aboutsummaryrefslogtreecommitdiffstats
path: root/fs/namespace.c
diff options
context:
space:
mode:
Diffstat (limited to 'fs/namespace.c')
-rw-r--r--fs/namespace.c647
1 files changed, 579 insertions, 68 deletions
diff --git a/fs/namespace.c b/fs/namespace.c
index 94f026ec990a..0505fb61aa74 100644
--- a/fs/namespace.c
+++ b/fs/namespace.c
@@ -17,6 +17,7 @@
17#include <linux/quotaops.h> 17#include <linux/quotaops.h>
18#include <linux/acct.h> 18#include <linux/acct.h>
19#include <linux/capability.h> 19#include <linux/capability.h>
20#include <linux/cpumask.h>
20#include <linux/module.h> 21#include <linux/module.h>
21#include <linux/sysfs.h> 22#include <linux/sysfs.h>
22#include <linux/seq_file.h> 23#include <linux/seq_file.h>
@@ -26,6 +27,7 @@
26#include <linux/mount.h> 27#include <linux/mount.h>
27#include <linux/ramfs.h> 28#include <linux/ramfs.h>
28#include <linux/log2.h> 29#include <linux/log2.h>
30#include <linux/idr.h>
29#include <asm/uaccess.h> 31#include <asm/uaccess.h>
30#include <asm/unistd.h> 32#include <asm/unistd.h>
31#include "pnode.h" 33#include "pnode.h"
@@ -38,6 +40,8 @@
38__cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock); 40__cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock);
39 41
40static int event; 42static int event;
43static DEFINE_IDA(mnt_id_ida);
44static DEFINE_IDA(mnt_group_ida);
41 45
42static struct list_head *mount_hashtable __read_mostly; 46static struct list_head *mount_hashtable __read_mostly;
43static struct kmem_cache *mnt_cache __read_mostly; 47static struct kmem_cache *mnt_cache __read_mostly;
@@ -55,10 +59,65 @@ static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
55 return tmp & (HASH_SIZE - 1); 59 return tmp & (HASH_SIZE - 1);
56} 60}
57 61
62#define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
63
64/* allocation is serialized by namespace_sem */
65static int mnt_alloc_id(struct vfsmount *mnt)
66{
67 int res;
68
69retry:
70 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
71 spin_lock(&vfsmount_lock);
72 res = ida_get_new(&mnt_id_ida, &mnt->mnt_id);
73 spin_unlock(&vfsmount_lock);
74 if (res == -EAGAIN)
75 goto retry;
76
77 return res;
78}
79
80static void mnt_free_id(struct vfsmount *mnt)
81{
82 spin_lock(&vfsmount_lock);
83 ida_remove(&mnt_id_ida, mnt->mnt_id);
84 spin_unlock(&vfsmount_lock);
85}
86
87/*
88 * Allocate a new peer group ID
89 *
90 * mnt_group_ida is protected by namespace_sem
91 */
92static int mnt_alloc_group_id(struct vfsmount *mnt)
93{
94 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
95 return -ENOMEM;
96
97 return ida_get_new_above(&mnt_group_ida, 1, &mnt->mnt_group_id);
98}
99
100/*
101 * Release a peer group ID
102 */
103void mnt_release_group_id(struct vfsmount *mnt)
104{
105 ida_remove(&mnt_group_ida, mnt->mnt_group_id);
106 mnt->mnt_group_id = 0;
107}
108
58struct vfsmount *alloc_vfsmnt(const char *name) 109struct vfsmount *alloc_vfsmnt(const char *name)
59{ 110{
60 struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL); 111 struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
61 if (mnt) { 112 if (mnt) {
113 int err;
114
115 err = mnt_alloc_id(mnt);
116 if (err) {
117 kmem_cache_free(mnt_cache, mnt);
118 return NULL;
119 }
120
62 atomic_set(&mnt->mnt_count, 1); 121 atomic_set(&mnt->mnt_count, 1);
63 INIT_LIST_HEAD(&mnt->mnt_hash); 122 INIT_LIST_HEAD(&mnt->mnt_hash);
64 INIT_LIST_HEAD(&mnt->mnt_child); 123 INIT_LIST_HEAD(&mnt->mnt_child);
@@ -68,6 +127,7 @@ struct vfsmount *alloc_vfsmnt(const char *name)
68 INIT_LIST_HEAD(&mnt->mnt_share); 127 INIT_LIST_HEAD(&mnt->mnt_share);
69 INIT_LIST_HEAD(&mnt->mnt_slave_list); 128 INIT_LIST_HEAD(&mnt->mnt_slave_list);
70 INIT_LIST_HEAD(&mnt->mnt_slave); 129 INIT_LIST_HEAD(&mnt->mnt_slave);
130 atomic_set(&mnt->__mnt_writers, 0);
71 if (name) { 131 if (name) {
72 int size = strlen(name) + 1; 132 int size = strlen(name) + 1;
73 char *newname = kmalloc(size, GFP_KERNEL); 133 char *newname = kmalloc(size, GFP_KERNEL);
@@ -80,6 +140,263 @@ struct vfsmount *alloc_vfsmnt(const char *name)
80 return mnt; 140 return mnt;
81} 141}
82 142
143/*
144 * Most r/o checks on a fs are for operations that take
145 * discrete amounts of time, like a write() or unlink().
146 * We must keep track of when those operations start
147 * (for permission checks) and when they end, so that
148 * we can determine when writes are able to occur to
149 * a filesystem.
150 */
151/*
152 * __mnt_is_readonly: check whether a mount is read-only
153 * @mnt: the mount to check for its write status
154 *
155 * This shouldn't be used directly ouside of the VFS.
