diff options
Diffstat (limited to 'fs/f2fs')
| -rw-r--r-- | fs/f2fs/Kconfig | 53 | ||||
| -rw-r--r-- | fs/f2fs/Makefile | 7 | ||||
| -rw-r--r-- | fs/f2fs/acl.c | 414 | ||||
| -rw-r--r-- | fs/f2fs/acl.h | 57 | ||||
| -rw-r--r-- | fs/f2fs/checkpoint.c | 794 | ||||
| -rw-r--r-- | fs/f2fs/data.c | 702 | ||||
| -rw-r--r-- | fs/f2fs/debug.c | 361 | ||||
| -rw-r--r-- | fs/f2fs/dir.c | 672 | ||||
| -rw-r--r-- | fs/f2fs/f2fs.h | 1083 | ||||
| -rw-r--r-- | fs/f2fs/file.c | 636 | ||||
| -rw-r--r-- | fs/f2fs/gc.c | 742 | ||||
| -rw-r--r-- | fs/f2fs/gc.h | 117 | ||||
| -rw-r--r-- | fs/f2fs/hash.c | 97 | ||||
| -rw-r--r-- | fs/f2fs/inode.c | 268 | ||||
| -rw-r--r-- | fs/f2fs/namei.c | 503 | ||||
| -rw-r--r-- | fs/f2fs/node.c | 1764 | ||||
| -rw-r--r-- | fs/f2fs/node.h | 353 | ||||
| -rw-r--r-- | fs/f2fs/recovery.c | 375 | ||||
| -rw-r--r-- | fs/f2fs/segment.c | 1791 | ||||
| -rw-r--r-- | fs/f2fs/segment.h | 618 | ||||
| -rw-r--r-- | fs/f2fs/super.c | 657 | ||||
| -rw-r--r-- | fs/f2fs/xattr.c | 440 | ||||
| -rw-r--r-- | fs/f2fs/xattr.h | 145 |
23 files changed, 12649 insertions, 0 deletions
diff --git a/fs/f2fs/Kconfig b/fs/f2fs/Kconfig new file mode 100644 index 000000000000..fd27e7e6326e --- /dev/null +++ b/fs/f2fs/Kconfig | |||
| @@ -0,0 +1,53 @@ | |||
| 1 | config F2FS_FS | ||
| 2 | tristate "F2FS filesystem support (EXPERIMENTAL)" | ||
| 3 | depends on BLOCK | ||
| 4 | help | ||
| 5 | F2FS is based on Log-structured File System (LFS), which supports | ||
| 6 | versatile "flash-friendly" features. The design has been focused on | ||
| 7 | addressing the fundamental issues in LFS, which are snowball effect | ||
| 8 | of wandering tree and high cleaning overhead. | ||
| 9 | |||
| 10 | Since flash-based storages show different characteristics according to | ||
| 11 | the internal geometry or flash memory management schemes aka FTL, F2FS | ||
| 12 | and tools support various parameters not only for configuring on-disk | ||
| 13 | layout, but also for selecting allocation and cleaning algorithms. | ||
| 14 | |||
| 15 | If unsure, say N. | ||
| 16 | |||
| 17 | config F2FS_STAT_FS | ||
| 18 | bool "F2FS Status Information" | ||
| 19 | depends on F2FS_FS && DEBUG_FS | ||
| 20 | default y | ||
| 21 | help | ||
| 22 | /sys/kernel/debug/f2fs/ contains information about all the partitions | ||
| 23 | mounted as f2fs. Each file shows the whole f2fs information. | ||
| 24 | |||
| 25 | /sys/kernel/debug/f2fs/status includes: | ||
| 26 | - major file system information managed by f2fs currently | ||
| 27 | - average SIT information about whole segments | ||
| 28 | - current memory footprint consumed by f2fs. | ||
| 29 | |||
| 30 | config F2FS_FS_XATTR | ||
| 31 | bool "F2FS extended attributes" | ||
| 32 | depends on F2FS_FS | ||
| 33 | default y | ||
| 34 | help | ||
| 35 | Extended attributes are name:value pairs associated with inodes by | ||
| 36 | the kernel or by users (see the attr(5) manual page, or visit | ||
| 37 | <http://acl.bestbits.at/> for details). | ||
| 38 | |||
| 39 | If unsure, say N. | ||
| 40 | |||
| 41 | config F2FS_FS_POSIX_ACL | ||
| 42 | bool "F2FS Access Control Lists" | ||
| 43 | depends on F2FS_FS_XATTR | ||
| 44 | select FS_POSIX_ACL | ||
| 45 | default y | ||
| 46 | help | ||
| 47 | Posix Access Control Lists (ACLs) support permissions for users and | ||
| 48 | gourps beyond the owner/group/world scheme. | ||
| 49 | |||
| 50 | To learn more about Access Control Lists, visit the POSIX ACLs for | ||
| 51 | Linux website <http://acl.bestbits.at/>. | ||
| 52 | |||
| 53 | If you don't know what Access Control Lists are, say N | ||
diff --git a/fs/f2fs/Makefile b/fs/f2fs/Makefile new file mode 100644 index 000000000000..27a0820340b9 --- /dev/null +++ b/fs/f2fs/Makefile | |||
| @@ -0,0 +1,7 @@ | |||
| 1 | obj-$(CONFIG_F2FS_FS) += f2fs.o | ||
| 2 | |||
| 3 | f2fs-y := dir.o file.o inode.o namei.o hash.o super.o | ||
| 4 | f2fs-y += checkpoint.o gc.o data.o node.o segment.o recovery.o | ||
| 5 | f2fs-$(CONFIG_F2FS_STAT_FS) += debug.o | ||
| 6 | f2fs-$(CONFIG_F2FS_FS_XATTR) += xattr.o | ||
| 7 | f2fs-$(CONFIG_F2FS_FS_POSIX_ACL) += acl.o | ||
diff --git a/fs/f2fs/acl.c b/fs/f2fs/acl.c new file mode 100644 index 000000000000..fed74d193ffb --- /dev/null +++ b/fs/f2fs/acl.c | |||
| @@ -0,0 +1,414 @@ | |||
| 1 | /* | ||
| 2 | * fs/f2fs/acl.c | ||
| 3 | * | ||
| 4 | * Copyright (c) 2012 Samsung Electronics Co., Ltd. | ||
| 5 | * http://www.samsung.com/ | ||
| 6 | * | ||
| 7 | * Portions of this code from linux/fs/ext2/acl.c | ||
| 8 | * | ||
| 9 | * Copyright (C) 2001-2003 Andreas Gruenbacher, <agruen@suse.de> | ||
| 10 | * | ||
| 11 | * This program is free software; you can redistribute it and/or modify | ||
| 12 | * it under the terms of the GNU General Public License version 2 as | ||
| 13 | * published by the Free Software Foundation. | ||
| 14 | */ | ||
| 15 | #include <linux/f2fs_fs.h> | ||
| 16 | #include "f2fs.h" | ||
| 17 | #include "xattr.h" | ||
| 18 | #include "acl.h" | ||
| 19 | |||
| 20 | #define get_inode_mode(i) ((is_inode_flag_set(F2FS_I(i), FI_ACL_MODE)) ? \ | ||
| 21 | (F2FS_I(i)->i_acl_mode) : ((i)->i_mode)) | ||
| 22 | |||
| 23 | static inline size_t f2fs_acl_size(int count) | ||
| 24 | { | ||
| 25 | if (count <= 4) { | ||
| 26 | return sizeof(struct f2fs_acl_header) + | ||
| 27 | count * sizeof(struct f2fs_acl_entry_short); | ||
| 28 | } else { | ||
| 29 | return sizeof(struct f2fs_acl_header) + | ||
| 30 | 4 * sizeof(struct f2fs_acl_entry_short) + | ||
| 31 | (count - 4) * sizeof(struct f2fs_acl_entry); | ||
| 32 | } | ||
| 33 | } | ||
| 34 | |||
| 35 | static inline int f2fs_acl_count(size_t size) | ||
| 36 | { | ||
| 37 | ssize_t s; | ||
| 38 | size -= sizeof(struct f2fs_acl_header); | ||
| 39 | s = size - 4 * sizeof(struct f2fs_acl_entry_short); | ||
| 40 | if (s < 0) { | ||
| 41 | if (size % sizeof(struct f2fs_acl_entry_short)) | ||
| 42 | return -1; | ||
| 43 | return size / sizeof(struct f2fs_acl_entry_short); | ||
| 44 | } else { | ||
| 45 | if (s % sizeof(struct f2fs_acl_entry)) | ||
| 46 | return -1; | ||
| 47 | return s / sizeof(struct f2fs_acl_entry) + 4; | ||
| 48 | } | ||
| 49 | } | ||
| 50 | |||
| 51 | static struct posix_acl *f2fs_acl_from_disk(const char *value, size_t size) | ||
| 52 | { | ||
| 53 | int i, count; | ||
| 54 | struct posix_acl *acl; | ||
| 55 | struct f2fs_acl_header *hdr = (struct f2fs_acl_header *)value; | ||
| 56 | struct f2fs_acl_entry *entry = (struct f2fs_acl_entry *)(hdr + 1); | ||
| 57 | const char *end = value + size; | ||
| 58 | |||
| 59 | if (hdr->a_version != cpu_to_le32(F2FS_ACL_VERSION)) | ||
| 60 | return ERR_PTR(-EINVAL); | ||
| 61 | |||
| 62 | count = f2fs_acl_count(size); | ||
| 63 | if (count < 0) | ||
| 64 | return ERR_PTR(-EINVAL); | ||
| 65 | if (count == 0) | ||
| 66 | return NULL; | ||
| 67 | |||
| 68 | acl = posix_acl_alloc(count, GFP_KERNEL); | ||
| 69 | if (!acl) | ||
| 70 | return ERR_PTR(-ENOMEM); | ||
| 71 | |||
| 72 | for (i = 0; i < count; i++) { | ||
| 73 | |||
| 74 | if ((char *)entry > end) | ||
| 75 | goto fail; | ||
| 76 | |||
| 77 | acl->a_entries[i].e_tag = le16_to_cpu(entry->e_tag); | ||
| 78 | acl->a_entries[i].e_perm = le16_to_cpu(entry->e_perm); | ||
| 79 | |||
| 80 | switch (acl->a_entries[i].e_tag) { | ||
| 81 | case ACL_USER_OBJ: | ||
| 82 | case ACL_GROUP_OBJ: | ||
| 83 | case ACL_MASK: | ||
| 84 | case ACL_OTHER: | ||
| 85 | acl->a_entries[i].e_id = ACL_UNDEFINED_ID; | ||
| 86 | entry = (struct f2fs_acl_entry *)((char *)entry + | ||
| 87 | sizeof(struct f2fs_acl_entry_short)); | ||
| 88 | break; | ||
| 89 | |||
| 90 | case ACL_USER: | ||
| 91 | acl->a_entries[i].e_uid = | ||
| 92 | make_kuid(&init_user_ns, | ||
| 93 | le32_to_cpu(entry->e_id)); | ||
| 94 | entry = (struct f2fs_acl_entry *)((char *)entry + | ||
| 95 | sizeof(struct f2fs_acl_entry)); | ||
| 96 | break; | ||
| 97 | case ACL_GROUP: | ||
| 98 | acl->a_entries[i].e_gid = | ||
| 99 | make_kgid(&init_user_ns, | ||
| 100 | le32_to_cpu(entry->e_id)); | ||
| 101 | entry = (struct f2fs_acl_entry *)((char *)entry + | ||
| 102 | sizeof(struct f2fs_acl_entry)); | ||
| 103 | break; | ||
| 104 | default: | ||
| 105 | goto fail; | ||
| 106 | } | ||
| 107 | } | ||
| 108 | if ((char *)entry != end) | ||
| 109 | goto fail; | ||
| 110 | return acl; | ||
| 111 | fail: | ||
| 112 | posix_acl_release(acl); | ||
| 113 | return ERR_PTR(-EINVAL); | ||
| 114 | } | ||
| 115 | |||
| 116 | static void *f2fs_acl_to_disk(const struct posix_acl *acl, size_t *size) | ||
| 117 | { | ||
| 118 | struct f2fs_acl_header *f2fs_acl; | ||
| 119 | struct f2fs_acl_entry *entry; | ||
| 120 | int i; | ||
| 121 | |||
| 122 | f2fs_acl = kmalloc(sizeof(struct f2fs_acl_header) + acl->a_count * | ||
| 123 | sizeof(struct f2fs_acl_entry), GFP_KERNEL); | ||
| 124 | if (!f2fs_acl) | ||
| 125 | return ERR_PTR(-ENOMEM); | ||
| 126 | |||
| 127 | f2fs_acl->a_version = cpu_to_le32(F2FS_ACL_VERSION); | ||
| 128 | entry = (struct f2fs_acl_entry *)(f2fs_acl + 1); | ||
| 129 | |||
| 130 | for (i = 0; i < acl->a_count; i++) { | ||
| 131 | |||
| 132 | entry->e_tag = cpu_to_le16(acl->a_entries[i].e_tag); | ||
| 133 | entry->e_perm = cpu_to_le16(acl->a_entries[i].e_perm); | ||
| 134 | |||
| 135 | switch (acl->a_entries[i].e_tag) { | ||
| 136 | case ACL_USER: | ||
| 137 | entry->e_id = cpu_to_le32( | ||
| 138 | from_kuid(&init_user_ns, | ||
| 139 | acl->a_entries[i].e_uid)); | ||
| 140 | entry = (struct f2fs_acl_entry *)((char *)entry + | ||
| 141 | sizeof(struct f2fs_acl_entry)); | ||
| 142 | break; | ||
| 143 | case ACL_GROUP: | ||
| 144 | entry->e_id = cpu_to_le32( | ||
| 145 | from_kgid(&init_user_ns, | ||
| 146 | acl->a_entries[i].e_gid)); | ||
| 147 | entry = (struct f2fs_acl_entry *)((char *)entry + | ||
| 148 | sizeof(struct f2fs_acl_entry)); | ||
| 149 | break; | ||
| 150 | case ACL_USER_OBJ: | ||
| 151 | case ACL_GROUP_OBJ: | ||
| 152 | case ACL_MASK: | ||
| 153 | case ACL_OTHER: | ||
| 154 | entry = (struct f2fs_acl_entry *)((char *)entry + | ||
| 155 | sizeof(struct f2fs_acl_entry_short)); | ||
| 156 | break; | ||
| 157 | default: | ||
| 158 | goto fail; | ||
| 159 | } | ||
| 160 | } | ||
| 161 | *size = f2fs_acl_size(acl->a_count); | ||
| 162 | return (void *)f2fs_acl; | ||
| 163 | |||
| 164 | fail: | ||
| 165 | kfree(f2fs_acl); | ||
| 166 | return ERR_PTR(-EINVAL); | ||
| 167 | } | ||
| 168 | |||
| 169 | struct posix_acl *f2fs_get_acl(struct inode *inode, int type) | ||
| 170 | { | ||
| 171 | struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); | ||
| 172 | int name_index = F2FS_XATTR_INDEX_POSIX_ACL_DEFAULT; | ||
| 173 | void *value = NULL; | ||
| 174 | struct posix_acl *acl; | ||
| 175 | int retval; | ||
| 176 | |||
| 177 | if (!test_opt(sbi, POSIX_ACL)) | ||
| 178 | return NULL; | ||
| 179 | |||
| 180 | acl = get_cached_acl(inode, type); | ||
| 181 | if (acl != ACL_NOT_CACHED) | ||
| 182 | return acl; | ||
| 183 | |||
| 184 | if (type == ACL_TYPE_ACCESS) | ||
| 185 | name_index = F2FS_XATTR_INDEX_POSIX_ACL_ACCESS; | ||
| 186 | |||
| 187 | retval = f2fs_getxattr(inode, name_index, "", NULL, 0); | ||
| 188 | if (retval > 0) { | ||
| 189 | value = kmalloc(retval, GFP_KERNEL); | ||
| 190 | if (!value) | ||
| 191 | return ERR_PTR(-ENOMEM); | ||
| 192 | retval = f2fs_getxattr(inode, name_index, "", value, retval); | ||
| 193 | } | ||
| 194 | |||
| 195 | if (retval < 0) { | ||
| 196 | if (retval == -ENODATA) | ||
| 197 | acl = NULL; | ||
| 198 | else | ||
| 199 | acl = ERR_PTR(retval); | ||
| 200 | } else { | ||
| 201 | acl = f2fs_acl_from_disk(value, retval); | ||
| 202 | } | ||
| 203 | kfree(value); | ||
| 204 | if (!IS_ERR(acl)) | ||
| 205 | set_cached_acl(inode, type, acl); | ||
| 206 | |||
| 207 | return acl; | ||
| 208 | } | ||
| 209 | |||
| 210 | static int f2fs_set_acl(struct inode *inode, int type, struct posix_acl *acl) | ||
| 211 | { | ||
| 212 | struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); | ||
| 213 | struct f2fs_inode_info *fi = F2FS_I(inode); | ||
| 214 | int name_index; | ||
| 215 | void *value = NULL; | ||
| 216 | size_t size = 0; | ||
| 217 | int error; | ||
| 218 | |||
| 219 | if (!test_opt(sbi, POSIX_ACL)) | ||
| 220 | return 0; | ||
| 221 | if (S_ISLNK(inode->i_mode)) | ||
| 222 | return -EOPNOTSUPP; | ||
| 223 | |||
| 224 | switch (type) { | ||
| 225 | case ACL_TYPE_ACCESS: | ||
| 226 | name_index = F2FS_XATTR_INDEX_POSIX_ACL_ACCESS; | ||
| 227 | if (acl) { | ||
| 228 | error = posix_acl_equiv_mode(acl, &inode->i_mode); | ||
| 229 | if (error < 0) | ||
| 230 | return error; | ||
| 231 | set_acl_inode(fi, inode->i_mode); | ||
| 232 | if (error == 0) | ||
| 233 | acl = NULL; | ||
| 234 | } | ||
| 235 | break; | ||
| 236 | |||
| 237 | case ACL_TYPE_DEFAULT: | ||
| 238 | name_index = F2FS_XATTR_INDEX_POSIX_ACL_DEFAULT; | ||
| 239 | if (!S_ISDIR(inode->i_mode)) | ||
| 240 | return acl ? -EACCES : 0; | ||
| 241 | break; | ||
| 242 | |||
| 243 | default: | ||
| 244 | return -EINVAL; | ||
| 245 | } | ||
| 246 | |||
| 247 | if (acl) { | ||
| 248 | value = f2fs_acl_to_disk(acl, &size); | ||
| 249 | if (IS_ERR(value)) { | ||
| 250 | cond_clear_inode_flag(fi, FI_ACL_MODE); | ||
| 251 | return (int)PTR_ERR(value); | ||
| 252 | } | ||
| 253 | } | ||
| 254 | |||
| 255 | error = f2fs_setxattr(inode, name_index, "", value, size); | ||
| 256 | |||
| 257 | kfree(value); | ||
| 258 | if (!error) | ||
| 259 | set_cached_acl(inode, type, acl); | ||
| 260 | |||
| 261 | cond_clear_inode_flag(fi, FI_ACL_MODE); | ||
| 262 | return error; | ||
| 263 | } | ||
| 264 | |||
| 265 | int f2fs_init_acl(struct inode *inode, struct inode *dir) | ||
| 266 | { | ||
| 267 | struct posix_acl *acl = NULL; | ||
| 268 | struct f2fs_sb_info *sbi = F2FS_SB(dir->i_sb); | ||
| 269 | int error = 0; | ||
| 270 | |||
| 271 | if (!S_ISLNK(inode->i_mode)) { | ||
| 272 | if (test_opt(sbi, POSIX_ACL)) { | ||
| 273 | acl = f2fs_get_acl(dir, ACL_TYPE_DEFAULT); | ||
| 274 | if (IS_ERR(acl)) | ||
| 275 | return PTR_ERR(acl); | ||
| 276 | } | ||
| 277 | if (!acl) | ||
| 278 | inode->i_mode &= ~current_umask(); | ||
| 279 | } | ||
| 280 | |||
| 281 | if (test_opt(sbi, POSIX_ACL) && acl) { | ||
| 282 | |||
| 283 | if (S_ISDIR(inode->i_mode)) { | ||
| 284 | error = f2fs_set_acl(inode, ACL_TYPE_DEFAULT, acl); | ||
| 285 | if (error) | ||
| 286 | goto cleanup; | ||
| 287 | } | ||
| 288 | error = posix_acl_create(&acl, GFP_KERNEL, &inode->i_mode); | ||
| 289 | if (error < 0) | ||
| 290 | return error; | ||
| 291 | if (error > 0) | ||
| 292 | error = f2fs_set_acl(inode, ACL_TYPE_ACCESS, acl); | ||
| 293 | } | ||
| 294 | cleanup: | ||
| 295 | posix_acl_release(acl); | ||
| 296 | return error; | ||
| 297 | } | ||
| 298 | |||
| 299 | int f2fs_acl_chmod(struct inode *inode) | ||
| 300 | { | ||
| 301 | struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); | ||
| 302 | struct posix_acl *acl; | ||
| 303 | int error; | ||
| 304 | mode_t mode = get_inode_mode(inode); | ||
| 305 | |||
| 306 | if (!test_opt(sbi, POSIX_ACL)) | ||
| 307 | return 0; | ||
| 308 | if (S_ISLNK(mode)) | ||
| 309 | return -EOPNOTSUPP; | ||
| 310 | |||
| 311 | acl = f2fs_get_acl(inode, ACL_TYPE_ACCESS); | ||
| 312 | if (IS_ERR(acl) || !acl) | ||
| 313 | return PTR_ERR(acl); | ||
| 314 | |||
| 315 | error = posix_acl_chmod(&acl, GFP_KERNEL, mode); | ||
| 316 | if (error) | ||
| 317 | return error; | ||
| 318 | error = f2fs_set_acl(inode, ACL_TYPE_ACCESS, acl); | ||
| 319 | posix_acl_release(acl); | ||
| 320 | return error; | ||
| 321 | } | ||
| 322 | |||
| 323 | static size_t f2fs_xattr_list_acl(struct dentry *dentry, char *list, | ||
| 324 | size_t list_size, const char *name, size_t name_len, int type) | ||
| 325 | { | ||
| 326 | struct f2fs_sb_info *sbi = F2FS_SB(dentry->d_sb); | ||
| 327 | const char *xname = POSIX_ACL_XATTR_DEFAULT; | ||
| 328 | size_t size; | ||
| 329 | |||
| 330 | if (!test_opt(sbi, POSIX_ACL)) | ||
| 331 | return 0; | ||
| 332 | |||
| 333 | if (type == ACL_TYPE_ACCESS) | ||
| 334 | xname = POSIX_ACL_XATTR_ACCESS; | ||
| 335 | |||
| 336 | size = strlen(xname) + 1; | ||
| 337 | if (list && size <= list_size) | ||
| 338 | memcpy(list, xname, size); | ||
| 339 | return size; | ||
| 340 | } | ||
| 341 | |||
| 342 | static int f2fs_xattr_get_acl(struct dentry *dentry, const char *name, | ||
| 343 | void *buffer, size_t size, int type) | ||
| 344 | { | ||
| 345 | struct f2fs_sb_info *sbi = F2FS_SB(dentry->d_sb); | ||
| 346 | struct posix_acl *acl; | ||
| 347 | int error; | ||
| 348 | |||
| 349 | if (strcmp(name, "") != 0) | ||
| 350 | return -EINVAL; | ||
| 351 | if (!test_opt(sbi, POSIX_ACL)) | ||
| 352 | return -EOPNOTSUPP; | ||
| 353 | |||
| 354 | acl = f2fs_get_acl(dentry->d_inode, type); | ||
| 355 | if (IS_ERR(acl)) | ||
| 356 | return PTR_ERR(acl); | ||
| 357 | if (!acl) | ||
| 358 | return -ENODATA; | ||
| 359 | error = posix_acl_to_xattr(&init_user_ns, acl, buffer, size); | ||
| 360 | posix_acl_release(acl); | ||
| 361 | |||
| 362 | return error; | ||
| 363 | } | ||
| 364 | |||
| 365 | static int f2fs_xattr_set_acl(struct dentry *dentry, const char *name, | ||
| 366 | const void *value, size_t size, int flags, int type) | ||
| 367 | { | ||
| 368 | struct f2fs_sb_info *sbi = F2FS_SB(dentry->d_sb); | ||
| 369 | struct inode *inode = dentry->d_inode; | ||
| 370 | struct posix_acl *acl = NULL; | ||
| 371 | int error; | ||
| 372 | |||
| 373 | if (strcmp(name, "") != 0) | ||
| 374 | return -EINVAL; | ||
| 375 | if (!test_opt(sbi, POSIX_ACL)) | ||
| 376 | return -EOPNOTSUPP; | ||
| 377 | if (!inode_owner_or_capable(inode)) | ||
| 378 | return -EPERM; | ||
| 379 | |||
| 380 | if (value) { | ||
| 381 | acl = posix_acl_from_xattr(&init_user_ns, value, size); | ||
| 382 | if (IS_ERR(acl)) | ||
| 383 | return PTR_ERR(acl); | ||
| 384 | if (acl) { | ||
| 385 | error = posix_acl_valid(acl); | ||
| 386 | if (error) | ||
| 387 | goto release_and_out; | ||
| 388 | } | ||
| 389 | } else { | ||
| 390 | acl = NULL; | ||
| 391 | } | ||
| 392 | |||
| 393 | error = f2fs_set_acl(inode, type, acl); | ||
| 394 | |||
| 395 | release_and_out: | ||
| 396 | posix_acl_release(acl); | ||
| 397 | return error; | ||
| 398 | } | ||
| 399 | |||
| 400 | const struct xattr_handler f2fs_xattr_acl_default_handler = { | ||
| 401 | .prefix = POSIX_ACL_XATTR_DEFAULT, | ||
| 402 | .flags = ACL_TYPE_DEFAULT, | ||
| 403 | .list = f2fs_xattr_list_acl, | ||
| 404 | .get = f2fs_xattr_get_acl, | ||
| 405 | .set = f2fs_xattr_set_acl, | ||
| 406 | }; | ||
| 407 | |||
| 408 | const struct xattr_handler f2fs_xattr_acl_access_handler = { | ||
| 409 | .prefix = POSIX_ACL_XATTR_ACCESS, | ||
| 410 | .flags = ACL_TYPE_ACCESS, | ||
| 411 | .list = f2fs_xattr_list_acl, | ||
| 412 | .get = f2fs_xattr_get_acl, | ||
| 413 | .set = f2fs_xattr_set_acl, | ||
| 414 | }; | ||
diff --git a/fs/f2fs/acl.h b/fs/f2fs/acl.h new file mode 100644 index 000000000000..80f430674417 --- /dev/null +++ b/fs/f2fs/acl.h | |||
| @@ -0,0 +1,57 @@ | |||
| 1 | /* | ||
| 2 | * fs/f2fs/acl.h | ||
| 3 | * | ||
| 4 | * Copyright (c) 2012 Samsung Electronics Co., Ltd. | ||
| 5 | * http://www.samsung.com/ | ||
| 6 | * | ||
| 7 | * Portions of this code from linux/fs/ext2/acl.h | ||
| 8 | * | ||
| 9 | * Copyright (C) 2001-2003 Andreas Gruenbacher, <agruen@suse.de> | ||
| 10 | * | ||
| 11 | * This program is free software; you can redistribute it and/or modify | ||
| 12 | * it under the terms of the GNU General Public License version 2 as | ||
| 13 | * published by the Free Software Foundation. | ||
| 14 | */ | ||
| 15 | #ifndef __F2FS_ACL_H__ | ||
| 16 | #define __F2FS_ACL_H__ | ||
| 17 | |||
| 18 | #include <linux/posix_acl_xattr.h> | ||
| 19 | |||
| 20 | #define F2FS_ACL_VERSION 0x0001 | ||
| 21 | |||
| 22 | struct f2fs_acl_entry { | ||
| 23 | __le16 e_tag; | ||
| 24 | __le16 e_perm; | ||
| 25 | __le32 e_id; | ||
| 26 | }; | ||
| 27 | |||
| 28 | struct f2fs_acl_entry_short { | ||
| 29 | __le16 e_tag; | ||
| 30 | __le16 e_perm; | ||
| 31 | }; | ||
| 32 | |||
| 33 | struct f2fs_acl_header { | ||
| 34 | __le32 a_version; | ||
| 35 | }; | ||
| 36 | |||
| 37 | #ifdef CONFIG_F2FS_FS_POSIX_ACL | ||
| 38 | |||
| 39 | extern struct posix_acl *f2fs_get_acl(struct inode *inode, int type); | ||
| 40 | extern int f2fs_acl_chmod(struct inode *inode); | ||
| 41 | extern int f2fs_init_acl(struct inode *inode, struct inode *dir); | ||
| 42 | #else | ||
| 43 | #define f2fs_check_acl NULL | ||
| 44 | #define f2fs_get_acl NULL | ||
| 45 | #define f2fs_set_acl NULL | ||
| 46 | |||
| 47 | static inline int f2fs_acl_chmod(struct inode *inode) | ||
| 48 | { | ||
| 49 | return 0; | ||
| 50 | } | ||
| 51 | |||
| 52 | static inline int f2fs_init_acl(struct inode *inode, struct inode *dir) | ||
| 53 | { | ||
| 54 | return 0; | ||
| 55 | } | ||
| 56 | #endif | ||
| 57 | #endif /* __F2FS_ACL_H__ */ | ||
diff --git a/fs/f2fs/checkpoint.c b/fs/f2fs/checkpoint.c new file mode 100644 index 000000000000..6ef36c37e2be --- /dev/null +++ b/fs/f2fs/checkpoint.c | |||
| @@ -0,0 +1,794 @@ | |||
| 1 | /* | ||
| 2 | * fs/f2fs/checkpoint.c | ||
| 3 | * | ||
| 4 | * Copyright (c) 2012 Samsung Electronics Co., Ltd. | ||
| 5 | * http://www.samsung.com/ | ||
| 6 | * | ||
| 7 | * This program is free software; you can redistribute it and/or modify | ||
| 8 | * it under the terms of the GNU General Public License version 2 as | ||
| 9 | * published by the Free Software Foundation. | ||
| 10 | */ | ||
| 11 | #include <linux/fs.h> | ||
| 12 | #include <linux/bio.h> | ||
| 13 | #include <linux/mpage.h> | ||
| 14 | #include <linux/writeback.h> | ||
| 15 | #include <linux/blkdev.h> | ||
| 16 | #include <linux/f2fs_fs.h> | ||
| 17 | #include <linux/pagevec.h> | ||
| 18 | #include <linux/swap.h> | ||
| 19 | |||
| 20 | #include "f2fs.h" | ||
| 21 | #include "node.h" | ||
| 22 | #include "segment.h" | ||
| 23 | |||
| 24 | static struct kmem_cache *orphan_entry_slab; | ||
| 25 | static struct kmem_cache *inode_entry_slab; | ||
| 26 | |||
| 27 | /* | ||
| 28 | * We guarantee no failure on the returned page. | ||
| 29 | */ | ||
| 30 | struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) | ||
| 31 | { | ||
| 32 | struct address_space *mapping = sbi->meta_inode->i_mapping; | ||
| 33 | struct page *page = NULL; | ||
| 34 | repeat: | ||
| 35 | page = grab_cache_page(mapping, index); | ||
| 36 | if (!page) { | ||
| 37 | cond_resched(); | ||
| 38 | goto repeat; | ||
| 39 | } | ||
| 40 | |||
| 41 | /* We wait writeback only inside grab_meta_page() */ | ||
| 42 | wait_on_page_writeback(page); | ||
| 43 | SetPageUptodate(page); | ||
| 44 | return page; | ||
| 45 | } | ||
| 46 | |||
| 47 | /* | ||
| 48 | * We guarantee no failure on the returned page. | ||
| 49 | */ | ||
| 50 | struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) | ||
| 51 | { | ||
| 52 | struct address_space *mapping = sbi->meta_inode->i_mapping; | ||
| 53 | struct page *page; | ||
| 54 | repeat: | ||
| 55 | page = grab_cache_page(mapping, index); | ||
| 56 | if (!page) { | ||
| 57 | cond_resched(); | ||
| 58 | goto repeat; | ||
| 59 | } | ||
| 60 | if (f2fs_readpage(sbi, page, index, READ_SYNC)) { | ||
| 61 | f2fs_put_page(page, 1); | ||
| 62 | goto repeat; | ||
| 63 | } | ||
| 64 | mark_page_accessed(page); | ||
| 65 | |||
| 66 | /* We do not allow returning an errorneous page */ | ||
| 67 | return page; | ||
| 68 | } | ||
| 69 | |||
| 70 | static int f2fs_write_meta_page(struct page *page, | ||
| 71 | struct writeback_control *wbc) | ||
| 72 | { | ||
| 73 | struct inode *inode = page->mapping->host; | ||
| 74 | struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); | ||
| 75 | int err; | ||
| 76 | |||
| 77 | wait_on_page_writeback(page); | ||
| 78 | |||
| 79 | err = write_meta_page(sbi, page, wbc); | ||
| 80 | if (err) { | ||
| 81 | wbc->pages_skipped++; | ||
| 82 | set_page_dirty(page); | ||
| 83 | } | ||
| 84 | |||
| 85 | dec_page_count(sbi, F2FS_DIRTY_META); | ||
| 86 | |||
| 87 | /* In this case, we should not unlock this page */ | ||
| 88 | if (err != AOP_WRITEPAGE_ACTIVATE) | ||
| 89 | unlock_page(page); | ||
| 90 | return err; | ||
| 91 | } | ||
| 92 | |||
| 93 | static int f2fs_write_meta_pages(struct address_space *mapping, | ||
| 94 | struct writeback_control *wbc) | ||
| 95 | { | ||
| 96 | struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb); | ||
| 97 | struct block_device *bdev = sbi->sb->s_bdev; | ||
| 98 | long written; | ||
| 99 | |||
| 100 | if (wbc->for_kupdate) | ||
| 101 | return 0; | ||
| 102 | |||
| 103 | if (get_pages(sbi, F2FS_DIRTY_META) == 0) | ||
| 104 | return 0; | ||
| 105 | |||
| 106 | /* if mounting is failed, skip writing node pages */ | ||
| 107 | mutex_lock(&sbi->cp_mutex); | ||
| 108 | written = sync_meta_pages(sbi, META, bio_get_nr_vecs(bdev)); | ||
| 109 | mutex_unlock(&sbi->cp_mutex); | ||
| 110 | wbc->nr_to_write -= written; | ||
| 111 | return 0; | ||
| 112 | } | ||
| 113 | |||
| 114 | long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, | ||
| 115 | long nr_to_write) | ||
| 116 | { | ||
| 117 | struct address_space *mapping = sbi->meta_inode->i_mapping; | ||
| 118 | pgoff_t index = 0, end = LONG_MAX; | ||
| 119 | struct pagevec pvec; | ||
| 120 | long nwritten = 0; | ||
| 121 | struct writeback_control wbc = { | ||
| 122 | .for_reclaim = 0, | ||
| 123 | }; | ||
| 124 | |||
| 125 | pagevec_init(&pvec, 0); | ||
| 126 | |||
| 127 | while (index <= end) { | ||
| 128 | int i, nr_pages; | ||
| 129 | nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, | ||
| 130 | PAGECACHE_TAG_DIRTY, | ||
| 131 | min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); | ||
| 132 | if (nr_pages == 0) | ||
| 133 | break; | ||
| 134 | |||
| 135 | for (i = 0; i < nr_pages; i++) { | ||
| 136 | struct page *page = pvec.pages[i]; | ||
| 137 | lock_page(page); | ||
| 138 | BUG_ON(page->mapping != mapping); | ||
| 139 | BUG_ON(!PageDirty(page)); | ||
| 140 | clear_page_dirty_for_io(page); | ||
| 141 | f2fs_write_meta_page(page, &wbc); | ||
| 142 | if (nwritten++ >= nr_to_write) | ||
| 143 | break; | ||
| 144 | } | ||
| 145 | pagevec_release(&pvec); | ||
| 146 | cond_resched(); | ||
| 147 | } | ||
| 148 | |||
| 149 | if (nwritten) | ||
| 150 | f2fs_submit_bio(sbi, type, nr_to_write == LONG_MAX); | ||
| 151 | |||
| 152 | return nwritten; | ||
| 153 | } | ||
| 154 | |||
| 155 | static int f2fs_set_meta_page_dirty(struct page *page) | ||
| 156 | { | ||
| 157 | struct address_space *mapping = page->mapping; | ||
| 158 | struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb); | ||
| 159 | |||
| 160 | SetPageUptodate(page); | ||
| 161 | if (!PageDirty(page)) { | ||
| 162 | __set_page_dirty_nobuffers(page); | ||
| 163 | inc_page_count(sbi, F2FS_DIRTY_META); | ||
| 164 | F2FS_SET_SB_DIRT(sbi); | ||
| 165 | return 1; | ||
| 166 | } | ||
| 167 | return 0; | ||
| 168 | } | ||
| 169 | |||
| 170 | const struct address_space_operations f2fs_meta_aops = { | ||
| 171 | .writepage = f2fs_write_meta_page, | ||
| 172 | .writepages = f2fs_write_meta_pages, | ||
| 173 | .set_page_dirty = f2fs_set_meta_page_dirty, | ||
| 174 | }; | ||
| 175 | |||
| 176 | int check_orphan_space(struct f2fs_sb_info *sbi) | ||
| 177 | { | ||
| 178 | unsigned int max_orphans; | ||
| 179 | int err = 0; | ||
| 180 | |||
| 181 | /* | ||
| 182 | * considering 512 blocks in a segment 5 blocks are needed for cp | ||
| 183 | * and log segment summaries. Remaining blocks are used to keep | ||
| 184 | * orphan entries with the limitation one reserved segment | ||
| 185 | * for cp pack we can have max 1020*507 orphan entries | ||
| 186 | */ | ||
| 187 | max_orphans = (sbi->blocks_per_seg - 5) * F2FS_ORPHANS_PER_BLOCK; | ||
| 188 | mutex_lock(&sbi->orphan_inode_mutex); | ||
| 189 | if (sbi->n_orphans >= max_orphans) | ||
| 190 | err = -ENOSPC; | ||
| 191 | mutex_unlock(&sbi->orphan_inode_mutex); | ||
| 192 | return err; | ||
| 193 | } | ||
| 194 | |||
| 195 | void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) | ||
| 196 | { | ||
| 197 | struct list_head *head, *this; | ||
| 198 | struct orphan_inode_entry *new = NULL, *orphan = NULL; | ||
| 199 | |||
| 200 | mutex_lock(&sbi->orphan_inode_mutex); | ||
| 201 | head = &sbi->orphan_inode_list; | ||
| 202 | list_for_each(this, head) { | ||
| 203 | orphan = list_entry(this, struct orphan_inode_entry, list); | ||
| 204 | if (orphan->ino == ino) | ||
| 205 | goto out; | ||
| 206 | if (orphan->ino > ino) | ||
| 207 | break; | ||
| 208 | orphan = NULL; | ||
| 209 | } | ||
| 210 | retry: | ||
| 211 | new = kmem_cache_alloc(orphan_entry_slab, GFP_ATOMIC); | ||
| 212 | if (!new) { | ||
| 213 | cond_resched(); | ||
| 214 | goto retry; | ||
| 215 | } | ||
| 216 | new->ino = ino; | ||
| 217 | INIT_LIST_HEAD(&new->list); | ||
| 218 | |||
| 219 | /* add new_oentry into list which is sorted by inode number */ | ||
| 220 | if (orphan) { | ||
| 221 | struct orphan_inode_entry *prev; | ||
| 222 | |||
| 223 | /* get previous entry */ | ||
| 224 | prev = list_entry(orphan->list.prev, typeof(*prev), list); | ||
| 225 | if (&prev->list != head) | ||
| 226 | /* insert new orphan inode entry */ | ||
| 227 | list_add(&new->list, &prev->list); | ||
| 228 | else | ||
| 229 | list_add(&new->list, head); | ||
| 230 | } else { | ||
| 231 | list_add_tail(&new->list, head); | ||
| 232 | } | ||
| 233 | sbi->n_orphans++; | ||
| 234 | out: | ||
| 235 | mutex_unlock(&sbi->orphan_inode_mutex); | ||
| 236 | } | ||
| 237 | |||
| 238 | void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) | ||
| 239 | { | ||
| 240 | struct list_head *this, *next, *head; | ||
| 241 | struct orphan_inode_entry *orphan; | ||
| 242 | |||
| 243 | mutex_lock(&sbi->orphan_inode_mutex); | ||
| 244 | head = &sbi->orphan_inode_list; | ||
| 245 | list_for_each_safe(this, next, head) { | ||
| 246 | orphan = list_entry(this, struct orphan_inode_entry, list); | ||
| 247 | if (orphan->ino == ino) { | ||
| 248 | list_del(&orphan->list); | ||
| 249 | kmem_cache_free(orphan_entry_slab, orphan); | ||
| 250 | sbi->n_orphans--; | ||
| 251 | break; | ||
| 252 | } | ||
| 253 | } | ||
| 254 | mutex_unlock(&sbi->orphan_inode_mutex); | ||
| 255 | } | ||
| 256 | |||
| 257 | static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) | ||
| 258 | { | ||
| 259 | struct inode *inode = f2fs_iget(sbi->sb, ino); | ||
| 260 | BUG_ON(IS_ERR(inode)); | ||
| 261 | clear_nlink(inode); | ||
| 262 | |||
| 263 | /* truncate all the data during iput */ | ||
| 264 | iput(inode); | ||
| 265 | } | ||
| 266 | |||
| 267 | int recover_orphan_inodes(struct f2fs_sb_info *sbi) | ||
| 268 | { | ||
| 269 | block_t start_blk, orphan_blkaddr, i, j; | ||
| 270 | |||
| 271 | if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG)) | ||
| 272 | return 0; | ||
| 273 | |||
| 274 | sbi->por_doing = 1; | ||
| 275 | start_blk = __start_cp_addr(sbi) + 1; | ||
| 276 | orphan_blkaddr = __start_sum_addr(sbi) - 1; | ||
| 277 | |||
| 278 | for (i = 0; i < orphan_blkaddr; i++) { | ||
| 279 | struct page *page = get_meta_page(sbi, start_blk + i); | ||
| 280 | struct f2fs_orphan_block *orphan_blk; | ||
| 281 | |||
| 282 | orphan_blk = (struct f2fs_orphan_block *)page_address(page); | ||
| 283 | for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) { | ||
| 284 | nid_t ino = le32_to_cpu(orphan_blk->ino[j]); | ||
| 285 | recover_orphan_inode(sbi, ino); | ||
| 286 | } | ||
| 287 | f2fs_put_page(page, 1); | ||
| 288 | } | ||
| 289 | /* clear Orphan Flag */ | ||
| 290 | clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG); | ||
| 291 | sbi->por_doing = 0; | ||
| 292 | return 0; | ||
| 293 | } | ||
| 294 | |||
| 295 | static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk) | ||
| 296 | { | ||
| 297 | struct list_head *head, *this, *next; | ||
| 298 | struct f2fs_orphan_block *orphan_blk = NULL; | ||
| 299 | struct page *page = NULL; | ||
| 300 | unsigned int nentries = 0; | ||
| 301 | unsigned short index = 1; | ||
| 302 | unsigned short orphan_blocks; | ||
| 303 | |||
| 304 | orphan_blocks = (unsigned short)((sbi->n_orphans + | ||
| 305 | (F2FS_ORPHANS_PER_BLOCK - 1)) / F2FS_ORPHANS_PER_BLOCK); | ||
| 306 | |||
| 307 | mutex_lock(&sbi->orphan_inode_mutex); | ||
| 308 | head = &sbi->orphan_inode_list; | ||
| 309 | |||
| 310 | /* loop for each orphan inode entry and write them in Jornal block */ | ||
| 311 | list_for_each_safe(this, next, head) { | ||
| 312 | struct orphan_inode_entry *orphan; | ||
| 313 | |||
| 314 | orphan = list_entry(this, struct orphan_inode_entry, list); | ||
| 315 | |||
| 316 | if (nentries == F2FS_ORPHANS_PER_BLOCK) { | ||
| 317 | /* | ||
| 318 | * an orphan block is full of 1020 entries, | ||
| 319 | * then we need to flush current orphan blocks | ||
| 320 | * and bring another one in memory | ||
| 321 | */ | ||
| 322 | orphan_blk->blk_addr = cpu_to_le16(index); | ||
| 323 | orphan_blk->blk_count = cpu_to_le16(orphan_blocks); | ||
| 324 | orphan_blk->entry_count = cpu_to_le32(nentries); | ||
| 325 | set_page_dirty(page); | ||
| 326 | f2fs_put_page(page, 1); | ||
| 327 | index++; | ||
| 328 | start_blk++; | ||
| 329 | nentries = 0; | ||
| 330 | page = NULL; | ||
| 331 | } | ||
| 332 | if (page) | ||
| 333 | goto page_exist; | ||
| 334 | |||
| 335 | page = grab_meta_page(sbi, start_blk); | ||
| 336 | orphan_blk = (struct f2fs_orphan_block *)page_address(page); | ||
| 337 | memset(orphan_blk, 0, sizeof(*orphan_blk)); | ||
| 338 | page_exist: | ||
| 339 | orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino); | ||
| 340 | } | ||
| 341 | if (!page) | ||
| 342 | goto end; | ||
| 343 | |||
| 344 | orphan_blk->blk_addr = cpu_to_le16(index); | ||
| 345 | orphan_blk->blk_count = cpu_to_le16(orphan_blocks); | ||
| 346 | orphan_blk->entry_count = cpu_to_le32(nentries); | ||
| 347 | set_page_dirty(page); | ||
| 348 | f2fs_put_page(page, 1); | ||
| 349 | end: | ||
| 350 | mutex_unlock(&sbi->orphan_inode_mutex); | ||
| 351 | } | ||
| 352 | |||
| 353 | static struct page *validate_checkpoint(struct f2fs_sb_info *sbi, | ||
| 354 | block_t cp_addr, unsigned long long *version) | ||
| 355 | { | ||
| 356 | struct page *cp_page_1, *cp_page_2 = NULL; | ||
| 357 | unsigned long blk_size = sbi->blocksize; | ||
| 358 | struct f2fs_checkpoint *cp_block; | ||
| 359 | unsigned long long cur_version = 0, pre_version = 0; | ||
| 360 | unsigned int crc = 0; | ||
| 361 | size_t crc_offset; | ||
| 362 | |||
| 363 | /* Read the 1st cp block in this CP pack */ | ||
| 364 | cp_page_1 = get_meta_page(sbi, cp_addr); | ||
| 365 | |||
| 366 | /* get the version number */ | ||
| 367 | cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1); | ||
| 368 | crc_offset = le32_to_cpu(cp_block->checksum_offset); | ||
| 369 | if (crc_offset >= blk_size) | ||
| 370 | goto invalid_cp1; | ||
| 371 | |||
| 372 | crc = *(unsigned int *)((unsigned char *)cp_block + crc_offset); | ||
| 373 | if (!f2fs_crc_valid(crc, cp_block, crc_offset)) | ||
| 374 | goto invalid_cp1; | ||
| 375 | |||
| 376 | pre_version = le64_to_cpu(cp_block->checkpoint_ver); | ||
| 377 | |||
| 378 | /* Read the 2nd cp block in this CP pack */ | ||
| 379 | cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1; | ||
| 380 | cp_page_2 = get_meta_page(sbi, cp_addr); | ||
| 381 | |||
| 382 | cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2); | ||
| 383 | crc_offset = le32_to_cpu(cp_block->checksum_offset); | ||
| 384 | if (crc_offset >= blk_size) | ||
| 385 | goto invalid_cp2; | ||
| 386 | |||
| 387 | crc = *(unsigned int *)((unsigned char *)cp_block + crc_offset); | ||
| 388 | if (!f2fs_crc_valid(crc, cp_block, crc_offset)) | ||
| 389 | goto invalid_cp2; | ||
| 390 | |||
| 391 | cur_version = le64_to_cpu(cp_block->checkpoint_ver); | ||
| 392 | |||
| 393 | if (cur_version == pre_version) { | ||
| 394 | *version = cur_version; | ||
| 395 | f2fs_put_page(cp_page_2, 1); | ||
| 396 | return cp_page_1; | ||
| 397 | } | ||
| 398 | invalid_cp2: | ||
| 399 | f2fs_put_page(cp_page_2, 1); | ||
| 400 | invalid_cp1: | ||
| 401 | f2fs_put_page(cp_page_1, 1); | ||
| 402 | return NULL; | ||
| 403 | } | ||
| 404 | |||
| 405 | int get_valid_checkpoint(struct f2fs_sb_info *sbi) | ||
| 406 | { | ||
| 407 | struct f2fs_checkpoint *cp_block; | ||
| 408 | struct f2fs_super_block *fsb = sbi->raw_super; | ||
| 409 | struct page *cp1, *cp2, *cur_page; | ||
| 410 | unsigned long blk_size = sbi->blocksize; | ||
| 411 | unsigned long long cp1_version = 0, cp2_version = 0; | ||
| 412 | unsigned long long cp_start_blk_no; | ||
| 413 | |||
| 414 | sbi->ckpt = kzalloc(blk_size, GFP_KERNEL); | ||
| 415 | if (!sbi->ckpt) | ||
| 416 | return -ENOMEM; | ||
| 417 | /* | ||
| 418 | * Finding out valid cp block involves read both | ||
| 419 | * sets( cp pack1 and cp pack 2) | ||
| 420 | */ | ||
| 421 | cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr); | ||
| 422 | cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version); | ||
| 423 | |||
| 424 | /* The second checkpoint pack should start at the next segment */ | ||
| 425 | cp_start_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg); | ||
| 426 | cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version); | ||
| 427 | |||
| 428 | if (cp1 && cp2) { | ||
| 429 | if (ver_after(cp2_version, cp1_version)) | ||
| 430 | cur_page = cp2; | ||
| 431 | else | ||
| 432 | cur_page = cp1; | ||
| 433 | } else if (cp1) { | ||
| 434 | cur_page = cp1; | ||
