aboutsummaryrefslogtreecommitdiffstats
path: root/fs/ntfs/aops.c
diff options
context:
space:
mode:
Diffstat (limited to 'fs/ntfs/aops.c')
-rw-r--r--fs/ntfs/aops.c2324
1 files changed, 2324 insertions, 0 deletions
diff --git a/fs/ntfs/aops.c b/fs/ntfs/aops.c
new file mode 100644
index 000000000000..45d56e41ed98
--- /dev/null
+++ b/fs/ntfs/aops.c
@@ -0,0 +1,2324 @@
1/**
2 * aops.c - NTFS kernel address space operations and page cache handling.
3 * Part of the Linux-NTFS project.
4 *
5 * Copyright (c) 2001-2004 Anton Altaparmakov
6 * Copyright (c) 2002 Richard Russon
7 *
8 * This program/include file is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as published
10 * by the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program/include file is distributed in the hope that it will be
14 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
15 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program (in the main directory of the Linux-NTFS
20 * distribution in the file COPYING); if not, write to the Free Software
21 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 */
23
24#include <linux/errno.h>
25#include <linux/mm.h>
26#include <linux/pagemap.h>
27#include <linux/swap.h>
28#include <linux/buffer_head.h>
29#include <linux/writeback.h>
30
31#include "aops.h"
32#include "attrib.h"
33#include "debug.h"
34#include "inode.h"
35#include "mft.h"
36#include "runlist.h"
37#include "types.h"
38#include "ntfs.h"
39
40/**
41 * ntfs_end_buffer_async_read - async io completion for reading attributes
42 * @bh: buffer head on which io is completed
43 * @uptodate: whether @bh is now uptodate or not
44 *
45 * Asynchronous I/O completion handler for reading pages belonging to the
46 * attribute address space of an inode. The inodes can either be files or
47 * directories or they can be fake inodes describing some attribute.
48 *
49 * If NInoMstProtected(), perform the post read mst fixups when all IO on the
50 * page has been completed and mark the page uptodate or set the error bit on
51 * the page. To determine the size of the records that need fixing up, we
52 * cheat a little bit by setting the index_block_size in ntfs_inode to the ntfs
53 * record size, and index_block_size_bits, to the log(base 2) of the ntfs
54 * record size.
55 */
56static void ntfs_end_buffer_async_read(struct buffer_head *bh, int uptodate)
57{
58 static DEFINE_SPINLOCK(page_uptodate_lock);
59 unsigned long flags;
60 struct buffer_head *tmp;
61 struct page *page;
62 ntfs_inode *ni;
63 int page_uptodate = 1;
64
65 page = bh->b_page;
66 ni = NTFS_I(page->mapping->host);
67
68 if (likely(uptodate)) {
69 s64 file_ofs;
70
71 set_buffer_uptodate(bh);
72
73 file_ofs = ((s64)page->index << PAGE_CACHE_SHIFT) +
74 bh_offset(bh);
75 /* Check for the current buffer head overflowing. */
76 if (file_ofs + bh->b_size > ni->initialized_size) {
77 char *addr;
78 int ofs = 0;
79
80 if (file_ofs < ni->initialized_size)
81 ofs = ni->initialized_size - file_ofs;
82 addr = kmap_atomic(page, KM_BIO_SRC_IRQ);
83 memset(addr + bh_offset(bh) + ofs, 0, bh->b_size - ofs);
84 flush_dcache_page(page);
85 kunmap_atomic(addr, KM_BIO_SRC_IRQ);
86 }
87 } else {
88 clear_buffer_uptodate(bh);
89 ntfs_error(ni->vol->sb, "Buffer I/O error, logical block %llu.",
90 (unsigned long long)bh->b_blocknr);
91 SetPageError(page);
92 }
93 spin_lock_irqsave(&page_uptodate_lock, flags);
94 clear_buffer_async_read(bh);
95 unlock_buffer(bh);
96 tmp = bh;
97 do {
98 if (!buffer_uptodate(tmp))
99 page_uptodate = 0;
100 if (buffer_async_read(tmp)) {
101 if (likely(buffer_locked(tmp)))
102 goto still_busy;
103 /* Async buffers must be locked. */
104 BUG();
105 }
106 tmp = tmp->b_this_page;
107 } while (tmp != bh);
108 spin_unlock_irqrestore(&page_uptodate_lock, flags);
109 /*
110 * If none of the buffers had errors then we can set the page uptodate,
111 * but we first have to perform the post read mst fixups, if the
112 * attribute is mst protected, i.e. if NInoMstProteced(ni) is true.
113 * Note we ignore fixup errors as those are detected when
114 * map_mft_record() is called which gives us per record granularity
115 * rather than per page granularity.
116 */
117 if (!NInoMstProtected(ni)) {
118 if (likely(page_uptodate && !PageError(page)))
119 SetPageUptodate(page);
120 } else {
121 char *addr;
122 unsigned int i, recs;
123 u32 rec_size;
124
125 rec_size = ni->itype.index.block_size;
126 recs = PAGE_CACHE_SIZE / rec_size;
127 /* Should have been verified before we got here... */
128 BUG_ON(!recs);
129 addr = kmap_atomic(page, KM_BIO_SRC_IRQ);
130 for (i = 0; i < recs; i++)
131 post_read_mst_fixup((NTFS_RECORD*)(addr +
132 i * rec_size), rec_size);
133 flush_dcache_page(page);
134 kunmap_atomic(addr, KM_BIO_SRC_IRQ);
135 if (likely(!PageError(page) && page_uptodate))
136 SetPageUptodate(page);
137 }
138 unlock_page(page);
139 return;
140still_busy:
141 spin_unlock_irqrestore(&page_uptodate_lock, flags);
142 return;
143}
144
145/**
146 * ntfs_read_block - fill a @page of an address space with data
147 * @page: page cache page to fill with data
148 *
149 * Fill the page @page of the address space belonging to the @page->host inode.
150 * We read each buffer asynchronously and when all buffers are read in, our io
151 * completion handler ntfs_end_buffer_read_async(), if required, automatically
152 * applies the mst fixups to the page before finally marking it uptodate and
153 * unlocking it.
154 *
155 * We only enforce allocated_size limit because i_size is checked for in
156 * generic_file_read().
157 *
158 * Return 0 on success and -errno on error.
159 *
160 * Contains an adapted version of fs/buffer.c::block_read_full_page().
161 */
162static int ntfs_read_block(struct page *page)
163{
164 VCN vcn;
165 LCN lcn;
166 ntfs_inode *ni;
167 ntfs_volume *vol;
168 runlist_element *rl;
169 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
170 sector_t iblock, lblock, zblock;
171 unsigned int blocksize, vcn_ofs;
172 int i, nr;
173 unsigned char blocksize_bits;
174
175 ni = NTFS_I(page->mapping->host);
176 vol = ni->vol;
177
178 /* $MFT/$DATA must have its complete runlist in memory at all times. */
179 BUG_ON(!ni->runlist.rl && !ni->mft_no && !NInoAttr(ni));
180
181 blocksize_bits = VFS_I(ni)->i_blkbits;
182 blocksize = 1 << blocksize_bits;
183
184 if (!page_has_buffers(page))
185 create_empty_buffers(page, blocksize, 0);
186 bh = head = page_buffers(page);
187 if (unlikely(!bh)) {
188 unlock_page(page);
189 return -ENOMEM;
190 }
191
192 iblock = (s64)page->index << (PAGE_CACHE_SHIFT - blocksize_bits);
193 lblock = (ni->allocated_size + blocksize - 1) >> blocksize_bits;
194 zblock = (ni->initialized_size + blocksize - 1) >> blocksize_bits;
195
196 /* Loop through all the buffers in the page. */
197 rl = NULL;
198 nr = i = 0;
199 do {
200 u8 *kaddr;
201
202 if (unlikely(buffer_uptodate(bh)))
203 continue;
204 if (unlikely(buffer_mapped(bh))) {
205 arr[nr++] = bh;
206 continue;
207 }
208 bh->b_bdev = vol->sb->s_bdev;
209 /* Is the block within the allowed limits? */
210 if (iblock < lblock) {
211 BOOL is_retry = FALSE;
212
213 /* Convert iblock into corresponding vcn and offset. */
214 vcn = (VCN)iblock << blocksize_bits >>
215 vol->cluster_size_bits;
216 vcn_ofs = ((VCN)iblock << blocksize_bits) &
217 vol->cluster_size_mask;
218 if (!rl) {
219lock_retry_remap:
220 down_read(&ni->runlist.lock);
221 rl = ni->runlist.rl;
222 }
223 if (likely(rl != NULL)) {
224 /* Seek to element containing target vcn. */
225 while (rl->length && rl[1].vcn <= vcn)
226 rl++;
227 lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
228 } else
229 lcn = LCN_RL_NOT_MAPPED;
230 /* Successful remap. */
231 if (lcn >= 0) {
232 /* Setup buffer head to correct block. */
233 bh->b_blocknr = ((lcn << vol->cluster_size_bits)
234 + vcn_ofs) >> blocksize_bits;
235 set_buffer_mapped(bh);
236 /* Only read initialized data blocks. */
237 if (iblock < zblock) {
238 arr[nr++] = bh;
239 continue;
240 }
241 /* Fully non-initialized data block, zero it. */
242 goto handle_zblock;
243 }
244 /* It is a hole, need to zero it. */
245 if (lcn == LCN_HOLE)
246 goto handle_hole;
247 /* If first try and runlist unmapped, map and retry. */
248 if (!is_retry && lcn == LCN_RL_NOT_MAPPED) {
249 int err;
250 is_retry = TRUE;
251 /*
252 * Attempt to map runlist, dropping lock for
253 * the duration.
254 */
255 up_read(&ni->runlist.lock);
256 err = ntfs_map_runlist(ni, vcn);
257 if (likely(!err))
258 goto lock_retry_remap;
259 rl = NULL;
260 lcn = err;
261 }
262 /* Hard error, zero out region. */
263 bh->b_blocknr = -1;
264 SetPageError(page);
265 ntfs_error(vol->sb, "Failed to read from inode 0x%lx, "
266 "attribute type 0x%x, vcn 0x%llx, "
267 "offset 0x%x because its location on "
268 "disk could not be determined%s "
269 "(error code %lli).", ni->mft_no,
270 ni->type, (unsigned long long)vcn,
271 vcn_ofs, is_retry ? " even after "
272 "retrying" : "", (long long)lcn);
273 }
274 /*
275 * Either iblock was outside lblock limits or
276 * ntfs_rl_vcn_to_lcn() returned error. Just zero that portion
277 * of the page and set the buffer uptodate.
