diff options
Diffstat (limited to 'fs/nfsd/nfscache.c')
-rw-r--r-- | fs/nfsd/nfscache.c | 475 |
1 files changed, 386 insertions, 89 deletions
diff --git a/fs/nfsd/nfscache.c b/fs/nfsd/nfscache.c index 2cbac34a55da..e76244edd748 100644 --- a/fs/nfsd/nfscache.c +++ b/fs/nfsd/nfscache.c | |||
@@ -9,34 +9,63 @@ | |||
9 | */ | 9 | */ |
10 | 10 | ||
11 | #include <linux/slab.h> | 11 | #include <linux/slab.h> |
12 | #include <linux/sunrpc/addr.h> | ||
13 | #include <linux/highmem.h> | ||
14 | #include <linux/log2.h> | ||
15 | #include <linux/hash.h> | ||
16 | #include <net/checksum.h> | ||
12 | 17 | ||
13 | #include "nfsd.h" | 18 | #include "nfsd.h" |
14 | #include "cache.h" | 19 | #include "cache.h" |
15 | 20 | ||
16 | /* Size of reply cache. Common values are: | 21 | #define NFSDDBG_FACILITY NFSDDBG_REPCACHE |
17 | * 4.3BSD: 128 | 22 | |
18 | * 4.4BSD: 256 | 23 | /* |
19 | * Solaris2: 1024 | 24 | * We use this value to determine the number of hash buckets from the max |
20 | * DEC Unix: 512-4096 | 25 | * cache size, the idea being that when the cache is at its maximum number |
26 | * of entries, then this should be the average number of entries per bucket. | ||
21 | */ | 27 | */ |
22 | #define CACHESIZE 1024 | 28 | #define TARGET_BUCKET_SIZE 64 |
23 | #define HASHSIZE 64 | ||
24 | 29 | ||
25 | static struct hlist_head * cache_hash; | 30 | static struct hlist_head * cache_hash; |
26 | static struct list_head lru_head; | 31 | static struct list_head lru_head; |
27 | static int cache_disabled = 1; | 32 | static struct kmem_cache *drc_slab; |
33 | |||
34 | /* max number of entries allowed in the cache */ | ||
35 | static unsigned int max_drc_entries; | ||
36 | |||
37 | /* number of significant bits in the hash value */ | ||
38 | static unsigned int maskbits; | ||
28 | 39 | ||
29 | /* | 40 | /* |
30 | * Calculate the hash index from an XID. | 41 | * Stats and other tracking of on the duplicate reply cache. All of these and |
42 | * the "rc" fields in nfsdstats are protected by the cache_lock | ||
31 | */ | 43 | */ |
32 | static inline u32 request_hash(u32 xid) | 44 | |
33 | { | 45 | /* total number of entries */ |
34 | u32 h = xid; | 46 | static unsigned int num_drc_entries; |
35 | h ^= (xid >> 24); | 47 | |
36 | return h & (HASHSIZE-1); | 48 | /* cache misses due only to checksum comparison failures */ |
37 | } | 49 | static unsigned int payload_misses; |
50 | |||
51 | /* amount of memory (in bytes) currently consumed by the DRC */ | ||
52 | static unsigned int drc_mem_usage; | ||
53 | |||
54 | /* longest hash chain seen */ | ||
55 | static unsigned int longest_chain; | ||
56 | |||
57 | /* size of cache when we saw the longest hash chain */ | ||
58 | static unsigned int longest_chain_cachesize; | ||
38 | 59 | ||
39 | static int nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *vec); | 60 | static int nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *vec); |
61 | static void cache_cleaner_func(struct work_struct *unused); | ||
62 | static int nfsd_reply_cache_shrink(struct shrinker *shrink, | ||
63 | struct shrink_control *sc); | ||
64 | |||
65 | static struct shrinker nfsd_reply_cache_shrinker = { | ||
66 | .shrink = nfsd_reply_cache_shrink, | ||
67 | .seeks = 1, | ||
68 | }; | ||
