aboutsummaryrefslogtreecommitdiffstats
path: root/fs/jffs2/scan.c
diff options
context:
space:
mode:
Diffstat (limited to 'fs/jffs2/scan.c')
-rw-r--r--fs/jffs2/scan.c916
1 files changed, 916 insertions, 0 deletions
diff --git a/fs/jffs2/scan.c b/fs/jffs2/scan.c
new file mode 100644
index 000000000000..ded53584a897
--- /dev/null
+++ b/fs/jffs2/scan.c
@@ -0,0 +1,916 @@
1/*
2 * JFFS2 -- Journalling Flash File System, Version 2.
3 *
4 * Copyright (C) 2001-2003 Red Hat, Inc.
5 *
6 * Created by David Woodhouse <dwmw2@infradead.org>
7 *
8 * For licensing information, see the file 'LICENCE' in this directory.
9 *
10 * $Id: scan.c,v 1.115 2004/11/17 12:59:08 dedekind Exp $
11 *
12 */
13#include <linux/kernel.h>
14#include <linux/sched.h>
15#include <linux/slab.h>
16#include <linux/mtd/mtd.h>
17#include <linux/pagemap.h>
18#include <linux/crc32.h>
19#include <linux/compiler.h>
20#include "nodelist.h"
21
22#define EMPTY_SCAN_SIZE 1024
23
24#define DIRTY_SPACE(x) do { typeof(x) _x = (x); \
25 c->free_size -= _x; c->dirty_size += _x; \
26 jeb->free_size -= _x ; jeb->dirty_size += _x; \
27 }while(0)
28#define USED_SPACE(x) do { typeof(x) _x = (x); \
29 c->free_size -= _x; c->used_size += _x; \
30 jeb->free_size -= _x ; jeb->used_size += _x; \
31 }while(0)
32#define UNCHECKED_SPACE(x) do { typeof(x) _x = (x); \
33 c->free_size -= _x; c->unchecked_size += _x; \
34 jeb->free_size -= _x ; jeb->unchecked_size += _x; \
35 }while(0)
36
37#define noisy_printk(noise, args...) do { \
38 if (*(noise)) { \
39 printk(KERN_NOTICE args); \
40 (*(noise))--; \
41 if (!(*(noise))) { \
42 printk(KERN_NOTICE "Further such events for this erase block will not be printed\n"); \
43 } \
44 } \
45} while(0)
46
47static uint32_t pseudo_random;
48
49static int jffs2_scan_eraseblock (struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
50 unsigned char *buf, uint32_t buf_size);
51
52/* These helper functions _must_ increase ofs and also do the dirty/used space accounting.
53 * Returning an error will abort the mount - bad checksums etc. should just mark the space
54 * as dirty.
55 */
56static int jffs2_scan_inode_node(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
57 struct jffs2_raw_inode *ri, uint32_t ofs);
58static int jffs2_scan_dirent_node(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
59 struct jffs2_raw_dirent *rd, uint32_t ofs);
60
61#define BLK_STATE_ALLFF 0
62#define BLK_STATE_CLEAN 1
63#define BLK_STATE_PARTDIRTY 2
64#define BLK_STATE_CLEANMARKER 3
65#define BLK_STATE_ALLDIRTY 4
66#define BLK_STATE_BADBLOCK 5
67
68static inline int min_free(struct jffs2_sb_info *c)
69{
70 uint32_t min = 2 * sizeof(struct jffs2_raw_inode);
71#if defined CONFIG_JFFS2_FS_NAND || defined CONFIG_JFFS2_FS_NOR_ECC
72 if (!jffs2_can_mark_obsolete(c) && min < c->wbuf_pagesize)
73 return c->wbuf_pagesize;
74#endif
75 return min;
76
77}
78int jffs2_scan_medium(struct jffs2_sb_info *c)
79{
80 int i, ret;
81 uint32_t empty_blocks = 0, bad_blocks = 0;
82 unsigned char *flashbuf = NULL;
83 uint32_t buf_size = 0;
84#ifndef __ECOS
85 size_t pointlen;
86
87 if (c->mtd->point) {
88 ret = c->mtd->point (c->mtd, 0, c->mtd->size, &pointlen, &flashbuf);
89 if (!ret && pointlen < c->mtd->size) {
90 /* Don't muck about if it won't let us point to the whole flash */
91 D1(printk(KERN_DEBUG "MTD point returned len too short: 0x%zx\n", pointlen));
92 c->mtd->unpoint(c->mtd, flashbuf, 0, c->mtd->size);
93 flashbuf = NULL;
94 }
95 if (ret)
96 D1(printk(KERN_DEBUG "MTD point failed %d\n", ret));
97 }
98#endif
99 if (!flashbuf) {
100 /* For NAND it's quicker to read a whole eraseblock at a time,
101 apparently */
102 if (jffs2_cleanmarker_oob(c))
103 buf_size = c->sector_size;
104 else
105 buf_size = PAGE_SIZE;
106
107 /* Respect kmalloc limitations */
108 if (buf_size > 128*1024)
109 buf_size = 128*1024;
110
111 D1(printk(KERN_DEBUG "Allocating readbuf of %d bytes\n", buf_size));
112 flashbuf = kmalloc(buf_size, GFP_KERNEL);
113 if (!flashbuf)
114 return -ENOMEM;
115 }
116
117 for (i=0; i<c->nr_blocks; i++) {
118 struct jffs2_eraseblock *jeb = &c->blocks[i];
119
120 ret = jffs2_scan_eraseblock(c, jeb, buf_size?flashbuf:(flashbuf+jeb->offset), buf_size);
121
122 if (ret < 0)
123 goto out;
124
125 ACCT_PARANOIA_CHECK(jeb);
126
127 /* Now decide which list to put it on */
128 switch(ret) {
129 case BLK_STATE_ALLFF:
130 /*
131 * Empty block. Since we can't be sure it
132 * was entirely erased, we just queue it for erase
133 * again. It will be marked as such when the erase
134 * is complete. Meanwhile we still count it as empty
135 * for later checks.