278 */
279handle_hole:
280 bh->b_blocknr = -1UL;
281 clear_buffer_mapped(bh);
282handle_zblock:
283 kaddr = kmap_atomic(page, KM_USER0);
284 memset(kaddr + i * blocksize, 0, blocksize);
285 flush_dcache_page(page);
286 kunmap_atomic(kaddr, KM_USER0);
287 set_buffer_uptodate(bh);
288 } while (i++, iblock++, (bh = bh->b_this_page) != head);
289
290 /* Release the lock if we took it. */
291 if (rl)
292 up_read(&ni->runlist.lock);
293
294 /* Check we have at least one buffer ready for i/o. */
295 if (nr) {
296 struct buffer_head *tbh;
297
298 /* Lock the buffers. */
299 for (i = 0; i < nr; i++) {
300 tbh = arr[i];
301 lock_buffer(tbh);
302 tbh->b_end_io = ntfs_end_buffer_async_read;
303 set_buffer_async_read(tbh);
304 }
305 /* Finally, start i/o on the buffers. */
306 for (i = 0; i < nr; i++) {
307 tbh = arr[i];
308 if (likely(!buffer_uptodate(tbh)))
309 submit_bh(READ, tbh);
310 else
311 ntfs_end_buffer_async_read(tbh, 1);
312 }
313 return 0;
314 }
315 /* No i/o was scheduled on any of the buffers. */
316 if (likely(!PageError(page)))
317 SetPageUptodate(page);
318 else /* Signal synchronous i/o error. */
319 nr = -EIO;
320 unlock_page(page);
321 return nr;
322}
323
324/**
325 * ntfs_readpage - fill a @page of a @file with data from the device
326 * @file: open file to which the page @page belongs or NULL
327 * @page: page cache page to fill with data
328 *
329 * For non-resident attributes, ntfs_readpage() fills the @page of the open
330 * file @file by calling the ntfs version of the generic block_read_full_page()
331 * function, ntfs_read_block(), which in turn creates and reads in the buffers
332 * associated with the page asynchronously.
333 *
334 * For resident attributes, OTOH, ntfs_readpage() fills @page by copying the
335 * data from the mft record (which at this stage is most likely in memory) and
336 * fills the remainder with zeroes. Thus, in this case, I/O is synchronous, as
337 * even if the mft record is not cached at this point in time, we need to wait
338 * for it to be read in before we can do the copy.
339 *
340 * Return 0 on success and -errno on error.
341 */
342static int ntfs_readpage(struct file *file, struct page *page)
343{
344 loff_t i_size;
345 ntfs_inode *ni, *base_ni;
346 u8 *kaddr;
347 ntfs_attr_search_ctx *ctx;
348 MFT_RECORD *mrec;
349 u32 attr_len;
350 int err = 0;
351
352 BUG_ON(!PageLocked(page));
353 /*
354 * This can potentially happen because we clear PageUptodate() during
355 * ntfs_writepage() of MstProtected() attributes.
356 */
357 if (PageUptodate(page)) {
358 unlock_page(page);
359 return 0;
360 }
361 ni = NTFS_I(page->mapping->host);
362
363 /* NInoNonResident() == NInoIndexAllocPresent() */
364 if (NInoNonResident(ni)) {
365 /*
366 * Only unnamed $DATA attributes can be compressed or
367 * encrypted.
368 */
369 if (ni->type == AT_DATA && !ni->name_len) {
370 /* If file is encrypted, deny access, just like NT4. */
371 if (NInoEncrypted(ni)) {
372 err = -EACCES;
373 goto err_out;
374 }
375 /* Compressed data streams are handled in compress.c. */
376 if (NInoCompressed(ni))
377 return ntfs_read_compressed_block(page);
378 }
379 /* Normal data stream. */
380 return ntfs_read_block(page);
381 }
382 /*
383 * Attribute is resident, implying it is not compressed or encrypted.
384 * This also means the attribute is smaller than an mft record and
385 * hence smaller than a page, so can simply zero out any pages with
386 * index above 0. We can also do this if the file size is 0.
387 */
388 if (unlikely(page->index > 0 || !i_size_read(VFS_I(ni)))) {
389 kaddr = kmap_atomic(page, KM_USER0);
390 memset(kaddr, 0, PAGE_CACHE_SIZE);
391 flush_dcache_page(page);
392 kunmap_atomic(kaddr, KM_USER0);
393 goto done;
394 }
395 if (!NInoAttr(ni))
396 base_ni = ni;
397 else
398 base_ni = ni->ext.base_ntfs_ino;
399 /* Map, pin, and lock the mft record. */
400 mrec = map_mft_record(base_ni);
401 if (IS_ERR(mrec)) {
402 err = PTR_ERR(mrec);
403 goto err_out;
404 }
405 ctx = ntfs_attr_get_search_ctx(base_ni, mrec);
406 if (unlikely(!ctx)) {
407 err = -ENOMEM;
408 goto unm_err_out;
409 }
410 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
411 CASE_SENSITIVE, 0, NULL, 0, ctx);
412 if (unlikely(err))
413 goto put_unm_err_out;
414 attr_len = le32_to_cpu(ctx->attr->data.resident.value_length);
415 i_size = i_size_read(VFS_I(ni));
416 if (unlikely(attr_len > i_size))
417 attr_len = i_size;
418 kaddr = kmap_atomic(page, KM_USER0);
419 /* Copy the data to the page. */
420 memcpy(kaddr, (u8*)ctx->attr +
421 le16_to_cpu(ctx->attr->data.resident.value_offset),
422 attr_len);
423 /* Zero the remainder of the page. */
424 memset(kaddr + attr_len, 0, PAGE_CACHE_SIZE - attr_len);
425 flush_dcache_page(page);
426 kunmap_atomic(kaddr, KM_USER0);
427put_unm_err_out:
428 ntfs_attr_put_search_ctx(ctx);
429unm_err_out:
430 unmap_mft_record(base_ni);
431done:
432 SetPageUptodate(page);
433err_out:
434 unlock_page(page);
435 return err;
436}
437
438#ifdef NTFS_RW
439
440/**
441 * ntfs_write_block - write a @page to the backing store
442 * @page: page cache page to write out
443 * @wbc: writeback control structure
444 *
445 * This function is for writing pages belonging to non-resident, non-mst
446 * protected attributes to their backing store.
447 *
448 * For a page with buffers, map and write the dirty buffers asynchronously
449 * under page writeback. For a page without buffers, create buffers for the
450 * page, then proceed as above.
451 *
452 * If a page doesn't have buffers the page dirty state is definitive. If a page
453 * does have buffers, the page dirty state is just a hint, and the buffer dirty
454 * state is definitive. (A hint which has rules: dirty buffers against a clean
455 * page is illegal. Other combinations are legal and need to be handled. In
456 * particular a dirty page containing clean buffers for example.)
457 *
458 * Return 0 on success and -errno on error.
459 *
460 * Based on ntfs_read_block() and __block_write_full_page().
461 */
462static int ntfs_write_block(struct page *page, struct writeback_control *wbc)
463{
464 VCN vcn;
465 LCN lcn;
466 sector_t block, dblock, iblock;
467 struct inode *vi;
468 ntfs_inode *ni;
469 ntfs_volume *vol;
470 runlist_element *rl;
471 struct buffer_head *bh, *head;
472 unsigned int blocksize, vcn_ofs;
473 int err;
474 BOOL need_end_writeback;
475 unsigned char blocksize_bits;
476
477 vi = page->mapping->host;
478 ni = NTFS_I(vi);
479 vol = ni->vol;
480
481 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
482 "0x%lx.", ni->mft_no, ni->type, page->index);
483
484 BUG_ON(!NInoNonResident(ni));
485 BUG_ON(NInoMstProtected(ni));
486
487 blocksize_bits = vi->i_blkbits;
488 blocksize = 1 << blocksize_bits;
489
490 if (!page_has_buffers(page)) {
491 BUG_ON(!PageUptodate(page));
492 create_empty_buffers(page, blocksize,
493 (1 << BH_Uptodate) | (1 << BH_Dirty));
494 }
495 bh = head = page_buffers(page);
496 if (unlikely(!bh)) {
497 ntfs_warning(vol->sb, "Error allocating page buffers. "
498 "Redirtying page so we try again later.");
499 /*
500 * Put the page back on mapping->dirty_pages, but leave its
501 * buffer's dirty state as-is.
502 */
503 redirty_page_for_writepage(wbc, page);
504 unlock_page(page);
505 return 0;
506 }
507
508 /* NOTE: Different naming scheme to ntfs_read_block()! */
509
510 /* The first block in the page. */
511 block = (s64)page->index << (PAGE_CACHE_SHIFT - blocksize_bits);
512
513 /* The first out of bounds block for the data size. */
514 dblock = (vi->i_size + blocksize - 1) >> blocksize_bits;
515
516 /* The last (fully or partially) initialized block. */
517 iblock = ni->initialized_size >> blocksize_bits;
518
519 /*
520 * Be very careful. We have no exclusion from __set_page_dirty_buffers
521 * here, and the (potentially unmapped) buffers may become dirty at
522 * any time. If a buffer becomes dirty here after we've inspected it
523 * then we just miss that fact, and the page stays dirty.
524 *
525 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
526 * handle that here by just cleaning them.
527 */
528
529 /*
530 * Loop through all the buffers in the page, mapping all the dirty
531 * buffers to disk addresses and handling any aliases from the
532 * underlying block device's mapping.
533 */
534 rl = NULL;
535 err = 0;
536 do {
537 BOOL is_retry = FALSE;
538
539 if (unlikely(block >= dblock)) {
540 /*
541 * Mapped buffers outside i_size will occur, because
542 * this page can be outside i_size when there is a
543 * truncate in progress. The contents of such buffers
544 * were zeroed by ntfs_writepage().
545 *
546 * FIXME: What about the small race window where
547 * ntfs_writepage() has not done any clearing because
548 * the page was within i_size but before we get here,
549 * vmtruncate() modifies i_size?
550 */
551 clear_buffer_dirty(bh);
552 set_buffer_uptodate(bh);
553 continue;
554 }
555
556 /* Clean buffers are not written out, so no need to map them. */
557 if (!buffer_dirty(bh))
558 continue;
559
560 /* Make sure we have enough initialized size. */
561 if (unlikely((block >= iblock) &&
562 (ni->initialized_size < vi->i_size))) {
563 /*
564 * If this page is fully outside initialized size, zero
565 * out all pages between the current initialized size
566 * and the current page. Just use ntfs_readpage() to do
567 * the zeroing transparently.
568 */
569 if (block > iblock) {
570 // TODO:
571 // For each page do:
572 // - read_cache_page()
573 // Again for each page do:
574 // - wait_on_page_locked()
575 // - Check (PageUptodate(page) &&
576 // !PageError(page))
577 // Update initialized size in the attribute and
578 // in the inode.
579 // Again, for each page do:
580 // __set_page_dirty_buffers();
581 // page_cache_release()
582 // We don't need to wait on the writes.
583 // Update iblock.
584 }
585 /*
586 * The current page straddles initialized size. Zero
587 * all non-uptodate buffers and set them uptodate (and
588 * dirty?). Note, there aren't any non-uptodate buffers
589 * if the page is uptodate.
590 * FIXME: For an uptodate page, the buffers may need to
591 * be written out because they were not initialized on
592 * disk before.
593 */
594 if (!PageUptodate(page)) {
595 // TODO:
596 // Zero any non-uptodate buffers up to i_size.
597 // Set them uptodate and dirty.
598 }
599 // TODO:
600 // Update initialized size in the attribute and in the
601 // inode (up to i_size).
602 // Update iblock.