156 * It does not guarantee that the filesystem will stay
157 * r/w, just that it is right *now*. This can not and
158 * should not be used in place of IS_RDONLY(inode).
159 * mnt_want/drop_write() will _keep_ the filesystem
160 * r/w.
161 */
162int __mnt_is_readonly(struct vfsmount *mnt)
163{
164 if (mnt->mnt_flags & MNT_READONLY)
165 return 1;
166 if (mnt->mnt_sb->s_flags & MS_RDONLY)
167 return 1;
168 return 0;
169}
170EXPORT_SYMBOL_GPL(__mnt_is_readonly);
171
172struct mnt_writer {
173 /*
174 * If holding multiple instances of this lock, they
175 * must be ordered by cpu number.
176 */
177 spinlock_t lock;
178 struct lock_class_key lock_class; /* compiles out with !lockdep */
179 unsigned long count;
180 struct vfsmount *mnt;
181} ____cacheline_aligned_in_smp;
182static DEFINE_PER_CPU(struct mnt_writer, mnt_writers);
183
184static int __init init_mnt_writers(void)
185{
186 int cpu;
187 for_each_possible_cpu(cpu) {
188 struct mnt_writer *writer = &per_cpu(mnt_writers, cpu);
189 spin_lock_init(&writer->lock);
190 lockdep_set_class(&writer->lock, &writer->lock_class);
191 writer->count = 0;
192 }
193 return 0;
194}
195fs_initcall(init_mnt_writers);
196
197static void unlock_mnt_writers(void)
198{
199 int cpu;
200 struct mnt_writer *cpu_writer;
201
202 for_each_possible_cpu(cpu) {
203 cpu_writer = &per_cpu(mnt_writers, cpu);
204 spin_unlock(&cpu_writer->lock);
205 }
206}
207
208static inline void __clear_mnt_count(struct mnt_writer *cpu_writer)
209{
210 if (!cpu_writer->mnt)
211 return;
212 /*
213 * This is in case anyone ever leaves an invalid,
214 * old ->mnt and a count of 0.
215 */
216 if (!cpu_writer->count)
217 return;
218 atomic_add(cpu_writer->count, &cpu_writer->mnt->__mnt_writers);
219 cpu_writer->count = 0;
220}
221 /*
222 * must hold cpu_writer->lock
223 */
224static inline void use_cpu_writer_for_mount(struct mnt_writer *cpu_writer,
225 struct vfsmount *mnt)
226{
227 if (cpu_writer->mnt == mnt)
228 return;
229 __clear_mnt_count(cpu_writer);
230 cpu_writer->mnt = mnt;
231}
232
233/*
234 * Most r/o checks on a fs are for operations that take
235 * discrete amounts of time, like a write() or unlink().
236 * We must keep track of when those operations start
237 * (for permission checks) and when they end, so that
238 * we can determine when writes are able to occur to
239 * a filesystem.
240 */
241/**
242 * mnt_want_write - get write access to a mount
243 * @mnt: the mount on which to take a write
244 *
245 * This tells the low-level filesystem that a write is
246 * about to be performed to it, and makes sure that
247 * writes are allowed before returning success. When
248 * the write operation is finished, mnt_drop_write()
249 * must be called. This is effectively a refcount.
250 */
251int mnt_want_write(struct vfsmount *mnt)
252{
253 int ret = 0;
254 struct mnt_writer *cpu_writer;
255
256 cpu_writer = &get_cpu_var(mnt_writers);
257 spin_lock(&cpu_writer->lock);
258 if (__mnt_is_readonly(mnt)) {
259 ret = -EROFS;
260 goto out;
261 }
262 use_cpu_writer_for_mount(cpu_writer, mnt);
263 cpu_writer->count++;
264out:
265 spin_unlock(&cpu_writer->lock);
266 put_cpu_var(mnt_writers);
267 return ret;
268}
269EXPORT_SYMBOL_GPL(mnt_want_write);
270
271static void lock_mnt_writers(void)
272{
273 int cpu;
274 struct mnt_writer *cpu_writer;
275
276 for_each_possible_cpu(cpu) {
277 cpu_writer = &per_cpu(mnt_writers, cpu);
278 spin_lock(&cpu_writer->lock);
279 __clear_mnt_count(cpu_writer);
280 cpu_writer->mnt = NULL;
281 }
282}
283
284/*
285 * These per-cpu write counts are not guaranteed to have
286 * matched increments and decrements on any given cpu.
287 * A file open()ed for write on one cpu and close()d on
288 * another cpu will imbalance this count. Make sure it
289 * does not get too far out of whack.
290 */
291static void handle_write_count_underflow(struct vfsmount *mnt)
292{
293 if (atomic_read(&mnt->__mnt_writers) >=
294 MNT_WRITER_UNDERFLOW_LIMIT)
295 return;
296 /*
297 * It isn't necessary to hold all of the locks
298 * at the same time, but doing it this way makes
299 * us share a lot more code.
300 */
301 lock_mnt_writers();
302 /*
303 * vfsmount_lock is for mnt_flags.
304 */
305 spin_lock(&vfsmount_lock);
306 /*
307 * If coalescing the per-cpu writer counts did not
308 * get us back to a positive writer count, we have
309 * a bug.
310 */
311 if ((atomic_read(&mnt->__mnt_writers) < 0) &&
312 !(mnt->mnt_flags & MNT_IMBALANCED_WRITE_COUNT)) {
313 printk(KERN_DEBUG "leak detected on mount(%p) writers "
314 "count: %d\n",
315 mnt, atomic_read(&mnt->__mnt_writers));
316 WARN_ON(1);
317 /* use the flag to keep the dmesg spam down */
318 mnt->mnt_flags |= MNT_IMBALANCED_WRITE_COUNT;
319 }
320 spin_unlock(&vfsmount_lock);
321 unlock_mnt_writers();
322}
323
324/**
325 * mnt_drop_write - give up write access to a mount
326 * @mnt: the mount on which to give up write access
327 *
328 * Tells the low-level filesystem that we are done
329 * performing writes to it. Must be matched with
330 * mnt_want_write() call above.