| 435 | } else if (cp2) { | ||
| 436 | cur_page = cp2; | ||
| 437 | } else { | ||
| 438 | goto fail_no_cp; | ||
| 439 | } | ||
| 440 | |||
| 441 | cp_block = (struct f2fs_checkpoint *)page_address(cur_page); | ||
| 442 | memcpy(sbi->ckpt, cp_block, blk_size); | ||
| 443 | |||
| 444 | f2fs_put_page(cp1, 1); | ||
| 445 | f2fs_put_page(cp2, 1); | ||
| 446 | return 0; | ||
| 447 | |||
| 448 | fail_no_cp: | ||
| 449 | kfree(sbi->ckpt); | ||
| 450 | return -EINVAL; | ||
| 451 | } | ||
| 452 | |||
| 453 | void set_dirty_dir_page(struct inode *inode, struct page *page) | ||
| 454 | { | ||
| 455 | struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); | ||
| 456 | struct list_head *head = &sbi->dir_inode_list; | ||
| 457 | struct dir_inode_entry *new; | ||
| 458 | struct list_head *this; | ||
| 459 | |||
| 460 | if (!S_ISDIR(inode->i_mode)) | ||
| 461 | return; | ||
| 462 | retry: | ||
| 463 | new = kmem_cache_alloc(inode_entry_slab, GFP_NOFS); | ||
| 464 | if (!new) { | ||
| 465 | cond_resched(); | ||
| 466 | goto retry; | ||
| 467 | } | ||
| 468 | new->inode = inode; | ||
| 469 | INIT_LIST_HEAD(&new->list); | ||
| 470 | |||
| 471 | spin_lock(&sbi->dir_inode_lock); | ||
| 472 | list_for_each(this, head) { | ||
| 473 | struct dir_inode_entry *entry; | ||
| 474 | entry = list_entry(this, struct dir_inode_entry, list); | ||
| 475 | if (entry->inode == inode) { | ||
| 476 | kmem_cache_free(inode_entry_slab, new); | ||
| 477 | goto out; | ||
| 478 | } | ||
| 479 | } | ||
| 480 | list_add_tail(&new->list, head); | ||
| 481 | sbi->n_dirty_dirs++; | ||
| 482 | |||
| 483 | BUG_ON(!S_ISDIR(inode->i_mode)); | ||
| 484 | out: | ||
| 485 | inc_page_count(sbi, F2FS_DIRTY_DENTS); | ||
| 486 | inode_inc_dirty_dents(inode); | ||
| 487 | SetPagePrivate(page); | ||
| 488 | |||
| 489 | spin_unlock(&sbi->dir_inode_lock); | ||
| 490 | } | ||
| 491 | |||
| 492 | void remove_dirty_dir_inode(struct inode *inode) | ||
| 493 | { | ||
| 494 | struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); | ||
| 495 | struct list_head *head = &sbi->dir_inode_list; | ||
| 496 | struct list_head *this; | ||
| 497 | |||
| 498 | if (!S_ISDIR(inode->i_mode)) | ||
| 499 | return; | ||
| 500 | |||
| 501 | spin_lock(&sbi->dir_inode_lock); | ||
| 502 | if (atomic_read(&F2FS_I(inode)->dirty_dents)) | ||
| 503 | goto out; | ||
| 504 | |||
| 505 | list_for_each(this, head) { | ||
| 506 | struct dir_inode_entry *entry; | ||
| 507 | entry = list_entry(this, struct dir_inode_entry, list); | ||
| 508 | if (entry->inode == inode) { | ||
| 509 | list_del(&entry->list); | ||
| 510 | kmem_cache_free(inode_entry_slab, entry); | ||
| 511 | sbi->n_dirty_dirs--; | ||
| 512 | break; | ||
| 513 | } | ||
| 514 | } | ||
| 515 | out: | ||
| 516 | spin_unlock(&sbi->dir_inode_lock); | ||
| 517 | } | ||
| 518 | |||
| 519 | void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi) | ||
| 520 | { | ||
| 521 | struct list_head *head = &sbi->dir_inode_list; | ||
| 522 | struct dir_inode_entry *entry; | ||
| 523 | struct inode *inode; | ||
| 524 | retry: | ||
| 525 | spin_lock(&sbi->dir_inode_lock); | ||
| 526 | if (list_empty(head)) { | ||
| 527 | spin_unlock(&sbi->dir_inode_lock); | ||
| 528 | return; | ||
| 529 | } | ||
| 530 | entry = list_entry(head->next, struct dir_inode_entry, list); | ||
| 531 | inode = igrab(entry->inode); | ||
| 532 | spin_unlock(&sbi->dir_inode_lock); | ||
| 533 | if (inode) { | ||
| 534 | filemap_flush(inode->i_mapping); | ||
| 535 | iput(inode); | ||
| 536 | } else { | ||
| 537 | /* | ||
| 538 | * We should submit bio, since it exists several | ||
| 539 | * wribacking dentry pages in the freeing inode. | ||
| 540 | */ | ||
| 541 | f2fs_submit_bio(sbi, DATA, true); | ||
| 542 | } | ||
| 543 | goto retry; | ||
| 544 | } | ||
| 545 | |||
| 546 | /* | ||
| 547 | * Freeze all the FS-operations for checkpoint. | ||
| 548 | */ | ||
| 549 | void block_operations(struct f2fs_sb_info *sbi) | ||
| 550 | { | ||
| 551 | int t; | ||
| 552 | struct writeback_control wbc = { | ||
| 553 | .sync_mode = WB_SYNC_ALL, | ||
| 554 | .nr_to_write = LONG_MAX, | ||
| 555 | .for_reclaim = 0, | ||
| 556 | }; | ||
| 557 | |||
| 558 | /* Stop renaming operation */ | ||
| 559 | mutex_lock_op(sbi, RENAME); | ||
| 560 | mutex_lock_op(sbi, DENTRY_OPS); | ||
| 561 | |||
| 562 | retry_dents: | ||
| 563 | /* write all the dirty dentry pages */ | ||
| 564 | sync_dirty_dir_inodes(sbi); | ||
| 565 | |||
| 566 | mutex_lock_op(sbi, DATA_WRITE); | ||
| 567 | if (get_pages(sbi, F2FS_DIRTY_DENTS)) { | ||
| 568 | mutex_unlock_op(sbi, DATA_WRITE); | ||
| 569 | goto retry_dents; | ||
| 570 | } | ||
| 571 | |||
| 572 | /* block all the operations */ | ||
| 573 | for (t = DATA_NEW; t <= NODE_TRUNC; t++) | ||
| 574 | mutex_lock_op(sbi, t); | ||
| 575 | |||
| 576 | mutex_lock(&sbi->write_inode); | ||
| 577 | |||
| 578 | /* | ||
| 579 | * POR: we should ensure that there is no dirty node pages | ||
| 580 | * until finishing nat/sit flush. | ||
| 581 | */ | ||
| 582 | retry: | ||
| 583 | sync_node_pages(sbi, 0, &wbc); | ||
| 584 | |||
| 585 | mutex_lock_op(sbi, NODE_WRITE); | ||
| 586 | |||
| 587 | if (get_pages(sbi, F2FS_DIRTY_NODES)) { | ||
| 588 | mutex_unlock_op(sbi, NODE_WRITE); | ||
| 589 | goto retry; | ||
| 590 | } | ||
| 591 | mutex_unlock(&sbi->write_inode); | ||
| 592 | } | ||
| 593 | |||
| 594 | static void unblock_operations(struct f2fs_sb_info *sbi) | ||
| 595 | { | ||
| 596 | int t; | ||
| 597 | for (t = NODE_WRITE; t >= RENAME; t--) | ||
| 598 | mutex_unlock_op(sbi, t); | ||
| 599 | } | ||
| 600 | |||
| 601 | static void do_checkpoint(struct f2fs_sb_info *sbi, bool is_umount) | ||
| 602 | { | ||
| 603 | struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); | ||
| 604 | nid_t last_nid = 0; | ||
| 605 | block_t start_blk; | ||
| 606 | struct page *cp_page; | ||
| 607 | unsigned int data_sum_blocks, orphan_blocks; | ||
| 608 | unsigned int crc32 = 0; | ||
| 609 | void *kaddr; | ||
| 610 | int i; | ||
| 611 | |||
| 612 | /* Flush all the NAT/SIT pages */ | ||
| 613 | while (get_pages(sbi, F2FS_DIRTY_META)) | ||
| 614 | sync_meta_pages(sbi, META, LONG_MAX); | ||
| 615 | |||
| 616 | next_free_nid(sbi, &last_nid); | ||
| 617 | |||
| 618 | /* | ||
| 619 | * modify checkpoint | ||
| 620 | * version number is already updated | ||
| 621 | */ | ||
| 622 | ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi)); | ||
| 623 | ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi)); | ||
| 624 | ckpt->free_segment_count = cpu_to_le32(free_segments(sbi)); | ||
| 625 | for (i = 0; i < 3; i++) { | ||
| 626 | ckpt->cur_node_segno[i] = | ||
| 627 | cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE)); | ||
| 628 | ckpt->cur_node_blkoff[i] = | ||
| 629 | cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE)); | ||
| 630 | ckpt->alloc_type[i + CURSEG_HOT_NODE] = | ||
| 631 | curseg_alloc_type(sbi, i + CURSEG_HOT_NODE); | ||
| 632 | } | ||
| 633 | for (i = 0; i < 3; i++) { | ||
| 634 | ckpt->cur_data_segno[i] = | ||
| 635 | cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA)); | ||
| 636 | ckpt->cur_data_blkoff[i] = | ||
| 637 | cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA)); | ||
| 638 | ckpt->alloc_type[i + CURSEG_HOT_DATA] = | ||
| 639 | curseg_alloc_type(sbi, i + CURSEG_HOT_DATA); | ||
| 640 | } | ||
| 641 | |||
| 642 | ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi)); | ||
| 643 | ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi)); | ||
| 644 | ckpt->next_free_nid = cpu_to_le32(last_nid); | ||
| 645 | |||
| 646 | /* 2 cp + n data seg summary + orphan inode blocks */ | ||
| 647 | data_sum_blocks = npages_for_summary_flush(sbi); | ||
| 648 | if (data_sum_blocks < 3) | ||
| 649 | set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); | ||
| 650 | else | ||
| 651 | clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); | ||
| 652 | |||
| 653 | orphan_blocks = (sbi->n_orphans + F2FS_ORPHANS_PER_BLOCK - 1) | ||
| 654 | / F2FS_ORPHANS_PER_BLOCK; | ||
| 655 | ckpt->cp_pack_start_sum = cpu_to_le32(1 + orphan_blocks); | ||
| 656 | |||
| 657 | if (is_umount) { | ||
| 658 | set_ckpt_flags(ckpt, CP_UMOUNT_FLAG); | ||
| 659 | ckpt->cp_pack_total_block_count = cpu_to_le32(2 + | ||
| 660 | data_sum_blocks + orphan_blocks + NR_CURSEG_NODE_TYPE); | ||
| 661 | } else { | ||
| 662 | clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG); | ||
| 663 | ckpt->cp_pack_total_block_count = cpu_to_le32(2 + | ||
| 664 | data_sum_blocks + orphan_blocks); | ||
| 665 | } | ||
| 666 | |||
| 667 | if (sbi->n_orphans) | ||
| 668 | set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); | ||
| 669 | else | ||
| 670 | clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); | ||
| 671 | |||
| 672 | /* update SIT/NAT bitmap */ | ||
| 673 | get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP)); | ||
| 674 | get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP)); | ||
| 675 | |||
| 676 | crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset)); | ||
| 677 | *(__le32 *)((unsigned char *)ckpt + | ||
| 678 | le32_to_cpu(ckpt->checksum_offset)) | ||
| 679 | = cpu_to_le32(crc32); | ||
| 680 | |||
| 681 | start_blk = __start_cp_addr(sbi); | ||
| 682 | |||
| 683 | /* write out checkpoint buffer at block 0 */ | ||
| 684 | cp_page = grab_meta_page(sbi, start_blk++); | ||
| 685 | kaddr = page_address(cp_page); | ||
| 686 | memcpy(kaddr, ckpt, (1 << sbi->log_blocksize)); | ||
| 687 | set_page_dirty(cp_page); | ||
| 688 | f2fs_put_page(cp_page, 1); | ||
| 689 | |||
| 690 | if (sbi->n_orphans) { | ||
| 691 | write_orphan_inodes(sbi, start_blk); | ||
| 692 | start_blk += orphan_blocks; | ||
| 693 | } | ||
| 694 | |||
| 695 | write_data_summaries(sbi, start_blk); | ||
| 696 | start_blk += data_sum_blocks; | ||
| 697 | if (is_umount) { | ||
| 698 | write_node_summaries(sbi, start_blk); | ||
| 699 | start_blk += NR_CURSEG_NODE_TYPE; | ||
| 700 | } | ||
| 701 | |||
| 702 | /* writeout checkpoint block */ | ||
| 703 | cp_page = grab_meta_page(sbi, start_blk); | ||
| 704 | kaddr = page_address(cp_page); | ||
| 705 | memcpy(kaddr, ckpt, (1 << sbi->log_blocksize)); | ||
| 706 | set_page_dirty(cp_page); | ||
| 707 | f2fs_put_page(cp_page, 1); | ||
| 708 | |||
| 709 | /* wait for previous submitted node/meta pages writeback */ | ||
| 710 | while (get_pages(sbi, F2FS_WRITEBACK)) | ||
| 711 | congestion_wait(BLK_RW_ASYNC, HZ / 50); | ||
| 712 | |||
| 713 | filemap_fdatawait_range(sbi->node_inode->i_mapping, 0, LONG_MAX); | ||
| 714 | filemap_fdatawait_range(sbi->meta_inode->i_mapping, 0, LONG_MAX); | ||
| 715 | |||
| 716 | /* update user_block_counts */ | ||
| 717 | sbi->last_valid_block_count = sbi->total_valid_block_count; | ||
| 718 | sbi->alloc_valid_block_count = 0; | ||
| 719 | |||
| 720 | /* Here, we only have one bio having CP pack */ | ||
| 721 | if (is_set_ckpt_flags(ckpt, CP_ERROR_FLAG)) | ||
| 722 | sbi->sb->s_flags |= MS_RDONLY; | ||
| 723 | else | ||
| 724 | sync_meta_pages(sbi, META_FLUSH, LONG_MAX); | ||
| 725 | |||
| 726 | clear_prefree_segments(sbi); | ||
| 727 | F2FS_RESET_SB_DIRT(sbi); | ||
| 728 | } | ||
| 729 | |||
| 730 | /* | ||
| 731 | * We guarantee that this checkpoint procedure should not fail. | ||
| 732 | */ | ||
| 733 | void write_checkpoint(struct f2fs_sb_info *sbi, bool blocked, bool is_umount) | ||
| 734 | { | ||
| 735 | struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); | ||
| 736 | unsigned long long ckpt_ver; | ||
| 737 | |||
| 738 | if (!blocked) { | ||
| 739 | mutex_lock(&sbi->cp_mutex); | ||
| 740 | block_operations(sbi); | ||
| 741 | } | ||
| 742 | |||
| 743 | f2fs_submit_bio(sbi, DATA, true); | ||
| 744 | f2fs_submit_bio(sbi, NODE, true); | ||
| 745 | f2fs_submit_bio(sbi, META, true); | ||
| 746 | |||
| 747 | /* | ||
| 748 | * update checkpoint pack index | ||
| 749 | * Increase the version number so that | ||
| 750 | * SIT entries and seg summaries are written at correct place | ||
| 751 | */ | ||
| 752 | ckpt_ver = le64_to_cpu(ckpt->checkpoint_ver); | ||
| 753 | ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver); | ||
| 754 | |||
| 755 | /* write cached NAT/SIT entries to NAT/SIT area */ | ||
| 756 | flush_nat_entries(sbi); | ||
| 757 | flush_sit_entries(sbi); | ||
| 758 | |||
| 759 | reset_victim_segmap(sbi); | ||
| 760 | |||
| 761 | /* unlock all the fs_lock[] in do_checkpoint() */ | ||
| 762 | do_checkpoint(sbi, is_umount); | ||
| 763 | |||
| 764 | unblock_operations(sbi); | ||
| 765 | mutex_unlock(&sbi->cp_mutex); | ||
| 766 | } | ||
| 767 | |||
| 768 | void init_orphan_info(struct f2fs_sb_info *sbi) | ||
| 769 | { | ||
| 770 | mutex_init(&sbi->orphan_inode_mutex); | ||
| 771 | INIT_LIST_HEAD(&sbi->orphan_inode_list); | ||
| 772 | sbi->n_orphans = 0; | ||
| 773 | } | ||
| 774 | |||
| 775 | int create_checkpoint_caches(void) | ||
| 776 | { | ||
| 777 | orphan_entry_slab = f2fs_kmem_cache_create("f2fs_orphan_entry", | ||
| 778 | sizeof(struct orphan_inode_entry), NULL); | ||
| 779 | if (unlikely(!orphan_entry_slab)) | ||
| 780 | return -ENOMEM; | ||
| 781 | inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry", | ||
| 782 | sizeof(struct dir_inode_entry), NULL); | ||
| 783 | if (unlikely(!inode_entry_slab)) { | ||
| 784 | kmem_cache_destroy(orphan_entry_slab); | ||
| 785 | return -ENOMEM; | ||
| 786 | } | ||
| 787 | return 0; | ||
| 788 | } | ||
| 789 | |||
| 790 | void destroy_checkpoint_caches(void) | ||
| 791 | { | ||
| 792 | kmem_cache_destroy(orphan_entry_slab); | ||
| 793 | kmem_cache_destroy(inode_entry_slab); | ||
| 794 | } | ||
diff --git a/fs/f2fs/data.c b/fs/f2fs/data.c new file mode 100644 index 000000000000..655aeabc1dd4 --- /dev/null +++ b/fs/f2fs/data.c | |||
| @@ -0,0 +1,702 @@ | |||
| 1 | /* | ||
| 2 | * fs/f2fs/data.c | ||
| 3 | * | ||
| 4 | * Copyright (c) 2012 Samsung Electronics Co., Ltd. | ||
| 5 | * http://www.samsung.com/ | ||
| 6 | * | ||
| 7 | * This program is free software; you can redistribute it and/or modify | ||
| 8 | * it under the terms of the GNU General Public License version 2 as | ||
| 9 | * published by the Free Software Foundation. | ||
| 10 | */ | ||
| 11 | #include <linux/fs.h> | ||
| 12 | #include <linux/f2fs_fs.h> | ||
| 13 | #include <linux/buffer_head.h> | ||
| 14 | #include <linux/mpage.h> | ||
| 15 | #include <linux/writeback.h> | ||
| 16 | #include <linux/backing-dev.h> | ||
| 17 | #include <linux/blkdev.h> | ||
| 18 | #include <linux/bio.h> | ||
| 19 | |||
| 20 | #include "f2fs.h" | ||
| 21 | #include "node.h" | ||
| 22 | #include "segment.h" | ||
| 23 | |||
| 24 | /* | ||
| 25 | * Lock ordering for the change of data block address: | ||
| 26 | * ->data_page | ||
| 27 | * ->node_page | ||
| 28 | * update block addresses in the node page | ||
| 29 | */ | ||
| 30 | static void __set_data_blkaddr(struct dnode_of_data *dn, block_t new_addr) | ||
| 31 | { | ||
| 32 | struct f2fs_node *rn; | ||
| 33 | __le32 *addr_array; | ||
| 34 | struct page *node_page = dn->node_page; | ||
| 35 | unsigned int ofs_in_node = dn->ofs_in_node; | ||
| 36 | |||
| 37 | wait_on_page_writeback(node_page); | ||
| 38 | |||
| 39 | rn = (struct f2fs_node *)page_address(node_page); | ||
| 40 | |||
| 41 | /* Get physical address of data block */ | ||
| 42 | addr_array = blkaddr_in_node(rn); | ||
| 43 | addr_array[ofs_in_node] = cpu_to_le32(new_addr); | ||
| 44 | set_page_dirty(node_page); | ||
| 45 | } | ||
| 46 | |||
| 47 | int reserve_new_block(struct dnode_of_data *dn) | ||
| 48 | { | ||
| 49 | struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); | ||
| 50 | |||
| 51 | if (is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)) | ||
| 52 | return -EPERM; | ||
| 53 | if (!inc_valid_block_count(sbi, dn->inode, 1)) | ||
| 54 | return -ENOSPC; | ||
| 55 | |||
| 56 | __set_data_blkaddr(dn, NEW_ADDR); | ||
| 57 | dn->data_blkaddr = NEW_ADDR; | ||
| 58 | sync_inode_page(dn); | ||
| 59 | return 0; | ||
| 60 | } | ||
| 61 | |||
| 62 | static int check_extent_cache(struct inode *inode, pgoff_t pgofs, | ||
| 63 | struct buffer_head *bh_result) | ||
| 64 | { | ||
| 65 | struct f2fs_inode_info *fi = F2FS_I(inode); | ||
| 66 | struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); | ||
| 67 | pgoff_t start_fofs, end_fofs; | ||
| 68 | block_t start_blkaddr; | ||
| 69 | |||
| 70 | read_lock(&fi->ext.ext_lock); | ||
| 71 | if (fi->ext.len == 0) { | ||
| 72 | read_unlock(&fi->ext.ext_lock); | ||
| 73 | return 0; | ||
| 74 | } | ||
| 75 | |||
| 76 | sbi->total_hit_ext++; | ||
| 77 | start_fofs = fi->ext.fofs; | ||
| 78 | end_fofs = fi->ext.fofs + fi->ext.len - 1; | ||
| 79 | start_blkaddr = fi->ext.blk_addr; | ||
| 80 | |||
| 81 | if (pgofs >= start_fofs && pgofs <= end_fofs) { | ||
| 82 | unsigned int blkbits = inode->i_sb->s_blocksize_bits; | ||
| 83 | size_t count; | ||
| 84 | |||
| 85 | clear_buffer_new(bh_result); | ||
| 86 | map_bh(bh_result, inode->i_sb, | ||
| 87 | start_blkaddr + pgofs - start_fofs); | ||
| 88 | count = end_fofs - pgofs + 1; | ||
| 89 | if (count < (UINT_MAX >> blkbits)) | ||
| 90 | bh_result->b_size = (count << blkbits); | ||
| 91 | else | ||
| 92 | bh_result->b_size = UINT_MAX; | ||
| 93 | |||
| 94 | sbi->read_hit_ext++; | ||
| 95 | read_unlock(&fi->ext.ext_lock); | ||
| 96 | return 1; | ||
| 97 | } | ||
| 98 | read_unlock(&fi->ext.ext_lock); | ||
| 99 | return 0; | ||
| 100 | } | ||
| 101 | |||
| 102 | void update_extent_cache(block_t blk_addr, struct dnode_of_data *dn) | ||
| 103 | { | ||
| 104 | struct f2fs_inode_info *fi = F2FS_I(dn->inode); | ||
| 105 | pgoff_t fofs, start_fofs, end_fofs; | ||
| 106 | block_t start_blkaddr, end_blkaddr; | ||
| 107 | |||
| 108 | BUG_ON(blk_addr == NEW_ADDR); | ||
| 109 | fofs = start_bidx_of_node(ofs_of_node(dn->node_page)) + dn->ofs_in_node; | ||
| 110 | |||
| 111 | /* Update the page address in the parent node */ | ||
| 112 | __set_data_blkaddr(dn, blk_addr); | ||
| 113 | |||
| 114 | write_lock(&fi->ext.ext_lock); | ||
| 115 | |||
| 116 | start_fofs = fi->ext.fofs; | ||
| 117 | end_fofs = fi->ext.fofs + fi->ext.len - 1; | ||
| 118 | start_blkaddr = fi->ext.blk_addr; | ||
| 119 | end_blkaddr = fi->ext.blk_addr + fi->ext.len - 1; | ||
| 120 | |||
| 121 | /* Drop and initialize the matched extent */ | ||
| 122 | if (fi->ext.len == 1 && fofs == start_fofs) | ||
| 123 | fi->ext.len = 0; | ||
| 124 | |||
| 125 | /* Initial extent */ | ||
| 126 | if (fi->ext.len == 0) { | ||
| 127 | if (blk_addr != NULL_ADDR) { | ||
| 128 | fi->ext.fofs = fofs; | ||
| 129 | fi->ext.blk_addr = blk_addr; | ||
| 130 | fi->ext.len = 1; | ||
| 131 | } | ||
| 132 | goto end_update; | ||
| 133 | } | ||
| 134 | |||
| 135 | /* Frone merge */ | ||
| 136 | if (fofs == start_fofs - 1 && blk_addr == start_blkaddr - 1) { | ||
| 137 | fi->ext.fofs--; | ||
| 138 | fi->ext.blk_addr--; | ||
| 139 | fi->ext.len++; | ||
| 140 | goto end_update; | ||
| 141 | } | ||
| 142 | |||
| 143 | /* Back merge */ | ||
| 144 | if (fofs == end_fofs + 1 && blk_addr == end_blkaddr + 1) { | ||
| 145 | fi->ext.len++; | ||
| 146 | goto end_update; | ||
| 147 | } | ||
| 148 | |||
| 149 | /* Split the existing extent */ | ||
| 150 | if (fi->ext.len > 1 && | ||
| 151 | fofs >= start_fofs && fofs <= end_fofs) { | ||
| 152 | if ((end_fofs - fofs) < (fi->ext.len >> 1)) { | ||
| 153 | fi->ext.len = fofs - start_fofs; | ||
| 154 | } else { | ||
| 155 | fi->ext.fofs = fofs + 1; | ||
| 156 | fi->ext.blk_addr = start_blkaddr + | ||
| 157 | fofs - start_fofs + 1; | ||
| 158 | fi->ext.len -= fofs - start_fofs + 1; | ||
| 159 | } | ||
| 160 | goto end_update; | ||
| 161 | } | ||
| 162 | write_unlock(&fi->ext.ext_lock); | ||
| 163 | return; | ||
| 164 | |||
| 165 | end_update: | ||
| 166 | write_unlock(&fi->ext.ext_lock); | ||
| 167 | sync_inode_page(dn); | ||
| 168 | return; | ||
| 169 | } | ||
| 170 | |||
| 171 | struct page *find_data_page(struct inode *inode, pgoff_t index) | ||
| 172 | { | ||
| 173 | struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); | ||
| 174 | struct address_space *mapping = inode->i_mapping; | ||
| 175 | struct dnode_of_data dn; | ||
| 176 | struct page *page; | ||
| 177 | int err; | ||
| 178 | |||
| 179 | page = find_get_page(mapping, index); | ||
| 180 | if (page && PageUptodate(page)) | ||
| 181 | return page; | ||
| 182 | f2fs_put_page(page, 0); | ||
| 183 | |||
| 184 | set_new_dnode(&dn, inode, NULL, NULL, 0); | ||
| 185 | err = get_dnode_of_data(&dn, index, RDONLY_NODE); | ||
| 186 | if (err) | ||
| 187 | return ERR_PTR(err); | ||
| 188 | f2fs_put_dnode(&dn); | ||
| 189 | |||
| 190 | if (dn.data_blkaddr == NULL_ADDR) | ||
| 191 | return ERR_PTR(-ENOENT); | ||
| 192 | |||
| 193 | /* By fallocate(), there is no cached page, but with NEW_ADDR */ | ||
| 194 | if (dn.data_blkaddr == NEW_ADDR) | ||
| 195 | return ERR_PTR(-EINVAL); | ||
| 196 | |||
| 197 | page = grab_cache_page(mapping, index); | ||
| 198 | if (!page) | ||
| 199 | return ERR_PTR(-ENOMEM); | ||
| 200 | |||
| 201 | err = f2fs_readpage(sbi, page, dn.data_blkaddr, READ_SYNC); | ||
| 202 | if (err) { | ||
| 203 | f2fs_put_page(page, 1); | ||
| 204 | return ERR_PTR(err); | ||
| 205 | } | ||
| 206 | unlock_page(page); | ||
| 207 | return page; | ||
| 208 | } | ||
| 209 | |||
| 210 | /* | ||
| 211 | * If it tries to access a hole, return an error. | ||
| 212 | * Because, the callers, functions in dir.c and GC, should be able to know | ||
| 213 | * whether this page exists or not. | ||
| 214 | */ | ||
| 215 | struct page *get_lock_data_page(struct inode *inode, pgoff_t index) | ||
| 216 | { | ||
| 217 | struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); | ||
| 218 | struct address_space *mapping = inode->i_mapping; | ||
| 219 | struct dnode_of_data dn; | ||
| 220 | struct page *page; | ||
| 221 | int err; | ||
| 222 | |||
| 223 | set_new_dnode(&dn, inode, NULL, NULL, 0); | ||
| 224 | err = get_dnode_of_data(&dn, index, RDONLY_NODE); | ||
| 225 | if (err) | ||
| 226 | return ERR_PTR(err); | ||
| 227 | f2fs_put_dnode(&dn); | ||
| 228 | |||
| 229 | if (dn.data_blkaddr == NULL_ADDR) | ||
| 230 | return ERR_PTR(-ENOENT); | ||
| 231 | |||
| 232 | page = grab_cache_page(mapping, index); | ||
| 233 | if (!page) | ||
| 234 | return ERR_PTR(-ENOMEM); | ||
| 235 | |||
| 236 | if (PageUptodate(page)) | ||
| 237 | return page; | ||
| 238 | |||
| 239 | BUG_ON(dn.data_blkaddr == NEW_ADDR); | ||
| 240 | BUG_ON(dn.data_blkaddr == NULL_ADDR); | ||
| 241 | |||
| 242 | err = f2fs_readpage(sbi, page, dn.data_blkaddr, READ_SYNC); | ||
| 243 | if (err) { | ||
| 244 | f2fs_put_page(page, 1); | ||
| 245 | return ERR_PTR(err); | ||
| 246 | } | ||
| 247 | return page; | ||
| 248 | } | ||
| 249 | |||
| 250 | /* | ||
| 251 | * Caller ensures that this data page is never allocated. | ||
| 252 | * A new zero-filled data page is allocated in the page cache. | ||
| 253 | */ | ||
| 254 | struct page *get_new_data_page(struct inode *inode, pgoff_t index, | ||
| 255 | bool new_i_size) | ||
| 256 | { | ||
| 257 | struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); | ||
| 258 | struct address_space *mapping = inode->i_mapping; | ||
| 259 | struct page *page; | ||
| 260 | struct dnode_of_data dn; | ||
| 261 | int err; | ||
| 262 | |||
| 263 | set_new_dnode(&dn, inode, NULL, NULL, 0); | ||
| 264 | err = get_dnode_of_data(&dn, index, 0); | ||
| 265 | if (err) | ||
| 266 | return ERR_PTR(err); | ||
| 267 | |||
| 268 | if (dn.data_blkaddr == NULL_ADDR) { | ||
| 269 | if (reserve_new_block(&dn)) { | ||
| 270 | f2fs_put_dnode(&dn); | ||
| 271 | return ERR_PTR(-ENOSPC); | ||
| 272 | } | ||
| 273 | } | ||
| 274 | f2fs_put_dnode(&dn); | ||
| 275 | |||
| 276 | page = grab_cache_page(mapping, index); | ||
| 277 | if (!page) | ||
| 278 | return ERR_PTR(-ENOMEM); | ||
| 279 | |||
| 280 | if (PageUptodate(page)) | ||
| 281 | return page; | ||
| 282 | |||
| 283 | if (dn.data_blkaddr == NEW_ADDR) { | ||
| 284 | zero_user_segment(page, 0, PAGE_CACHE_SIZE); | ||
| 285 | } else { | ||
| 286 | err = f2fs_readpage(sbi, page, dn.data_blkaddr, READ_SYNC); | ||
| 287 | if (err) { | ||
| 288 | f2fs_put_page(page, 1); | ||
| 289 | return ERR_PTR(err); | ||
| 290 | } | ||
| 291 | } | ||
| 292 | SetPageUptodate(page); | ||
| 293 | |||
| 294 | if (new_i_size && | ||
| 295 | i_size_read(inode) < ((index + 1) << PAGE_CACHE_SHIFT)) { | ||
| 296 | i_size_write(inode, ((index + 1) << PAGE_CACHE_SHIFT)); | ||
| 297 | mark_inode_dirty_sync(inode); | ||
| 298 | } | ||
| 299 | return page; | ||
| 300 | } | ||
| 301 | |||
| 302 | static void read_end_io(struct bio *bio, int err) | ||
| 303 | { | ||
| 304 | const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); | ||
| 305 | struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; | ||
| 306 | |||
| 307 | do { | ||
| 308 | struct page *page = bvec->bv_page; | ||
| 309 | |||
| 310 | if (--bvec >= bio->bi_io_vec) | ||
| 311 | prefetchw(&bvec->bv_page->flags); | ||
| 312 | |||
| 313 | if (uptodate) { | ||
| 314 | SetPageUptodate(page); | ||
| 315 | } else { | ||
| 316 | ClearPageUptodate(page); | ||
| 317 | SetPageError(page); | ||
| 318 | } | ||
| 319 | unlock_page(page); | ||
| 320 | } while (bvec >= bio->bi_io_vec); | ||
| 321 | kfree(bio->bi_private); | ||
| 322 | bio_put(bio); | ||
| 323 | } | ||
| 324 | |||
| 325 | /* | ||
| 326 | * Fill the locked page with data located in the block address. | ||
| 327 | * Read operation is synchronous, and caller must unlock the page. | ||
| 328 | */ | ||
| 329 | int f2fs_readpage(struct f2fs_sb_info *sbi, struct page *page, | ||
| 330 | block_t blk_addr, int type) | ||
| 331 | { | ||
| 332 | struct block_device *bdev = sbi->sb->s_bdev; | ||
| 333 | bool sync = (type == READ_SYNC); | ||
| 334 | struct bio *bio; | ||
| 335 | |||
| 336 | /* This page can be already read by other threads */ | ||
| 337 | if (PageUptodate(page)) { | ||
| 338 | if (!sync) | ||
| 339 | unlock_page(page); | ||
| 340 | return 0; | ||
| 341 | } | ||
| 342 | |||
| 343 | down_read(&sbi->bio_sem); | ||
| 344 | |||
| 345 | /* Allocate a new bio */ | ||
| 346 | bio = f2fs_bio_alloc(bdev, 1); | ||
| 347 | |||
| 348 | /* Initialize the bio */ | ||
| 349 | bio->bi_sector = SECTOR_FROM_BLOCK(sbi, blk_addr); | ||
| 350 | bio->bi_end_io = read_end_io; | ||
| 351 | |||
| 352 | if (bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) < PAGE_CACHE_SIZE) { | ||
| 353 | kfree(bio->bi_private); | ||
| 354 | bio_put(bio); | ||
| 355 | up_read(&sbi->bio_sem); | ||
| 356 | return -EFAULT; | ||
| 357 | } | ||
| 358 | |||
| 359 | submit_bio(type, bio); | ||
| 360 | up_read(&sbi->bio_sem); | ||
| 361 | |||
| 362 | /* wait for read completion if sync */ | ||
| 363 | if (sync) { | ||
| 364 | lock_page(page); | ||
| 365 | if (PageError(page)) | ||
| 366 | return -EIO; | ||
| 367 | } | ||
| 368 | return 0; | ||
| 369 | } | ||
| 370 | |||
| 371 | /* | ||
| 372 | * This function should be used by the data read flow only where it | ||
| 373 | * does not check the "create" flag that indicates block allocation. | ||
| 374 | * The reason for this special functionality is to exploit VFS readahead | ||
| 375 | * mechanism. | ||
| 376 | */ | ||
| 377 | static int get_data_block_ro(struct inode *inode, sector_t iblock, | ||
| 378 | struct buffer_head *bh_result, int create) | ||
| 379 | { | ||
| 380 | unsigned int blkbits = inode->i_sb->s_blocksize_bits; | ||
| 381 | unsigned maxblocks = bh_result->b_size >> blkbits; | ||
| 382 | struct dnode_of_data dn; | ||
| 383 | pgoff_t pgofs; | ||
| 384 | int err; | ||
| 385 | |||
| 386 | /* Get the page offset from the block offset(iblock) */ | ||
| 387 | pgofs = (pgoff_t)(iblock >> (PAGE_CACHE_SHIFT - blkbits)); | ||
| 388 | |||
| 389 | if (check_extent_cache(inode, pgofs, bh_result)) | ||
| 390 | return 0; | ||
| 391 | |||
| 392 | /* When reading holes, we need its node page */ | ||
| 393 | set_new_dnode(&dn, inode, NULL, NULL, 0); | ||
| 394 | err = get_dnode_of_data(&dn, pgofs, RDONLY_NODE); | ||
| 395 | if (err) | ||
| 396 | return (err == -ENOENT) ? 0 : err; | ||
| 397 | |||
| 398 | /* It does not support data allocation */ | ||
| 399 | BUG_ON(create); | ||
| 400 | |||
| 401 | if (dn.data_blkaddr != NEW_ADDR && dn.data_blkaddr != NULL_ADDR) { | ||
| 402 | int i; | ||
| 403 | unsigned int end_offset; | ||
| 404 | |||
| 405 | end_offset = IS_INODE(dn.node_page) ? | ||
| 406 | ADDRS_PER_INODE : | ||
| 407 | ADDRS_PER_BLOCK; | ||
| 408 | |||
| 409 | clear_buffer_new(bh_result); | ||
| 410 | |||
| 411 | /* Give more consecutive addresses for the read ahead */ | ||
| 412 | for (i = 0; i < end_offset - dn.ofs_in_node; i++) | ||
| 413 | if (((datablock_addr(dn.node_page, | ||
| 414 | dn.ofs_in_node + i)) | ||
| 415 | != (dn.data_blkaddr + i)) || maxblocks == i) | ||
| 416 | break; | ||
| 417 | map_bh(bh_result, inode->i_sb, dn.data_blkaddr); | ||
| 418 | bh_result->b_size = (i << blkbits); | ||
| 419 | } | ||
| 420 | f2fs_put_dnode(&dn); | ||
| 421 | return 0; | ||
| 422 | } | ||
| 423 | |||
| 424 | static int f2fs_read_data_page(struct file *file, struct page *page) | ||
| 425 | { | ||
| 426 | return mpage_readpage(page, get_data_block_ro); | ||
| 427 | } | ||
| 428 | |||
| 429 | static int f2fs_read_data_pages(struct file *file, | ||
| 430 | struct address_space *mapping, | ||
| 431 | struct list_head *pages, unsigned nr_pages) | ||
| 432 | { | ||
| 433 | return mpage_readpages(mapping, pages, nr_pages, get_data_block_ro); | ||
| 434 | } | ||
| 435 | |||
| 436 | int do_write_data_page(struct page *page) | ||
| 437 | { | ||
| 438 | struct inode *inode = page->mapping->host; | ||
| 439 | struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); | ||
| 440 | block_t old_blk_addr, new_blk_addr; | ||
| 441 | struct dnode_of_data dn; | ||
| 442 | int err = 0; | ||
| 443 | |||
| 444 | set_new_dnode(&dn, inode, NULL, NULL, 0); | ||
| 445 | err = get_dnode_of_data(&dn, page->index, RDONLY_NODE); | ||
| 446 | if (err) | ||
| 447 | return err; | ||
| 448 | |||
| 449 | old_blk_addr = dn.data_blkaddr; | ||
| 450 | |||
| 451 | /* This page is already truncated */ | ||
| 452 | if (old_blk_addr == NULL_ADDR) | ||
| 453 | goto out_writepage; | ||
| 454 | |||
| 455 | set_page_writeback(page); | ||
| 456 | |||
| 457 | /* | ||
| 458 | * If current allocation needs SSR, | ||
| 459 | * it had better in-place writes for updated data. | ||
| 460 | */ | ||
| 461 | if (old_blk_addr != NEW_ADDR && !is_cold_data(page) && | ||
| 462 | need_inplace_update(inode)) { | ||
| 463 | rewrite_data_page(F2FS_SB(inode->i_sb), page, | ||
| 464 | old_blk_addr); | ||
| 465 | } else { | ||
| 466 | write_data_page(inode, page, &dn, | ||
| 467 | old_blk_addr, &new_blk_addr); | ||
| 468 | update_extent_cache(new_blk_addr, &dn); | ||
| 469 | F2FS_I(inode)->data_version = | ||
| 470 | le64_to_cpu(F2FS_CKPT(sbi)->checkpoint_ver); | ||
| 471 | } | ||
| 472 | out_writepage: | ||
| 473 | f2fs_put_dnode(&dn); | ||
| 474 | return err; | ||
| 475 | } | ||
| 476 | |||
| 477 | static int f2fs_write_data_page(struct page *page, | ||
| 478 | struct writeback_control *wbc) | ||
| 479 | { | ||
| 480 | struct inode *inode = page->mapping->host; | ||
| 481 | struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); | ||
| 482 | loff_t i_size = i_size_read(inode); | ||
| 483 | const pgoff_t end_index = ((unsigned long long) i_size) | ||
| 484 | >> PAGE_CACHE_SHIFT; | ||
| 485 | unsigned offset; | ||
| 486 | int err = 0; | ||
| 487 | |||
| 488 | if (page->index < end_index) | ||
| 489 | goto out; | ||
| 490 | |||
| 491 | /* | ||
| 492 | * If the offset is out-of-range of file size, | ||
| 493 | * this page does not have to be written to disk. | ||
| 494 | */ | ||
| 495 | offset = i_size & (PAGE_CACHE_SIZE - 1); | ||
| 496 | if ((page->index >= end_index + 1) || !offset) { | ||
| 497 | if (S_ISDIR(inode->i_mode)) { | ||
| 498 | dec_page_count(sbi, F2FS_DIRTY_DENTS); | ||
| 499 | inode_dec_dirty_dents(inode); | ||
| 500 | } | ||
| 501 | goto unlock_out; | ||
| 502 | } | ||
| 503 | |||
| 504 | zero_user_segment(page, offset, PAGE_CACHE_SIZE); | ||
| 505 | out: | ||
| 506 | if (sbi->por_doing) | ||
| 507 | goto redirty_out; | ||
| 508 | |||
| 509 | if (wbc->for_reclaim && !S_ISDIR(inode->i_mode) && !is_cold_data(page)) | ||
| 510 | goto redirty_out; | ||
| 511 | |||
| 512 | mutex_lock_op(sbi, DATA_WRITE); | ||
| 513 | if (S_ISDIR(inode->i_mode)) { | ||
| 514 | dec_page_count(sbi, F2FS_DIRTY_DENTS); | ||
| 515 | inode_dec_dirty_dents(inode); | ||
| 516 | } | ||
| 517 | err = do_write_data_page(page); | ||
| 518 | if (err && err != -ENOENT) { | ||
| 519 | wbc->pages_skipped++; | ||
| 520 | set_page_dirty(page); | ||
| 521 | } | ||
| 522 | mutex_unlock_op(sbi, DATA_WRITE); | ||
| 523 | |||
| 524 | if (wbc->for_reclaim) | ||
| 525 | f2fs_submit_bio(sbi, DATA, true); | ||
| 526 | |||
| 527 | if (err == -ENOENT) | ||
| 528 | goto unlock_out; | ||
| 529 | |||
| 530 | clear_cold_data(page); | ||
| 531 | unlock_page(page); | ||
| 532 | |||
| 533 | if (!wbc->for_reclaim && !S_ISDIR(inode->i_mode)) | ||
| 534 | f2fs_balance_fs(sbi); | ||
| 535 | return 0; | ||
| 536 | |||
| 537 | unlock_out: | ||
| 538 | unlock_page(page); | ||
| 539 | return (err == -ENOENT) ? 0 : err; | ||
| 540 | |||
| 541 | redirty_out: | ||
| 542 | wbc->pages_skipped++; | ||
| 543 | set_page_dirty(page); | ||
| 544 | return AOP_WRITEPAGE_ACTIVATE; | ||
| 545 | } | ||
| 546 | |||
| 547 | #define MAX_DESIRED_PAGES_WP 4096 | ||
| 548 | |||
| 549 | static int f2fs_write_data_pages(struct address_space *mapping, | ||
| 550 | struct writeback_control *wbc) | ||
| 551 | { | ||
| 552 | struct inode *inode = mapping->host; | ||
| 553 | struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); | ||
| 554 | int ret; | ||
| 555 | long excess_nrtw = 0, desired_nrtw; | ||
| 556 | |||
| 557 | if (wbc->nr_to_write < MAX_DESIRED_PAGES_WP) { | ||
| 558 | desired_nrtw = MAX_DESIRED_PAGES_WP; | ||
| 559 | excess_nrtw = desired_nrtw - wbc->nr_to_write; | ||
| 560 | wbc->nr_to_write = desired_nrtw; | ||
| 561 | } | ||
| 562 | |||
| 563 | if (!S_ISDIR(inode->i_mode)) | ||
| 564 | mutex_lock(&sbi->writepages); | ||
| 565 | ret = generic_writepages(mapping, wbc); | ||
| 566 | if (!S_ISDIR(inode->i_mode)) | ||
| 567 | mutex_unlock(&sbi->writepages); | ||
| 568 | f2fs_submit_bio(sbi, DATA, (wbc->sync_mode == WB_SYNC_ALL)); | ||
| 569 | |||
| 570 | remove_dirty_dir_inode(inode); | ||
| 571 | |||
| 572 | wbc->nr_to_write -= excess_nrtw; | ||
| 573 | return ret; | ||
| 574 | } | ||
| 575 | |||
| 576 | static int f2fs_write_begin(struct file *file, struct address_space *mapping, | ||
| 577 | loff_t pos, unsigned len, unsigned flags, | ||
| 578 | struct page **pagep, void **fsdata) | ||
| 579 | { | ||
| 580 | struct inode *inode = mapping->host; | ||
| 581 | struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); | ||
| 582 | struct page *page; | ||
| 583 | pgoff_t index = ((unsigned long long) pos) >> PAGE_CACHE_SHIFT; | ||
| 584 | struct dnode_of_data dn; | ||
| 585 | int err = 0; | ||
| 586 | |||
| 587 | /* for nobh_write_end */ | ||
| 588 | *fsdata = NULL; | ||
| 589 | |||
| 590 | f2fs_balance_fs(sbi); | ||
| 591 | |||
| 592 | page = grab_cache_page_write_begin(mapping, index, flags); | ||
| 593 | if (!page) | ||
| 594 | return -ENOMEM; | ||
| 595 | *pagep = page; | ||
| 596 | |||
| 597 | mutex_lock_op(sbi, DATA_NEW); | ||
| 598 | |||
| 599 | set_new_dnode(&dn, inode, NULL, NULL, 0); | ||
| 600 | err = get_dnode_of_data(&dn, index, 0); | ||
| 601 | if (err) { | ||
| 602 | mutex_unlock_op(sbi, DATA_NEW); | ||
| 603 | f2fs_put_page(page, 1); | ||
| 604 | return err; | ||
| 605 | } | ||
| 606 | |||
| 607 | if (dn.data_blkaddr == NULL_ADDR) { | ||
| 608 | err = reserve_new_block(&dn); | ||
| 609 | if (err) { | ||
| 610 | f2fs_put_dnode(&dn); | ||
| 611 | mutex_unlock_op(sbi, DATA_NEW); | ||
| 612 | f2fs_put_page(page, 1); | ||
| 613 | return err; | ||
| 614 | } | ||
| 615 | } | ||
| 616 | f2fs_put_dnode(&dn); | ||
| 617 | |||
| 618 | mutex_unlock_op(sbi, DATA_NEW); | ||
| 619 | |||
| 620 | if ((len == PAGE_CACHE_SIZE) || PageUptodate(page)) | ||
| 621 | return 0; | ||
| 622 | |||
| 623 | if ((pos & PAGE_CACHE_MASK) >= i_size_read(inode)) { | ||
| 624 | unsigned start = pos & (PAGE_CACHE_SIZE - 1); | ||
| 625 | unsigned end = start + len; | ||
| 626 | |||
| 627 | /* Reading beyond i_size is simple: memset to zero */ | ||
| 628 | zero_user_segments(page, 0, start, end, PAGE_CACHE_SIZE); | ||
| 629 | return 0; | ||
| 630 | } | ||
| 631 | |||
| 632 | if (dn.data_blkaddr == NEW_ADDR) { | ||
| 633 | zero_user_segment(page, 0, PAGE_CACHE_SIZE); | ||
| 634 | } else { | ||
| 635 | err = f2fs_readpage(sbi, page, dn.data_blkaddr, READ_SYNC); | ||
| 636 | if (err) { | ||
| 637 | f2fs_put_page(page, 1); | ||
| 638 | return err; | ||
| 639 | } | ||
| 640 | } | ||
| 641 | SetPageUptodate(page); | ||
| 642 | clear_cold_data(page); | ||
| 643 | return 0; | ||
| 644 | } | ||
| 645 | |||
| 646 | static ssize_t f2fs_direct_IO(int rw, struct kiocb *iocb, | ||
| 647 | const struct iovec *iov, loff_t offset, unsigned long nr_segs) | ||
| 648 | { | ||
| 649 | struct file *file = iocb->ki_filp; | ||
| 650 | struct inode *inode = file->f_mapping->host; | ||
| 651 | |||
| 652 | if (rw == WRITE) | ||
| 653 | return 0; | ||
| 654 | |||
| 655 | /* Needs synchronization with the cleaner */ | ||