136 */
137 empty_blocks++;
138 list_add(&jeb->list, &c->erase_pending_list);
139 c->nr_erasing_blocks++;
140 break;
141
142 case BLK_STATE_CLEANMARKER:
143 /* Only a CLEANMARKER node is valid */
144 if (!jeb->dirty_size) {
145 /* It's actually free */
146 list_add(&jeb->list, &c->free_list);
147 c->nr_free_blocks++;
148 } else {
149 /* Dirt */
150 D1(printk(KERN_DEBUG "Adding all-dirty block at 0x%08x to erase_pending_list\n", jeb->offset));
151 list_add(&jeb->list, &c->erase_pending_list);
152 c->nr_erasing_blocks++;
153 }
154 break;
155
156 case BLK_STATE_CLEAN:
157 /* Full (or almost full) of clean data. Clean list */
158 list_add(&jeb->list, &c->clean_list);
159 break;
160
161 case BLK_STATE_PARTDIRTY:
162 /* Some data, but not full. Dirty list. */
163 /* We want to remember the block with most free space
164 and stick it in the 'nextblock' position to start writing to it. */
165 if (jeb->free_size > min_free(c) &&
166 (!c->nextblock || c->nextblock->free_size < jeb->free_size)) {
167 /* Better candidate for the next writes to go to */
168 if (c->nextblock) {
169 c->nextblock->dirty_size += c->nextblock->free_size + c->nextblock->wasted_size;
170 c->dirty_size += c->nextblock->free_size + c->nextblock->wasted_size;
171 c->free_size -= c->nextblock->free_size;
172 c->wasted_size -= c->nextblock->wasted_size;
173 c->nextblock->free_size = c->nextblock->wasted_size = 0;
174 if (VERYDIRTY(c, c->nextblock->dirty_size)) {
175 list_add(&c->nextblock->list, &c->very_dirty_list);
176 } else {
177 list_add(&c->nextblock->list, &c->dirty_list);
178 }
179 }
180 c->nextblock = jeb;
181 } else {
182 jeb->dirty_size += jeb->free_size + jeb->wasted_size;
183 c->dirty_size += jeb->free_size + jeb->wasted_size;
184 c->free_size -= jeb->free_size;
185 c->wasted_size -= jeb->wasted_size;
186 jeb->free_size = jeb->wasted_size = 0;
187 if (VERYDIRTY(c, jeb->dirty_size)) {
188 list_add(&jeb->list, &c->very_dirty_list);
189 } else {
190 list_add(&jeb->list, &c->dirty_list);
191 }
192 }
193 break;
194
195 case BLK_STATE_ALLDIRTY:
196 /* Nothing valid - not even a clean marker. Needs erasing. */
197 /* For now we just put it on the erasing list. We'll start the erases later */
198 D1(printk(KERN_NOTICE "JFFS2: Erase block at 0x%08x is not formatted. It will be erased\n", jeb->offset));
199 list_add(&jeb->list, &c->erase_pending_list);
200 c->nr_erasing_blocks++;
201 break;
202
203 case BLK_STATE_BADBLOCK:
204 D1(printk(KERN_NOTICE "JFFS2: Block at 0x%08x is bad\n", jeb->offset));
205 list_add(&jeb->list, &c->bad_list);
206 c->bad_size += c->sector_size;
207 c->free_size -= c->sector_size;
208 bad_blocks++;
209 break;
210 default:
211 printk(KERN_WARNING "jffs2_scan_medium(): unknown block state\n");
212 BUG();
213 }
214 }
215
216 /* Nextblock dirty is always seen as wasted, because we cannot recycle it now */
217 if (c->nextblock && (c->nextblock->dirty_size)) {
218 c->nextblock->wasted_size += c->nextblock->dirty_size;
219 c->wasted_size += c->nextblock->dirty_size;
220 c->dirty_size -= c->nextblock->dirty_size;
221 c->nextblock->dirty_size = 0;
222 }
223#if defined CONFIG_JFFS2_FS_NAND || defined CONFIG_JFFS2_FS_NOR_ECC
224 if (!jffs2_can_mark_obsolete(c) && c->nextblock && (c->nextblock->free_size & (c->wbuf_pagesize-1))) {
225 /* If we're going to start writing into a block which already
226 contains data, and the end of the data isn't page-aligned,
227 skip a little and align it. */
228
229 uint32_t skip = c->nextblock->free_size & (c->wbuf_pagesize-1);
230
231 D1(printk(KERN_DEBUG "jffs2_scan_medium(): Skipping %d bytes in nextblock to ensure page alignment\n",
232 skip));
233 c->nextblock->wasted_size += skip;
234 c->wasted_size += skip;
235
236 c->nextblock->free_size -= skip;
237 c->free_size -= skip;
238 }
239#endif
240 if (c->nr_erasing_blocks) {
241 if ( !c->used_size && ((c->nr_free_blocks+empty_blocks+bad_blocks)!= c->nr_blocks || bad_blocks == c->nr_blocks) ) {