331 */
332void mnt_drop_write(struct vfsmount *mnt)
333{
334 int must_check_underflow = 0;
335 struct mnt_writer *cpu_writer;
336
337 cpu_writer = &get_cpu_var(mnt_writers);
338 spin_lock(&cpu_writer->lock);
339
340 use_cpu_writer_for_mount(cpu_writer, mnt);
341 if (cpu_writer->count > 0) {
342 cpu_writer->count--;
343 } else {
344 must_check_underflow = 1;
345 atomic_dec(&mnt->__mnt_writers);
346 }
347
348 spin_unlock(&cpu_writer->lock);
349 /*
350 * Logically, we could call this each time,
351 * but the __mnt_writers cacheline tends to
352 * be cold, and makes this expensive.
353 */
354 if (must_check_underflow)
355 handle_write_count_underflow(mnt);
356 /*
357 * This could be done right after the spinlock
358 * is taken because the spinlock keeps us on
359 * the cpu, and disables preemption. However,
360 * putting it here bounds the amount that
361 * __mnt_writers can underflow. Without it,
362 * we could theoretically wrap __mnt_writers.
363 */
364 put_cpu_var(mnt_writers);
365}
366EXPORT_SYMBOL_GPL(mnt_drop_write);
367
368static int mnt_make_readonly(struct vfsmount *mnt)
369{
370 int ret = 0;
371
372 lock_mnt_writers();
373 /*
374 * With all the locks held, this value is stable
375 */
376 if (atomic_read(&mnt->__mnt_writers) > 0) {
377 ret = -EBUSY;
378 goto out;
379 }
380 /*
381 * nobody can do a successful mnt_want_write() with all
382 * of the counts in MNT_DENIED_WRITE and the locks held.
383 */
384 spin_lock(&vfsmount_lock);
385 if (!ret)
386 mnt->mnt_flags |= MNT_READONLY;
387 spin_unlock(&vfsmount_lock);
388out:
389 unlock_mnt_writers();
390 return ret;
391}
392
393static void __mnt_unmake_readonly(struct vfsmount *mnt)
394{
395 spin_lock(&vfsmount_lock);
396 mnt->mnt_flags &= ~MNT_READONLY;
397 spin_unlock(&vfsmount_lock);
398}
399
83int simple_set_mnt(struct vfsmount *mnt, struct super_block *sb) 400int simple_set_mnt(struct vfsmount *mnt, struct super_block *sb)
84{ 401{
85 mnt->mnt_sb = sb; 402 mnt->mnt_sb = sb;
@@ -92,6 +409,7 @@ EXPORT_SYMBOL(simple_set_mnt);
92void free_vfsmnt(struct vfsmount *mnt) 409void free_vfsmnt(struct vfsmount *mnt)
93{ 410{
94 kfree(mnt->mnt_devname); 411 kfree(mnt->mnt_devname);
412 mnt_free_id(mnt);
95 kmem_cache_free(mnt_cache, mnt); 413 kmem_cache_free(mnt_cache, mnt);
96} 414}
97 415
@@ -238,6 +556,17 @@ static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
238 struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname); 556 struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
239 557
240 if (mnt) { 558 if (mnt) {
559 if (flag & (CL_SLAVE | CL_PRIVATE))
560 mnt->mnt_group_id = 0; /* not a peer of original */
561 else
562 mnt->mnt_group_id = old->mnt_group_id;
563
564 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
565 int err = mnt_alloc_group_id(mnt);
566 if (err)
567 goto out_free;
568 }
569
241 mnt->mnt_flags = old->mnt_flags; 570 mnt->mnt_flags = old->mnt_flags;
242 atomic_inc(&sb->s_active); 571 atomic_inc(&sb->s_active);
243 mnt->mnt_sb = sb; 572 mnt->mnt_sb = sb;
@@ -267,11 +596,44 @@ static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
267 } 596 }
268 } 597 }
269 return mnt; 598 return mnt;
599
600 out_free:
601 free_vfsmnt(mnt);
602 return NULL;
270} 603}
271 604
272static inline void __mntput(struct vfsmount *mnt) 605static inline void __mntput(struct vfsmount *mnt)
273{ 606{
607 int cpu;
274 struct super_block *sb = mnt->mnt_sb; 608 struct super_block *sb = mnt->mnt_sb;
609 /*
610 * We don't have to hold all of the locks at the
611 * same time here because we know that we're the
612 * last reference to mnt and that no new writers
613 * can come in.
614 */
615 for_each_possible_cpu(cpu) {
616 struct mnt_writer *cpu_writer = &per_cpu(mnt_writers, cpu);
617 if (cpu_writer->mnt != mnt)
618 continue;
619 spin_lock(&cpu_writer->lock);
620 atomic_add(cpu_writer->count, &mnt->__mnt_writers);
621 cpu_writer->count = 0;
622 /*
623 * Might as well do this so that no one
624 * ever sees the pointer and expects
625 * it to be valid.
626 */
627 cpu_writer->mnt = NULL;
628 spin_unlock(&cpu_writer->lock);
629 }
630 /*
631 * This probably indicates that somebody messed
632 * up a mnt_want/drop_write() pair. If this
633 * happens, the filesystem was probably unable
634 * to make r/w->r/o transitions.