40 | 69 | ||
41 | /* | 70 | /* |
42 | * locking for the reply cache: | 71 | * locking for the reply cache: |
@@ -44,30 +73,104 @@ static int nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *vec); | |||
44 | * Otherwise, it when accessing _prev or _next, the lock must be held. | 73 | * Otherwise, it when accessing _prev or _next, the lock must be held. |
45 | */ | 74 | */ |
46 | static DEFINE_SPINLOCK(cache_lock); | 75 | static DEFINE_SPINLOCK(cache_lock); |
76 | static DECLARE_DELAYED_WORK(cache_cleaner, cache_cleaner_func); | ||
47 | 77 | ||
48 | int nfsd_reply_cache_init(void) | 78 | /* |
79 | * Put a cap on the size of the DRC based on the amount of available | ||
80 | * low memory in the machine. | ||
81 | * | ||
82 | * 64MB: 8192 | ||
83 | * 128MB: 11585 | ||
84 | * 256MB: 16384 | ||
85 | * 512MB: 23170 | ||
86 | * 1GB: 32768 | ||
87 | * 2GB: 46340 | ||
88 | * 4GB: 65536 | ||
89 | * 8GB: 92681 | ||
90 | * 16GB: 131072 | ||
91 | * | ||
92 | * ...with a hard cap of 256k entries. In the worst case, each entry will be | ||
93 | * ~1k, so the above numbers should give a rough max of the amount of memory | ||
94 | * used in k. | ||
95 | */ | ||
96 | static unsigned int | ||
97 | nfsd_cache_size_limit(void) | ||
98 | { | ||
99 | unsigned int limit; | ||
100 | unsigned long low_pages = totalram_pages - totalhigh_pages; | ||
101 | |||
102 | limit = (16 * int_sqrt(low_pages)) << (PAGE_SHIFT-10); | ||
103 | return min_t(unsigned int, limit, 256*1024); | ||
104 | } | ||
105 | |||
106 | /* | ||
107 | * Compute the number of hash buckets we need. Divide the max cachesize by | ||
108 | * the "target" max bucket size, and round up to next power of two. | ||
109 | */ | ||
110 | static unsigned int | ||
111 | nfsd_hashsize(unsigned int limit) | ||
112 | { | ||
113 | return roundup_pow_of_two(limit / TARGET_BUCKET_SIZE); | ||
114 | } | ||
115 | |||
116 | static struct svc_cacherep * | ||
117 | nfsd_reply_cache_alloc(void) | ||
49 | { | 118 | { |
50 | struct svc_cacherep *rp; | 119 | struct svc_cacherep *rp; |
51 | int i; | ||
52 | 120 | ||
53 | INIT_LIST_HEAD(&lru_head); | 121 | rp = kmem_cache_alloc(drc_slab, GFP_KERNEL); |
54 | i = CACHESIZE; | 122 | if (rp) { |
55 | while (i) { | ||
56 | rp = kmalloc(sizeof(*rp), GFP_KERNEL); | ||
57 | if (!rp) | ||
58 | goto out_nomem; | ||
59 | list_add(&rp->c_lru, &lru_head); | ||
60 | rp->c_state = RC_UNUSED; | 123 | rp->c_state = RC_UNUSED; |
61 | rp->c_type = RC_NOCACHE; | 124 | rp->c_type = RC_NOCACHE; |
125 | INIT_LIST_HEAD(&rp->c_lru); | ||
62 | INIT_HLIST_NODE(&rp->c_hash); | 126 | INIT_HLIST_NODE(&rp->c_hash); |
63 | i--; | ||
64 | } | 127 | } |
128 | return rp; | ||
129 | } | ||
130 | |||
131 | static void | ||
132 | nfsd_reply_cache_free_locked(struct svc_cacherep *rp) | ||
133 | { | ||
134 | if (rp->c_type == RC_REPLBUFF && rp->c_replvec.iov_base) { | ||
135 | drc_mem_usage -= rp->c_replvec.iov_len; | ||
136 | kfree(rp->c_replvec.iov_base); | ||
137 | } | ||
138 | if (!hlist_unhashed(&rp->c_hash)) | ||
139 | hlist_del(&rp->c_hash); | ||
140 | list_del(&rp->c_lru); | ||
141 | --num_drc_entries; | ||
142 | drc_mem_usage -= sizeof(*rp); | ||
143 | kmem_cache_free(drc_slab, rp); | ||
144 | } | ||
65 | 145 | ||