242 printk(KERN_NOTICE "Cowardly refusing to erase blocks on filesystem with no valid JFFS2 nodes\n");
243 printk(KERN_NOTICE "empty_blocks %d, bad_blocks %d, c->nr_blocks %d\n",empty_blocks,bad_blocks,c->nr_blocks);
244 ret = -EIO;
245 goto out;
246 }
247 jffs2_erase_pending_trigger(c);
248 }
249 ret = 0;
250 out:
251 if (buf_size)
252 kfree(flashbuf);
253#ifndef __ECOS
254 else
255 c->mtd->unpoint(c->mtd, flashbuf, 0, c->mtd->size);
256#endif
257 return ret;
258}
259
260static int jffs2_fill_scan_buf (struct jffs2_sb_info *c, unsigned char *buf,
261 uint32_t ofs, uint32_t len)
262{
263 int ret;
264 size_t retlen;
265
266 ret = jffs2_flash_read(c, ofs, len, &retlen, buf);
267 if (ret) {
268 D1(printk(KERN_WARNING "mtd->read(0x%x bytes from 0x%x) returned %d\n", len, ofs, ret));
269 return ret;
270 }
271 if (retlen < len) {
272 D1(printk(KERN_WARNING "Read at 0x%x gave only 0x%zx bytes\n", ofs, retlen));
273 return -EIO;
274 }
275 D2(printk(KERN_DEBUG "Read 0x%x bytes from 0x%08x into buf\n", len, ofs));
276 D2(printk(KERN_DEBUG "000: %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x\n",
277 buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6], buf[7], buf[8], buf[9], buf[10], buf[11], buf[12], buf[13], buf[14], buf[15]));
278 return 0;
279}
280
281static int jffs2_scan_eraseblock (struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
282 unsigned char *buf, uint32_t buf_size) {
283 struct jffs2_unknown_node *node;
284 struct jffs2_unknown_node crcnode;
285 uint32_t ofs, prevofs;
286 uint32_t hdr_crc, buf_ofs, buf_len;
287 int err;
288 int noise = 0;
289#ifdef CONFIG_JFFS2_FS_NAND
290 int cleanmarkerfound = 0;
291#endif
292
293 ofs = jeb->offset;
294 prevofs = jeb->offset - 1;
295
296 D1(printk(KERN_DEBUG "jffs2_scan_eraseblock(): Scanning block at 0x%x\n", ofs));
297
298#ifdef CONFIG_JFFS2_FS_NAND
299 if (jffs2_cleanmarker_oob(c)) {
300 int ret = jffs2_check_nand_cleanmarker(c, jeb);
301 D2(printk(KERN_NOTICE "jffs_check_nand_cleanmarker returned %d\n",ret));
302 /* Even if it's not found, we still scan to see
303 if the block is empty. We use this information
304 to decide whether to erase it or not. */
305 switch (ret) {
306 case 0: cleanmarkerfound = 1; break;
307 case 1: break;
308 case 2: return BLK_STATE_BADBLOCK;
309 case 3: return BLK_STATE_ALLDIRTY; /* Block has failed to erase min. once */
310 default: return ret;
311 }
312 }
313#endif
314 buf_ofs = jeb->offset;
315
316 if (!buf_size) {
317 buf_len = c->sector_size;
318 } else {
319 buf_len = EMPTY_SCAN_SIZE;
320 err = jffs2_fill_scan_buf(c, buf, buf_ofs, buf_len);
321 if (err)
322 return err;
323 }
324
325 /* We temporarily use 'ofs' as a pointer into the buffer/jeb */
326 ofs = 0;
327
328 /* Scan only 4KiB of 0xFF before declaring it's empty */
329 while(ofs < EMPTY_SCAN_SIZE && *(uint32_t *)(&buf[ofs]) == 0xFFFFFFFF)
330 ofs += 4;
331
332 if (ofs == EMPTY_SCAN_SIZE) {
333#ifdef CONFIG_JFFS2_FS_NAND
334 if (jffs2_cleanmarker_oob(c)) {
335 /* scan oob, take care of cleanmarker */
336 int ret = jffs2_check_oob_empty(c, jeb, cleanmarkerfound);
337 D2(printk(KERN_NOTICE "jffs2_check_oob_empty returned %d\n",ret));
338 switch (ret) {
339 case 0: return cleanmarkerfound ? BLK_STATE_CLEANMARKER : BLK_STATE_ALLFF;
340 case 1: return BLK_STATE_ALLDIRTY;
341 default: return ret;
342 }
343 }
344#endif
345 D1(printk(KERN_DEBUG "Block at 0x%08x is empty (erased)\n", jeb->offset));
346 return BLK_STATE_ALLFF; /* OK to erase if all blocks are like this */
347 }
348 if (ofs) {
349 D1(printk(KERN_DEBUG "Free space at %08x ends at %08x\n", jeb->offset,
350 jeb->offset + ofs));
351 DIRTY_SPACE(ofs);
352 }
353
354 /* Now ofs is a complete physical flash offset as it always was... */
355 ofs += jeb->offset;
356
357 noise = 10;
358
359scan_more:
360 while(ofs < jeb->offset + c->sector_size) {