635 */
636 WARN_ON(atomic_read(&mnt->__mnt_writers));
275 dput(mnt->mnt_root); 637 dput(mnt->mnt_root);
276 free_vfsmnt(mnt); 638 free_vfsmnt(mnt);
277 deactivate_super(sb); 639 deactivate_super(sb);
@@ -362,20 +724,21 @@ void save_mount_options(struct super_block *sb, char *options)
362} 724}
363EXPORT_SYMBOL(save_mount_options); 725EXPORT_SYMBOL(save_mount_options);
364 726
727#ifdef CONFIG_PROC_FS
365/* iterator */ 728/* iterator */
366static void *m_start(struct seq_file *m, loff_t *pos) 729static void *m_start(struct seq_file *m, loff_t *pos)
367{ 730{
368 struct mnt_namespace *n = m->private; 731 struct proc_mounts *p = m->private;
369 732
370 down_read(&namespace_sem); 733 down_read(&namespace_sem);
371 return seq_list_start(&n->list, *pos); 734 return seq_list_start(&p->ns->list, *pos);
372} 735}
373 736
374static void *m_next(struct seq_file *m, void *v, loff_t *pos) 737static void *m_next(struct seq_file *m, void *v, loff_t *pos)
375{ 738{
376 struct mnt_namespace *n = m->private; 739 struct proc_mounts *p = m->private;
377 740
378 return seq_list_next(v, &n->list, pos); 741 return seq_list_next(v, &p->ns->list, pos);
379} 742}
380 743
381static void m_stop(struct seq_file *m, void *v) 744static void m_stop(struct seq_file *m, void *v)
@@ -383,20 +746,30 @@ static void m_stop(struct seq_file *m, void *v)
383 up_read(&namespace_sem); 746 up_read(&namespace_sem);
384} 747}
385 748
386static int show_vfsmnt(struct seq_file *m, void *v) 749struct proc_fs_info {
750 int flag;
751 const char *str;
752};
753
754static void show_sb_opts(struct seq_file *m, struct super_block *sb)
387{ 755{
388 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list); 756 static const struct proc_fs_info fs_info[] = {
389 int err = 0;
390 static struct proc_fs_info {
391 int flag;
392 char *str;
393 } fs_info[] = {
394 { MS_SYNCHRONOUS, ",sync" }, 757 { MS_SYNCHRONOUS, ",sync" },
395 { MS_DIRSYNC, ",dirsync" }, 758 { MS_DIRSYNC, ",dirsync" },
396 { MS_MANDLOCK, ",mand" }, 759 { MS_MANDLOCK, ",mand" },
397 { 0, NULL } 760 { 0, NULL }
398 }; 761 };
399 static struct proc_fs_info mnt_info[] = { 762 const struct proc_fs_info *fs_infop;
763
764 for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
765 if (sb->s_flags & fs_infop->flag)
766 seq_puts(m, fs_infop->str);
767 }
768}
769
770static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt)
771{
772 static const struct proc_fs_info mnt_info[] = {
400 { MNT_NOSUID, ",nosuid" }, 773 { MNT_NOSUID, ",nosuid" },
401 { MNT_NODEV, ",nodev" }, 774 { MNT_NODEV, ",nodev" },
402 { MNT_NOEXEC, ",noexec" }, 775 { MNT_NOEXEC, ",noexec" },
@@ -405,40 +778,108 @@ static int show_vfsmnt(struct seq_file *m, void *v)
405 { MNT_RELATIME, ",relatime" }, 778 { MNT_RELATIME, ",relatime" },
406 { 0, NULL } 779 { 0, NULL }
407 }; 780 };
408 struct proc_fs_info *fs_infop; 781 const struct proc_fs_info *fs_infop;
782
783 for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
784 if (mnt->mnt_flags & fs_infop->flag)
785 seq_puts(m, fs_infop->str);
786 }
787}
788
789static void show_type(struct seq_file *m, struct super_block *sb)
790{
791 mangle(m, sb->s_type->name);
792 if (sb->s_subtype && sb->s_subtype[0]) {
793 seq_putc(m, '.');
794 mangle(m, sb->s_subtype);
795 }
796}
797
798static int show_vfsmnt(struct seq_file *m, void *v)
799{
800 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
801 int err = 0;
409 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt }; 802 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
410 803
411 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none"); 804 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
412 seq_putc(m, ' '); 805 seq_putc(m, ' ');
413 seq_path(m, &mnt_path, " \t\n\\"); 806 seq_path(m, &mnt_path, " \t\n\\");
414 seq_putc(m, ' '); 807 seq_putc(m, ' ');
415 mangle(m, mnt->mnt_sb->s_type->name); 808 show_type(m, mnt->mnt_sb);
416 if (mnt->mnt_sb->s_subtype && mnt->mnt_sb->s_subtype[0]) { 809 seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw");
417 seq_putc(m, '.'); 810 show_sb_opts(m, mnt->mnt_sb);
418 mangle(m, mnt->mnt_sb->s_subtype); 811 show_mnt_opts(m, mnt);
419 }
420 seq_puts(m, mnt->mnt_sb->s_flags & MS_RDONLY ? " ro" : " rw");
421 for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
422 if (mnt->mnt_sb->s_flags & fs_infop->flag)
423 seq_puts(m, fs_infop->str);
424 }
425 for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
426 if (mnt->mnt_flags & fs_infop->flag)
427 seq_puts(m, fs_infop->str);
428 }
429 if (mnt->mnt_sb->s_op->show_options) 812 if (mnt->mnt_sb->s_op->show_options)
430 err = mnt->mnt_sb->s_op->show_options(m, mnt); 813 err = mnt->mnt_sb->s_op->show_options(m, mnt);
431 seq_puts(m, " 0 0\n"); 814 seq_puts(m, " 0 0\n");
432 return err; 815 return err;
433} 816}
434 817
435struct seq_operations mounts_op = { 818const struct seq_operations mounts_op = {
436 .start = m_start, 819 .start = m_start,
437 .next = m_next, 820 .next = m_next,
438 .stop = m_stop, 821 .stop = m_stop,
439 .show = show_vfsmnt 822 .show = show_vfsmnt
440}; 823};
441 824
825static int show_mountinfo(struct seq_file *m, void *v)
826{
827 struct proc_mounts *p = m->private;
828 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
829 struct super_block *sb = mnt->mnt_sb;
830 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
831 struct path root = p->root;
832 int err = 0;
833
834 seq_printf(m, "%i %i %u:%u ", mnt->mnt_id, mnt->mnt_parent->mnt_id,
835 MAJOR(sb->s_dev), MINOR(sb->s_dev));
836 seq_dentry(m, mnt->mnt_root, " \t\n\\");
837 seq_putc(m, ' ');
838 seq_path_root(m, &mnt_path, &root, " \t\n\\");
839 if (root.mnt != p->root.mnt || root.dentry != p->root.dentry) {
840 /*
841 * Mountpoint is outside root, discard that one. Ugly,
842 * but less so than trying to do that in iterator in a
843 * race-free way (due to renames).
