diff options
Diffstat (limited to 'fs/logfs/gc.c')
| -rw-r--r-- | fs/logfs/gc.c | 730 | 
1 files changed, 730 insertions, 0 deletions
| diff --git a/fs/logfs/gc.c b/fs/logfs/gc.c new file mode 100644 index 000000000000..92949f95a901 --- /dev/null +++ b/fs/logfs/gc.c | |||
| @@ -0,0 +1,730 @@ | |||
| 1 | /* | ||
| 2 | * fs/logfs/gc.c - garbage collection code | ||
| 3 | * | ||
| 4 | * As should be obvious for Linux kernel code, license is GPLv2 | ||
| 5 | * | ||
| 6 | * Copyright (c) 2005-2008 Joern Engel <joern@logfs.org> | ||
| 7 | */ | ||
| 8 | #include "logfs.h" | ||
| 9 | #include <linux/sched.h> | ||
| 10 | |||
| 11 | /* | ||
| 12 | * Wear leveling needs to kick in when the difference between low erase | ||
| 13 | * counts and high erase counts gets too big. A good value for "too big" | ||
| 14 | * may be somewhat below 10% of maximum erase count for the device. | ||
| 15 | * Why not 397, to pick a nice round number with no specific meaning? :) | ||
| 16 | * | ||
| 17 | * WL_RATELIMIT is the minimum time between two wear level events. A huge | ||
| 18 | * number of segments may fulfil the requirements for wear leveling at the | ||
| 19 | * same time. If that happens we don't want to cause a latency from hell, | ||
| 20 | * but just gently pick one segment every so often and minimize overhead. | ||
| 21 | */ | ||
| 22 | #define WL_DELTA 397 | ||
| 23 | #define WL_RATELIMIT 100 | ||
| 24 | #define MAX_OBJ_ALIASES 2600 | ||
| 25 | #define SCAN_RATIO 512 /* number of scanned segments per gc'd segment */ | ||
| 26 | #define LIST_SIZE 64 /* base size of candidate lists */ | ||
| 27 | #define SCAN_ROUNDS 128 /* maximum number of complete medium scans */ | ||
| 28 | #define SCAN_ROUNDS_HIGH 4 /* maximum number of higher-level scans */ | ||
| 29 | |||
| 30 | static int no_free_segments(struct super_block *sb) | ||
| 31 | { | ||
| 32 | struct logfs_super *super = logfs_super(sb); | ||
| 33 | |||
| 34 | return super->s_free_list.count; | ||
| 35 | } | ||
| 36 | |||
| 37 | /* journal has distance -1, top-most ifile layer distance 0 */ | ||
| 38 | static u8 root_distance(struct super_block *sb, gc_level_t __gc_level) | ||
| 39 | { | ||
| 40 | struct logfs_super *super = logfs_super(sb); | ||
| 41 | u8 gc_level = (__force u8)__gc_level; | ||
| 42 | |||
| 43 | switch (gc_level) { | ||
| 44 | case 0: /* fall through */ | ||
| 45 | case 1: /* fall through */ | ||
| 46 | case 2: /* fall through */ | ||
| 47 | case 3: | ||
| 48 | /* file data or indirect blocks */ | ||
| 49 | return super->s_ifile_levels + super->s_iblock_levels - gc_level; | ||
| 50 | case 6: /* fall through */ | ||
| 51 | case 7: /* fall through */ | ||
| 52 | case 8: /* fall through */ | ||
| 53 | case 9: | ||
| 54 | /* inode file data or indirect blocks */ | ||
| 55 | return super->s_ifile_levels - (gc_level - 6); | ||
| 56 | default: | ||
| 57 | printk(KERN_ERR"LOGFS: segment of unknown level %x found\n", | ||
| 58 | gc_level); | ||
| 59 | WARN_ON(1); | ||
| 60 | return super->s_ifile_levels + super->s_iblock_levels; | ||
| 61 | } | ||
| 62 | } | ||
| 63 | |||
| 64 | static int segment_is_reserved(struct super_block *sb, u32 segno) | ||
| 65 | { | ||
| 66 | struct logfs_super *super = logfs_super(sb); | ||
| 67 | struct logfs_area *area; | ||
| 68 | void *reserved; | ||
| 69 | int i; | ||
| 70 | |||
| 71 | /* Some segments are reserved. Just pretend they were all valid */ | ||
| 72 | reserved = btree_lookup32(&super->s_reserved_segments, segno); | ||
| 73 | if (reserved) | ||
| 74 | return 1; | ||
| 75 | |||
| 76 | /* Currently open segments */ | ||
| 77 | for_each_area(i) { | ||