| 656 | return blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs, | ||
| 657 | get_data_block_ro); | ||
| 658 | } | ||
| 659 | |||
| 660 | static void f2fs_invalidate_data_page(struct page *page, unsigned long offset) | ||
| 661 | { | ||
| 662 | struct inode *inode = page->mapping->host; | ||
| 663 | struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); | ||
| 664 | if (S_ISDIR(inode->i_mode) && PageDirty(page)) { | ||
| 665 | dec_page_count(sbi, F2FS_DIRTY_DENTS); | ||
| 666 | inode_dec_dirty_dents(inode); | ||
| 667 | } | ||
| 668 | ClearPagePrivate(page); | ||
| 669 | } | ||
| 670 | |||
| 671 | static int f2fs_release_data_page(struct page *page, gfp_t wait) | ||
| 672 | { | ||
| 673 | ClearPagePrivate(page); | ||
| 674 | return 0; | ||
| 675 | } | ||
| 676 | |||
| 677 | static int f2fs_set_data_page_dirty(struct page *page) | ||
| 678 | { | ||
| 679 | struct address_space *mapping = page->mapping; | ||
| 680 | struct inode *inode = mapping->host; | ||
| 681 | |||
| 682 | SetPageUptodate(page); | ||
| 683 | if (!PageDirty(page)) { | ||
| 684 | __set_page_dirty_nobuffers(page); | ||
| 685 | set_dirty_dir_page(inode, page); | ||
| 686 | return 1; | ||
| 687 | } | ||
| 688 | return 0; | ||
| 689 | } | ||
| 690 | |||
| 691 | const struct address_space_operations f2fs_dblock_aops = { | ||
| 692 | .readpage = f2fs_read_data_page, | ||
| 693 | .readpages = f2fs_read_data_pages, | ||
| 694 | .writepage = f2fs_write_data_page, | ||
| 695 | .writepages = f2fs_write_data_pages, | ||
| 696 | .write_begin = f2fs_write_begin, | ||
| 697 | .write_end = nobh_write_end, | ||
| 698 | .set_page_dirty = f2fs_set_data_page_dirty, | ||
| 699 | .invalidatepage = f2fs_invalidate_data_page, | ||
| 700 | .releasepage = f2fs_release_data_page, | ||
| 701 | .direct_IO = f2fs_direct_IO, | ||
| 702 | }; | ||
diff --git a/fs/f2fs/debug.c b/fs/f2fs/debug.c new file mode 100644 index 000000000000..0e0380a588ad --- /dev/null +++ b/fs/f2fs/debug.c | |||
| @@ -0,0 +1,361 @@ | |||
| 1 | /* | ||
| 2 | * f2fs debugging statistics | ||
| 3 | * | ||
| 4 | * Copyright (c) 2012 Samsung Electronics Co., Ltd. | ||
| 5 | * http://www.samsung.com/ | ||
| 6 | * Copyright (c) 2012 Linux Foundation | ||
| 7 | * Copyright (c) 2012 Greg Kroah-Hartman <gregkh@linuxfoundation.org> | ||
| 8 | * | ||
| 9 | * This program is free software; you can redistribute it and/or modify | ||
| 10 | * it under the terms of the GNU General Public License version 2 as | ||
| 11 | * published by the Free Software Foundation. | ||
| 12 | */ | ||
| 13 | |||
| 14 | #include <linux/fs.h> | ||
| 15 | #include <linux/backing-dev.h> | ||
| 16 | #include <linux/proc_fs.h> | ||
| 17 | #include <linux/f2fs_fs.h> | ||
| 18 | #include <linux/blkdev.h> | ||
| 19 | #include <linux/debugfs.h> | ||
| 20 | #include <linux/seq_file.h> | ||
| 21 | |||
| 22 | #include "f2fs.h" | ||
| 23 | #include "node.h" | ||
| 24 | #include "segment.h" | ||
| 25 | #include "gc.h" | ||
| 26 | |||
| 27 | static LIST_HEAD(f2fs_stat_list); | ||
| 28 | static struct dentry *debugfs_root; | ||
| 29 | |||
| 30 | static void update_general_status(struct f2fs_sb_info *sbi) | ||
| 31 | { | ||
| 32 | struct f2fs_stat_info *si = sbi->stat_info; | ||
| 33 | int i; | ||
| 34 | |||
| 35 | /* valid check of the segment numbers */ | ||
| 36 | si->hit_ext = sbi->read_hit_ext; | ||
| 37 | si->total_ext = sbi->total_hit_ext; | ||
| 38 | si->ndirty_node = get_pages(sbi, F2FS_DIRTY_NODES); | ||
| 39 | si->ndirty_dent = get_pages(sbi, F2FS_DIRTY_DENTS); | ||
| 40 | si->ndirty_dirs = sbi->n_dirty_dirs; | ||
| 41 | si->ndirty_meta = get_pages(sbi, F2FS_DIRTY_META); | ||
| 42 | si->total_count = (int)sbi->user_block_count / sbi->blocks_per_seg; | ||
| 43 | si->rsvd_segs = reserved_segments(sbi); | ||
| 44 | si->overp_segs = overprovision_segments(sbi); | ||
| 45 | si->valid_count = valid_user_blocks(sbi); | ||
| 46 | si->valid_node_count = valid_node_count(sbi); | ||
| 47 | si->valid_inode_count = valid_inode_count(sbi); | ||
| 48 | si->utilization = utilization(sbi); | ||
| 49 | |||
| 50 | si->free_segs = free_segments(sbi); | ||
| 51 | si->free_secs = free_sections(sbi); | ||
| 52 | si->prefree_count = prefree_segments(sbi); | ||
| 53 | si->dirty_count = dirty_segments(sbi); | ||
| 54 | si->node_pages = sbi->node_inode->i_mapping->nrpages; | ||
| 55 | si->meta_pages = sbi->meta_inode->i_mapping->nrpages; | ||
| 56 | si->nats = NM_I(sbi)->nat_cnt; | ||
| 57 | si->sits = SIT_I(sbi)->dirty_sentries; | ||
| 58 | si->fnids = NM_I(sbi)->fcnt; | ||
| 59 | si->bg_gc = sbi->bg_gc; | ||
| 60 | si->util_free = (int)(free_user_blocks(sbi) >> sbi->log_blocks_per_seg) | ||
| 61 | * 100 / (int)(sbi->user_block_count >> sbi->log_blocks_per_seg) | ||
| 62 | / 2; | ||
| 63 | si->util_valid = (int)(written_block_count(sbi) >> | ||
| 64 | sbi->log_blocks_per_seg) | ||
| 65 | * 100 / (int)(sbi->user_block_count >> sbi->log_blocks_per_seg) | ||
| 66 | / 2; | ||
| 67 | si->util_invalid = 50 - si->util_free - si->util_valid; | ||
| 68 | for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_NODE; i++) { | ||
| 69 | struct curseg_info *curseg = CURSEG_I(sbi, i); | ||
| 70 | si->curseg[i] = curseg->segno; | ||
| 71 | si->cursec[i] = curseg->segno / sbi->segs_per_sec; | ||
| 72 | si->curzone[i] = si->cursec[i] / sbi->secs_per_zone; | ||
| 73 | } | ||
| 74 | |||
| 75 | for (i = 0; i < 2; i++) { | ||
| 76 | si->segment_count[i] = sbi->segment_count[i]; | ||
| 77 | si->block_count[i] = sbi->block_count[i]; | ||
| 78 | } | ||
| 79 | } | ||
| 80 | |||
| 81 | /* | ||
| 82 | * This function calculates BDF of every segments | ||
| 83 | */ | ||
| 84 | static void update_sit_info(struct f2fs_sb_info *sbi) | ||
| 85 | { | ||
| 86 | struct f2fs_stat_info *si = sbi->stat_info; | ||
| 87 | unsigned int blks_per_sec, hblks_per_sec, total_vblocks, bimodal, dist; | ||
| 88 | struct sit_info *sit_i = SIT_I(sbi); | ||
| 89 | unsigned int segno, vblocks; | ||
| 90 | int ndirty = 0; | ||
| 91 | |||
| 92 | bimodal = 0; | ||
| 93 | total_vblocks = 0; | ||
| 94 | blks_per_sec = sbi->segs_per_sec * (1 << sbi->log_blocks_per_seg); | ||
| 95 | hblks_per_sec = blks_per_sec / 2; | ||
| 96 | mutex_lock(&sit_i->sentry_lock); | ||
| 97 | for (segno = 0; segno < TOTAL_SEGS(sbi); segno += sbi->segs_per_sec) { | ||
| 98 | vblocks = get_valid_blocks(sbi, segno, sbi->segs_per_sec); | ||
| 99 | dist = abs(vblocks - hblks_per_sec); | ||
| 100 | bimodal += dist * dist; | ||
| 101 | |||
| 102 | if (vblocks > 0 && vblocks < blks_per_sec) { | ||
| 103 | total_vblocks += vblocks; | ||
| 104 | ndirty++; | ||
| 105 | } | ||
| 106 | } | ||
| 107 | mutex_unlock(&sit_i->sentry_lock); | ||
| 108 | dist = sbi->total_sections * hblks_per_sec * hblks_per_sec / 100; | ||
| 109 | si->bimodal = bimodal / dist; | ||
| 110 | if (si->dirty_count) | ||
| 111 | si->avg_vblocks = total_vblocks / ndirty; | ||
| 112 | else | ||
| 113 | si->avg_vblocks = 0; | ||
| 114 | } | ||
| 115 | |||
| 116 | /* | ||
| 117 | * This function calculates memory footprint. | ||
| 118 | */ | ||
| 119 | static void update_mem_info(struct f2fs_sb_info *sbi) | ||
| 120 | { | ||
| 121 | struct f2fs_stat_info *si = sbi->stat_info; | ||
| 122 | unsigned npages; | ||
| 123 | |||
| 124 | if (si->base_mem) | ||
| 125 | goto get_cache; | ||
| 126 | |||
| 127 | si->base_mem = sizeof(struct f2fs_sb_info) + sbi->sb->s_blocksize; | ||
| 128 | si->base_mem += 2 * sizeof(struct f2fs_inode_info); | ||
| 129 | si->base_mem += sizeof(*sbi->ckpt); | ||
| 130 | |||
| 131 | /* build sm */ | ||
| 132 | si->base_mem += sizeof(struct f2fs_sm_info); | ||
| 133 | |||
| 134 | /* build sit */ | ||
| 135 | si->base_mem += sizeof(struct sit_info); | ||
| 136 | si->base_mem += TOTAL_SEGS(sbi) * sizeof(struct seg_entry); | ||
| 137 | si->base_mem += f2fs_bitmap_size(TOTAL_SEGS(sbi)); | ||
| 138 | si->base_mem += 2 * SIT_VBLOCK_MAP_SIZE * TOTAL_SEGS(sbi); | ||
| 139 | if (sbi->segs_per_sec > 1) | ||
| 140 | si->base_mem += sbi->total_sections * | ||
| 141 | sizeof(struct sec_entry); | ||
| 142 | si->base_mem += __bitmap_size(sbi, SIT_BITMAP); | ||
| 143 | |||
| 144 | /* build free segmap */ | ||
| 145 | si->base_mem += sizeof(struct free_segmap_info); | ||
| 146 | si->base_mem += f2fs_bitmap_size(TOTAL_SEGS(sbi)); | ||
| 147 | si->base_mem += f2fs_bitmap_size(sbi->total_sections); | ||
| 148 | |||
| 149 | /* build curseg */ | ||
| 150 | si->base_mem += sizeof(struct curseg_info) * NR_CURSEG_TYPE; | ||
| 151 | si->base_mem += PAGE_CACHE_SIZE * NR_CURSEG_TYPE; | ||
| 152 | |||
| 153 | /* build dirty segmap */ | ||
| 154 | si->base_mem += sizeof(struct dirty_seglist_info); | ||
| 155 | si->base_mem += NR_DIRTY_TYPE * f2fs_bitmap_size(TOTAL_SEGS(sbi)); | ||
| 156 | si->base_mem += 2 * f2fs_bitmap_size(TOTAL_SEGS(sbi)); | ||
| 157 | |||
| 158 | /* buld nm */ | ||
| 159 | si->base_mem += sizeof(struct f2fs_nm_info); | ||
| 160 | si->base_mem += __bitmap_size(sbi, NAT_BITMAP); | ||
| 161 | |||
| 162 | /* build gc */ | ||
| 163 | si->base_mem += sizeof(struct f2fs_gc_kthread); | ||
| 164 | |||
| 165 | get_cache: | ||
| 166 | /* free nids */ | ||
| 167 | si->cache_mem = NM_I(sbi)->fcnt; | ||
| 168 | si->cache_mem += NM_I(sbi)->nat_cnt; | ||
| 169 | npages = sbi->node_inode->i_mapping->nrpages; | ||
| 170 | si->cache_mem += npages << PAGE_CACHE_SHIFT; | ||
| 171 | npages = sbi->meta_inode->i_mapping->nrpages; | ||
| 172 | si->cache_mem += npages << PAGE_CACHE_SHIFT; | ||
| 173 | si->cache_mem += sbi->n_orphans * sizeof(struct orphan_inode_entry); | ||
| 174 | si->cache_mem += sbi->n_dirty_dirs * sizeof(struct dir_inode_entry); | ||
| 175 | } | ||
| 176 | |||
| 177 | static int stat_show(struct seq_file *s, void *v) | ||
| 178 | { | ||
| 179 | struct f2fs_stat_info *si, *next; | ||
| 180 | int i = 0; | ||
| 181 | int j; | ||
| 182 | |||
| 183 | list_for_each_entry_safe(si, next, &f2fs_stat_list, stat_list) { | ||
| 184 | |||
| 185 | mutex_lock(&si->stat_lock); | ||
| 186 | if (!si->sbi) { | ||
| 187 | mutex_unlock(&si->stat_lock); | ||
| 188 | continue; | ||
| 189 | } | ||
| 190 | update_general_status(si->sbi); | ||
| 191 | |||
| 192 | seq_printf(s, "\n=====[ partition info. #%d ]=====\n", i++); | ||
| 193 | seq_printf(s, "[SB: 1] [CP: 2] [NAT: %d] [SIT: %d] ", | ||
| 194 | si->nat_area_segs, si->sit_area_segs); | ||
| 195 | seq_printf(s, "[SSA: %d] [MAIN: %d", | ||
| 196 | si->ssa_area_segs, si->main_area_segs); | ||
| 197 | seq_printf(s, "(OverProv:%d Resv:%d)]\n\n", | ||
| 198 | si->overp_segs, si->rsvd_segs); | ||
| 199 | seq_printf(s, "Utilization: %d%% (%d valid blocks)\n", | ||
| 200 | si->utilization, si->valid_count); | ||
| 201 | seq_printf(s, " - Node: %u (Inode: %u, ", | ||
| 202 | si->valid_node_count, si->valid_inode_count); | ||
| 203 | seq_printf(s, "Other: %u)\n - Data: %u\n", | ||
| 204 | si->valid_node_count - si->valid_inode_count, | ||
| 205 | si->valid_count - si->valid_node_count); | ||
| 206 | seq_printf(s, "\nMain area: %d segs, %d secs %d zones\n", | ||
| 207 | si->main_area_segs, si->main_area_sections, | ||
| 208 | si->main_area_zones); | ||
| 209 | seq_printf(s, " - COLD data: %d, %d, %d\n", | ||
| 210 | si->curseg[CURSEG_COLD_DATA], | ||
| 211 | si->cursec[CURSEG_COLD_DATA], | ||
| 212 | si->curzone[CURSEG_COLD_DATA]); | ||
| 213 | seq_printf(s, " - WARM data: %d, %d, %d\n", | ||
| 214 | si->curseg[CURSEG_WARM_DATA], | ||
| 215 | si->cursec[CURSEG_WARM_DATA], | ||
| 216 | si->curzone[CURSEG_WARM_DATA]); | ||
| 217 | seq_printf(s, " - HOT data: %d, %d, %d\n", | ||
| 218 | si->curseg[CURSEG_HOT_DATA], | ||
| 219 | si->cursec[CURSEG_HOT_DATA], | ||
| 220 | si->curzone[CURSEG_HOT_DATA]); | ||
| 221 | seq_printf(s, " - Dir dnode: %d, %d, %d\n", | ||
| 222 | si->curseg[CURSEG_HOT_NODE], | ||
| 223 | si->cursec[CURSEG_HOT_NODE], | ||
| 224 | si->curzone[CURSEG_HOT_NODE]); | ||
| 225 | seq_printf(s, " - File dnode: %d, %d, %d\n", | ||
| 226 | si->curseg[CURSEG_WARM_NODE], | ||
| 227 | si->cursec[CURSEG_WARM_NODE], | ||
| 228 | si->curzone[CURSEG_WARM_NODE]); | ||
| 229 | seq_printf(s, " - Indir nodes: %d, %d, %d\n", | ||
| 230 | si->curseg[CURSEG_COLD_NODE], | ||
| 231 | si->cursec[CURSEG_COLD_NODE], | ||
| 232 | si->curzone[CURSEG_COLD_NODE]); | ||
| 233 | seq_printf(s, "\n - Valid: %d\n - Dirty: %d\n", | ||
| 234 | si->main_area_segs - si->dirty_count - | ||
| 235 | si->prefree_count - si->free_segs, | ||
| 236 | si->dirty_count); | ||
| 237 | seq_printf(s, " - Prefree: %d\n - Free: %d (%d)\n\n", | ||
| 238 | si->prefree_count, si->free_segs, si->free_secs); | ||
| 239 | seq_printf(s, "GC calls: %d (BG: %d)\n", | ||
| 240 | si->call_count, si->bg_gc); | ||
| 241 | seq_printf(s, " - data segments : %d\n", si->data_segs); | ||
| 242 | seq_printf(s, " - node segments : %d\n", si->node_segs); | ||
| 243 | seq_printf(s, "Try to move %d blocks\n", si->tot_blks); | ||
| 244 | seq_printf(s, " - data blocks : %d\n", si->data_blks); | ||
| 245 | seq_printf(s, " - node blocks : %d\n", si->node_blks); | ||
| 246 | seq_printf(s, "\nExtent Hit Ratio: %d / %d\n", | ||
| 247 | si->hit_ext, si->total_ext); | ||
| 248 | seq_printf(s, "\nBalancing F2FS Async:\n"); | ||
| 249 | seq_printf(s, " - nodes %4d in %4d\n", | ||
| 250 | si->ndirty_node, si->node_pages); | ||
| 251 | seq_printf(s, " - dents %4d in dirs:%4d\n", | ||
| 252 | si->ndirty_dent, si->ndirty_dirs); | ||
| 253 | seq_printf(s, " - meta %4d in %4d\n", | ||
| 254 | si->ndirty_meta, si->meta_pages); | ||
| 255 | seq_printf(s, " - NATs %5d > %lu\n", | ||
| 256 | si->nats, NM_WOUT_THRESHOLD); | ||
| 257 | seq_printf(s, " - SITs: %5d\n - free_nids: %5d\n", | ||
| 258 | si->sits, si->fnids); | ||
| 259 | seq_printf(s, "\nDistribution of User Blocks:"); | ||
| 260 | seq_printf(s, " [ valid | invalid | free ]\n"); | ||
| 261 | seq_printf(s, " ["); | ||
| 262 | |||
| 263 | for (j = 0; j < si->util_valid; j++) | ||
| 264 | seq_printf(s, "-"); | ||
| 265 | seq_printf(s, "|"); | ||
| 266 | |||
| 267 | for (j = 0; j < si->util_invalid; j++) | ||
| 268 | seq_printf(s, "-"); | ||
| 269 | seq_printf(s, "|"); | ||
| 270 | |||
| 271 | for (j = 0; j < si->util_free; j++) | ||
| 272 | seq_printf(s, "-"); | ||
| 273 | seq_printf(s, "]\n\n"); | ||
| 274 | seq_printf(s, "SSR: %u blocks in %u segments\n", | ||
| 275 | si->block_count[SSR], si->segment_count[SSR]); | ||
| 276 | seq_printf(s, "LFS: %u blocks in %u segments\n", | ||
| 277 | si->block_count[LFS], si->segment_count[LFS]); | ||
| 278 | |||
| 279 | /* segment usage info */ | ||
| 280 | update_sit_info(si->sbi); | ||
| 281 | seq_printf(s, "\nBDF: %u, avg. vblocks: %u\n", | ||
| 282 | si->bimodal, si->avg_vblocks); | ||
| 283 | |||
| 284 | /* memory footprint */ | ||
| 285 | update_mem_info(si->sbi); | ||
| 286 | seq_printf(s, "\nMemory: %u KB = static: %u + cached: %u\n", | ||
| 287 | (si->base_mem + si->cache_mem) >> 10, | ||
| 288 | si->base_mem >> 10, si->cache_mem >> 10); | ||
| 289 | mutex_unlock(&si->stat_lock); | ||
| 290 | } | ||
| 291 | return 0; | ||
| 292 | } | ||
| 293 | |||
| 294 | static int stat_open(struct inode *inode, struct file *file) | ||
| 295 | { | ||
| 296 | return single_open(file, stat_show, inode->i_private); | ||
| 297 | } | ||
| 298 | |||
| 299 | static const struct file_operations stat_fops = { | ||
| 300 | .open = stat_open, | ||
| 301 | .read = seq_read, | ||
| 302 | .llseek = seq_lseek, | ||
| 303 | .release = single_release, | ||
| 304 | }; | ||
| 305 | |||
| 306 | static int init_stats(struct f2fs_sb_info *sbi) | ||
| 307 | { | ||
| 308 | struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); | ||
| 309 | struct f2fs_stat_info *si; | ||
| 310 | |||
| 311 | sbi->stat_info = kzalloc(sizeof(struct f2fs_stat_info), GFP_KERNEL); | ||
| 312 | if (!sbi->stat_info) | ||
| 313 | return -ENOMEM; | ||
| 314 | |||
| 315 | si = sbi->stat_info; | ||
| 316 | mutex_init(&si->stat_lock); | ||
| 317 | list_add_tail(&si->stat_list, &f2fs_stat_list); | ||
| 318 | |||
| 319 | si->all_area_segs = le32_to_cpu(raw_super->segment_count); | ||
| 320 | si->sit_area_segs = le32_to_cpu(raw_super->segment_count_sit); | ||
| 321 | si->nat_area_segs = le32_to_cpu(raw_super->segment_count_nat); | ||
| 322 | si->ssa_area_segs = le32_to_cpu(raw_super->segment_count_ssa); | ||
| 323 | si->main_area_segs = le32_to_cpu(raw_super->segment_count_main); | ||
| 324 | si->main_area_sections = le32_to_cpu(raw_super->section_count); | ||
| 325 | si->main_area_zones = si->main_area_sections / | ||
| 326 | le32_to_cpu(raw_super->secs_per_zone); | ||
| 327 | si->sbi = sbi; | ||
| 328 | return 0; | ||
| 329 | } | ||
| 330 | |||
| 331 | int f2fs_build_stats(struct f2fs_sb_info *sbi) | ||
| 332 | { | ||
| 333 | int retval; | ||
| 334 | |||
| 335 | retval = init_stats(sbi); | ||
| 336 | if (retval) | ||
| 337 | return retval; | ||
| 338 | |||
| 339 | if (!debugfs_root) | ||
| 340 | debugfs_root = debugfs_create_dir("f2fs", NULL); | ||
| 341 | |||
| 342 | debugfs_create_file("status", S_IRUGO, debugfs_root, NULL, &stat_fops); | ||
| 343 | return 0; | ||
| 344 | } | ||
| 345 | |||
| 346 | void f2fs_destroy_stats(struct f2fs_sb_info *sbi) | ||
| 347 | { | ||
| 348 | struct f2fs_stat_info *si = sbi->stat_info; | ||
| 349 | |||
| 350 | list_del(&si->stat_list); | ||
| 351 | mutex_lock(&si->stat_lock); | ||
| 352 | si->sbi = NULL; | ||
| 353 | mutex_unlock(&si->stat_lock); | ||
| 354 | kfree(sbi->stat_info); | ||
| 355 | } | ||
| 356 | |||
| 357 | void destroy_root_stats(void) | ||
| 358 | { | ||
| 359 | debugfs_remove_recursive(debugfs_root); | ||
| 360 | debugfs_root = NULL; | ||
| 361 | } | ||
diff --git a/fs/f2fs/dir.c b/fs/f2fs/dir.c new file mode 100644 index 000000000000..b4e24f32b54e --- /dev/null +++ b/fs/f2fs/dir.c | |||
| @@ -0,0 +1,672 @@ | |||
| 1 | /* | ||
| 2 | * fs/f2fs/dir.c | ||
| 3 | * | ||
| 4 | * Copyright (c) 2012 Samsung Electronics Co., Ltd. | ||
| 5 | * http://www.samsung.com/ | ||
| 6 | * | ||
| 7 | * This program is free software; you can redistribute it and/or modify | ||
| 8 | * it under the terms of the GNU General Public License version 2 as | ||
| 9 | * published by the Free Software Foundation. | ||
| 10 | */ | ||
| 11 | #include <linux/fs.h> | ||
| 12 | #include <linux/f2fs_fs.h> | ||
| 13 | #include "f2fs.h" | ||
| 14 | #include "acl.h" | ||
| 15 | |||
| 16 | static unsigned long dir_blocks(struct inode *inode) | ||
| 17 | { | ||
| 18 | return ((unsigned long long) (i_size_read(inode) + PAGE_CACHE_SIZE - 1)) | ||
| 19 | >> PAGE_CACHE_SHIFT; | ||
| 20 | } | ||
| 21 | |||
| 22 | static unsigned int dir_buckets(unsigned int level) | ||
| 23 | { | ||
| 24 | if (level < MAX_DIR_HASH_DEPTH / 2) | ||
| 25 | return 1 << level; | ||
| 26 | else | ||
| 27 | return 1 << ((MAX_DIR_HASH_DEPTH / 2) - 1); | ||
| 28 | } | ||
| 29 | |||
| 30 | static unsigned int bucket_blocks(unsigned int level) | ||
| 31 | { | ||
| 32 | if (level < MAX_DIR_HASH_DEPTH / 2) | ||
| 33 | return 2; | ||
| 34 | else | ||
| 35 | return 4; | ||
| 36 | } | ||
| 37 | |||
| 38 | static unsigned char f2fs_filetype_table[F2FS_FT_MAX] = { | ||
| 39 | [F2FS_FT_UNKNOWN] = DT_UNKNOWN, | ||
| 40 | [F2FS_FT_REG_FILE] = DT_REG, | ||
| 41 | [F2FS_FT_DIR] = DT_DIR, | ||
| 42 | [F2FS_FT_CHRDEV] = DT_CHR, | ||
| 43 | [F2FS_FT_BLKDEV] = DT_BLK, | ||
| 44 | [F2FS_FT_FIFO] = DT_FIFO, | ||
| 45 | [F2FS_FT_SOCK] = DT_SOCK, | ||
| 46 | [F2FS_FT_SYMLINK] = DT_LNK, | ||
| 47 | }; | ||
| 48 | |||
| 49 | #define S_SHIFT 12 | ||
| 50 | static unsigned char f2fs_type_by_mode[S_IFMT >> S_SHIFT] = { | ||
| 51 | [S_IFREG >> S_SHIFT] = F2FS_FT_REG_FILE, | ||
| 52 | [S_IFDIR >> S_SHIFT] = F2FS_FT_DIR, | ||
| 53 | [S_IFCHR >> S_SHIFT] = F2FS_FT_CHRDEV, | ||
| 54 | [S_IFBLK >> S_SHIFT] = F2FS_FT_BLKDEV, | ||
| 55 | [S_IFIFO >> S_SHIFT] = F2FS_FT_FIFO, | ||
| 56 | [S_IFSOCK >> S_SHIFT] = F2FS_FT_SOCK, | ||
| 57 | [S_IFLNK >> S_SHIFT] = F2FS_FT_SYMLINK, | ||
| 58 | }; | ||
| 59 | |||
| 60 | static void set_de_type(struct f2fs_dir_entry *de, struct inode *inode) | ||
| 61 | { | ||
| 62 | mode_t mode = inode->i_mode; | ||
| 63 | de->file_type = f2fs_type_by_mode[(mode & S_IFMT) >> S_SHIFT]; | ||
| 64 | } | ||
| 65 | |||
| 66 | static unsigned long dir_block_index(unsigned int level, unsigned int idx) | ||
| 67 | { | ||
| 68 | unsigned long i; | ||
| 69 | unsigned long bidx = 0; | ||
| 70 | |||
| 71 | for (i = 0; i < level; i++) | ||
| 72 | bidx += dir_buckets(i) * bucket_blocks(i); | ||
| 73 | bidx += idx * bucket_blocks(level); | ||
| 74 | return bidx; | ||
| 75 | } | ||
| 76 | |||
| 77 | static bool early_match_name(const char *name, int namelen, | ||
| 78 | f2fs_hash_t namehash, struct f2fs_dir_entry *de) | ||
| 79 | { | ||
| 80 | if (le16_to_cpu(de->name_len) != namelen) | ||
| 81 | return false; | ||
| 82 | |||
| 83 | if (de->hash_code != namehash) | ||
| 84 | return false; | ||
| 85 | |||
| 86 | return true; | ||
| 87 | } | ||
| 88 | |||
| 89 | static struct f2fs_dir_entry *find_in_block(struct page *dentry_page, | ||
| 90 | const char *name, int namelen, int *max_slots, | ||
| 91 | f2fs_hash_t namehash, struct page **res_page) | ||
| 92 | { | ||
| 93 | struct f2fs_dir_entry *de; | ||
| 94 | unsigned long bit_pos, end_pos, next_pos; | ||
| 95 | struct f2fs_dentry_block *dentry_blk = kmap(dentry_page); | ||
| 96 | int slots; | ||
| 97 | |||
| 98 | bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap, | ||
| 99 | NR_DENTRY_IN_BLOCK, 0); | ||
| 100 | while (bit_pos < NR_DENTRY_IN_BLOCK) { | ||
| 101 | de = &dentry_blk->dentry[bit_pos]; | ||
| 102 | slots = GET_DENTRY_SLOTS(le16_to_cpu(de->name_len)); | ||
| 103 | |||
| 104 | if (early_match_name(name, namelen, namehash, de)) { | ||
| 105 | if (!memcmp(dentry_blk->filename[bit_pos], | ||
| 106 | name, namelen)) { | ||
| 107 | *res_page = dentry_page; | ||
| 108 | goto found; | ||
| 109 | } | ||
| 110 | } | ||
| 111 | next_pos = bit_pos + slots; | ||
| 112 | bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap, | ||
| 113 | NR_DENTRY_IN_BLOCK, next_pos); | ||
| 114 | if (bit_pos >= NR_DENTRY_IN_BLOCK) | ||
| 115 | end_pos = NR_DENTRY_IN_BLOCK; | ||
| 116 | else | ||
| 117 | end_pos = bit_pos; | ||
| 118 | if (*max_slots < end_pos - next_pos) | ||
| 119 | *max_slots = end_pos - next_pos; | ||
| 120 | } | ||
| 121 | |||
| 122 | de = NULL; | ||
| 123 | kunmap(dentry_page); | ||
| 124 | found: | ||
| 125 | return de; | ||
| 126 | } | ||
| 127 | |||
| 128 | static struct f2fs_dir_entry *find_in_level(struct inode *dir, | ||
| 129 | unsigned int level, const char *name, int namelen, | ||
| 130 | f2fs_hash_t namehash, struct page **res_page) | ||
| 131 | { | ||
| 132 | int s = GET_DENTRY_SLOTS(namelen); | ||
| 133 | unsigned int nbucket, nblock; | ||
| 134 | unsigned int bidx, end_block; | ||
| 135 | struct page *dentry_page; | ||
| 136 | struct f2fs_dir_entry *de = NULL; | ||
| 137 | bool room = false; | ||
| 138 | int max_slots = 0; | ||
| 139 | |||
| 140 | BUG_ON(level > MAX_DIR_HASH_DEPTH); | ||
| 141 | |||
| 142 | nbucket = dir_buckets(level); | ||
| 143 | nblock = bucket_blocks(level); | ||
| 144 | |||
| 145 | bidx = dir_block_index(level, le32_to_cpu(namehash) % nbucket); | ||
| 146 | end_block = bidx + nblock; | ||
| 147 | |||
| 148 | for (; bidx < end_block; bidx++) { | ||
| 149 | /* no need to allocate new dentry pages to all the indices */ | ||
| 150 | dentry_page = find_data_page(dir, bidx); | ||
| 151 | if (IS_ERR(dentry_page)) { | ||
| 152 | room = true; | ||
| 153 | continue; | ||
| 154 | } | ||
| 155 | |||
| 156 | de = find_in_block(dentry_page, name, namelen, | ||
| 157 | &max_slots, namehash, res_page); | ||
| 158 | if (de) | ||
| 159 | break; | ||
| 160 | |||
| 161 | if (max_slots >= s) | ||
| 162 | room = true; | ||
| 163 | f2fs_put_page(dentry_page, 0); | ||
| 164 | } | ||
| 165 | |||
| 166 | if (!de && room && F2FS_I(dir)->chash != namehash) { | ||
| 167 | F2FS_I(dir)->chash = namehash; | ||
| 168 | F2FS_I(dir)->clevel = level; | ||
| 169 | } | ||
| 170 | |||
| 171 | return de; | ||
| 172 | } | ||
| 173 | |||
| 174 | /* | ||
| 175 | * Find an entry in the specified directory with the wanted name. | ||
| 176 | * It returns the page where the entry was found (as a parameter - res_page), | ||
| 177 | * and the entry itself. Page is returned mapped and unlocked. | ||
| 178 | * Entry is guaranteed to be valid. | ||
| 179 | */ | ||
| 180 | struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir, | ||
| 181 | struct qstr *child, struct page **res_page) | ||
| 182 | { | ||
| 183 | const char *name = child->name; | ||
| 184 | int namelen = child->len; | ||
| 185 | unsigned long npages = dir_blocks(dir); | ||
| 186 | struct f2fs_dir_entry *de = NULL; | ||
| 187 | f2fs_hash_t name_hash; | ||
| 188 | unsigned int max_depth; | ||
| 189 | unsigned int level; | ||
| 190 | |||
| 191 | if (npages == 0) | ||
| 192 | return NULL; | ||
| 193 | |||
| 194 | *res_page = NULL; | ||
| 195 | |||
| 196 | name_hash = f2fs_dentry_hash(name, namelen); | ||
| 197 | max_depth = F2FS_I(dir)->i_current_depth; | ||
| 198 | |||
| 199 | for (level = 0; level < max_depth; level++) { | ||
| 200 | de = find_in_level(dir, level, name, | ||
| 201 | namelen, name_hash, res_page); | ||
| 202 | if (de) | ||
| 203 | break; | ||
| 204 | } | ||
| 205 | if (!de && F2FS_I(dir)->chash != name_hash) { | ||
| 206 | F2FS_I(dir)->chash = name_hash; | ||
| 207 | F2FS_I(dir)->clevel = level - 1; | ||
| 208 | } | ||
| 209 | return de; | ||
| 210 | } | ||
| 211 | |||
| 212 | struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p) | ||
| 213 | { | ||
| 214 | struct page *page = NULL; | ||
| 215 | struct f2fs_dir_entry *de = NULL; | ||
| 216 | struct f2fs_dentry_block *dentry_blk = NULL; | ||
| 217 | |||
| 218 | page = get_lock_data_page(dir, 0); | ||
| 219 | if (IS_ERR(page)) | ||
| 220 | return NULL; | ||
| 221 | |||
| 222 | dentry_blk = kmap(page); | ||
| 223 | de = &dentry_blk->dentry[1]; | ||
| 224 | *p = page; | ||
| 225 | unlock_page(page); | ||
| 226 | return de; | ||
| 227 | } | ||
| 228 | |||
| 229 | ino_t f2fs_inode_by_name(struct inode *dir, struct qstr *qstr) | ||
| 230 | { | ||
| 231 | ino_t res = 0; | ||
| 232 | struct f2fs_dir_entry *de; | ||
| 233 | struct page *page; | ||
| 234 | |||
| 235 | de = f2fs_find_entry(dir, qstr, &page); | ||
| 236 | if (de) { | ||
| 237 | res = le32_to_cpu(de->ino); | ||
| 238 | kunmap(page); | ||
| 239 | f2fs_put_page(page, 0); | ||
| 240 | } | ||
| 241 | |||
| 242 | return res; | ||
| 243 | } | ||
| 244 | |||
| 245 | void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de, | ||
| 246 | struct page *page, struct inode *inode) | ||
| 247 | { | ||
| 248 | struct f2fs_sb_info *sbi = F2FS_SB(dir->i_sb); | ||
| 249 | |||
| 250 | mutex_lock_op(sbi, DENTRY_OPS); | ||
| 251 | lock_page(page); | ||
| 252 | wait_on_page_writeback(page); | ||
| 253 | de->ino = cpu_to_le32(inode->i_ino); | ||
| 254 | set_de_type(de, inode); | ||
| 255 | kunmap(page); | ||
| 256 | set_page_dirty(page); | ||
| 257 | dir->i_mtime = dir->i_ctime = CURRENT_TIME; | ||
| 258 | mark_inode_dirty(dir); | ||
| 259 | |||
| 260 | /* update parent inode number before releasing dentry page */ | ||
| 261 | F2FS_I(inode)->i_pino = dir->i_ino; | ||
| 262 | |||
| 263 | f2fs_put_page(page, 1); | ||
| 264 | mutex_unlock_op(sbi, DENTRY_OPS); | ||
| 265 | } | ||
| 266 | |||
| 267 | void init_dent_inode(struct dentry *dentry, struct page *ipage) | ||
| 268 | { | ||
| 269 | struct f2fs_node *rn; | ||
| 270 | |||
| 271 | if (IS_ERR(ipage)) | ||
| 272 | return; | ||
| 273 | |||
| 274 | wait_on_page_writeback(ipage); | ||
| 275 | |||
| 276 | /* copy dentry info. to this inode page */ | ||
| 277 | rn = (struct f2fs_node *)page_address(ipage); | ||
| 278 | rn->i.i_namelen = cpu_to_le32(dentry->d_name.len); | ||
| 279 | memcpy(rn->i.i_name, dentry->d_name.name, dentry->d_name.len); | ||
| 280 | set_page_dirty(ipage); | ||
| 281 | } | ||
| 282 | |||
| 283 | static int init_inode_metadata(struct inode *inode, struct dentry *dentry) | ||
| 284 | { | ||
| 285 | struct inode *dir = dentry->d_parent->d_inode; | ||
| 286 | |||
| 287 | if (is_inode_flag_set(F2FS_I(inode), FI_NEW_INODE)) { | ||
| 288 | int err; | ||
| 289 | err = new_inode_page(inode, dentry); | ||
| 290 | if (err) | ||
| 291 | return err; | ||
| 292 | |||
| 293 | if (S_ISDIR(inode->i_mode)) { | ||
| 294 | err = f2fs_make_empty(inode, dir); | ||
| 295 | if (err) { | ||
| 296 | remove_inode_page(inode); | ||
| 297 | return err; | ||
| 298 | } | ||
| 299 | } | ||
| 300 | |||
| 301 | err = f2fs_init_acl(inode, dir); | ||
| 302 | if (err) { | ||
| 303 | remove_inode_page(inode); | ||
| 304 | return err; | ||
| 305 | } | ||
| 306 | } else { | ||
| 307 | struct page *ipage; | ||
| 308 | ipage = get_node_page(F2FS_SB(dir->i_sb), inode->i_ino); | ||
| 309 | if (IS_ERR(ipage)) | ||
| 310 | return PTR_ERR(ipage); | ||
| 311 | init_dent_inode(dentry, ipage); | ||
| 312 | f2fs_put_page(ipage, 1); | ||
| 313 | } | ||
| 314 | if (is_inode_flag_set(F2FS_I(inode), FI_INC_LINK)) { | ||
| 315 | inc_nlink(inode); | ||
| 316 | f2fs_write_inode(inode, NULL); | ||
| 317 | } | ||
| 318 | return 0; | ||
| 319 | } | ||
| 320 | |||
| 321 | static void update_parent_metadata(struct inode *dir, struct inode *inode, | ||
| 322 | unsigned int current_depth) | ||
| 323 | { | ||
| 324 | bool need_dir_update = false; | ||
| 325 | |||
| 326 | if (is_inode_flag_set(F2FS_I(inode), FI_NEW_INODE)) { | ||
| 327 | if (S_ISDIR(inode->i_mode)) { | ||
| 328 | inc_nlink(dir); | ||
| 329 | need_dir_update = true; | ||
| 330 | } | ||
| 331 | clear_inode_flag(F2FS_I(inode), FI_NEW_INODE); | ||
| 332 | } | ||
| 333 | dir->i_mtime = dir->i_ctime = CURRENT_TIME; | ||
| 334 | if (F2FS_I(dir)->i_current_depth != current_depth) { | ||
| 335 | F2FS_I(dir)->i_current_depth = current_depth; | ||
| 336 | need_dir_update = true; | ||
| 337 | } | ||
| 338 | |||
| 339 | if (need_dir_update) | ||
| 340 | f2fs_write_inode(dir, NULL); | ||
| 341 | else | ||
| 342 | mark_inode_dirty(dir); | ||
| 343 | |||
| 344 | if (is_inode_flag_set(F2FS_I(inode), FI_INC_LINK)) | ||
| 345 | clear_inode_flag(F2FS_I(inode), FI_INC_LINK); | ||
| 346 | } | ||
| 347 | |||
| 348 | static int room_for_filename(struct f2fs_dentry_block *dentry_blk, int slots) | ||
| 349 | { | ||
| 350 | int bit_start = 0; | ||
| 351 | int zero_start, zero_end; | ||
| 352 | next: | ||
| 353 | zero_start = find_next_zero_bit_le(&dentry_blk->dentry_bitmap, | ||
| 354 | NR_DENTRY_IN_BLOCK, | ||
| 355 | bit_start); | ||
| 356 | if (zero_start >= NR_DENTRY_IN_BLOCK) | ||
| 357 | return NR_DENTRY_IN_BLOCK; | ||
| 358 | |||
| 359 | zero_end = find_next_bit_le(&dentry_blk->dentry_bitmap, | ||
| 360 | NR_DENTRY_IN_BLOCK, | ||
| 361 | zero_start); | ||
| 362 | if (zero_end - zero_start >= slots) | ||
| 363 | return zero_start; | ||
| 364 | |||
| 365 | bit_start = zero_end + 1; | ||
| 366 | |||
| 367 | if (zero_end + 1 >= NR_DENTRY_IN_BLOCK) | ||
| 368 | return NR_DENTRY_IN_BLOCK; | ||
| 369 | goto next; | ||
| 370 | } | ||
| 371 | |||
| 372 | int f2fs_add_link(struct dentry *dentry, struct inode *inode) | ||
| 373 | { | ||
| 374 | unsigned int bit_pos; | ||
| 375 | unsigned int level; | ||
| 376 | unsigned int current_depth; | ||
| 377 | unsigned long bidx, block; | ||
| 378 | f2fs_hash_t dentry_hash; | ||
| 379 | struct f2fs_dir_entry *de; | ||
| 380 | unsigned int nbucket, nblock; | ||
| 381 | struct inode *dir = dentry->d_parent->d_inode; | ||
| 382 | struct f2fs_sb_info *sbi = F2FS_SB(dir->i_sb); | ||
| 383 | const char *name = dentry->d_name.name; | ||
| 384 | int namelen = dentry->d_name.len; | ||
| 385 | struct page *dentry_page = NULL; | ||
| 386 | struct f2fs_dentry_block *dentry_blk = NULL; | ||
| 387 | int slots = GET_DENTRY_SLOTS(namelen); | ||
| 388 | int err = 0; | ||
| 389 | int i; | ||
| 390 | |||
| 391 | dentry_hash = f2fs_dentry_hash(name, dentry->d_name.len); | ||
| 392 | level = 0; | ||
| 393 | current_depth = F2FS_I(dir)->i_current_depth; | ||
| 394 | if (F2FS_I(dir)->chash == dentry_hash) { | ||
| 395 | level = F2FS_I(dir)->clevel; | ||
| 396 | F2FS_I(dir)->chash = 0; | ||
| 397 | } | ||
| 398 | |||
| 399 | start: | ||
| 400 | if (current_depth == MAX_DIR_HASH_DEPTH) | ||
| 401 | return -ENOSPC; | ||
| 402 | |||
| 403 | /* Increase the depth, if required */ | ||
| 404 | if (level == current_depth) | ||
| 405 | ++current_depth; | ||
| 406 | |||
| 407 | nbucket = dir_buckets(level); | ||
| 408 | nblock = bucket_blocks(level); | ||
| 409 | |||
| 410 | bidx = dir_block_index(level, (le32_to_cpu(dentry_hash) % nbucket)); | ||
| 411 | |||
| 412 | for (block = bidx; block <= (bidx + nblock - 1); block++) { | ||
| 413 | mutex_lock_op(sbi, DENTRY_OPS); | ||
| 414 | dentry_page = get_new_data_page(dir, block, true); | ||
| 415 | if (IS_ERR(dentry_page)) { | ||
| 416 | mutex_unlock_op(sbi, DENTRY_OPS); | ||
| 417 | return PTR_ERR(dentry_page); | ||
| 418 | } | ||
| 419 | |||
| 420 | dentry_blk = kmap(dentry_page); | ||
| 421 | bit_pos = room_for_filename(dentry_blk, slots); | ||
| 422 | if (bit_pos < NR_DENTRY_IN_BLOCK) | ||
| 423 | goto add_dentry; | ||
| 424 | |||
| 425 | kunmap(dentry_page); | ||
| 426 | f2fs_put_page(dentry_page, 1); | ||
| 427 | mutex_unlock_op(sbi, DENTRY_OPS); | ||
| 428 | } | ||
| 429 | |||
| 430 | /* Move to next level to find the empty slot for new dentry */ | ||
| 431 | ++level; | ||
| 432 | goto start; | ||
| 433 | add_dentry: | ||
| 434 | err = init_inode_metadata(inode, dentry); | ||
| 435 | if (err) | ||
| 436 | goto fail; | ||
| 437 | |||
| 438 | wait_on_page_writeback(dentry_page); | ||
| 439 | |||
| 440 | de = &dentry_blk->dentry[bit_pos]; | ||
| 441 | de->hash_code = dentry_hash; | ||
| 442 | de->name_len = cpu_to_le16(namelen); | ||
| 443 | memcpy(dentry_blk->filename[bit_pos], name, namelen); | ||
| 444 | de->ino = cpu_to_le32(inode->i_ino); | ||
| 445 | set_de_type(de, inode); | ||
| 446 | for (i = 0; i < slots; i++) | ||
| 447 | test_and_set_bit_le(bit_pos + i, &dentry_blk->dentry_bitmap); | ||
| 448 | set_page_dirty(dentry_page); | ||
| 449 | |||
| 450 | update_parent_metadata(dir, inode, current_depth); | ||
| 451 | |||
| 452 | /* update parent inode number before releasing dentry page */ | ||
| 453 | F2FS_I(inode)->i_pino = dir->i_ino; | ||
| 454 | fail: | ||
| 455 | kunmap(dentry_page); | ||
| 456 | f2fs_put_page(dentry_page, 1); | ||
| 457 | mutex_unlock_op(sbi, DENTRY_OPS); | ||
| 458 | return err; | ||
| 459 | } | ||
| 460 | |||
| 461 | /* | ||
| 462 | * It only removes the dentry from the dentry page,corresponding name | ||
| 463 | * entry in name page does not need to be touched during deletion. | ||
| 464 | */ | ||
| 465 | void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page, | ||
| 466 | struct inode *inode) | ||
| 467 | { | ||
| 468 | struct f2fs_dentry_block *dentry_blk; | ||
| 469 | unsigned int bit_pos; | ||
| 470 | struct address_space *mapping = page->mapping; | ||
| 471 | struct inode *dir = mapping->host; | ||
| 472 | struct f2fs_sb_info *sbi = F2FS_SB(dir->i_sb); | ||
| 473 | int slots = GET_DENTRY_SLOTS(le16_to_cpu(dentry->name_len)); | ||
| 474 | void *kaddr = page_address(page); | ||
| 475 | int i; | ||
| 476 | |||
| 477 | mutex_lock_op(sbi, DENTRY_OPS); | ||
| 478 | |||
| 479 | lock_page(page); | ||
| 480 | wait_on_page_writeback(page); | ||
| 481 | |||
| 482 | dentry_blk = (struct f2fs_dentry_block *)kaddr; | ||
| 483 | bit_pos = dentry - (struct f2fs_dir_entry *)dentry_blk->dentry; | ||
| 484 | for (i = 0; i < slots; i++) | ||
| 485 | test_and_clear_bit_le(bit_pos + i, &dentry_blk->dentry_bitmap); | ||
| 486 | |||
| 487 | /* Let's check and deallocate this dentry page */ | ||
| 488 | bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap, | ||
| 489 | NR_DENTRY_IN_BLOCK, | ||
| 490 | 0); | ||
| 491 | kunmap(page); /* kunmap - pair of f2fs_find_entry */ | ||
| 492 | set_page_dirty(page); | ||
| 493 | |||
| 494 | dir->i_ctime = dir->i_mtime = CURRENT_TIME; | ||
| 495 | |||
| 496 | if (inode && S_ISDIR(inode->i_mode)) { | ||
| 497 | drop_nlink(dir); | ||
| 498 | f2fs_write_inode(dir, NULL); | ||
| 499 | } else { | ||
| 500 | mark_inode_dirty(dir); | ||
| 501 | } | ||
| 502 | |||
| 503 | if (inode) { | ||
| 504 | inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; | ||
| 505 | drop_nlink(inode); | ||
| 506 | if (S_ISDIR(inode->i_mode)) { | ||
| 507 | drop_nlink(inode); | ||
| 508 | i_size_write(inode, 0); | ||
| 509 | } | ||
| 510 | f2fs_write_inode(inode, NULL); | ||
| 511 | if (inode->i_nlink == 0) | ||
| 512 | add_orphan_inode(sbi, inode->i_ino); | ||
| 513 | } | ||
| 514 | |||
| 515 | if (bit_pos == NR_DENTRY_IN_BLOCK) { | ||
| 516 | truncate_hole(dir, page->index, page->index + 1); | ||
| 517 | clear_page_dirty_for_io(page); | ||
| 518 | ClearPageUptodate(page); | ||
| 519 | dec_page_count(sbi, F2FS_DIRTY_DENTS); | ||
| 520 | inode_dec_dirty_dents(dir); | ||
| 521 | } | ||
| 522 | f2fs_put_page(page, 1); | ||
| 523 | |||
| 524 | mutex_unlock_op(sbi, DENTRY_OPS); | ||
| 525 | } | ||
| 526 | |||
| 527 | int f2fs_make_empty(struct inode *inode, struct inode *parent) | ||
| 528 | { | ||
| 529 | struct page *dentry_page; | ||
| 530 | struct f2fs_dentry_block *dentry_blk; | ||
| 531 | struct f2fs_dir_entry *de; | ||
| 532 | void *kaddr; | ||
| 533 | |||
| 534 | dentry_page = get_new_data_page(inode, 0, true); | ||
| 535 | if (IS_ERR(dentry_page)) | ||