603 // FIXME: This is inefficient. Try to batch the two
604 // size changes to happen in one go.
605 ntfs_error(vol->sb, "Writing beyond initialized size "
606 "is not supported yet. Sorry.");
607 err = -EOPNOTSUPP;
608 break;
609 // Do NOT set_buffer_new() BUT DO clear buffer range
610 // outside write request range.
611 // set_buffer_uptodate() on complete buffers as well as
612 // set_buffer_dirty().
613 }
614
615 /* No need to map buffers that are already mapped. */
616 if (buffer_mapped(bh))
617 continue;
618
619 /* Unmapped, dirty buffer. Need to map it. */
620 bh->b_bdev = vol->sb->s_bdev;
621
622 /* Convert block into corresponding vcn and offset. */
623 vcn = (VCN)block << blocksize_bits;
624 vcn_ofs = vcn & vol->cluster_size_mask;
625 vcn >>= vol->cluster_size_bits;
626 if (!rl) {
627lock_retry_remap:
628 down_read(&ni->runlist.lock);
629 rl = ni->runlist.rl;
630 }
631 if (likely(rl != NULL)) {
632 /* Seek to element containing target vcn. */
633 while (rl->length && rl[1].vcn <= vcn)
634 rl++;
635 lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
636 } else
637 lcn = LCN_RL_NOT_MAPPED;
638 /* Successful remap. */
639 if (lcn >= 0) {
640 /* Setup buffer head to point to correct block. */
641 bh->b_blocknr = ((lcn << vol->cluster_size_bits) +
642 vcn_ofs) >> blocksize_bits;
643 set_buffer_mapped(bh);
644 continue;
645 }
646 /* It is a hole, need to instantiate it. */
647 if (lcn == LCN_HOLE) {
648 // TODO: Instantiate the hole.
649 // clear_buffer_new(bh);
650 // unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
651 ntfs_error(vol->sb, "Writing into sparse regions is "
652 "not supported yet. Sorry.");
653 err = -EOPNOTSUPP;
654 break;
655 }
656 /* If first try and runlist unmapped, map and retry. */
657 if (!is_retry && lcn == LCN_RL_NOT_MAPPED) {
658 is_retry = TRUE;
659 /*
660 * Attempt to map runlist, dropping lock for
661 * the duration.
662 */
663 up_read(&ni->runlist.lock);
664 err = ntfs_map_runlist(ni, vcn);
665 if (likely(!err))
666 goto lock_retry_remap;
667 rl = NULL;
668 lcn = err;
669 }
670 /* Failed to map the buffer, even after retrying. */
671 bh->b_blocknr = -1;
672 ntfs_error(vol->sb, "Failed to write to inode 0x%lx, "
673 "attribute type 0x%x, vcn 0x%llx, offset 0x%x "
674 "because its location on disk could not be "
675 "determined%s (error code %lli).", ni->mft_no,
676 ni->type, (unsigned long long)vcn,
677 vcn_ofs, is_retry ? " even after "
678 "retrying" : "", (long long)lcn);
679 if (!err)
680 err = -EIO;
681 break;
682 } while (block++, (bh = bh->b_this_page) != head);
683
684 /* Release the lock if we took it. */
685 if (rl)
686 up_read(&ni->runlist.lock);
687
688 /* For the error case, need to reset bh to the beginning. */
689 bh = head;
690
691 /* Just an optimization, so ->readpage() isn't called later. */
692 if (unlikely(!PageUptodate(page))) {
693 int uptodate = 1;
694 do {
695 if (!buffer_uptodate(bh)) {
696 uptodate = 0;
697 bh = head;
698 break;
699 }
700 } while ((bh = bh->b_this_page) != head);
701 if (uptodate)
702 SetPageUptodate(page);
703 }
704
705 /* Setup all mapped, dirty buffers for async write i/o. */
706 do {
707 get_bh(bh);
708 if (buffer_mapped(bh) && buffer_dirty(bh)) {
709 lock_buffer(bh);
710 if (test_clear_buffer_dirty(bh)) {
711 BUG_ON(!buffer_uptodate(bh));
712 mark_buffer_async_write(bh);
713 } else
714 unlock_buffer(bh);
715 } else if (unlikely(err)) {
716 /*
717 * For the error case. The buffer may have been set
718 * dirty during attachment to a dirty page.
719 */
720 if (err != -ENOMEM)
721 clear_buffer_dirty(bh);
722 }
723 } while ((bh = bh->b_this_page) != head);
724
725 if (unlikely(err)) {
726 // TODO: Remove the -EOPNOTSUPP check later on...
727 if (unlikely(err == -EOPNOTSUPP))
728 err = 0;
729 else if (err == -ENOMEM) {
730 ntfs_warning(vol->sb, "Error allocating memory. "
731 "Redirtying page so we try again "
732 "later.");
733 /*
734 * Put the page back on mapping->dirty_pages, but
735 * leave its buffer's dirty state as-is.
736 */
737 redirty_page_for_writepage(wbc, page);
738 err = 0;
739 } else
740 SetPageError(page);
741 }
742
743 BUG_ON(PageWriteback(page));
744 set_page_writeback(page); /* Keeps try_to_free_buffers() away. */
745 unlock_page(page);
746
747 /*
748 * Submit the prepared buffers for i/o. Note the page is unlocked,
749 * and the async write i/o completion handler can end_page_writeback()
750 * at any time after the *first* submit_bh(). So the buffers can then
751 * disappear...
752 */
753 need_end_writeback = TRUE;
754 do {
755 struct buffer_head *next = bh->b_this_page;
756 if (buffer_async_write(bh)) {
757 submit_bh(WRITE, bh);
758 need_end_writeback = FALSE;
759 }
760 put_bh(bh);
761 bh = next;
762 } while (bh != head);
763
764 /* If no i/o was started, need to end_page_writeback(). */
765 if (unlikely(need_end_writeback))
766 end_page_writeback(page);
767
768 ntfs_debug("Done.");
769 return err;
770}
771
772/**
773 * ntfs_write_mst_block - write a @page to the backing store
774 * @page: page cache page to write out
775 * @wbc: writeback control structure
776 *
777 * This function is for writing pages belonging to non-resident, mst protected
778 * attributes to their backing store. The only supported attributes are index
779 * allocation and $MFT/$DATA. Both directory inodes and index inodes are
780 * supported for the index allocation case.
781 *
782 * The page must remain locked for the duration of the write because we apply
783 * the mst fixups, write, and then undo the fixups, so if we were to unlock the
784 * page before undoing the fixups, any other user of the page will see the
785 * page contents as corrupt.
786 *
787 * We clear the page uptodate flag for the duration of the function to ensure
788 * exclusion for the $MFT/$DATA case against someone mapping an mft record we
789 * are about to apply the mst fixups to.
790 *
791 * Return 0 on success and -errno on error.
792 *
793 * Based on ntfs_write_block(), ntfs_mft_writepage(), and
794 * write_mft_record_nolock().
795 */
796static int ntfs_write_mst_block(struct page *page,
797 struct writeback_control *wbc)
798{
799 sector_t block, dblock, rec_block;
800 struct inode *vi = page->mapping->host;
801 ntfs_inode *ni = NTFS_I(vi);
802 ntfs_volume *vol = ni->vol;
803 u8 *kaddr;
804 unsigned char bh_size_bits = vi->i_blkbits;
805 unsigned int bh_size = 1 << bh_size_bits;
806 unsigned int rec_size = ni->itype.index.block_size;
807 ntfs_inode *locked_nis[PAGE_CACHE_SIZE / rec_size];
808 struct buffer_head *bh, *head, *tbh, *rec_start_bh;
809 int max_bhs = PAGE_CACHE_SIZE / bh_size;
810 struct buffer_head *bhs[max_bhs];
811 runlist_element *rl;
812 int i, nr_locked_nis, nr_recs, nr_bhs, bhs_per_rec, err, err2;
813 unsigned rec_size_bits;
814 BOOL sync, is_mft, page_is_dirty, rec_is_dirty;
815
816 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
817 "0x%lx.", vi->i_ino, ni->type, page->index);
818 BUG_ON(!NInoNonResident(ni));
819 BUG_ON(!NInoMstProtected(ni));
820 is_mft = (S_ISREG(vi->i_mode) && !vi->i_ino);
821 /*
822 * NOTE: ntfs_write_mst_block() would be called for $MFTMirr if a page
823 * in its page cache were to be marked dirty. However this should
824 * never happen with the current driver and considering we do not
825 * handle this case here we do want to BUG(), at least for now.
826 */
827 BUG_ON(!(is_mft || S_ISDIR(vi->i_mode) ||
828 (NInoAttr(ni) && ni->type == AT_INDEX_ALLOCATION)));
829 BUG_ON(!max_bhs);
830
831 /* Were we called for sync purposes? */
832 sync = (wbc->sync_mode == WB_SYNC_ALL);
833
834 /* Make sure we have mapped buffers. */
835 BUG_ON(!page_has_buffers(page));
836 bh = head = page_buffers(page);
837 BUG_ON(!bh);
838
839 rec_size_bits = ni->itype.index.block_size_bits;
840 BUG_ON(!(PAGE_CACHE_SIZE >> rec_size_bits));
841 bhs_per_rec = rec_size >> bh_size_bits;
842 BUG_ON(!bhs_per_rec);
843
844 /* The first block in the page. */
845 rec_block = block = (sector_t)page->index <<
846 (PAGE_CACHE_SHIFT - bh_size_bits);
847
848 /* The first out of bounds block for the data size. */
849 dblock = (vi->i_size + bh_size - 1) >> bh_size_bits;
850
851 rl = NULL;
852 err = err2 = nr_bhs = nr_recs = nr_locked_nis = 0;
853 page_is_dirty = rec_is_dirty = FALSE;
854 rec_start_bh = NULL;
855 do {
856 BOOL is_retry = FALSE;
857
858 if (likely(block < rec_block)) {
859 if (unlikely(block >= dblock)) {
860 clear_buffer_dirty(bh);
861 continue;
862 }
863 /*
864 * This block is not the first one in the record. We
865 * ignore the buffer's dirty state because we could
866 * have raced with a parallel mark_ntfs_record_dirty().
