diff options
Diffstat (limited to 'fs/mpage.c')
-rw-r--r-- | fs/mpage.c | 772 |
1 files changed, 772 insertions, 0 deletions
diff --git a/fs/mpage.c b/fs/mpage.c new file mode 100644 index 000000000000..e7d8d1a77606 --- /dev/null +++ b/fs/mpage.c | |||
@@ -0,0 +1,772 @@ | |||
1 | /* | ||
2 | * fs/mpage.c | ||
3 | * | ||
4 | * Copyright (C) 2002, Linus Torvalds. | ||
5 | * | ||
6 | * Contains functions related to preparing and submitting BIOs which contain | ||
7 | * multiple pagecache pages. | ||
8 | * | ||
9 | * 15May2002 akpm@zip.com.au | ||
10 | * Initial version | ||
11 | * 27Jun2002 axboe@suse.de | ||
12 | * use bio_add_page() to build bio's just the right size | ||
13 | */ | ||
14 | |||
15 | #include <linux/kernel.h> | ||
16 | #include <linux/module.h> | ||
17 | #include <linux/mm.h> | ||
18 | #include <linux/kdev_t.h> | ||
19 | #include <linux/bio.h> | ||
20 | #include <linux/fs.h> | ||
21 | #include <linux/buffer_head.h> | ||
22 | #include <linux/blkdev.h> | ||
23 | #include <linux/highmem.h> | ||
24 | #include <linux/prefetch.h> | ||
25 | #include <linux/mpage.h> | ||
26 | #include <linux/writeback.h> | ||
27 | #include <linux/backing-dev.h> | ||
28 | #include <linux/pagevec.h> | ||
29 | |||
30 | /* | ||
31 | * I/O completion handler for multipage BIOs. | ||
32 | * | ||
33 | * The mpage code never puts partial pages into a BIO (except for end-of-file). | ||
34 | * If a page does not map to a contiguous run of blocks then it simply falls | ||
35 | * back to block_read_full_page(). | ||
36 | * | ||
37 | * Why is this? If a page's completion depends on a number of different BIOs | ||
38 | * which can complete in any order (or at the same time) then determining the | ||
39 | * status of that page is hard. See end_buffer_async_read() for the details. | ||
40 | * There is no point in duplicating all that complexity. | ||
41 | */ | ||
42 | static int mpage_end_io_read(struct bio *bio, unsigned int bytes_done, int err) | ||
43 | { | ||
44 | const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); | ||
45 | struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; | ||
46 | |||
47 | if (bio->bi_size) | ||
48 | return 1; | ||
49 | |||
50 | do { | ||
51 | struct page *page = bvec->bv_page; | ||
52 | |||
53 | if (--bvec >= bio->bi_io_vec) | ||
54 | prefetchw(&bvec->bv_page->flags); | ||
55 | |||
56 | if (uptodate) { | ||
57 | SetPageUptodate(page); | ||
58 | } else { | ||
59 | ClearPageUptodate(page); | ||
60 | SetPageError(page); | ||
61 | } | ||
62 | unlock_page(page); | ||
63 | } while (bvec >= bio->bi_io_vec); | ||
64 | bio_put(bio); | ||
65 | return 0; | ||
66 | } | ||
67 | |||
68 | static int mpage_end_io_write(struct bio *bio, unsigned int bytes_done, int err) | ||
69 | { | ||
70 | const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); | ||
71 | struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; | ||
72 | |||
73 | if (bio->bi_size) | ||
74 | return 1; | ||
75 | |||
76 | do { | ||
77 | struct page *page = bvec->bv_page; | ||
78 | |||
79 | if (--bvec >= bio->bi_io_vec) | ||
80 | prefetchw(&bvec->bv_page->flags); | ||
81 | |||
82 | if (!uptodate) | ||
83 | SetPageError(page); | ||
84 | end_page_writeback(page); | ||
85 | } while (bvec >= bio->bi_io_vec); | ||
86 | bio_put(bio); | ||
87 | return 0; | ||
88 | } | ||
89 | |||
90 | struct bio *mpage_bio_submit(int rw, struct bio *bio) | ||
91 | { | ||
92 | bio->bi_end_io = mpage_end_io_read; | ||
93 | if (rw == WRITE) | ||
94 | bio->bi_end_io = mpage_end_io_write; | ||
95 | submit_bio(rw, bio); | ||
96 | return NULL; | ||