66 | cache_hash = kcalloc (HASHSIZE, sizeof(struct hlist_head), GFP_KERNEL); | 146 | static void |
147 | nfsd_reply_cache_free(struct svc_cacherep *rp) | ||
148 | { | ||
149 | spin_lock(&cache_lock); | ||
150 | nfsd_reply_cache_free_locked(rp); | ||
151 | spin_unlock(&cache_lock); | ||
152 | } | ||
153 | |||
154 | int nfsd_reply_cache_init(void) | ||
155 | { | ||
156 | unsigned int hashsize; | ||
157 | |||
158 | INIT_LIST_HEAD(&lru_head); | ||
159 | max_drc_entries = nfsd_cache_size_limit(); | ||
160 | num_drc_entries = 0; | ||
161 | hashsize = nfsd_hashsize(max_drc_entries); | ||
162 | maskbits = ilog2(hashsize); | ||
163 | |||
164 | register_shrinker(&nfsd_reply_cache_shrinker); | ||
165 | drc_slab = kmem_cache_create("nfsd_drc", sizeof(struct svc_cacherep), | ||
166 | 0, 0, NULL); | ||
167 | if (!drc_slab) | ||
168 | goto out_nomem; | ||
169 | |||
170 | cache_hash = kcalloc(hashsize, sizeof(struct hlist_head), GFP_KERNEL); | ||
67 | if (!cache_hash) | 171 | if (!cache_hash) |
68 | goto out_nomem; | 172 | goto out_nomem; |
69 | 173 | ||
70 | cache_disabled = 0; | ||
71 | return 0; | 174 | return 0; |
72 | out_nomem: | 175 | out_nomem: |
73 | printk(KERN_ERR "nfsd: failed to allocate reply cache\n"); | 176 | printk(KERN_ERR "nfsd: failed to allocate reply cache\n"); |
@@ -79,27 +182,33 @@ void nfsd_reply_cache_shutdown(void) | |||
79 | { | 182 | { |
80 | struct svc_cacherep *rp; | 183 | struct svc_cacherep *rp; |
81 | 184 | ||
185 | unregister_shrinker(&nfsd_reply_cache_shrinker); | ||
186 | cancel_delayed_work_sync(&cache_cleaner); | ||
187 | |||
82 | while (!list_empty(&lru_head)) { | 188 | while (!list_empty(&lru_head)) { |
83 | rp = list_entry(lru_head.next, struct svc_cacherep, c_lru); | 189 | rp = list_entry(lru_head.next, struct svc_cacherep, c_lru); |
84 | if (rp->c_state == RC_DONE && rp->c_type == RC_REPLBUFF) | 190 | nfsd_reply_cache_free_locked(rp); |
85 | kfree(rp->c_replvec.iov_base); | ||
86 | list_del(&rp->c_lru); | ||
87 | kfree(rp); | ||
88 | } | 191 | } |
89 | 192 | ||
90 | cache_disabled = 1; | ||
91 | |||
92 | kfree (cache_hash); | 193 | kfree (cache_hash); |
93 | cache_hash = NULL; | 194 | cache_hash = NULL; |
195 | |||
196 | if (drc_slab) { | ||
197 | kmem_cache_destroy(drc_slab); | ||
198 | drc_slab = NULL; | ||
199 | } | ||
94 | } | 200 | } |
95 | 201 | ||
96 | /* | 202 | /* |
97 | * Move cache entry to end of LRU list | 203 | * Move cache entry to end of LRU list, and queue the cleaner to run if it's |
204 | * not already scheduled. | ||
98 | */ | 205 | */ |
99 | static void | 206 | static void |
100 | lru_put_end(struct svc_cacherep *rp) | 207 | lru_put_end(struct svc_cacherep *rp) |
101 | { | 208 | { |
209 | rp->c_timestamp = jiffies; | ||
102 | list_move_tail(&rp->c_lru, &lru_head); | 210 | list_move_tail(&rp->c_lru, &lru_head); |
211 | schedule_delayed_work(&cache_cleaner, RC_EXPIRE); | ||
103 | } | 212 | } |
104 | 213 | ||
105 | /* | 214 | /* |
@@ -109,89 +218,247 @@ static void | |||
109 | hash_refile(struct svc_cacherep *rp) | 218 | hash_refile(struct svc_cacherep *rp) |
110 | { | 219 | { |
111 | hlist_del_init(&rp->c_hash); | 220 | hlist_del_init(&rp->c_hash); |
112 | hlist_add_head(&rp->c_hash, cache_hash + request_hash(rp->c_xid)); | 221 | hlist_add_head(&rp->c_hash, cache_hash + hash_32(rp->c_xid, maskbits)); |