| 78 | area = super->s_area[i]; | ||
| 79 | if (area->a_is_open && area->a_segno == segno) | ||
| 80 | return 1; | ||
| 81 | } | ||
| 82 | |||
| 83 | return 0; | ||
| 84 | } | ||
| 85 | |||
| 86 | static void logfs_mark_segment_bad(struct super_block *sb, u32 segno) | ||
| 87 | { | ||
| 88 | BUG(); | ||
| 89 | } | ||
| 90 | |||
| 91 | /* | ||
| 92 | * Returns the bytes consumed by valid objects in this segment. Object headers | ||
| 93 | * are counted, the segment header is not. | ||
| 94 | */ | ||
| 95 | static u32 logfs_valid_bytes(struct super_block *sb, u32 segno, u32 *ec, | ||
| 96 | gc_level_t *gc_level) | ||
| 97 | { | ||
| 98 | struct logfs_segment_entry se; | ||
| 99 | u32 ec_level; | ||
| 100 | |||
| 101 | logfs_get_segment_entry(sb, segno, &se); | ||
| 102 | if (se.ec_level == cpu_to_be32(BADSEG) || | ||
| 103 | se.valid == cpu_to_be32(RESERVED)) | ||
| 104 | return RESERVED; | ||
| 105 | |||
| 106 | ec_level = be32_to_cpu(se.ec_level); | ||
| 107 | *ec = ec_level >> 4; | ||
| 108 | *gc_level = GC_LEVEL(ec_level & 0xf); | ||
| 109 | return be32_to_cpu(se.valid); | ||
| 110 | } | ||
| 111 | |||
| 112 | static void logfs_cleanse_block(struct super_block *sb, u64 ofs, u64 ino, | ||
| 113 | u64 bix, gc_level_t gc_level) | ||
| 114 | { | ||
| 115 | struct inode *inode; | ||
| 116 | int err, cookie; | ||
| 117 | |||
| 118 | inode = logfs_safe_iget(sb, ino, &cookie); | ||
| 119 | err = logfs_rewrite_block(inode, bix, ofs, gc_level, 0); | ||
| 120 | BUG_ON(err); | ||
| 121 | logfs_safe_iput(inode, cookie); | ||
| 122 | } | ||
| 123 | |||
| 124 | static u32 logfs_gc_segment(struct super_block *sb, u32 segno, u8 dist) | ||
| 125 | { | ||
| 126 | struct logfs_super *super = logfs_super(sb); | ||
| 127 | struct logfs_segment_header sh; | ||
| 128 | struct logfs_object_header oh; | ||
| 129 | u64 ofs, ino, bix; | ||
| 130 | u32 seg_ofs, logical_segno, cleaned = 0; | ||
| 131 | int err, len, valid; | ||
| 132 | gc_level_t gc_level; | ||
| 133 | |||
| 134 | LOGFS_BUG_ON(segment_is_reserved(sb, segno), sb); | ||
| 135 | |||
| 136 | btree_insert32(&super->s_reserved_segments, segno, (void *)1, GFP_NOFS); | ||
| 137 | err = wbuf_read(sb, dev_ofs(sb, segno, 0), sizeof(sh), &sh); | ||
| 138 | BUG_ON(err); | ||
| 139 | gc_level = GC_LEVEL(sh.level); | ||
| 140 | logical_segno = be32_to_cpu(sh.segno); | ||
| 141 | if (sh.crc != logfs_crc32(&sh, sizeof(sh), 4)) { | ||
| 142 | logfs_mark_segment_bad(sb, segno); | ||
| 143 | cleaned = -1; | ||
| 144 | goto out; | ||
| 145 | } | ||
| 146 | |||
| 147 | for (seg_ofs = LOGFS_SEGMENT_HEADERSIZE; | ||
| 148 | seg_ofs + sizeof(oh) < super->s_segsize; ) { | ||
| 149 | ofs = dev_ofs(sb, logical_segno, seg_ofs); | ||
| 150 | err = wbuf_read(sb, dev_ofs(sb, segno, seg_ofs), sizeof(oh), | ||
| 151 | &oh); | ||
| 152 | BUG_ON(err); | ||
| 153 | |||
| 154 | if (!memchr_inv(&oh, 0xff, sizeof(oh))) | ||
| 155 | break; | ||
| 156 | |||
| 157 | if (oh.crc != logfs_crc32(&oh, sizeof(oh) - 4, 4)) { | ||
| 158 | logfs_mark_segment_bad(sb, segno); | ||
| 159 | cleaned = super->s_segsize - 1; | ||
| 160 | goto out; | ||
| 161 | } | ||
| 162 | |||
| 163 | ino = be64_to_cpu(oh.ino); | ||
| 164 | bix = be64_to_cpu(oh.bix); | ||
| 165 | len = sizeof(oh) + be16_to_cpu(oh.len); | ||
| 166 | valid = logfs_is_valid_block(sb, ofs, ino, bix, gc_level); | ||
| 167 | if (valid == 1) { | ||
| 168 | logfs_cleanse_block(sb, ofs, ino, bix, gc_level); | ||
| 169 | cleaned += len; | ||
| 170 | } else if (valid == 2) { | ||
| 171 | /* Will be invalid upon journal commit */ | ||
| 172 | cleaned += len; | ||
| 173 | } | ||
| 174 | seg_ofs += len; | ||
| 175 | } | ||