844 */
845 return SEQ_SKIP;
846 }
847 seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw");
848 show_mnt_opts(m, mnt);
849
850 /* Tagged fields ("foo:X" or "bar") */
851 if (IS_MNT_SHARED(mnt))
852 seq_printf(m, " shared:%i", mnt->mnt_group_id);
853 if (IS_MNT_SLAVE(mnt)) {
854 int master = mnt->mnt_master->mnt_group_id;
855 int dom = get_dominating_id(mnt, &p->root);
856 seq_printf(m, " master:%i", master);
857 if (dom && dom != master)
858 seq_printf(m, " propagate_from:%i", dom);
859 }
860 if (IS_MNT_UNBINDABLE(mnt))
861 seq_puts(m, " unbindable");
862
863 /* Filesystem specific data */
864 seq_puts(m, " - ");
865 show_type(m, sb);
866 seq_putc(m, ' ');
867 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
868 seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw");
869 show_sb_opts(m, sb);
870 if (sb->s_op->show_options)
871 err = sb->s_op->show_options(m, mnt);
872 seq_putc(m, '\n');
873 return err;
874}
875
876const struct seq_operations mountinfo_op = {
877 .start = m_start,
878 .next = m_next,
879 .stop = m_stop,
880 .show = show_mountinfo,
881};
882
442static int show_vfsstat(struct seq_file *m, void *v) 883static int show_vfsstat(struct seq_file *m, void *v)
443{ 884{
444 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list); 885 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
@@ -459,7 +900,7 @@ static int show_vfsstat(struct seq_file *m, void *v)
459 900
460 /* file system type */ 901 /* file system type */
461 seq_puts(m, "with fstype "); 902 seq_puts(m, "with fstype ");
462 mangle(m, mnt->mnt_sb->s_type->name); 903 show_type(m, mnt->mnt_sb);
463 904
464 /* optional statistics */ 905 /* optional statistics */
465 if (mnt->mnt_sb->s_op->show_stats) { 906 if (mnt->mnt_sb->s_op->show_stats) {
@@ -471,12 +912,13 @@ static int show_vfsstat(struct seq_file *m, void *v)
471 return err; 912 return err;
472} 913}
473 914
474struct seq_operations mountstats_op = { 915const struct seq_operations mountstats_op = {
475 .start = m_start, 916 .start = m_start,
476 .next = m_next, 917 .next = m_next,
477 .stop = m_stop, 918 .stop = m_stop,
478 .show = show_vfsstat, 919 .show = show_vfsstat,
479}; 920};
921#endif /* CONFIG_PROC_FS */
480 922
481/** 923/**
482 * may_umount_tree - check if a mount tree is busy 924 * may_umount_tree - check if a mount tree is busy
@@ -801,23 +1243,50 @@ Enomem:
801struct vfsmount *collect_mounts(struct vfsmount *mnt, struct dentry *dentry) 1243struct vfsmount *collect_mounts(struct vfsmount *mnt, struct dentry *dentry)
802{ 1244{
803 struct vfsmount *tree; 1245 struct vfsmount *tree;
804 down_read(&namespace_sem); 1246 down_write(&namespace_sem);
805 tree = copy_tree(mnt, dentry, CL_COPY_ALL | CL_PRIVATE); 1247 tree = copy_tree(mnt, dentry, CL_COPY_ALL | CL_PRIVATE);
806 up_read(&namespace_sem); 1248 up_write(&namespace_sem);
807 return tree; 1249 return tree;
808} 1250}
809 1251
810void drop_collected_mounts(struct vfsmount *mnt) 1252void drop_collected_mounts(struct vfsmount *mnt)
811{ 1253{
812 LIST_HEAD(umount_list); 1254 LIST_HEAD(umount_list);
813 down_read(&namespace_sem); 1255 down_write(&namespace_sem);
814 spin_lock(&vfsmount_lock); 1256 spin_lock(&vfsmount_lock);
815 umount_tree(mnt, 0, &umount_list); 1257 umount_tree(mnt, 0, &umount_list);
816 spin_unlock(&vfsmount_lock); 1258 spin_unlock(&vfsmount_lock);
817 up_read(&namespace_sem); 1259 up_write(&namespace_sem);
818 release_mounts(&umount_list); 1260 release_mounts(&umount_list);
819} 1261}
820 1262
1263static void cleanup_group_ids(struct vfsmount *mnt, struct vfsmount *end)
1264{
1265 struct vfsmount *p;
1266
1267 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1268 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1269 mnt_release_group_id(p);
1270 }
1271}
1272
1273static int invent_group_ids(struct vfsmount *mnt, bool recurse)
1274{
1275 struct vfsmount *p;
1276
1277 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1278 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1279 int err = mnt_alloc_group_id(p);
1280 if (err) {
1281 cleanup_group_ids(mnt, p);
1282 return err;
1283 }
1284 }
1285 }
1286
1287 return 0;
1288}
1289
821/* 1290/*
822 * @source_mnt : mount tree to be attached 1291 * @source_mnt : mount tree to be attached
823 * @nd : place the mount tree @source_mnt is attached 1292 * @nd : place the mount tree @source_mnt is attached
@@ -888,9 +1357,16 @@ static int attach_recursive_mnt(struct vfsmount *source_mnt,
888 struct vfsmount *dest_mnt = path->mnt; 1357 struct vfsmount *dest_mnt = path->mnt;
889 struct dentry *dest_dentry = path->dentry; 1358 struct dentry *dest_dentry = path->dentry;
890 struct vfsmount *child, *p; 1359 struct vfsmount *child, *p;
1360 int err;
891 1361
