diff options
Diffstat (limited to 'fs/file.c')
-rw-r--r-- | fs/file.c | 290 |
1 files changed, 90 insertions, 200 deletions
@@ -21,7 +21,6 @@ | |||
21 | struct fdtable_defer { | 21 | struct fdtable_defer { |
22 | spinlock_t lock; | 22 | spinlock_t lock; |
23 | struct work_struct wq; | 23 | struct work_struct wq; |
24 | struct timer_list timer; | ||
25 | struct fdtable *next; | 24 | struct fdtable *next; |
26 | }; | 25 | }; |
27 | 26 | ||
@@ -33,66 +32,34 @@ struct fdtable_defer { | |||
33 | */ | 32 | */ |
34 | static DEFINE_PER_CPU(struct fdtable_defer, fdtable_defer_list); | 33 | static DEFINE_PER_CPU(struct fdtable_defer, fdtable_defer_list); |
35 | 34 | ||
36 | 35 | static inline void * alloc_fdmem(unsigned int size) | |
37 | /* | ||
38 | * Allocate an fd array, using kmalloc or vmalloc. | ||
39 | * Note: the array isn't cleared at allocation time. | ||
40 | */ | ||
41 | struct file ** alloc_fd_array(int num) | ||
42 | { | 36 | { |
43 | struct file **new_fds; | ||
44 | int size = num * sizeof(struct file *); | ||
45 | |||
46 | if (size <= PAGE_SIZE) | 37 | if (size <= PAGE_SIZE) |
47 | new_fds = (struct file **) kmalloc(size, GFP_KERNEL); | 38 | return kmalloc(size, GFP_KERNEL); |
48 | else | ||
49 | new_fds = (struct file **) vmalloc(size); | ||
50 | return new_fds; | ||
51 | } | ||
52 | |||
53 | void free_fd_array(struct file **array, int num) | ||
54 | { | ||
55 | int size = num * sizeof(struct file *); | ||
56 | |||
57 | if (!array) { | ||
58 | printk (KERN_ERR "free_fd_array: array = 0 (num = %d)\n", num); | ||
59 | return; | ||
60 | } | ||
61 | |||
62 | if (num <= NR_OPEN_DEFAULT) /* Don't free the embedded fd array! */ | ||
63 | return; | ||
64 | else if (size <= PAGE_SIZE) | ||
65 | kfree(array); | ||
66 | else | 39 | else |
67 | vfree(array); | 40 | return vmalloc(size); |
68 | } | 41 | } |
69 | 42 | ||
70 | static void __free_fdtable(struct fdtable *fdt) | 43 | static inline void free_fdarr(struct fdtable *fdt) |
71 | { | 44 | { |
72 | free_fdset(fdt->open_fds, fdt->max_fdset); | 45 | if (fdt->max_fds <= (PAGE_SIZE / sizeof(struct file *))) |
73 | free_fdset(fdt->close_on_exec, fdt->max_fdset); | 46 | kfree(fdt->fd); |
74 | free_fd_array(fdt->fd, fdt->max_fds); | 47 | else |
75 | kfree(fdt); | 48 | vfree(fdt->fd); |
76 | } | 49 | } |
77 | 50 | ||
78 | static void fdtable_timer(unsigned long data) | 51 | static inline void free_fdset(struct fdtable *fdt) |
79 | { | 52 | { |
80 | struct fdtable_defer *fddef = (struct fdtable_defer *)data; | 53 | if (fdt->max_fds <= (PAGE_SIZE * BITS_PER_BYTE / 2)) |
81 | 54 | kfree(fdt->open_fds); | |
82 | spin_lock(&fddef->lock); | 55 | else |
83 | /* | 56 | vfree(fdt->open_fds); |
84 | * If someone already emptied the queue return. | ||
85 | */ | ||
86 | if (!fddef->next) | ||
87 | goto out; | ||
88 | if (!schedule_work(&fddef->wq)) | ||
89 | mod_timer(&fddef->timer, 5); | ||
90 | out: | ||
91 | spin_unlock(&fddef->lock); | ||
92 | } | 57 | } |
93 | 58 | ||
94 | static void free_fdtable_work(struct fdtable_defer *f) | 59 | static void free_fdtable_work(struct work_struct *work) |