222 | } | ||
223 | |||
224 | static inline bool | ||
225 | nfsd_cache_entry_expired(struct svc_cacherep *rp) | ||
226 | { | ||
227 | return rp->c_state != RC_INPROG && | ||
228 | time_after(jiffies, rp->c_timestamp + RC_EXPIRE); | ||
229 | } | ||
230 | |||
231 | /* | ||
232 | * Walk the LRU list and prune off entries that are older than RC_EXPIRE. | ||
233 | * Also prune the oldest ones when the total exceeds the max number of entries. | ||
234 | */ | ||
235 | static void | ||
236 | prune_cache_entries(void) | ||
237 | { | ||
238 | struct svc_cacherep *rp, *tmp; | ||
239 | |||
240 | list_for_each_entry_safe(rp, tmp, &lru_head, c_lru) { | ||
241 | if (!nfsd_cache_entry_expired(rp) && | ||
242 | num_drc_entries <= max_drc_entries) | ||
243 | break; | ||
244 | nfsd_reply_cache_free_locked(rp); | ||
245 | } | ||
246 | |||
247 | /* | ||
248 | * Conditionally rearm the job. If we cleaned out the list, then | ||
249 | * cancel any pending run (since there won't be any work to do). | ||
250 | * Otherwise, we rearm the job or modify the existing one to run in | ||
251 | * RC_EXPIRE since we just ran the pruner. | ||
252 | */ | ||
253 | if (list_empty(&lru_head)) | ||
254 | cancel_delayed_work(&cache_cleaner); | ||
255 | else | ||
256 | mod_delayed_work(system_wq, &cache_cleaner, RC_EXPIRE); | ||
257 | } | ||
258 | |||
259 | static void | ||
260 | cache_cleaner_func(struct work_struct *unused) | ||
261 | { | ||
262 | spin_lock(&cache_lock); | ||
263 | prune_cache_entries(); | ||
264 | spin_unlock(&cache_lock); | ||
265 | } | ||
266 | |||
267 | static int | ||
268 | nfsd_reply_cache_shrink(struct shrinker *shrink, struct shrink_control *sc) | ||
269 | { | ||
270 | unsigned int num; | ||
271 | |||
272 | spin_lock(&cache_lock); | ||
273 | if (sc->nr_to_scan) | ||
274 | prune_cache_entries(); | ||
275 | num = num_drc_entries; | ||
276 | spin_unlock(&cache_lock); | ||
277 | |||
278 | return num; | ||
279 | } | ||
280 | |||
281 | /* | ||
282 | * Walk an xdr_buf and get a CRC for at most the first RC_CSUMLEN bytes | ||
283 | */ | ||
284 | static __wsum | ||
285 | nfsd_cache_csum(struct svc_rqst *rqstp) | ||
286 | { | ||
287 | int idx; | ||
288 | unsigned int base; | ||
289 | __wsum csum; | ||
290 | struct xdr_buf *buf = &rqstp->rq_arg; | ||
291 | const unsigned char *p = buf->head[0].iov_base; | ||
292 | size_t csum_len = min_t(size_t, buf->head[0].iov_len + buf->page_len, | ||
293 | RC_CSUMLEN); | ||
294 | size_t len = min(buf->head[0].iov_len, csum_len); | ||
295 | |||
296 | /* rq_arg.head first */ | ||
297 | csum = csum_partial(p, len, 0); | ||
298 | csum_len -= len; | ||
299 | |||
300 | /* Continue into page array */ | ||
301 | idx = buf->page_base / PAGE_SIZE; | ||
302 | base = buf->page_base & ~PAGE_MASK; | ||
303 | while (csum_len) { | ||
304 | p = page_address(buf->pages[idx]) + base; | ||
305 | len = min_t(size_t, PAGE_SIZE - base, csum_len); | ||
306 | csum = csum_partial(p, len, csum); | ||
307 | csum_len -= len; | ||
308 | base = 0; | ||
309 | ++idx; | ||
310 | } | ||
311 | return csum; | ||
312 | } | ||
313 | |||
314 | static bool | ||
315 | nfsd_cache_match(struct svc_rqst *rqstp, __wsum csum, struct svc_cacherep *rp) | ||
316 | { | ||