97 | } | ||
98 | |||
99 | static struct bio * | ||
100 | mpage_alloc(struct block_device *bdev, | ||
101 | sector_t first_sector, int nr_vecs, | ||
102 | unsigned int __nocast gfp_flags) | ||
103 | { | ||
104 | struct bio *bio; | ||
105 | |||
106 | bio = bio_alloc(gfp_flags, nr_vecs); | ||
107 | |||
108 | if (bio == NULL && (current->flags & PF_MEMALLOC)) { | ||
109 | while (!bio && (nr_vecs /= 2)) | ||
110 | bio = bio_alloc(gfp_flags, nr_vecs); | ||
111 | } | ||
112 | |||
113 | if (bio) { | ||
114 | bio->bi_bdev = bdev; | ||
115 | bio->bi_sector = first_sector; | ||
116 | } | ||
117 | return bio; | ||
118 | } | ||
119 | |||
120 | /* | ||
121 | * support function for mpage_readpages. The fs supplied get_block might | ||
122 | * return an up to date buffer. This is used to map that buffer into | ||
123 | * the page, which allows readpage to avoid triggering a duplicate call | ||
124 | * to get_block. | ||
125 | * | ||
126 | * The idea is to avoid adding buffers to pages that don't already have | ||
127 | * them. So when the buffer is up to date and the page size == block size, | ||
128 | * this marks the page up to date instead of adding new buffers. | ||
129 | */ | ||
130 | static void | ||
131 | map_buffer_to_page(struct page *page, struct buffer_head *bh, int page_block) | ||
132 | { | ||
133 | struct inode *inode = page->mapping->host; | ||
134 | struct buffer_head *page_bh, *head; | ||
135 | int block = 0; | ||
136 | |||
137 | if (!page_has_buffers(page)) { | ||
138 | /* | ||
139 | * don't make any buffers if there is only one buffer on | ||
140 | * the page and the page just needs to be set up to date | ||
141 | */ | ||
142 | if (inode->i_blkbits == PAGE_CACHE_SHIFT && | ||
143 | buffer_uptodate(bh)) { | ||
144 | SetPageUptodate(page); | ||
145 | return; | ||
146 | } | ||
147 | create_empty_buffers(page, 1 << inode->i_blkbits, 0); | ||
148 | } | ||
149 | head = page_buffers(page); | ||
150 | page_bh = head; | ||
151 | do { | ||
152 | if (block == page_block) { | ||
153 | page_bh->b_state = bh->b_state; | ||
154 | page_bh->b_bdev = bh->b_bdev; | ||
155 | page_bh->b_blocknr = bh->b_blocknr; | ||
156 | break; | ||
157 | } | ||
158 | page_bh = page_bh->b_this_page; | ||
159 | block++; | ||
160 | } while (page_bh != head); | ||
161 | } | ||
162 | |||
163 | /** | ||
164 | * mpage_readpages - populate an address space with some pages, and | ||
165 | * start reads against them. | ||
166 | * | ||
167 | * @mapping: the address_space | ||
168 | * @pages: The address of a list_head which contains the target pages. These | ||
169 | * pages have their ->index populated and are otherwise uninitialised. | ||
170 | * | ||
171 | * The page at @pages->prev has the lowest file offset, and reads should be | ||
172 | * issued in @pages->prev to @pages->next order. | ||
173 | * | ||
174 | * @nr_pages: The number of pages at *@pages | ||
175 | * @get_block: The filesystem's block mapper function. | ||
176 | * | ||
177 | * This function walks the pages and the blocks within each page, building and | ||
178 | * emitting large BIOs. | ||
179 | * | ||
180 | * If anything unusual happens, such as: | ||
181 | * | ||
182 | * - encountering a page which has buffers | ||
183 | * - encountering a page which has a non-hole after a hole | ||
184 | * - encountering a page with non-contiguous blocks | ||
185 | * | ||
186 | * then this code just gives up and calls the buffer_head-based read function. | ||
187 | * It does handle a page which has holes at the end - that is a common case: | ||