867 */
868 if (!rec_is_dirty)
869 continue;
870 if (unlikely(err2)) {
871 if (err2 != -ENOMEM)
872 clear_buffer_dirty(bh);
873 continue;
874 }
875 } else /* if (block == rec_block) */ {
876 BUG_ON(block > rec_block);
877 /* This block is the first one in the record. */
878 rec_block += bhs_per_rec;
879 err2 = 0;
880 if (unlikely(block >= dblock)) {
881 clear_buffer_dirty(bh);
882 continue;
883 }
884 if (!buffer_dirty(bh)) {
885 /* Clean records are not written out. */
886 rec_is_dirty = FALSE;
887 continue;
888 }
889 rec_is_dirty = TRUE;
890 rec_start_bh = bh;
891 }
892 /* Need to map the buffer if it is not mapped already. */
893 if (unlikely(!buffer_mapped(bh))) {
894 VCN vcn;
895 LCN lcn;
896 unsigned int vcn_ofs;
897
898 /* Obtain the vcn and offset of the current block. */
899 vcn = (VCN)block << bh_size_bits;
900 vcn_ofs = vcn & vol->cluster_size_mask;
901 vcn >>= vol->cluster_size_bits;
902 if (!rl) {
903lock_retry_remap:
904 down_read(&ni->runlist.lock);
905 rl = ni->runlist.rl;
906 }
907 if (likely(rl != NULL)) {
908 /* Seek to element containing target vcn. */
909 while (rl->length && rl[1].vcn <= vcn)
910 rl++;
911 lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
912 } else
913 lcn = LCN_RL_NOT_MAPPED;
914 /* Successful remap. */
915 if (likely(lcn >= 0)) {
916 /* Setup buffer head to correct block. */
917 bh->b_blocknr = ((lcn <<
918 vol->cluster_size_bits) +
919 vcn_ofs) >> bh_size_bits;
920 set_buffer_mapped(bh);
921 } else {
922 /*
923 * Remap failed. Retry to map the runlist once
924 * unless we are working on $MFT which always
925 * has the whole of its runlist in memory.
926 */
927 if (!is_mft && !is_retry &&
928 lcn == LCN_RL_NOT_MAPPED) {
929 is_retry = TRUE;
930 /*
931 * Attempt to map runlist, dropping
932 * lock for the duration.
933 */
934 up_read(&ni->runlist.lock);
935 err2 = ntfs_map_runlist(ni, vcn);
936 if (likely(!err2))
937 goto lock_retry_remap;
938 if (err2 == -ENOMEM)
939 page_is_dirty = TRUE;
940 lcn = err2;
941 } else
942 err2 = -EIO;
943 /* Hard error. Abort writing this record. */
944 if (!err || err == -ENOMEM)
945 err = err2;
946 bh->b_blocknr = -1;
947 ntfs_error(vol->sb, "Cannot write ntfs record "
948 "0x%llx (inode 0x%lx, "
949 "attribute type 0x%x) because "
950 "its location on disk could "
951 "not be determined (error "
952 "code %lli).", (s64)block <<
953 bh_size_bits >>
954 vol->mft_record_size_bits,
955 ni->mft_no, ni->type,
956 (long long)lcn);
957 /*
958 * If this is not the first buffer, remove the
959 * buffers in this record from the list of
960 * buffers to write and clear their dirty bit
961 * if not error -ENOMEM.
962 */
963 if (rec_start_bh != bh) {
964 while (bhs[--nr_bhs] != rec_start_bh)
965 ;
966 if (err2 != -ENOMEM) {
967 do {
968 clear_buffer_dirty(
969 rec_start_bh);
970 } while ((rec_start_bh =
971 rec_start_bh->
972 b_this_page) !=
973 bh);
974 }
975 }
976 continue;
977 }
978 }
979 BUG_ON(!buffer_uptodate(bh));
980 BUG_ON(nr_bhs >= max_bhs);
981 bhs[nr_bhs++] = bh;
982 } while (block++, (bh = bh->b_this_page) != head);
983 if (unlikely(rl))
984 up_read(&ni->runlist.lock);
985 /* If there were no dirty buffers, we are done. */
986 if (!nr_bhs)
987 goto done;
988 /* Map the page so we can access its contents. */
989 kaddr = kmap(page);
990 /* Clear the page uptodate flag whilst the mst fixups are applied. */
991 BUG_ON(!PageUptodate(page));
992 ClearPageUptodate(page);
993 for (i = 0; i < nr_bhs; i++) {
994 unsigned int ofs;
995
996 /* Skip buffers which are not at the beginning of records. */
997 if (i % bhs_per_rec)
998 continue;
999 tbh = bhs[i];
1000 ofs = bh_offset(tbh);
1001 if (is_mft) {
1002 ntfs_inode *tni;
1003 unsigned long mft_no;
1004
1005 /* Get the mft record number. */
1006 mft_no = (((s64)page->index << PAGE_CACHE_SHIFT) + ofs)
1007 >> rec_size_bits;
1008 /* Check whether to write this mft record. */
1009 tni = NULL;
1010 if (!ntfs_may_write_mft_record(vol, mft_no,
1011 (MFT_RECORD*)(kaddr + ofs), &tni)) {
1012 /*
1013 * The record should not be written. This
1014 * means we need to redirty the page before
1015 * returning.
1016 */
1017 page_is_dirty = TRUE;
1018 /*
1019 * Remove the buffers in this mft record from
1020 * the list of buffers to write.
1021 */
1022 do {
1023 bhs[i] = NULL;
1024 } while (++i % bhs_per_rec);
1025 continue;
1026 }
1027 /*
1028 * The record should be written. If a locked ntfs
1029 * inode was returned, add it to the array of locked
1030 * ntfs inodes.
1031 */
1032 if (tni)
1033 locked_nis[nr_locked_nis++] = tni;
1034 }
1035 /* Apply the mst protection fixups. */
1036 err2 = pre_write_mst_fixup((NTFS_RECORD*)(kaddr + ofs),
1037 rec_size);
1038 if (unlikely(err2)) {
1039 if (!err || err == -ENOMEM)
1040 err = -EIO;
1041 ntfs_error(vol->sb, "Failed to apply mst fixups "
1042 "(inode 0x%lx, attribute type 0x%x, "
1043 "page index 0x%lx, page offset 0x%x)!"
1044 " Unmount and run chkdsk.", vi->i_ino,
1045 ni->type, page->index, ofs);
1046 /*
1047 * Mark all the buffers in this record clean as we do
1048 * not want to write corrupt data to disk.
1049 */
1050 do {
1051 clear_buffer_dirty(bhs[i]);
1052 bhs[i] = NULL;
1053 } while (++i % bhs_per_rec);
1054 continue;
1055 }
1056 nr_recs++;
1057 }
1058 /* If no records are to be written out, we are done. */
1059 if (!nr_recs)
1060 goto unm_done;
1061 flush_dcache_page(page);
1062 /* Lock buffers and start synchronous write i/o on them. */
1063 for (i = 0; i < nr_bhs; i++) {
1064 tbh = bhs[i];
1065 if (!tbh)
1066 continue;
1067 if (unlikely(test_set_buffer_locked(tbh)))
1068 BUG();
1069 /* The buffer dirty state is now irrelevant, just clean it. */
1070 clear_buffer_dirty(tbh);
1071 BUG_ON(!buffer_uptodate(tbh));
1072 BUG_ON(!buffer_mapped(tbh));
1073 get_bh(tbh);
1074 tbh->b_end_io = end_buffer_write_sync;
1075 submit_bh(WRITE, tbh);
1076 }
1077 /* Synchronize the mft mirror now if not @sync. */
1078 if (is_mft && !sync)
1079 goto do_mirror;
1080do_wait:
1081 /* Wait on i/o completion of buffers. */
1082 for (i = 0; i < nr_bhs; i++) {
1083 tbh = bhs[i];
1084 if (!tbh)
1085 continue;
1086 wait_on_buffer(tbh);
1087 if (unlikely(!buffer_uptodate(tbh))) {
1088 ntfs_error(vol->sb, "I/O error while writing ntfs "
1089 "record buffer (inode 0x%lx, "
1090 "attribute type 0x%x, page index "
1091 "0x%lx, page offset 0x%lx)! Unmount "
1092 "and run chkdsk.", vi->i_ino, ni->type,
1093 page->index, bh_offset(tbh));
1094 if (!err || err == -ENOMEM)
1095 err = -EIO;
1096 /*
1097 * Set the buffer uptodate so the page and buffer
1098 * states do not become out of sync.
1099 */
1100 set_buffer_uptodate(tbh);
1101 }
1102 }
1103 /* If @sync, now synchronize the mft mirror. */
1104 if (is_mft && sync) {
1105do_mirror:
1106 for (i = 0; i < nr_bhs; i++) {
1107 unsigned long mft_no;
1108 unsigned int ofs;
1109
1110 /*
1111 * Skip buffers which are not at the beginning of
1112 * records.
1113 */
1114 if (i % bhs_per_rec)
1115 continue;
1116 tbh = bhs[i];
1117 /* Skip removed buffers (and hence records). */
1118 if (!tbh)
1119 continue;
1120 ofs = bh_offset(tbh);
1121 /* Get the mft record number. */
1122 mft_no = (((s64)page->index << PAGE_CACHE_SHIFT) + ofs)
1123 >> rec_size_bits;
1124 if (mft_no < vol->mftmirr_size)
1125 ntfs_sync_mft_mirror(vol, mft_no,
1126 (MFT_RECORD*)(kaddr + ofs),
1127 sync);
1128 }
1129 if (!sync)
1130 goto do_wait;
1131 }
1132 /* Remove the mst protection fixups again. */
1133 for (i = 0; i < nr_bhs; i++) {
1134 if (!(i % bhs_per_rec)) {
1135 tbh = bhs[i];
1136 if (!tbh)
1137 continue;
1138 post_write_mst_fixup((NTFS_RECORD*)(kaddr +
1139 bh_offset(tbh)));
1140 }
1141 }
1142 flush_dcache_page(page);
1143unm_done:
1144 /* Unlock any locked inodes. */
1145 while (nr_locked_nis-- > 0) {
1146 ntfs_inode *tni, *base_tni;
1147
1148 tni = locked_nis[nr_locked_nis];
1149 /* Get the base inode. */
1150 down(&tni->extent_lock);
1151 if (tni->nr_extents >= 0)
1152 base_tni = tni;
1153 else {
1154 base_tni = tni->ext.base_ntfs_ino;
1155 BUG_ON(!base_tni);
1156 }
1157 up(&tni->extent_lock);
1158 ntfs_debug("Unlocking %s inode 0x%lx.",
1159 tni == base_tni ? "base" : "extent",
1160 tni->mft_no);
1161 up(&tni->mrec_lock);
1162 atomic_dec(&tni->count);
1163 iput(VFS_I(base_tni));
1164 }
1165 SetPageUptodate(page);
1166 kunmap(page);
1167done:
1168 if (unlikely(err && err != -ENOMEM)) {
1169 /*
1170 * Set page error if there is only one ntfs record in the page.
1171 * Otherwise we would loose per-record granularity.
1172 */
1173 if (ni->itype.index.block_size == PAGE_CACHE_SIZE)
1174 SetPageError(page);
1175 NVolSetErrors(vol);
1176 }
1177 if (page_is_dirty) {
1178 ntfs_debug("Page still contains one or more dirty ntfs "
1179 "records. Redirtying the page starting at "
1180 "record 0x%lx.", page->index <<
1181 (PAGE_CACHE_SHIFT - rec_size_bits));
1182 redirty_page_for_writepage(wbc, page);
1183 unlock_page(page);
1184 } else {
1185 /*
1186 * Keep the VM happy. This must be done otherwise the
1187 * radix-tree tag PAGECACHE_TAG_DIRTY remains set even though
1188 * the page is clean.
1189 */
1190 BUG_ON(PageWriteback(page));
1191 set_page_writeback(page);
1192 unlock_page(page);
1193 end_page_writeback(page);
1194 }
1195 if (likely(!err))
1196 ntfs_debug("Done.");
1197 return err;
1198}
1199
1200/**
1201 * ntfs_writepage - write a @page to the backing store
1202 * @page: page cache page to write out
1203 * @wbc: writeback control structure
1204 *
1205 * This is called from the VM when it wants to have a dirty ntfs page cache
1206 * page cleaned. The VM has already locked the page and marked it clean.