| 176 | out: | ||
| 177 | btree_remove32(&super->s_reserved_segments, segno); | ||
| 178 | return cleaned; | ||
| 179 | } | ||
| 180 | |||
| 181 | static struct gc_candidate *add_list(struct gc_candidate *cand, | ||
| 182 | struct candidate_list *list) | ||
| 183 | { | ||
| 184 | struct rb_node **p = &list->rb_tree.rb_node; | ||
| 185 | struct rb_node *parent = NULL; | ||
| 186 | struct gc_candidate *cur; | ||
| 187 | int comp; | ||
| 188 | |||
| 189 | cand->list = list; | ||
| 190 | while (*p) { | ||
| 191 | parent = *p; | ||
| 192 | cur = rb_entry(parent, struct gc_candidate, rb_node); | ||
| 193 | |||
| 194 | if (list->sort_by_ec) | ||
| 195 | comp = cand->erase_count < cur->erase_count; | ||
| 196 | else | ||
| 197 | comp = cand->valid < cur->valid; | ||
| 198 | |||
| 199 | if (comp) | ||
| 200 | p = &parent->rb_left; | ||
| 201 | else | ||
| 202 | p = &parent->rb_right; | ||
| 203 | } | ||
| 204 | rb_link_node(&cand->rb_node, parent, p); | ||
| 205 | rb_insert_color(&cand->rb_node, &list->rb_tree); | ||
| 206 | |||
| 207 | if (list->count <= list->maxcount) { | ||
| 208 | list->count++; | ||
| 209 | return NULL; | ||
| 210 | } | ||
| 211 | cand = rb_entry(rb_last(&list->rb_tree), struct gc_candidate, rb_node); | ||
| 212 | rb_erase(&cand->rb_node, &list->rb_tree); | ||
| 213 | cand->list = NULL; | ||
| 214 | return cand; | ||
| 215 | } | ||
| 216 | |||
| 217 | static void remove_from_list(struct gc_candidate *cand) | ||
| 218 | { | ||
| 219 | struct candidate_list *list = cand->list; | ||
| 220 | |||
| 221 | rb_erase(&cand->rb_node, &list->rb_tree); | ||
| 222 | list->count--; | ||
| 223 | } | ||
| 224 | |||
| 225 | static void free_candidate(struct super_block *sb, struct gc_candidate *cand) | ||
| 226 | { | ||
| 227 | struct logfs_super *super = logfs_super(sb); | ||
| 228 | |||
| 229 | btree_remove32(&super->s_cand_tree, cand->segno); | ||
| 230 | kfree(cand); | ||
| 231 | } | ||
| 232 | |||
| 233 | u32 get_best_cand(struct super_block *sb, struct candidate_list *list, u32 *ec) | ||
| 234 | { | ||
| 235 | struct gc_candidate *cand; | ||
| 236 | u32 segno; | ||
| 237 | |||
| 238 | BUG_ON(list->count == 0); | ||
| 239 | |||
| 240 | cand = rb_entry(rb_first(&list->rb_tree), struct gc_candidate, rb_node); | ||
| 241 | remove_from_list(cand); | ||
| 242 | segno = cand->segno; | ||
| 243 | if (ec) | ||
| 244 | *ec = cand->erase_count; | ||
| 245 | free_candidate(sb, cand); | ||
| 246 | return segno; | ||
| 247 | } | ||
| 248 | |||
| 249 | /* | ||
| 250 | * We have several lists to manage segments with. The reserve_list is used to | ||
| 251 | * deal with bad blocks. We try to keep the best (lowest ec) segments on this | ||
| 252 | * list. | ||
| 253 | * The free_list contains free segments for normal usage. It usually gets the | ||
| 254 | * second pick after the reserve_list. But when the free_list is running short | ||
| 255 | * it is more important to keep the free_list full than to keep a reserve. | ||
| 256 | * | ||
| 257 | * Segments that are not free are put onto a per-level low_list. If we have | ||
| 258 | * to run garbage collection, we pick a candidate from there. All segments on | ||
| 259 | * those lists should have at least some free space so GC will make progress. | ||
| 260 | * | ||
| 261 | * And last we have the ec_list, which is used to pick segments for wear | ||
| 262 | * leveling. | ||
| 263 | * | ||
| 264 | * If all appropriate lists are full, we simply free the candidate and forget | ||
| 265 | * about that segment for a while. We have better candidates for each purpose. | ||
| 266 | */ | ||