361
362 D1(ACCT_PARANOIA_CHECK(jeb));
363
364 cond_resched();
365
366 if (ofs & 3) {
367 printk(KERN_WARNING "Eep. ofs 0x%08x not word-aligned!\n", ofs);
368 ofs = PAD(ofs);
369 continue;
370 }
371 if (ofs == prevofs) {
372 printk(KERN_WARNING "ofs 0x%08x has already been seen. Skipping\n", ofs);
373 DIRTY_SPACE(4);
374 ofs += 4;
375 continue;
376 }
377 prevofs = ofs;
378
379 if (jeb->offset + c->sector_size < ofs + sizeof(*node)) {
380 D1(printk(KERN_DEBUG "Fewer than %zd bytes left to end of block. (%x+%x<%x+%zx) Not reading\n", sizeof(struct jffs2_unknown_node),
381 jeb->offset, c->sector_size, ofs, sizeof(*node)));
382 DIRTY_SPACE((jeb->offset + c->sector_size)-ofs);
383 break;
384 }
385
386 if (buf_ofs + buf_len < ofs + sizeof(*node)) {
387 buf_len = min_t(uint32_t, buf_size, jeb->offset + c->sector_size - ofs);
388 D1(printk(KERN_DEBUG "Fewer than %zd bytes (node header) left to end of buf. Reading 0x%x at 0x%08x\n",
389 sizeof(struct jffs2_unknown_node), buf_len, ofs));
390 err = jffs2_fill_scan_buf(c, buf, ofs, buf_len);
391 if (err)
392 return err;
393 buf_ofs = ofs;
394 }
395
396 node = (struct jffs2_unknown_node *)&buf[ofs-buf_ofs];
397
398 if (*(uint32_t *)(&buf[ofs-buf_ofs]) == 0xffffffff) {
399 uint32_t inbuf_ofs;
400 uint32_t empty_start;
401
402 empty_start = ofs;
403 ofs += 4;
404
405 D1(printk(KERN_DEBUG "Found empty flash at 0x%08x\n", ofs));
406 more_empty:
407 inbuf_ofs = ofs - buf_ofs;
408 while (inbuf_ofs < buf_len) {
409 if (*(uint32_t *)(&buf[inbuf_ofs]) != 0xffffffff) {
410 printk(KERN_WARNING "Empty flash at 0x%08x ends at 0x%08x\n",
411 empty_start, ofs);
412 DIRTY_SPACE(ofs-empty_start);
413 goto scan_more;
414 }
415
416 inbuf_ofs+=4;
417 ofs += 4;
418 }
419 /* Ran off end. */
420 D1(printk(KERN_DEBUG "Empty flash to end of buffer at 0x%08x\n", ofs));
421
422 /* If we're only checking the beginning of a block with a cleanmarker,
423 bail now */
424 if (buf_ofs == jeb->offset && jeb->used_size == PAD(c->cleanmarker_size) &&
425 c->cleanmarker_size && !jeb->dirty_size && !jeb->first_node->next_in_ino) {
426 D1(printk(KERN_DEBUG "%d bytes at start of block seems clean... assuming all clean\n", EMPTY_SCAN_SIZE));
427 return BLK_STATE_CLEANMARKER;
428 }
429
430 /* See how much more there is to read in this eraseblock... */
431 buf_len = min_t(uint32_t, buf_size, jeb->offset + c->sector_size - ofs);
432 if (!buf_len) {
433 /* No more to read. Break out of main loop without marking
434 this range of empty space as dirty (because it's not) */
435 D1(printk(KERN_DEBUG "Empty flash at %08x runs to end of block. Treating as free_space\n",
436 empty_start));
437 break;
438 }
439 D1(printk(KERN_DEBUG "Reading another 0x%x at 0x%08x\n", buf_len, ofs));
440 err = jffs2_fill_scan_buf(c, buf, ofs, buf_len);
441 if (err)
442 return err;
443 buf_ofs = ofs;
444 goto more_empty;
445 }
446
447 if (ofs == jeb->offset && je16_to_cpu(node->magic) == KSAMTIB_CIGAM_2SFFJ) {
448 printk(KERN_WARNING "Magic bitmask is backwards at offset 0x%08x. Wrong endian filesystem?\n", ofs);
449 DIRTY_SPACE(4);
450 ofs += 4;
451 continue;
452 }
453 if (je16_to_cpu(node->magic) == JFFS2_DIRTY_BITMASK) {
454 D1(printk(KERN_DEBUG "Dirty bitmask at 0x%08x\n", ofs));
455 DIRTY_SPACE(4);
456 ofs += 4;
457 continue;
458 }
459 if (je16_to_cpu(node->magic) == JFFS2_OLD_MAGIC_BITMASK) {
460 printk(KERN_WARNING "Old JFFS2 bitmask found at 0x%08x\n", ofs);
461 printk(KERN_WARNING "You cannot use older JFFS2 filesystems with newer kernels\n");
462 DIRTY_SPACE(4);
463 ofs += 4;
464 continue;
465 }
466 if (je16_to_cpu(node->magic) != JFFS2_MAGIC_BITMASK) {
467 /* OK. We're out of possibilities. Whinge and move on */
468 noisy_printk(&noise, "jffs2_scan_eraseblock(): Magic bitmask 0x%04x not found at 0x%08x: 0x%04x instead\n",
469 JFFS2_MAGIC_BITMASK, ofs,
470 je16_to_cpu(node->magic));
471 DIRTY_SPACE(4);
472 ofs += 4;