892 if (propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list)) 1362 if (IS_MNT_SHARED(dest_mnt)) {
893 return -EINVAL; 1363 err = invent_group_ids(source_mnt, true);
1364 if (err)
1365 goto out;
1366 }
1367 err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
1368 if (err)
1369 goto out_cleanup_ids;
894 1370
895 if (IS_MNT_SHARED(dest_mnt)) { 1371 if (IS_MNT_SHARED(dest_mnt)) {
896 for (p = source_mnt; p; p = next_mnt(p, source_mnt)) 1372 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
@@ -913,34 +1389,40 @@ static int attach_recursive_mnt(struct vfsmount *source_mnt,
913 } 1389 }
914 spin_unlock(&vfsmount_lock); 1390 spin_unlock(&vfsmount_lock);
915 return 0; 1391 return 0;
1392
1393 out_cleanup_ids:
1394 if (IS_MNT_SHARED(dest_mnt))
1395 cleanup_group_ids(source_mnt, NULL);
1396 out:
1397 return err;
916} 1398}
917 1399
918static int graft_tree(struct vfsmount *mnt, struct nameidata *nd) 1400static int graft_tree(struct vfsmount *mnt, struct path *path)
919{ 1401{
920 int err; 1402 int err;
921 if (mnt->mnt_sb->s_flags & MS_NOUSER) 1403 if (mnt->mnt_sb->s_flags & MS_NOUSER)
922 return -EINVAL; 1404 return -EINVAL;
923 1405
924 if (S_ISDIR(nd->path.dentry->d_inode->i_mode) != 1406 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
925 S_ISDIR(mnt->mnt_root->d_inode->i_mode)) 1407 S_ISDIR(mnt->mnt_root->d_inode->i_mode))
926 return -ENOTDIR; 1408 return -ENOTDIR;
927 1409
928 err = -ENOENT; 1410 err = -ENOENT;
929 mutex_lock(&nd->path.dentry->d_inode->i_mutex); 1411 mutex_lock(&path->dentry->d_inode->i_mutex);
930 if (IS_DEADDIR(nd->path.dentry->d_inode)) 1412 if (IS_DEADDIR(path->dentry->d_inode))
931 goto out_unlock; 1413 goto out_unlock;
932 1414
933 err = security_sb_check_sb(mnt, nd); 1415 err = security_sb_check_sb(mnt, path);
934 if (err) 1416 if (err)
935 goto out_unlock; 1417 goto out_unlock;
936 1418
937 err = -ENOENT; 1419 err = -ENOENT;
938 if (IS_ROOT(nd->path.dentry) || !d_unhashed(nd->path.dentry)) 1420 if (IS_ROOT(path->dentry) || !d_unhashed(path->dentry))
939 err = attach_recursive_mnt(mnt, &nd->path, NULL); 1421 err = attach_recursive_mnt(mnt, path, NULL);
940out_unlock: 1422out_unlock:
941 mutex_unlock(&nd->path.dentry->d_inode->i_mutex); 1423 mutex_unlock(&path->dentry->d_inode->i_mutex);
942 if (!err) 1424 if (!err)
943 security_sb_post_addmount(mnt, nd); 1425 security_sb_post_addmount(mnt, path);
944 return err; 1426 return err;
945} 1427}
946 1428
@@ -953,6 +1435,7 @@ static noinline int do_change_type(struct nameidata *nd, int flag)
953 struct vfsmount *m, *mnt = nd->path.mnt; 1435 struct vfsmount *m, *mnt = nd->path.mnt;
954 int recurse = flag & MS_REC; 1436 int recurse = flag & MS_REC;
955 int type = flag & ~MS_REC; 1437 int type = flag & ~MS_REC;
1438 int err = 0;
956 1439
957 if (!capable(CAP_SYS_ADMIN)) 1440 if (!capable(CAP_SYS_ADMIN))
958 return -EPERM; 1441 return -EPERM;
@@ -961,12 +1444,20 @@ static noinline int do_change_type(struct nameidata *nd, int flag)
961 return -EINVAL; 1444 return -EINVAL;
962 1445
963 down_write(&namespace_sem); 1446 down_write(&namespace_sem);
1447 if (type == MS_SHARED) {
1448 err = invent_group_ids(mnt, recurse);
1449 if (err)
1450 goto out_unlock;
1451 }
1452
964 spin_lock(&vfsmount_lock); 1453 spin_lock(&vfsmount_lock);
965 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL)) 1454 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
966 change_mnt_propagation(m, type); 1455 change_mnt_propagation(m, type);
967 spin_unlock(&vfsmount_lock); 1456 spin_unlock(&vfsmount_lock);
1457
1458 out_unlock:
968 up_write(&namespace_sem); 1459 up_write(&namespace_sem);
969 return 0; 1460 return err;
970} 1461}
971 1462
972/* 1463/*
@@ -1004,7 +1495,7 @@ static noinline int do_loopback(struct nameidata *nd, char *old_name,
1004 if (!mnt) 1495 if (!mnt)
1005 goto out; 1496 goto out;
1006 1497
1007 err = graft_tree(mnt, nd); 1498 err = graft_tree(mnt, &nd->path);
1008 if (err) { 1499 if (err) {
1009 LIST_HEAD(umount_list); 1500 LIST_HEAD(umount_list);
1010 spin_lock(&vfsmount_lock); 1501 spin_lock(&vfsmount_lock);
@@ -1019,6 +1510,23 @@ out:
1019 return err; 1510 return err;
1020} 1511}
1021 1512
1513static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1514{
1515 int error = 0;
1516 int readonly_request = 0;
1517
1518 if (ms_flags & MS_RDONLY)
1519 readonly_request = 1;
1520 if (readonly_request == __mnt_is_readonly(mnt))
1521 return 0;
1522
1523 if (readonly_request)
1524 error = mnt_make_readonly(mnt);
1525 else
1526 __mnt_unmake_readonly(mnt);
1527 return error;
1528}
1529
1022/* 1530/*
1023 * change filesystem flags. dir should be a physical root of filesystem. 1531 * change filesystem flags. dir should be a physical root of filesystem.
