a file to disk |
60 | * @filp: file to be synced | 2243 | * @filp: file to be synced |
61 | * @dentry: dentry describing the file to sync | 2244 | * @dentry: dentry describing the file to sync |
@@ -113,39 +2296,39 @@ static int ntfs_file_fsync(struct file *filp, struct dentry *dentry, | |||
113 | #endif /* NTFS_RW */ | 2296 | #endif /* NTFS_RW */ |
114 | 2297 | ||
115 | struct file_operations ntfs_file_ops = { | 2298 | struct file_operations ntfs_file_ops = { |
116 | .llseek = generic_file_llseek, /* Seek inside file. */ | 2299 | .llseek = generic_file_llseek, /* Seek inside file. */ |
117 | .read = generic_file_read, /* Read from file. */ | 2300 | .read = generic_file_read, /* Read from file. */ |
118 | .aio_read = generic_file_aio_read, /* Async read from file. */ | 2301 | .aio_read = generic_file_aio_read, /* Async read from file. */ |
119 | .readv = generic_file_readv, /* Read from file. */ | 2302 | .readv = generic_file_readv, /* Read from file. */ |
120 | #ifdef NTFS_RW | 2303 | #ifdef NTFS_RW |
121 | .write = generic_file_write, /* Write to file. */ | 2304 | .write = ntfs_file_write, /* Write to file. */ |
122 | .aio_write = generic_file_aio_write, /* Async write to file. */ | 2305 | .aio_write = ntfs_file_aio_write, /* Async write to file. */ |
123 | .writev = generic_file_writev, /* Write to file. */ | 2306 | .writev = ntfs_file_writev, /* Write to file. */ |
124 | /*.release = ,*/ /* Last file is closed. See | 2307 | /*.release = ,*/ /* Last file is closed. See |
125 | fs/ext2/file.c:: | 2308 | fs/ext2/file.c:: |
126 | ext2_release_file() for | 2309 | ext2_release_file() for |
127 | how to use this to discard | 2310 | how to use this to discard |
128 | preallocated space for | 2311 | preallocated space for |
129 | write opened files. */ | 2312 | write opened files. */ |
130 | .fsync = ntfs_file_fsync, /* Sync a file to disk. */ | 2313 | .fsync = ntfs_file_fsync, /* Sync a file to disk. */ |
131 | /*.aio_fsync = ,*/ /* Sync all outstanding async | 2314 | /*.aio_fsync = ,*/ /* Sync all outstanding async |
132 | i/o operations on a | 2315 | i/o operations on a |
133 | kiocb. */ | 2316 | kiocb. */ |
134 | #endif /* NTFS_RW */ | 2317 | #endif /* NTFS_RW */ |
135 | /*.ioctl = ,*/ /* Perform function on the | 2318 | /*.ioctl = ,*/ /* Perform function on the |
136 | mounted filesystem. */ | 2319 | mounted filesystem. */ |
137 | .mmap = generic_file_mmap, /* Mmap file. */ | 2320 | .mmap = generic_file_mmap, /* Mmap file. */ |
138 | .open = ntfs_file_open, /* Open file. */ | 2321 | .open = ntfs_file_open, /* Open file. */ |
139 | .sendfile = generic_file_sendfile, /* Zero-copy data send with | 2322 | .sendfile = generic_file_sendfile, /* Zero-copy data send with |
140 | the data source being on | 2323 | the data source being on |
141 | the ntfs partition. We | 2324 | the ntfs partition. We do |
142 | do not need to care about | 2325 | not need to care about the |
143 | the data destination. */ | 2326 | data destination. */ |
144 | /*.sendpage = ,*/ /* Zero-copy data send with | 2327 | /*.sendpage = ,*/ /* Zero-copy data send with |
145 | the data destination being | 2328 | the data destination being |
146 | on the ntfs partition. We | 2329 | on the ntfs partition. We |
147 | do not need to care about | 2330 | do not need to care about |
148 | the data source. */ | 2331 | the data source. */ |
149 | }; | 2332 | }; |
150 | 2333 | ||
151 | struct inode_operations ntfs_file_inode_ops = { | 2334 | struct inode_operations ntfs_file_inode_ops = { |