188 | * the end-of-file on blocksize < PAGE_CACHE_SIZE setups. | ||
189 | * | ||
190 | * BH_Boundary explanation: | ||
191 | * | ||
192 | * There is a problem. The mpage read code assembles several pages, gets all | ||
193 | * their disk mappings, and then submits them all. That's fine, but obtaining | ||
194 | * the disk mappings may require I/O. Reads of indirect blocks, for example. | ||
195 | * | ||
196 | * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be | ||
197 | * submitted in the following order: | ||
198 | * 12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16 | ||
199 | * because the indirect block has to be read to get the mappings of blocks | ||
200 | * 13,14,15,16. Obviously, this impacts performance. | ||
201 | * | ||
202 | * So what we do it to allow the filesystem's get_block() function to set | ||
203 | * BH_Boundary when it maps block 11. BH_Boundary says: mapping of the block | ||
204 | * after this one will require I/O against a block which is probably close to | ||
205 | * this one. So you should push what I/O you have currently accumulated. | ||
206 | * | ||
207 | * This all causes the disk requests to be issued in the correct order. | ||
208 | */ | ||
209 | static struct bio * | ||
210 | do_mpage_readpage(struct bio *bio, struct page *page, unsigned nr_pages, | ||
211 | sector_t *last_block_in_bio, get_block_t get_block) | ||
212 | { | ||
213 | struct inode *inode = page->mapping->host; | ||
214 | const unsigned blkbits = inode->i_blkbits; | ||
215 | const unsigned blocks_per_page = PAGE_CACHE_SIZE >> blkbits; | ||
216 | const unsigned blocksize = 1 << blkbits; | ||
217 | sector_t block_in_file; | ||
218 | sector_t last_block; | ||
219 | sector_t blocks[MAX_BUF_PER_PAGE]; | ||
220 | unsigned page_block; | ||
221 | unsigned first_hole = blocks_per_page; | ||
222 | struct block_device *bdev = NULL; | ||
223 | struct buffer_head bh; | ||
224 | int length; | ||
225 | int fully_mapped = 1; | ||
226 | |||
227 | if (page_has_buffers(page)) | ||
228 | goto confused; | ||
229 | |||
230 | block_in_file = page->index << (PAGE_CACHE_SHIFT - blkbits); | ||
231 | last_block = (i_size_read(inode) + blocksize - 1) >> blkbits; | ||
232 | |||
233 | bh.b_page = page; | ||
234 | for (page_block = 0; page_block < blocks_per_page; | ||
235 | page_block++, block_in_file++) { | ||
236 | bh.b_state = 0; | ||
237 | if (block_in_file < last_block) { | ||
238 | if (get_block(inode, block_in_file, &bh, 0)) | ||
239 | goto confused; | ||
240 | } | ||
241 | |||
242 | if (!buffer_mapped(&bh)) { | ||
243 | fully_mapped = 0; | ||
244 | if (first_hole == blocks_per_page) | ||
245 | first_hole = page_block; | ||
246 | continue; | ||
247 | } | ||
248 | |||
249 | /* some filesystems will copy data into the page during | ||
250 | * the get_block call, in which case we don't want to | ||
251 | * read it again. map_buffer_to_page copies the data | ||
252 | * we just collected from get_block into the page's buffers | ||
253 | * so readpage doesn't have to repeat the get_block call | ||
254 | */ | ||
255 | if (buffer_uptodate(&bh)) { | ||
256 | map_buffer_to_page(page, &bh, page_block); | ||
257 | goto confused; | ||
258 | } | ||
259 | |||
260 | if (first_hole != blocks_per_page) | ||
261 | goto confused; /* hole -> non-hole */ | ||
262 | |||
263 | /* Contiguous blocks? */ | ||
264 | if (page_block && blocks[page_block-1] != bh.b_blocknr-1) | ||
265 | goto confused; | ||
266 | blocks[page_block] = bh.b_blocknr; | ||
267 | bdev = bh.b_bdev; | ||
268 | } | ||
269 | |||
270 | if (first_hole != blocks_per_page) { | ||