317 | /* Check RPC header info first */ | ||
318 | if (rqstp->rq_xid != rp->c_xid || rqstp->rq_proc != rp->c_proc || | ||
319 | rqstp->rq_prot != rp->c_prot || rqstp->rq_vers != rp->c_vers || | ||
320 | rqstp->rq_arg.len != rp->c_len || | ||
321 | !rpc_cmp_addr(svc_addr(rqstp), (struct sockaddr *)&rp->c_addr) || | ||
322 | rpc_get_port(svc_addr(rqstp)) != rpc_get_port((struct sockaddr *)&rp->c_addr)) | ||
323 | return false; | ||
324 | |||
325 | /* compare checksum of NFS data */ | ||
326 | if (csum != rp->c_csum) { | ||
327 | ++payload_misses; | ||
328 | return false; | ||
329 | } | ||
330 | |||
331 | return true; | ||
332 | } | ||
333 | |||
334 | /* | ||
335 | * Search the request hash for an entry that matches the given rqstp. | ||
336 | * Must be called with cache_lock held. Returns the found entry or | ||
337 | * NULL on failure. | ||
338 | */ | ||
339 | static struct svc_cacherep * | ||
340 | nfsd_cache_search(struct svc_rqst *rqstp, __wsum csum) | ||
341 | { | ||
342 | struct svc_cacherep *rp, *ret = NULL; | ||
343 | struct hlist_head *rh; | ||
344 | unsigned int entries = 0; | ||
345 | |||
346 | rh = &cache_hash[hash_32(rqstp->rq_xid, maskbits)]; | ||
347 | hlist_for_each_entry(rp, rh, c_hash) { | ||
348 | ++entries; | ||
349 | if (nfsd_cache_match(rqstp, csum, rp)) { | ||
350 | ret = rp; | ||
351 | break; | ||
352 | } | ||
353 | } | ||
354 | |||
355 | /* tally hash chain length stats */ | ||
356 | if (entries > longest_chain) { | ||
357 | longest_chain = entries; | ||
358 | longest_chain_cachesize = num_drc_entries; | ||
359 | } else if (entries == longest_chain) { | ||
360 | /* prefer to keep the smallest cachesize possible here */ | ||
361 | longest_chain_cachesize = min(longest_chain_cachesize, | ||
362 | num_drc_entries); | ||
363 | } | ||
364 | |||
365 | return ret; | ||
113 | } | 366 | } |
114 | 367 | ||
115 | /* | 368 | /* |
116 | * Try to find an entry matching the current call in the cache. When none | 369 | * Try to find an entry matching the current call in the cache. When none |
117 | * is found, we grab the oldest unlocked entry off the LRU list. | 370 | * is found, we try to grab the oldest expired entry off the LRU list. If |
118 | * Note that no operation within the loop may sleep. | 371 | * a suitable one isn't there, then drop the cache_lock and allocate a |
372 | * new one, then search again in case one got inserted while this thread | ||
373 | * didn't hold the lock. | ||
119 | */ | 374 | */ |
120 | int | 375 | int |
121 | nfsd_cache_lookup(struct svc_rqst *rqstp) | 376 | nfsd_cache_lookup(struct svc_rqst *rqstp) |
122 | { | 377 | { |
123 | struct hlist_node *hn; | 378 | struct svc_cacherep *rp, *found; |
124 | struct hlist_head *rh; | ||
125 | struct svc_cacherep *rp; | ||
126 | __be32 xid = rqstp->rq_xid; | 379 | __be32 xid = rqstp->rq_xid; |
127 | u32 proto = rqstp->rq_prot, | 380 | u32 proto = rqstp->rq_prot, |
128 | vers = rqstp->rq_vers, | 381 | vers = rqstp->rq_vers, |
129 | proc = rqstp->rq_proc; | 382 | proc = rqstp->rq_proc; |
383 | __wsum csum; | ||
130 | unsigned long age; | 384 | unsigned long age; |
131 | int type = rqstp->rq_cachetype; | 385 | int type = rqstp->rq_cachetype; |
132 | int rtn; | 386 | int rtn = RC_DOIT; |
133 | 387 | ||