| 536 | return PTR_ERR(dentry_page); | ||
| 537 | |||
| 538 | kaddr = kmap_atomic(dentry_page); | ||
| 539 | dentry_blk = (struct f2fs_dentry_block *)kaddr; | ||
| 540 | |||
| 541 | de = &dentry_blk->dentry[0]; | ||
| 542 | de->name_len = cpu_to_le16(1); | ||
| 543 | de->hash_code = 0; | ||
| 544 | de->ino = cpu_to_le32(inode->i_ino); | ||
| 545 | memcpy(dentry_blk->filename[0], ".", 1); | ||
| 546 | set_de_type(de, inode); | ||
| 547 | |||
| 548 | de = &dentry_blk->dentry[1]; | ||
| 549 | de->hash_code = 0; | ||
| 550 | de->name_len = cpu_to_le16(2); | ||
| 551 | de->ino = cpu_to_le32(parent->i_ino); | ||
| 552 | memcpy(dentry_blk->filename[1], "..", 2); | ||
| 553 | set_de_type(de, inode); | ||
| 554 | |||
| 555 | test_and_set_bit_le(0, &dentry_blk->dentry_bitmap); | ||
| 556 | test_and_set_bit_le(1, &dentry_blk->dentry_bitmap); | ||
| 557 | kunmap_atomic(kaddr); | ||
| 558 | |||
| 559 | set_page_dirty(dentry_page); | ||
| 560 | f2fs_put_page(dentry_page, 1); | ||
| 561 | return 0; | ||
| 562 | } | ||
| 563 | |||
| 564 | bool f2fs_empty_dir(struct inode *dir) | ||
| 565 | { | ||
| 566 | unsigned long bidx; | ||
| 567 | struct page *dentry_page; | ||
| 568 | unsigned int bit_pos; | ||
| 569 | struct f2fs_dentry_block *dentry_blk; | ||
| 570 | unsigned long nblock = dir_blocks(dir); | ||
| 571 | |||
| 572 | for (bidx = 0; bidx < nblock; bidx++) { | ||
| 573 | void *kaddr; | ||
| 574 | dentry_page = get_lock_data_page(dir, bidx); | ||
| 575 | if (IS_ERR(dentry_page)) { | ||
| 576 | if (PTR_ERR(dentry_page) == -ENOENT) | ||
| 577 | continue; | ||
| 578 | else | ||
| 579 | return false; | ||
| 580 | } | ||
| 581 | |||
| 582 | kaddr = kmap_atomic(dentry_page); | ||
| 583 | dentry_blk = (struct f2fs_dentry_block *)kaddr; | ||
| 584 | if (bidx == 0) | ||
| 585 | bit_pos = 2; | ||
| 586 | else | ||
| 587 | bit_pos = 0; | ||
| 588 | bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap, | ||
| 589 | NR_DENTRY_IN_BLOCK, | ||
| 590 | bit_pos); | ||
| 591 | kunmap_atomic(kaddr); | ||
| 592 | |||
| 593 | f2fs_put_page(dentry_page, 1); | ||
| 594 | |||
| 595 | if (bit_pos < NR_DENTRY_IN_BLOCK) | ||
| 596 | return false; | ||
| 597 | } | ||
| 598 | return true; | ||
| 599 | } | ||
| 600 | |||
| 601 | static int f2fs_readdir(struct file *file, void *dirent, filldir_t filldir) | ||
| 602 | { | ||
| 603 | unsigned long pos = file->f_pos; | ||
| 604 | struct inode *inode = file->f_dentry->d_inode; | ||
| 605 | unsigned long npages = dir_blocks(inode); | ||
| 606 | unsigned char *types = NULL; | ||
| 607 | unsigned int bit_pos = 0, start_bit_pos = 0; | ||
| 608 | int over = 0; | ||
| 609 | struct f2fs_dentry_block *dentry_blk = NULL; | ||
| 610 | struct f2fs_dir_entry *de = NULL; | ||
| 611 | struct page *dentry_page = NULL; | ||
| 612 | unsigned int n = 0; | ||
| 613 | unsigned char d_type = DT_UNKNOWN; | ||
| 614 | int slots; | ||
| 615 | |||
| 616 | types = f2fs_filetype_table; | ||
| 617 | bit_pos = (pos % NR_DENTRY_IN_BLOCK); | ||
| 618 | n = (pos / NR_DENTRY_IN_BLOCK); | ||
| 619 | |||
| 620 | for ( ; n < npages; n++) { | ||
| 621 | dentry_page = get_lock_data_page(inode, n); | ||
| 622 | if (IS_ERR(dentry_page)) | ||
| 623 | continue; | ||
| 624 | |||
| 625 | start_bit_pos = bit_pos; | ||
| 626 | dentry_blk = kmap(dentry_page); | ||
| 627 | while (bit_pos < NR_DENTRY_IN_BLOCK) { | ||
| 628 | d_type = DT_UNKNOWN; | ||
| 629 | bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap, | ||
| 630 | NR_DENTRY_IN_BLOCK, | ||
| 631 | bit_pos); | ||
| 632 | if (bit_pos >= NR_DENTRY_IN_BLOCK) | ||
| 633 | break; | ||
| 634 | |||
| 635 | de = &dentry_blk->dentry[bit_pos]; | ||
| 636 | if (types && de->file_type < F2FS_FT_MAX) | ||
| 637 | d_type = types[de->file_type]; | ||
| 638 | |||
| 639 | over = filldir(dirent, | ||
| 640 | dentry_blk->filename[bit_pos], | ||
| 641 | le16_to_cpu(de->name_len), | ||
| 642 | (n * NR_DENTRY_IN_BLOCK) + bit_pos, | ||
| 643 | le32_to_cpu(de->ino), d_type); | ||
| 644 | if (over) { | ||
| 645 | file->f_pos += bit_pos - start_bit_pos; | ||
| 646 | goto success; | ||
| 647 | } | ||
| 648 | slots = GET_DENTRY_SLOTS(le16_to_cpu(de->name_len)); | ||
| 649 | bit_pos += slots; | ||
| 650 | } | ||
| 651 | bit_pos = 0; | ||
| 652 | file->f_pos = (n + 1) * NR_DENTRY_IN_BLOCK; | ||
| 653 | kunmap(dentry_page); | ||
| 654 | f2fs_put_page(dentry_page, 1); | ||
| 655 | dentry_page = NULL; | ||
| 656 | } | ||
| 657 | success: | ||
| 658 | if (dentry_page && !IS_ERR(dentry_page)) { | ||
| 659 | kunmap(dentry_page); | ||
| 660 | f2fs_put_page(dentry_page, 1); | ||
| 661 | } | ||
| 662 | |||
| 663 | return 0; | ||
| 664 | } | ||
| 665 | |||
| 666 | const struct file_operations f2fs_dir_operations = { | ||
| 667 | .llseek = generic_file_llseek, | ||
| 668 | .read = generic_read_dir, | ||
| 669 | .readdir = f2fs_readdir, | ||
| 670 | .fsync = f2fs_sync_file, | ||
| 671 | .unlocked_ioctl = f2fs_ioctl, | ||
| 672 | }; | ||
diff --git a/fs/f2fs/f2fs.h b/fs/f2fs/f2fs.h new file mode 100644 index 000000000000..a18d63db2fb6 --- /dev/null +++ b/fs/f2fs/f2fs.h | |||
| @@ -0,0 +1,1083 @@ | |||
| 1 | /* | ||
| 2 | * fs/f2fs/f2fs.h | ||
| 3 | * | ||
| 4 | * Copyright (c) 2012 Samsung Electronics Co., Ltd. | ||
| 5 | * http://www.samsung.com/ | ||
| 6 | * | ||
| 7 | * This program is free software; you can redistribute it and/or modify | ||
| 8 | * it under the terms of the GNU General Public License version 2 as | ||
| 9 | * published by the Free Software Foundation. | ||
| 10 | */ | ||
| 11 | #ifndef _LINUX_F2FS_H | ||
| 12 | #define _LINUX_F2FS_H | ||
| 13 | |||
| 14 | #include <linux/types.h> | ||
| 15 | #include <linux/page-flags.h> | ||
| 16 | #include <linux/buffer_head.h> | ||
| 17 | #include <linux/slab.h> | ||
| 18 | #include <linux/crc32.h> | ||
| 19 | #include <linux/magic.h> | ||
| 20 | |||
| 21 | /* | ||
| 22 | * For mount options | ||
| 23 | */ | ||
| 24 | #define F2FS_MOUNT_BG_GC 0x00000001 | ||
| 25 | #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002 | ||
| 26 | #define F2FS_MOUNT_DISCARD 0x00000004 | ||
| 27 | #define F2FS_MOUNT_NOHEAP 0x00000008 | ||
| 28 | #define F2FS_MOUNT_XATTR_USER 0x00000010 | ||
| 29 | #define F2FS_MOUNT_POSIX_ACL 0x00000020 | ||
| 30 | #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040 | ||
| 31 | |||
| 32 | #define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option) | ||
| 33 | #define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option) | ||
| 34 | #define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option) | ||
| 35 | |||
| 36 | #define ver_after(a, b) (typecheck(unsigned long long, a) && \ | ||
| 37 | typecheck(unsigned long long, b) && \ | ||
| 38 | ((long long)((a) - (b)) > 0)) | ||
| 39 | |||
| 40 | typedef u64 block_t; | ||
| 41 | typedef u32 nid_t; | ||
| 42 | |||
| 43 | struct f2fs_mount_info { | ||
| 44 | unsigned int opt; | ||
| 45 | }; | ||
| 46 | |||
| 47 | static inline __u32 f2fs_crc32(void *buff, size_t len) | ||
| 48 | { | ||
| 49 | return crc32_le(F2FS_SUPER_MAGIC, buff, len); | ||
| 50 | } | ||
| 51 | |||
| 52 | static inline bool f2fs_crc_valid(__u32 blk_crc, void *buff, size_t buff_size) | ||
| 53 | { | ||
| 54 | return f2fs_crc32(buff, buff_size) == blk_crc; | ||
| 55 | } | ||
| 56 | |||
| 57 | /* | ||
| 58 | * For checkpoint manager | ||
| 59 | */ | ||
| 60 | enum { | ||
| 61 | NAT_BITMAP, | ||
| 62 | SIT_BITMAP | ||
| 63 | }; | ||
| 64 | |||
| 65 | /* for the list of orphan inodes */ | ||
| 66 | struct orphan_inode_entry { | ||
| 67 | struct list_head list; /* list head */ | ||
| 68 | nid_t ino; /* inode number */ | ||
| 69 | }; | ||
| 70 | |||
| 71 | /* for the list of directory inodes */ | ||
| 72 | struct dir_inode_entry { | ||
| 73 | struct list_head list; /* list head */ | ||
| 74 | struct inode *inode; /* vfs inode pointer */ | ||
| 75 | }; | ||
| 76 | |||
| 77 | /* for the list of fsync inodes, used only during recovery */ | ||
| 78 | struct fsync_inode_entry { | ||
| 79 | struct list_head list; /* list head */ | ||
| 80 | struct inode *inode; /* vfs inode pointer */ | ||
| 81 | block_t blkaddr; /* block address locating the last inode */ | ||
| 82 | }; | ||
| 83 | |||
| 84 | #define nats_in_cursum(sum) (le16_to_cpu(sum->n_nats)) | ||
| 85 | #define sits_in_cursum(sum) (le16_to_cpu(sum->n_sits)) | ||
| 86 | |||
| 87 | #define nat_in_journal(sum, i) (sum->nat_j.entries[i].ne) | ||
| 88 | #define nid_in_journal(sum, i) (sum->nat_j.entries[i].nid) | ||
| 89 | #define sit_in_journal(sum, i) (sum->sit_j.entries[i].se) | ||
| 90 | #define segno_in_journal(sum, i) (sum->sit_j.entries[i].segno) | ||
| 91 | |||
| 92 | static inline int update_nats_in_cursum(struct f2fs_summary_block *rs, int i) | ||
| 93 | { | ||
| 94 | int before = nats_in_cursum(rs); | ||
| 95 | rs->n_nats = cpu_to_le16(before + i); | ||
| 96 | return before; | ||
| 97 | } | ||
| 98 | |||
| 99 | static inline int update_sits_in_cursum(struct f2fs_summary_block *rs, int i) | ||
| 100 | { | ||
| 101 | int before = sits_in_cursum(rs); | ||
| 102 | rs->n_sits = cpu_to_le16(before + i); | ||
| 103 | return before; | ||
| 104 | } | ||
| 105 | |||
| 106 | /* | ||
| 107 | * For INODE and NODE manager | ||
| 108 | */ | ||
| 109 | #define XATTR_NODE_OFFSET (-1) /* | ||
| 110 | * store xattrs to one node block per | ||
| 111 | * file keeping -1 as its node offset to | ||
| 112 | * distinguish from index node blocks. | ||
| 113 | */ | ||
| 114 | #define RDONLY_NODE 1 /* | ||
| 115 | * specify a read-only mode when getting | ||
| 116 | * a node block. 0 is read-write mode. | ||
| 117 | * used by get_dnode_of_data(). | ||
| 118 | */ | ||
| 119 | #define F2FS_LINK_MAX 32000 /* maximum link count per file */ | ||
| 120 | |||
| 121 | /* for in-memory extent cache entry */ | ||
| 122 | struct extent_info { | ||
| 123 | rwlock_t ext_lock; /* rwlock for consistency */ | ||
| 124 | unsigned int fofs; /* start offset in a file */ | ||
| 125 | u32 blk_addr; /* start block address of the extent */ | ||
| 126 | unsigned int len; /* lenth of the extent */ | ||
| 127 | }; | ||
| 128 | |||
| 129 | /* | ||
| 130 | * i_advise uses FADVISE_XXX_BIT. We can add additional hints later. | ||
| 131 | */ | ||
| 132 | #define FADVISE_COLD_BIT 0x01 | ||
| 133 | |||
| 134 | struct f2fs_inode_info { | ||
| 135 | struct inode vfs_inode; /* serve a vfs inode */ | ||
| 136 | unsigned long i_flags; /* keep an inode flags for ioctl */ | ||
| 137 | unsigned char i_advise; /* use to give file attribute hints */ | ||
| 138 | unsigned int i_current_depth; /* use only in directory structure */ | ||
| 139 | unsigned int i_pino; /* parent inode number */ | ||
| 140 | umode_t i_acl_mode; /* keep file acl mode temporarily */ | ||
| 141 | |||
| 142 | /* Use below internally in f2fs*/ | ||
| 143 | unsigned long flags; /* use to pass per-file flags */ | ||
| 144 | unsigned long long data_version;/* lastes version of data for fsync */ | ||
| 145 | atomic_t dirty_dents; /* # of dirty dentry pages */ | ||
| 146 | f2fs_hash_t chash; /* hash value of given file name */ | ||
| 147 | unsigned int clevel; /* maximum level of given file name */ | ||
| 148 | nid_t i_xattr_nid; /* node id that contains xattrs */ | ||
| 149 | struct extent_info ext; /* in-memory extent cache entry */ | ||
| 150 | }; | ||
| 151 | |||
| 152 | static inline void get_extent_info(struct extent_info *ext, | ||
| 153 | struct f2fs_extent i_ext) | ||
| 154 | { | ||
| 155 | write_lock(&ext->ext_lock); | ||
| 156 | ext->fofs = le32_to_cpu(i_ext.fofs); | ||
| 157 | ext->blk_addr = le32_to_cpu(i_ext.blk_addr); | ||
| 158 | ext->len = le32_to_cpu(i_ext.len); | ||
| 159 | write_unlock(&ext->ext_lock); | ||
| 160 | } | ||
| 161 | |||
| 162 | static inline void set_raw_extent(struct extent_info *ext, | ||
| 163 | struct f2fs_extent *i_ext) | ||
| 164 | { | ||
| 165 | read_lock(&ext->ext_lock); | ||
| 166 | i_ext->fofs = cpu_to_le32(ext->fofs); | ||
| 167 | i_ext->blk_addr = cpu_to_le32(ext->blk_addr); | ||
| 168 | i_ext->len = cpu_to_le32(ext->len); | ||
| 169 | read_unlock(&ext->ext_lock); | ||
| 170 | } | ||
| 171 | |||
| 172 | struct f2fs_nm_info { | ||
| 173 | block_t nat_blkaddr; /* base disk address of NAT */ | ||
| 174 | nid_t max_nid; /* maximum possible node ids */ | ||
| 175 | nid_t init_scan_nid; /* the first nid to be scanned */ | ||
| 176 | nid_t next_scan_nid; /* the next nid to be scanned */ | ||
| 177 | |||
| 178 | /* NAT cache management */ | ||
| 179 | struct radix_tree_root nat_root;/* root of the nat entry cache */ | ||
| 180 | rwlock_t nat_tree_lock; /* protect nat_tree_lock */ | ||
| 181 | unsigned int nat_cnt; /* the # of cached nat entries */ | ||
| 182 | struct list_head nat_entries; /* cached nat entry list (clean) */ | ||
| 183 | struct list_head dirty_nat_entries; /* cached nat entry list (dirty) */ | ||
| 184 | |||
| 185 | /* free node ids management */ | ||
| 186 | struct list_head free_nid_list; /* a list for free nids */ | ||
| 187 | spinlock_t free_nid_list_lock; /* protect free nid list */ | ||
| 188 | unsigned int fcnt; /* the number of free node id */ | ||
| 189 | struct mutex build_lock; /* lock for build free nids */ | ||
| 190 | |||
| 191 | /* for checkpoint */ | ||
| 192 | char *nat_bitmap; /* NAT bitmap pointer */ | ||
| 193 | int bitmap_size; /* bitmap size */ | ||
| 194 | }; | ||
| 195 | |||
| 196 | /* | ||
| 197 | * this structure is used as one of function parameters. | ||
| 198 | * all the information are dedicated to a given direct node block determined | ||
| 199 | * by the data offset in a file. | ||
| 200 | */ | ||
| 201 | struct dnode_of_data { | ||
| 202 | struct inode *inode; /* vfs inode pointer */ | ||
| 203 | struct page *inode_page; /* its inode page, NULL is possible */ | ||
| 204 | struct page *node_page; /* cached direct node page */ | ||
| 205 | nid_t nid; /* node id of the direct node block */ | ||
| 206 | unsigned int ofs_in_node; /* data offset in the node page */ | ||
| 207 | bool inode_page_locked; /* inode page is locked or not */ | ||
| 208 | block_t data_blkaddr; /* block address of the node block */ | ||
| 209 | }; | ||
| 210 | |||
| 211 | static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode, | ||
| 212 | struct page *ipage, struct page *npage, nid_t nid) | ||
| 213 | { | ||
| 214 | dn->inode = inode; | ||
| 215 | dn->inode_page = ipage; | ||
| 216 | dn->node_page = npage; | ||
| 217 | dn->nid = nid; | ||
| 218 | dn->inode_page_locked = 0; | ||
| 219 | } | ||
| 220 | |||
| 221 | /* | ||
| 222 | * For SIT manager | ||
| 223 | * | ||
| 224 | * By default, there are 6 active log areas across the whole main area. | ||
| 225 | * When considering hot and cold data separation to reduce cleaning overhead, | ||
| 226 | * we split 3 for data logs and 3 for node logs as hot, warm, and cold types, | ||
| 227 | * respectively. | ||
| 228 | * In the current design, you should not change the numbers intentionally. | ||
| 229 | * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6 | ||
| 230 | * logs individually according to the underlying devices. (default: 6) | ||
| 231 | * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for | ||
| 232 | * data and 8 for node logs. | ||
| 233 | */ | ||
| 234 | #define NR_CURSEG_DATA_TYPE (3) | ||
| 235 | #define NR_CURSEG_NODE_TYPE (3) | ||
| 236 | #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE) | ||
| 237 | |||
| 238 | enum { | ||
| 239 | CURSEG_HOT_DATA = 0, /* directory entry blocks */ | ||
| 240 | CURSEG_WARM_DATA, /* data blocks */ | ||
| 241 | CURSEG_COLD_DATA, /* multimedia or GCed data blocks */ | ||
| 242 | CURSEG_HOT_NODE, /* direct node blocks of directory files */ | ||
| 243 | CURSEG_WARM_NODE, /* direct node blocks of normal files */ | ||
| 244 | CURSEG_COLD_NODE, /* indirect node blocks */ | ||
| 245 | NO_CHECK_TYPE | ||
| 246 | }; | ||
| 247 | |||
| 248 | struct f2fs_sm_info { | ||
| 249 | struct sit_info *sit_info; /* whole segment information */ | ||
| 250 | struct free_segmap_info *free_info; /* free segment information */ | ||
| 251 | struct dirty_seglist_info *dirty_info; /* dirty segment information */ | ||
| 252 | struct curseg_info *curseg_array; /* active segment information */ | ||
| 253 | |||
| 254 | struct list_head wblist_head; /* list of under-writeback pages */ | ||
| 255 | spinlock_t wblist_lock; /* lock for checkpoint */ | ||
| 256 | |||
| 257 | block_t seg0_blkaddr; /* block address of 0'th segment */ | ||
| 258 | block_t main_blkaddr; /* start block address of main area */ | ||
| 259 | block_t ssa_blkaddr; /* start block address of SSA area */ | ||
| 260 | |||
| 261 | unsigned int segment_count; /* total # of segments */ | ||
| 262 | unsigned int main_segments; /* # of segments in main area */ | ||
| 263 | unsigned int reserved_segments; /* # of reserved segments */ | ||
| 264 | unsigned int ovp_segments; /* # of overprovision segments */ | ||
| 265 | }; | ||
| 266 | |||
| 267 | /* | ||
| 268 | * For directory operation | ||
| 269 | */ | ||
| 270 | #define NODE_DIR1_BLOCK (ADDRS_PER_INODE + 1) | ||
| 271 | #define NODE_DIR2_BLOCK (ADDRS_PER_INODE + 2) | ||
| 272 | #define NODE_IND1_BLOCK (ADDRS_PER_INODE + 3) | ||
| 273 | #define NODE_IND2_BLOCK (ADDRS_PER_INODE + 4) | ||
| 274 | #define NODE_DIND_BLOCK (ADDRS_PER_INODE + 5) | ||
| 275 | |||
| 276 | /* | ||
| 277 | * For superblock | ||
| 278 | */ | ||
| 279 | /* | ||
| 280 | * COUNT_TYPE for monitoring | ||
| 281 | * | ||
| 282 | * f2fs monitors the number of several block types such as on-writeback, | ||
| 283 | * dirty dentry blocks, dirty node blocks, and dirty meta blocks. | ||
| 284 | */ | ||
| 285 | enum count_type { | ||
| 286 | F2FS_WRITEBACK, | ||
| 287 | F2FS_DIRTY_DENTS, | ||
| 288 | F2FS_DIRTY_NODES, | ||
| 289 | F2FS_DIRTY_META, | ||
| 290 | NR_COUNT_TYPE, | ||
| 291 | }; | ||
| 292 | |||
| 293 | /* | ||
| 294 | * FS_LOCK nesting subclasses for the lock validator: | ||
| 295 | * | ||
| 296 | * The locking order between these classes is | ||
| 297 | * RENAME -> DENTRY_OPS -> DATA_WRITE -> DATA_NEW | ||
| 298 | * -> DATA_TRUNC -> NODE_WRITE -> NODE_NEW -> NODE_TRUNC | ||
| 299 | */ | ||
| 300 | enum lock_type { | ||
| 301 | RENAME, /* for renaming operations */ | ||
| 302 | DENTRY_OPS, /* for directory operations */ | ||
| 303 | DATA_WRITE, /* for data write */ | ||
| 304 | DATA_NEW, /* for data allocation */ | ||
| 305 | DATA_TRUNC, /* for data truncate */ | ||
| 306 | NODE_NEW, /* for node allocation */ | ||
| 307 | NODE_TRUNC, /* for node truncate */ | ||
| 308 | NODE_WRITE, /* for node write */ | ||
| 309 | NR_LOCK_TYPE, | ||
| 310 | }; | ||
| 311 | |||
| 312 | /* | ||
| 313 | * The below are the page types of bios used in submti_bio(). | ||
| 314 | * The available types are: | ||
| 315 | * DATA User data pages. It operates as async mode. | ||
| 316 | * NODE Node pages. It operates as async mode. | ||
| 317 | * META FS metadata pages such as SIT, NAT, CP. | ||
| 318 | * NR_PAGE_TYPE The number of page types. | ||
| 319 | * META_FLUSH Make sure the previous pages are written | ||
| 320 | * with waiting the bio's completion | ||
| 321 | * ... Only can be used with META. | ||
| 322 | */ | ||
| 323 | enum page_type { | ||
| 324 | DATA, | ||
| 325 | NODE, | ||
| 326 | META, | ||
| 327 | NR_PAGE_TYPE, | ||
| 328 | META_FLUSH, | ||
| 329 | }; | ||
| 330 | |||
| 331 | struct f2fs_sb_info { | ||
| 332 | struct super_block *sb; /* pointer to VFS super block */ | ||
| 333 | struct buffer_head *raw_super_buf; /* buffer head of raw sb */ | ||
| 334 | struct f2fs_super_block *raw_super; /* raw super block pointer */ | ||
| 335 | int s_dirty; /* dirty flag for checkpoint */ | ||
| 336 | |||
| 337 | /* for node-related operations */ | ||
| 338 | struct f2fs_nm_info *nm_info; /* node manager */ | ||
| 339 | struct inode *node_inode; /* cache node blocks */ | ||
| 340 | |||
| 341 | /* for segment-related operations */ | ||
| 342 | struct f2fs_sm_info *sm_info; /* segment manager */ | ||
| 343 | struct bio *bio[NR_PAGE_TYPE]; /* bios to merge */ | ||
| 344 | sector_t last_block_in_bio[NR_PAGE_TYPE]; /* last block number */ | ||
| 345 | struct rw_semaphore bio_sem; /* IO semaphore */ | ||
| 346 | |||
| 347 | /* for checkpoint */ | ||
| 348 | struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */ | ||
| 349 | struct inode *meta_inode; /* cache meta blocks */ | ||
| 350 | struct mutex cp_mutex; /* for checkpoint procedure */ | ||
| 351 | struct mutex fs_lock[NR_LOCK_TYPE]; /* for blocking FS operations */ | ||
| 352 | struct mutex write_inode; /* mutex for write inode */ | ||
| 353 | struct mutex writepages; /* mutex for writepages() */ | ||
| 354 | int por_doing; /* recovery is doing or not */ | ||
| 355 | |||
| 356 | /* for orphan inode management */ | ||
| 357 | struct list_head orphan_inode_list; /* orphan inode list */ | ||
| 358 | struct mutex orphan_inode_mutex; /* for orphan inode list */ | ||
| 359 | unsigned int n_orphans; /* # of orphan inodes */ | ||
| 360 | |||
| 361 | /* for directory inode management */ | ||
| 362 | struct list_head dir_inode_list; /* dir inode list */ | ||
| 363 | spinlock_t dir_inode_lock; /* for dir inode list lock */ | ||
| 364 | unsigned int n_dirty_dirs; /* # of dir inodes */ | ||
| 365 | |||
| 366 | /* basic file system units */ | ||
| 367 | unsigned int log_sectors_per_block; /* log2 sectors per block */ | ||
| 368 | unsigned int log_blocksize; /* log2 block size */ | ||
| 369 | unsigned int blocksize; /* block size */ | ||
| 370 | unsigned int root_ino_num; /* root inode number*/ | ||
| 371 | unsigned int node_ino_num; /* node inode number*/ | ||
| 372 | unsigned int meta_ino_num; /* meta inode number*/ | ||
| 373 | unsigned int log_blocks_per_seg; /* log2 blocks per segment */ | ||
| 374 | unsigned int blocks_per_seg; /* blocks per segment */ | ||
| 375 | unsigned int segs_per_sec; /* segments per section */ | ||
| 376 | unsigned int secs_per_zone; /* sections per zone */ | ||
| 377 | unsigned int total_sections; /* total section count */ | ||
| 378 | unsigned int total_node_count; /* total node block count */ | ||
| 379 | unsigned int total_valid_node_count; /* valid node block count */ | ||
| 380 | unsigned int total_valid_inode_count; /* valid inode count */ | ||
| 381 | int active_logs; /* # of active logs */ | ||
| 382 | |||
| 383 | block_t user_block_count; /* # of user blocks */ | ||
| 384 | block_t total_valid_block_count; /* # of valid blocks */ | ||
| 385 | block_t alloc_valid_block_count; /* # of allocated blocks */ | ||
| 386 | block_t last_valid_block_count; /* for recovery */ | ||
| 387 | u32 s_next_generation; /* for NFS support */ | ||
| 388 | atomic_t nr_pages[NR_COUNT_TYPE]; /* # of pages, see count_type */ | ||
| 389 | |||
| 390 | struct f2fs_mount_info mount_opt; /* mount options */ | ||
| 391 | |||
| 392 | /* for cleaning operations */ | ||
| 393 | struct mutex gc_mutex; /* mutex for GC */ | ||
| 394 | struct f2fs_gc_kthread *gc_thread; /* GC thread */ | ||
| 395 | |||
| 396 | /* | ||
| 397 | * for stat information. | ||
| 398 | * one is for the LFS mode, and the other is for the SSR mode. | ||
| 399 | */ | ||
| 400 | struct f2fs_stat_info *stat_info; /* FS status information */ | ||
| 401 | unsigned int segment_count[2]; /* # of allocated segments */ | ||
| 402 | unsigned int block_count[2]; /* # of allocated blocks */ | ||
| 403 | unsigned int last_victim[2]; /* last victim segment # */ | ||
| 404 | int total_hit_ext, read_hit_ext; /* extent cache hit ratio */ | ||
| 405 | int bg_gc; /* background gc calls */ | ||
| 406 | spinlock_t stat_lock; /* lock for stat operations */ | ||
| 407 | }; | ||
| 408 | |||
| 409 | /* | ||
| 410 | * Inline functions | ||
| 411 | */ | ||
| 412 | static inline struct f2fs_inode_info *F2FS_I(struct inode *inode) | ||
| 413 | { | ||
| 414 | return container_of(inode, struct f2fs_inode_info, vfs_inode); | ||
| 415 | } | ||
| 416 | |||
| 417 | static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb) | ||
| 418 | { | ||
| 419 | return sb->s_fs_info; | ||
| 420 | } | ||
| 421 | |||
| 422 | static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi) | ||
| 423 | { | ||
| 424 | return (struct f2fs_super_block *)(sbi->raw_super); | ||
| 425 | } | ||
| 426 | |||
| 427 | static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi) | ||
| 428 | { | ||
| 429 | return (struct f2fs_checkpoint *)(sbi->ckpt); | ||
| 430 | } | ||
| 431 | |||
| 432 | static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi) | ||
| 433 | { | ||
| 434 | return (struct f2fs_nm_info *)(sbi->nm_info); | ||
| 435 | } | ||
| 436 | |||
| 437 | static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi) | ||
| 438 | { | ||
| 439 | return (struct f2fs_sm_info *)(sbi->sm_info); | ||
| 440 | } | ||
| 441 | |||
| 442 | static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi) | ||
| 443 | { | ||
| 444 | return (struct sit_info *)(SM_I(sbi)->sit_info); | ||
| 445 | } | ||
| 446 | |||
| 447 | static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi) | ||
| 448 | { | ||
| 449 | return (struct free_segmap_info *)(SM_I(sbi)->free_info); | ||
| 450 | } | ||
| 451 | |||
| 452 | static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi) | ||
| 453 | { | ||
| 454 | return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info); | ||
| 455 | } | ||
| 456 | |||
| 457 | static inline void F2FS_SET_SB_DIRT(struct f2fs_sb_info *sbi) | ||
| 458 | { | ||
| 459 | sbi->s_dirty = 1; | ||
| 460 | } | ||
| 461 | |||
| 462 | static inline void F2FS_RESET_SB_DIRT(struct f2fs_sb_info *sbi) | ||
| 463 | { | ||
| 464 | sbi->s_dirty = 0; | ||
| 465 | } | ||
| 466 | |||
| 467 | static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) | ||
| 468 | { | ||
| 469 | unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); | ||
| 470 | return ckpt_flags & f; | ||
| 471 | } | ||
| 472 | |||
| 473 | static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) | ||
| 474 | { | ||
| 475 | unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); | ||
| 476 | ckpt_flags |= f; | ||
| 477 | cp->ckpt_flags = cpu_to_le32(ckpt_flags); | ||
| 478 | } | ||
| 479 | |||
| 480 | static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) | ||
| 481 | { | ||
| 482 | unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); | ||
| 483 | ckpt_flags &= (~f); | ||
| 484 | cp->ckpt_flags = cpu_to_le32(ckpt_flags); | ||
| 485 | } | ||
| 486 | |||
| 487 | static inline void mutex_lock_op(struct f2fs_sb_info *sbi, enum lock_type t) | ||
| 488 | { | ||
| 489 | mutex_lock_nested(&sbi->fs_lock[t], t); | ||
| 490 | } | ||
| 491 | |||
| 492 | static inline void mutex_unlock_op(struct f2fs_sb_info *sbi, enum lock_type t) | ||
| 493 | { | ||
| 494 | mutex_unlock(&sbi->fs_lock[t]); | ||
| 495 | } | ||
| 496 | |||
| 497 | /* | ||
| 498 | * Check whether the given nid is within node id range. | ||
| 499 | */ | ||
| 500 | static inline void check_nid_range(struct f2fs_sb_info *sbi, nid_t nid) | ||
| 501 | { | ||
| 502 | BUG_ON((nid >= NM_I(sbi)->max_nid)); | ||
| 503 | } | ||
| 504 | |||
| 505 | #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1 | ||
| 506 | |||
| 507 | /* | ||
| 508 | * Check whether the inode has blocks or not | ||
| 509 | */ | ||
| 510 | static inline int F2FS_HAS_BLOCKS(struct inode *inode) | ||
| 511 | { | ||
| 512 | if (F2FS_I(inode)->i_xattr_nid) | ||
| 513 | return (inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1); | ||
| 514 | else | ||
| 515 | return (inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS); | ||
| 516 | } | ||
| 517 | |||
| 518 | static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi, | ||
| 519 | struct inode *inode, blkcnt_t count) | ||
| 520 | { | ||
| 521 | block_t valid_block_count; | ||
| 522 | |||
| 523 | spin_lock(&sbi->stat_lock); | ||
| 524 | valid_block_count = | ||
| 525 | sbi->total_valid_block_count + (block_t)count; | ||
| 526 | if (valid_block_count > sbi->user_block_count) { | ||
| 527 | spin_unlock(&sbi->stat_lock); | ||
| 528 | return false; | ||
| 529 | } | ||
| 530 | inode->i_blocks += count; | ||
| 531 | sbi->total_valid_block_count = valid_block_count; | ||
| 532 | sbi->alloc_valid_block_count += (block_t)count; | ||
| 533 | spin_unlock(&sbi->stat_lock); | ||
| 534 | return true; | ||
| 535 | } | ||
| 536 | |||
| 537 | static inline int dec_valid_block_count(struct f2fs_sb_info *sbi, | ||
| 538 | struct inode *inode, | ||
| 539 | blkcnt_t count) | ||
| 540 | { | ||
| 541 | spin_lock(&sbi->stat_lock); | ||
| 542 | BUG_ON(sbi->total_valid_block_count < (block_t) count); | ||
| 543 | BUG_ON(inode->i_blocks < count); | ||
| 544 | inode->i_blocks -= count; | ||
| 545 | sbi->total_valid_block_count -= (block_t)count; | ||
| 546 | spin_unlock(&sbi->stat_lock); | ||
| 547 | return 0; | ||
| 548 | } | ||
| 549 | |||
| 550 | static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type) | ||
| 551 | { | ||
| 552 | atomic_inc(&sbi->nr_pages[count_type]); | ||
| 553 | F2FS_SET_SB_DIRT(sbi); | ||
| 554 | } | ||
| 555 | |||
| 556 | static inline void inode_inc_dirty_dents(struct inode *inode) | ||
| 557 | { | ||
| 558 | atomic_inc(&F2FS_I(inode)->dirty_dents); | ||
| 559 | } | ||
| 560 | |||
| 561 | static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type) | ||
| 562 | { | ||
| 563 | atomic_dec(&sbi->nr_pages[count_type]); | ||
| 564 | } | ||
| 565 | |||
| 566 | static inline void inode_dec_dirty_dents(struct inode *inode) | ||
| 567 | { | ||
| 568 | atomic_dec(&F2FS_I(inode)->dirty_dents); | ||
| 569 | } | ||
| 570 | |||
| 571 | static inline int get_pages(struct f2fs_sb_info *sbi, int count_type) | ||
| 572 | { | ||
| 573 | return atomic_read(&sbi->nr_pages[count_type]); | ||
| 574 | } | ||
| 575 | |||
| 576 | static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi) | ||
| 577 | { | ||
| 578 | block_t ret; | ||
| 579 | spin_lock(&sbi->stat_lock); | ||
| 580 | ret = sbi->total_valid_block_count; | ||
| 581 | spin_unlock(&sbi->stat_lock); | ||
| 582 | return ret; | ||
| 583 | } | ||
| 584 | |||
| 585 | static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag) | ||
| 586 | { | ||
| 587 | struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); | ||
| 588 | |||
| 589 | /* return NAT or SIT bitmap */ | ||
| 590 | if (flag == NAT_BITMAP) | ||
| 591 | return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); | ||
| 592 | else if (flag == SIT_BITMAP) | ||
| 593 | return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); | ||
| 594 | |||
| 595 | return 0; | ||
| 596 | } | ||
| 597 | |||
| 598 | static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag) | ||
| 599 | { | ||
| 600 | struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); | ||
| 601 | int offset = (flag == NAT_BITMAP) ? | ||
| 602 | le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0; | ||
| 603 | return &ckpt->sit_nat_version_bitmap + offset; | ||
| 604 | } | ||
| 605 | |||
| 606 | static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi) | ||
| 607 | { | ||
| 608 | block_t start_addr; | ||
| 609 | struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); | ||
| 610 | unsigned long long ckpt_version = le64_to_cpu(ckpt->checkpoint_ver); | ||
| 611 | |||
| 612 | start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); | ||
| 613 | |||
| 614 | /* | ||
| 615 | * odd numbered checkpoint should at cp segment 0 | ||
| 616 | * and even segent must be at cp segment 1 | ||
| 617 | */ | ||
| 618 | if (!(ckpt_version & 1)) | ||
| 619 | start_addr += sbi->blocks_per_seg; | ||
| 620 | |||
| 621 | return start_addr; | ||
| 622 | } | ||
| 623 | |||
| 624 | static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi) | ||
| 625 | { | ||
| 626 | return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); | ||
| 627 | } | ||
| 628 | |||
| 629 | static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi, | ||
| 630 | struct inode *inode, | ||
| 631 | unsigned int count) | ||
| 632 | { | ||
| 633 | block_t valid_block_count; | ||
| 634 | unsigned int valid_node_count; | ||
| 635 | |||
| 636 | spin_lock(&sbi->stat_lock); | ||
| 637 | |||
| 638 | valid_block_count = sbi->total_valid_block_count + (block_t)count; | ||
| 639 | sbi->alloc_valid_block_count += (block_t)count; | ||
| 640 | valid_node_count = sbi->total_valid_node_count + count; | ||
| 641 | |||
| 642 | if (valid_block_count > sbi->user_block_count) { | ||
| 643 | spin_unlock(&sbi->stat_lock); | ||
| 644 | return false; | ||
| 645 | } | ||
| 646 | |||
| 647 | if (valid_node_count > sbi->total_node_count) { | ||
| 648 | spin_unlock(&sbi->stat_lock); | ||
| 649 | return false; | ||
| 650 | } | ||
| 651 | |||
| 652 | if (inode) | ||
| 653 | inode->i_blocks += count; | ||
| 654 | sbi->total_valid_node_count = valid_node_count; | ||
| 655 | sbi->total_valid_block_count = valid_block_count; | ||
| 656 | spin_unlock(&sbi->stat_lock); | ||
| 657 | |||
| 658 | return true; | ||
| 659 | } | ||
| 660 | |||
| 661 | static inline void dec_valid_node_count(struct f2fs_sb_info *sbi, | ||
| 662 | struct inode *inode, | ||
| 663 | unsigned int count) | ||
| 664 | { | ||
| 665 | spin_lock(&sbi->stat_lock); | ||
| 666 | |||
| 667 | BUG_ON(sbi->total_valid_block_count < count); | ||
| 668 | BUG_ON(sbi->total_valid_node_count < count); | ||
| 669 | BUG_ON(inode->i_blocks < count); | ||
| 670 | |||
| 671 | inode->i_blocks -= count; | ||
| 672 | sbi->total_valid_node_count -= count; | ||
| 673 | sbi->total_valid_block_count -= (block_t)count; | ||
| 674 | |||
| 675 | spin_unlock(&sbi->stat_lock); | ||
| 676 | } | ||
| 677 | |||
| 678 | static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi) | ||
| 679 | { | ||
| 680 | unsigned int ret; | ||
| 681 | spin_lock(&sbi->stat_lock); | ||
| 682 | ret = sbi->total_valid_node_count; | ||
| 683 | spin_unlock(&sbi->stat_lock); | ||
| 684 | return ret; | ||
| 685 | } | ||
| 686 | |||
| 687 | static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi) | ||
| 688 | { | ||
| 689 | spin_lock(&sbi->stat_lock); | ||
| 690 | BUG_ON(sbi->total_valid_inode_count == sbi->total_node_count); | ||
| 691 | sbi->total_valid_inode_count++; | ||
| 692 | spin_unlock(&sbi->stat_lock); | ||
| 693 | } | ||
| 694 | |||
| 695 | static inline int dec_valid_inode_count(struct f2fs_sb_info *sbi) | ||
| 696 | { | ||
| 697 | spin_lock(&sbi->stat_lock); | ||
| 698 | BUG_ON(!sbi->total_valid_inode_count); | ||
| 699 | sbi->total_valid_inode_count--; | ||
| 700 | spin_unlock(&sbi->stat_lock); | ||
| 701 | return 0; | ||
| 702 | } | ||
| 703 | |||
| 704 | static inline unsigned int valid_inode_count(struct f2fs_sb_info *sbi) | ||
| 705 | { | ||
| 706 | unsigned int ret; | ||
| 707 | spin_lock(&sbi->stat_lock); | ||
| 708 | ret = sbi->total_valid_inode_count; | ||
| 709 | spin_unlock(&sbi->stat_lock); | ||
| 710 | return ret; | ||
| 711 | } | ||
| 712 | |||
| 713 | static inline void f2fs_put_page(struct page *page, int unlock) | ||
| 714 | { | ||
| 715 | if (!page || IS_ERR(page)) | ||
| 716 | return; | ||
| 717 | |||
| 718 | if (unlock) { | ||
| 719 | BUG_ON(!PageLocked(page)); | ||
| 720 | unlock_page(page); | ||
| 721 | } | ||
| 722 | page_cache_release(page); | ||
| 723 | } | ||
| 724 | |||
| 725 | static inline void f2fs_put_dnode(struct dnode_of_data *dn) | ||
| 726 | { | ||
| 727 | if (dn->node_page) | ||
| 728 | f2fs_put_page(dn->node_page, 1); | ||
| 729 | if (dn->inode_page && dn->node_page != dn->inode_page) | ||
| 730 | f2fs_put_page(dn->inode_page, 0); | ||
| 731 | dn->node_page = NULL; | ||
| 732 | dn->inode_page = NULL; | ||
| 733 | } | ||
| 734 | |||
| 735 | static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name, | ||
| 736 | size_t size, void (*ctor)(void *)) | ||
| 737 | { | ||
| 738 | return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, ctor); | ||
| 739 | } | ||
| 740 | |||
| 741 | #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino) | ||
| 742 | |||
| 743 | static inline bool IS_INODE(struct page *page) | ||
| 744 | { | ||
| 745 | struct f2fs_node *p = (struct f2fs_node *)page_address(page); | ||
| 746 | return RAW_IS_INODE(p); | ||
| 747 | } | ||
| 748 | |||
| 749 | static inline __le32 *blkaddr_in_node(struct f2fs_node *node) | ||
| 750 | { | ||
| 751 | return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr; | ||
| 752 | } | ||
| 753 | |||
| 754 | static inline block_t datablock_addr(struct page *node_page, | ||
| 755 | unsigned int offset) | ||
| 756 | { | ||
| 757 | struct f2fs_node *raw_node; | ||
| 758 | __le32 *addr_array; | ||
| 759 | raw_node = (struct f2fs_node *)page_address(node_page); | ||
| 760 | addr_array = blkaddr_in_node(raw_node); | ||
| 761 | return le32_to_cpu(addr_array[offset]); | ||
| 762 | } | ||
| 763 | |||
| 764 | static inline int f2fs_test_bit(unsigned int nr, char *addr) | ||
| 765 | { | ||
| 766 | int mask; | ||
| 767 | |||
| 768 | addr += (nr >> 3); | ||
| 769 | mask = 1 << (7 - (nr & 0x07)); | ||
| 770 | return mask & *addr; | ||
| 771 | } | ||
| 772 | |||
| 773 | static inline int f2fs_set_bit(unsigned int nr, char *addr) | ||
| 774 | { | ||
| 775 | int mask; | ||
| 776 | int ret; | ||
| 777 | |||
| 778 | addr += (nr >> 3); | ||
| 779 | mask = 1 << (7 - (nr & 0x07)); | ||
| 780 | ret = mask & *addr; | ||
| 781 | *addr |= mask; | ||
| 782 | return ret; | ||
| 783 | } | ||
| 784 | |||