| 267 | static void __add_candidate(struct super_block *sb, struct gc_candidate *cand) | ||
| 268 | { | ||
| 269 | struct logfs_super *super = logfs_super(sb); | ||
| 270 | u32 full = super->s_segsize - LOGFS_SEGMENT_RESERVE; | ||
| 271 | |||
| 272 | if (cand->valid == 0) { | ||
| 273 | /* 100% free segments */ | ||
| 274 | log_gc_noisy("add reserve segment %x (ec %x) at %llx\n", | ||
| 275 | cand->segno, cand->erase_count, | ||
| 276 | dev_ofs(sb, cand->segno, 0)); | ||
| 277 | cand = add_list(cand, &super->s_reserve_list); | ||
| 278 | if (cand) { | ||
| 279 | log_gc_noisy("add free segment %x (ec %x) at %llx\n", | ||
| 280 | cand->segno, cand->erase_count, | ||
| 281 | dev_ofs(sb, cand->segno, 0)); | ||
| 282 | cand = add_list(cand, &super->s_free_list); | ||
| 283 | } | ||
| 284 | } else { | ||
| 285 | /* good candidates for Garbage Collection */ | ||
| 286 | if (cand->valid < full) | ||
| 287 | cand = add_list(cand, &super->s_low_list[cand->dist]); | ||
| 288 | /* good candidates for wear leveling, | ||
| 289 | * segments that were recently written get ignored */ | ||
| 290 | if (cand) | ||
| 291 | cand = add_list(cand, &super->s_ec_list); | ||
| 292 | } | ||
| 293 | if (cand) | ||
| 294 | free_candidate(sb, cand); | ||
| 295 | } | ||
| 296 | |||
| 297 | static int add_candidate(struct super_block *sb, u32 segno, u32 valid, u32 ec, | ||
| 298 | u8 dist) | ||
| 299 | { | ||
| 300 | struct logfs_super *super = logfs_super(sb); | ||
| 301 | struct gc_candidate *cand; | ||
| 302 | |||
| 303 | cand = kmalloc(sizeof(*cand), GFP_NOFS); | ||
| 304 | if (!cand) | ||
| 305 | return -ENOMEM; | ||
| 306 | |||
| 307 | cand->segno = segno; | ||
| 308 | cand->valid = valid; | ||
| 309 | cand->erase_count = ec; | ||
| 310 | cand->dist = dist; | ||
| 311 | |||
| 312 | btree_insert32(&super->s_cand_tree, segno, cand, GFP_NOFS); | ||
| 313 | __add_candidate(sb, cand); | ||
| 314 | return 0; | ||
| 315 | } | ||
| 316 | |||
| 317 | static void remove_segment_from_lists(struct super_block *sb, u32 segno) | ||
| 318 | { | ||
| 319 | struct logfs_super *super = logfs_super(sb); | ||
| 320 | struct gc_candidate *cand; | ||
| 321 | |||
| 322 | cand = btree_lookup32(&super->s_cand_tree, segno); | ||
| 323 | if (cand) { | ||
| 324 | remove_from_list(cand); | ||
| 325 | free_candidate(sb, cand); | ||
| 326 | } | ||
| 327 | } | ||
| 328 | |||
| 329 | static void scan_segment(struct super_block *sb, u32 segno) | ||
| 330 | { | ||
| 331 | u32 valid, ec = 0; | ||
| 332 | gc_level_t gc_level = 0; | ||
| 333 | u8 dist; | ||
| 334 | |||
| 335 | if (segment_is_reserved(sb, segno)) | ||
| 336 | return; | ||
| 337 | |||
| 338 | remove_segment_from_lists(sb, segno); | ||
| 339 | valid = logfs_valid_bytes(sb, segno, &ec, &gc_level); | ||
| 340 | if (valid == RESERVED) | ||
| 341 | return; | ||
| 342 | |||
| 343 | dist = root_distance(sb, gc_level); | ||
| 344 | add_candidate(sb, segno, valid, ec, dist); | ||
| 345 | } | ||
| 346 | |||
| 347 | static struct gc_candidate *first_in_list(struct candidate_list *list) | ||
| 348 | { | ||
| 349 | if (list->count == 0) | ||
| 350 | return NULL; | ||
| 351 | return rb_entry(rb_first(&list->rb_tree), struct gc_candidate, rb_node); | ||
| 352 | } | ||
| 353 | |||
| 354 | /* | ||
| 355 | * Find the best segment for garbage collection. Main criterion is | ||
| 356 | * the segment requiring the least effort to clean. Secondary | ||
| 357 | * criterion is to GC on the lowest level available. | ||
| 358 | * | ||
| 359 | * So we search the least effort segment on the lowest level first, | ||
| 360 | * then move up and pick another segment iff is requires significantly | ||