473 continue;
474 }
475 /* We seem to have a node of sorts. Check the CRC */
476 crcnode.magic = node->magic;
477 crcnode.nodetype = cpu_to_je16( je16_to_cpu(node->nodetype) | JFFS2_NODE_ACCURATE);
478 crcnode.totlen = node->totlen;
479 hdr_crc = crc32(0, &crcnode, sizeof(crcnode)-4);
480
481 if (hdr_crc != je32_to_cpu(node->hdr_crc)) {
482 noisy_printk(&noise, "jffs2_scan_eraseblock(): Node at 0x%08x {0x%04x, 0x%04x, 0x%08x) has invalid CRC 0x%08x (calculated 0x%08x)\n",
483 ofs, je16_to_cpu(node->magic),
484 je16_to_cpu(node->nodetype),
485 je32_to_cpu(node->totlen),
486 je32_to_cpu(node->hdr_crc),
487 hdr_crc);
488 DIRTY_SPACE(4);
489 ofs += 4;
490 continue;
491 }
492
493 if (ofs + je32_to_cpu(node->totlen) >
494 jeb->offset + c->sector_size) {
495 /* Eep. Node goes over the end of the erase block. */
496 printk(KERN_WARNING "Node at 0x%08x with length 0x%08x would run over the end of the erase block\n",
497 ofs, je32_to_cpu(node->totlen));
498 printk(KERN_WARNING "Perhaps the file system was created with the wrong erase size?\n");
499 DIRTY_SPACE(4);
500 ofs += 4;
501 continue;
502 }
503
504 if (!(je16_to_cpu(node->nodetype) & JFFS2_NODE_ACCURATE)) {
505 /* Wheee. This is an obsoleted node */
506 D2(printk(KERN_DEBUG "Node at 0x%08x is obsolete. Skipping\n", ofs));
507 DIRTY_SPACE(PAD(je32_to_cpu(node->totlen)));
508 ofs += PAD(je32_to_cpu(node->totlen));
509 continue;
510 }
511
512 switch(je16_to_cpu(node->nodetype)) {
513 case JFFS2_NODETYPE_INODE:
514 if (buf_ofs + buf_len < ofs + sizeof(struct jffs2_raw_inode)) {
515 buf_len = min_t(uint32_t, buf_size, jeb->offset + c->sector_size - ofs);
516 D1(printk(KERN_DEBUG "Fewer than %zd bytes (inode node) left to end of buf. Reading 0x%x at 0x%08x\n",
517 sizeof(struct jffs2_raw_inode), buf_len, ofs));
518 err = jffs2_fill_scan_buf(c, buf, ofs, buf_len);
519 if (err)
520 return err;
521 buf_ofs = ofs;
522 node = (void *)buf;
523 }
524 err = jffs2_scan_inode_node(c, jeb, (void *)node, ofs);
525 if (err) return err;
526 ofs += PAD(je32_to_cpu(node->totlen));
527 break;
528
529 case JFFS2_NODETYPE_DIRENT:
530 if (buf_ofs + buf_len < ofs + je32_to_cpu(node->totlen)) {
531 buf_len = min_t(uint32_t, buf_size, jeb->offset + c->sector_size - ofs);
532 D1(printk(KERN_DEBUG "Fewer than %d bytes (dirent node) left to end of buf. Reading 0x%x at 0x%08x\n",
533 je32_to_cpu(node->totlen), buf_len, ofs));
534 err = jffs2_fill_scan_buf(c, buf, ofs, buf_len);
535 if (err)
536 return err;
537 buf_ofs = ofs;
538 node = (void *)buf;
539 }
540 err = jffs2_scan_dirent_node(c, jeb, (void *)node, ofs);
541 if (err) return err;
542 ofs += PAD(je32_to_cpu(node->totlen));
543 break;
544
545 case JFFS2_NODETYPE_CLEANMARKER:
546 D1(printk(KERN_DEBUG "CLEANMARKER node found at 0x%08x\n", ofs));
547 if (je32_to_cpu(node->totlen) != c->cleanmarker_size) {
548 printk(KERN_NOTICE "CLEANMARKER node found at 0x%08x has totlen 0x%x != normal 0x%x\n",
549 ofs, je32_to_cpu(node->totlen), c->cleanmarker_size);
550 DIRTY_SPACE(PAD(sizeof(struct jffs2_unknown_node)));
551 ofs += PAD(sizeof(struct jffs2_unknown_node));
552 } else if (jeb->first_node) {
553 printk(KERN_NOTICE "CLEANMARKER node found at 0x%08x, not first node in block (0x%08x)\n", ofs, jeb->offset);
554 DIRTY_SPACE(PAD(sizeof(struct jffs2_unknown_node)));
555 ofs += PAD(sizeof(struct jffs2_unknown_node));
556 } else {
557 struct jffs2_raw_node_ref *marker_ref = jffs2_alloc_raw_node_ref();
558 if (!marker_ref) {
559 printk(KERN_NOTICE "Failed to allocate node ref for clean marker\n");
560 return -ENOMEM;
561 }
562 marker_ref->next_in_ino = NULL;
563 marker_ref->next_phys = NULL;
564 marker_ref->flash_offset = ofs | REF_NORMAL;
565 marker_ref->__totlen = c->cleanmarker_size;
566 jeb->first_node = jeb->last_node = marker_ref;
567
568 USED_SPACE(PAD(c->cleanmarker_size));
569 ofs += PAD(c->cleanmarker_size);
570 }
571 break;