271 | char *kaddr = kmap_atomic(page, KM_USER0); | ||
272 | memset(kaddr + (first_hole << blkbits), 0, | ||
273 | PAGE_CACHE_SIZE - (first_hole << blkbits)); | ||
274 | flush_dcache_page(page); | ||
275 | kunmap_atomic(kaddr, KM_USER0); | ||
276 | if (first_hole == 0) { | ||
277 | SetPageUptodate(page); | ||
278 | unlock_page(page); | ||
279 | goto out; | ||
280 | } | ||
281 | } else if (fully_mapped) { | ||
282 | SetPageMappedToDisk(page); | ||
283 | } | ||
284 | |||
285 | /* | ||
286 | * This page will go to BIO. Do we need to send this BIO off first? | ||
287 | */ | ||
288 | if (bio && (*last_block_in_bio != blocks[0] - 1)) | ||
289 | bio = mpage_bio_submit(READ, bio); | ||
290 | |||
291 | alloc_new: | ||
292 | if (bio == NULL) { | ||
293 | bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9), | ||
294 | min_t(int, nr_pages, bio_get_nr_vecs(bdev)), | ||
295 | GFP_KERNEL); | ||
296 | if (bio == NULL) | ||
297 | goto confused; | ||
298 | } | ||
299 | |||
300 | length = first_hole << blkbits; | ||
301 | if (bio_add_page(bio, page, length, 0) < length) { | ||
302 | bio = mpage_bio_submit(READ, bio); | ||
303 | goto alloc_new; | ||
304 | } | ||
305 | |||
306 | if (buffer_boundary(&bh) || (first_hole != blocks_per_page)) | ||
307 | bio = mpage_bio_submit(READ, bio); | ||
308 | else | ||
309 | *last_block_in_bio = blocks[blocks_per_page - 1]; | ||
310 | out: | ||
311 | return bio; | ||
312 | |||
313 | confused: | ||
314 | if (bio) | ||
315 | bio = mpage_bio_submit(READ, bio); | ||
316 | if (!PageUptodate(page)) | ||
317 | block_read_full_page(page, get_block); | ||
318 | else | ||
319 | unlock_page(page); | ||
320 | goto out; | ||
321 | } | ||
322 | |||
323 | int | ||
324 | mpage_readpages(struct address_space *mapping, struct list_head *pages, | ||
325 | unsigned nr_pages, get_block_t get_block) | ||
326 | { | ||
327 | struct bio *bio = NULL; | ||
328 | unsigned page_idx; | ||
329 | sector_t last_block_in_bio = 0; | ||
330 | struct pagevec lru_pvec; | ||
331 | |||
332 | pagevec_init(&lru_pvec, 0); | ||
333 | for (page_idx = 0; page_idx < nr_pages; page_idx++) { | ||
334 | struct page *page = list_entry(pages->prev, struct page, lru); | ||
335 | |||
336 | prefetchw(&page->flags); | ||
337 | list_del(&page->lru); | ||
338 | if (!add_to_page_cache(page, mapping, | ||
339 | page->index, GFP_KERNEL)) { | ||
340 | bio = do_mpage_readpage(bio, page, | ||
341 | nr_pages - page_idx, | ||
342 | &last_block_in_bio, get_block); | ||
343 | if (!pagevec_add(&lru_pvec, page)) | ||
344 | __pagevec_lru_add(&lru_pvec); | ||
345 | } else { | ||
346 | page_cache_release(page); | ||
347 | } | ||
348 | } | ||
349 | pagevec_lru_add(&lru_pvec); | ||
350 | BUG_ON(!list_empty(pages)); | ||
351 | if (bio) | ||
352 | mpage_bio_submit(READ, bio); | ||
353 | return 0; | ||
354 | } | ||
355 | EXPORT_SYMBOL(mpage_readpages); | ||
356 | |||
357 | /* | ||
358 | * This isn't called much at all | ||
359 | */ | ||
360 | int mpage_readpage(struct page *page, get_block_t get_block) | ||
361 | { | ||
362 | struct bio *bio = NULL; | ||
363 | sector_t last_block_in_bio = 0; | ||
364 | |||
365 | bio = do_mpage_readpage(bio, page, 1, | ||
366 | &last_block_in_bio, get_block); | ||
367 | if (bio) | ||
368 | mpage_bio_submit(READ, bio); | ||
369 | return 0; | ||
370 | } | ||
371 | EXPORT_SYMBOL(mpage_readpage); | ||
372 | |||
373 | /* | ||
374 | * Writing is not so simple. | ||
375 | * | ||
376 | * If the page has buffers then they will be used for obtaining the disk | ||
377 | * mapping. We only support pages which are fully mapped-and-dirty, with a | ||