1207 *
1208 * For non-resident attributes, ntfs_writepage() writes the @page by calling
1209 * the ntfs version of the generic block_write_full_page() function,
1210 * ntfs_write_block(), which in turn if necessary creates and writes the
1211 * buffers associated with the page asynchronously.
1212 *
1213 * For resident attributes, OTOH, ntfs_writepage() writes the @page by copying
1214 * the data to the mft record (which at this stage is most likely in memory).
1215 * The mft record is then marked dirty and written out asynchronously via the
1216 * vfs inode dirty code path for the inode the mft record belongs to or via the
1217 * vm page dirty code path for the page the mft record is in.
1218 *
1219 * Based on ntfs_readpage() and fs/buffer.c::block_write_full_page().
1220 *
1221 * Return 0 on success and -errno on error.
1222 */
1223static int ntfs_writepage(struct page *page, struct writeback_control *wbc)
1224{
1225 loff_t i_size;
1226 struct inode *vi;
1227 ntfs_inode *ni, *base_ni;
1228 char *kaddr;
1229 ntfs_attr_search_ctx *ctx;
1230 MFT_RECORD *m;
1231 u32 attr_len;
1232 int err;
1233
1234 BUG_ON(!PageLocked(page));
1235
1236 vi = page->mapping->host;
1237 i_size = i_size_read(vi);
1238
1239 /* Is the page fully outside i_size? (truncate in progress) */
1240 if (unlikely(page->index >= (i_size + PAGE_CACHE_SIZE - 1) >>
1241 PAGE_CACHE_SHIFT)) {
1242 /*
1243 * The page may have dirty, unmapped buffers. Make them
1244 * freeable here, so the page does not leak.
1245 */
1246 block_invalidatepage(page, 0);
1247 unlock_page(page);
1248 ntfs_debug("Write outside i_size - truncated?");
1249 return 0;
1250 }
1251 ni = NTFS_I(vi);
1252
1253 /* NInoNonResident() == NInoIndexAllocPresent() */
1254 if (NInoNonResident(ni)) {
1255 /*
1256 * Only unnamed $DATA attributes can be compressed, encrypted,
1257 * and/or sparse.
1258 */
1259 if (ni->type == AT_DATA && !ni->name_len) {
1260 /* If file is encrypted, deny access, just like NT4. */
1261 if (NInoEncrypted(ni)) {
1262 unlock_page(page);
1263 ntfs_debug("Denying write access to encrypted "
1264 "file.");
1265 return -EACCES;
1266 }
1267 /* Compressed data streams are handled in compress.c. */
1268 if (NInoCompressed(ni)) {
1269 // TODO: Implement and replace this check with
1270 // return ntfs_write_compressed_block(page);
1271 unlock_page(page);
1272 ntfs_error(vi->i_sb, "Writing to compressed "
1273 "files is not supported yet. "
1274 "Sorry.");
1275 return -EOPNOTSUPP;
1276 }
1277 // TODO: Implement and remove this check.
1278 if (NInoSparse(ni)) {
1279 unlock_page(page);
1280 ntfs_error(vi->i_sb, "Writing to sparse files "
1281 "is not supported yet. Sorry.");
1282 return -EOPNOTSUPP;
1283 }
1284 }
1285 /* We have to zero every time due to mmap-at-end-of-file. */
1286 if (page->index >= (i_size >> PAGE_CACHE_SHIFT)) {
1287 /* The page straddles i_size. */
1288 unsigned int ofs = i_size & ~PAGE_CACHE_MASK;
1289 kaddr = kmap_atomic(page, KM_USER0);
1290 memset(kaddr + ofs, 0, PAGE_CACHE_SIZE - ofs);
1291 flush_dcache_page(page);
1292 kunmap_atomic(kaddr, KM_USER0);
1293 }
1294 /* Handle mst protected attributes. */
1295 if (NInoMstProtected(ni))
1296 return ntfs_write_mst_block(page, wbc);
1297 /* Normal data stream. */
1298 return ntfs_write_block(page, wbc);
1299 }
1300 /*
1301 * Attribute is resident, implying it is not compressed, encrypted,
1302 * sparse, or mst protected. This also means the attribute is smaller
1303 * than an mft record and hence smaller than a page, so can simply
1304 * return error on any pages with index above 0.
1305 */
1306 BUG_ON(page_has_buffers(page));
1307 BUG_ON(!PageUptodate(page));
1308 if (unlikely(page->index > 0)) {
1309 ntfs_error(vi->i_sb, "BUG()! page->index (0x%lx) > 0. "
1310 "Aborting write.", page->index);
1311 BUG_ON(PageWriteback(page));
1312 set_page_writeback(page);
1313 unlock_page(page);
1314 end_page_writeback(page);
1315 return -EIO;
1316 }
1317 if (!NInoAttr(ni))
1318 base_ni = ni;
1319 else
1320 base_ni = ni->ext.base_ntfs_ino;
1321 /* Map, pin, and lock the mft record. */
1322 m = map_mft_record(base_ni);
1323 if (IS_ERR(m)) {
1324 err = PTR_ERR(m);
1325 m = NULL;
1326 ctx = NULL;
1327 goto err_out;
1328 }
1329 ctx = ntfs_attr_get_search_ctx(base_ni, m);
1330 if (unlikely(!ctx)) {
1331 err = -ENOMEM;
1332 goto err_out;
1333 }
1334 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1335 CASE_SENSITIVE, 0, NULL, 0, ctx);
1336 if (unlikely(err))
1337 goto err_out;
1338 /*
1339 * Keep the VM happy. This must be done otherwise the radix-tree tag
1340 * PAGECACHE_TAG_DIRTY remains set even though the page is clean.
1341 */
1342 BUG_ON(PageWriteback(page));
1343 set_page_writeback(page);
1344 unlock_page(page);
1345
1346 /*
1347 * Here, we don't need to zero the out of bounds area everytime because
1348 * the below memcpy() already takes care of the mmap-at-end-of-file
1349 * requirements. If the file is converted to a non-resident one, then
1350 * the code path use is switched to the non-resident one where the
1351 * zeroing happens on each ntfs_writepage() invocation.
1352 *
1353 * The above also applies nicely when i_size is decreased.
1354 *
1355 * When i_size is increased, the memory between the old and new i_size
1356 * _must_ be zeroed (or overwritten with new data). Otherwise we will
1357 * expose data to userspace/disk which should never have been exposed.
1358 *
1359 * FIXME: Ensure that i_size increases do the zeroing/overwriting and
1360 * if we cannot guarantee that, then enable the zeroing below. If the
1361 * zeroing below is enabled, we MUST move the unlock_page() from above
1362 * to after the kunmap_atomic(), i.e. just before the
1363 * end_page_writeback().
1364 * UPDATE: ntfs_prepare/commit_write() do the zeroing on i_size
1365 * increases for resident attributes so those are ok.
1366 * TODO: ntfs_truncate(), others?
1367 */
1368
1369 attr_len = le32_to_cpu(ctx->attr->data.resident.value_length);
1370 i_size = i_size_read(VFS_I(ni));
1371 kaddr = kmap_atomic(page, KM_USER0);
1372 if (unlikely(attr_len > i_size)) {
1373 /* Zero out of bounds area in the mft record. */
1374 memset((u8*)ctx->attr + le16_to_cpu(
1375 ctx->attr->data.resident.value_offset) +
1376 i_size, 0, attr_len - i_size);
1377 attr_len = i_size;
1378 }
1379 /* Copy the data from the page to the mft record. */
1380 memcpy((u8*)ctx->attr +
1381 le16_to_cpu(ctx->attr->data.resident.value_offset),
1382 kaddr, attr_len);
1383 flush_dcache_mft_record_page(ctx->ntfs_ino);
1384 /* Zero out of bounds area in the page cache page. */
1385 memset(kaddr + attr_len, 0, PAGE_CACHE_SIZE - attr_len);
1386 flush_dcache_page(page);
1387 kunmap_atomic(kaddr, KM_USER0);
1388
1389 end_page_writeback(page);
1390
1391 /* Mark the mft record dirty, so it gets written back. */
1392 mark_mft_record_dirty(ctx->ntfs_ino);
1393 ntfs_attr_put_search_ctx(ctx);
1394 unmap_mft_record(base_ni);
1395 return 0;
1396err_out:
1397 if (err == -ENOMEM) {
1398 ntfs_warning(vi->i_sb, "Error allocating memory. Redirtying "
1399 "page so we try again later.");
1400 /*
1401 * Put the page back on mapping->dirty_pages, but leave its
1402 * buffers' dirty state as-is.
1403 */
1404 redirty_page_for_writepage(wbc, page);
1405 err = 0;
1406 } else {
1407 ntfs_error(vi->i_sb, "Resident attribute write failed with "
1408 "error %i. Setting page error flag.", err);
1409 SetPageError(page);
1410 }
1411 unlock_page(page);
1412 if (ctx)
1413 ntfs_attr_put_search_ctx(ctx);
1414 if (m)
1415 unmap_mft_record(base_ni);
1416 return err;
1417}
1418
1419/**
1420 * ntfs_prepare_nonresident_write -
1421 *
1422 */
1423static int ntfs_prepare_nonresident_write(struct page *page,
1424 unsigned from, unsigned to)
1425{
1426 VCN vcn;
1427 LCN lcn;
1428 sector_t block, ablock, iblock;
1429 struct inode *vi;
1430 ntfs_inode *ni;
1431 ntfs_volume *vol;
1432 runlist_element *rl;
1433 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1434 unsigned int vcn_ofs, block_start, block_end, blocksize;
1435 int err;
1436 BOOL is_retry;
1437 unsigned char blocksize_bits;
1438
1439 vi = page->mapping->host;
1440 ni = NTFS_I(vi);
1441 vol = ni->vol;
1442
1443 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
1444 "0x%lx, from = %u, to = %u.", ni->mft_no, ni->type,
1445 page->index, from, to);
1446
1447 BUG_ON(!NInoNonResident(ni));
1448
1449 blocksize_bits = vi->i_blkbits;
1450 blocksize = 1 << blocksize_bits;
1451
1452 /*
1453 * create_empty_buffers() will create uptodate/dirty buffers if the
1454 * page is uptodate/dirty.
1455 */
1456 if (!page_has_buffers(page))
1457 create_empty_buffers(page, blocksize, 0);
1458 bh = head = page_buffers(page);
1459 if (unlikely(!bh))
1460 return -ENOMEM;
1461
1462 /* The first block in the page. */
1463 block = (s64)page->index << (PAGE_CACHE_SHIFT - blocksize_bits);
1464
1465 /*
1466 * The first out of bounds block for the allocated size. No need to
1467 * round up as allocated_size is in multiples of cluster size and the
1468 * minimum cluster size is 512 bytes, which is equal to the smallest
1469 * blocksize.