572
573 case JFFS2_NODETYPE_PADDING:
574 DIRTY_SPACE(PAD(je32_to_cpu(node->totlen)));
575 ofs += PAD(je32_to_cpu(node->totlen));
576 break;
577
578 default:
579 switch (je16_to_cpu(node->nodetype) & JFFS2_COMPAT_MASK) {
580 case JFFS2_FEATURE_ROCOMPAT:
581 printk(KERN_NOTICE "Read-only compatible feature node (0x%04x) found at offset 0x%08x\n", je16_to_cpu(node->nodetype), ofs);
582 c->flags |= JFFS2_SB_FLAG_RO;
583 if (!(jffs2_is_readonly(c)))
584 return -EROFS;
585 DIRTY_SPACE(PAD(je32_to_cpu(node->totlen)));
586 ofs += PAD(je32_to_cpu(node->totlen));
587 break;
588
589 case JFFS2_FEATURE_INCOMPAT:
590 printk(KERN_NOTICE "Incompatible feature node (0x%04x) found at offset 0x%08x\n", je16_to_cpu(node->nodetype), ofs);
591 return -EINVAL;
592
593 case JFFS2_FEATURE_RWCOMPAT_DELETE:
594 D1(printk(KERN_NOTICE "Unknown but compatible feature node (0x%04x) found at offset 0x%08x\n", je16_to_cpu(node->nodetype), ofs));
595 DIRTY_SPACE(PAD(je32_to_cpu(node->totlen)));
596 ofs += PAD(je32_to_cpu(node->totlen));
597 break;
598
599 case JFFS2_FEATURE_RWCOMPAT_COPY:
600 D1(printk(KERN_NOTICE "Unknown but compatible feature node (0x%04x) found at offset 0x%08x\n", je16_to_cpu(node->nodetype), ofs));
601 USED_SPACE(PAD(je32_to_cpu(node->totlen)));
602 ofs += PAD(je32_to_cpu(node->totlen));
603 break;
604 }
605 }
606 }
607
608
609 D1(printk(KERN_DEBUG "Block at 0x%08x: free 0x%08x, dirty 0x%08x, unchecked 0x%08x, used 0x%08x\n", jeb->offset,
610 jeb->free_size, jeb->dirty_size, jeb->unchecked_size, jeb->used_size));
611
612 /* mark_node_obsolete can add to wasted !! */
613 if (jeb->wasted_size) {
614 jeb->dirty_size += jeb->wasted_size;
615 c->dirty_size += jeb->wasted_size;
616 c->wasted_size -= jeb->wasted_size;
617 jeb->wasted_size = 0;
618 }
619
620 if ((jeb->used_size + jeb->unchecked_size) == PAD(c->cleanmarker_size) && !jeb->dirty_size
621 && (!jeb->first_node || !jeb->first_node->next_in_ino) )
622 return BLK_STATE_CLEANMARKER;
623
624 /* move blocks with max 4 byte dirty space to cleanlist */
625 else if (!ISDIRTY(c->sector_size - (jeb->used_size + jeb->unchecked_size))) {
626 c->dirty_size -= jeb->dirty_size;
627 c->wasted_size += jeb->dirty_size;
628 jeb->wasted_size += jeb->dirty_size;
629 jeb->dirty_size = 0;
630 return BLK_STATE_CLEAN;
631 } else if (jeb->used_size || jeb->unchecked_size)
632 return BLK_STATE_PARTDIRTY;
633 else
634 return BLK_STATE_ALLDIRTY;
635}
636
637static struct jffs2_inode_cache *jffs2_scan_make_ino_cache(struct jffs2_sb_info *c, uint32_t ino)
638{
639 struct jffs2_inode_cache *ic;
640
641 ic = jffs2_get_ino_cache(c, ino);
642 if (ic)
643 return ic;
644
645 if (ino > c->highest_ino)
646 c->highest_ino = ino;
647
648 ic = jffs2_alloc_inode_cache();
649 if (!ic) {
650 printk(KERN_NOTICE "jffs2_scan_make_inode_cache(): allocation of inode cache failed\n");
651 return NULL;
652 }
653 memset(ic, 0, sizeof(*ic));
654
655 ic->ino = ino;
656 ic->nodes = (void *)ic;
657 jffs2_add_ino_cache(c, ic);
658 if (ino == 1)
659 ic->nlink = 1;
660 return ic;
661}
662
663static int jffs2_scan_inode_node(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
664 struct jffs2_raw_inode *ri, uint32_t ofs)
665{
666 struct jffs2_raw_node_ref *raw;
667 struct jffs2_inode_cache *ic;
668 uint32_t ino = je32_to_cpu(ri->ino);
669
670 D1(printk(KERN_DEBUG "jffs2_scan_inode_node(): Node at 0x%08x\n", ofs));
671
672 /* We do very little here now. Just check the ino# to which we should attribute
673 this node; we can do all the CRC checking etc. later. There's a tradeoff here --
674 we used to scan the flash once only, reading everything we want from it into
675 memory, then building all our in-core data structures and freeing the extra
676 information. Now we allow the first part of the mount to complete a lot quicker,
677 but we have to go _back_ to the flash in order to finish the CRC checking, etc.