134 | rqstp->rq_cacherep = NULL; | 388 | rqstp->rq_cacherep = NULL; |
135 | if (cache_disabled || type == RC_NOCACHE) { | 389 | if (type == RC_NOCACHE) { |
136 | nfsdstats.rcnocache++; | 390 | nfsdstats.rcnocache++; |
137 | return RC_DOIT; | 391 | return rtn; |
138 | } | 392 | } |
139 | 393 | ||
140 | spin_lock(&cache_lock); | 394 | csum = nfsd_cache_csum(rqstp); |
141 | rtn = RC_DOIT; | ||
142 | 395 | ||
143 | rh = &cache_hash[request_hash(xid)]; | 396 | /* |
144 | hlist_for_each_entry(rp, hn, rh, c_hash) { | 397 | * Since the common case is a cache miss followed by an insert, |
145 | if (rp->c_state != RC_UNUSED && | 398 | * preallocate an entry. First, try to reuse the first entry on the LRU |
146 | xid == rp->c_xid && proc == rp->c_proc && | 399 | * if it works, then go ahead and prune the LRU list. |
147 | proto == rp->c_prot && vers == rp->c_vers && | 400 | */ |
148 | time_before(jiffies, rp->c_timestamp + 120*HZ) && | 401 | spin_lock(&cache_lock); |
149 | memcmp((char*)&rqstp->rq_addr, (char*)&rp->c_addr, sizeof(rp->c_addr))==0) { | 402 | if (!list_empty(&lru_head)) { |
150 | nfsdstats.rchits++; | 403 | rp = list_first_entry(&lru_head, struct svc_cacherep, c_lru); |
151 | goto found_entry; | 404 | if (nfsd_cache_entry_expired(rp) || |
405 | num_drc_entries >= max_drc_entries) { | ||
406 | lru_put_end(rp); | ||
407 | prune_cache_entries(); | ||
408 | goto search_cache; | ||
152 | } | 409 | } |
153 | } | 410 | } |
154 | nfsdstats.rcmisses++; | ||
155 | 411 | ||
156 | /* This loop shouldn't take more than a few iterations normally */ | 412 | /* No expired ones available, allocate a new one. */ |
157 | { | 413 | spin_unlock(&cache_lock); |
158 | int safe = 0; | 414 | rp = nfsd_reply_cache_alloc(); |
159 | list_for_each_entry(rp, &lru_head, c_lru) { | 415 | spin_lock(&cache_lock); |
160 | if (rp->c_state != RC_INPROG) | 416 | if (likely(rp)) { |
161 | break; | 417 | ++num_drc_entries; |
162 | if (safe++ > CACHESIZE) { | 418 | drc_mem_usage += sizeof(*rp); |
163 | printk("nfsd: loop in repcache LRU list\n"); | ||
164 | cache_disabled = 1; | ||
165 | goto out; | ||
166 | } | ||
167 | } | ||
168 | } | 419 | } |
169 | 420 | ||
170 | /* All entries on the LRU are in-progress. This should not happen */ | 421 | search_cache: |
171 | if (&rp->c_lru == &lru_head) { | 422 | found = nfsd_cache_search(rqstp, csum); |
172 | static int complaints; | 423 | if (found) { |
424 | if (likely(rp)) | ||
425 | nfsd_reply_cache_free_locked(rp); | ||
426 | rp = found; | ||
427 | goto found_entry; | ||
428 | } | ||
173 | 429 | ||
174 | printk(KERN_WARNING "nfsd: all repcache entries locked!\n"); | 430 | if (!rp) { |
175 | if (++complaints > 5) { | 431 | dprintk("nfsd: unable to allocate DRC entry!\n"); |
176 | printk(KERN_WARNING "nfsd: disabling repcache.\n"); | ||
177 | cache_disabled = 1; | ||
178 | } | ||
179 | goto out; | 432 | goto out; |
180 | } | 433 | } |
181 | 434 | ||
435 | /* | ||
436 | * We're keeping the one we just allocated. Are we now over the | ||
437 | * limit? Prune one off the tip of the LRU in trade for the one we | ||
438 | * just allocated if so. | ||
439 | */ | ||
440 | if (num_drc_entries >= max_drc_entries) | ||
441 | nfsd_reply_cache_free_locked(list_first_entry(&lru_head, | ||