1470 */
1471 ablock = ni->allocated_size >> blocksize_bits;
1472
1473 /* The last (fully or partially) initialized block. */
1474 iblock = ni->initialized_size >> blocksize_bits;
1475
1476 /* Loop through all the buffers in the page. */
1477 block_start = 0;
1478 rl = NULL;
1479 err = 0;
1480 do {
1481 block_end = block_start + blocksize;
1482 /*
1483 * If buffer @bh is outside the write, just mark it uptodate
1484 * if the page is uptodate and continue with the next buffer.
1485 */
1486 if (block_end <= from || block_start >= to) {
1487 if (PageUptodate(page)) {
1488 if (!buffer_uptodate(bh))
1489 set_buffer_uptodate(bh);
1490 }
1491 continue;
1492 }
1493 /*
1494 * @bh is at least partially being written to.
1495 * Make sure it is not marked as new.
1496 */
1497 //if (buffer_new(bh))
1498 // clear_buffer_new(bh);
1499
1500 if (block >= ablock) {
1501 // TODO: block is above allocated_size, need to
1502 // allocate it. Best done in one go to accommodate not
1503 // only block but all above blocks up to and including:
1504 // ((page->index << PAGE_CACHE_SHIFT) + to + blocksize
1505 // - 1) >> blobksize_bits. Obviously will need to round
1506 // up to next cluster boundary, too. This should be
1507 // done with a helper function, so it can be reused.
1508 ntfs_error(vol->sb, "Writing beyond allocated size "
1509 "is not supported yet. Sorry.");
1510 err = -EOPNOTSUPP;
1511 goto err_out;
1512 // Need to update ablock.
1513 // Need to set_buffer_new() on all block bhs that are
1514 // newly allocated.
1515 }
1516 /*
1517 * Now we have enough allocated size to fulfill the whole
1518 * request, i.e. block < ablock is true.
1519 */
1520 if (unlikely((block >= iblock) &&
1521 (ni->initialized_size < vi->i_size))) {
1522 /*
1523 * If this page is fully outside initialized size, zero
1524 * out all pages between the current initialized size
1525 * and the current page. Just use ntfs_readpage() to do
1526 * the zeroing transparently.
1527 */
1528 if (block > iblock) {
1529 // TODO:
1530 // For each page do:
1531 // - read_cache_page()
1532 // Again for each page do:
1533 // - wait_on_page_locked()
1534 // - Check (PageUptodate(page) &&
1535 // !PageError(page))
1536 // Update initialized size in the attribute and
1537 // in the inode.
1538 // Again, for each page do:
1539 // __set_page_dirty_buffers();
1540 // page_cache_release()
1541 // We don't need to wait on the writes.
1542 // Update iblock.
1543 }
1544 /*
1545 * The current page straddles initialized size. Zero
1546 * all non-uptodate buffers and set them uptodate (and
1547 * dirty?). Note, there aren't any non-uptodate buffers
1548 * if the page is uptodate.
1549 * FIXME: For an uptodate page, the buffers may need to
1550 * be written out because they were not initialized on
1551 * disk before.
1552 */
1553 if (!PageUptodate(page)) {
1554 // TODO:
1555 // Zero any non-uptodate buffers up to i_size.
1556 // Set them uptodate and dirty.
1557 }
1558 // TODO:
1559 // Update initialized size in the attribute and in the
1560 // inode (up to i_size).
1561 // Update iblock.
1562 // FIXME: This is inefficient. Try to batch the two
1563 // size changes to happen in one go.
1564 ntfs_error(vol->sb, "Writing beyond initialized size "
1565 "is not supported yet. Sorry.");
1566 err = -EOPNOTSUPP;
1567 goto err_out;
1568 // Do NOT set_buffer_new() BUT DO clear buffer range
1569 // outside write request range.
1570 // set_buffer_uptodate() on complete buffers as well as
1571 // set_buffer_dirty().
1572 }
1573
1574 /* Need to map unmapped buffers. */
1575 if (!buffer_mapped(bh)) {
1576 /* Unmapped buffer. Need to map it. */
1577 bh->b_bdev = vol->sb->s_bdev;
1578
1579 /* Convert block into corresponding vcn and offset. */
1580 vcn = (VCN)block << blocksize_bits >>
1581 vol->cluster_size_bits;
1582 vcn_ofs = ((VCN)block << blocksize_bits) &
1583 vol->cluster_size_mask;
1584
1585 is_retry = FALSE;
1586 if (!rl) {
1587lock_retry_remap:
1588 down_read(&ni->runlist.lock);
1589 rl = ni->runlist.rl;
1590 }
1591 if (likely(rl != NULL)) {
1592 /* Seek to element containing target vcn. */
1593 while (rl->length && rl[1].vcn <= vcn)
1594 rl++;
1595 lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
1596 } else
1597 lcn = LCN_RL_NOT_MAPPED;
1598 if (unlikely(lcn < 0)) {
1599 /*
1600 * We extended the attribute allocation above.
1601 * If we hit an ENOENT here it means that the
1602 * allocation was insufficient which is a bug.
1603 */
1604 BUG_ON(lcn == LCN_ENOENT);
1605
1606 /* It is a hole, need to instantiate it. */
1607 if (lcn == LCN_HOLE) {
1608 // TODO: Instantiate the hole.
1609 // clear_buffer_new(bh);
1610 // unmap_underlying_metadata(bh->b_bdev,
1611 // bh->b_blocknr);
1612 // For non-uptodate buffers, need to
1613 // zero out the region outside the
1614 // request in this bh or all bhs,
1615 // depending on what we implemented
1616 // above.
1617 // Need to flush_dcache_page().
1618 // Or could use set_buffer_new()
1619 // instead?
1620 ntfs_error(vol->sb, "Writing into "
1621 "sparse regions is "
1622 "not supported yet. "
1623 "Sorry.");
1624 err = -EOPNOTSUPP;
1625 goto err_out;
1626 } else if (!is_retry &&
1627 lcn == LCN_RL_NOT_MAPPED) {
1628 is_retry = TRUE;
1629 /*
1630 * Attempt to map runlist, dropping
1631 * lock for the duration.
1632 */
1633 up_read(&ni->runlist.lock);
1634 err = ntfs_map_runlist(ni, vcn);
1635 if (likely(!err))
1636 goto lock_retry_remap;
1637 rl = NULL;
1638 lcn = err;
1639 }
1640 /*
1641 * Failed to map the buffer, even after
1642 * retrying.
1643 */
1644 bh->b_blocknr = -1;
1645 ntfs_error(vol->sb, "Failed to write to inode "
1646 "0x%lx, attribute type 0x%x, "
1647 "vcn 0x%llx, offset 0x%x "
1648 "because its location on disk "
1649 "could not be determined%s "
1650 "(error code %lli).",
1651 ni->mft_no, ni->type,
1652 (unsigned long long)vcn,
1653 vcn_ofs, is_retry ? " even "
1654 "after retrying" : "",
1655 (long long)lcn);
1656 if (!err)
1657 err = -EIO;
1658 goto err_out;
1659 }
1660 /* We now have a successful remap, i.e. lcn >= 0. */
1661
1662 /* Setup buffer head to correct block. */
1663 bh->b_blocknr = ((lcn << vol->cluster_size_bits)
1664 + vcn_ofs) >> blocksize_bits;
1665 set_buffer_mapped(bh);
1666
1667 // FIXME: Something analogous to this is needed for
1668 // each newly allocated block, i.e. BH_New.
1669 // FIXME: Might need to take this out of the
1670 // if (!buffer_mapped(bh)) {}, depending on how we
1671 // implement things during the allocated_size and
1672 // initialized_size extension code above.
1673 if (buffer_new(bh)) {
1674 clear_buffer_new(bh);
1675 unmap_underlying_metadata(bh->b_bdev,
1676 bh->b_blocknr);
1677 if (PageUptodate(page)) {
1678 set_buffer_uptodate(bh);
1679 continue;
1680 }
1681 /*
1682 * Page is _not_ uptodate, zero surrounding
1683 * region. NOTE: This is how we decide if to
1684 * zero or not!
1685 */
1686 if (block_end > to || block_start < from) {
1687 void *kaddr;
1688
1689 kaddr = kmap_atomic(page, KM_USER0);
1690 if (block_end > to)
1691 memset(kaddr + to, 0,
1692 block_end - to);
1693 if (block_start < from)
1694 memset(kaddr + block_start, 0,
1695 from -
1696 block_start);
1697 flush_dcache_page(page);
1698 kunmap_atomic(kaddr, KM_USER0);
1699 }
1700 continue;
1701 }
1702 }
1703 /* @bh is mapped, set it uptodate if the page is uptodate. */
1704 if (PageUptodate(page)) {
1705 if (!buffer_uptodate(bh))
1706 set_buffer_uptodate(bh);
1707 continue;
1708 }
1709 /*
1710 * The page is not uptodate. The buffer is mapped. If it is not
1711 * uptodate, and it is only partially being written to, we need
1712 * to read the buffer in before the write, i.e. right now.
1713 */
1714 if (!buffer_uptodate(bh) &&
1715 (block_start < from || block_end > to)) {
1716 ll_rw_block(READ, 1, &bh);
1717 *wait_bh++ = bh;
1718 }
1719 } while (block++, block_start = block_end,
1720 (bh = bh->b_this_page) != head);
1721
1722 /* Release the lock if we took it. */
1723 if (rl) {
1724 up_read(&ni->runlist.lock);
1725 rl = NULL;
1726 }
1727
1728 /* If we issued read requests, let them complete. */
1729 while (wait_bh > wait) {
1730 wait_on_buffer(*--wait_bh);
1731 if (!buffer_uptodate(*wait_bh))
1732 return -EIO;
1733 }
1734
1735 ntfs_debug("Done.");
1736 return 0;
1737err_out:
1738 /*
1739 * Zero out any newly allocated blocks to avoid exposing stale data.
1740 * If BH_New is set, we know that the block was newly allocated in the
1741 * above loop.
1742 * FIXME: What about initialized_size increments? Have we done all the
1743 * required zeroing above? If not this error handling is broken, and
1744 * in particular the if (block_end <= from) check is completely bogus.
1745 */
1746 bh = head;
1747 block_start = 0;
1748 is_retry = FALSE;
1749 do {
1750 block_end = block_start + blocksize;
1751 if (block_end <= from)
1752 continue;
1753 if (block_start >= to)
1754 break;
1755 if (buffer_new(bh)) {
1756 void *kaddr;
1757
1758 clear_buffer_new(bh);
1759 kaddr = kmap_atomic(page, KM_USER0);
1760 memset(kaddr + block_start, 0, bh->b_size);
1761 kunmap_atomic(kaddr, KM_USER0);
1762 set_buffer_uptodate(bh);
1763 mark_buffer_dirty(bh);
1764 is_retry = TRUE;
1765 }
1766 } while (block_start = block_end, (bh = bh->b_this_page) != head);
1767 if (is_retry)
1768 flush_dcache_page(page);
1769 if (rl)
1770 up_read(&ni->runlist.lock);
1771 return err;
1772}
1773
1774/**
1775 * ntfs_prepare_write - prepare a page for receiving data
1776 *
1777 * This is called from generic_file_write() with i_sem held on the inode
1778 * (@page->mapping->host). The @page is locked but not kmap()ped. The source
1779 * data has not yet been copied into the @page.