| 785 | static inline int f2fs_clear_bit(unsigned int nr, char *addr) | ||
| 786 | { | ||
| 787 | int mask; | ||
| 788 | int ret; | ||
| 789 | |||
| 790 | addr += (nr >> 3); | ||
| 791 | mask = 1 << (7 - (nr & 0x07)); | ||
| 792 | ret = mask & *addr; | ||
| 793 | *addr &= ~mask; | ||
| 794 | return ret; | ||
| 795 | } | ||
| 796 | |||
| 797 | /* used for f2fs_inode_info->flags */ | ||
| 798 | enum { | ||
| 799 | FI_NEW_INODE, /* indicate newly allocated inode */ | ||
| 800 | FI_NEED_CP, /* need to do checkpoint during fsync */ | ||
| 801 | FI_INC_LINK, /* need to increment i_nlink */ | ||
| 802 | FI_ACL_MODE, /* indicate acl mode */ | ||
| 803 | FI_NO_ALLOC, /* should not allocate any blocks */ | ||
| 804 | }; | ||
| 805 | |||
| 806 | static inline void set_inode_flag(struct f2fs_inode_info *fi, int flag) | ||
| 807 | { | ||
| 808 | set_bit(flag, &fi->flags); | ||
| 809 | } | ||
| 810 | |||
| 811 | static inline int is_inode_flag_set(struct f2fs_inode_info *fi, int flag) | ||
| 812 | { | ||
| 813 | return test_bit(flag, &fi->flags); | ||
| 814 | } | ||
| 815 | |||
| 816 | static inline void clear_inode_flag(struct f2fs_inode_info *fi, int flag) | ||
| 817 | { | ||
| 818 | clear_bit(flag, &fi->flags); | ||
| 819 | } | ||
| 820 | |||
| 821 | static inline void set_acl_inode(struct f2fs_inode_info *fi, umode_t mode) | ||
| 822 | { | ||
| 823 | fi->i_acl_mode = mode; | ||
| 824 | set_inode_flag(fi, FI_ACL_MODE); | ||
| 825 | } | ||
| 826 | |||
| 827 | static inline int cond_clear_inode_flag(struct f2fs_inode_info *fi, int flag) | ||
| 828 | { | ||
| 829 | if (is_inode_flag_set(fi, FI_ACL_MODE)) { | ||
| 830 | clear_inode_flag(fi, FI_ACL_MODE); | ||
| 831 | return 1; | ||
| 832 | } | ||
| 833 | return 0; | ||
| 834 | } | ||
| 835 | |||
| 836 | /* | ||
| 837 | * file.c | ||
| 838 | */ | ||
| 839 | int f2fs_sync_file(struct file *, loff_t, loff_t, int); | ||
| 840 | void truncate_data_blocks(struct dnode_of_data *); | ||
| 841 | void f2fs_truncate(struct inode *); | ||
| 842 | int f2fs_setattr(struct dentry *, struct iattr *); | ||
| 843 | int truncate_hole(struct inode *, pgoff_t, pgoff_t); | ||
| 844 | long f2fs_ioctl(struct file *, unsigned int, unsigned long); | ||
| 845 | |||
| 846 | /* | ||
| 847 | * inode.c | ||
| 848 | */ | ||
| 849 | void f2fs_set_inode_flags(struct inode *); | ||
| 850 | struct inode *f2fs_iget_nowait(struct super_block *, unsigned long); | ||
| 851 | struct inode *f2fs_iget(struct super_block *, unsigned long); | ||
| 852 | void update_inode(struct inode *, struct page *); | ||
| 853 | int f2fs_write_inode(struct inode *, struct writeback_control *); | ||
| 854 | void f2fs_evict_inode(struct inode *); | ||
| 855 | |||
| 856 | /* | ||
| 857 | * namei.c | ||
| 858 | */ | ||
| 859 | struct dentry *f2fs_get_parent(struct dentry *child); | ||
| 860 | |||
| 861 | /* | ||
| 862 | * dir.c | ||
| 863 | */ | ||
| 864 | struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *, | ||
| 865 | struct page **); | ||
| 866 | struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **); | ||
| 867 | ino_t f2fs_inode_by_name(struct inode *, struct qstr *); | ||
| 868 | void f2fs_set_link(struct inode *, struct f2fs_dir_entry *, | ||
| 869 | struct page *, struct inode *); | ||
| 870 | void init_dent_inode(struct dentry *, struct page *); | ||
| 871 | int f2fs_add_link(struct dentry *, struct inode *); | ||
| 872 | void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *); | ||
| 873 | int f2fs_make_empty(struct inode *, struct inode *); | ||
| 874 | bool f2fs_empty_dir(struct inode *); | ||
| 875 | |||
| 876 | /* | ||
| 877 | * super.c | ||
| 878 | */ | ||
| 879 | int f2fs_sync_fs(struct super_block *, int); | ||
| 880 | |||
| 881 | /* | ||
| 882 | * hash.c | ||
| 883 | */ | ||
| 884 | f2fs_hash_t f2fs_dentry_hash(const char *, int); | ||
| 885 | |||
| 886 | /* | ||
| 887 | * node.c | ||
| 888 | */ | ||
| 889 | struct dnode_of_data; | ||
| 890 | struct node_info; | ||
| 891 | |||
| 892 | int is_checkpointed_node(struct f2fs_sb_info *, nid_t); | ||
| 893 | void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *); | ||
| 894 | int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int); | ||
| 895 | int truncate_inode_blocks(struct inode *, pgoff_t); | ||
| 896 | int remove_inode_page(struct inode *); | ||
| 897 | int new_inode_page(struct inode *, struct dentry *); | ||
| 898 | struct page *new_node_page(struct dnode_of_data *, unsigned int); | ||
| 899 | void ra_node_page(struct f2fs_sb_info *, nid_t); | ||
| 900 | struct page *get_node_page(struct f2fs_sb_info *, pgoff_t); | ||
| 901 | struct page *get_node_page_ra(struct page *, int); | ||
| 902 | void sync_inode_page(struct dnode_of_data *); | ||
| 903 | int sync_node_pages(struct f2fs_sb_info *, nid_t, struct writeback_control *); | ||
| 904 | bool alloc_nid(struct f2fs_sb_info *, nid_t *); | ||
| 905 | void alloc_nid_done(struct f2fs_sb_info *, nid_t); | ||
| 906 | void alloc_nid_failed(struct f2fs_sb_info *, nid_t); | ||
| 907 | void recover_node_page(struct f2fs_sb_info *, struct page *, | ||
| 908 | struct f2fs_summary *, struct node_info *, block_t); | ||
| 909 | int recover_inode_page(struct f2fs_sb_info *, struct page *); | ||
| 910 | int restore_node_summary(struct f2fs_sb_info *, unsigned int, | ||
| 911 | struct f2fs_summary_block *); | ||
| 912 | void flush_nat_entries(struct f2fs_sb_info *); | ||
| 913 | int build_node_manager(struct f2fs_sb_info *); | ||
| 914 | void destroy_node_manager(struct f2fs_sb_info *); | ||
| 915 | int create_node_manager_caches(void); | ||
| 916 | void destroy_node_manager_caches(void); | ||
| 917 | |||
| 918 | /* | ||
| 919 | * segment.c | ||
| 920 | */ | ||
| 921 | void f2fs_balance_fs(struct f2fs_sb_info *); | ||
| 922 | void invalidate_blocks(struct f2fs_sb_info *, block_t); | ||
| 923 | void locate_dirty_segment(struct f2fs_sb_info *, unsigned int); | ||
| 924 | void clear_prefree_segments(struct f2fs_sb_info *); | ||
| 925 | int npages_for_summary_flush(struct f2fs_sb_info *); | ||
| 926 | void allocate_new_segments(struct f2fs_sb_info *); | ||
| 927 | struct page *get_sum_page(struct f2fs_sb_info *, unsigned int); | ||
| 928 | struct bio *f2fs_bio_alloc(struct block_device *, int); | ||
| 929 | void f2fs_submit_bio(struct f2fs_sb_info *, enum page_type, bool sync); | ||
| 930 | int write_meta_page(struct f2fs_sb_info *, struct page *, | ||
| 931 | struct writeback_control *); | ||
| 932 | void write_node_page(struct f2fs_sb_info *, struct page *, unsigned int, | ||
| 933 | block_t, block_t *); | ||
| 934 | void write_data_page(struct inode *, struct page *, struct dnode_of_data*, | ||
| 935 | block_t, block_t *); | ||
| 936 | void rewrite_data_page(struct f2fs_sb_info *, struct page *, block_t); | ||
| 937 | void recover_data_page(struct f2fs_sb_info *, struct page *, | ||
| 938 | struct f2fs_summary *, block_t, block_t); | ||
| 939 | void rewrite_node_page(struct f2fs_sb_info *, struct page *, | ||
| 940 | struct f2fs_summary *, block_t, block_t); | ||
| 941 | void write_data_summaries(struct f2fs_sb_info *, block_t); | ||
| 942 | void write_node_summaries(struct f2fs_sb_info *, block_t); | ||
| 943 | int lookup_journal_in_cursum(struct f2fs_summary_block *, | ||
| 944 | int, unsigned int, int); | ||
| 945 | void flush_sit_entries(struct f2fs_sb_info *); | ||
| 946 | int build_segment_manager(struct f2fs_sb_info *); | ||
| 947 | void reset_victim_segmap(struct f2fs_sb_info *); | ||
| 948 | void destroy_segment_manager(struct f2fs_sb_info *); | ||
| 949 | |||
| 950 | /* | ||
| 951 | * checkpoint.c | ||
| 952 | */ | ||
| 953 | struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t); | ||
| 954 | struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t); | ||
| 955 | long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long); | ||
| 956 | int check_orphan_space(struct f2fs_sb_info *); | ||
| 957 | void add_orphan_inode(struct f2fs_sb_info *, nid_t); | ||
| 958 | void remove_orphan_inode(struct f2fs_sb_info *, nid_t); | ||
| 959 | int recover_orphan_inodes(struct f2fs_sb_info *); | ||
| 960 | int get_valid_checkpoint(struct f2fs_sb_info *); | ||
| 961 | void set_dirty_dir_page(struct inode *, struct page *); | ||
| 962 | void remove_dirty_dir_inode(struct inode *); | ||
| 963 | void sync_dirty_dir_inodes(struct f2fs_sb_info *); | ||
| 964 | void block_operations(struct f2fs_sb_info *); | ||
| 965 | void write_checkpoint(struct f2fs_sb_info *, bool, bool); | ||
| 966 | void init_orphan_info(struct f2fs_sb_info *); | ||
| 967 | int create_checkpoint_caches(void); | ||
| 968 | void destroy_checkpoint_caches(void); | ||
| 969 | |||
| 970 | /* | ||
| 971 | * data.c | ||
| 972 | */ | ||
| 973 | int reserve_new_block(struct dnode_of_data *); | ||
| 974 | void update_extent_cache(block_t, struct dnode_of_data *); | ||
| 975 | struct page *find_data_page(struct inode *, pgoff_t); | ||
| 976 | struct page *get_lock_data_page(struct inode *, pgoff_t); | ||
| 977 | struct page *get_new_data_page(struct inode *, pgoff_t, bool); | ||
| 978 | int f2fs_readpage(struct f2fs_sb_info *, struct page *, block_t, int); | ||
| 979 | int do_write_data_page(struct page *); | ||
| 980 | |||
| 981 | /* | ||
| 982 | * gc.c | ||
| 983 | */ | ||
| 984 | int start_gc_thread(struct f2fs_sb_info *); | ||
| 985 | void stop_gc_thread(struct f2fs_sb_info *); | ||
| 986 | block_t start_bidx_of_node(unsigned int); | ||
| 987 | int f2fs_gc(struct f2fs_sb_info *, int); | ||
| 988 | void build_gc_manager(struct f2fs_sb_info *); | ||
| 989 | int create_gc_caches(void); | ||
| 990 | void destroy_gc_caches(void); | ||
| 991 | |||
| 992 | /* | ||
| 993 | * recovery.c | ||
| 994 | */ | ||
| 995 | void recover_fsync_data(struct f2fs_sb_info *); | ||
| 996 | bool space_for_roll_forward(struct f2fs_sb_info *); | ||
| 997 | |||
| 998 | /* | ||
| 999 | * debug.c | ||
| 1000 | */ | ||
| 1001 | #ifdef CONFIG_F2FS_STAT_FS | ||
| 1002 | struct f2fs_stat_info { | ||
| 1003 | struct list_head stat_list; | ||
| 1004 | struct f2fs_sb_info *sbi; | ||
| 1005 | struct mutex stat_lock; | ||
| 1006 | int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs; | ||
| 1007 | int main_area_segs, main_area_sections, main_area_zones; | ||
| 1008 | int hit_ext, total_ext; | ||
| 1009 | int ndirty_node, ndirty_dent, ndirty_dirs, ndirty_meta; | ||
| 1010 | int nats, sits, fnids; | ||
| 1011 | int total_count, utilization; | ||
| 1012 | int bg_gc; | ||
| 1013 | unsigned int valid_count, valid_node_count, valid_inode_count; | ||
| 1014 | unsigned int bimodal, avg_vblocks; | ||
| 1015 | int util_free, util_valid, util_invalid; | ||
| 1016 | int rsvd_segs, overp_segs; | ||
| 1017 | int dirty_count, node_pages, meta_pages; | ||
| 1018 | int prefree_count, call_count; | ||
| 1019 | int tot_segs, node_segs, data_segs, free_segs, free_secs; | ||
| 1020 | int tot_blks, data_blks, node_blks; | ||
| 1021 | int curseg[NR_CURSEG_TYPE]; | ||
| 1022 | int cursec[NR_CURSEG_TYPE]; | ||
| 1023 | int curzone[NR_CURSEG_TYPE]; | ||
| 1024 | |||
| 1025 | unsigned int segment_count[2]; | ||
| 1026 | unsigned int block_count[2]; | ||
| 1027 | unsigned base_mem, cache_mem; | ||
| 1028 | }; | ||
| 1029 | |||
| 1030 | #define stat_inc_call_count(si) ((si)->call_count++) | ||
| 1031 | |||
| 1032 | #define stat_inc_seg_count(sbi, type) \ | ||
| 1033 | do { \ | ||
| 1034 | struct f2fs_stat_info *si = sbi->stat_info; \ | ||
| 1035 | (si)->tot_segs++; \ | ||
| 1036 | if (type == SUM_TYPE_DATA) \ | ||
| 1037 | si->data_segs++; \ | ||
| 1038 | else \ | ||
| 1039 | si->node_segs++; \ | ||
| 1040 | } while (0) | ||
| 1041 | |||
| 1042 | #define stat_inc_tot_blk_count(si, blks) \ | ||
| 1043 | (si->tot_blks += (blks)) | ||
| 1044 | |||
| 1045 | #define stat_inc_data_blk_count(sbi, blks) \ | ||
| 1046 | do { \ | ||
| 1047 | struct f2fs_stat_info *si = sbi->stat_info; \ | ||
| 1048 | stat_inc_tot_blk_count(si, blks); \ | ||
| 1049 | si->data_blks += (blks); \ | ||
| 1050 | } while (0) | ||
| 1051 | |||
| 1052 | #define stat_inc_node_blk_count(sbi, blks) \ | ||
| 1053 | do { \ | ||
| 1054 | struct f2fs_stat_info *si = sbi->stat_info; \ | ||
| 1055 | stat_inc_tot_blk_count(si, blks); \ | ||
| 1056 | si->node_blks += (blks); \ | ||
| 1057 | } while (0) | ||
| 1058 | |||
| 1059 | int f2fs_build_stats(struct f2fs_sb_info *); | ||
| 1060 | void f2fs_destroy_stats(struct f2fs_sb_info *); | ||
| 1061 | void destroy_root_stats(void); | ||
| 1062 | #else | ||
| 1063 | #define stat_inc_call_count(si) | ||
| 1064 | #define stat_inc_seg_count(si, type) | ||
| 1065 | #define stat_inc_tot_blk_count(si, blks) | ||
| 1066 | #define stat_inc_data_blk_count(si, blks) | ||
| 1067 | #define stat_inc_node_blk_count(sbi, blks) | ||
| 1068 | |||
| 1069 | static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; } | ||
| 1070 | static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { } | ||
| 1071 | static inline void destroy_root_stats(void) { } | ||
| 1072 | #endif | ||
| 1073 | |||
| 1074 | extern const struct file_operations f2fs_dir_operations; | ||
| 1075 | extern const struct file_operations f2fs_file_operations; | ||
| 1076 | extern const struct inode_operations f2fs_file_inode_operations; | ||
| 1077 | extern const struct address_space_operations f2fs_dblock_aops; | ||
| 1078 | extern const struct address_space_operations f2fs_node_aops; | ||
| 1079 | extern const struct address_space_operations f2fs_meta_aops; | ||
| 1080 | extern const struct inode_operations f2fs_dir_inode_operations; | ||
| 1081 | extern const struct inode_operations f2fs_symlink_inode_operations; | ||
| 1082 | extern const struct inode_operations f2fs_special_inode_operations; | ||
| 1083 | #endif | ||
diff --git a/fs/f2fs/file.c b/fs/f2fs/file.c new file mode 100644 index 000000000000..f9e085dfb1f0 --- /dev/null +++ b/fs/f2fs/file.c | |||
| @@ -0,0 +1,636 @@ | |||
| 1 | /* | ||
| 2 | * fs/f2fs/file.c | ||
| 3 | * | ||
| 4 | * Copyright (c) 2012 Samsung Electronics Co., Ltd. | ||
| 5 | * http://www.samsung.com/ | ||
| 6 | * | ||
| 7 | * This program is free software; you can redistribute it and/or modify | ||
| 8 | * it under the terms of the GNU General Public License version 2 as | ||
| 9 | * published by the Free Software Foundation. | ||
| 10 | */ | ||
| 11 | #include <linux/fs.h> | ||
| 12 | #include <linux/f2fs_fs.h> | ||
| 13 | #include <linux/stat.h> | ||
| 14 | #include <linux/buffer_head.h> | ||
| 15 | #include <linux/writeback.h> | ||
| 16 | #include <linux/falloc.h> | ||
| 17 | #include <linux/types.h> | ||
| 18 | #include <linux/uaccess.h> | ||
| 19 | #include <linux/mount.h> | ||
| 20 | |||
| 21 | #include "f2fs.h" | ||
| 22 | #include "node.h" | ||
| 23 | #include "segment.h" | ||
| 24 | #include "xattr.h" | ||
| 25 | #include "acl.h" | ||
| 26 | |||
| 27 | static int f2fs_vm_page_mkwrite(struct vm_area_struct *vma, | ||
| 28 | struct vm_fault *vmf) | ||
| 29 | { | ||
| 30 | struct page *page = vmf->page; | ||
| 31 | struct inode *inode = vma->vm_file->f_path.dentry->d_inode; | ||
| 32 | struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); | ||
| 33 | block_t old_blk_addr; | ||
| 34 | struct dnode_of_data dn; | ||
| 35 | int err; | ||
| 36 | |||
| 37 | f2fs_balance_fs(sbi); | ||
| 38 | |||
| 39 | sb_start_pagefault(inode->i_sb); | ||
| 40 | |||
| 41 | mutex_lock_op(sbi, DATA_NEW); | ||
| 42 | |||
| 43 | /* block allocation */ | ||
| 44 | set_new_dnode(&dn, inode, NULL, NULL, 0); | ||
| 45 | err = get_dnode_of_data(&dn, page->index, 0); | ||
| 46 | if (err) { | ||
| 47 | mutex_unlock_op(sbi, DATA_NEW); | ||
| 48 | goto out; | ||
| 49 | } | ||
| 50 | |||
| 51 | old_blk_addr = dn.data_blkaddr; | ||
| 52 | |||
| 53 | if (old_blk_addr == NULL_ADDR) { | ||
| 54 | err = reserve_new_block(&dn); | ||
| 55 | if (err) { | ||
| 56 | f2fs_put_dnode(&dn); | ||
| 57 | mutex_unlock_op(sbi, DATA_NEW); | ||
| 58 | goto out; | ||
| 59 | } | ||
| 60 | } | ||
| 61 | f2fs_put_dnode(&dn); | ||
| 62 | |||
| 63 | mutex_unlock_op(sbi, DATA_NEW); | ||
| 64 | |||
| 65 | lock_page(page); | ||
| 66 | if (page->mapping != inode->i_mapping || | ||
| 67 | page_offset(page) >= i_size_read(inode) || | ||
| 68 | !PageUptodate(page)) { | ||
| 69 | unlock_page(page); | ||
| 70 | err = -EFAULT; | ||
| 71 | goto out; | ||
| 72 | } | ||
| 73 | |||
| 74 | /* | ||
| 75 | * check to see if the page is mapped already (no holes) | ||
| 76 | */ | ||
| 77 | if (PageMappedToDisk(page)) | ||
| 78 | goto out; | ||
| 79 | |||
| 80 | /* fill the page */ | ||
| 81 | wait_on_page_writeback(page); | ||
| 82 | |||
| 83 | /* page is wholly or partially inside EOF */ | ||
| 84 | if (((page->index + 1) << PAGE_CACHE_SHIFT) > i_size_read(inode)) { | ||
| 85 | unsigned offset; | ||
| 86 | offset = i_size_read(inode) & ~PAGE_CACHE_MASK; | ||
| 87 | zero_user_segment(page, offset, PAGE_CACHE_SIZE); | ||
| 88 | } | ||
| 89 | set_page_dirty(page); | ||
| 90 | SetPageUptodate(page); | ||
| 91 | |||
| 92 | file_update_time(vma->vm_file); | ||
| 93 | out: | ||
| 94 | sb_end_pagefault(inode->i_sb); | ||
| 95 | return block_page_mkwrite_return(err); | ||
| 96 | } | ||
| 97 | |||
| 98 | static const struct vm_operations_struct f2fs_file_vm_ops = { | ||
| 99 | .fault = filemap_fault, | ||
| 100 | .page_mkwrite = f2fs_vm_page_mkwrite, | ||
| 101 | }; | ||
| 102 | |||
| 103 | static int need_to_sync_dir(struct f2fs_sb_info *sbi, struct inode *inode) | ||
| 104 | { | ||
| 105 | struct dentry *dentry; | ||
| 106 | nid_t pino; | ||
| 107 | |||
| 108 | inode = igrab(inode); | ||
| 109 | dentry = d_find_any_alias(inode); | ||
| 110 | if (!dentry) { | ||
| 111 | iput(inode); | ||
| 112 | return 0; | ||
| 113 | } | ||
| 114 | pino = dentry->d_parent->d_inode->i_ino; | ||
| 115 | dput(dentry); | ||
| 116 | iput(inode); | ||
| 117 | return !is_checkpointed_node(sbi, pino); | ||
| 118 | } | ||
| 119 | |||
| 120 | int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) | ||
| 121 | { | ||
| 122 | struct inode *inode = file->f_mapping->host; | ||
| 123 | struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); | ||
| 124 | unsigned long long cur_version; | ||
| 125 | int ret = 0; | ||
| 126 | bool need_cp = false; | ||
| 127 | struct writeback_control wbc = { | ||
| 128 | .sync_mode = WB_SYNC_ALL, | ||
| 129 | .nr_to_write = LONG_MAX, | ||
| 130 | .for_reclaim = 0, | ||
| 131 | }; | ||
| 132 | |||
| 133 | if (inode->i_sb->s_flags & MS_RDONLY) | ||
| 134 | return 0; | ||
| 135 | |||
| 136 | ret = filemap_write_and_wait_range(inode->i_mapping, start, end); | ||
| 137 | if (ret) | ||
| 138 | return ret; | ||
| 139 | |||
| 140 | mutex_lock(&inode->i_mutex); | ||
| 141 | |||
| 142 | if (datasync && !(inode->i_state & I_DIRTY_DATASYNC)) | ||
| 143 | goto out; | ||
| 144 | |||
| 145 | mutex_lock(&sbi->cp_mutex); | ||
| 146 | cur_version = le64_to_cpu(F2FS_CKPT(sbi)->checkpoint_ver); | ||
| 147 | mutex_unlock(&sbi->cp_mutex); | ||
| 148 | |||
| 149 | if (F2FS_I(inode)->data_version != cur_version && | ||
| 150 | !(inode->i_state & I_DIRTY)) | ||
| 151 | goto out; | ||
| 152 | F2FS_I(inode)->data_version--; | ||
| 153 | |||
| 154 | if (!S_ISREG(inode->i_mode) || inode->i_nlink != 1) | ||
| 155 | need_cp = true; | ||
| 156 | if (is_inode_flag_set(F2FS_I(inode), FI_NEED_CP)) | ||
| 157 | need_cp = true; | ||
| 158 | if (!space_for_roll_forward(sbi)) | ||
| 159 | need_cp = true; | ||
| 160 | if (need_to_sync_dir(sbi, inode)) | ||
| 161 | need_cp = true; | ||
| 162 | |||
| 163 | f2fs_write_inode(inode, NULL); | ||
| 164 | |||
| 165 | if (need_cp) { | ||
| 166 | /* all the dirty node pages should be flushed for POR */ | ||
| 167 | ret = f2fs_sync_fs(inode->i_sb, 1); | ||
| 168 | clear_inode_flag(F2FS_I(inode), FI_NEED_CP); | ||
| 169 | } else { | ||
| 170 | while (sync_node_pages(sbi, inode->i_ino, &wbc) == 0) | ||
| 171 | f2fs_write_inode(inode, NULL); | ||
| 172 | filemap_fdatawait_range(sbi->node_inode->i_mapping, | ||
| 173 | 0, LONG_MAX); | ||
| 174 | } | ||
| 175 | out: | ||
| 176 | mutex_unlock(&inode->i_mutex); | ||
| 177 | return ret; | ||
| 178 | } | ||
| 179 | |||
| 180 | static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma) | ||
| 181 | { | ||
| 182 | file_accessed(file); | ||
| 183 | vma->vm_ops = &f2fs_file_vm_ops; | ||
| 184 | return 0; | ||
| 185 | } | ||
| 186 | |||
| 187 | static int truncate_data_blocks_range(struct dnode_of_data *dn, int count) | ||
| 188 | { | ||
| 189 | int nr_free = 0, ofs = dn->ofs_in_node; | ||
| 190 | struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); | ||
| 191 | struct f2fs_node *raw_node; | ||
| 192 | __le32 *addr; | ||
| 193 | |||
| 194 | raw_node = page_address(dn->node_page); | ||
| 195 | addr = blkaddr_in_node(raw_node) + ofs; | ||
| 196 | |||
| 197 | for ( ; count > 0; count--, addr++, dn->ofs_in_node++) { | ||
| 198 | block_t blkaddr = le32_to_cpu(*addr); | ||
| 199 | if (blkaddr == NULL_ADDR) | ||
| 200 | continue; | ||
| 201 | |||
| 202 | update_extent_cache(NULL_ADDR, dn); | ||
| 203 | invalidate_blocks(sbi, blkaddr); | ||
| 204 | dec_valid_block_count(sbi, dn->inode, 1); | ||
| 205 | nr_free++; | ||
| 206 | } | ||
| 207 | if (nr_free) { | ||
| 208 | set_page_dirty(dn->node_page); | ||
| 209 | sync_inode_page(dn); | ||
| 210 | } | ||
| 211 | dn->ofs_in_node = ofs; | ||
| 212 | return nr_free; | ||
| 213 | } | ||
| 214 | |||
| 215 | void truncate_data_blocks(struct dnode_of_data *dn) | ||
| 216 | { | ||
| 217 | truncate_data_blocks_range(dn, ADDRS_PER_BLOCK); | ||
| 218 | } | ||
| 219 | |||
| 220 | static void truncate_partial_data_page(struct inode *inode, u64 from) | ||
| 221 | { | ||
| 222 | unsigned offset = from & (PAGE_CACHE_SIZE - 1); | ||
| 223 | struct page *page; | ||
| 224 | |||
| 225 | if (!offset) | ||
| 226 | return; | ||
| 227 | |||
| 228 | page = find_data_page(inode, from >> PAGE_CACHE_SHIFT); | ||
| 229 | if (IS_ERR(page)) | ||
| 230 | return; | ||
| 231 | |||
| 232 | lock_page(page); | ||
| 233 | wait_on_page_writeback(page); | ||
| 234 | zero_user(page, offset, PAGE_CACHE_SIZE - offset); | ||
| 235 | set_page_dirty(page); | ||
| 236 | f2fs_put_page(page, 1); | ||
| 237 | } | ||
| 238 | |||
| 239 | static int truncate_blocks(struct inode *inode, u64 from) | ||
| 240 | { | ||
| 241 | struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); | ||
| 242 | unsigned int blocksize = inode->i_sb->s_blocksize; | ||
| 243 | struct dnode_of_data dn; | ||
| 244 | pgoff_t free_from; | ||
| 245 | int count = 0; | ||
| 246 | int err; | ||
| 247 | |||
| 248 | free_from = (pgoff_t) | ||
| 249 | ((from + blocksize - 1) >> (sbi->log_blocksize)); | ||
| 250 | |||
| 251 | mutex_lock_op(sbi, DATA_TRUNC); | ||
| 252 | |||
| 253 | set_new_dnode(&dn, inode, NULL, NULL, 0); | ||
| 254 | err = get_dnode_of_data(&dn, free_from, RDONLY_NODE); | ||
| 255 | if (err) { | ||
| 256 | if (err == -ENOENT) | ||
| 257 | goto free_next; | ||
| 258 | mutex_unlock_op(sbi, DATA_TRUNC); | ||
| 259 | return err; | ||
| 260 | } | ||
| 261 | |||
| 262 | if (IS_INODE(dn.node_page)) | ||
| 263 | count = ADDRS_PER_INODE; | ||
| 264 | else | ||
| 265 | count = ADDRS_PER_BLOCK; | ||
| 266 | |||
| 267 | count -= dn.ofs_in_node; | ||
| 268 | BUG_ON(count < 0); | ||
| 269 | if (dn.ofs_in_node || IS_INODE(dn.node_page)) { | ||
| 270 | truncate_data_blocks_range(&dn, count); | ||
| 271 | free_from += count; | ||
| 272 | } | ||
| 273 | |||
| 274 | f2fs_put_dnode(&dn); | ||
| 275 | free_next: | ||
| 276 | err = truncate_inode_blocks(inode, free_from); | ||
| 277 | mutex_unlock_op(sbi, DATA_TRUNC); | ||
| 278 | |||
| 279 | /* lastly zero out the first data page */ | ||
| 280 | truncate_partial_data_page(inode, from); | ||
| 281 | |||
| 282 | return err; | ||
| 283 | } | ||
| 284 | |||
| 285 | void f2fs_truncate(struct inode *inode) | ||
| 286 | { | ||
| 287 | if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || | ||
| 288 | S_ISLNK(inode->i_mode))) | ||
| 289 | return; | ||
| 290 | |||
| 291 | if (!truncate_blocks(inode, i_size_read(inode))) { | ||
| 292 | inode->i_mtime = inode->i_ctime = CURRENT_TIME; | ||
| 293 | mark_inode_dirty(inode); | ||
| 294 | } | ||
| 295 | |||
| 296 | f2fs_balance_fs(F2FS_SB(inode->i_sb)); | ||
| 297 | } | ||
| 298 | |||
| 299 | static int f2fs_getattr(struct vfsmount *mnt, | ||
| 300 | struct dentry *dentry, struct kstat *stat) | ||
| 301 | { | ||
| 302 | struct inode *inode = dentry->d_inode; | ||
| 303 | generic_fillattr(inode, stat); | ||
| 304 | stat->blocks <<= 3; | ||
| 305 | return 0; | ||
| 306 | } | ||
| 307 | |||
| 308 | #ifdef CONFIG_F2FS_FS_POSIX_ACL | ||
| 309 | static void __setattr_copy(struct inode *inode, const struct iattr *attr) | ||
| 310 | { | ||
| 311 | struct f2fs_inode_info *fi = F2FS_I(inode); | ||
| 312 | unsigned int ia_valid = attr->ia_valid; | ||
| 313 | |||
| 314 | if (ia_valid & ATTR_UID) | ||
| 315 | inode->i_uid = attr->ia_uid; | ||
| 316 | if (ia_valid & ATTR_GID) | ||
| 317 | inode->i_gid = attr->ia_gid; | ||
| 318 | if (ia_valid & ATTR_ATIME) | ||
| 319 | inode->i_atime = timespec_trunc(attr->ia_atime, | ||
| 320 | inode->i_sb->s_time_gran); | ||
| 321 | if (ia_valid & ATTR_MTIME) | ||
| 322 | inode->i_mtime = timespec_trunc(attr->ia_mtime, | ||
| 323 | inode->i_sb->s_time_gran); | ||
| 324 | if (ia_valid & ATTR_CTIME) | ||
| 325 | inode->i_ctime = timespec_trunc(attr->ia_ctime, | ||
| 326 | inode->i_sb->s_time_gran); | ||
| 327 | if (ia_valid & ATTR_MODE) { | ||
| 328 | umode_t mode = attr->ia_mode; | ||
| 329 | |||
| 330 | if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID)) | ||
| 331 | mode &= ~S_ISGID; | ||
| 332 | set_acl_inode(fi, mode); | ||
| 333 | } | ||
| 334 | } | ||
| 335 | #else | ||
| 336 | #define __setattr_copy setattr_copy | ||
| 337 | #endif | ||
| 338 | |||
| 339 | int f2fs_setattr(struct dentry *dentry, struct iattr *attr) | ||
| 340 | { | ||
| 341 | struct inode *inode = dentry->d_inode; | ||
| 342 | struct f2fs_inode_info *fi = F2FS_I(inode); | ||
| 343 | int err; | ||
| 344 | |||
| 345 | err = inode_change_ok(inode, attr); | ||
| 346 | if (err) | ||
| 347 | return err; | ||
| 348 | |||
| 349 | if ((attr->ia_valid & ATTR_SIZE) && | ||
| 350 | attr->ia_size != i_size_read(inode)) { | ||
| 351 | truncate_setsize(inode, attr->ia_size); | ||
| 352 | f2fs_truncate(inode); | ||
| 353 | } | ||
| 354 | |||
| 355 | __setattr_copy(inode, attr); | ||
| 356 | |||
| 357 | if (attr->ia_valid & ATTR_MODE) { | ||
| 358 | err = f2fs_acl_chmod(inode); | ||
| 359 | if (err || is_inode_flag_set(fi, FI_ACL_MODE)) { | ||
| 360 | inode->i_mode = fi->i_acl_mode; | ||
| 361 | clear_inode_flag(fi, FI_ACL_MODE); | ||
| 362 | } | ||
| 363 | } | ||
| 364 | |||
| 365 | mark_inode_dirty(inode); | ||
| 366 | return err; | ||
| 367 | } | ||
| 368 | |||
| 369 | const struct inode_operations f2fs_file_inode_operations = { | ||
| 370 | .getattr = f2fs_getattr, | ||
| 371 | .setattr = f2fs_setattr, | ||
| 372 | .get_acl = f2fs_get_acl, | ||
| 373 | #ifdef CONFIG_F2FS_FS_XATTR | ||
| 374 | .setxattr = generic_setxattr, | ||
| 375 | .getxattr = generic_getxattr, | ||
| 376 | .listxattr = f2fs_listxattr, | ||
| 377 | .removexattr = generic_removexattr, | ||
| 378 | #endif | ||
| 379 | }; | ||
| 380 | |||
| 381 | static void fill_zero(struct inode *inode, pgoff_t index, | ||
| 382 | loff_t start, loff_t len) | ||
| 383 | { | ||
| 384 | struct page *page; | ||
| 385 | |||
| 386 | if (!len) | ||
| 387 | return; | ||
| 388 | |||
| 389 | page = get_new_data_page(inode, index, false); | ||
| 390 | |||
| 391 | if (!IS_ERR(page)) { | ||
| 392 | wait_on_page_writeback(page); | ||
| 393 | zero_user(page, start, len); | ||
| 394 | set_page_dirty(page); | ||
| 395 | f2fs_put_page(page, 1); | ||
| 396 | } | ||
| 397 | } | ||
| 398 | |||
| 399 | int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end) | ||
| 400 | { | ||
| 401 | pgoff_t index; | ||
| 402 | int err; | ||
| 403 | |||
| 404 | for (index = pg_start; index < pg_end; index++) { | ||
| 405 | struct dnode_of_data dn; | ||
| 406 | struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); | ||
| 407 | |||
| 408 | mutex_lock_op(sbi, DATA_TRUNC); | ||
| 409 | set_new_dnode(&dn, inode, NULL, NULL, 0); | ||
| 410 | err = get_dnode_of_data(&dn, index, RDONLY_NODE); | ||
| 411 | if (err) { | ||
| 412 | mutex_unlock_op(sbi, DATA_TRUNC); | ||
| 413 | if (err == -ENOENT) | ||
| 414 | continue; | ||
| 415 | return err; | ||
| 416 | } | ||
| 417 | |||
| 418 | if (dn.data_blkaddr != NULL_ADDR) | ||
| 419 | truncate_data_blocks_range(&dn, 1); | ||
| 420 | f2fs_put_dnode(&dn); | ||
| 421 | mutex_unlock_op(sbi, DATA_TRUNC); | ||
| 422 | } | ||
| 423 | return 0; | ||
| 424 | } | ||
| 425 | |||
| 426 | static int punch_hole(struct inode *inode, loff_t offset, loff_t len, int mode) | ||
| 427 | { | ||
| 428 | pgoff_t pg_start, pg_end; | ||
| 429 | loff_t off_start, off_end; | ||
| 430 | int ret = 0; | ||
| 431 | |||
| 432 | pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT; | ||
| 433 | pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT; | ||
| 434 | |||
| 435 | off_start = offset & (PAGE_CACHE_SIZE - 1); | ||
| 436 | off_end = (offset + len) & (PAGE_CACHE_SIZE - 1); | ||
| 437 | |||
| 438 | if (pg_start == pg_end) { | ||
| 439 | fill_zero(inode, pg_start, off_start, | ||
| 440 | off_end - off_start); | ||
| 441 | } else { | ||
| 442 | if (off_start) | ||
| 443 | fill_zero(inode, pg_start++, off_start, | ||
| 444 | PAGE_CACHE_SIZE - off_start); | ||
| 445 | if (off_end) | ||
| 446 | fill_zero(inode, pg_end, 0, off_end); | ||
| 447 | |||
| 448 | if (pg_start < pg_end) { | ||
| 449 | struct address_space *mapping = inode->i_mapping; | ||
| 450 | loff_t blk_start, blk_end; | ||
| 451 | |||
| 452 | blk_start = pg_start << PAGE_CACHE_SHIFT; | ||
| 453 | blk_end = pg_end << PAGE_CACHE_SHIFT; | ||
| 454 | truncate_inode_pages_range(mapping, blk_start, | ||
| 455 | blk_end - 1); | ||
| 456 | ret = truncate_hole(inode, pg_start, pg_end); | ||
| 457 | } | ||
| 458 | } | ||
| 459 | |||
| 460 | if (!(mode & FALLOC_FL_KEEP_SIZE) && | ||
| 461 | i_size_read(inode) <= (offset + len)) { | ||
| 462 | i_size_write(inode, offset); | ||
| 463 | mark_inode_dirty(inode); | ||
| 464 | } | ||
| 465 | |||
| 466 | return ret; | ||
| 467 | } | ||
| 468 | |||
| 469 | static int expand_inode_data(struct inode *inode, loff_t offset, | ||
| 470 | loff_t len, int mode) | ||
| 471 | { | ||
| 472 | struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); | ||
| 473 | pgoff_t index, pg_start, pg_end; | ||
| 474 | loff_t new_size = i_size_read(inode); | ||
| 475 | loff_t off_start, off_end; | ||
| 476 | int ret = 0; | ||
| 477 | |||
| 478 | ret = inode_newsize_ok(inode, (len + offset)); | ||
| 479 | if (ret) | ||
| 480 | return ret; | ||
| 481 | |||
| 482 | pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT; | ||
| 483 | pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT; | ||
| 484 | |||
| 485 | off_start = offset & (PAGE_CACHE_SIZE - 1); | ||
| 486 | off_end = (offset + len) & (PAGE_CACHE_SIZE - 1); | ||
| 487 | |||
| 488 | for (index = pg_start; index <= pg_end; index++) { | ||
| 489 | struct dnode_of_data dn; | ||
| 490 | |||
| 491 | mutex_lock_op(sbi, DATA_NEW); | ||
| 492 | |||
| 493 | set_new_dnode(&dn, inode, NULL, NULL, 0); | ||
| 494 | ret = get_dnode_of_data(&dn, index, 0); | ||
| 495 | if (ret) { | ||
| 496 | mutex_unlock_op(sbi, DATA_NEW); | ||
| 497 | break; | ||
| 498 | } | ||
| 499 | |||
| 500 | if (dn.data_blkaddr == NULL_ADDR) { | ||
| 501 | ret = reserve_new_block(&dn); | ||
| 502 | if (ret) { | ||
| 503 | f2fs_put_dnode(&dn); | ||
| 504 | mutex_unlock_op(sbi, DATA_NEW); | ||
| 505 | break; | ||
| 506 | } | ||
| 507 | } | ||
| 508 | f2fs_put_dnode(&dn); | ||
| 509 | |||
| 510 | mutex_unlock_op(sbi, DATA_NEW); | ||
| 511 | |||
| 512 | if (pg_start == pg_end) | ||
| 513 | new_size = offset + len; | ||
| 514 | else if (index == pg_start && off_start) | ||
| 515 | new_size = (index + 1) << PAGE_CACHE_SHIFT; | ||
| 516 | else if (index == pg_end) | ||
| 517 | new_size = (index << PAGE_CACHE_SHIFT) + off_end; | ||
| 518 | else | ||
| 519 | new_size += PAGE_CACHE_SIZE; | ||
| 520 | } | ||
| 521 | |||
| 522 | if (!(mode & FALLOC_FL_KEEP_SIZE) && | ||
| 523 | i_size_read(inode) < new_size) { | ||
| 524 | i_size_write(inode, new_size); | ||
| 525 | mark_inode_dirty(inode); | ||
| 526 | } | ||
| 527 | |||
| 528 | return ret; | ||
| 529 | } | ||
| 530 | |||
| 531 | static long f2fs_fallocate(struct file *file, int mode, | ||
| 532 | loff_t offset, loff_t len) | ||
| 533 | { | ||
| 534 | struct inode *inode = file->f_path.dentry->d_inode; | ||
| 535 | struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); | ||
| 536 | long ret; | ||
| 537 | |||
| 538 | if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) | ||
| 539 | return -EOPNOTSUPP; | ||
| 540 | |||
| 541 | if (mode & FALLOC_FL_PUNCH_HOLE) | ||
| 542 | ret = punch_hole(inode, offset, len, mode); | ||
| 543 | else | ||
| 544 | ret = expand_inode_data(inode, offset, len, mode); | ||
| 545 | |||
| 546 | f2fs_balance_fs(sbi); | ||
| 547 | return ret; | ||
| 548 | } | ||
| 549 | |||
| 550 | #define F2FS_REG_FLMASK (~(FS_DIRSYNC_FL | FS_TOPDIR_FL)) | ||
| 551 | #define F2FS_OTHER_FLMASK (FS_NODUMP_FL | FS_NOATIME_FL) | ||
| 552 | |||
| 553 | static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags) | ||
| 554 | { | ||
| 555 | if (S_ISDIR(mode)) | ||
| 556 | return flags; | ||
| 557 | else if (S_ISREG(mode)) | ||
| 558 | return flags & F2FS_REG_FLMASK; | ||
| 559 | else | ||
| 560 | return flags & F2FS_OTHER_FLMASK; | ||
| 561 | } | ||
| 562 | |||
| 563 | long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) | ||
| 564 | { | ||
| 565 | struct inode *inode = filp->f_dentry->d_inode; | ||
| 566 | struct f2fs_inode_info *fi = F2FS_I(inode); | ||
| 567 | unsigned int flags; | ||
| 568 | int ret; | ||
| 569 | |||
| 570 | switch (cmd) { | ||
| 571 | case FS_IOC_GETFLAGS: | ||
| 572 | flags = fi->i_flags & FS_FL_USER_VISIBLE; | ||
| 573 | return put_user(flags, (int __user *) arg); | ||
| 574 | case FS_IOC_SETFLAGS: | ||
| 575 | { | ||
| 576 | unsigned int oldflags; | ||
| 577 | |||
| 578 | ret = mnt_want_write(filp->f_path.mnt); | ||
| 579 | if (ret) | ||
| 580 | return ret; | ||
| 581 | |||
| 582 | if (!inode_owner_or_capable(inode)) { | ||
| 583 | ret = -EACCES; | ||
| 584 | goto out; | ||
| 585 | } | ||
| 586 | |||
| 587 | if (get_user(flags, (int __user *) arg)) { | ||
| 588 | ret = -EFAULT; | ||
| 589 | goto out; | ||
| 590 | } | ||
| 591 | |||
| 592 | flags = f2fs_mask_flags(inode->i_mode, flags); | ||
| 593 | |||
| 594 | mutex_lock(&inode->i_mutex); | ||
| 595 | |||
| 596 | oldflags = fi->i_flags; | ||
| 597 | |||
| 598 | if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) { | ||
| 599 | if (!capable(CAP_LINUX_IMMUTABLE)) { | ||
| 600 | mutex_unlock(&inode->i_mutex); | ||
| 601 | ret = -EPERM; | ||
| 602 | goto out; | ||
| 603 | } | ||
| 604 | } | ||
| 605 | |||
| 606 | flags = flags & FS_FL_USER_MODIFIABLE; | ||
| 607 | flags |= oldflags & ~FS_FL_USER_MODIFIABLE; | ||
| 608 | fi->i_flags = flags; | ||
| 609 | mutex_unlock(&inode->i_mutex); | ||
| 610 | |||
| 611 | f2fs_set_inode_flags(inode); | ||
| 612 | inode->i_ctime = CURRENT_TIME; | ||
| 613 | mark_inode_dirty(inode); | ||
| 614 | out: | ||
| 615 | mnt_drop_write(filp->f_path.mnt); | ||
| 616 | return ret; | ||
| 617 | } | ||
| 618 | default: | ||
| 619 | return -ENOTTY; | ||
| 620 | } | ||
| 621 | } | ||
| 622 | |||
| 623 | const struct file_operations f2fs_file_operations = { | ||
| 624 | .llseek = generic_file_llseek, | ||
| 625 | .read = do_sync_read, | ||
| 626 | .write = do_sync_write, | ||
| 627 | .aio_read = generic_file_aio_read, | ||
| 628 | .aio_write = generic_file_aio_write, | ||
| 629 | .open = generic_file_open, | ||
| 630 | .mmap = f2fs_file_mmap, | ||
| 631 | .fsync = f2fs_sync_file, | ||
| 632 | .fallocate = f2fs_fallocate, | ||
| 633 | .unlocked_ioctl = f2fs_ioctl, | ||
| 634 | .splice_read = generic_file_splice_read, | ||
| 635 | .splice_write = generic_file_splice_write, | ||
| 636 | }; | ||
diff --git a/fs/f2fs/gc.c b/fs/f2fs/gc.c new file mode 100644 index 000000000000..644aa3808273 --- /dev/null +++ b/fs/f2fs/gc.c | |||
| @@ -0,0 +1,742 @@ | |||
| 1 | /* | ||
| 2 | * fs/f2fs/gc.c | ||
| 3 | * | ||
| 4 | * Copyright (c) 2012 Samsung Electronics Co., Ltd. | ||
| 5 | * http://www.samsung.com/ | ||
| 6 | * | ||
| 7 | * This program is free software; you can redistribute it and/or modify | ||
| 8 | * it under the terms of the GNU General Public License version 2 as | ||
| 9 | * published by the Free Software Foundation. | ||
| 10 | */ | ||
| 11 | #include <linux/fs.h> | ||
| 12 | #include <linux/module.h> | ||
| 13 | #include <linux/backing-dev.h> | ||
| 14 | #include <linux/proc_fs.h> | ||
| 15 | #include <linux/init.h> | ||
| 16 | #include <linux/f2fs_fs.h> | ||
| 17 | #include <linux/kthread.h> | ||
| 18 | #include <linux/delay.h> | ||
| 19 | #include <linux/freezer.h> | ||
| 20 | #include <linux/blkdev.h> | ||
| 21 | |||
| 22 | #include "f2fs.h" | ||
| 23 | #include "node.h" | ||
| 24 | #include "segment.h" | ||
| 25 | #include "gc.h" | ||
| 26 | |||
| 27 | static struct kmem_cache *winode_slab; | ||
| 28 | |||
| 29 | static int gc_thread_func(void *data) | ||
| 30 | { | ||
| 31 | struct f2fs_sb_info *sbi = data; | ||