| 361 | * less effort. Hence the LOGFS_MAX_OBJECTSIZE in the comparison. | ||
| 362 | */ | ||
| 363 | static struct gc_candidate *get_candidate(struct super_block *sb) | ||
| 364 | { | ||
| 365 | struct logfs_super *super = logfs_super(sb); | ||
| 366 | int i, max_dist; | ||
| 367 | struct gc_candidate *cand = NULL, *this; | ||
| 368 | |||
| 369 | max_dist = min(no_free_segments(sb), LOGFS_NO_AREAS); | ||
| 370 | |||
| 371 | for (i = max_dist; i >= 0; i--) { | ||
| 372 | this = first_in_list(&super->s_low_list[i]); | ||
| 373 | if (!this) | ||
| 374 | continue; | ||
| 375 | if (!cand) | ||
| 376 | cand = this; | ||
| 377 | if (this->valid + LOGFS_MAX_OBJECTSIZE <= cand->valid) | ||
| 378 | cand = this; | ||
| 379 | } | ||
| 380 | return cand; | ||
| 381 | } | ||
| 382 | |||
| 383 | static int __logfs_gc_once(struct super_block *sb, struct gc_candidate *cand) | ||
| 384 | { | ||
| 385 | struct logfs_super *super = logfs_super(sb); | ||
| 386 | gc_level_t gc_level; | ||
| 387 | u32 cleaned, valid, segno, ec; | ||
| 388 | u8 dist; | ||
| 389 | |||
| 390 | if (!cand) { | ||
| 391 | log_gc("GC attempted, but no candidate found\n"); | ||
| 392 | return 0; | ||
| 393 | } | ||
| 394 | |||
| 395 | segno = cand->segno; | ||
| 396 | dist = cand->dist; | ||
| 397 | valid = logfs_valid_bytes(sb, segno, &ec, &gc_level); | ||
| 398 | free_candidate(sb, cand); | ||
| 399 | log_gc("GC segment #%02x at %llx, %x required, %x free, %x valid, %llx free\n", | ||
| 400 | segno, (u64)segno << super->s_segshift, | ||
| 401 | dist, no_free_segments(sb), valid, | ||
| 402 | super->s_free_bytes); | ||
| 403 | cleaned = logfs_gc_segment(sb, segno, dist); | ||
| 404 | log_gc("GC segment #%02x complete - now %x valid\n", segno, | ||
| 405 | valid - cleaned); | ||
| 406 | BUG_ON(cleaned != valid); | ||
| 407 | return 1; | ||
| 408 | } | ||
| 409 | |||
| 410 | static int logfs_gc_once(struct super_block *sb) | ||
| 411 | { | ||
| 412 | struct gc_candidate *cand; | ||
| 413 | |||
| 414 | cand = get_candidate(sb); | ||
| 415 | if (cand) | ||
| 416 | remove_from_list(cand); | ||
| 417 | return __logfs_gc_once(sb, cand); | ||
| 418 | } | ||
| 419 | |||
| 420 | /* returns 1 if a wrap occurs, 0 otherwise */ | ||
| 421 | static int logfs_scan_some(struct super_block *sb) | ||
| 422 | { | ||
| 423 | struct logfs_super *super = logfs_super(sb); | ||
| 424 | u32 segno; | ||
| 425 | int i, ret = 0; | ||
| 426 | |||
| 427 | segno = super->s_sweeper; | ||
| 428 | for (i = SCAN_RATIO; i > 0; i--) { | ||
| 429 | segno++; | ||
| 430 | if (segno >= super->s_no_segs) { | ||
| 431 | segno = 0; | ||
| 432 | ret = 1; | ||
| 433 | /* Break out of the loop. We want to read a single | ||
| 434 | * block from the segment size on next invocation if | ||
| 435 | * SCAN_RATIO is set to match block size | ||
| 436 | */ | ||
| 437 | break; | ||
| 438 | } | ||
| 439 | |||
| 440 | scan_segment(sb, segno); | ||
| 441 | } | ||
| 442 | super->s_sweeper = segno; | ||
| 443 | return ret; | ||
| 444 | } | ||
| 445 | |||
| 446 | /* | ||
| 447 | * In principle, this function should loop forever, looking for GC candidates | ||
| 448 | * and moving data. LogFS is designed in such a way that this loop is | ||
| 449 | * guaranteed to terminate. | ||
| 450 | * | ||
| 451 | * Limiting the loop to some iterations serves purely to catch cases when | ||
| 452 | * these guarantees have failed. An actual endless loop is an obvious bug | ||
| 453 | * and should be reported as such. | ||
| 454 | */ | ||
| 455 | static void __logfs_gc_pass(struct super_block *sb, int target) | ||
| 456 | { | ||
| 457 | struct logfs_super *super = logfs_super(sb); | ||