1024 * If you've mounted a non-root directory somewhere and want to do remount 1532 * If you've mounted a non-root directory somewhere and want to do remount
@@ -1041,7 +1549,10 @@ static noinline int do_remount(struct nameidata *nd, int flags, int mnt_flags,
1041 return -EINVAL; 1549 return -EINVAL;
1042 1550
1043 down_write(&sb->s_umount); 1551 down_write(&sb->s_umount);
1044 err = do_remount_sb(sb, flags, data, 0); 1552 if (flags & MS_BIND)
1553 err = change_mount_flags(nd->path.mnt, flags);
1554 else
1555 err = do_remount_sb(sb, flags, data, 0);
1045 if (!err) 1556 if (!err)
1046 nd->path.mnt->mnt_flags = mnt_flags; 1557 nd->path.mnt->mnt_flags = mnt_flags;
1047 up_write(&sb->s_umount); 1558 up_write(&sb->s_umount);
@@ -1191,7 +1702,7 @@ int do_add_mount(struct vfsmount *newmnt, struct nameidata *nd,
1191 goto unlock; 1702 goto unlock;
1192 1703
1193 newmnt->mnt_flags = mnt_flags; 1704 newmnt->mnt_flags = mnt_flags;
1194 if ((err = graft_tree(newmnt, nd))) 1705 if ((err = graft_tree(newmnt, &nd->path)))
1195 goto unlock; 1706 goto unlock;
1196 1707
1197 if (fslist) /* add to the specified expiration list */ 1708 if (fslist) /* add to the specified expiration list */
@@ -1425,6 +1936,8 @@ long do_mount(char *dev_name, char *dir_name, char *type_page,
1425 mnt_flags |= MNT_NODIRATIME; 1936 mnt_flags |= MNT_NODIRATIME;
1426 if (flags & MS_RELATIME) 1937 if (flags & MS_RELATIME)
1427 mnt_flags |= MNT_RELATIME; 1938 mnt_flags |= MNT_RELATIME;
1939 if (flags & MS_RDONLY)
1940 mnt_flags |= MNT_READONLY;
1428 1941
1429 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | 1942 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE |
1430 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT); 1943 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT);
@@ -1434,7 +1947,8 @@ long do_mount(char *dev_name, char *dir_name, char *type_page,
1434 if (retval) 1947 if (retval)
1435 return retval; 1948 return retval;
1436 1949
1437 retval = security_sb_mount(dev_name, &nd, type_page, flags, data_page); 1950 retval = security_sb_mount(dev_name, &nd.path,
1951 type_page, flags, data_page);
1438 if (retval) 1952 if (retval)
1439 goto dput_out; 1953 goto dput_out;
1440 1954
@@ -1674,15 +2188,13 @@ asmlinkage long sys_pivot_root(const char __user * new_root,
1674 const char __user * put_old) 2188 const char __user * put_old)
1675{ 2189{
1676 struct vfsmount *tmp; 2190 struct vfsmount *tmp;
1677 struct nameidata new_nd, old_nd, user_nd; 2191 struct nameidata new_nd, old_nd;
1678 struct path parent_path, root_parent; 2192 struct path parent_path, root_parent, root;
1679 int error; 2193 int error;
1680 2194
1681 if (!capable(CAP_SYS_ADMIN)) 2195 if (!capable(CAP_SYS_ADMIN))
1682 return -EPERM; 2196 return -EPERM;
1683 2197
1684 lock_kernel();
1685
1686 error = __user_walk(new_root, LOOKUP_FOLLOW | LOOKUP_DIRECTORY, 2198 error = __user_walk(new_root, LOOKUP_FOLLOW | LOOKUP_DIRECTORY,
1687 &new_nd); 2199 &new_nd);
1688 if (error) 2200 if (error)
@@ -1695,14 +2207,14 @@ asmlinkage long sys_pivot_root(const char __user * new_root,
1695 if (error) 2207 if (error)
1696 goto out1; 2208 goto out1;
1697 2209
1698 error = security_sb_pivotroot(&old_nd, &new_nd); 2210 error = security_sb_pivotroot(&old_nd.path, &new_nd.path);
1699 if (error) { 2211 if (error) {
1700 path_put(&old_nd.path); 2212 path_put(&old_nd.path);
1701 goto out1; 2213 goto out1;
1702 } 2214 }
1703 2215
1704 read_lock(&current->fs->lock); 2216 read_lock(&current->fs->lock);
1705 user_nd.path = current->fs->root; 2217 root = current->fs->root;
1706 path_get(&current->fs->root); 2218 path_get(&current->fs->root);
1707 read_unlock(&current->fs->lock); 2219 read_unlock(&current->fs->lock);