95 | { | 60 | { |
61 | struct fdtable_defer *f = | ||
62 | container_of(work, struct fdtable_defer, wq); | ||
96 | struct fdtable *fdt; | 63 | struct fdtable *fdt; |
97 | 64 | ||
98 | spin_lock_bh(&f->lock); | 65 | spin_lock_bh(&f->lock); |
@@ -101,189 +68,113 @@ static void free_fdtable_work(struct fdtable_defer *f) | |||
101 | spin_unlock_bh(&f->lock); | 68 | spin_unlock_bh(&f->lock); |
102 | while(fdt) { | 69 | while(fdt) { |
103 | struct fdtable *next = fdt->next; | 70 | struct fdtable *next = fdt->next; |
104 | __free_fdtable(fdt); | 71 | vfree(fdt->fd); |
72 | free_fdset(fdt); | ||
73 | kfree(fdt); | ||
105 | fdt = next; | 74 | fdt = next; |
106 | } | 75 | } |
107 | } | 76 | } |
108 | 77 | ||
109 | static void free_fdtable_rcu(struct rcu_head *rcu) | 78 | void free_fdtable_rcu(struct rcu_head *rcu) |
110 | { | 79 | { |
111 | struct fdtable *fdt = container_of(rcu, struct fdtable, rcu); | 80 | struct fdtable *fdt = container_of(rcu, struct fdtable, rcu); |
112 | int fdset_size, fdarray_size; | ||
113 | struct fdtable_defer *fddef; | 81 | struct fdtable_defer *fddef; |
114 | 82 | ||
115 | BUG_ON(!fdt); | 83 | BUG_ON(!fdt); |
116 | fdset_size = fdt->max_fdset / 8; | ||
117 | fdarray_size = fdt->max_fds * sizeof(struct file *); | ||
118 | 84 | ||
119 | if (fdt->free_files) { | 85 | if (fdt->max_fds <= NR_OPEN_DEFAULT) { |
120 | /* | ||
121 | * The this fdtable was embedded in the files structure | ||
122 | * and the files structure itself was getting destroyed. | ||
123 | * It is now safe to free the files structure. | ||
124 | */ | ||
125 | kmem_cache_free(files_cachep, fdt->free_files); | ||
126 | return; | ||
127 | } | ||
128 | if (fdt->max_fdset <= EMBEDDED_FD_SET_SIZE && | ||
129 | fdt->max_fds <= NR_OPEN_DEFAULT) { | ||
130 | /* | 86 | /* |
131 | * The fdtable was embedded | 87 | * This fdtable is embedded in the files structure and that |
88 | * structure itself is getting destroyed. | ||
132 | */ | 89 | */ |
90 | kmem_cache_free(files_cachep, | ||
91 | container_of(fdt, struct files_struct, fdtab)); | ||
133 | return; | 92 | return; |
134 | } | 93 | } |
135 | if (fdset_size <= PAGE_SIZE && fdarray_size <= PAGE_SIZE) { | 94 | if (fdt->max_fds <= (PAGE_SIZE / sizeof(struct file *))) { |
136 | kfree(fdt->open_fds); | ||
137 | kfree(fdt->close_on_exec); | ||
138 | kfree(fdt->fd); | 95 | kfree(fdt->fd); |
96 | kfree(fdt->open_fds); | ||
139 | kfree(fdt); | 97 | kfree(fdt); |
140 | } else { | 98 | } else { |
141 | fddef = &get_cpu_var(fdtable_defer_list); | 99 | fddef = &get_cpu_var(fdtable_defer_list); |
142 | spin_lock(&fddef->lock); | 100 | spin_lock(&fddef->lock); |
143 | fdt->next = fddef->next; | 101 | fdt->next = fddef->next; |
144 | fddef->next = fdt; | 102 | fddef->next = fdt; |
145 | /* | 103 | /* vmallocs are handled from the workqueue context */ |
146 | * vmallocs are handled from the workqueue context. | 104 | schedule_work(&fddef->wq); |
147 | * If the per-cpu workqueue is running, then we | ||
148 | * defer work scheduling through a timer. | ||
149 | */ | ||
150 | if (!schedule_work(&fddef->wq)) | ||