442 | struct svc_cacherep, c_lru)); | ||
443 | |||
444 | nfsdstats.rcmisses++; | ||
182 | rqstp->rq_cacherep = rp; | 445 | rqstp->rq_cacherep = rp; |
183 | rp->c_state = RC_INPROG; | 446 | rp->c_state = RC_INPROG; |
184 | rp->c_xid = xid; | 447 | rp->c_xid = xid; |
185 | rp->c_proc = proc; | 448 | rp->c_proc = proc; |
186 | memcpy(&rp->c_addr, svc_addr_in(rqstp), sizeof(rp->c_addr)); | 449 | rpc_copy_addr((struct sockaddr *)&rp->c_addr, svc_addr(rqstp)); |
450 | rpc_set_port((struct sockaddr *)&rp->c_addr, rpc_get_port(svc_addr(rqstp))); | ||
187 | rp->c_prot = proto; | 451 | rp->c_prot = proto; |
188 | rp->c_vers = vers; | 452 | rp->c_vers = vers; |
189 | rp->c_timestamp = jiffies; | 453 | rp->c_len = rqstp->rq_arg.len; |
454 | rp->c_csum = csum; | ||
190 | 455 | ||
191 | hash_refile(rp); | 456 | hash_refile(rp); |
457 | lru_put_end(rp); | ||
192 | 458 | ||
193 | /* release any buffer */ | 459 | /* release any buffer */ |
194 | if (rp->c_type == RC_REPLBUFF) { | 460 | if (rp->c_type == RC_REPLBUFF) { |
461 | drc_mem_usage -= rp->c_replvec.iov_len; | ||
195 | kfree(rp->c_replvec.iov_base); | 462 | kfree(rp->c_replvec.iov_base); |
196 | rp->c_replvec.iov_base = NULL; | 463 | rp->c_replvec.iov_base = NULL; |
197 | } | 464 | } |
@@ -201,9 +468,9 @@ nfsd_cache_lookup(struct svc_rqst *rqstp) | |||
201 | return rtn; | 468 | return rtn; |
202 | 469 | ||
203 | found_entry: | 470 | found_entry: |
471 | nfsdstats.rchits++; | ||
204 | /* We found a matching entry which is either in progress or done. */ | 472 | /* We found a matching entry which is either in progress or done. */ |
205 | age = jiffies - rp->c_timestamp; | 473 | age = jiffies - rp->c_timestamp; |
206 | rp->c_timestamp = jiffies; | ||
207 | lru_put_end(rp); | 474 | lru_put_end(rp); |
208 | 475 | ||
209 | rtn = RC_DROPIT; | 476 | rtn = RC_DROPIT; |
@@ -232,7 +499,7 @@ found_entry: | |||
232 | break; | 499 | break; |
233 | default: | 500 | default: |
234 | printk(KERN_WARNING "nfsd: bad repcache type %d\n", rp->c_type); | 501 | printk(KERN_WARNING "nfsd: bad repcache type %d\n", rp->c_type); |
235 | rp->c_state = RC_UNUSED; | 502 | nfsd_reply_cache_free_locked(rp); |
236 | } | 503 | } |
237 | 504 | ||
238 | goto out; | 505 | goto out; |
@@ -257,11 +524,12 @@ found_entry: | |||
257 | void | 524 | void |
258 | nfsd_cache_update(struct svc_rqst *rqstp, int cachetype, __be32 *statp) | 525 | nfsd_cache_update(struct svc_rqst *rqstp, int cachetype, __be32 *statp) |
259 | { | 526 | { |
260 | struct svc_cacherep *rp; | 527 | struct svc_cacherep *rp = rqstp->rq_cacherep; |
261 | struct kvec *resv = &rqstp->rq_res.head[0], *cachv; | 528 | struct kvec *resv = &rqstp->rq_res.head[0], *cachv; |
262 | int len; | 529 | int len; |
530 | size_t bufsize = 0; | ||
263 | 531 | ||
264 | if (!(rp = rqstp->rq_cacherep) || cache_disabled) | 532 | if (!rp) |
265 | return; | 533 | return; |
266 | 534 | ||
267 | len = resv->iov_len - ((char*)statp - (char*)resv->iov_base); | 535 | len = resv->iov_len - ((char*)statp - (char*)resv->iov_base); |
@@ -269,7 +537,7 @@ nfsd_cache_update(struct svc_rqst *rqstp, int cachetype, __be32 *statp) | |||
269 | 537 | ||
270 | /* Don't cache excessive amounts of data and XDR failures */ | 538 | /* Don't cache excessive amounts of data and XDR failures */ |