1708 down_write(&namespace_sem); 2220 down_write(&namespace_sem);
@@ -1710,9 +2222,9 @@ asmlinkage long sys_pivot_root(const char __user * new_root,
1710 error = -EINVAL; 2222 error = -EINVAL;
1711 if (IS_MNT_SHARED(old_nd.path.mnt) || 2223 if (IS_MNT_SHARED(old_nd.path.mnt) ||
1712 IS_MNT_SHARED(new_nd.path.mnt->mnt_parent) || 2224 IS_MNT_SHARED(new_nd.path.mnt->mnt_parent) ||
1713 IS_MNT_SHARED(user_nd.path.mnt->mnt_parent)) 2225 IS_MNT_SHARED(root.mnt->mnt_parent))
1714 goto out2; 2226 goto out2;
1715 if (!check_mnt(user_nd.path.mnt)) 2227 if (!check_mnt(root.mnt))
1716 goto out2; 2228 goto out2;
1717 error = -ENOENT; 2229 error = -ENOENT;
1718 if (IS_DEADDIR(new_nd.path.dentry->d_inode)) 2230 if (IS_DEADDIR(new_nd.path.dentry->d_inode))
@@ -1722,13 +2234,13 @@ asmlinkage long sys_pivot_root(const char __user * new_root,
1722 if (d_unhashed(old_nd.path.dentry) && !IS_ROOT(old_nd.path.dentry)) 2234 if (d_unhashed(old_nd.path.dentry) && !IS_ROOT(old_nd.path.dentry))
1723 goto out2; 2235 goto out2;
1724 error = -EBUSY; 2236 error = -EBUSY;
1725 if (new_nd.path.mnt == user_nd.path.mnt || 2237 if (new_nd.path.mnt == root.mnt ||
1726 old_nd.path.mnt == user_nd.path.mnt) 2238 old_nd.path.mnt == root.mnt)
1727 goto out2; /* loop, on the same file system */ 2239 goto out2; /* loop, on the same file system */
1728 error = -EINVAL; 2240 error = -EINVAL;
1729 if (user_nd.path.mnt->mnt_root != user_nd.path.dentry) 2241 if (root.mnt->mnt_root != root.dentry)
1730 goto out2; /* not a mountpoint */ 2242 goto out2; /* not a mountpoint */
1731 if (user_nd.path.mnt->mnt_parent == user_nd.path.mnt) 2243 if (root.mnt->mnt_parent == root.mnt)
1732 goto out2; /* not attached */ 2244 goto out2; /* not attached */
1733 if (new_nd.path.mnt->mnt_root != new_nd.path.dentry) 2245 if (new_nd.path.mnt->mnt_root != new_nd.path.dentry)
1734 goto out2; /* not a mountpoint */ 2246 goto out2; /* not a mountpoint */
@@ -1750,27 +2262,26 @@ asmlinkage long sys_pivot_root(const char __user * new_root,
1750 } else if (!is_subdir(old_nd.path.dentry, new_nd.path.dentry)) 2262 } else if (!is_subdir(old_nd.path.dentry, new_nd.path.dentry))
1751 goto out3; 2263 goto out3;
1752 detach_mnt(new_nd.path.mnt, &parent_path); 2264 detach_mnt(new_nd.path.mnt, &parent_path);
1753 detach_mnt(user_nd.path.mnt, &root_parent); 2265 detach_mnt(root.mnt, &root_parent);
1754 /* mount old root on put_old */ 2266 /* mount old root on put_old */
1755 attach_mnt(user_nd.path.mnt, &old_nd.path); 2267 attach_mnt(root.mnt, &old_nd.path);
1756 /* mount new_root on / */ 2268 /* mount new_root on / */
1757 attach_mnt(new_nd.path.mnt, &root_parent); 2269 attach_mnt(new_nd.path.mnt, &root_parent);
1758 touch_mnt_namespace(current->nsproxy->mnt_ns); 2270 touch_mnt_namespace(current->nsproxy->mnt_ns);
1759 spin_unlock(&vfsmount_lock); 2271 spin_unlock(&vfsmount_lock);
1760 chroot_fs_refs(&user_nd.path, &new_nd.path); 2272 chroot_fs_refs(&root, &new_nd.path);
1761 security_sb_post_pivotroot(&user_nd, &new_nd); 2273 security_sb_post_pivotroot(&root, &new_nd.path);
1762 error = 0; 2274 error = 0;
1763 path_put(&root_parent); 2275 path_put(&root_parent);
1764 path_put(&parent_path); 2276 path_put(&parent_path);
1765out2: 2277out2:
1766 mutex_unlock(&old_nd.path.dentry->d_inode->i_mutex); 2278 mutex_unlock(&old_nd.path.dentry->d_inode->i_mutex);
1767 up_write(&namespace_sem); 2279 up_write(&namespace_sem);
1768 path_put(&user_nd.path); 2280 path_put(&root);
1769 path_put(&old_nd.path); 2281 path_put(&old_nd.path);
1770out1: 2282out1:
1771 path_put(&new_nd.path); 2283 path_put(&new_nd.path);
1772out0: 2284out0:
1773 unlock_kernel();
1774 return error; 2285 return error;
1775out3: 2286out3:
1776 spin_unlock(&vfsmount_lock); 2287 spin_unlock(&vfsmount_lock);