678 Which means that the _full_ amount of time to get to proper write mode with GC
679 operational may actually be _longer_ than before. Sucks to be me. */
680
681 raw = jffs2_alloc_raw_node_ref();
682 if (!raw) {
683 printk(KERN_NOTICE "jffs2_scan_inode_node(): allocation of node reference failed\n");
684 return -ENOMEM;
685 }
686
687 ic = jffs2_get_ino_cache(c, ino);
688 if (!ic) {
689 /* Inocache get failed. Either we read a bogus ino# or it's just genuinely the
690 first node we found for this inode. Do a CRC check to protect against the former
691 case */
692 uint32_t crc = crc32(0, ri, sizeof(*ri)-8);
693
694 if (crc != je32_to_cpu(ri->node_crc)) {
695 printk(KERN_NOTICE "jffs2_scan_inode_node(): CRC failed on node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
696 ofs, je32_to_cpu(ri->node_crc), crc);
697 /* We believe totlen because the CRC on the node _header_ was OK, just the node itself failed. */
698 DIRTY_SPACE(PAD(je32_to_cpu(ri->totlen)));
699 jffs2_free_raw_node_ref(raw);
700 return 0;
701 }
702 ic = jffs2_scan_make_ino_cache(c, ino);
703 if (!ic) {
704 jffs2_free_raw_node_ref(raw);
705 return -ENOMEM;
706 }
707 }
708
709 /* Wheee. It worked */
710
711 raw->flash_offset = ofs | REF_UNCHECKED;
712 raw->__totlen = PAD(je32_to_cpu(ri->totlen));
713 raw->next_phys = NULL;
714 raw->next_in_ino = ic->nodes;
715
716 ic->nodes = raw;
717 if (!jeb->first_node)
718 jeb->first_node = raw;
719 if (jeb->last_node)
720 jeb->last_node->next_phys = raw;
721 jeb->last_node = raw;
722
723 D1(printk(KERN_DEBUG "Node is ino #%u, version %d. Range 0x%x-0x%x\n",
724 je32_to_cpu(ri->ino), je32_to_cpu(ri->version),
725 je32_to_cpu(ri->offset),
726 je32_to_cpu(ri->offset)+je32_to_cpu(ri->dsize)));
727
728 pseudo_random += je32_to_cpu(ri->version);
729
730 UNCHECKED_SPACE(PAD(je32_to_cpu(ri->totlen)));
731 return 0;
732}
733
734static int jffs2_scan_dirent_node(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
735 struct jffs2_raw_dirent *rd, uint32_t ofs)
736{
737 struct jffs2_raw_node_ref *raw;
738 struct jffs2_full_dirent *fd;
739 struct jffs2_inode_cache *ic;
740 uint32_t crc;
741
742 D1(printk(KERN_DEBUG "jffs2_scan_dirent_node(): Node at 0x%08x\n", ofs));
743
744 /* We don't get here unless the node is still valid, so we don't have to
745 mask in the ACCURATE bit any more. */
746 crc = crc32(0, rd, sizeof(*rd)-8);
747
748 if (crc != je32_to_cpu(rd->node_crc)) {
749 printk(KERN_NOTICE "jffs2_scan_dirent_node(): Node CRC failed on node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
750 ofs, je32_to_cpu(rd->node_crc), crc);
751 /* We believe totlen because the CRC on the node _header_ was OK, just the node itself failed. */
752 DIRTY_SPACE(PAD(je32_to_cpu(rd->totlen)));
753 return 0;
754 }
755
756 pseudo_random += je32_to_cpu(rd->version);
757
758 fd = jffs2_alloc_full_dirent(rd->nsize+1);
759 if (!fd) {
760 return -ENOMEM;
761 }
762 memcpy(&fd->name, rd->name, rd->nsize);
763 fd->name[rd->nsize] = 0;
764
765 crc = crc32(0, fd->name, rd->nsize);
766 if (crc != je32_to_cpu(rd->name_crc)) {
767 printk(KERN_NOTICE "jffs2_scan_dirent_node(): Name CRC failed on node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
768 ofs, je32_to_cpu(rd->name_crc), crc);
769 D1(printk(KERN_NOTICE "Name for which CRC failed is (now) '%s', ino #%d\n", fd->name, je32_to_cpu(rd->ino)));
770 jffs2_free_full_dirent(fd);
771 /* FIXME: Why do we believe totlen? */
772 /* We believe totlen because the CRC on the node _header_ was OK, just the name failed. */
773 DIRTY_SPACE(PAD(je32_to_cpu(rd->totlen)));
774 return 0;
775 }
776 raw = jffs2_alloc_raw_node_ref();
777 if (!raw) {
778 jffs2_free_full_dirent(fd);
779 printk(KERN_NOTICE "jffs2_scan_dirent_node(): allocation of node reference failed\n");
780 return -ENOMEM;
781 }
782 ic = jffs2_scan_make_ino_cache(c, je32_to_cpu(rd->pino));
783 if (!ic) {
784 jffs2_free_full_dirent(fd);
785 jffs2_free_raw_node_ref(raw);
786 return -ENOMEM;
787 }
788