271 | if (!statp || len > (256 >> 2)) { | 539 | if (!statp || len > (256 >> 2)) { |
272 | rp->c_state = RC_UNUSED; | 540 | nfsd_reply_cache_free(rp); |
273 | return; | 541 | return; |
274 | } | 542 | } |
275 | 543 | ||
@@ -281,23 +549,25 @@ nfsd_cache_update(struct svc_rqst *rqstp, int cachetype, __be32 *statp) | |||
281 | break; | 549 | break; |
282 | case RC_REPLBUFF: | 550 | case RC_REPLBUFF: |
283 | cachv = &rp->c_replvec; | 551 | cachv = &rp->c_replvec; |
284 | cachv->iov_base = kmalloc(len << 2, GFP_KERNEL); | 552 | bufsize = len << 2; |
553 | cachv->iov_base = kmalloc(bufsize, GFP_KERNEL); | ||
285 | if (!cachv->iov_base) { | 554 | if (!cachv->iov_base) { |
286 | spin_lock(&cache_lock); | 555 | nfsd_reply_cache_free(rp); |
287 | rp->c_state = RC_UNUSED; | ||
288 | spin_unlock(&cache_lock); | ||
289 | return; | 556 | return; |
290 | } | 557 | } |
291 | cachv->iov_len = len << 2; | 558 | cachv->iov_len = bufsize; |
292 | memcpy(cachv->iov_base, statp, len << 2); | 559 | memcpy(cachv->iov_base, statp, bufsize); |
293 | break; | 560 | break; |
561 | case RC_NOCACHE: | ||
562 | nfsd_reply_cache_free(rp); | ||
563 | return; | ||
294 | } | 564 | } |
295 | spin_lock(&cache_lock); | 565 | spin_lock(&cache_lock); |
566 | drc_mem_usage += bufsize; | ||
296 | lru_put_end(rp); | 567 | lru_put_end(rp); |
297 | rp->c_secure = rqstp->rq_secure; | 568 | rp->c_secure = rqstp->rq_secure; |
298 | rp->c_type = cachetype; | 569 | rp->c_type = cachetype; |
299 | rp->c_state = RC_DONE; | 570 | rp->c_state = RC_DONE; |
300 | rp->c_timestamp = jiffies; | ||
301 | spin_unlock(&cache_lock); | 571 | spin_unlock(&cache_lock); |
302 | return; | 572 | return; |
303 | } | 573 | } |
@@ -321,3 +591,30 @@ nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *data) | |||
321 | vec->iov_len += data->iov_len; | 591 | vec->iov_len += data->iov_len; |
322 | return 1; | 592 | return 1; |
323 | } | 593 | } |
594 | |||
595 | /* | ||
596 | * Note that fields may be added, removed or reordered in the future. Programs | ||
597 | * scraping this file for info should test the labels to ensure they're | ||
598 | * getting the correct field. | ||
599 | */ | ||
600 | static int nfsd_reply_cache_stats_show(struct seq_file *m, void *v) | ||
601 | { | ||
602 | spin_lock(&cache_lock); | ||
603 | seq_printf(m, "max entries: %u\n", max_drc_entries); | ||
604 | seq_printf(m, "num entries: %u\n", num_drc_entries); | ||
605 | seq_printf(m, "hash buckets: %u\n", 1 << maskbits); | ||
606 | seq_printf(m, "mem usage: %u\n", drc_mem_usage); | ||
607 | seq_printf(m, "cache hits: %u\n", nfsdstats.rchits); | ||
608 | seq_printf(m, "cache misses: %u\n", nfsdstats.rcmisses); | ||
609 | seq_printf(m, "not cached: %u\n", nfsdstats.rcnocache); | ||
610 | seq_printf(m, "payload misses: %u\n", payload_misses); | ||
611 | seq_printf(m, "longest chain len: %u\n", longest_chain); | ||
612 | seq_printf(m, "cachesize at longest: %u\n", longest_chain_cachesize); | ||
613 | spin_unlock(&cache_lock); | ||
614 | return 0; | ||
615 | } | ||
616 | |||
617 | int nfsd_reply_cache_stats_open(struct inode *inode, struct file *file) | ||
618 | { | ||
619 | return single_open(file, nfsd_reply_cache_stats_show, NULL); | ||
620 | } | ||