378 | * special case for pages which are unmapped at the end: end-of-file. | ||
379 | * | ||
380 | * If the page has no buffers (preferred) then the page is mapped here. | ||
381 | * | ||
382 | * If all blocks are found to be contiguous then the page can go into the | ||
383 | * BIO. Otherwise fall back to the mapping's writepage(). | ||
384 | * | ||
385 | * FIXME: This code wants an estimate of how many pages are still to be | ||
386 | * written, so it can intelligently allocate a suitably-sized BIO. For now, | ||
387 | * just allocate full-size (16-page) BIOs. | ||
388 | */ | ||
389 | static struct bio * | ||
390 | __mpage_writepage(struct bio *bio, struct page *page, get_block_t get_block, | ||
391 | sector_t *last_block_in_bio, int *ret, struct writeback_control *wbc, | ||
392 | writepage_t writepage_fn) | ||
393 | { | ||
394 | struct address_space *mapping = page->mapping; | ||
395 | struct inode *inode = page->mapping->host; | ||
396 | const unsigned blkbits = inode->i_blkbits; | ||
397 | unsigned long end_index; | ||
398 | const unsigned blocks_per_page = PAGE_CACHE_SIZE >> blkbits; | ||
399 | sector_t last_block; | ||
400 | sector_t block_in_file; | ||
401 | sector_t blocks[MAX_BUF_PER_PAGE]; | ||
402 | unsigned page_block; | ||
403 | unsigned first_unmapped = blocks_per_page; | ||
404 | struct block_device *bdev = NULL; | ||
405 | int boundary = 0; | ||
406 | sector_t boundary_block = 0; | ||
407 | struct block_device *boundary_bdev = NULL; | ||
408 | int length; | ||
409 | struct buffer_head map_bh; | ||
410 | loff_t i_size = i_size_read(inode); | ||
411 | |||
412 | if (page_has_buffers(page)) { | ||
413 | struct buffer_head *head = page_buffers(page); | ||
414 | struct buffer_head *bh = head; | ||
415 | |||
416 | /* If they're all mapped and dirty, do it */ | ||
417 | page_block = 0; | ||
418 | do { | ||
419 | BUG_ON(buffer_locked(bh)); | ||
420 | if (!buffer_mapped(bh)) { | ||
421 | /* | ||
422 | * unmapped dirty buffers are created by | ||
423 | * __set_page_dirty_buffers -> mmapped data | ||
424 | */ | ||
425 | if (buffer_dirty(bh)) | ||
426 | goto confused; | ||
427 | if (first_unmapped == blocks_per_page) | ||
428 | first_unmapped = page_block; | ||
429 | continue; | ||
430 | } | ||
431 | |||
432 | if (first_unmapped != blocks_per_page) | ||
433 | goto confused; /* hole -> non-hole */ | ||
434 | |||
435 | if (!buffer_dirty(bh) || !buffer_uptodate(bh)) | ||
436 | goto confused; | ||
437 | if (page_block) { | ||
438 | if (bh->b_blocknr != blocks[page_block-1] + 1) | ||
439 | goto confused; | ||
440 | } | ||
441 | blocks[page_block++] = bh->b_blocknr; | ||
442 | boundary = buffer_boundary(bh); | ||
443 | if (boundary) { | ||
444 | boundary_block = bh->b_blocknr; | ||
445 | boundary_bdev = bh->b_bdev; | ||
446 | } | ||
447 | bdev = bh->b_bdev; | ||
448 | } while ((bh = bh->b_this_page) != head); | ||
449 | |||
450 | if (first_unmapped) | ||
451 | goto page_is_mapped; | ||
452 | |||
453 | /* | ||
454 | * Page has buffers, but they are all unmapped. The page was | ||
455 | * created by pagein or read over a hole which was handled by | ||
456 | * block_read_full_page(). If this address_space is also | ||
457 | * using mpage_readpages then this can rarely happen. | ||
458 | */ | ||
459 | goto confused; | ||
460 | } | ||
461 | |||
462 | /* | ||
463 | * The page has no buffers: map it to disk | ||
464 | */ | ||
465 | BUG_ON(!PageUptodate(page)); | ||
466 | block_in_file = page->index << (PAGE_CACHE_SHIFT - blkbits); | ||
467 | last_block = (i_size - 1) >> blkbits; | ||