151 | mod_timer(&fddef->timer, 5); | ||
152 | spin_unlock(&fddef->lock); | 105 | spin_unlock(&fddef->lock); |
153 | put_cpu_var(fdtable_defer_list); | 106 | put_cpu_var(fdtable_defer_list); |
154 | } | 107 | } |
155 | } | 108 | } |
156 | 109 | ||
157 | void free_fdtable(struct fdtable *fdt) | ||
158 | { | ||
159 | if (fdt->free_files || | ||
160 | fdt->max_fdset > EMBEDDED_FD_SET_SIZE || | ||
161 | fdt->max_fds > NR_OPEN_DEFAULT) | ||
162 | call_rcu(&fdt->rcu, free_fdtable_rcu); | ||
163 | } | ||
164 | |||
165 | /* | 110 | /* |
166 | * Expand the fdset in the files_struct. Called with the files spinlock | 111 | * Expand the fdset in the files_struct. Called with the files spinlock |
167 | * held for write. | 112 | * held for write. |
168 | */ | 113 | */ |
169 | static void copy_fdtable(struct fdtable *nfdt, struct fdtable *fdt) | 114 | static void copy_fdtable(struct fdtable *nfdt, struct fdtable *ofdt) |
170 | { | 115 | { |
171 | int i; | 116 | unsigned int cpy, set; |
172 | int count; | ||
173 | |||
174 | BUG_ON(nfdt->max_fdset < fdt->max_fdset); | ||
175 | BUG_ON(nfdt->max_fds < fdt->max_fds); | ||
176 | /* Copy the existing tables and install the new pointers */ | ||
177 | |||
178 | i = fdt->max_fdset / (sizeof(unsigned long) * 8); | ||
179 | count = (nfdt->max_fdset - fdt->max_fdset) / 8; | ||
180 | |||
181 | /* | ||
182 | * Don't copy the entire array if the current fdset is | ||
183 | * not yet initialised. | ||
184 | */ | ||
185 | if (i) { | ||
186 | memcpy (nfdt->open_fds, fdt->open_fds, | ||
187 | fdt->max_fdset/8); | ||
188 | memcpy (nfdt->close_on_exec, fdt->close_on_exec, | ||
189 | fdt->max_fdset/8); | ||
190 | memset (&nfdt->open_fds->fds_bits[i], 0, count); | ||
191 | memset (&nfdt->close_on_exec->fds_bits[i], 0, count); | ||
192 | } | ||
193 | 117 | ||
194 | /* Don't copy/clear the array if we are creating a new | 118 | BUG_ON(nfdt->max_fds < ofdt->max_fds); |
195 | fd array for fork() */ | 119 | if (ofdt->max_fds == 0) |
196 | if (fdt->max_fds) { | 120 | return; |
197 | memcpy(nfdt->fd, fdt->fd, | ||
198 | fdt->max_fds * sizeof(struct file *)); | ||
199 | /* clear the remainder of the array */ | ||
200 | memset(&nfdt->fd[fdt->max_fds], 0, | ||
201 | (nfdt->max_fds - fdt->max_fds) * | ||
202 | sizeof(struct file *)); | ||
203 | } | ||
204 | } | ||
205 | |||
206 | /* | ||
207 | * Allocate an fdset array, using kmalloc or vmalloc. | ||
208 | * Note: the array isn't cleared at allocation time. | ||
209 | */ | ||
210 | fd_set * alloc_fdset(int num) | ||
211 | { | ||
212 | fd_set *new_fdset; | ||
213 | int size = num / 8; | ||
214 | 121 | ||
215 | if (size <= PAGE_SIZE) | 122 | cpy = ofdt->max_fds * sizeof(struct file *); |
216 | new_fdset = (fd_set *) kmalloc(size, GFP_KERNEL); | 123 | set = (nfdt->max_fds - ofdt->max_fds) * sizeof(struct file *); |
217 | else | 124 | memcpy(nfdt->fd, ofdt->fd, cpy); |
218 | new_fdset = (fd_set *) vmalloc(size); | 125 | memset((char *)(nfdt->fd) + cpy, 0, set); |
219 | return new_fdset; | 126 | |
127 | cpy = ofdt->max_fds / BITS_PER_BYTE; | ||
128 | set = (nfdt->max_fds - ofdt->max_fds) / BITS_PER_BYTE; | ||