789 raw->__totlen = PAD(je32_to_cpu(rd->totlen));
790 raw->flash_offset = ofs | REF_PRISTINE;
791 raw->next_phys = NULL;
792 raw->next_in_ino = ic->nodes;
793 ic->nodes = raw;
794 if (!jeb->first_node)
795 jeb->first_node = raw;
796 if (jeb->last_node)
797 jeb->last_node->next_phys = raw;
798 jeb->last_node = raw;
799
800 fd->raw = raw;
801 fd->next = NULL;
802 fd->version = je32_to_cpu(rd->version);
803 fd->ino = je32_to_cpu(rd->ino);
804 fd->nhash = full_name_hash(fd->name, rd->nsize);
805 fd->type = rd->type;
806 USED_SPACE(PAD(je32_to_cpu(rd->totlen)));
807 jffs2_add_fd_to_list(c, fd, &ic->scan_dents);
808
809 return 0;
810}
811
812static int count_list(struct list_head *l)
813{
814 uint32_t count = 0;
815 struct list_head *tmp;
816
817 list_for_each(tmp, l) {
818 count++;
819 }
820 return count;
821}
822
823/* Note: This breaks if list_empty(head). I don't care. You
824 might, if you copy this code and use it elsewhere :) */
825static void rotate_list(struct list_head *head, uint32_t count)
826{
827 struct list_head *n = head->next;
828
829 list_del(head);
830 while(count--) {
831 n = n->next;
832 }
833 list_add(head, n);
834}
835
836void jffs2_rotate_lists(struct jffs2_sb_info *c)
837{
838 uint32_t x;
839 uint32_t rotateby;
840
841 x = count_list(&c->clean_list);
842 if (x) {
843 rotateby = pseudo_random % x;
844 D1(printk(KERN_DEBUG "Rotating clean_list by %d\n", rotateby));
845
846 rotate_list((&c->clean_list), rotateby);
847
848 D1(printk(KERN_DEBUG "Erase block at front of clean_list is at %08x\n",
849 list_entry(c->clean_list.next, struct jffs2_eraseblock, list)->offset));
850 } else {
851 D1(printk(KERN_DEBUG "Not rotating empty clean_list\n"));
852 }
853
854 x = count_list(&c->very_dirty_list);
855 if (x) {
856 rotateby = pseudo_random % x;
857 D1(printk(KERN_DEBUG "Rotating very_dirty_list by %d\n", rotateby));
858
859 rotate_list((&c->very_dirty_list), rotateby);
860
861 D1(printk(KERN_DEBUG "Erase block at front of very_dirty_list is at %08x\n",
862 list_entry(c->very_dirty_list.next, struct jffs2_eraseblock, list)->offset));
863 } else {
864 D1(printk(KERN_DEBUG "Not rotating empty very_dirty_list\n"));
865 }
866
867 x = count_list(&c->dirty_list);
868 if (x) {
869 rotateby = pseudo_random % x;
870 D1(printk(KERN_DEBUG "Rotating dirty_list by %d\n", rotateby));
871
872 rotate_list((&c->dirty_list), rotateby);
873
874 D1(printk(KERN_DEBUG "Erase block at front of dirty_list is at %08x\n",
875 list_entry(c->dirty_list.next, struct jffs2_eraseblock, list)->offset));
876 } else {
877 D1(printk(KERN_DEBUG "Not rotating empty dirty_list\n"));
878 }
879
880 x = count_list(&c->erasable_list);
881 if (x) {
882 rotateby = pseudo_random % x;
883 D1(printk(KERN_DEBUG "Rotating erasable_list by %d\n", rotateby));
884
885 rotate_list((&c->erasable_list), rotateby);
886
887 D1(printk(KERN_DEBUG "Erase block at front of erasable_list is at %08x\n",
888 list_entry(c->erasable_list.next, struct jffs2_eraseblock, list)->offset));
889 } else {
890 D1(printk(KERN_DEBUG "Not rotating empty erasable_list\n"));
891 }
892
893 if (c->nr_erasing_blocks) {
894 rotateby = pseudo_random % c->nr_erasing_blocks;
895 D1(printk(KERN_DEBUG "Rotating erase_pending_list by %d\n", rotateby));
896
897 rotate_list((&c->erase_pending_list), rotateby);
898
899 D1(printk(KERN_DEBUG "Erase block at front of erase_pending_list is at %08x\n",
900 list_entry(c->erase_pending_list.next, struct jffs2_eraseblock, list)->offset));
901 } else {
902 D1(printk(KERN_DEBUG "Not rotating empty erase_pending_list\n"));
903 }
904
905 if (c->nr_free_blocks) {
906 rotateby = pseudo_random % c->nr_free_blocks;
907 D1(printk(KERN_DEBUG "Rotating free_list by %d\n", rotateby));
908
909 rotate_list((&c->free_list), rotateby);
910
911 D1(printk(KERN_DEBUG "Erase block at front of free_list is at %08x\n",
912 list_entry(c->free_list.next, struct jffs2_eraseblock, list)->offset));
913 } else {
914 D1(printk(KERN_DEBUG "Not rotating empty free_list\n"));
915 }
916}