468 | map_bh.b_page = page; | ||
469 | for (page_block = 0; page_block < blocks_per_page; ) { | ||
470 | |||
471 | map_bh.b_state = 0; | ||
472 | if (get_block(inode, block_in_file, &map_bh, 1)) | ||
473 | goto confused; | ||
474 | if (buffer_new(&map_bh)) | ||
475 | unmap_underlying_metadata(map_bh.b_bdev, | ||
476 | map_bh.b_blocknr); | ||
477 | if (buffer_boundary(&map_bh)) { | ||
478 | boundary_block = map_bh.b_blocknr; | ||
479 | boundary_bdev = map_bh.b_bdev; | ||
480 | } | ||
481 | if (page_block) { | ||
482 | if (map_bh.b_blocknr != blocks[page_block-1] + 1) | ||
483 | goto confused; | ||
484 | } | ||
485 | blocks[page_block++] = map_bh.b_blocknr; | ||
486 | boundary = buffer_boundary(&map_bh); | ||
487 | bdev = map_bh.b_bdev; | ||
488 | if (block_in_file == last_block) | ||
489 | break; | ||
490 | block_in_file++; | ||
491 | } | ||
492 | BUG_ON(page_block == 0); | ||
493 | |||
494 | first_unmapped = page_block; | ||
495 | |||
496 | page_is_mapped: | ||
497 | end_index = i_size >> PAGE_CACHE_SHIFT; | ||
498 | if (page->index >= end_index) { | ||
499 | /* | ||
500 | * The page straddles i_size. It must be zeroed out on each | ||
501 | * and every writepage invokation because it may be mmapped. | ||
502 | * "A file is mapped in multiples of the page size. For a file | ||
503 | * that is not a multiple of the page size, the remaining memory | ||
504 | * is zeroed when mapped, and writes to that region are not | ||
505 | * written out to the file." | ||
506 | */ | ||
507 | unsigned offset = i_size & (PAGE_CACHE_SIZE - 1); | ||
508 | char *kaddr; | ||
509 | |||
510 | if (page->index > end_index || !offset) | ||
511 | goto confused; | ||
512 | kaddr = kmap_atomic(page, KM_USER0); | ||
513 | memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset); | ||
514 | flush_dcache_page(page); | ||
515 | kunmap_atomic(kaddr, KM_USER0); | ||
516 | } | ||
517 | |||
518 | /* | ||
519 | * This page will go to BIO. Do we need to send this BIO off first? | ||
520 | */ | ||
521 | if (bio && *last_block_in_bio != blocks[0] - 1) | ||
522 | bio = mpage_bio_submit(WRITE, bio); | ||
523 | |||
524 | alloc_new: | ||
525 | if (bio == NULL) { | ||
526 | bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9), | ||
527 | bio_get_nr_vecs(bdev), GFP_NOFS|__GFP_HIGH); | ||
528 | if (bio == NULL) | ||
529 | goto confused; | ||
530 | } | ||
531 | |||
532 | /* | ||
533 | * Must try to add the page before marking the buffer clean or | ||
534 | * the confused fail path above (OOM) will be very confused when | ||
535 | * it finds all bh marked clean (i.e. it will not write anything) | ||
536 | */ | ||
537 | length = first_unmapped << blkbits; | ||
538 | if (bio_add_page(bio, page, length, 0) < length) { | ||
539 | bio = mpage_bio_submit(WRITE, bio); | ||
540 | goto alloc_new; | ||
541 | } | ||
542 | |||
543 | /* | ||
544 | * OK, we have our BIO, so we can now mark the buffers clean. Make | ||
545 | * sure to only clean buffers which we know we'll be writing. | ||
546 | */ | ||
547 | if (page_has_buffers(page)) { | ||
548 | struct buffer_head *head = page_buffers(page); | ||
549 | struct buffer_head *bh = head; | ||
550 | unsigned buffer_counter = 0; | ||
551 | |||
552 | do { | ||
553 | if (buffer_counter++ == first_unmapped) | ||
554 | break; | ||
555 | clear_buffer_dirty(bh); | ||
556 | bh = bh->b_this_page; | ||
557 | } while (bh != head); | ||
558 | |||
559 | /* | ||
560 | * we cannot drop the bh if the page is not uptodate | ||
561 | * or a concurrent readpage would fail to serialize with the bh | ||