129 | memcpy(nfdt->open_fds, ofdt->open_fds, cpy); | ||
130 | memset((char *)(nfdt->open_fds) + cpy, 0, set); | ||
131 | memcpy(nfdt->close_on_exec, ofdt->close_on_exec, cpy); | ||
132 | memset((char *)(nfdt->close_on_exec) + cpy, 0, set); | ||
220 | } | 133 | } |
221 | 134 | ||
222 | void free_fdset(fd_set *array, int num) | 135 | static struct fdtable * alloc_fdtable(unsigned int nr) |
223 | { | 136 | { |
224 | if (num <= EMBEDDED_FD_SET_SIZE) /* Don't free an embedded fdset */ | 137 | struct fdtable *fdt; |
225 | return; | 138 | char *data; |
226 | else if (num <= 8 * PAGE_SIZE) | ||
227 | kfree(array); | ||
228 | else | ||
229 | vfree(array); | ||
230 | } | ||
231 | 139 | ||
232 | static struct fdtable *alloc_fdtable(int nr) | 140 | /* |
233 | { | 141 | * Figure out how many fds we actually want to support in this fdtable. |
234 | struct fdtable *fdt = NULL; | 142 | * Allocation steps are keyed to the size of the fdarray, since it |
235 | int nfds = 0; | 143 | * grows far faster than any of the other dynamic data. We try to fit |
236 | fd_set *new_openset = NULL, *new_execset = NULL; | 144 | * the fdarray into comfortable page-tuned chunks: starting at 1024B |
237 | struct file **new_fds; | 145 | * and growing in powers of two from there on. |
146 | */ | ||
147 | nr /= (1024 / sizeof(struct file *)); | ||
148 | nr = roundup_pow_of_two(nr + 1); | ||
149 | nr *= (1024 / sizeof(struct file *)); | ||
150 | if (nr > NR_OPEN) | ||
151 | nr = NR_OPEN; | ||
238 | 152 | ||
239 | fdt = kzalloc(sizeof(*fdt), GFP_KERNEL); | 153 | fdt = kmalloc(sizeof(struct fdtable), GFP_KERNEL); |
240 | if (!fdt) | 154 | if (!fdt) |
241 | goto out; | 155 | goto out; |
242 | 156 | fdt->max_fds = nr; | |
243 | nfds = max_t(int, 8 * L1_CACHE_BYTES, roundup_pow_of_two(nr + 1)); | 157 | data = alloc_fdmem(nr * sizeof(struct file *)); |
244 | if (nfds > NR_OPEN) | 158 | if (!data) |
245 | nfds = NR_OPEN; | 159 | goto out_fdt; |
246 | 160 | fdt->fd = (struct file **)data; | |
247 | new_openset = alloc_fdset(nfds); | 161 | data = alloc_fdmem(max_t(unsigned int, |
248 | new_execset = alloc_fdset(nfds); | 162 | 2 * nr / BITS_PER_BYTE, L1_CACHE_BYTES)); |
249 | if (!new_openset || !new_execset) | 163 | if (!data) |
250 | goto out; | 164 | goto out_arr; |
251 | fdt->open_fds = new_openset; | 165 | fdt->open_fds = (fd_set *)data; |
252 | fdt->close_on_exec = new_execset; | 166 | data += nr / BITS_PER_BYTE; |
253 | fdt->max_fdset = nfds; | 167 | fdt->close_on_exec = (fd_set *)data; |
168 | INIT_RCU_HEAD(&fdt->rcu); | ||
169 | fdt->next = NULL; | ||
254 | 170 | ||
255 | nfds = NR_OPEN_DEFAULT; | ||
256 | /* | ||
257 | * Expand to the max in easy steps, and keep expanding it until | ||
258 | * we have enough for the requested fd array size. | ||
259 | */ | ||
260 | do { | ||
261 | #if NR_OPEN_DEFAULT < 256 | ||
262 | if (nfds < 256) | ||
263 | nfds = 256; | ||
264 | else | ||
265 | #endif | ||
266 | if (nfds < (PAGE_SIZE / sizeof(struct file *))) | ||
267 | nfds = PAGE_SIZE / sizeof(struct file *); | ||
268 | else { | ||
269 | nfds = nfds * 2; | ||