| 458 | struct logfs_block *block; | ||
| 459 | int round, progress, last_progress = 0; | ||
| 460 | |||
| 461 | if (no_free_segments(sb) >= target && | ||
| 462 | super->s_no_object_aliases < MAX_OBJ_ALIASES) | ||
| 463 | return; | ||
| 464 | |||
| 465 | log_gc("__logfs_gc_pass(%x)\n", target); | ||
| 466 | for (round = 0; round < SCAN_ROUNDS; ) { | ||
| 467 | if (no_free_segments(sb) >= target) | ||
| 468 | goto write_alias; | ||
| 469 | |||
| 470 | /* Sync in-memory state with on-medium state in case they | ||
| 471 | * diverged */ | ||
| 472 | logfs_write_anchor(sb); | ||
| 473 | round += logfs_scan_some(sb); | ||
| 474 | if (no_free_segments(sb) >= target) | ||
| 475 | goto write_alias; | ||
| 476 | progress = logfs_gc_once(sb); | ||
| 477 | if (progress) | ||
| 478 | last_progress = round; | ||
| 479 | else if (round - last_progress > 2) | ||
| 480 | break; | ||
| 481 | continue; | ||
| 482 | |||
| 483 | /* | ||
| 484 | * The goto logic is nasty, I just don't know a better way to | ||
| 485 | * code it. GC is supposed to ensure two things: | ||
| 486 | * 1. Enough free segments are available. | ||
| 487 | * 2. The number of aliases is bounded. | ||
| 488 | * When 1. is achieved, we take a look at 2. and write back | ||
| 489 | * some alias-containing blocks, if necessary. However, after | ||
| 490 | * each such write we need to go back to 1., as writes can | ||
| 491 | * consume free segments. | ||
| 492 | */ | ||
| 493 | write_alias: | ||
| 494 | if (super->s_no_object_aliases < MAX_OBJ_ALIASES) | ||
| 495 | return; | ||
| 496 | if (list_empty(&super->s_object_alias)) { | ||
| 497 | /* All aliases are still in btree */ | ||
| 498 | return; | ||
| 499 | } | ||
| 500 | log_gc("Write back one alias\n"); | ||
| 501 | block = list_entry(super->s_object_alias.next, | ||
| 502 | struct logfs_block, alias_list); | ||
| 503 | block->ops->write_block(block); | ||
| 504 | /* | ||
| 505 | * To round off the nasty goto logic, we reset round here. It | ||
| 506 | * is a safety-net for GC not making any progress and limited | ||
| 507 | * to something reasonably small. If incremented it for every | ||
| 508 | * single alias, the loop could terminate rather quickly. | ||
| 509 | */ | ||
| 510 | round = 0; | ||
| 511 | } | ||
| 512 | LOGFS_BUG(sb); | ||
| 513 | } | ||
| 514 | |||
| 515 | static int wl_ratelimit(struct super_block *sb, u64 *next_event) | ||
| 516 | { | ||
| 517 | struct logfs_super *super = logfs_super(sb); | ||
| 518 | |||
| 519 | if (*next_event < super->s_gec) { | ||
| 520 | *next_event = super->s_gec + WL_RATELIMIT; | ||
| 521 | return 0; | ||
| 522 | } | ||
| 523 | return 1; | ||
| 524 | } | ||
| 525 | |||
| 526 | static void logfs_wl_pass(struct super_block *sb) | ||
| 527 | { | ||
| 528 | struct logfs_super *super = logfs_super(sb); | ||
| 529 | struct gc_candidate *wl_cand, *free_cand; | ||
| 530 | |||
| 531 | if (wl_ratelimit(sb, &super->s_wl_gec_ostore)) | ||
| 532 | return; | ||
| 533 | |||
| 534 | wl_cand = first_in_list(&super->s_ec_list); | ||
| 535 | if (!wl_cand) | ||
| 536 | return; | ||
| 537 | free_cand = first_in_list(&super->s_free_list); | ||
| 538 | if (!free_cand) | ||
| 539 | return; | ||
| 540 | |||
| 541 | if (wl_cand->erase_count < free_cand->erase_count + WL_DELTA) { | ||
| 542 | remove_from_list(wl_cand); | ||
| 543 | __logfs_gc_once(sb, wl_cand); | ||
| 544 | } | ||
| 545 | } | ||
| 546 | |||
| 547 | /* | ||
| 548 | * The journal needs wear leveling as well. But moving the journal is an | ||
| 549 | * expensive operation so we try to avoid it as much as possible. And if we | ||
| 550 | * have to do it, we move the whole journal, not individual segments. | ||