1780 *
1781 * Need to extend the attribute/fill in holes if necessary, create blocks and
1782 * make partially overwritten blocks uptodate,
1783 *
1784 * i_size is not to be modified yet.
1785 *
1786 * Return 0 on success or -errno on error.
1787 *
1788 * Should be using block_prepare_write() [support for sparse files] or
1789 * cont_prepare_write() [no support for sparse files]. Cannot do that due to
1790 * ntfs specifics but can look at them for implementation guidance.
1791 *
1792 * Note: In the range, @from is inclusive and @to is exclusive, i.e. @from is
1793 * the first byte in the page that will be written to and @to is the first byte
1794 * after the last byte that will be written to.
1795 */
1796static int ntfs_prepare_write(struct file *file, struct page *page,
1797 unsigned from, unsigned to)
1798{
1799 s64 new_size;
1800 struct inode *vi = page->mapping->host;
1801 ntfs_inode *base_ni = NULL, *ni = NTFS_I(vi);
1802 ntfs_volume *vol = ni->vol;
1803 ntfs_attr_search_ctx *ctx = NULL;
1804 MFT_RECORD *m = NULL;
1805 ATTR_RECORD *a;
1806 u8 *kaddr;
1807 u32 attr_len;
1808 int err;
1809
1810 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
1811 "0x%lx, from = %u, to = %u.", vi->i_ino, ni->type,
1812 page->index, from, to);
1813 BUG_ON(!PageLocked(page));
1814 BUG_ON(from > PAGE_CACHE_SIZE);
1815 BUG_ON(to > PAGE_CACHE_SIZE);
1816 BUG_ON(from > to);
1817 BUG_ON(NInoMstProtected(ni));
1818 /*
1819 * If a previous ntfs_truncate() failed, repeat it and abort if it
1820 * fails again.
1821 */
1822 if (unlikely(NInoTruncateFailed(ni))) {
1823 down_write(&vi->i_alloc_sem);
1824 err = ntfs_truncate(vi);
1825 up_write(&vi->i_alloc_sem);
1826 if (err || NInoTruncateFailed(ni)) {
1827 if (!err)
1828 err = -EIO;
1829 goto err_out;
1830 }
1831 }
1832 /* If the attribute is not resident, deal with it elsewhere. */
1833 if (NInoNonResident(ni)) {
1834 /*
1835 * Only unnamed $DATA attributes can be compressed, encrypted,
1836 * and/or sparse.
1837 */
1838 if (ni->type == AT_DATA && !ni->name_len) {
1839 /* If file is encrypted, deny access, just like NT4. */
1840 if (NInoEncrypted(ni)) {
1841 ntfs_debug("Denying write access to encrypted "
1842 "file.");
1843 return -EACCES;
1844 }
1845 /* Compressed data streams are handled in compress.c. */
1846 if (NInoCompressed(ni)) {
1847 // TODO: Implement and replace this check with
1848 // return ntfs_write_compressed_block(page);
1849 ntfs_error(vi->i_sb, "Writing to compressed "
1850 "files is not supported yet. "
1851 "Sorry.");
1852 return -EOPNOTSUPP;
1853 }
1854 // TODO: Implement and remove this check.
1855 if (NInoSparse(ni)) {
1856 ntfs_error(vi->i_sb, "Writing to sparse files "
1857 "is not supported yet. Sorry.");
1858 return -EOPNOTSUPP;
1859 }
1860 }
1861 /* Normal data stream. */
1862 return ntfs_prepare_nonresident_write(page, from, to);
1863 }
1864 /*
1865 * Attribute is resident, implying it is not compressed, encrypted, or
1866 * sparse.
1867 */
1868 BUG_ON(page_has_buffers(page));
1869 new_size = ((s64)page->index << PAGE_CACHE_SHIFT) + to;
1870 /* If we do not need to resize the attribute allocation we are done. */
1871 if (new_size <= vi->i_size)
1872 goto done;
1873
1874 // FIXME: We abort for now as this code is not safe.
1875 ntfs_error(vi->i_sb, "Changing the file size is not supported yet. "
1876 "Sorry.");
1877 return -EOPNOTSUPP;
1878
1879 /* Map, pin, and lock the (base) mft record. */
1880 if (!NInoAttr(ni))
1881 base_ni = ni;
1882 else
1883 base_ni = ni->ext.base_ntfs_ino;
1884 m = map_mft_record(base_ni);
1885 if (IS_ERR(m)) {
1886 err = PTR_ERR(m);
1887 m = NULL;
1888 ctx = NULL;
1889 goto err_out;
1890 }
1891 ctx = ntfs_attr_get_search_ctx(base_ni, m);
1892 if (unlikely(!ctx)) {
1893 err = -ENOMEM;
1894 goto err_out;
1895 }
1896 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1897 CASE_SENSITIVE, 0, NULL, 0, ctx);
1898 if (unlikely(err)) {
1899 if (err == -ENOENT)
1900 err = -EIO;
1901 goto err_out;
1902 }
1903 m = ctx->mrec;
1904 a = ctx->attr;
1905 /* The total length of the attribute value. */
1906 attr_len = le32_to_cpu(a->data.resident.value_length);
1907 BUG_ON(vi->i_size != attr_len);
1908 /* Check if new size is allowed in $AttrDef. */
1909 err = ntfs_attr_size_bounds_check(vol, ni->type, new_size);
1910 if (unlikely(err)) {
1911 if (err == -ERANGE) {
1912 ntfs_error(vol->sb, "Write would cause the inode "
1913 "0x%lx to exceed the maximum size for "
1914 "its attribute type (0x%x). Aborting "
1915 "write.", vi->i_ino,
1916 le32_to_cpu(ni->type));
1917 } else {
1918 ntfs_error(vol->sb, "Inode 0x%lx has unknown "
1919 "attribute type 0x%x. Aborting "
1920 "write.", vi->i_ino,
1921 le32_to_cpu(ni->type));
1922 err = -EIO;
1923 }
1924 goto err_out2;
1925 }
1926 /*
1927 * Extend the attribute record to be able to store the new attribute
1928 * size.
1929 */
1930 if (new_size >= vol->mft_record_size || ntfs_attr_record_resize(m, a,
1931 le16_to_cpu(a->data.resident.value_offset) +
1932 new_size)) {
1933 /* Not enough space in the mft record. */
1934 ntfs_error(vol->sb, "Not enough space in the mft record for "
1935 "the resized attribute value. This is not "
1936 "supported yet. Aborting write.");
1937 err = -EOPNOTSUPP;
1938 goto err_out2;
1939 }
1940 /*
1941 * We have enough space in the mft record to fit the write. This
1942 * implies the attribute is smaller than the mft record and hence the
1943 * attribute must be in a single page and hence page->index must be 0.
1944 */
1945 BUG_ON(page->index);
1946 /*
1947 * If the beginning of the write is past the old size, enlarge the
1948 * attribute value up to the beginning of the write and fill it with
1949 * zeroes.
1950 */
1951 if (from > attr_len) {
1952 memset((u8*)a + le16_to_cpu(a->data.resident.value_offset) +
1953 attr_len, 0, from - attr_len);
1954 a->data.resident.value_length = cpu_to_le32(from);
1955 /* Zero the corresponding area in the page as well. */
1956 if (PageUptodate(page)) {
1957 kaddr = kmap_atomic(page, KM_USER0);
1958 memset(kaddr + attr_len, 0, from - attr_len);
1959 kunmap_atomic(kaddr, KM_USER0);
1960 flush_dcache_page(page);
1961 }
1962 }
1963 flush_dcache_mft_record_page(ctx->ntfs_ino);
1964 mark_mft_record_dirty(ctx->ntfs_ino);
1965 ntfs_attr_put_search_ctx(ctx);
1966 unmap_mft_record(base_ni);
1967 /*
1968 * Because resident attributes are handled by memcpy() to/from the
1969 * corresponding MFT record, and because this form of i/o is byte
1970 * aligned rather than block aligned, there is no need to bring the
1971 * page uptodate here as in the non-resident case where we need to
1972 * bring the buffers straddled by the write uptodate before
1973 * generic_file_write() does the copying from userspace.
1974 *
1975 * We thus defer the uptodate bringing of the page region outside the
1976 * region written to to ntfs_commit_write(), which makes the code
1977 * simpler and saves one atomic kmap which is good.
1978 */
1979done:
1980 ntfs_debug("Done.");
1981 return 0;
1982err_out:
1983 if (err == -ENOMEM)
1984 ntfs_warning(vi->i_sb, "Error allocating memory required to "
1985 "prepare the write.");
1986 else {
1987 ntfs_error(vi->i_sb, "Resident attribute prepare write failed "
1988 "with error %i.", err);
1989 NVolSetErrors(vol);
1990 make_bad_inode(vi);
1991 }
1992err_out2:
1993 if (ctx)
1994 ntfs_attr_put_search_ctx(ctx);
1995 if (m)
1996 unmap_mft_record(base_ni);
1997 return err;
1998}
1999
2000/**
2001 * ntfs_commit_nonresident_write -
2002 *
2003 */
2004static int ntfs_commit_nonresident_write(struct page *page,
2005 unsigned from, unsigned to)
2006{
2007 s64 pos = ((s64)page->index << PAGE_CACHE_SHIFT) + to;
2008 struct inode *vi = page->mapping->host;
2009 struct buffer_head *bh, *head;
2010 unsigned int block_start, block_end, blocksize;
2011 BOOL partial;
2012
2013 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
2014 "0x%lx, from = %u, to = %u.", vi->i_ino,
2015 NTFS_I(vi)->type, page->index, from, to);
2016 blocksize = 1 << vi->i_blkbits;
2017
2018 // FIXME: We need a whole slew of special cases in here for compressed
2019 // files for example...
2020 // For now, we know ntfs_prepare_write() would have failed so we can't
2021 // get here in any of the cases which we have to special case, so we
2022 // are just a ripped off, unrolled generic_commit_write().
2023
2024 bh = head = page_buffers(page);
2025 block_start = 0;
2026 partial = FALSE;
2027 do {
2028 block_end = block_start + blocksize;
2029 if (block_end <= from || block_start >= to) {
2030 if (!buffer_uptodate(bh))
2031 partial = TRUE;
2032 } else {
2033 set_buffer_uptodate(bh);
2034 mark_buffer_dirty(bh);
2035 }
2036 } while (block_start = block_end, (bh = bh->b_this_page) != head);
2037 /*
2038 * If this is a partial write which happened to make all buffers
2039 * uptodate then we can optimize away a bogus ->readpage() for the next
2040 * read(). Here we 'discover' whether the page went uptodate as a
2041 * result of this (potentially partial) write.
2042 */
2043 if (!partial)
2044 SetPageUptodate(page);
2045 /*
2046 * Not convinced about this at all. See disparity comment above. For
2047 * now we know ntfs_prepare_write() would have failed in the write
2048 * exceeds i_size case, so this will never trigger which is fine.