562 | * and it would read from disk before we reach the platter. | ||
563 | */ | ||
564 | if (buffer_heads_over_limit && PageUptodate(page)) | ||
565 | try_to_free_buffers(page); | ||
566 | } | ||
567 | |||
568 | BUG_ON(PageWriteback(page)); | ||
569 | set_page_writeback(page); | ||
570 | unlock_page(page); | ||
571 | if (boundary || (first_unmapped != blocks_per_page)) { | ||
572 | bio = mpage_bio_submit(WRITE, bio); | ||
573 | if (boundary_block) { | ||
574 | write_boundary_block(boundary_bdev, | ||
575 | boundary_block, 1 << blkbits); | ||
576 | } | ||
577 | } else { | ||
578 | *last_block_in_bio = blocks[blocks_per_page - 1]; | ||
579 | } | ||
580 | goto out; | ||
581 | |||
582 | confused: | ||
583 | if (bio) | ||
584 | bio = mpage_bio_submit(WRITE, bio); | ||
585 | |||
586 | if (writepage_fn) { | ||
587 | *ret = (*writepage_fn)(page, wbc); | ||
588 | } else { | ||
589 | *ret = -EAGAIN; | ||
590 | goto out; | ||
591 | } | ||
592 | /* | ||
593 | * The caller has a ref on the inode, so *mapping is stable | ||
594 | */ | ||
595 | if (*ret) { | ||
596 | if (*ret == -ENOSPC) | ||
597 | set_bit(AS_ENOSPC, &mapping->flags); | ||
598 | else | ||
599 | set_bit(AS_EIO, &mapping->flags); | ||
600 | } | ||
601 | out: | ||
602 | return bio; | ||
603 | } | ||
604 | |||
605 | /** | ||
606 | * mpage_writepages - walk the list of dirty pages of the given | ||
607 | * address space and writepage() all of them. | ||
608 | * | ||
609 | * @mapping: address space structure to write | ||
610 | * @wbc: subtract the number of written pages from *@wbc->nr_to_write | ||
611 | * @get_block: the filesystem's block mapper function. | ||
612 | * If this is NULL then use a_ops->writepage. Otherwise, go | ||
613 | * direct-to-BIO. | ||
614 | * | ||
615 | * This is a library function, which implements the writepages() | ||
616 | * address_space_operation. | ||
617 | * | ||
618 | * If a page is already under I/O, generic_writepages() skips it, even | ||
619 | * if it's dirty. This is desirable behaviour for memory-cleaning writeback, | ||
620 | * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() | ||
621 | * and msync() need to guarantee that all the data which was dirty at the time | ||
622 | * the call was made get new I/O started against them. If wbc->sync_mode is | ||
623 | * WB_SYNC_ALL then we were called for data integrity and we must wait for | ||
624 | * existing IO to complete. | ||
625 | */ | ||
626 | int | ||
627 | mpage_writepages(struct address_space *mapping, | ||
628 | struct writeback_control *wbc, get_block_t get_block) | ||
629 | { | ||
630 | return __mpage_writepages(mapping, wbc, get_block, | ||
631 | mapping->a_ops->writepage); | ||
632 | } | ||
633 | |||
634 | int | ||
635 | __mpage_writepages(struct address_space *mapping, | ||
636 | struct writeback_control *wbc, get_block_t get_block, | ||
637 | writepage_t writepage_fn) | ||
638 | { | ||
639 | struct backing_dev_info *bdi = mapping->backing_dev_info; | ||
640 | struct bio *bio = NULL; | ||
641 | sector_t last_block_in_bio = 0; | ||
642 | int ret = 0; | ||
643 | int done = 0; | ||
644 | int (*writepage)(struct page *page, struct writeback_control *wbc); | ||
645 | struct pagevec pvec; | ||
646 | int nr_pages; | ||
647 | pgoff_t index; | ||
648 | pgoff_t end = -1; /* Inclusive */ | ||
649 | int scanned = 0; | ||
650 | int is_range = 0; | ||
651 | |||
652 | if (wbc->nonblocking && bdi_write_congested(bdi)) { | ||
653 | wbc->encountered_congestion = 1; | ||
654 | return 0; | ||
655 | } | ||
656 | |||
657 | writepage = NULL; | ||
658 | if (get_block == NULL) | ||