| 32 | wait_queue_head_t *wq = &sbi->gc_thread->gc_wait_queue_head; | ||
| 33 | long wait_ms; | ||
| 34 | |||
| 35 | wait_ms = GC_THREAD_MIN_SLEEP_TIME; | ||
| 36 | |||
| 37 | do { | ||
| 38 | if (try_to_freeze()) | ||
| 39 | continue; | ||
| 40 | else | ||
| 41 | wait_event_interruptible_timeout(*wq, | ||
| 42 | kthread_should_stop(), | ||
| 43 | msecs_to_jiffies(wait_ms)); | ||
| 44 | if (kthread_should_stop()) | ||
| 45 | break; | ||
| 46 | |||
| 47 | f2fs_balance_fs(sbi); | ||
| 48 | |||
| 49 | if (!test_opt(sbi, BG_GC)) | ||
| 50 | continue; | ||
| 51 | |||
| 52 | /* | ||
| 53 | * [GC triggering condition] | ||
| 54 | * 0. GC is not conducted currently. | ||
| 55 | * 1. There are enough dirty segments. | ||
| 56 | * 2. IO subsystem is idle by checking the # of writeback pages. | ||
| 57 | * 3. IO subsystem is idle by checking the # of requests in | ||
| 58 | * bdev's request list. | ||
| 59 | * | ||
| 60 | * Note) We have to avoid triggering GCs too much frequently. | ||
| 61 | * Because it is possible that some segments can be | ||
| 62 | * invalidated soon after by user update or deletion. | ||
| 63 | * So, I'd like to wait some time to collect dirty segments. | ||
| 64 | */ | ||
| 65 | if (!mutex_trylock(&sbi->gc_mutex)) | ||
| 66 | continue; | ||
| 67 | |||
| 68 | if (!is_idle(sbi)) { | ||
| 69 | wait_ms = increase_sleep_time(wait_ms); | ||
| 70 | mutex_unlock(&sbi->gc_mutex); | ||
| 71 | continue; | ||
| 72 | } | ||
| 73 | |||
| 74 | if (has_enough_invalid_blocks(sbi)) | ||
| 75 | wait_ms = decrease_sleep_time(wait_ms); | ||
| 76 | else | ||
| 77 | wait_ms = increase_sleep_time(wait_ms); | ||
| 78 | |||
| 79 | sbi->bg_gc++; | ||
| 80 | |||
| 81 | if (f2fs_gc(sbi, 1) == GC_NONE) | ||
| 82 | wait_ms = GC_THREAD_NOGC_SLEEP_TIME; | ||
| 83 | else if (wait_ms == GC_THREAD_NOGC_SLEEP_TIME) | ||
| 84 | wait_ms = GC_THREAD_MAX_SLEEP_TIME; | ||
| 85 | |||
| 86 | } while (!kthread_should_stop()); | ||
| 87 | return 0; | ||
| 88 | } | ||
| 89 | |||
| 90 | int start_gc_thread(struct f2fs_sb_info *sbi) | ||
| 91 | { | ||
| 92 | struct f2fs_gc_kthread *gc_th; | ||
| 93 | |||
| 94 | gc_th = kmalloc(sizeof(struct f2fs_gc_kthread), GFP_KERNEL); | ||
| 95 | if (!gc_th) | ||
| 96 | return -ENOMEM; | ||
| 97 | |||
| 98 | sbi->gc_thread = gc_th; | ||
| 99 | init_waitqueue_head(&sbi->gc_thread->gc_wait_queue_head); | ||
| 100 | sbi->gc_thread->f2fs_gc_task = kthread_run(gc_thread_func, sbi, | ||
| 101 | GC_THREAD_NAME); | ||
| 102 | if (IS_ERR(gc_th->f2fs_gc_task)) { | ||
| 103 | kfree(gc_th); | ||
| 104 | return -ENOMEM; | ||
| 105 | } | ||
| 106 | return 0; | ||
| 107 | } | ||
| 108 | |||
| 109 | void stop_gc_thread(struct f2fs_sb_info *sbi) | ||
| 110 | { | ||
| 111 | struct f2fs_gc_kthread *gc_th = sbi->gc_thread; | ||
| 112 | if (!gc_th) | ||
| 113 | return; | ||
| 114 | kthread_stop(gc_th->f2fs_gc_task); | ||
| 115 | kfree(gc_th); | ||
| 116 | sbi->gc_thread = NULL; | ||
| 117 | } | ||
| 118 | |||
| 119 | static int select_gc_type(int gc_type) | ||
| 120 | { | ||
| 121 | return (gc_type == BG_GC) ? GC_CB : GC_GREEDY; | ||
| 122 | } | ||
| 123 | |||
| 124 | static void select_policy(struct f2fs_sb_info *sbi, int gc_type, | ||
| 125 | int type, struct victim_sel_policy *p) | ||
| 126 | { | ||
| 127 | struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); | ||
| 128 | |||
| 129 | if (p->alloc_mode) { | ||
| 130 | p->gc_mode = GC_GREEDY; | ||
| 131 | p->dirty_segmap = dirty_i->dirty_segmap[type]; | ||
| 132 | p->ofs_unit = 1; | ||
| 133 | } else { | ||
| 134 | p->gc_mode = select_gc_type(gc_type); | ||
| 135 | p->dirty_segmap = dirty_i->dirty_segmap[DIRTY]; | ||
| 136 | p->ofs_unit = sbi->segs_per_sec; | ||
| 137 | } | ||
| 138 | p->offset = sbi->last_victim[p->gc_mode]; | ||
| 139 | } | ||
| 140 | |||
| 141 | static unsigned int get_max_cost(struct f2fs_sb_info *sbi, | ||
| 142 | struct victim_sel_policy *p) | ||
| 143 | { | ||
| 144 | if (p->gc_mode == GC_GREEDY) | ||
| 145 | return (1 << sbi->log_blocks_per_seg) * p->ofs_unit; | ||
| 146 | else if (p->gc_mode == GC_CB) | ||
| 147 | return UINT_MAX; | ||
| 148 | else /* No other gc_mode */ | ||
| 149 | return 0; | ||
| 150 | } | ||
| 151 | |||
| 152 | static unsigned int check_bg_victims(struct f2fs_sb_info *sbi) | ||
| 153 | { | ||
| 154 | struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); | ||
| 155 | unsigned int segno; | ||
| 156 | |||
| 157 | /* | ||
| 158 | * If the gc_type is FG_GC, we can select victim segments | ||
| 159 | * selected by background GC before. | ||
| 160 | * Those segments guarantee they have small valid blocks. | ||
| 161 | */ | ||
| 162 | segno = find_next_bit(dirty_i->victim_segmap[BG_GC], | ||
| 163 | TOTAL_SEGS(sbi), 0); | ||
| 164 | if (segno < TOTAL_SEGS(sbi)) { | ||
| 165 | clear_bit(segno, dirty_i->victim_segmap[BG_GC]); | ||
| 166 | return segno; | ||
| 167 | } | ||
| 168 | return NULL_SEGNO; | ||
| 169 | } | ||
| 170 | |||
| 171 | static unsigned int get_cb_cost(struct f2fs_sb_info *sbi, unsigned int segno) | ||
| 172 | { | ||
| 173 | struct sit_info *sit_i = SIT_I(sbi); | ||
| 174 | unsigned int secno = GET_SECNO(sbi, segno); | ||
| 175 | unsigned int start = secno * sbi->segs_per_sec; | ||
| 176 | unsigned long long mtime = 0; | ||
| 177 | unsigned int vblocks; | ||
| 178 | unsigned char age = 0; | ||
| 179 | unsigned char u; | ||
| 180 | unsigned int i; | ||
| 181 | |||
| 182 | for (i = 0; i < sbi->segs_per_sec; i++) | ||
| 183 | mtime += get_seg_entry(sbi, start + i)->mtime; | ||
| 184 | vblocks = get_valid_blocks(sbi, segno, sbi->segs_per_sec); | ||
| 185 | |||
| 186 | mtime = div_u64(mtime, sbi->segs_per_sec); | ||
| 187 | vblocks = div_u64(vblocks, sbi->segs_per_sec); | ||
| 188 | |||
| 189 | u = (vblocks * 100) >> sbi->log_blocks_per_seg; | ||
| 190 | |||
| 191 | /* Handle if the system time is changed by user */ | ||
| 192 | if (mtime < sit_i->min_mtime) | ||
| 193 | sit_i->min_mtime = mtime; | ||
| 194 | if (mtime > sit_i->max_mtime) | ||
| 195 | sit_i->max_mtime = mtime; | ||
| 196 | if (sit_i->max_mtime != sit_i->min_mtime) | ||
| 197 | age = 100 - div64_u64(100 * (mtime - sit_i->min_mtime), | ||
| 198 | sit_i->max_mtime - sit_i->min_mtime); | ||
| 199 | |||
| 200 | return UINT_MAX - ((100 * (100 - u) * age) / (100 + u)); | ||
| 201 | } | ||
| 202 | |||
| 203 | static unsigned int get_gc_cost(struct f2fs_sb_info *sbi, unsigned int segno, | ||
| 204 | struct victim_sel_policy *p) | ||
| 205 | { | ||
| 206 | if (p->alloc_mode == SSR) | ||
| 207 | return get_seg_entry(sbi, segno)->ckpt_valid_blocks; | ||
| 208 | |||
| 209 | /* alloc_mode == LFS */ | ||
| 210 | if (p->gc_mode == GC_GREEDY) | ||
| 211 | return get_valid_blocks(sbi, segno, sbi->segs_per_sec); | ||
| 212 | else | ||
| 213 | return get_cb_cost(sbi, segno); | ||
| 214 | } | ||
| 215 | |||
| 216 | /* | ||
| 217 | * This function is called from two pathes. | ||
| 218 | * One is garbage collection and the other is SSR segment selection. | ||
| 219 | * When it is called during GC, it just gets a victim segment | ||
| 220 | * and it does not remove it from dirty seglist. | ||
| 221 | * When it is called from SSR segment selection, it finds a segment | ||
| 222 | * which has minimum valid blocks and removes it from dirty seglist. | ||
| 223 | */ | ||
| 224 | static int get_victim_by_default(struct f2fs_sb_info *sbi, | ||
| 225 | unsigned int *result, int gc_type, int type, char alloc_mode) | ||
| 226 | { | ||
| 227 | struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); | ||
| 228 | struct victim_sel_policy p; | ||
| 229 | unsigned int segno; | ||
| 230 | int nsearched = 0; | ||
| 231 | |||
| 232 | p.alloc_mode = alloc_mode; | ||
| 233 | select_policy(sbi, gc_type, type, &p); | ||
| 234 | |||
| 235 | p.min_segno = NULL_SEGNO; | ||
| 236 | p.min_cost = get_max_cost(sbi, &p); | ||
| 237 | |||
| 238 | mutex_lock(&dirty_i->seglist_lock); | ||
| 239 | |||
| 240 | if (p.alloc_mode == LFS && gc_type == FG_GC) { | ||
| 241 | p.min_segno = check_bg_victims(sbi); | ||
| 242 | if (p.min_segno != NULL_SEGNO) | ||
| 243 | goto got_it; | ||
| 244 | } | ||
| 245 | |||
| 246 | while (1) { | ||
| 247 | unsigned long cost; | ||
| 248 | |||
| 249 | segno = find_next_bit(p.dirty_segmap, | ||
| 250 | TOTAL_SEGS(sbi), p.offset); | ||
| 251 | if (segno >= TOTAL_SEGS(sbi)) { | ||
| 252 | if (sbi->last_victim[p.gc_mode]) { | ||
| 253 | sbi->last_victim[p.gc_mode] = 0; | ||
| 254 | p.offset = 0; | ||
| 255 | continue; | ||
| 256 | } | ||
| 257 | break; | ||
| 258 | } | ||
| 259 | p.offset = ((segno / p.ofs_unit) * p.ofs_unit) + p.ofs_unit; | ||
| 260 | |||
| 261 | if (test_bit(segno, dirty_i->victim_segmap[FG_GC])) | ||
| 262 | continue; | ||
| 263 | if (gc_type == BG_GC && | ||
| 264 | test_bit(segno, dirty_i->victim_segmap[BG_GC])) | ||
| 265 | continue; | ||
| 266 | if (IS_CURSEC(sbi, GET_SECNO(sbi, segno))) | ||
| 267 | continue; | ||
| 268 | |||
| 269 | cost = get_gc_cost(sbi, segno, &p); | ||
| 270 | |||
| 271 | if (p.min_cost > cost) { | ||
| 272 | p.min_segno = segno; | ||
| 273 | p.min_cost = cost; | ||
| 274 | } | ||
| 275 | |||
| 276 | if (cost == get_max_cost(sbi, &p)) | ||
| 277 | continue; | ||
| 278 | |||
| 279 | if (nsearched++ >= MAX_VICTIM_SEARCH) { | ||
| 280 | sbi->last_victim[p.gc_mode] = segno; | ||
| 281 | break; | ||
| 282 | } | ||
| 283 | } | ||
| 284 | got_it: | ||
| 285 | if (p.min_segno != NULL_SEGNO) { | ||
| 286 | *result = (p.min_segno / p.ofs_unit) * p.ofs_unit; | ||
| 287 | if (p.alloc_mode == LFS) { | ||
| 288 | int i; | ||
| 289 | for (i = 0; i < p.ofs_unit; i++) | ||
| 290 | set_bit(*result + i, | ||
| 291 | dirty_i->victim_segmap[gc_type]); | ||
| 292 | } | ||
| 293 | } | ||
| 294 | mutex_unlock(&dirty_i->seglist_lock); | ||
| 295 | |||
| 296 | return (p.min_segno == NULL_SEGNO) ? 0 : 1; | ||
| 297 | } | ||
| 298 | |||
| 299 | static const struct victim_selection default_v_ops = { | ||
| 300 | .get_victim = get_victim_by_default, | ||
| 301 | }; | ||
| 302 | |||
| 303 | static struct inode *find_gc_inode(nid_t ino, struct list_head *ilist) | ||
| 304 | { | ||
| 305 | struct list_head *this; | ||
| 306 | struct inode_entry *ie; | ||
| 307 | |||
| 308 | list_for_each(this, ilist) { | ||
| 309 | ie = list_entry(this, struct inode_entry, list); | ||
| 310 | if (ie->inode->i_ino == ino) | ||
| 311 | return ie->inode; | ||
| 312 | } | ||
| 313 | return NULL; | ||
| 314 | } | ||
| 315 | |||
| 316 | static void add_gc_inode(struct inode *inode, struct list_head *ilist) | ||
| 317 | { | ||
| 318 | struct list_head *this; | ||
| 319 | struct inode_entry *new_ie, *ie; | ||
| 320 | |||
| 321 | list_for_each(this, ilist) { | ||
| 322 | ie = list_entry(this, struct inode_entry, list); | ||
| 323 | if (ie->inode == inode) { | ||
| 324 | iput(inode); | ||
| 325 | return; | ||
| 326 | } | ||
| 327 | } | ||
| 328 | repeat: | ||
| 329 | new_ie = kmem_cache_alloc(winode_slab, GFP_NOFS); | ||
| 330 | if (!new_ie) { | ||
| 331 | cond_resched(); | ||
| 332 | goto repeat; | ||
| 333 | } | ||
| 334 | new_ie->inode = inode; | ||
| 335 | list_add_tail(&new_ie->list, ilist); | ||
| 336 | } | ||
| 337 | |||
| 338 | static void put_gc_inode(struct list_head *ilist) | ||
| 339 | { | ||
| 340 | struct inode_entry *ie, *next_ie; | ||
| 341 | list_for_each_entry_safe(ie, next_ie, ilist, list) { | ||
| 342 | iput(ie->inode); | ||
| 343 | list_del(&ie->list); | ||
| 344 | kmem_cache_free(winode_slab, ie); | ||
| 345 | } | ||
| 346 | } | ||
| 347 | |||
| 348 | static int check_valid_map(struct f2fs_sb_info *sbi, | ||
| 349 | unsigned int segno, int offset) | ||
| 350 | { | ||
| 351 | struct sit_info *sit_i = SIT_I(sbi); | ||
| 352 | struct seg_entry *sentry; | ||
| 353 | int ret; | ||
| 354 | |||
| 355 | mutex_lock(&sit_i->sentry_lock); | ||
| 356 | sentry = get_seg_entry(sbi, segno); | ||
| 357 | ret = f2fs_test_bit(offset, sentry->cur_valid_map); | ||
| 358 | mutex_unlock(&sit_i->sentry_lock); | ||
| 359 | return ret ? GC_OK : GC_NEXT; | ||
| 360 | } | ||
| 361 | |||
| 362 | /* | ||
| 363 | * This function compares node address got in summary with that in NAT. | ||
| 364 | * On validity, copy that node with cold status, otherwise (invalid node) | ||
| 365 | * ignore that. | ||
| 366 | */ | ||
| 367 | static int gc_node_segment(struct f2fs_sb_info *sbi, | ||
| 368 | struct f2fs_summary *sum, unsigned int segno, int gc_type) | ||
| 369 | { | ||
| 370 | bool initial = true; | ||
| 371 | struct f2fs_summary *entry; | ||
| 372 | int off; | ||
| 373 | |||
| 374 | next_step: | ||
| 375 | entry = sum; | ||
| 376 | for (off = 0; off < sbi->blocks_per_seg; off++, entry++) { | ||
| 377 | nid_t nid = le32_to_cpu(entry->nid); | ||
| 378 | struct page *node_page; | ||
| 379 | int err; | ||
| 380 | |||
| 381 | /* | ||
| 382 | * It makes sure that free segments are able to write | ||
| 383 | * all the dirty node pages before CP after this CP. | ||
| 384 | * So let's check the space of dirty node pages. | ||
| 385 | */ | ||
| 386 | if (should_do_checkpoint(sbi)) { | ||
| 387 | mutex_lock(&sbi->cp_mutex); | ||
| 388 | block_operations(sbi); | ||
| 389 | return GC_BLOCKED; | ||
| 390 | } | ||
| 391 | |||
| 392 | err = check_valid_map(sbi, segno, off); | ||
| 393 | if (err == GC_ERROR) | ||
| 394 | return err; | ||
| 395 | else if (err == GC_NEXT) | ||
| 396 | continue; | ||
| 397 | |||
| 398 | if (initial) { | ||
| 399 | ra_node_page(sbi, nid); | ||
| 400 | continue; | ||
| 401 | } | ||
| 402 | node_page = get_node_page(sbi, nid); | ||
| 403 | if (IS_ERR(node_page)) | ||
| 404 | continue; | ||
| 405 | |||
| 406 | /* set page dirty and write it */ | ||
| 407 | if (!PageWriteback(node_page)) | ||
| 408 | set_page_dirty(node_page); | ||
| 409 | f2fs_put_page(node_page, 1); | ||
| 410 | stat_inc_node_blk_count(sbi, 1); | ||
| 411 | } | ||
| 412 | if (initial) { | ||
| 413 | initial = false; | ||
| 414 | goto next_step; | ||
| 415 | } | ||
| 416 | |||
| 417 | if (gc_type == FG_GC) { | ||
| 418 | struct writeback_control wbc = { | ||
| 419 | .sync_mode = WB_SYNC_ALL, | ||
| 420 | .nr_to_write = LONG_MAX, | ||
| 421 | .for_reclaim = 0, | ||
| 422 | }; | ||
| 423 | sync_node_pages(sbi, 0, &wbc); | ||
| 424 | } | ||
| 425 | return GC_DONE; | ||
| 426 | } | ||
| 427 | |||
| 428 | /* | ||
| 429 | * Calculate start block index that this node page contains | ||
| 430 | */ | ||
| 431 | block_t start_bidx_of_node(unsigned int node_ofs) | ||
| 432 | { | ||
| 433 | block_t start_bidx; | ||
| 434 | unsigned int bidx, indirect_blks; | ||
| 435 | int dec; | ||
| 436 | |||
| 437 | indirect_blks = 2 * NIDS_PER_BLOCK + 4; | ||
| 438 | |||
| 439 | start_bidx = 1; | ||
| 440 | if (node_ofs == 0) { | ||
| 441 | start_bidx = 0; | ||
| 442 | } else if (node_ofs <= 2) { | ||
| 443 | bidx = node_ofs - 1; | ||
| 444 | } else if (node_ofs <= indirect_blks) { | ||
| 445 | dec = (node_ofs - 4) / (NIDS_PER_BLOCK + 1); | ||
| 446 | bidx = node_ofs - 2 - dec; | ||
| 447 | } else { | ||
| 448 | dec = (node_ofs - indirect_blks - 3) / (NIDS_PER_BLOCK + 1); | ||
| 449 | bidx = node_ofs - 5 - dec; | ||
| 450 | } | ||
| 451 | |||
| 452 | if (start_bidx) | ||
| 453 | start_bidx = bidx * ADDRS_PER_BLOCK + ADDRS_PER_INODE; | ||
| 454 | return start_bidx; | ||
| 455 | } | ||
| 456 | |||
| 457 | static int check_dnode(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, | ||
| 458 | struct node_info *dni, block_t blkaddr, unsigned int *nofs) | ||
| 459 | { | ||
| 460 | struct page *node_page; | ||
| 461 | nid_t nid; | ||
| 462 | unsigned int ofs_in_node; | ||
| 463 | block_t source_blkaddr; | ||
| 464 | |||
| 465 | nid = le32_to_cpu(sum->nid); | ||
| 466 | ofs_in_node = le16_to_cpu(sum->ofs_in_node); | ||
| 467 | |||
| 468 | node_page = get_node_page(sbi, nid); | ||
| 469 | if (IS_ERR(node_page)) | ||
| 470 | return GC_NEXT; | ||
| 471 | |||
| 472 | get_node_info(sbi, nid, dni); | ||
| 473 | |||
| 474 | if (sum->version != dni->version) { | ||
| 475 | f2fs_put_page(node_page, 1); | ||
| 476 | return GC_NEXT; | ||
| 477 | } | ||
| 478 | |||
| 479 | *nofs = ofs_of_node(node_page); | ||
| 480 | source_blkaddr = datablock_addr(node_page, ofs_in_node); | ||
| 481 | f2fs_put_page(node_page, 1); | ||
| 482 | |||
| 483 | if (source_blkaddr != blkaddr) | ||
| 484 | return GC_NEXT; | ||
| 485 | return GC_OK; | ||
| 486 | } | ||
| 487 | |||
| 488 | static void move_data_page(struct inode *inode, struct page *page, int gc_type) | ||
| 489 | { | ||
| 490 | if (page->mapping != inode->i_mapping) | ||
| 491 | goto out; | ||
| 492 | |||
| 493 | if (inode != page->mapping->host) | ||
| 494 | goto out; | ||
| 495 | |||
| 496 | if (PageWriteback(page)) | ||
| 497 | goto out; | ||
| 498 | |||
| 499 | if (gc_type == BG_GC) { | ||
| 500 | set_page_dirty(page); | ||
| 501 | set_cold_data(page); | ||
| 502 | } else { | ||
| 503 | struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); | ||
| 504 | mutex_lock_op(sbi, DATA_WRITE); | ||
| 505 | if (clear_page_dirty_for_io(page) && | ||
| 506 | S_ISDIR(inode->i_mode)) { | ||
| 507 | dec_page_count(sbi, F2FS_DIRTY_DENTS); | ||
| 508 | inode_dec_dirty_dents(inode); | ||
| 509 | } | ||
| 510 | set_cold_data(page); | ||
| 511 | do_write_data_page(page); | ||
| 512 | mutex_unlock_op(sbi, DATA_WRITE); | ||
| 513 | clear_cold_data(page); | ||
| 514 | } | ||
| 515 | out: | ||
| 516 | f2fs_put_page(page, 1); | ||
| 517 | } | ||
| 518 | |||
| 519 | /* | ||
| 520 | * This function tries to get parent node of victim data block, and identifies | ||
| 521 | * data block validity. If the block is valid, copy that with cold status and | ||
| 522 | * modify parent node. | ||
| 523 | * If the parent node is not valid or the data block address is different, | ||
| 524 | * the victim data block is ignored. | ||
| 525 | */ | ||
| 526 | static int gc_data_segment(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, | ||
| 527 | struct list_head *ilist, unsigned int segno, int gc_type) | ||
| 528 | { | ||
| 529 | struct super_block *sb = sbi->sb; | ||
| 530 | struct f2fs_summary *entry; | ||
| 531 | block_t start_addr; | ||
| 532 | int err, off; | ||
| 533 | int phase = 0; | ||
| 534 | |||
| 535 | start_addr = START_BLOCK(sbi, segno); | ||
| 536 | |||
| 537 | next_step: | ||
| 538 | entry = sum; | ||
| 539 | for (off = 0; off < sbi->blocks_per_seg; off++, entry++) { | ||
| 540 | struct page *data_page; | ||
| 541 | struct inode *inode; | ||
| 542 | struct node_info dni; /* dnode info for the data */ | ||
| 543 | unsigned int ofs_in_node, nofs; | ||
| 544 | block_t start_bidx; | ||
| 545 | |||
| 546 | /* | ||
| 547 | * It makes sure that free segments are able to write | ||
| 548 | * all the dirty node pages before CP after this CP. | ||
| 549 | * So let's check the space of dirty node pages. | ||
| 550 | */ | ||
| 551 | if (should_do_checkpoint(sbi)) { | ||
| 552 | mutex_lock(&sbi->cp_mutex); | ||
| 553 | block_operations(sbi); | ||
| 554 | err = GC_BLOCKED; | ||
| 555 | goto stop; | ||
| 556 | } | ||
| 557 | |||
| 558 | err = check_valid_map(sbi, segno, off); | ||
| 559 | if (err == GC_ERROR) | ||
| 560 | goto stop; | ||
| 561 | else if (err == GC_NEXT) | ||
| 562 | continue; | ||
| 563 | |||
| 564 | if (phase == 0) { | ||
| 565 | ra_node_page(sbi, le32_to_cpu(entry->nid)); | ||
| 566 | continue; | ||
| 567 | } | ||
| 568 | |||
| 569 | /* Get an inode by ino with checking validity */ | ||
| 570 | err = check_dnode(sbi, entry, &dni, start_addr + off, &nofs); | ||
| 571 | if (err == GC_ERROR) | ||
| 572 | goto stop; | ||
| 573 | else if (err == GC_NEXT) | ||
| 574 | continue; | ||
| 575 | |||
| 576 | if (phase == 1) { | ||
| 577 | ra_node_page(sbi, dni.ino); | ||
| 578 | continue; | ||
| 579 | } | ||
| 580 | |||
| 581 | start_bidx = start_bidx_of_node(nofs); | ||
| 582 | ofs_in_node = le16_to_cpu(entry->ofs_in_node); | ||
| 583 | |||
| 584 | if (phase == 2) { | ||
| 585 | inode = f2fs_iget_nowait(sb, dni.ino); | ||
| 586 | if (IS_ERR(inode)) | ||
| 587 | continue; | ||
| 588 | |||
| 589 | data_page = find_data_page(inode, | ||
| 590 | start_bidx + ofs_in_node); | ||
| 591 | if (IS_ERR(data_page)) | ||
| 592 | goto next_iput; | ||
| 593 | |||
| 594 | f2fs_put_page(data_page, 0); | ||
| 595 | add_gc_inode(inode, ilist); | ||
| 596 | } else { | ||
| 597 | inode = find_gc_inode(dni.ino, ilist); | ||
| 598 | if (inode) { | ||
| 599 | data_page = get_lock_data_page(inode, | ||
| 600 | start_bidx + ofs_in_node); | ||
| 601 | if (IS_ERR(data_page)) | ||
| 602 | continue; | ||
| 603 | move_data_page(inode, data_page, gc_type); | ||
| 604 | stat_inc_data_blk_count(sbi, 1); | ||
| 605 | } | ||
| 606 | } | ||
| 607 | continue; | ||
| 608 | next_iput: | ||
| 609 | iput(inode); | ||
| 610 | } | ||
| 611 | if (++phase < 4) | ||
| 612 | goto next_step; | ||
| 613 | err = GC_DONE; | ||
| 614 | stop: | ||
| 615 | if (gc_type == FG_GC) | ||
| 616 | f2fs_submit_bio(sbi, DATA, true); | ||
| 617 | return err; | ||
| 618 | } | ||
| 619 | |||
| 620 | static int __get_victim(struct f2fs_sb_info *sbi, unsigned int *victim, | ||
| 621 | int gc_type, int type) | ||
| 622 | { | ||
| 623 | struct sit_info *sit_i = SIT_I(sbi); | ||
| 624 | int ret; | ||
| 625 | mutex_lock(&sit_i->sentry_lock); | ||
| 626 | ret = DIRTY_I(sbi)->v_ops->get_victim(sbi, victim, gc_type, type, LFS); | ||
| 627 | mutex_unlock(&sit_i->sentry_lock); | ||
| 628 | return ret; | ||
| 629 | } | ||
| 630 | |||
| 631 | static int do_garbage_collect(struct f2fs_sb_info *sbi, unsigned int segno, | ||
| 632 | struct list_head *ilist, int gc_type) | ||
| 633 | { | ||
| 634 | struct page *sum_page; | ||
| 635 | struct f2fs_summary_block *sum; | ||
| 636 | int ret = GC_DONE; | ||
| 637 | |||
| 638 | /* read segment summary of victim */ | ||
| 639 | sum_page = get_sum_page(sbi, segno); | ||
| 640 | if (IS_ERR(sum_page)) | ||
| 641 | return GC_ERROR; | ||
| 642 | |||
| 643 | /* | ||
| 644 | * CP needs to lock sum_page. In this time, we don't need | ||
| 645 | * to lock this page, because this summary page is not gone anywhere. | ||
| 646 | * Also, this page is not gonna be updated before GC is done. | ||
| 647 | */ | ||
| 648 | unlock_page(sum_page); | ||
| 649 | sum = page_address(sum_page); | ||
| 650 | |||
| 651 | switch (GET_SUM_TYPE((&sum->footer))) { | ||
| 652 | case SUM_TYPE_NODE: | ||
| 653 | ret = gc_node_segment(sbi, sum->entries, segno, gc_type); | ||
| 654 | break; | ||
| 655 | case SUM_TYPE_DATA: | ||
| 656 | ret = gc_data_segment(sbi, sum->entries, ilist, segno, gc_type); | ||
| 657 | break; | ||
| 658 | } | ||
| 659 | stat_inc_seg_count(sbi, GET_SUM_TYPE((&sum->footer))); | ||
| 660 | stat_inc_call_count(sbi->stat_info); | ||
| 661 | |||
| 662 | f2fs_put_page(sum_page, 0); | ||
| 663 | return ret; | ||
| 664 | } | ||
| 665 | |||
| 666 | int f2fs_gc(struct f2fs_sb_info *sbi, int nGC) | ||
| 667 | { | ||
| 668 | unsigned int segno; | ||
| 669 | int old_free_secs, cur_free_secs; | ||
| 670 | int gc_status, nfree; | ||
| 671 | struct list_head ilist; | ||
| 672 | int gc_type = BG_GC; | ||
| 673 | |||
| 674 | INIT_LIST_HEAD(&ilist); | ||
| 675 | gc_more: | ||
| 676 | nfree = 0; | ||
| 677 | gc_status = GC_NONE; | ||
| 678 | |||
| 679 | if (has_not_enough_free_secs(sbi)) | ||
| 680 | old_free_secs = reserved_sections(sbi); | ||
| 681 | else | ||
| 682 | old_free_secs = free_sections(sbi); | ||
| 683 | |||
| 684 | while (sbi->sb->s_flags & MS_ACTIVE) { | ||
| 685 | int i; | ||
| 686 | if (has_not_enough_free_secs(sbi)) | ||
| 687 | gc_type = FG_GC; | ||
| 688 | |||
| 689 | cur_free_secs = free_sections(sbi) + nfree; | ||
| 690 | |||
| 691 | /* We got free space successfully. */ | ||
| 692 | if (nGC < cur_free_secs - old_free_secs) | ||
| 693 | break; | ||
| 694 | |||
| 695 | if (!__get_victim(sbi, &segno, gc_type, NO_CHECK_TYPE)) | ||
| 696 | break; | ||
| 697 | |||
| 698 | for (i = 0; i < sbi->segs_per_sec; i++) { | ||
| 699 | /* | ||
| 700 | * do_garbage_collect will give us three gc_status: | ||
| 701 | * GC_ERROR, GC_DONE, and GC_BLOCKED. | ||
| 702 | * If GC is finished uncleanly, we have to return | ||
| 703 | * the victim to dirty segment list. | ||
| 704 | */ | ||
| 705 | gc_status = do_garbage_collect(sbi, segno + i, | ||
| 706 | &ilist, gc_type); | ||
| 707 | if (gc_status != GC_DONE) | ||
| 708 | goto stop; | ||
| 709 | nfree++; | ||
| 710 | } | ||
| 711 | } | ||
| 712 | stop: | ||
| 713 | if (has_not_enough_free_secs(sbi) || gc_status == GC_BLOCKED) { | ||
| 714 | write_checkpoint(sbi, (gc_status == GC_BLOCKED), false); | ||
| 715 | if (nfree) | ||
| 716 | goto gc_more; | ||
| 717 | } | ||
| 718 | mutex_unlock(&sbi->gc_mutex); | ||
| 719 | |||
| 720 | put_gc_inode(&ilist); | ||
| 721 | BUG_ON(!list_empty(&ilist)); | ||
| 722 | return gc_status; | ||
| 723 | } | ||
| 724 | |||
| 725 | void build_gc_manager(struct f2fs_sb_info *sbi) | ||
| 726 | { | ||
| 727 | DIRTY_I(sbi)->v_ops = &default_v_ops; | ||
| 728 | } | ||
| 729 | |||
| 730 | int create_gc_caches(void) | ||
| 731 | { | ||
| 732 | winode_slab = f2fs_kmem_cache_create("f2fs_gc_inodes", | ||
| 733 | sizeof(struct inode_entry), NULL); | ||
| 734 | if (!winode_slab) | ||
| 735 | return -ENOMEM; | ||
| 736 | return 0; | ||
| 737 | } | ||
| 738 | |||
| 739 | void destroy_gc_caches(void) | ||
| 740 | { | ||
| 741 | kmem_cache_destroy(winode_slab); | ||
| 742 | } | ||
diff --git a/fs/f2fs/gc.h b/fs/f2fs/gc.h new file mode 100644 index 000000000000..b026d9354ccd --- /dev/null +++ b/fs/f2fs/gc.h | |||
| @@ -0,0 +1,117 @@ | |||
| 1 | /* | ||
| 2 | * fs/f2fs/gc.h | ||
| 3 | * | ||
| 4 | * Copyright (c) 2012 Samsung Electronics Co., Ltd. | ||
| 5 | * http://www.samsung.com/ | ||
| 6 | * | ||
| 7 | * This program is free software; you can redistribute it and/or modify | ||
| 8 | * it under the terms of the GNU General Public License version 2 as | ||
| 9 | * published by the Free Software Foundation. | ||
| 10 | */ | ||
| 11 | #define GC_THREAD_NAME "f2fs_gc_task" | ||
| 12 | #define GC_THREAD_MIN_WB_PAGES 1 /* | ||
| 13 | * a threshold to determine | ||
| 14 | * whether IO subsystem is idle | ||
| 15 | * or not | ||
| 16 | */ | ||
| 17 | #define GC_THREAD_MIN_SLEEP_TIME 10000 /* milliseconds */ | ||
| 18 | #define GC_THREAD_MAX_SLEEP_TIME 30000 | ||
| 19 | #define GC_THREAD_NOGC_SLEEP_TIME 10000 | ||
| 20 | #define LIMIT_INVALID_BLOCK 40 /* percentage over total user space */ | ||
| 21 | #define LIMIT_FREE_BLOCK 40 /* percentage over invalid + free space */ | ||
| 22 | |||
| 23 | /* Search max. number of dirty segments to select a victim segment */ | ||
| 24 | #define MAX_VICTIM_SEARCH 20 | ||
| 25 | |||
| 26 | enum { | ||
| 27 | GC_NONE = 0, | ||
| 28 | GC_ERROR, | ||
| 29 | GC_OK, | ||
| 30 | GC_NEXT, | ||
| 31 | GC_BLOCKED, | ||
| 32 | GC_DONE, | ||
| 33 | }; | ||
| 34 | |||
| 35 | struct f2fs_gc_kthread { | ||
| 36 | struct task_struct *f2fs_gc_task; | ||
| 37 | wait_queue_head_t gc_wait_queue_head; | ||
| 38 | }; | ||
| 39 | |||
| 40 | struct inode_entry { | ||
| 41 | struct list_head list; | ||
| 42 | struct inode *inode; | ||
| 43 | }; | ||
| 44 | |||
| 45 | /* | ||
| 46 | * inline functions | ||
| 47 | */ | ||
| 48 | static inline block_t free_user_blocks(struct f2fs_sb_info *sbi) | ||
| 49 | { | ||
| 50 | if (free_segments(sbi) < overprovision_segments(sbi)) | ||
| 51 | return 0; | ||
| 52 | else | ||
| 53 | return (free_segments(sbi) - overprovision_segments(sbi)) | ||
| 54 | << sbi->log_blocks_per_seg; | ||
| 55 | } | ||
| 56 | |||
| 57 | static inline block_t limit_invalid_user_blocks(struct f2fs_sb_info *sbi) | ||
| 58 | { | ||
| 59 | return (long)(sbi->user_block_count * LIMIT_INVALID_BLOCK) / 100; | ||
| 60 | } | ||
| 61 | |||
| 62 | static inline block_t limit_free_user_blocks(struct f2fs_sb_info *sbi) | ||
| 63 | { | ||
| 64 | block_t reclaimable_user_blocks = sbi->user_block_count - | ||
| 65 | written_block_count(sbi); | ||
| 66 | return (long)(reclaimable_user_blocks * LIMIT_FREE_BLOCK) / 100; | ||
| 67 | } | ||
| 68 | |||
| 69 | static inline long increase_sleep_time(long wait) | ||
| 70 | { | ||
| 71 | wait += GC_THREAD_MIN_SLEEP_TIME; | ||
| 72 | if (wait > GC_THREAD_MAX_SLEEP_TIME) | ||
| 73 | wait = GC_THREAD_MAX_SLEEP_TIME; | ||
| 74 | return wait; | ||
| 75 | } | ||
| 76 | |||
| 77 | static inline long decrease_sleep_time(long wait) | ||
| 78 | { | ||
| 79 | wait -= GC_THREAD_MIN_SLEEP_TIME; | ||
| 80 | if (wait <= GC_THREAD_MIN_SLEEP_TIME) | ||
| 81 | wait = GC_THREAD_MIN_SLEEP_TIME; | ||
| 82 | return wait; | ||
| 83 | } | ||
| 84 | |||
| 85 | static inline bool has_enough_invalid_blocks(struct f2fs_sb_info *sbi) | ||
| 86 | { | ||
| 87 | block_t invalid_user_blocks = sbi->user_block_count - | ||
| 88 | written_block_count(sbi); | ||
| 89 | /* | ||
| 90 | * Background GC is triggered with the following condition. | ||
| 91 | * 1. There are a number of invalid blocks. | ||
| 92 | * 2. There is not enough free space. | ||
| 93 | */ | ||
| 94 | if (invalid_user_blocks > limit_invalid_user_blocks(sbi) && | ||
| 95 | free_user_blocks(sbi) < limit_free_user_blocks(sbi)) | ||
| 96 | return true; | ||
| 97 | return false; | ||
| 98 | } | ||
| 99 | |||
| 100 | static inline int is_idle(struct f2fs_sb_info *sbi) | ||
| 101 | { | ||
| 102 | struct block_device *bdev = sbi->sb->s_bdev; | ||
| 103 | struct request_queue *q = bdev_get_queue(bdev); | ||
| 104 | struct request_list *rl = &q->root_rl; | ||
| 105 | return !(rl->count[BLK_RW_SYNC]) && !(rl->count[BLK_RW_ASYNC]); | ||
| 106 | } | ||
| 107 | |||
| 108 | static inline bool should_do_checkpoint(struct f2fs_sb_info *sbi) | ||
| 109 | { | ||
| 110 | unsigned int pages_per_sec = sbi->segs_per_sec * | ||
| 111 | (1 << sbi->log_blocks_per_seg); | ||
| 112 | int node_secs = ((get_pages(sbi, F2FS_DIRTY_NODES) + pages_per_sec - 1) | ||
| 113 | >> sbi->log_blocks_per_seg) / sbi->segs_per_sec; | ||
| 114 | int dent_secs = ((get_pages(sbi, F2FS_DIRTY_DENTS) + pages_per_sec - 1) | ||
| 115 | >> sbi->log_blocks_per_seg) / sbi->segs_per_sec; | ||
| 116 | return free_sections(sbi) <= (node_secs + 2 * dent_secs + 2); | ||
| 117 | } | ||
diff --git a/fs/f2fs/hash.c b/fs/f2fs/hash.c new file mode 100644 index 000000000000..a60f04200f8b --- /dev/null +++ b/fs/f2fs/hash.c | |||
| @@ -0,0 +1,97 @@ | |||
| 1 | /* | ||
| 2 | * fs/f2fs/hash.c | ||
| 3 | * | ||
| 4 | * Copyright (c) 2012 Samsung Electronics Co., Ltd. | ||
| 5 | * http://www.samsung.com/ | ||
| 6 | * | ||
| 7 | * Portions of this code from linux/fs/ext3/hash.c | ||
| 8 | * | ||
| 9 | * Copyright (C) 2002 by Theodore Ts'o | ||
| 10 | * | ||
| 11 | * This program is free software; you can redistribute it and/or modify | ||
| 12 | * it under the terms of the GNU General Public License version 2 as | ||
| 13 | * published by the Free Software Foundation. | ||
| 14 | */ | ||
| 15 | #include <linux/types.h> | ||
| 16 | #include <linux/fs.h> | ||
| 17 | #include <linux/f2fs_fs.h> | ||
| 18 | #include <linux/cryptohash.h> | ||
| 19 | #include <linux/pagemap.h> | ||
| 20 | |||
| 21 | #include "f2fs.h" | ||
| 22 | |||
| 23 | /* | ||
| 24 | * Hashing code copied from ext3 | ||
| 25 | */ | ||
| 26 | #define DELTA 0x9E3779B9 | ||
| 27 | |||
| 28 | static void TEA_transform(unsigned int buf[4], unsigned int const in[]) | ||
| 29 | { | ||
| 30 | __u32 sum = 0; | ||
| 31 | __u32 b0 = buf[0], b1 = buf[1]; | ||
| 32 | __u32 a = in[0], b = in[1], c = in[2], d = in[3]; | ||
| 33 | int n = 16; | ||
| 34 | |||
| 35 | do { | ||
| 36 | sum += DELTA; | ||
| 37 | b0 += ((b1 << 4)+a) ^ (b1+sum) ^ ((b1 >> 5)+b); | ||
| 38 | b1 += ((b0 << 4)+c) ^ (b0+sum) ^ ((b0 >> 5)+d); | ||
| 39 | } while (--n); | ||
| 40 | |||
| 41 | buf[0] += b0; | ||
| 42 | buf[1] += b1; | ||
| 43 | } | ||
| 44 | |||
| 45 | static void str2hashbuf(const char *msg, int len, unsigned int *buf, int num) | ||
| 46 | { | ||
| 47 | unsigned pad, val; | ||
| 48 | int i; | ||
| 49 | |||
| 50 | pad = (__u32)len | ((__u32)len << 8); | ||
| 51 | pad |= pad << 16; | ||
| 52 | |||
| 53 | val = pad; | ||
| 54 | if (len > num * 4) | ||
| 55 | len = num * 4; | ||
| 56 | for (i = 0; i < len; i++) { | ||
| 57 | if ((i % 4) == 0) | ||
| 58 | val = pad; | ||
| 59 | val = msg[i] + (val << 8); | ||
| 60 | if ((i % 4) == 3) { | ||
| 61 | *buf++ = val; | ||
| 62 | val = pad; | ||
| 63 | num--; | ||
| 64 | } | ||
| 65 | } | ||
| 66 | if (--num >= 0) | ||
| 67 | *buf++ = val; | ||
| 68 | while (--num >= 0) | ||
| 69 | *buf++ = pad; | ||
| 70 | } | ||
| 71 | |||
| 72 | f2fs_hash_t f2fs_dentry_hash(const char *name, int len) | ||
| 73 | { | ||
| 74 | __u32 hash, minor_hash; | ||
| 75 | f2fs_hash_t f2fs_hash; | ||
| 76 | const char *p; | ||
| 77 | __u32 in[8], buf[4]; | ||
| 78 | |||
| 79 | /* Initialize the default seed for the hash checksum functions */ | ||
| 80 | buf[0] = 0x67452301; | ||
| 81 | buf[1] = 0xefcdab89; | ||
| 82 | buf[2] = 0x98badcfe; | ||
| 83 | buf[3] = 0x10325476; | ||
| 84 | |||
| 85 | p = name; | ||
| 86 | while (len > 0) { | ||
| 87 | str2hashbuf(p, len, in, 4); | ||
| 88 | TEA_transform(buf, in); | ||
| 89 | len -= 16; | ||
| 90 | p += 16; | ||
| 91 | } | ||
| 92 | hash = buf[0]; | ||
| 93 | minor_hash = buf[1]; | ||
| 94 | |||
| 95 | f2fs_hash = cpu_to_le32(hash & ~F2FS_HASH_COL_BIT); | ||
| 96 | return f2fs_hash; | ||
| 97 | } | ||
diff --git a/fs/f2fs/inode.c b/fs/f2fs/inode.c new file mode 100644 index 000000000000..df5fb381ebf1 --- /dev/null +++ b/fs/f2fs/inode.c | |||
| @@ -0,0 +1,268 @@ | |||
| 1 | /* | ||
| 2 | * fs/f2fs/inode.c | ||
| 3 | * | ||
| 4 | * Copyright (c) 2012 Samsung Electronics Co., Ltd. | ||
| 5 | * http://www.samsung.com/ | ||
| 6 | * | ||
| 7 | * This program is free software; you can redistribute it and/or modify | ||
| 8 | * it under the terms of the GNU General Public License version 2 as | ||
| 9 | * published by the Free Software Foundation. | ||
| 10 | */ | ||
| 11 | #include <linux/fs.h> | ||
| 12 | #include <linux/f2fs_fs.h> | ||
| 13 | #include <linux/buffer_head.h> | ||
| 14 | #include <linux/writeback.h> | ||
| 15 | |||
| 16 | #include "f2fs.h" | ||
| 17 | #include "node.h" | ||
| 18 | |||
| 19 | struct f2fs_iget_args { | ||
| 20 | u64 ino; | ||
| 21 | int on_free; | ||
| 22 | }; | ||
| 23 | |||
| 24 | void f2fs_set_inode_flags(struct inode *inode) | ||
| 25 | { | ||
| 26 | unsigned int flags = F2FS_I(inode)->i_flags; | ||
| 27 | |||
| 28 | inode->i_flags &= ~(S_SYNC | S_APPEND | S_IMMUTABLE | | ||
| 29 | S_NOATIME | S_DIRSYNC); | ||
| 30 | |||
| 31 | if (flags & FS_SYNC_FL) | ||
| 32 | inode->i_flags |= S_SYNC; | ||
| 33 | if (flags & FS_APPEND_FL) | ||
| 34 | inode->i_flags |= S_APPEND; | ||
| 35 | if (flags & FS_IMMUTABLE_FL) | ||
| 36 | inode->i_flags |= S_IMMUTABLE; | ||
| 37 | if (flags & FS_NOATIME_FL) | ||
| 38 | inode->i_flags |= S_NOATIME; | ||
| 39 | if (flags & FS_DIRSYNC_FL) | ||
| 40 | inode->i_flags |= S_DIRSYNC; | ||
| 41 | } | ||
| 42 | |||
| 43 | static int f2fs_iget_test(struct inode *inode, void *data) | ||
| 44 | { | ||
| 45 | struct f2fs_iget_args *args = data; | ||
| 46 | |||
| 47 | if (inode->i_ino != args->ino) | ||
| 48 | return 0; | ||
| 49 | if (inode->i_state & (I_FREEING | I_WILL_FREE)) { | ||
| 50 | args->on_free = 1; | ||
| 51 | return 0; | ||
| 52 | } | ||
| 53 | return 1; | ||
| 54 | } | ||
| 55 | |||
| 56 | struct inode *f2fs_iget_nowait(struct super_block *sb, unsigned long ino) | ||
| 57 | { | ||
| 58 | struct f2fs_iget_args args = { | ||
| 59 | .ino = ino, | ||
| 60 | .on_free = 0 | ||
| 61 | }; | ||
| 62 | struct inode *inode = ilookup5(sb, ino, f2fs_iget_test, &args); | ||
| 63 | |||
| 64 | if (inode) | ||
| 65 | return inode; | ||
| 66 | if (!args.on_free) | ||
| 67 | return f2fs_iget(sb, ino); | ||
| 68 | return ERR_PTR(-ENOENT); | ||
| 69 | } | ||
| 70 | |||
| 71 | static int do_read_inode(struct inode *inode) | ||
| 72 | { | ||
| 73 | struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); | ||
| 74 | struct f2fs_inode_info *fi = F2FS_I(inode); | ||
| 75 | struct page *node_page; | ||
| 76 | struct f2fs_node *rn; | ||
| 77 | struct f2fs_inode *ri; | ||
| 78 | |||
| 79 | /* Check if ino is within scope */ | ||
| 80 | check_nid_range(sbi, inode->i_ino); | ||
| 81 | |||
| 82 | node_page = get_node_page(sbi, inode->i_ino); | ||
| 83 | if (IS_ERR(node_page)) | ||
| 84 | return PTR_ERR(node_page); | ||
| 85 | |||
| 86 | rn = page_address(node_page); | ||
| 87 | ri = &(rn->i); | ||
| 88 | |||
| 89 | inode->i_mode = le16_to_cpu(ri->i_mode); | ||
| 90 | i_uid_write(inode, le32_to_cpu(ri->i_uid)); | ||
| 91 | i_gid_write(inode, le32_to_cpu(ri->i_gid)); | ||
| 92 | set_nlink(inode, le32_to_cpu(ri->i_links)); | ||
| 93 | inode->i_size = le64_to_cpu(ri->i_size); | ||
| 94 | inode->i_blocks = le64_to_cpu(ri->i_blocks); | ||
| 95 | |||
| 96 | inode->i_atime.tv_sec = le64_to_cpu(ri->i_atime); | ||
| 97 | inode->i_ctime.tv_sec = le64_to_cpu(ri->i_ctime); | ||
| 98 | inode->i_mtime.tv_sec = le64_to_cpu(ri->i_mtime); | ||
| 99 | inode->i_atime.tv_nsec = le32_to_cpu(ri->i_atime_nsec); | ||
| 100 | inode->i_ctime.tv_nsec = le32_to_cpu(ri->i_ctime_nsec); | ||
| 101 | inode->i_mtime.tv_nsec = le32_to_cpu(ri->i_mtime_nsec); | ||
| 102 | inode->i_generation = le32_to_cpu(ri->i_generation); | ||
| 103 | |||
| 104 | fi->i_current_depth = le32_to_cpu(ri->i_current_depth); | ||
| 105 | fi->i_xattr_nid = le32_to_cpu(ri->i_xattr_nid); | ||