| 551 | * | ||
| 552 | * Ratelimiting is not strictly necessary here, it mainly serves to avoid the | ||
| 553 | * calculations. First we check whether moving the journal would be a | ||
| 554 | * significant improvement. That means that a) the current journal segments | ||
| 555 | * have more wear than the future journal segments and b) the current journal | ||
| 556 | * segments have more wear than normal ostore segments. | ||
| 557 | * Rationale for b) is that we don't have to move the journal if it is aging | ||
| 558 | * less than the ostore, even if the reserve segments age even less (they are | ||
| 559 | * excluded from wear leveling, after all). | ||
| 560 | * Next we check that the superblocks have less wear than the journal. Since | ||
| 561 | * moving the journal requires writing the superblocks, we have to protect the | ||
| 562 | * superblocks even more than the journal. | ||
| 563 | * | ||
| 564 | * Also we double the acceptable wear difference, compared to ostore wear | ||
| 565 | * leveling. Journal data is read and rewritten rapidly, comparatively. So | ||
| 566 | * soft errors have much less time to accumulate and we allow the journal to | ||
| 567 | * be a bit worse than the ostore. | ||
| 568 | */ | ||
| 569 | static void logfs_journal_wl_pass(struct super_block *sb) | ||
| 570 | { | ||
| 571 | struct logfs_super *super = logfs_super(sb); | ||
| 572 | struct gc_candidate *cand; | ||
| 573 | u32 min_journal_ec = -1, max_reserve_ec = 0; | ||
| 574 | int i; | ||
| 575 | |||
| 576 | if (wl_ratelimit(sb, &super->s_wl_gec_journal)) | ||
| 577 | return; | ||
| 578 | |||
| 579 | if (super->s_reserve_list.count < super->s_no_journal_segs) { | ||
| 580 | /* Reserve is not full enough to move complete journal */ | ||
| 581 | return; | ||
| 582 | } | ||
| 583 | |||
| 584 | journal_for_each(i) | ||
| 585 | if (super->s_journal_seg[i]) | ||
| 586 | min_journal_ec = min(min_journal_ec, | ||
| 587 | super->s_journal_ec[i]); | ||
| 588 | cand = rb_entry(rb_first(&super->s_free_list.rb_tree), | ||
| 589 | struct gc_candidate, rb_node); | ||
| 590 | max_reserve_ec = cand->erase_count; | ||
| 591 | for (i = 0; i < 2; i++) { | ||
| 592 | struct logfs_segment_entry se; | ||
| 593 | u32 segno = seg_no(sb, super->s_sb_ofs[i]); | ||
| 594 | u32 ec; | ||
| 595 | |||
| 596 | logfs_get_segment_entry(sb, segno, &se); | ||
| 597 | ec = be32_to_cpu(se.ec_level) >> 4; | ||
| 598 | max_reserve_ec = max(max_reserve_ec, ec); | ||
| 599 | } | ||
| 600 | |||
| 601 | if (min_journal_ec > max_reserve_ec + 2 * WL_DELTA) { | ||
| 602 | do_logfs_journal_wl_pass(sb); | ||
| 603 | } | ||
| 604 | } | ||
| 605 | |||
| 606 | void logfs_gc_pass(struct super_block *sb) | ||
| 607 | { | ||
| 608 | struct logfs_super *super = logfs_super(sb); | ||
| 609 | |||
| 610 | //BUG_ON(mutex_trylock(&logfs_super(sb)->s_w_mutex)); | ||
| 611 | /* Write journal before free space is getting saturated with dirty | ||
| 612 | * objects. | ||
| 613 | */ | ||
| 614 | if (super->s_dirty_used_bytes + super->s_dirty_free_bytes | ||
| 615 | + LOGFS_MAX_OBJECTSIZE >= super->s_free_bytes) | ||
| 616 | logfs_write_anchor(sb); | ||
| 617 | __logfs_gc_pass(sb, super->s_total_levels); | ||
| 618 | logfs_wl_pass(sb); | ||
| 619 | logfs_journal_wl_pass(sb); | ||
| 620 | } | ||
| 621 | |||
| 622 | static int check_area(struct super_block *sb, int i) | ||
| 623 | { | ||
| 624 | struct logfs_super *super = logfs_super(sb); | ||
| 625 | struct logfs_area *area = super->s_area[i]; | ||
| 626 | struct logfs_object_header oh; | ||
| 627 | u32 segno = area->a_segno; | ||