2049 */
2050 if (pos > vi->i_size) {
2051 ntfs_error(vi->i_sb, "Writing beyond the existing file size is "
2052 "not supported yet. Sorry.");
2053 return -EOPNOTSUPP;
2054 // vi->i_size = pos;
2055 // mark_inode_dirty(vi);
2056 }
2057 ntfs_debug("Done.");
2058 return 0;
2059}
2060
2061/**
2062 * ntfs_commit_write - commit the received data
2063 *
2064 * This is called from generic_file_write() with i_sem held on the inode
2065 * (@page->mapping->host). The @page is locked but not kmap()ped. The source
2066 * data has already been copied into the @page. ntfs_prepare_write() has been
2067 * called before the data copied and it returned success so we can take the
2068 * results of various BUG checks and some error handling for granted.
2069 *
2070 * Need to mark modified blocks dirty so they get written out later when
2071 * ntfs_writepage() is invoked by the VM.
2072 *
2073 * Return 0 on success or -errno on error.
2074 *
2075 * Should be using generic_commit_write(). This marks buffers uptodate and
2076 * dirty, sets the page uptodate if all buffers in the page are uptodate, and
2077 * updates i_size if the end of io is beyond i_size. In that case, it also
2078 * marks the inode dirty.
2079 *
2080 * Cannot use generic_commit_write() due to ntfs specialities but can look at
2081 * it for implementation guidance.
2082 *
2083 * If things have gone as outlined in ntfs_prepare_write(), then we do not
2084 * need to do any page content modifications here at all, except in the write
2085 * to resident attribute case, where we need to do the uptodate bringing here
2086 * which we combine with the copying into the mft record which means we save
2087 * one atomic kmap.
2088 */
2089static int ntfs_commit_write(struct file *file, struct page *page,
2090 unsigned from, unsigned to)
2091{
2092 struct inode *vi = page->mapping->host;
2093 ntfs_inode *base_ni, *ni = NTFS_I(vi);
2094 char *kaddr, *kattr;
2095 ntfs_attr_search_ctx *ctx;
2096 MFT_RECORD *m;
2097 ATTR_RECORD *a;
2098 u32 attr_len;
2099 int err;
2100
2101 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
2102 "0x%lx, from = %u, to = %u.", vi->i_ino, ni->type,
2103 page->index, from, to);
2104 /* If the attribute is not resident, deal with it elsewhere. */
2105 if (NInoNonResident(ni)) {
2106 /* Only unnamed $DATA attributes can be compressed/encrypted. */
2107 if (ni->type == AT_DATA && !ni->name_len) {
2108 /* Encrypted files need separate handling. */
2109 if (NInoEncrypted(ni)) {
2110 // We never get here at present!
2111 BUG();
2112 }
2113 /* Compressed data streams are handled in compress.c. */
2114 if (NInoCompressed(ni)) {
2115 // TODO: Implement this!
2116 // return ntfs_write_compressed_block(page);
2117 // We never get here at present!
2118 BUG();
2119 }
2120 }
2121 /* Normal data stream. */
2122 return ntfs_commit_nonresident_write(page, from, to);
2123 }
2124 /*
2125 * Attribute is resident, implying it is not compressed, encrypted, or
2126 * sparse.
2127 */
2128 if (!NInoAttr(ni))
2129 base_ni = ni;
2130 else
2131 base_ni = ni->ext.base_ntfs_ino;
2132 /* Map, pin, and lock the mft record. */
2133 m = map_mft_record(base_ni);
2134 if (IS_ERR(m)) {
2135 err = PTR_ERR(m);
2136 m = NULL;
2137 ctx = NULL;
2138 goto err_out;
2139 }
2140 ctx = ntfs_attr_get_search_ctx(base_ni, m);
2141 if (unlikely(!ctx)) {
2142 err = -ENOMEM;
2143 goto err_out;
2144 }
2145 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
2146 CASE_SENSITIVE, 0, NULL, 0, ctx);
2147 if (unlikely(err)) {
2148 if (err == -ENOENT)
2149 err = -EIO;
2150 goto err_out;
2151 }
2152 a = ctx->attr;
2153 /* The total length of the attribute value. */
2154 attr_len = le32_to_cpu(a->data.resident.value_length);
2155 BUG_ON(from > attr_len);
2156 kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset);
2157 kaddr = kmap_atomic(page, KM_USER0);
2158 /* Copy the received data from the page to the mft record. */
2159 memcpy(kattr + from, kaddr + from, to - from);
2160 /* Update the attribute length if necessary. */
2161 if (to > attr_len) {
2162 attr_len = to;
2163 a->data.resident.value_length = cpu_to_le32(attr_len);
2164 }
2165 /*
2166 * If the page is not uptodate, bring the out of bounds area(s)
2167 * uptodate by copying data from the mft record to the page.
2168 */
2169 if (!PageUptodate(page)) {
2170 if (from > 0)
2171 memcpy(kaddr, kattr, from);
2172 if (to < attr_len)
2173 memcpy(kaddr + to, kattr + to, attr_len - to);
2174 /* Zero the region outside the end of the attribute value. */
2175 if (attr_len < PAGE_CACHE_SIZE)
2176 memset(kaddr + attr_len, 0, PAGE_CACHE_SIZE - attr_len);
2177 /*
2178 * The probability of not having done any of the above is
2179 * extremely small, so we just flush unconditionally.
2180 */
2181 flush_dcache_page(page);
2182 SetPageUptodate(page);
2183 }
2184 kunmap_atomic(kaddr, KM_USER0);
2185 /* Update i_size if necessary. */
2186 if (vi->i_size < attr_len) {
2187 ni->allocated_size = ni->initialized_size = attr_len;
2188 i_size_write(vi, attr_len);
2189 }
2190 /* Mark the mft record dirty, so it gets written back. */
2191 flush_dcache_mft_record_page(ctx->ntfs_ino);
2192 mark_mft_record_dirty(ctx->ntfs_ino);
2193 ntfs_attr_put_search_ctx(ctx);
2194 unmap_mft_record(base_ni);
2195 ntfs_debug("Done.");
2196 return 0;
2197err_out:
2198 if (err == -ENOMEM) {
2199 ntfs_warning(vi->i_sb, "Error allocating memory required to "
2200 "commit the write.");
2201 if (PageUptodate(page)) {
2202 ntfs_warning(vi->i_sb, "Page is uptodate, setting "
2203 "dirty so the write will be retried "
2204 "later on by the VM.");
2205 /*
2206 * Put the page on mapping->dirty_pages, but leave its
2207 * buffers' dirty state as-is.
2208 */
2209 __set_page_dirty_nobuffers(page);
2210 err = 0;
2211 } else
2212 ntfs_error(vi->i_sb, "Page is not uptodate. Written "
2213 "data has been lost.");
2214 } else {
2215 ntfs_error(vi->i_sb, "Resident attribute commit write failed "
2216 "with error %i.", err);
2217 NVolSetErrors(ni->vol);
2218 make_bad_inode(vi);
2219 }
2220 if (ctx)
2221 ntfs_attr_put_search_ctx(ctx);
2222 if (m)
2223 unmap_mft_record(base_ni);
2224 return err;
2225}
2226
2227#endif /* NTFS_RW */
2228
2229/**
2230 * ntfs_aops - general address space operations for inodes and attributes
2231 */
2232struct address_space_operations ntfs_aops = {
2233 .readpage = ntfs_readpage, /* Fill page with data. */
2234 .sync_page = block_sync_page, /* Currently, just unplugs the
2235 disk request queue. */
2236#ifdef NTFS_RW
2237 .writepage = ntfs_writepage, /* Write dirty page to disk. */
2238 .prepare_write = ntfs_prepare_write, /* Prepare page and buffers
2239 ready to receive data. */
2240 .commit_write = ntfs_commit_write, /* Commit received data. */
2241#endif /* NTFS_RW */
2242};
2243
2244/**
2245 * ntfs_mst_aops - general address space operations for mst protecteed inodes
2246 * and attributes
2247 */
2248struct address_space_operations ntfs_mst_aops = {
2249 .readpage = ntfs_readpage, /* Fill page with data. */
2250 .sync_page = block_sync_page, /* Currently, just unplugs the
2251 disk request queue. */
2252#ifdef NTFS_RW
2253 .writepage = ntfs_writepage, /* Write dirty page to disk. */
2254 .set_page_dirty = __set_page_dirty_nobuffers, /* Set the page dirty
2255 without touching the buffers
2256 belonging to the page. */
2257#endif /* NTFS_RW */
2258};
2259
2260#ifdef NTFS_RW
2261
2262/**
2263 * mark_ntfs_record_dirty - mark an ntfs record dirty
2264 * @page: page containing the ntfs record to mark dirty
2265 * @ofs: byte offset within @page at which the ntfs record begins
2266 *
2267 * Set the buffers and the page in which the ntfs record is located dirty.
2268 *
2269 * The latter also marks the vfs inode the ntfs record belongs to dirty
2270 * (I_DIRTY_PAGES only).
2271 *
2272 * If the page does not have buffers, we create them and set them uptodate.
2273 * The page may not be locked which is why we need to handle the buffers under
2274 * the mapping->private_lock. Once the buffers are marked dirty we no longer
2275 * need the lock since try_to_free_buffers() does not free dirty buffers.
2276 */
2277void mark_ntfs_record_dirty(struct page *page, const unsigned int ofs) {
2278 struct address_space *mapping = page->mapping;
2279 ntfs_inode *ni = NTFS_I(mapping->host);
2280 struct buffer_head *bh, *head, *buffers_to_free = NULL;
2281 unsigned int end, bh_size, bh_ofs;
2282
2283 BUG_ON(!PageUptodate(page));
2284 end = ofs + ni->itype.index.block_size;
2285 bh_size = 1 << VFS_I(ni)->i_blkbits;
2286 spin_lock(&mapping->private_lock);
2287 if (unlikely(!page_has_buffers(page))) {
2288 spin_unlock(&mapping->private_lock);
2289 bh = head = alloc_page_buffers(page, bh_size, 1);
2290 spin_lock(&mapping->private_lock);
2291 if (likely(!page_has_buffers(page))) {
2292 struct buffer_head *tail;
2293
2294 do {
2295 set_buffer_uptodate(bh);
2296 tail = bh;
2297 bh = bh->b_this_page;
2298 } while (bh);
2299 tail->b_this_page = head;
2300 attach_page_buffers(page, head);
2301 } else
2302 buffers_to_free = bh;
2303 }
2304 bh = head = page_buffers(page);
2305 do {
2306 bh_ofs = bh_offset(bh);
2307 if (bh_ofs + bh_size <= ofs)
2308 continue;
2309 if (unlikely(bh_ofs >= end))
2310 break;
2311 set_buffer_dirty(bh);
2312 } while ((bh = bh->b_this_page) != head);
2313 spin_unlock(&mapping->private_lock);
2314 __set_page_dirty_nobuffers(page);
2315 if (unlikely(buffers_to_free)) {
2316 do {
2317 bh = buffers_to_free->b_this_page;
2318 free_buffer_head(buffers_to_free);
2319 buffers_to_free = bh;
2320 } while (buffers_to_free);
2321 }
2322}
2323
2324#endif /* NTFS_RW */