659 | writepage = mapping->a_ops->writepage; | ||
660 | |||
661 | pagevec_init(&pvec, 0); | ||
662 | if (wbc->sync_mode == WB_SYNC_NONE) { | ||
663 | index = mapping->writeback_index; /* Start from prev offset */ | ||
664 | } else { | ||
665 | index = 0; /* whole-file sweep */ | ||
666 | scanned = 1; | ||
667 | } | ||
668 | if (wbc->start || wbc->end) { | ||
669 | index = wbc->start >> PAGE_CACHE_SHIFT; | ||
670 | end = wbc->end >> PAGE_CACHE_SHIFT; | ||
671 | is_range = 1; | ||
672 | scanned = 1; | ||
673 | } | ||
674 | retry: | ||
675 | while (!done && (index <= end) && | ||
676 | (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, | ||
677 | PAGECACHE_TAG_DIRTY, | ||
678 | min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) { | ||
679 | unsigned i; | ||
680 | |||
681 | scanned = 1; | ||
682 | for (i = 0; i < nr_pages; i++) { | ||
683 | struct page *page = pvec.pages[i]; | ||
684 | |||
685 | /* | ||
686 | * At this point we hold neither mapping->tree_lock nor | ||
687 | * lock on the page itself: the page may be truncated or | ||
688 | * invalidated (changing page->mapping to NULL), or even | ||
689 | * swizzled back from swapper_space to tmpfs file | ||
690 | * mapping | ||
691 | */ | ||
692 | |||
693 | lock_page(page); | ||
694 | |||
695 | if (unlikely(page->mapping != mapping)) { | ||
696 | unlock_page(page); | ||
697 | continue; | ||
698 | } | ||
699 | |||
700 | if (unlikely(is_range) && page->index > end) { | ||
701 | done = 1; | ||
702 | unlock_page(page); | ||
703 | continue; | ||
704 | } | ||
705 | |||
706 | if (wbc->sync_mode != WB_SYNC_NONE) | ||
707 | wait_on_page_writeback(page); | ||
708 | |||
709 | if (PageWriteback(page) || | ||
710 | !clear_page_dirty_for_io(page)) { | ||
711 | unlock_page(page); | ||
712 | continue; | ||
713 | } | ||
714 | |||
715 | if (writepage) { | ||
716 | ret = (*writepage)(page, wbc); | ||
717 | if (ret) { | ||
718 | if (ret == -ENOSPC) | ||
719 | set_bit(AS_ENOSPC, | ||
720 | &mapping->flags); | ||
721 | else | ||
722 | set_bit(AS_EIO, | ||
723 | &mapping->flags); | ||
724 | } | ||
725 | } else { | ||
726 | bio = __mpage_writepage(bio, page, get_block, | ||
727 | &last_block_in_bio, &ret, wbc, | ||
728 | writepage_fn); | ||
729 | } | ||
730 | if (ret || (--(wbc->nr_to_write) <= 0)) | ||
731 | done = 1; | ||
732 | if (wbc->nonblocking && bdi_write_congested(bdi)) { | ||
733 | wbc->encountered_congestion = 1; | ||
734 | done = 1; | ||
735 | } | ||
736 | } | ||
737 | pagevec_release(&pvec); | ||
738 | cond_resched(); | ||
739 | } | ||
740 | if (!scanned && !done) { | ||
741 | /* | ||
742 | * We hit the last page and there is more work to be done: wrap | ||
743 | * back to the start of the file | ||
744 | */ | ||
745 | scanned = 1; | ||
746 | index = 0; | ||
747 | goto retry; | ||
748 | } | ||
749 | if (!is_range) | ||
750 | mapping->writeback_index = index; | ||
751 | if (bio) | ||
752 | mpage_bio_submit(WRITE, bio); | ||
753 | return ret; | ||
754 | } | ||
755 | EXPORT_SYMBOL(mpage_writepages); | ||
756 | EXPORT_SYMBOL(__mpage_writepages); | ||
757 | |||
758 | int mpage_writepage(struct page *page, get_block_t get_block, | ||
759 | struct writeback_control *wbc) | ||
760 | { | ||
761 | int ret = 0; | ||
762 | struct bio *bio; | ||
763 | sector_t last_block_in_bio = 0; | ||
764 | |||
765 | bio = __mpage_writepage(NULL, page, get_block, | ||
766 | &last_block_in_bio, &ret, wbc, NULL); | ||
767 | if (bio) | ||
768 | mpage_bio_submit(WRITE, bio); | ||
769 | |||
770 | return ret; | ||
771 | } | ||
772 | EXPORT_SYMBOL(mpage_writepage); | ||