| 106 | fi->i_flags = le32_to_cpu(ri->i_flags); | ||
| 107 | fi->flags = 0; | ||
| 108 | fi->data_version = le64_to_cpu(F2FS_CKPT(sbi)->checkpoint_ver) - 1; | ||
| 109 | fi->i_advise = ri->i_advise; | ||
| 110 | fi->i_pino = le32_to_cpu(ri->i_pino); | ||
| 111 | get_extent_info(&fi->ext, ri->i_ext); | ||
| 112 | f2fs_put_page(node_page, 1); | ||
| 113 | return 0; | ||
| 114 | } | ||
| 115 | |||
| 116 | struct inode *f2fs_iget(struct super_block *sb, unsigned long ino) | ||
| 117 | { | ||
| 118 | struct f2fs_sb_info *sbi = F2FS_SB(sb); | ||
| 119 | struct inode *inode; | ||
| 120 | int ret; | ||
| 121 | |||
| 122 | inode = iget_locked(sb, ino); | ||
| 123 | if (!inode) | ||
| 124 | return ERR_PTR(-ENOMEM); | ||
| 125 | if (!(inode->i_state & I_NEW)) | ||
| 126 | return inode; | ||
| 127 | if (ino == F2FS_NODE_INO(sbi) || ino == F2FS_META_INO(sbi)) | ||
| 128 | goto make_now; | ||
| 129 | |||
| 130 | ret = do_read_inode(inode); | ||
| 131 | if (ret) | ||
| 132 | goto bad_inode; | ||
| 133 | |||
| 134 | if (!sbi->por_doing && inode->i_nlink == 0) { | ||
| 135 | ret = -ENOENT; | ||
| 136 | goto bad_inode; | ||
| 137 | } | ||
| 138 | |||
| 139 | make_now: | ||
| 140 | if (ino == F2FS_NODE_INO(sbi)) { | ||
| 141 | inode->i_mapping->a_ops = &f2fs_node_aops; | ||
| 142 | mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_ZERO); | ||
| 143 | } else if (ino == F2FS_META_INO(sbi)) { | ||
| 144 | inode->i_mapping->a_ops = &f2fs_meta_aops; | ||
| 145 | mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_ZERO); | ||
| 146 | } else if (S_ISREG(inode->i_mode)) { | ||
| 147 | inode->i_op = &f2fs_file_inode_operations; | ||
| 148 | inode->i_fop = &f2fs_file_operations; | ||
| 149 | inode->i_mapping->a_ops = &f2fs_dblock_aops; | ||
| 150 | } else if (S_ISDIR(inode->i_mode)) { | ||
| 151 | inode->i_op = &f2fs_dir_inode_operations; | ||
| 152 | inode->i_fop = &f2fs_dir_operations; | ||
| 153 | inode->i_mapping->a_ops = &f2fs_dblock_aops; | ||
| 154 | mapping_set_gfp_mask(inode->i_mapping, GFP_HIGHUSER_MOVABLE | | ||
| 155 | __GFP_ZERO); | ||
| 156 | } else if (S_ISLNK(inode->i_mode)) { | ||
| 157 | inode->i_op = &f2fs_symlink_inode_operations; | ||
| 158 | inode->i_mapping->a_ops = &f2fs_dblock_aops; | ||
| 159 | } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || | ||
| 160 | S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { | ||
| 161 | inode->i_op = &f2fs_special_inode_operations; | ||
| 162 | init_special_inode(inode, inode->i_mode, inode->i_rdev); | ||
| 163 | } else { | ||
| 164 | ret = -EIO; | ||
| 165 | goto bad_inode; | ||
| 166 | } | ||
| 167 | unlock_new_inode(inode); | ||
| 168 | |||
| 169 | return inode; | ||
| 170 | |||
| 171 | bad_inode: | ||
| 172 | iget_failed(inode); | ||
| 173 | return ERR_PTR(ret); | ||
| 174 | } | ||
| 175 | |||
| 176 | void update_inode(struct inode *inode, struct page *node_page) | ||
| 177 | { | ||
| 178 | struct f2fs_node *rn; | ||
| 179 | struct f2fs_inode *ri; | ||
| 180 | |||
| 181 | wait_on_page_writeback(node_page); | ||
| 182 | |||
| 183 | rn = page_address(node_page); | ||
| 184 | ri = &(rn->i); | ||
| 185 | |||
| 186 | ri->i_mode = cpu_to_le16(inode->i_mode); | ||
| 187 | ri->i_advise = F2FS_I(inode)->i_advise; | ||
| 188 | ri->i_uid = cpu_to_le32(i_uid_read(inode)); | ||
| 189 | ri->i_gid = cpu_to_le32(i_gid_read(inode)); | ||
| 190 | ri->i_links = cpu_to_le32(inode->i_nlink); | ||
| 191 | ri->i_size = cpu_to_le64(i_size_read(inode)); | ||
| 192 | ri->i_blocks = cpu_to_le64(inode->i_blocks); | ||
| 193 | set_raw_extent(&F2FS_I(inode)->ext, &ri->i_ext); | ||
| 194 | |||
| 195 | ri->i_atime = cpu_to_le64(inode->i_atime.tv_sec); | ||
| 196 | ri->i_ctime = cpu_to_le64(inode->i_ctime.tv_sec); | ||
| 197 | ri->i_mtime = cpu_to_le64(inode->i_mtime.tv_sec); | ||
| 198 | ri->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec); | ||
| 199 | ri->i_ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec); | ||
| 200 | ri->i_mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec); | ||
| 201 | ri->i_current_depth = cpu_to_le32(F2FS_I(inode)->i_current_depth); | ||
| 202 | ri->i_xattr_nid = cpu_to_le32(F2FS_I(inode)->i_xattr_nid); | ||
| 203 | ri->i_flags = cpu_to_le32(F2FS_I(inode)->i_flags); | ||
| 204 | ri->i_pino = cpu_to_le32(F2FS_I(inode)->i_pino); | ||
| 205 | ri->i_generation = cpu_to_le32(inode->i_generation); | ||
| 206 | set_page_dirty(node_page); | ||
| 207 | } | ||
| 208 | |||
| 209 | int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc) | ||
| 210 | { | ||
| 211 | struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); | ||
| 212 | struct page *node_page; | ||
| 213 | bool need_lock = false; | ||
| 214 | |||
| 215 | if (inode->i_ino == F2FS_NODE_INO(sbi) || | ||
| 216 | inode->i_ino == F2FS_META_INO(sbi)) | ||
| 217 | return 0; | ||
| 218 | |||
| 219 | node_page = get_node_page(sbi, inode->i_ino); | ||
| 220 | if (IS_ERR(node_page)) | ||
| 221 | return PTR_ERR(node_page); | ||
| 222 | |||
| 223 | if (!PageDirty(node_page)) { | ||
| 224 | need_lock = true; | ||
| 225 | f2fs_put_page(node_page, 1); | ||
| 226 | mutex_lock(&sbi->write_inode); | ||
| 227 | node_page = get_node_page(sbi, inode->i_ino); | ||
| 228 | if (IS_ERR(node_page)) { | ||
| 229 | mutex_unlock(&sbi->write_inode); | ||
| 230 | return PTR_ERR(node_page); | ||
| 231 | } | ||
| 232 | } | ||
| 233 | update_inode(inode, node_page); | ||
| 234 | f2fs_put_page(node_page, 1); | ||
| 235 | if (need_lock) | ||
| 236 | mutex_unlock(&sbi->write_inode); | ||
| 237 | return 0; | ||
| 238 | } | ||
| 239 | |||
| 240 | /* | ||
| 241 | * Called at the last iput() if i_nlink is zero | ||
| 242 | */ | ||
| 243 | void f2fs_evict_inode(struct inode *inode) | ||
| 244 | { | ||
| 245 | struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); | ||
| 246 | |||
| 247 | truncate_inode_pages(&inode->i_data, 0); | ||
| 248 | |||
| 249 | if (inode->i_ino == F2FS_NODE_INO(sbi) || | ||
| 250 | inode->i_ino == F2FS_META_INO(sbi)) | ||
| 251 | goto no_delete; | ||
| 252 | |||
| 253 | BUG_ON(atomic_read(&F2FS_I(inode)->dirty_dents)); | ||
| 254 | remove_dirty_dir_inode(inode); | ||
| 255 | |||
| 256 | if (inode->i_nlink || is_bad_inode(inode)) | ||
| 257 | goto no_delete; | ||
| 258 | |||
| 259 | set_inode_flag(F2FS_I(inode), FI_NO_ALLOC); | ||
| 260 | i_size_write(inode, 0); | ||
| 261 | |||
| 262 | if (F2FS_HAS_BLOCKS(inode)) | ||
| 263 | f2fs_truncate(inode); | ||
| 264 | |||
| 265 | remove_inode_page(inode); | ||
| 266 | no_delete: | ||
| 267 | clear_inode(inode); | ||
| 268 | } | ||
diff --git a/fs/f2fs/namei.c b/fs/f2fs/namei.c new file mode 100644 index 000000000000..89b7675dc377 --- /dev/null +++ b/fs/f2fs/namei.c | |||
| @@ -0,0 +1,503 @@ | |||
| 1 | /* | ||
| 2 | * fs/f2fs/namei.c | ||
| 3 | * | ||
| 4 | * Copyright (c) 2012 Samsung Electronics Co., Ltd. | ||
| 5 | * http://www.samsung.com/ | ||
| 6 | * | ||
| 7 | * This program is free software; you can redistribute it and/or modify | ||
| 8 | * it under the terms of the GNU General Public License version 2 as | ||
| 9 | * published by the Free Software Foundation. | ||
| 10 | */ | ||
| 11 | #include <linux/fs.h> | ||
| 12 | #include <linux/f2fs_fs.h> | ||
| 13 | #include <linux/pagemap.h> | ||
| 14 | #include <linux/sched.h> | ||
| 15 | #include <linux/ctype.h> | ||
| 16 | |||
| 17 | #include "f2fs.h" | ||
| 18 | #include "xattr.h" | ||
| 19 | #include "acl.h" | ||
| 20 | |||
| 21 | static struct inode *f2fs_new_inode(struct inode *dir, umode_t mode) | ||
| 22 | { | ||
| 23 | struct super_block *sb = dir->i_sb; | ||
| 24 | struct f2fs_sb_info *sbi = F2FS_SB(sb); | ||
| 25 | nid_t ino; | ||
| 26 | struct inode *inode; | ||
| 27 | bool nid_free = false; | ||
| 28 | int err; | ||
| 29 | |||
| 30 | inode = new_inode(sb); | ||
| 31 | if (!inode) | ||
| 32 | return ERR_PTR(-ENOMEM); | ||
| 33 | |||
| 34 | mutex_lock_op(sbi, NODE_NEW); | ||
| 35 | if (!alloc_nid(sbi, &ino)) { | ||
| 36 | mutex_unlock_op(sbi, NODE_NEW); | ||
| 37 | err = -ENOSPC; | ||
| 38 | goto fail; | ||
| 39 | } | ||
| 40 | mutex_unlock_op(sbi, NODE_NEW); | ||
| 41 | |||
| 42 | inode->i_uid = current_fsuid(); | ||
| 43 | |||
| 44 | if (dir->i_mode & S_ISGID) { | ||
| 45 | inode->i_gid = dir->i_gid; | ||
| 46 | if (S_ISDIR(mode)) | ||
| 47 | mode |= S_ISGID; | ||
| 48 | } else { | ||
| 49 | inode->i_gid = current_fsgid(); | ||
| 50 | } | ||
| 51 | |||
| 52 | inode->i_ino = ino; | ||
| 53 | inode->i_mode = mode; | ||
| 54 | inode->i_blocks = 0; | ||
| 55 | inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; | ||
| 56 | inode->i_generation = sbi->s_next_generation++; | ||
| 57 | |||
| 58 | err = insert_inode_locked(inode); | ||
| 59 | if (err) { | ||
| 60 | err = -EINVAL; | ||
| 61 | nid_free = true; | ||
| 62 | goto out; | ||
| 63 | } | ||
| 64 | |||
| 65 | mark_inode_dirty(inode); | ||
| 66 | return inode; | ||
| 67 | |||
| 68 | out: | ||
| 69 | clear_nlink(inode); | ||
| 70 | unlock_new_inode(inode); | ||
| 71 | fail: | ||
| 72 | iput(inode); | ||
| 73 | if (nid_free) | ||
| 74 | alloc_nid_failed(sbi, ino); | ||
| 75 | return ERR_PTR(err); | ||
| 76 | } | ||
| 77 | |||
| 78 | static int is_multimedia_file(const unsigned char *s, const char *sub) | ||
| 79 | { | ||
| 80 | int slen = strlen(s); | ||
| 81 | int sublen = strlen(sub); | ||
| 82 | int ret; | ||
| 83 | |||
| 84 | if (sublen > slen) | ||
| 85 | return 1; | ||
| 86 | |||
| 87 | ret = memcmp(s + slen - sublen, sub, sublen); | ||
| 88 | if (ret) { /* compare upper case */ | ||
| 89 | int i; | ||
| 90 | char upper_sub[8]; | ||
| 91 | for (i = 0; i < sublen && i < sizeof(upper_sub); i++) | ||
| 92 | upper_sub[i] = toupper(sub[i]); | ||
| 93 | return memcmp(s + slen - sublen, upper_sub, sublen); | ||
| 94 | } | ||
| 95 | |||
| 96 | return ret; | ||
| 97 | } | ||
| 98 | |||
| 99 | /* | ||
| 100 | * Set multimedia files as cold files for hot/cold data separation | ||
| 101 | */ | ||
| 102 | static inline void set_cold_file(struct f2fs_sb_info *sbi, struct inode *inode, | ||
| 103 | const unsigned char *name) | ||
| 104 | { | ||
| 105 | int i; | ||
| 106 | __u8 (*extlist)[8] = sbi->raw_super->extension_list; | ||
| 107 | |||
| 108 | int count = le32_to_cpu(sbi->raw_super->extension_count); | ||
| 109 | for (i = 0; i < count; i++) { | ||
| 110 | if (!is_multimedia_file(name, extlist[i])) { | ||
| 111 | F2FS_I(inode)->i_advise |= FADVISE_COLD_BIT; | ||
| 112 | break; | ||
| 113 | } | ||
| 114 | } | ||
| 115 | } | ||
| 116 | |||
| 117 | static int f2fs_create(struct inode *dir, struct dentry *dentry, umode_t mode, | ||
| 118 | bool excl) | ||
| 119 | { | ||
| 120 | struct super_block *sb = dir->i_sb; | ||
| 121 | struct f2fs_sb_info *sbi = F2FS_SB(sb); | ||
| 122 | struct inode *inode; | ||
| 123 | nid_t ino = 0; | ||
| 124 | int err; | ||
| 125 | |||
| 126 | inode = f2fs_new_inode(dir, mode); | ||
| 127 | if (IS_ERR(inode)) | ||
| 128 | return PTR_ERR(inode); | ||
| 129 | |||
| 130 | if (!test_opt(sbi, DISABLE_EXT_IDENTIFY)) | ||
| 131 | set_cold_file(sbi, inode, dentry->d_name.name); | ||
| 132 | |||
| 133 | inode->i_op = &f2fs_file_inode_operations; | ||
| 134 | inode->i_fop = &f2fs_file_operations; | ||
| 135 | inode->i_mapping->a_ops = &f2fs_dblock_aops; | ||
| 136 | ino = inode->i_ino; | ||
| 137 | |||
| 138 | err = f2fs_add_link(dentry, inode); | ||
| 139 | if (err) | ||
| 140 | goto out; | ||
| 141 | |||
| 142 | alloc_nid_done(sbi, ino); | ||
| 143 | |||
| 144 | if (!sbi->por_doing) | ||
| 145 | d_instantiate(dentry, inode); | ||
| 146 | unlock_new_inode(inode); | ||
| 147 | |||
| 148 | f2fs_balance_fs(sbi); | ||
| 149 | return 0; | ||
| 150 | out: | ||
| 151 | clear_nlink(inode); | ||
| 152 | unlock_new_inode(inode); | ||
| 153 | iput(inode); | ||
| 154 | alloc_nid_failed(sbi, ino); | ||
| 155 | return err; | ||
| 156 | } | ||
| 157 | |||
| 158 | static int f2fs_link(struct dentry *old_dentry, struct inode *dir, | ||
| 159 | struct dentry *dentry) | ||
| 160 | { | ||
| 161 | struct inode *inode = old_dentry->d_inode; | ||
| 162 | struct super_block *sb = dir->i_sb; | ||
| 163 | struct f2fs_sb_info *sbi = F2FS_SB(sb); | ||
| 164 | int err; | ||
| 165 | |||
| 166 | inode->i_ctime = CURRENT_TIME; | ||
| 167 | atomic_inc(&inode->i_count); | ||
| 168 | |||
| 169 | set_inode_flag(F2FS_I(inode), FI_INC_LINK); | ||
| 170 | err = f2fs_add_link(dentry, inode); | ||
| 171 | if (err) | ||
| 172 | goto out; | ||
| 173 | |||
| 174 | d_instantiate(dentry, inode); | ||
| 175 | |||
| 176 | f2fs_balance_fs(sbi); | ||
| 177 | return 0; | ||
| 178 | out: | ||
| 179 | clear_inode_flag(F2FS_I(inode), FI_INC_LINK); | ||
| 180 | iput(inode); | ||
| 181 | return err; | ||
| 182 | } | ||
| 183 | |||
| 184 | struct dentry *f2fs_get_parent(struct dentry *child) | ||
| 185 | { | ||
| 186 | struct qstr dotdot = QSTR_INIT("..", 2); | ||
| 187 | unsigned long ino = f2fs_inode_by_name(child->d_inode, &dotdot); | ||
| 188 | if (!ino) | ||
| 189 | return ERR_PTR(-ENOENT); | ||
| 190 | return d_obtain_alias(f2fs_iget(child->d_inode->i_sb, ino)); | ||
| 191 | } | ||
| 192 | |||
| 193 | static struct dentry *f2fs_lookup(struct inode *dir, struct dentry *dentry, | ||
| 194 | unsigned int flags) | ||
| 195 | { | ||
| 196 | struct inode *inode = NULL; | ||
| 197 | struct f2fs_dir_entry *de; | ||
| 198 | struct page *page; | ||
| 199 | |||
| 200 | if (dentry->d_name.len > F2FS_MAX_NAME_LEN) | ||
| 201 | return ERR_PTR(-ENAMETOOLONG); | ||
| 202 | |||
| 203 | de = f2fs_find_entry(dir, &dentry->d_name, &page); | ||
| 204 | if (de) { | ||
| 205 | nid_t ino = le32_to_cpu(de->ino); | ||
| 206 | kunmap(page); | ||
| 207 | f2fs_put_page(page, 0); | ||
| 208 | |||
| 209 | inode = f2fs_iget(dir->i_sb, ino); | ||
| 210 | if (IS_ERR(inode)) | ||
| 211 | return ERR_CAST(inode); | ||
| 212 | } | ||
| 213 | |||
| 214 | return d_splice_alias(inode, dentry); | ||
| 215 | } | ||
| 216 | |||
| 217 | static int f2fs_unlink(struct inode *dir, struct dentry *dentry) | ||
| 218 | { | ||
| 219 | struct super_block *sb = dir->i_sb; | ||
| 220 | struct f2fs_sb_info *sbi = F2FS_SB(sb); | ||
| 221 | struct inode *inode = dentry->d_inode; | ||
| 222 | struct f2fs_dir_entry *de; | ||
| 223 | struct page *page; | ||
| 224 | int err = -ENOENT; | ||
| 225 | |||
| 226 | de = f2fs_find_entry(dir, &dentry->d_name, &page); | ||
| 227 | if (!de) | ||
| 228 | goto fail; | ||
| 229 | |||
| 230 | err = check_orphan_space(sbi); | ||
| 231 | if (err) { | ||
| 232 | kunmap(page); | ||
| 233 | f2fs_put_page(page, 0); | ||
| 234 | goto fail; | ||
| 235 | } | ||
| 236 | |||
| 237 | f2fs_delete_entry(de, page, inode); | ||
| 238 | |||
| 239 | /* In order to evict this inode, we set it dirty */ | ||
| 240 | mark_inode_dirty(inode); | ||
| 241 | f2fs_balance_fs(sbi); | ||
| 242 | fail: | ||
| 243 | return err; | ||
| 244 | } | ||
| 245 | |||
| 246 | static int f2fs_symlink(struct inode *dir, struct dentry *dentry, | ||
| 247 | const char *symname) | ||
| 248 | { | ||
| 249 | struct super_block *sb = dir->i_sb; | ||
| 250 | struct f2fs_sb_info *sbi = F2FS_SB(sb); | ||
| 251 | struct inode *inode; | ||
| 252 | unsigned symlen = strlen(symname) + 1; | ||
| 253 | int err; | ||
| 254 | |||
| 255 | inode = f2fs_new_inode(dir, S_IFLNK | S_IRWXUGO); | ||
| 256 | if (IS_ERR(inode)) | ||
| 257 | return PTR_ERR(inode); | ||
| 258 | |||
| 259 | inode->i_op = &f2fs_symlink_inode_operations; | ||
| 260 | inode->i_mapping->a_ops = &f2fs_dblock_aops; | ||
| 261 | |||
| 262 | err = f2fs_add_link(dentry, inode); | ||
| 263 | if (err) | ||
| 264 | goto out; | ||
| 265 | |||
| 266 | err = page_symlink(inode, symname, symlen); | ||
| 267 | alloc_nid_done(sbi, inode->i_ino); | ||
| 268 | |||
| 269 | d_instantiate(dentry, inode); | ||
| 270 | unlock_new_inode(inode); | ||
| 271 | |||
| 272 | f2fs_balance_fs(sbi); | ||
| 273 | |||
| 274 | return err; | ||
| 275 | out: | ||
| 276 | clear_nlink(inode); | ||
| 277 | unlock_new_inode(inode); | ||
| 278 | iput(inode); | ||
| 279 | alloc_nid_failed(sbi, inode->i_ino); | ||
| 280 | return err; | ||
| 281 | } | ||
| 282 | |||
| 283 | static int f2fs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) | ||
| 284 | { | ||
| 285 | struct f2fs_sb_info *sbi = F2FS_SB(dir->i_sb); | ||
| 286 | struct inode *inode; | ||
| 287 | int err; | ||
| 288 | |||
| 289 | inode = f2fs_new_inode(dir, S_IFDIR | mode); | ||
| 290 | if (IS_ERR(inode)) | ||
| 291 | return PTR_ERR(inode); | ||
| 292 | |||
| 293 | inode->i_op = &f2fs_dir_inode_operations; | ||
| 294 | inode->i_fop = &f2fs_dir_operations; | ||
| 295 | inode->i_mapping->a_ops = &f2fs_dblock_aops; | ||
| 296 | mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_ZERO); | ||
| 297 | |||
| 298 | set_inode_flag(F2FS_I(inode), FI_INC_LINK); | ||
| 299 | err = f2fs_add_link(dentry, inode); | ||
| 300 | if (err) | ||
| 301 | goto out_fail; | ||
| 302 | |||
| 303 | alloc_nid_done(sbi, inode->i_ino); | ||
| 304 | |||
| 305 | d_instantiate(dentry, inode); | ||
| 306 | unlock_new_inode(inode); | ||
| 307 | |||
| 308 | f2fs_balance_fs(sbi); | ||
| 309 | return 0; | ||
| 310 | |||
| 311 | out_fail: | ||
| 312 | clear_inode_flag(F2FS_I(inode), FI_INC_LINK); | ||
| 313 | clear_nlink(inode); | ||
| 314 | unlock_new_inode(inode); | ||
| 315 | iput(inode); | ||
| 316 | alloc_nid_failed(sbi, inode->i_ino); | ||
| 317 | return err; | ||
| 318 | } | ||
| 319 | |||
| 320 | static int f2fs_rmdir(struct inode *dir, struct dentry *dentry) | ||
| 321 | { | ||
| 322 | struct inode *inode = dentry->d_inode; | ||
| 323 | if (f2fs_empty_dir(inode)) | ||
| 324 | return f2fs_unlink(dir, dentry); | ||
| 325 | return -ENOTEMPTY; | ||
| 326 | } | ||
| 327 | |||
| 328 | static int f2fs_mknod(struct inode *dir, struct dentry *dentry, | ||
| 329 | umode_t mode, dev_t rdev) | ||
| 330 | { | ||
| 331 | struct super_block *sb = dir->i_sb; | ||
| 332 | struct f2fs_sb_info *sbi = F2FS_SB(sb); | ||
| 333 | struct inode *inode; | ||
| 334 | int err = 0; | ||
| 335 | |||
| 336 | if (!new_valid_dev(rdev)) | ||
| 337 | return -EINVAL; | ||
| 338 | |||
| 339 | inode = f2fs_new_inode(dir, mode); | ||
| 340 | if (IS_ERR(inode)) | ||
| 341 | return PTR_ERR(inode); | ||
| 342 | |||
| 343 | init_special_inode(inode, inode->i_mode, rdev); | ||
| 344 | inode->i_op = &f2fs_special_inode_operations; | ||
| 345 | |||
| 346 | err = f2fs_add_link(dentry, inode); | ||
| 347 | if (err) | ||
| 348 | goto out; | ||
| 349 | |||
| 350 | alloc_nid_done(sbi, inode->i_ino); | ||
| 351 | d_instantiate(dentry, inode); | ||
| 352 | unlock_new_inode(inode); | ||
| 353 | |||
| 354 | f2fs_balance_fs(sbi); | ||
| 355 | |||
| 356 | return 0; | ||
| 357 | out: | ||
| 358 | clear_nlink(inode); | ||
| 359 | unlock_new_inode(inode); | ||
| 360 | iput(inode); | ||
| 361 | alloc_nid_failed(sbi, inode->i_ino); | ||
| 362 | return err; | ||
| 363 | } | ||
| 364 | |||
| 365 | static int f2fs_rename(struct inode *old_dir, struct dentry *old_dentry, | ||
| 366 | struct inode *new_dir, struct dentry *new_dentry) | ||
| 367 | { | ||
| 368 | struct super_block *sb = old_dir->i_sb; | ||
| 369 | struct f2fs_sb_info *sbi = F2FS_SB(sb); | ||
| 370 | struct inode *old_inode = old_dentry->d_inode; | ||
| 371 | struct inode *new_inode = new_dentry->d_inode; | ||
| 372 | struct page *old_dir_page; | ||
| 373 | struct page *old_page; | ||
| 374 | struct f2fs_dir_entry *old_dir_entry = NULL; | ||
| 375 | struct f2fs_dir_entry *old_entry; | ||
| 376 | struct f2fs_dir_entry *new_entry; | ||
| 377 | int err = -ENOENT; | ||
| 378 | |||
| 379 | old_entry = f2fs_find_entry(old_dir, &old_dentry->d_name, &old_page); | ||
| 380 | if (!old_entry) | ||
| 381 | goto out; | ||
| 382 | |||
| 383 | if (S_ISDIR(old_inode->i_mode)) { | ||
| 384 | err = -EIO; | ||
| 385 | old_dir_entry = f2fs_parent_dir(old_inode, &old_dir_page); | ||
| 386 | if (!old_dir_entry) | ||
| 387 | goto out_old; | ||
| 388 | } | ||
| 389 | |||
| 390 | mutex_lock_op(sbi, RENAME); | ||
| 391 | |||
| 392 | if (new_inode) { | ||
| 393 | struct page *new_page; | ||
| 394 | |||
| 395 | err = -ENOTEMPTY; | ||
| 396 | if (old_dir_entry && !f2fs_empty_dir(new_inode)) | ||
| 397 | goto out_dir; | ||
| 398 | |||
| 399 | err = -ENOENT; | ||
| 400 | new_entry = f2fs_find_entry(new_dir, &new_dentry->d_name, | ||
| 401 | &new_page); | ||
| 402 | if (!new_entry) | ||
| 403 | goto out_dir; | ||
| 404 | |||
| 405 | f2fs_set_link(new_dir, new_entry, new_page, old_inode); | ||
| 406 | |||
| 407 | new_inode->i_ctime = CURRENT_TIME; | ||
| 408 | if (old_dir_entry) | ||
| 409 | drop_nlink(new_inode); | ||
| 410 | drop_nlink(new_inode); | ||
| 411 | if (!new_inode->i_nlink) | ||
| 412 | add_orphan_inode(sbi, new_inode->i_ino); | ||
| 413 | f2fs_write_inode(new_inode, NULL); | ||
| 414 | } else { | ||
| 415 | err = f2fs_add_link(new_dentry, old_inode); | ||
| 416 | if (err) | ||
| 417 | goto out_dir; | ||
| 418 | |||
| 419 | if (old_dir_entry) { | ||
| 420 | inc_nlink(new_dir); | ||
| 421 | f2fs_write_inode(new_dir, NULL); | ||
| 422 | } | ||
| 423 | } | ||
| 424 | |||
| 425 | old_inode->i_ctime = CURRENT_TIME; | ||
| 426 | set_inode_flag(F2FS_I(old_inode), FI_NEED_CP); | ||
| 427 | mark_inode_dirty(old_inode); | ||
| 428 | |||
| 429 | f2fs_delete_entry(old_entry, old_page, NULL); | ||
| 430 | |||
| 431 | if (old_dir_entry) { | ||
| 432 | if (old_dir != new_dir) { | ||
| 433 | f2fs_set_link(old_inode, old_dir_entry, | ||
| 434 | old_dir_page, new_dir); | ||
| 435 | } else { | ||
| 436 | kunmap(old_dir_page); | ||
| 437 | f2fs_put_page(old_dir_page, 0); | ||
| 438 | } | ||
| 439 | drop_nlink(old_dir); | ||
| 440 | f2fs_write_inode(old_dir, NULL); | ||
| 441 | } | ||
| 442 | |||
| 443 | mutex_unlock_op(sbi, RENAME); | ||
| 444 | |||
| 445 | f2fs_balance_fs(sbi); | ||
| 446 | return 0; | ||
| 447 | |||
| 448 | out_dir: | ||
| 449 | if (old_dir_entry) { | ||
| 450 | kunmap(old_dir_page); | ||
| 451 | f2fs_put_page(old_dir_page, 0); | ||
| 452 | } | ||
| 453 | mutex_unlock_op(sbi, RENAME); | ||
| 454 | out_old: | ||
| 455 | kunmap(old_page); | ||
| 456 | f2fs_put_page(old_page, 0); | ||
| 457 | out: | ||
| 458 | return err; | ||
| 459 | } | ||
| 460 | |||
| 461 | const struct inode_operations f2fs_dir_inode_operations = { | ||
| 462 | .create = f2fs_create, | ||
| 463 | .lookup = f2fs_lookup, | ||
| 464 | .link = f2fs_link, | ||
| 465 | .unlink = f2fs_unlink, | ||
| 466 | .symlink = f2fs_symlink, | ||
| 467 | .mkdir = f2fs_mkdir, | ||
| 468 | .rmdir = f2fs_rmdir, | ||
| 469 | .mknod = f2fs_mknod, | ||
| 470 | .rename = f2fs_rename, | ||
| 471 | .setattr = f2fs_setattr, | ||
| 472 | .get_acl = f2fs_get_acl, | ||
| 473 | #ifdef CONFIG_F2FS_FS_XATTR | ||
| 474 | .setxattr = generic_setxattr, | ||
| 475 | .getxattr = generic_getxattr, | ||
| 476 | .listxattr = f2fs_listxattr, | ||
| 477 | .removexattr = generic_removexattr, | ||
| 478 | #endif | ||
| 479 | }; | ||
| 480 | |||
| 481 | const struct inode_operations f2fs_symlink_inode_operations = { | ||
| 482 | .readlink = generic_readlink, | ||
| 483 | .follow_link = page_follow_link_light, | ||
| 484 | .put_link = page_put_link, | ||
| 485 | .setattr = f2fs_setattr, | ||
| 486 | #ifdef CONFIG_F2FS_FS_XATTR | ||
| 487 | .setxattr = generic_setxattr, | ||
| 488 | .getxattr = generic_getxattr, | ||
| 489 | .listxattr = f2fs_listxattr, | ||
| 490 | .removexattr = generic_removexattr, | ||
| 491 | #endif | ||
| 492 | }; | ||
| 493 | |||
| 494 | const struct inode_operations f2fs_special_inode_operations = { | ||
| 495 | .setattr = f2fs_setattr, | ||
| 496 | .get_acl = f2fs_get_acl, | ||
| 497 | #ifdef CONFIG_F2FS_FS_XATTR | ||
| 498 | .setxattr = generic_setxattr, | ||
| 499 | .getxattr = generic_getxattr, | ||
| 500 | .listxattr = f2fs_listxattr, | ||
| 501 | .removexattr = generic_removexattr, | ||
| 502 | #endif | ||
| 503 | }; | ||
diff --git a/fs/f2fs/node.c b/fs/f2fs/node.c new file mode 100644 index 000000000000..19870361497e --- /dev/null +++ b/fs/f2fs/node.c | |||
| @@ -0,0 +1,1764 @@ | |||
| 1 | /* | ||
| 2 | * fs/f2fs/node.c | ||
| 3 | * | ||
| 4 | * Copyright (c) 2012 Samsung Electronics Co., Ltd. | ||
| 5 | * http://www.samsung.com/ | ||
| 6 | * | ||
| 7 | * This program is free software; you can redistribute it and/or modify | ||
| 8 | * it under the terms of the GNU General Public License version 2 as | ||
| 9 | * published by the Free Software Foundation. | ||
| 10 | */ | ||
| 11 | #include <linux/fs.h> | ||
| 12 | #include <linux/f2fs_fs.h> | ||
| 13 | #include <linux/mpage.h> | ||
| 14 | #include <linux/backing-dev.h> | ||
| 15 | #include <linux/blkdev.h> | ||
| 16 | #include <linux/pagevec.h> | ||
| 17 | #include <linux/swap.h> | ||
| 18 | |||
| 19 | #include "f2fs.h" | ||
| 20 | #include "node.h" | ||
| 21 | #include "segment.h" | ||
| 22 | |||
| 23 | static struct kmem_cache *nat_entry_slab; | ||
| 24 | static struct kmem_cache *free_nid_slab; | ||
| 25 | |||
| 26 | static void clear_node_page_dirty(struct page *page) | ||
| 27 | { | ||
| 28 | struct address_space *mapping = page->mapping; | ||
| 29 | struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb); | ||
| 30 | unsigned int long flags; | ||
| 31 | |||
| 32 | if (PageDirty(page)) { | ||
| 33 | spin_lock_irqsave(&mapping->tree_lock, flags); | ||
| 34 | radix_tree_tag_clear(&mapping->page_tree, | ||
| 35 | page_index(page), | ||
| 36 | PAGECACHE_TAG_DIRTY); | ||
| 37 | spin_unlock_irqrestore(&mapping->tree_lock, flags); | ||
| 38 | |||
| 39 | clear_page_dirty_for_io(page); | ||
| 40 | dec_page_count(sbi, F2FS_DIRTY_NODES); | ||
| 41 | } | ||
| 42 | ClearPageUptodate(page); | ||
| 43 | } | ||
| 44 | |||
| 45 | static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid) | ||
| 46 | { | ||
| 47 | pgoff_t index = current_nat_addr(sbi, nid); | ||
| 48 | return get_meta_page(sbi, index); | ||
| 49 | } | ||
| 50 | |||
| 51 | static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid) | ||
| 52 | { | ||
| 53 | struct page *src_page; | ||
| 54 | struct page *dst_page; | ||
| 55 | pgoff_t src_off; | ||
| 56 | pgoff_t dst_off; | ||
| 57 | void *src_addr; | ||
| 58 | void *dst_addr; | ||
| 59 | struct f2fs_nm_info *nm_i = NM_I(sbi); | ||
| 60 | |||
| 61 | src_off = current_nat_addr(sbi, nid); | ||
| 62 | dst_off = next_nat_addr(sbi, src_off); | ||
| 63 | |||
| 64 | /* get current nat block page with lock */ | ||
| 65 | src_page = get_meta_page(sbi, src_off); | ||
| 66 | |||
| 67 | /* Dirty src_page means that it is already the new target NAT page. */ | ||
| 68 | if (PageDirty(src_page)) | ||
| 69 | return src_page; | ||
| 70 | |||
| 71 | dst_page = grab_meta_page(sbi, dst_off); | ||
| 72 | |||
| 73 | src_addr = page_address(src_page); | ||
| 74 | dst_addr = page_address(dst_page); | ||
| 75 | memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE); | ||
| 76 | set_page_dirty(dst_page); | ||
| 77 | f2fs_put_page(src_page, 1); | ||
| 78 | |||
| 79 | set_to_next_nat(nm_i, nid); | ||
| 80 | |||
| 81 | return dst_page; | ||
| 82 | } | ||
| 83 | |||
| 84 | /* | ||
| 85 | * Readahead NAT pages | ||
| 86 | */ | ||
| 87 | static void ra_nat_pages(struct f2fs_sb_info *sbi, int nid) | ||
| 88 | { | ||
| 89 | struct address_space *mapping = sbi->meta_inode->i_mapping; | ||
| 90 | struct f2fs_nm_info *nm_i = NM_I(sbi); | ||
| 91 | struct page *page; | ||
| 92 | pgoff_t index; | ||
| 93 | int i; | ||
| 94 | |||
| 95 | for (i = 0; i < FREE_NID_PAGES; i++, nid += NAT_ENTRY_PER_BLOCK) { | ||
| 96 | if (nid >= nm_i->max_nid) | ||
| 97 | nid = 0; | ||
| 98 | index = current_nat_addr(sbi, nid); | ||
| 99 | |||
| 100 | page = grab_cache_page(mapping, index); | ||
| 101 | if (!page) | ||
| 102 | continue; | ||
| 103 | if (f2fs_readpage(sbi, page, index, READ)) { | ||
| 104 | f2fs_put_page(page, 1); | ||
| 105 | continue; | ||
| 106 | } | ||
| 107 | page_cache_release(page); | ||
| 108 | } | ||
| 109 | } | ||
| 110 | |||
| 111 | static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n) | ||
| 112 | { | ||
| 113 | return radix_tree_lookup(&nm_i->nat_root, n); | ||
| 114 | } | ||
| 115 | |||
| 116 | static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i, | ||
| 117 | nid_t start, unsigned int nr, struct nat_entry **ep) | ||
| 118 | { | ||
| 119 | return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr); | ||
| 120 | } | ||
| 121 | |||
| 122 | static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e) | ||
| 123 | { | ||
| 124 | list_del(&e->list); | ||
| 125 | radix_tree_delete(&nm_i->nat_root, nat_get_nid(e)); | ||
| 126 | nm_i->nat_cnt--; | ||
| 127 | kmem_cache_free(nat_entry_slab, e); | ||
| 128 | } | ||
| 129 | |||
| 130 | int is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid) | ||
| 131 | { | ||
| 132 | struct f2fs_nm_info *nm_i = NM_I(sbi); | ||
| 133 | struct nat_entry *e; | ||
| 134 | int is_cp = 1; | ||
| 135 | |||
| 136 | read_lock(&nm_i->nat_tree_lock); | ||
| 137 | e = __lookup_nat_cache(nm_i, nid); | ||
| 138 | if (e && !e->checkpointed) | ||
| 139 | is_cp = 0; | ||
| 140 | read_unlock(&nm_i->nat_tree_lock); | ||
| 141 | return is_cp; | ||
| 142 | } | ||
| 143 | |||
| 144 | static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid) | ||
| 145 | { | ||
| 146 | struct nat_entry *new; | ||
| 147 | |||
| 148 | new = kmem_cache_alloc(nat_entry_slab, GFP_ATOMIC); | ||
| 149 | if (!new) | ||
| 150 | return NULL; | ||
| 151 | if (radix_tree_insert(&nm_i->nat_root, nid, new)) { | ||
| 152 | kmem_cache_free(nat_entry_slab, new); | ||
| 153 | return NULL; | ||
| 154 | } | ||
| 155 | memset(new, 0, sizeof(struct nat_entry)); | ||
| 156 | nat_set_nid(new, nid); | ||
| 157 | list_add_tail(&new->list, &nm_i->nat_entries); | ||
| 158 | nm_i->nat_cnt++; | ||
| 159 | return new; | ||
| 160 | } | ||
| 161 | |||
| 162 | static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid, | ||
| 163 | struct f2fs_nat_entry *ne) | ||
| 164 | { | ||
| 165 | struct nat_entry *e; | ||
| 166 | retry: | ||
| 167 | write_lock(&nm_i->nat_tree_lock); | ||
| 168 | e = __lookup_nat_cache(nm_i, nid); | ||
| 169 | if (!e) { | ||
| 170 | e = grab_nat_entry(nm_i, nid); | ||
| 171 | if (!e) { | ||
| 172 | write_unlock(&nm_i->nat_tree_lock); | ||
| 173 | goto retry; | ||
| 174 | } | ||
| 175 | nat_set_blkaddr(e, le32_to_cpu(ne->block_addr)); | ||
| 176 | nat_set_ino(e, le32_to_cpu(ne->ino)); | ||
| 177 | nat_set_version(e, ne->version); | ||
| 178 | e->checkpointed = true; | ||
| 179 | } | ||
| 180 | write_unlock(&nm_i->nat_tree_lock); | ||
| 181 | } | ||
| 182 | |||
| 183 | static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni, | ||
| 184 | block_t new_blkaddr) | ||
| 185 | { | ||
| 186 | struct f2fs_nm_info *nm_i = NM_I(sbi); | ||
| 187 | struct nat_entry *e; | ||
| 188 | retry: | ||
| 189 | write_lock(&nm_i->nat_tree_lock); | ||
| 190 | e = __lookup_nat_cache(nm_i, ni->nid); | ||
| 191 | if (!e) { | ||
| 192 | e = grab_nat_entry(nm_i, ni->nid); | ||
| 193 | if (!e) { | ||
| 194 | write_unlock(&nm_i->nat_tree_lock); | ||
| 195 | goto retry; | ||
| 196 | } | ||
| 197 | e->ni = *ni; | ||
| 198 | e->checkpointed = true; | ||
| 199 | BUG_ON(ni->blk_addr == NEW_ADDR); | ||
| 200 | } else if (new_blkaddr == NEW_ADDR) { | ||
| 201 | /* | ||
| 202 | * when nid is reallocated, | ||
| 203 | * previous nat entry can be remained in nat cache. | ||
| 204 | * So, reinitialize it with new information. | ||
| 205 | */ | ||
| 206 | e->ni = *ni; | ||
| 207 | BUG_ON(ni->blk_addr != NULL_ADDR); | ||
| 208 | } | ||
| 209 | |||
| 210 | if (new_blkaddr == NEW_ADDR) | ||
| 211 | e->checkpointed = false; | ||
| 212 | |||
| 213 | /* sanity check */ | ||
| 214 | BUG_ON(nat_get_blkaddr(e) != ni->blk_addr); | ||
| 215 | BUG_ON(nat_get_blkaddr(e) == NULL_ADDR && | ||
| 216 | new_blkaddr == NULL_ADDR); | ||
| 217 | BUG_ON(nat_get_blkaddr(e) == NEW_ADDR && | ||
| 218 | new_blkaddr == NEW_ADDR); | ||
| 219 | BUG_ON(nat_get_blkaddr(e) != NEW_ADDR && | ||
| 220 | nat_get_blkaddr(e) != NULL_ADDR && | ||
| 221 | new_blkaddr == NEW_ADDR); | ||
| 222 | |||
| 223 | /* increament version no as node is removed */ | ||
| 224 | if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) { | ||
| 225 | unsigned char version = nat_get_version(e); | ||
| 226 | nat_set_version(e, inc_node_version(version)); | ||
| 227 | } | ||
| 228 | |||
| 229 | /* change address */ | ||
| 230 | nat_set_blkaddr(e, new_blkaddr); | ||
| 231 | __set_nat_cache_dirty(nm_i, e); | ||
| 232 | write_unlock(&nm_i->nat_tree_lock); | ||
| 233 | } | ||
| 234 | |||
| 235 | static int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink) | ||
| 236 | { | ||
| 237 | struct f2fs_nm_info *nm_i = NM_I(sbi); | ||
| 238 | |||
| 239 | if (nm_i->nat_cnt < 2 * NM_WOUT_THRESHOLD) | ||
| 240 | return 0; | ||
| 241 | |||
| 242 | write_lock(&nm_i->nat_tree_lock); | ||
| 243 | while (nr_shrink && !list_empty(&nm_i->nat_entries)) { | ||
| 244 | struct nat_entry *ne; | ||
| 245 | ne = list_first_entry(&nm_i->nat_entries, | ||
| 246 | struct nat_entry, list); | ||
| 247 | __del_from_nat_cache(nm_i, ne); | ||
| 248 | nr_shrink--; | ||
| 249 | } | ||
| 250 | write_unlock(&nm_i->nat_tree_lock); | ||
| 251 | return nr_shrink; | ||
| 252 | } | ||
| 253 | |||
| 254 | /* | ||
| 255 | * This function returns always success | ||
| 256 | */ | ||
| 257 | void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni) | ||
| 258 | { | ||
| 259 | struct f2fs_nm_info *nm_i = NM_I(sbi); | ||
| 260 | struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); | ||
| 261 | struct f2fs_summary_block *sum = curseg->sum_blk; | ||
| 262 | nid_t start_nid = START_NID(nid); | ||
| 263 | struct f2fs_nat_block *nat_blk; | ||
| 264 | struct page *page = NULL; | ||
| 265 | struct f2fs_nat_entry ne; | ||
| 266 | struct nat_entry *e; | ||
| 267 | int i; | ||
| 268 | |||
| 269 | memset(&ne, 0, sizeof(struct f2fs_nat_entry)); | ||
| 270 | ni->nid = nid; | ||
| 271 | |||
| 272 | /* Check nat cache */ | ||
| 273 | read_lock(&nm_i->nat_tree_lock); | ||
| 274 | e = __lookup_nat_cache(nm_i, nid); | ||
| 275 | if (e) { | ||
| 276 | ni->ino = nat_get_ino(e); | ||
| 277 | ni->blk_addr = nat_get_blkaddr(e); | ||
| 278 | ni->version = nat_get_version(e); | ||
| 279 | } | ||
| 280 | read_unlock(&nm_i->nat_tree_lock); | ||
| 281 | if (e) | ||
| 282 | return; | ||
| 283 | |||
| 284 | /* Check current segment summary */ | ||
| 285 | mutex_lock(&curseg->curseg_mutex); | ||
| 286 | i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0); | ||
| 287 | if (i >= 0) { | ||
| 288 | ne = nat_in_journal(sum, i); | ||
| 289 | node_info_from_raw_nat(ni, &ne); | ||
| 290 | } | ||
| 291 | mutex_unlock(&curseg->curseg_mutex); | ||
| 292 | if (i >= 0) | ||
| 293 | goto cache; | ||
| 294 | |||
| 295 | /* Fill node_info from nat page */ | ||
| 296 | page = get_current_nat_page(sbi, start_nid); | ||
| 297 | nat_blk = (struct f2fs_nat_block *)page_address(page); | ||
| 298 | ne = nat_blk->entries[nid - start_nid]; | ||
| 299 | node_info_from_raw_nat(ni, &ne); | ||
| 300 | f2fs_put_page(page, 1); | ||
| 301 | cache: | ||
| 302 | /* cache nat entry */ | ||
| 303 | cache_nat_entry(NM_I(sbi), nid, &ne); | ||
| 304 | } | ||
| 305 | |||
| 306 | /* | ||
| 307 | * The maximum depth is four. | ||
| 308 | * Offset[0] will have raw inode offset. | ||
| 309 | */ | ||
| 310 | static int get_node_path(long block, int offset[4], unsigned int noffset[4]) | ||
| 311 | { | ||
| 312 | const long direct_index = ADDRS_PER_INODE; | ||
| 313 | const long direct_blks = ADDRS_PER_BLOCK; | ||
| 314 | const long dptrs_per_blk = NIDS_PER_BLOCK; | ||
| 315 | const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK; | ||
| 316 | const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK; | ||
| 317 | int n = 0; | ||
| 318 | int level = 0; | ||
| 319 | |||
| 320 | noffset[0] = 0; | ||
| 321 | |||
| 322 | if (block < direct_index) { | ||
| 323 | offset[n++] = block; | ||
| 324 | level = 0; | ||
| 325 | goto got; | ||
| 326 | } | ||
| 327 | block -= direct_index; | ||
| 328 | if (block < direct_blks) { | ||
| 329 | offset[n++] = NODE_DIR1_BLOCK; | ||
| 330 | noffset[n] = 1; | ||
| 331 | offset[n++] = block; | ||
| 332 | level = 1; | ||
| 333 | goto got; | ||
| 334 | } | ||
| 335 | block -= direct_blks; | ||
| 336 | if (block < direct_blks) { | ||
| 337 | offset[n++] = NODE_DIR2_BLOCK; | ||
| 338 | noffset[n] = 2; | ||
| 339 | offset[n++] = block; | ||
| 340 | level = 1; | ||
| 341 | goto got; | ||
| 342 | } | ||
| 343 | block -= direct_blks; | ||
| 344 | if (block < indirect_blks) { | ||
| 345 | offset[n++] = NODE_IND1_BLOCK; | ||
| 346 | noffset[n] = 3; | ||
| 347 | offset[n++] = block / direct_blks; | ||
| 348 | noffset[n] = 4 + offset[n - 1]; | ||
| 349 | offset[n++] = block % direct_blks; | ||
| 350 | level = 2; | ||
| 351 | goto got; | ||
| 352 | } | ||
| 353 | block -= indirect_blks; | ||
| 354 | if (block < indirect_blks) { | ||
| 355 | offset[n++] = NODE_IND2_BLOCK; | ||
| 356 | noffset[n] = 4 + dptrs_per_blk; | ||
| 357 | offset[n++] = block / direct_blks; | ||
| 358 | noffset[n] = 5 + dptrs_per_blk + offset[n - 1]; | ||
| 359 | offset[n++] = block % direct_blks; | ||
| 360 | level = 2; | ||
| 361 | goto got; | ||
| 362 | } | ||
| 363 | block -= indirect_blks; | ||
| 364 | if (block < dindirect_blks) { | ||
| 365 | offset[n++] = NODE_DIND_BLOCK; | ||
| 366 | noffset[n] = 5 + (dptrs_per_blk * 2); | ||
| 367 | offset[n++] = block / indirect_blks; | ||