| 628 | u32 ofs = area->a_used_bytes; | ||
| 629 | __be32 crc; | ||
| 630 | int err; | ||
| 631 | |||
| 632 | if (!area->a_is_open) | ||
| 633 | return 0; | ||
| 634 | |||
| 635 | for (ofs = area->a_used_bytes; | ||
| 636 | ofs <= super->s_segsize - sizeof(oh); | ||
| 637 | ofs += (u32)be16_to_cpu(oh.len) + sizeof(oh)) { | ||
| 638 | err = wbuf_read(sb, dev_ofs(sb, segno, ofs), sizeof(oh), &oh); | ||
| 639 | if (err) | ||
| 640 | return err; | ||
| 641 | |||
| 642 | if (!memchr_inv(&oh, 0xff, sizeof(oh))) | ||
| 643 | break; | ||
| 644 | |||
| 645 | crc = logfs_crc32(&oh, sizeof(oh) - 4, 4); | ||
| 646 | if (crc != oh.crc) { | ||
| 647 | printk(KERN_INFO "interrupted header at %llx\n", | ||
| 648 | dev_ofs(sb, segno, ofs)); | ||
| 649 | return 0; | ||
| 650 | } | ||
| 651 | } | ||
| 652 | if (ofs != area->a_used_bytes) { | ||
| 653 | printk(KERN_INFO "%x bytes unaccounted data found at %llx\n", | ||
| 654 | ofs - area->a_used_bytes, | ||
| 655 | dev_ofs(sb, segno, area->a_used_bytes)); | ||
| 656 | area->a_used_bytes = ofs; | ||
| 657 | } | ||
| 658 | return 0; | ||
| 659 | } | ||
| 660 | |||
| 661 | int logfs_check_areas(struct super_block *sb) | ||
| 662 | { | ||
| 663 | int i, err; | ||
| 664 | |||
| 665 | for_each_area(i) { | ||
| 666 | err = check_area(sb, i); | ||
| 667 | if (err) | ||
| 668 | return err; | ||
| 669 | } | ||
| 670 | return 0; | ||
| 671 | } | ||
| 672 | |||
| 673 | static void logfs_init_candlist(struct candidate_list *list, int maxcount, | ||
| 674 | int sort_by_ec) | ||
| 675 | { | ||
| 676 | list->count = 0; | ||
| 677 | list->maxcount = maxcount; | ||
| 678 | list->sort_by_ec = sort_by_ec; | ||
| 679 | list->rb_tree = RB_ROOT; | ||
| 680 | } | ||
| 681 | |||
| 682 | int logfs_init_gc(struct super_block *sb) | ||
| 683 | { | ||
| 684 | struct logfs_super *super = logfs_super(sb); | ||
| 685 | int i; | ||
| 686 | |||
| 687 | btree_init_mempool32(&super->s_cand_tree, super->s_btree_pool); | ||
| 688 | logfs_init_candlist(&super->s_free_list, LIST_SIZE + SCAN_RATIO, 1); | ||
| 689 | logfs_init_candlist(&super->s_reserve_list, | ||
| 690 | super->s_bad_seg_reserve, 1); | ||
| 691 | for_each_area(i) | ||
| 692 | logfs_init_candlist(&super->s_low_list[i], LIST_SIZE, 0); | ||
| 693 | logfs_init_candlist(&super->s_ec_list, LIST_SIZE, 1); | ||
| 694 | return 0; | ||
| 695 | } | ||
| 696 | |||
| 697 | static void logfs_cleanup_list(struct super_block *sb, | ||
| 698 | struct candidate_list *list) | ||
| 699 | { | ||
| 700 | struct gc_candidate *cand; | ||
| 701 | |||
| 702 | while (list->count) { | ||
| 703 | cand = rb_entry(list->rb_tree.rb_node, struct gc_candidate, | ||
| 704 | rb_node); | ||
| 705 | remove_from_list(cand); | ||
| 706 | free_candidate(sb, cand); | ||
| 707 | } | ||
| 708 | BUG_ON(list->rb_tree.rb_node); | ||
| 709 | } | ||
| 710 | |||
| 711 | void logfs_cleanup_gc(struct super_block *sb) | ||
| 712 | { | ||
| 713 | struct logfs_super *super = logfs_super(sb); | ||
| 714 | int i; | ||
| 715 | |||
| 716 | if (!super->s_free_list.count) | ||
| 717 | return; | ||
| 718 | |||
| 719 | /* | ||
| 720 | * FIXME: The btree may still contain a single empty node. So we | ||
| 721 | * call the grim visitor to clean up that mess. Btree code should | ||
| 722 | * do it for us, really. | ||
| 723 | */ | ||
| 724 | btree_grim_visitor32(&super->s_cand_tree, 0, NULL); | ||
| 725 | logfs_cleanup_list(sb, &super->s_free_list); | ||
| 726 | logfs_cleanup_list(sb, &super->s_reserve_list); | ||
| 727 | for_each_area(i) | ||
| 728 | logfs_cleanup_list(sb, &super->s_low_list[i]); | ||
| 729 | logfs_cleanup_list(sb, &super->s_ec_list); | ||
| 730 | } | ||