270 | if (nfds > NR_OPEN) | ||
271 | nfds = NR_OPEN; | ||
272 | } | ||
273 | } while (nfds <= nr); | ||
274 | new_fds = alloc_fd_array(nfds); | ||
275 | if (!new_fds) | ||
276 | goto out2; | ||
277 | fdt->fd = new_fds; | ||
278 | fdt->max_fds = nfds; | ||
279 | fdt->free_files = NULL; | ||
280 | return fdt; | 171 | return fdt; |
281 | out2: | 172 | |
282 | nfds = fdt->max_fdset; | 173 | out_arr: |
283 | out: | 174 | free_fdarr(fdt); |
284 | free_fdset(new_openset, nfds); | 175 | out_fdt: |
285 | free_fdset(new_execset, nfds); | ||
286 | kfree(fdt); | 176 | kfree(fdt); |
177 | out: | ||
287 | return NULL; | 178 | return NULL; |
288 | } | 179 | } |
289 | 180 | ||
@@ -310,14 +201,17 @@ static int expand_fdtable(struct files_struct *files, int nr) | |||
310 | * we dropped the lock | 201 | * we dropped the lock |
311 | */ | 202 | */ |
312 | cur_fdt = files_fdtable(files); | 203 | cur_fdt = files_fdtable(files); |
313 | if (nr >= cur_fdt->max_fds || nr >= cur_fdt->max_fdset) { | 204 | if (nr >= cur_fdt->max_fds) { |
314 | /* Continue as planned */ | 205 | /* Continue as planned */ |
315 | copy_fdtable(new_fdt, cur_fdt); | 206 | copy_fdtable(new_fdt, cur_fdt); |
316 | rcu_assign_pointer(files->fdt, new_fdt); | 207 | rcu_assign_pointer(files->fdt, new_fdt); |
317 | free_fdtable(cur_fdt); | 208 | if (cur_fdt->max_fds > NR_OPEN_DEFAULT) |
209 | free_fdtable(cur_fdt); | ||
318 | } else { | 210 | } else { |
319 | /* Somebody else expanded, so undo our attempt */ | 211 | /* Somebody else expanded, so undo our attempt */ |
320 | __free_fdtable(new_fdt); | 212 | free_fdarr(new_fdt); |
213 | free_fdset(new_fdt); | ||
214 | kfree(new_fdt); | ||
321 | } | 215 | } |
322 | return 1; | 216 | return 1; |
323 | } | 217 | } |
@@ -336,11 +230,10 @@ int expand_files(struct files_struct *files, int nr) | |||
336 | 230 | ||
337 | fdt = files_fdtable(files); | 231 | fdt = files_fdtable(files); |
338 | /* Do we need to expand? */ | 232 | /* Do we need to expand? */ |
339 | if (nr < fdt->max_fdset && nr < fdt->max_fds) | 233 | if (nr < fdt->max_fds) |
340 | return 0; | 234 | return 0; |
341 | /* Can we expand? */ | 235 | /* Can we expand? */ |
342 | if (fdt->max_fdset >= NR_OPEN || fdt->max_fds >= NR_OPEN || | 236 | if (nr >= NR_OPEN) |
343 | nr >= NR_OPEN) | ||
344 | return -EMFILE; | 237 | return -EMFILE; |
345 | 238 | ||
346 | /* All good, so we try */ | 239 | /* All good, so we try */ |
@@ -351,10 +244,7 @@ static void __devinit fdtable_defer_list_init(int cpu) | |||
351 | { | 244 | { |
352 | struct fdtable_defer *fddef = &per_cpu(fdtable_defer_list, cpu); | 245 | struct fdtable_defer *fddef = &per_cpu(fdtable_defer_list, cpu); |
353 | spin_lock_init(&fddef->lock); | 246 | spin_lock_init(&fddef->lock); |
354 | INIT_WORK(&fddef->wq, (void (*)(void *))free_fdtable_work, fddef); | 247 | INIT_WORK(&fddef->wq, free_fdtable_work); |
355 | init_timer(&fddef->timer); | ||
356 | fddef->timer.data = (unsigned long)fddef; | ||
357 | fddef->timer.function = fdtable_timer; | ||
358 | fddef->next = NULL; | 248 | fddef->next = NULL; |
359 | } | 249 | } |
360 | 250 | ||