| 368 | noffset[n] = 6 + (dptrs_per_blk * 2) + | ||
| 369 | offset[n - 1] * (dptrs_per_blk + 1); | ||
| 370 | offset[n++] = (block / direct_blks) % dptrs_per_blk; | ||
| 371 | noffset[n] = 7 + (dptrs_per_blk * 2) + | ||
| 372 | offset[n - 2] * (dptrs_per_blk + 1) + | ||
| 373 | offset[n - 1]; | ||
| 374 | offset[n++] = block % direct_blks; | ||
| 375 | level = 3; | ||
| 376 | goto got; | ||
| 377 | } else { | ||
| 378 | BUG(); | ||
| 379 | } | ||
| 380 | got: | ||
| 381 | return level; | ||
| 382 | } | ||
| 383 | |||
| 384 | /* | ||
| 385 | * Caller should call f2fs_put_dnode(dn). | ||
| 386 | */ | ||
| 387 | int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int ro) | ||
| 388 | { | ||
| 389 | struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); | ||
| 390 | struct page *npage[4]; | ||
| 391 | struct page *parent; | ||
| 392 | int offset[4]; | ||
| 393 | unsigned int noffset[4]; | ||
| 394 | nid_t nids[4]; | ||
| 395 | int level, i; | ||
| 396 | int err = 0; | ||
| 397 | |||
| 398 | level = get_node_path(index, offset, noffset); | ||
| 399 | |||
| 400 | nids[0] = dn->inode->i_ino; | ||
| 401 | npage[0] = get_node_page(sbi, nids[0]); | ||
| 402 | if (IS_ERR(npage[0])) | ||
| 403 | return PTR_ERR(npage[0]); | ||
| 404 | |||
| 405 | parent = npage[0]; | ||
| 406 | nids[1] = get_nid(parent, offset[0], true); | ||
| 407 | dn->inode_page = npage[0]; | ||
| 408 | dn->inode_page_locked = true; | ||
| 409 | |||
| 410 | /* get indirect or direct nodes */ | ||
| 411 | for (i = 1; i <= level; i++) { | ||
| 412 | bool done = false; | ||
| 413 | |||
| 414 | if (!nids[i] && !ro) { | ||
| 415 | mutex_lock_op(sbi, NODE_NEW); | ||
| 416 | |||
| 417 | /* alloc new node */ | ||
| 418 | if (!alloc_nid(sbi, &(nids[i]))) { | ||
| 419 | mutex_unlock_op(sbi, NODE_NEW); | ||
| 420 | err = -ENOSPC; | ||
| 421 | goto release_pages; | ||
| 422 | } | ||
| 423 | |||
| 424 | dn->nid = nids[i]; | ||
| 425 | npage[i] = new_node_page(dn, noffset[i]); | ||
| 426 | if (IS_ERR(npage[i])) { | ||
| 427 | alloc_nid_failed(sbi, nids[i]); | ||
| 428 | mutex_unlock_op(sbi, NODE_NEW); | ||
| 429 | err = PTR_ERR(npage[i]); | ||
| 430 | goto release_pages; | ||
| 431 | } | ||
| 432 | |||
| 433 | set_nid(parent, offset[i - 1], nids[i], i == 1); | ||
| 434 | alloc_nid_done(sbi, nids[i]); | ||
| 435 | mutex_unlock_op(sbi, NODE_NEW); | ||
| 436 | done = true; | ||
| 437 | } else if (ro && i == level && level > 1) { | ||
| 438 | npage[i] = get_node_page_ra(parent, offset[i - 1]); | ||
| 439 | if (IS_ERR(npage[i])) { | ||
| 440 | err = PTR_ERR(npage[i]); | ||
| 441 | goto release_pages; | ||
| 442 | } | ||
| 443 | done = true; | ||
| 444 | } | ||
| 445 | if (i == 1) { | ||
| 446 | dn->inode_page_locked = false; | ||
| 447 | unlock_page(parent); | ||
| 448 | } else { | ||
| 449 | f2fs_put_page(parent, 1); | ||
| 450 | } | ||
| 451 | |||
| 452 | if (!done) { | ||
| 453 | npage[i] = get_node_page(sbi, nids[i]); | ||
| 454 | if (IS_ERR(npage[i])) { | ||
| 455 | err = PTR_ERR(npage[i]); | ||
| 456 | f2fs_put_page(npage[0], 0); | ||
| 457 | goto release_out; | ||
| 458 | } | ||
| 459 | } | ||
| 460 | if (i < level) { | ||
| 461 | parent = npage[i]; | ||
| 462 | nids[i + 1] = get_nid(parent, offset[i], false); | ||
| 463 | } | ||
| 464 | } | ||
| 465 | dn->nid = nids[level]; | ||
| 466 | dn->ofs_in_node = offset[level]; | ||
| 467 | dn->node_page = npage[level]; | ||
| 468 | dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node); | ||
| 469 | return 0; | ||
| 470 | |||
| 471 | release_pages: | ||
| 472 | f2fs_put_page(parent, 1); | ||
| 473 | if (i > 1) | ||
| 474 | f2fs_put_page(npage[0], 0); | ||
| 475 | release_out: | ||
| 476 | dn->inode_page = NULL; | ||
| 477 | dn->node_page = NULL; | ||
| 478 | return err; | ||
| 479 | } | ||
| 480 | |||
| 481 | static void truncate_node(struct dnode_of_data *dn) | ||
| 482 | { | ||
| 483 | struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); | ||
| 484 | struct node_info ni; | ||
| 485 | |||
| 486 | get_node_info(sbi, dn->nid, &ni); | ||
| 487 | BUG_ON(ni.blk_addr == NULL_ADDR); | ||
| 488 | |||
| 489 | if (ni.blk_addr != NULL_ADDR) | ||
| 490 | invalidate_blocks(sbi, ni.blk_addr); | ||
| 491 | |||
| 492 | /* Deallocate node address */ | ||
| 493 | dec_valid_node_count(sbi, dn->inode, 1); | ||
| 494 | set_node_addr(sbi, &ni, NULL_ADDR); | ||
| 495 | |||
| 496 | if (dn->nid == dn->inode->i_ino) { | ||
| 497 | remove_orphan_inode(sbi, dn->nid); | ||
| 498 | dec_valid_inode_count(sbi); | ||
| 499 | } else { | ||
| 500 | sync_inode_page(dn); | ||
| 501 | } | ||
| 502 | |||
| 503 | clear_node_page_dirty(dn->node_page); | ||
| 504 | F2FS_SET_SB_DIRT(sbi); | ||
| 505 | |||
| 506 | f2fs_put_page(dn->node_page, 1); | ||
| 507 | dn->node_page = NULL; | ||
| 508 | } | ||
| 509 | |||
| 510 | static int truncate_dnode(struct dnode_of_data *dn) | ||
| 511 | { | ||
| 512 | struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); | ||
| 513 | struct page *page; | ||
| 514 | |||
| 515 | if (dn->nid == 0) | ||
| 516 | return 1; | ||
| 517 | |||
| 518 | /* get direct node */ | ||
| 519 | page = get_node_page(sbi, dn->nid); | ||
| 520 | if (IS_ERR(page) && PTR_ERR(page) == -ENOENT) | ||
| 521 | return 1; | ||
| 522 | else if (IS_ERR(page)) | ||
| 523 | return PTR_ERR(page); | ||
| 524 | |||
| 525 | /* Make dnode_of_data for parameter */ | ||
| 526 | dn->node_page = page; | ||
| 527 | dn->ofs_in_node = 0; | ||
| 528 | truncate_data_blocks(dn); | ||
| 529 | truncate_node(dn); | ||
| 530 | return 1; | ||
| 531 | } | ||
| 532 | |||
| 533 | static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs, | ||
| 534 | int ofs, int depth) | ||
| 535 | { | ||
| 536 | struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); | ||
| 537 | struct dnode_of_data rdn = *dn; | ||
| 538 | struct page *page; | ||
| 539 | struct f2fs_node *rn; | ||
| 540 | nid_t child_nid; | ||
| 541 | unsigned int child_nofs; | ||
| 542 | int freed = 0; | ||
| 543 | int i, ret; | ||
| 544 | |||
| 545 | if (dn->nid == 0) | ||
| 546 | return NIDS_PER_BLOCK + 1; | ||
| 547 | |||
| 548 | page = get_node_page(sbi, dn->nid); | ||
| 549 | if (IS_ERR(page)) | ||
| 550 | return PTR_ERR(page); | ||
| 551 | |||
| 552 | rn = (struct f2fs_node *)page_address(page); | ||
| 553 | if (depth < 3) { | ||
| 554 | for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) { | ||
| 555 | child_nid = le32_to_cpu(rn->in.nid[i]); | ||
| 556 | if (child_nid == 0) | ||
| 557 | continue; | ||
| 558 | rdn.nid = child_nid; | ||
| 559 | ret = truncate_dnode(&rdn); | ||
| 560 | if (ret < 0) | ||
| 561 | goto out_err; | ||
| 562 | set_nid(page, i, 0, false); | ||
| 563 | } | ||
| 564 | } else { | ||
| 565 | child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1; | ||
| 566 | for (i = ofs; i < NIDS_PER_BLOCK; i++) { | ||
| 567 | child_nid = le32_to_cpu(rn->in.nid[i]); | ||
| 568 | if (child_nid == 0) { | ||
| 569 | child_nofs += NIDS_PER_BLOCK + 1; | ||
| 570 | continue; | ||
| 571 | } | ||
| 572 | rdn.nid = child_nid; | ||
| 573 | ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1); | ||
| 574 | if (ret == (NIDS_PER_BLOCK + 1)) { | ||
| 575 | set_nid(page, i, 0, false); | ||
| 576 | child_nofs += ret; | ||
| 577 | } else if (ret < 0 && ret != -ENOENT) { | ||
| 578 | goto out_err; | ||
| 579 | } | ||
| 580 | } | ||
| 581 | freed = child_nofs; | ||
| 582 | } | ||
| 583 | |||
| 584 | if (!ofs) { | ||
| 585 | /* remove current indirect node */ | ||
| 586 | dn->node_page = page; | ||
| 587 | truncate_node(dn); | ||
| 588 | freed++; | ||
| 589 | } else { | ||
| 590 | f2fs_put_page(page, 1); | ||
| 591 | } | ||
| 592 | return freed; | ||
| 593 | |||
| 594 | out_err: | ||
| 595 | f2fs_put_page(page, 1); | ||
| 596 | return ret; | ||
| 597 | } | ||
| 598 | |||
| 599 | static int truncate_partial_nodes(struct dnode_of_data *dn, | ||
| 600 | struct f2fs_inode *ri, int *offset, int depth) | ||
| 601 | { | ||
| 602 | struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); | ||
| 603 | struct page *pages[2]; | ||
| 604 | nid_t nid[3]; | ||
| 605 | nid_t child_nid; | ||
| 606 | int err = 0; | ||
| 607 | int i; | ||
| 608 | int idx = depth - 2; | ||
| 609 | |||
| 610 | nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]); | ||
| 611 | if (!nid[0]) | ||
| 612 | return 0; | ||
| 613 | |||
| 614 | /* get indirect nodes in the path */ | ||
| 615 | for (i = 0; i < depth - 1; i++) { | ||
| 616 | /* refernece count'll be increased */ | ||
| 617 | pages[i] = get_node_page(sbi, nid[i]); | ||
| 618 | if (IS_ERR(pages[i])) { | ||
| 619 | depth = i + 1; | ||
| 620 | err = PTR_ERR(pages[i]); | ||
| 621 | goto fail; | ||
| 622 | } | ||
| 623 | nid[i + 1] = get_nid(pages[i], offset[i + 1], false); | ||
| 624 | } | ||
| 625 | |||
| 626 | /* free direct nodes linked to a partial indirect node */ | ||
| 627 | for (i = offset[depth - 1]; i < NIDS_PER_BLOCK; i++) { | ||
| 628 | child_nid = get_nid(pages[idx], i, false); | ||
| 629 | if (!child_nid) | ||
| 630 | continue; | ||
| 631 | dn->nid = child_nid; | ||
| 632 | err = truncate_dnode(dn); | ||
| 633 | if (err < 0) | ||
| 634 | goto fail; | ||
| 635 | set_nid(pages[idx], i, 0, false); | ||
| 636 | } | ||
| 637 | |||
| 638 | if (offset[depth - 1] == 0) { | ||
| 639 | dn->node_page = pages[idx]; | ||
| 640 | dn->nid = nid[idx]; | ||
| 641 | truncate_node(dn); | ||
| 642 | } else { | ||
| 643 | f2fs_put_page(pages[idx], 1); | ||
| 644 | } | ||
| 645 | offset[idx]++; | ||
| 646 | offset[depth - 1] = 0; | ||
| 647 | fail: | ||
| 648 | for (i = depth - 3; i >= 0; i--) | ||
| 649 | f2fs_put_page(pages[i], 1); | ||
| 650 | return err; | ||
| 651 | } | ||
| 652 | |||
| 653 | /* | ||
| 654 | * All the block addresses of data and nodes should be nullified. | ||
| 655 | */ | ||
| 656 | int truncate_inode_blocks(struct inode *inode, pgoff_t from) | ||
| 657 | { | ||
| 658 | struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); | ||
| 659 | int err = 0, cont = 1; | ||
| 660 | int level, offset[4], noffset[4]; | ||
| 661 | unsigned int nofs; | ||
| 662 | struct f2fs_node *rn; | ||
| 663 | struct dnode_of_data dn; | ||
| 664 | struct page *page; | ||
| 665 | |||
| 666 | level = get_node_path(from, offset, noffset); | ||
| 667 | |||
| 668 | page = get_node_page(sbi, inode->i_ino); | ||
| 669 | if (IS_ERR(page)) | ||
| 670 | return PTR_ERR(page); | ||
| 671 | |||
| 672 | set_new_dnode(&dn, inode, page, NULL, 0); | ||
| 673 | unlock_page(page); | ||
| 674 | |||
| 675 | rn = page_address(page); | ||
| 676 | switch (level) { | ||
| 677 | case 0: | ||
| 678 | case 1: | ||
| 679 | nofs = noffset[1]; | ||
| 680 | break; | ||
| 681 | case 2: | ||
| 682 | nofs = noffset[1]; | ||
| 683 | if (!offset[level - 1]) | ||
| 684 | goto skip_partial; | ||
| 685 | err = truncate_partial_nodes(&dn, &rn->i, offset, level); | ||
| 686 | if (err < 0 && err != -ENOENT) | ||
| 687 | goto fail; | ||
| 688 | nofs += 1 + NIDS_PER_BLOCK; | ||
| 689 | break; | ||
| 690 | case 3: | ||
| 691 | nofs = 5 + 2 * NIDS_PER_BLOCK; | ||
| 692 | if (!offset[level - 1]) | ||
| 693 | goto skip_partial; | ||
| 694 | err = truncate_partial_nodes(&dn, &rn->i, offset, level); | ||
| 695 | if (err < 0 && err != -ENOENT) | ||
| 696 | goto fail; | ||
| 697 | break; | ||
| 698 | default: | ||
| 699 | BUG(); | ||
| 700 | } | ||
| 701 | |||
| 702 | skip_partial: | ||
| 703 | while (cont) { | ||
| 704 | dn.nid = le32_to_cpu(rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK]); | ||
| 705 | switch (offset[0]) { | ||
| 706 | case NODE_DIR1_BLOCK: | ||
| 707 | case NODE_DIR2_BLOCK: | ||
| 708 | err = truncate_dnode(&dn); | ||
| 709 | break; | ||
| 710 | |||
| 711 | case NODE_IND1_BLOCK: | ||
| 712 | case NODE_IND2_BLOCK: | ||
| 713 | err = truncate_nodes(&dn, nofs, offset[1], 2); | ||
| 714 | break; | ||
| 715 | |||
| 716 | case NODE_DIND_BLOCK: | ||
| 717 | err = truncate_nodes(&dn, nofs, offset[1], 3); | ||
| 718 | cont = 0; | ||
| 719 | break; | ||
| 720 | |||
| 721 | default: | ||
| 722 | BUG(); | ||
| 723 | } | ||
| 724 | if (err < 0 && err != -ENOENT) | ||
| 725 | goto fail; | ||
| 726 | if (offset[1] == 0 && | ||
| 727 | rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK]) { | ||
| 728 | lock_page(page); | ||
| 729 | wait_on_page_writeback(page); | ||
| 730 | rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK] = 0; | ||
| 731 | set_page_dirty(page); | ||
| 732 | unlock_page(page); | ||
| 733 | } | ||
| 734 | offset[1] = 0; | ||
| 735 | offset[0]++; | ||
| 736 | nofs += err; | ||
| 737 | } | ||
| 738 | fail: | ||
| 739 | f2fs_put_page(page, 0); | ||
| 740 | return err > 0 ? 0 : err; | ||
| 741 | } | ||
| 742 | |||
| 743 | int remove_inode_page(struct inode *inode) | ||
| 744 | { | ||
| 745 | struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); | ||
| 746 | struct page *page; | ||
| 747 | nid_t ino = inode->i_ino; | ||
| 748 | struct dnode_of_data dn; | ||
| 749 | |||
| 750 | mutex_lock_op(sbi, NODE_TRUNC); | ||
| 751 | page = get_node_page(sbi, ino); | ||
| 752 | if (IS_ERR(page)) { | ||
| 753 | mutex_unlock_op(sbi, NODE_TRUNC); | ||
| 754 | return PTR_ERR(page); | ||
| 755 | } | ||
| 756 | |||
| 757 | if (F2FS_I(inode)->i_xattr_nid) { | ||
| 758 | nid_t nid = F2FS_I(inode)->i_xattr_nid; | ||
| 759 | struct page *npage = get_node_page(sbi, nid); | ||
| 760 | |||
| 761 | if (IS_ERR(npage)) { | ||
| 762 | mutex_unlock_op(sbi, NODE_TRUNC); | ||
| 763 | return PTR_ERR(npage); | ||
| 764 | } | ||
| 765 | |||
| 766 | F2FS_I(inode)->i_xattr_nid = 0; | ||
| 767 | set_new_dnode(&dn, inode, page, npage, nid); | ||
| 768 | dn.inode_page_locked = 1; | ||
| 769 | truncate_node(&dn); | ||
| 770 | } | ||
| 771 | if (inode->i_blocks == 1) { | ||
| 772 | /* inernally call f2fs_put_page() */ | ||
| 773 | set_new_dnode(&dn, inode, page, page, ino); | ||
| 774 | truncate_node(&dn); | ||
| 775 | } else if (inode->i_blocks == 0) { | ||
| 776 | struct node_info ni; | ||
| 777 | get_node_info(sbi, inode->i_ino, &ni); | ||
| 778 | |||
| 779 | /* called after f2fs_new_inode() is failed */ | ||
| 780 | BUG_ON(ni.blk_addr != NULL_ADDR); | ||
| 781 | f2fs_put_page(page, 1); | ||
| 782 | } else { | ||
| 783 | BUG(); | ||
| 784 | } | ||
| 785 | mutex_unlock_op(sbi, NODE_TRUNC); | ||
| 786 | return 0; | ||
| 787 | } | ||
| 788 | |||
| 789 | int new_inode_page(struct inode *inode, struct dentry *dentry) | ||
| 790 | { | ||
| 791 | struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); | ||
| 792 | struct page *page; | ||
| 793 | struct dnode_of_data dn; | ||
| 794 | |||
| 795 | /* allocate inode page for new inode */ | ||
| 796 | set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); | ||
| 797 | mutex_lock_op(sbi, NODE_NEW); | ||
| 798 | page = new_node_page(&dn, 0); | ||
| 799 | init_dent_inode(dentry, page); | ||
| 800 | mutex_unlock_op(sbi, NODE_NEW); | ||
| 801 | if (IS_ERR(page)) | ||
| 802 | return PTR_ERR(page); | ||
| 803 | f2fs_put_page(page, 1); | ||
| 804 | return 0; | ||
| 805 | } | ||
| 806 | |||
| 807 | struct page *new_node_page(struct dnode_of_data *dn, unsigned int ofs) | ||
| 808 | { | ||
| 809 | struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); | ||
| 810 | struct address_space *mapping = sbi->node_inode->i_mapping; | ||
| 811 | struct node_info old_ni, new_ni; | ||
| 812 | struct page *page; | ||
| 813 | int err; | ||
| 814 | |||
| 815 | if (is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)) | ||
| 816 | return ERR_PTR(-EPERM); | ||
| 817 | |||
| 818 | page = grab_cache_page(mapping, dn->nid); | ||
| 819 | if (!page) | ||
| 820 | return ERR_PTR(-ENOMEM); | ||
| 821 | |||
| 822 | get_node_info(sbi, dn->nid, &old_ni); | ||
| 823 | |||
| 824 | SetPageUptodate(page); | ||
| 825 | fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true); | ||
| 826 | |||
| 827 | /* Reinitialize old_ni with new node page */ | ||
| 828 | BUG_ON(old_ni.blk_addr != NULL_ADDR); | ||
| 829 | new_ni = old_ni; | ||
| 830 | new_ni.ino = dn->inode->i_ino; | ||
| 831 | |||
| 832 | if (!inc_valid_node_count(sbi, dn->inode, 1)) { | ||
| 833 | err = -ENOSPC; | ||
| 834 | goto fail; | ||
| 835 | } | ||
| 836 | set_node_addr(sbi, &new_ni, NEW_ADDR); | ||
| 837 | |||
| 838 | dn->node_page = page; | ||
| 839 | sync_inode_page(dn); | ||
| 840 | set_page_dirty(page); | ||
| 841 | set_cold_node(dn->inode, page); | ||
| 842 | if (ofs == 0) | ||
| 843 | inc_valid_inode_count(sbi); | ||
| 844 | |||
| 845 | return page; | ||
| 846 | |||
| 847 | fail: | ||
| 848 | f2fs_put_page(page, 1); | ||
| 849 | return ERR_PTR(err); | ||
| 850 | } | ||
| 851 | |||
| 852 | static int read_node_page(struct page *page, int type) | ||
| 853 | { | ||
| 854 | struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb); | ||
| 855 | struct node_info ni; | ||
| 856 | |||
| 857 | get_node_info(sbi, page->index, &ni); | ||
| 858 | |||
| 859 | if (ni.blk_addr == NULL_ADDR) | ||
| 860 | return -ENOENT; | ||
| 861 | return f2fs_readpage(sbi, page, ni.blk_addr, type); | ||
| 862 | } | ||
| 863 | |||
| 864 | /* | ||
| 865 | * Readahead a node page | ||
| 866 | */ | ||
| 867 | void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid) | ||
| 868 | { | ||
| 869 | struct address_space *mapping = sbi->node_inode->i_mapping; | ||
| 870 | struct page *apage; | ||
| 871 | |||
| 872 | apage = find_get_page(mapping, nid); | ||
| 873 | if (apage && PageUptodate(apage)) | ||
| 874 | goto release_out; | ||
| 875 | f2fs_put_page(apage, 0); | ||
| 876 | |||
| 877 | apage = grab_cache_page(mapping, nid); | ||
| 878 | if (!apage) | ||
| 879 | return; | ||
| 880 | |||
| 881 | if (read_node_page(apage, READA)) | ||
| 882 | goto unlock_out; | ||
| 883 | |||
| 884 | page_cache_release(apage); | ||
| 885 | return; | ||
| 886 | |||
| 887 | unlock_out: | ||
| 888 | unlock_page(apage); | ||
| 889 | release_out: | ||
| 890 | page_cache_release(apage); | ||
| 891 | } | ||
| 892 | |||
| 893 | struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid) | ||
| 894 | { | ||
| 895 | int err; | ||
| 896 | struct page *page; | ||
| 897 | struct address_space *mapping = sbi->node_inode->i_mapping; | ||
| 898 | |||
| 899 | page = grab_cache_page(mapping, nid); | ||
| 900 | if (!page) | ||
| 901 | return ERR_PTR(-ENOMEM); | ||
| 902 | |||
| 903 | err = read_node_page(page, READ_SYNC); | ||
| 904 | if (err) { | ||
| 905 | f2fs_put_page(page, 1); | ||
| 906 | return ERR_PTR(err); | ||
| 907 | } | ||
| 908 | |||
| 909 | BUG_ON(nid != nid_of_node(page)); | ||
| 910 | mark_page_accessed(page); | ||
| 911 | return page; | ||
| 912 | } | ||
| 913 | |||
| 914 | /* | ||
| 915 | * Return a locked page for the desired node page. | ||
| 916 | * And, readahead MAX_RA_NODE number of node pages. | ||
| 917 | */ | ||
| 918 | struct page *get_node_page_ra(struct page *parent, int start) | ||
| 919 | { | ||
| 920 | struct f2fs_sb_info *sbi = F2FS_SB(parent->mapping->host->i_sb); | ||
| 921 | struct address_space *mapping = sbi->node_inode->i_mapping; | ||
| 922 | int i, end; | ||
| 923 | int err = 0; | ||
| 924 | nid_t nid; | ||
| 925 | struct page *page; | ||
| 926 | |||
| 927 | /* First, try getting the desired direct node. */ | ||
| 928 | nid = get_nid(parent, start, false); | ||
| 929 | if (!nid) | ||
| 930 | return ERR_PTR(-ENOENT); | ||
| 931 | |||
| 932 | page = find_get_page(mapping, nid); | ||
| 933 | if (page && PageUptodate(page)) | ||
| 934 | goto page_hit; | ||
| 935 | f2fs_put_page(page, 0); | ||
| 936 | |||
| 937 | repeat: | ||
| 938 | page = grab_cache_page(mapping, nid); | ||
| 939 | if (!page) | ||
| 940 | return ERR_PTR(-ENOMEM); | ||
| 941 | |||
| 942 | err = read_node_page(page, READA); | ||
| 943 | if (err) { | ||
| 944 | f2fs_put_page(page, 1); | ||
| 945 | return ERR_PTR(err); | ||
| 946 | } | ||
| 947 | |||
| 948 | /* Then, try readahead for siblings of the desired node */ | ||
| 949 | end = start + MAX_RA_NODE; | ||
| 950 | end = min(end, NIDS_PER_BLOCK); | ||
| 951 | for (i = start + 1; i < end; i++) { | ||
| 952 | nid = get_nid(parent, i, false); | ||
| 953 | if (!nid) | ||
| 954 | continue; | ||
| 955 | ra_node_page(sbi, nid); | ||
| 956 | } | ||
| 957 | |||
| 958 | page_hit: | ||
| 959 | lock_page(page); | ||
| 960 | if (PageError(page)) { | ||
| 961 | f2fs_put_page(page, 1); | ||
| 962 | return ERR_PTR(-EIO); | ||
| 963 | } | ||
| 964 | |||
| 965 | /* Has the page been truncated? */ | ||
| 966 | if (page->mapping != mapping) { | ||
| 967 | f2fs_put_page(page, 1); | ||
| 968 | goto repeat; | ||
| 969 | } | ||
| 970 | return page; | ||
| 971 | } | ||
| 972 | |||
| 973 | void sync_inode_page(struct dnode_of_data *dn) | ||
| 974 | { | ||
| 975 | if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) { | ||
| 976 | update_inode(dn->inode, dn->node_page); | ||
| 977 | } else if (dn->inode_page) { | ||
| 978 | if (!dn->inode_page_locked) | ||
| 979 | lock_page(dn->inode_page); | ||
| 980 | update_inode(dn->inode, dn->inode_page); | ||
| 981 | if (!dn->inode_page_locked) | ||
| 982 | unlock_page(dn->inode_page); | ||
| 983 | } else { | ||
| 984 | f2fs_write_inode(dn->inode, NULL); | ||
| 985 | } | ||
| 986 | } | ||
| 987 | |||
| 988 | int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino, | ||
| 989 | struct writeback_control *wbc) | ||
| 990 | { | ||
| 991 | struct address_space *mapping = sbi->node_inode->i_mapping; | ||
| 992 | pgoff_t index, end; | ||
| 993 | struct pagevec pvec; | ||
| 994 | int step = ino ? 2 : 0; | ||
| 995 | int nwritten = 0, wrote = 0; | ||
| 996 | |||
| 997 | pagevec_init(&pvec, 0); | ||
| 998 | |||
| 999 | next_step: | ||
| 1000 | index = 0; | ||
| 1001 | end = LONG_MAX; | ||
| 1002 | |||
| 1003 | while (index <= end) { | ||
| 1004 | int i, nr_pages; | ||
| 1005 | nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, | ||
| 1006 | PAGECACHE_TAG_DIRTY, | ||
| 1007 | min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); | ||
| 1008 | if (nr_pages == 0) | ||
| 1009 | break; | ||
| 1010 | |||
| 1011 | for (i = 0; i < nr_pages; i++) { | ||
| 1012 | struct page *page = pvec.pages[i]; | ||
| 1013 | |||
| 1014 | /* | ||
| 1015 | * flushing sequence with step: | ||
| 1016 | * 0. indirect nodes | ||
| 1017 | * 1. dentry dnodes | ||
| 1018 | * 2. file dnodes | ||
| 1019 | */ | ||
| 1020 | if (step == 0 && IS_DNODE(page)) | ||
| 1021 | continue; | ||
| 1022 | if (step == 1 && (!IS_DNODE(page) || | ||
| 1023 | is_cold_node(page))) | ||
| 1024 | continue; | ||
| 1025 | if (step == 2 && (!IS_DNODE(page) || | ||
| 1026 | !is_cold_node(page))) | ||
| 1027 | continue; | ||
| 1028 | |||
| 1029 | /* | ||
| 1030 | * If an fsync mode, | ||
| 1031 | * we should not skip writing node pages. | ||
| 1032 | */ | ||
| 1033 | if (ino && ino_of_node(page) == ino) | ||
| 1034 | lock_page(page); | ||
| 1035 | else if (!trylock_page(page)) | ||
| 1036 | continue; | ||
| 1037 | |||
| 1038 | if (unlikely(page->mapping != mapping)) { | ||
| 1039 | continue_unlock: | ||
| 1040 | unlock_page(page); | ||
| 1041 | continue; | ||
| 1042 | } | ||
| 1043 | if (ino && ino_of_node(page) != ino) | ||
| 1044 | goto continue_unlock; | ||
| 1045 | |||
| 1046 | if (!PageDirty(page)) { | ||
| 1047 | /* someone wrote it for us */ | ||
| 1048 | goto continue_unlock; | ||
| 1049 | } | ||
| 1050 | |||
| 1051 | if (!clear_page_dirty_for_io(page)) | ||
| 1052 | goto continue_unlock; | ||
| 1053 | |||
| 1054 | /* called by fsync() */ | ||
| 1055 | if (ino && IS_DNODE(page)) { | ||
| 1056 | int mark = !is_checkpointed_node(sbi, ino); | ||
| 1057 | set_fsync_mark(page, 1); | ||
| 1058 | if (IS_INODE(page)) | ||
| 1059 | set_dentry_mark(page, mark); | ||
| 1060 | nwritten++; | ||
| 1061 | } else { | ||
| 1062 | set_fsync_mark(page, 0); | ||
| 1063 | set_dentry_mark(page, 0); | ||
| 1064 | } | ||
| 1065 | mapping->a_ops->writepage(page, wbc); | ||
| 1066 | wrote++; | ||
| 1067 | |||
| 1068 | if (--wbc->nr_to_write == 0) | ||
| 1069 | break; | ||
| 1070 | } | ||
| 1071 | pagevec_release(&pvec); | ||
| 1072 | cond_resched(); | ||
| 1073 | |||
| 1074 | if (wbc->nr_to_write == 0) { | ||
| 1075 | step = 2; | ||
| 1076 | break; | ||
| 1077 | } | ||
| 1078 | } | ||
| 1079 | |||
| 1080 | if (step < 2) { | ||
| 1081 | step++; | ||
| 1082 | goto next_step; | ||
| 1083 | } | ||
| 1084 | |||
| 1085 | if (wrote) | ||
| 1086 | f2fs_submit_bio(sbi, NODE, wbc->sync_mode == WB_SYNC_ALL); | ||
| 1087 | |||
| 1088 | return nwritten; | ||
| 1089 | } | ||
| 1090 | |||
| 1091 | static int f2fs_write_node_page(struct page *page, | ||
| 1092 | struct writeback_control *wbc) | ||
| 1093 | { | ||
| 1094 | struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb); | ||
| 1095 | nid_t nid; | ||
| 1096 | unsigned int nofs; | ||
| 1097 | block_t new_addr; | ||
| 1098 | struct node_info ni; | ||
| 1099 | |||
| 1100 | if (wbc->for_reclaim) { | ||
| 1101 | dec_page_count(sbi, F2FS_DIRTY_NODES); | ||
| 1102 | wbc->pages_skipped++; | ||
| 1103 | set_page_dirty(page); | ||
| 1104 | return AOP_WRITEPAGE_ACTIVATE; | ||
| 1105 | } | ||
| 1106 | |||
| 1107 | wait_on_page_writeback(page); | ||
| 1108 | |||
| 1109 | mutex_lock_op(sbi, NODE_WRITE); | ||
| 1110 | |||
| 1111 | /* get old block addr of this node page */ | ||
| 1112 | nid = nid_of_node(page); | ||
| 1113 | nofs = ofs_of_node(page); | ||
| 1114 | BUG_ON(page->index != nid); | ||
| 1115 | |||
| 1116 | get_node_info(sbi, nid, &ni); | ||
| 1117 | |||
| 1118 | /* This page is already truncated */ | ||
| 1119 | if (ni.blk_addr == NULL_ADDR) | ||
| 1120 | return 0; | ||
| 1121 | |||
| 1122 | set_page_writeback(page); | ||
| 1123 | |||
| 1124 | /* insert node offset */ | ||
| 1125 | write_node_page(sbi, page, nid, ni.blk_addr, &new_addr); | ||
| 1126 | set_node_addr(sbi, &ni, new_addr); | ||
| 1127 | dec_page_count(sbi, F2FS_DIRTY_NODES); | ||
| 1128 | |||
| 1129 | mutex_unlock_op(sbi, NODE_WRITE); | ||
| 1130 | unlock_page(page); | ||
| 1131 | return 0; | ||
| 1132 | } | ||
| 1133 | |||
| 1134 | static int f2fs_write_node_pages(struct address_space *mapping, | ||
| 1135 | struct writeback_control *wbc) | ||
| 1136 | { | ||
| 1137 | struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb); | ||
| 1138 | struct block_device *bdev = sbi->sb->s_bdev; | ||
| 1139 | long nr_to_write = wbc->nr_to_write; | ||
| 1140 | |||
| 1141 | if (wbc->for_kupdate) | ||
| 1142 | return 0; | ||
| 1143 | |||
| 1144 | if (get_pages(sbi, F2FS_DIRTY_NODES) == 0) | ||
| 1145 | return 0; | ||
| 1146 | |||
| 1147 | if (try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK)) { | ||
| 1148 | write_checkpoint(sbi, false, false); | ||
| 1149 | return 0; | ||
| 1150 | } | ||
| 1151 | |||
| 1152 | /* if mounting is failed, skip writing node pages */ | ||
| 1153 | wbc->nr_to_write = bio_get_nr_vecs(bdev); | ||
| 1154 | sync_node_pages(sbi, 0, wbc); | ||
| 1155 | wbc->nr_to_write = nr_to_write - | ||
| 1156 | (bio_get_nr_vecs(bdev) - wbc->nr_to_write); | ||
| 1157 | return 0; | ||
| 1158 | } | ||
| 1159 | |||
| 1160 | static int f2fs_set_node_page_dirty(struct page *page) | ||
| 1161 | { | ||
| 1162 | struct address_space *mapping = page->mapping; | ||
| 1163 | struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb); | ||
| 1164 | |||
| 1165 | SetPageUptodate(page); | ||
| 1166 | if (!PageDirty(page)) { | ||
| 1167 | __set_page_dirty_nobuffers(page); | ||
| 1168 | inc_page_count(sbi, F2FS_DIRTY_NODES); | ||
| 1169 | SetPagePrivate(page); | ||
| 1170 | return 1; | ||
| 1171 | } | ||
| 1172 | return 0; | ||
| 1173 | } | ||
| 1174 | |||
| 1175 | static void f2fs_invalidate_node_page(struct page *page, unsigned long offset) | ||
| 1176 | { | ||
| 1177 | struct inode *inode = page->mapping->host; | ||
| 1178 | struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); | ||
| 1179 | if (PageDirty(page)) | ||
| 1180 | dec_page_count(sbi, F2FS_DIRTY_NODES); | ||
| 1181 | ClearPagePrivate(page); | ||
| 1182 | } | ||
| 1183 | |||
| 1184 | static int f2fs_release_node_page(struct page *page, gfp_t wait) | ||
| 1185 | { | ||
| 1186 | ClearPagePrivate(page); | ||
| 1187 | return 0; | ||
| 1188 | } | ||
| 1189 | |||
| 1190 | /* | ||
| 1191 | * Structure of the f2fs node operations | ||
| 1192 | */ | ||
| 1193 | const struct address_space_operations f2fs_node_aops = { | ||
| 1194 | .writepage = f2fs_write_node_page, | ||
| 1195 | .writepages = f2fs_write_node_pages, | ||
| 1196 | .set_page_dirty = f2fs_set_node_page_dirty, | ||
| 1197 | .invalidatepage = f2fs_invalidate_node_page, | ||
| 1198 | .releasepage = f2fs_release_node_page, | ||
| 1199 | }; | ||
| 1200 | |||
| 1201 | static struct free_nid *__lookup_free_nid_list(nid_t n, struct list_head *head) | ||
| 1202 | { | ||
| 1203 | struct list_head *this; | ||
| 1204 | struct free_nid *i = NULL; | ||
| 1205 | list_for_each(this, head) { | ||
| 1206 | i = list_entry(this, struct free_nid, list); | ||
| 1207 | if (i->nid == n) | ||
| 1208 | break; | ||
| 1209 | i = NULL; | ||
| 1210 | } | ||
| 1211 | return i; | ||
| 1212 | } | ||
| 1213 | |||
| 1214 | static void __del_from_free_nid_list(struct free_nid *i) | ||
| 1215 | { | ||
| 1216 | list_del(&i->list); | ||
| 1217 | kmem_cache_free(free_nid_slab, i); | ||
| 1218 | } | ||
| 1219 | |||
| 1220 | static int add_free_nid(struct f2fs_nm_info *nm_i, nid_t nid) | ||
| 1221 | { | ||
| 1222 | struct free_nid *i; | ||
| 1223 | |||
| 1224 | if (nm_i->fcnt > 2 * MAX_FREE_NIDS) | ||
| 1225 | return 0; | ||
| 1226 | retry: | ||
| 1227 | i = kmem_cache_alloc(free_nid_slab, GFP_NOFS); | ||
| 1228 | if (!i) { | ||
| 1229 | cond_resched(); | ||
| 1230 | goto retry; | ||
| 1231 | } | ||
| 1232 | i->nid = nid; | ||
| 1233 | i->state = NID_NEW; | ||
| 1234 | |||
| 1235 | spin_lock(&nm_i->free_nid_list_lock); | ||
| 1236 | if (__lookup_free_nid_list(nid, &nm_i->free_nid_list)) { | ||
| 1237 | spin_unlock(&nm_i->free_nid_list_lock); | ||
| 1238 | kmem_cache_free(free_nid_slab, i); | ||
| 1239 | return 0; | ||
| 1240 | } | ||
| 1241 | list_add_tail(&i->list, &nm_i->free_nid_list); | ||
| 1242 | nm_i->fcnt++; | ||
| 1243 | spin_unlock(&nm_i->free_nid_list_lock); | ||
| 1244 | return 1; | ||
| 1245 | } | ||
| 1246 | |||
| 1247 | static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid) | ||
| 1248 | { | ||
| 1249 | struct free_nid *i; | ||
| 1250 | spin_lock(&nm_i->free_nid_list_lock); | ||
| 1251 | i = __lookup_free_nid_list(nid, &nm_i->free_nid_list); | ||
| 1252 | if (i && i->state == NID_NEW) { | ||
| 1253 | __del_from_free_nid_list(i); | ||
| 1254 | nm_i->fcnt--; | ||
| 1255 | } | ||
| 1256 | spin_unlock(&nm_i->free_nid_list_lock); | ||
| 1257 | } | ||
| 1258 | |||
| 1259 | static int scan_nat_page(struct f2fs_nm_info *nm_i, | ||
| 1260 | struct page *nat_page, nid_t start_nid) | ||
| 1261 | { | ||
| 1262 | struct f2fs_nat_block *nat_blk = page_address(nat_page); | ||
| 1263 | block_t blk_addr; | ||
| 1264 | int fcnt = 0; | ||
| 1265 | int i; | ||
| 1266 | |||
| 1267 | /* 0 nid should not be used */ | ||
| 1268 | if (start_nid == 0) | ||
| 1269 | ++start_nid; | ||
| 1270 | |||
| 1271 | i = start_nid % NAT_ENTRY_PER_BLOCK; | ||
| 1272 | |||
| 1273 | for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) { | ||
| 1274 | blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr); | ||
| 1275 | BUG_ON(blk_addr == NEW_ADDR); | ||
| 1276 | if (blk_addr == NULL_ADDR) | ||
| 1277 | fcnt += add_free_nid(nm_i, start_nid); | ||
| 1278 | } | ||
| 1279 | return fcnt; | ||
| 1280 | } | ||
| 1281 | |||
| 1282 | static void build_free_nids(struct f2fs_sb_info *sbi) | ||
| 1283 | { | ||
| 1284 | struct free_nid *fnid, *next_fnid; | ||
| 1285 | struct f2fs_nm_info *nm_i = NM_I(sbi); | ||
| 1286 | struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); | ||
| 1287 | struct f2fs_summary_block *sum = curseg->sum_blk; | ||
| 1288 | nid_t nid = 0; | ||
| 1289 | bool is_cycled = false; | ||
| 1290 | int fcnt = 0; | ||
| 1291 | int i; | ||
| 1292 | |||
| 1293 | nid = nm_i->next_scan_nid; | ||
| 1294 | nm_i->init_scan_nid = nid; | ||
| 1295 | |||
| 1296 | ra_nat_pages(sbi, nid); | ||
| 1297 | |||
| 1298 | while (1) { | ||
| 1299 | struct page *page = get_current_nat_page(sbi, nid); | ||
| 1300 | |||
| 1301 | fcnt += scan_nat_page(nm_i, page, nid); | ||
| 1302 | f2fs_put_page(page, 1); | ||
| 1303 | |||
| 1304 | nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK)); | ||
| 1305 | |||
| 1306 | if (nid >= nm_i->max_nid) { | ||
| 1307 | nid = 0; | ||
| 1308 | is_cycled = true; | ||
| 1309 | } | ||
| 1310 | if (fcnt > MAX_FREE_NIDS) | ||
| 1311 | break; | ||
| 1312 | if (is_cycled && nm_i->init_scan_nid <= nid) | ||
| 1313 | break; | ||
| 1314 | } | ||
| 1315 | |||
| 1316 | nm_i->next_scan_nid = nid; | ||
| 1317 | |||
| 1318 | /* find free nids from current sum_pages */ | ||
| 1319 | mutex_lock(&curseg->curseg_mutex); | ||
| 1320 | for (i = 0; i < nats_in_cursum(sum); i++) { | ||
| 1321 | block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr); | ||
| 1322 | nid = le32_to_cpu(nid_in_journal(sum, i)); | ||
| 1323 | if (addr == NULL_ADDR) | ||
| 1324 | add_free_nid(nm_i, nid); | ||
| 1325 | else | ||
| 1326 | remove_free_nid(nm_i, nid); | ||
| 1327 | } | ||
| 1328 | mutex_unlock(&curseg->curseg_mutex); | ||
| 1329 | |||
| 1330 | /* remove the free nids from current allocated nids */ | ||
| 1331 | list_for_each_entry_safe(fnid, next_fnid, &nm_i->free_nid_list, list) { | ||
| 1332 | struct nat_entry *ne; | ||
| 1333 | |||
| 1334 | read_lock(&nm_i->nat_tree_lock); | ||
| 1335 | ne = __lookup_nat_cache(nm_i, fnid->nid); | ||
| 1336 | if (ne && nat_get_blkaddr(ne) != NULL_ADDR) | ||
| 1337 | remove_free_nid(nm_i, fnid->nid); | ||
| 1338 | read_unlock(&nm_i->nat_tree_lock); | ||
| 1339 | } | ||
| 1340 | } | ||
| 1341 | |||
| 1342 | /* | ||
| 1343 | * If this function returns success, caller can obtain a new nid | ||
| 1344 | * from second parameter of this function. | ||
| 1345 | * The returned nid could be used ino as well as nid when inode is created. | ||
| 1346 | */ | ||
| 1347 | bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid) | ||
| 1348 | { | ||
| 1349 | struct f2fs_nm_info *nm_i = NM_I(sbi); | ||
| 1350 | struct free_nid *i = NULL; | ||
| 1351 | struct list_head *this; | ||
| 1352 | retry: | ||
| 1353 | mutex_lock(&nm_i->build_lock); | ||
| 1354 | if (!nm_i->fcnt) { | ||
| 1355 | /* scan NAT in order to build free nid list */ | ||
| 1356 | build_free_nids(sbi); | ||
| 1357 | if (!nm_i->fcnt) { | ||
| 1358 | mutex_unlock(&nm_i->build_lock); | ||
| 1359 | return false; | ||
| 1360 | } | ||
| 1361 | } | ||
| 1362 | mutex_unlock(&nm_i->build_lock); | ||
| 1363 | |||
| 1364 | /* | ||
| 1365 | * We check fcnt again since previous check is racy as | ||
| 1366 | * we didn't hold free_nid_list_lock. So other thread | ||
| 1367 | * could consume all of free nids. | ||
| 1368 | */ | ||
| 1369 | spin_lock(&nm_i->free_nid_list_lock); | ||
| 1370 | if (!nm_i->fcnt) { | ||
| 1371 | spin_unlock(&nm_i->free_nid_list_lock); | ||
| 1372 | goto retry; | ||
| 1373 | } | ||
| 1374 | |||
| 1375 | BUG_ON(list_empty(&nm_i->free_nid_list)); | ||
| 1376 | list_for_each(this, &nm_i->free_nid_list) { | ||
| 1377 | i = list_entry(this, struct free_nid, list); | ||
| 1378 | if (i->state == NID_NEW) | ||
| 1379 | break; | ||
| 1380 | } | ||
| 1381 | |||
| 1382 | BUG_ON(i->state != NID_NEW); | ||
| 1383 | *nid = i->nid; | ||
| 1384 | i->state = NID_ALLOC; | ||
| 1385 | nm_i->fcnt--; | ||
| 1386 | spin_unlock(&nm_i->free_nid_list_lock); | ||
| 1387 | return true; | ||
| 1388 | } | ||
| 1389 | |||
| 1390 | /* | ||
| 1391 | * alloc_nid() should be called prior to this function. | ||
| 1392 | */ | ||
| 1393 | void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid) | ||
| 1394 | { | ||
| 1395 | struct f2fs_nm_info *nm_i = NM_I(sbi); | ||
| 1396 | struct free_nid *i; | ||
| 1397 | |||
| 1398 | spin_lock(&nm_i->free_nid_list_lock); | ||
| 1399 | i = __lookup_free_nid_list(nid, &nm_i->free_nid_list); | ||
| 1400 | if (i) { | ||
| 1401 | BUG_ON(i->state != NID_ALLOC); | ||
| 1402 | __del_from_free_nid_list(i); | ||
| 1403 | } | ||
| 1404 | spin_unlock(&nm_i->free_nid_list_lock); | ||
| 1405 | } | ||
| 1406 | |||
| 1407 | /* | ||
| 1408 | * alloc_nid() should be called prior to this function. | ||
| 1409 | */ | ||
| 1410 | void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid) | ||
| 1411 | { | ||
| 1412 | alloc_nid_done(sbi, nid); | ||
| 1413 | add_free_nid(NM_I(sbi), nid); | ||
| 1414 | } | ||
| 1415 | |||
| 1416 | void recover_node_page(struct f2fs_sb_info *sbi, struct page *page, | ||
| 1417 | struct f2fs_summary *sum, struct node_info *ni, | ||
| 1418 | block_t new_blkaddr) | ||
| 1419 | { | ||
| 1420 | rewrite_node_page(sbi, page, sum, ni->blk_addr, new_blkaddr); | ||
| 1421 | set_node_addr(sbi, ni, new_blkaddr); | ||
| 1422 | clear_node_page_dirty(page); | ||
| 1423 | } | ||
| 1424 | |||
| 1425 | int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page) | ||
| 1426 | { | ||
| 1427 | struct address_space *mapping = sbi->node_inode->i_mapping; | ||
| 1428 | struct f2fs_node *src, *dst; | ||
| 1429 | nid_t ino = ino_of_node(page); | ||
| 1430 | struct node_info old_ni, new_ni; | ||
| 1431 | struct page *ipage; | ||
| 1432 | |||
| 1433 | ipage = grab_cache_page(mapping, ino); | ||
| 1434 | if (!ipage) | ||
| 1435 | return -ENOMEM; | ||
| 1436 | |||
| 1437 | /* Should not use this inode from free nid list */ | ||
| 1438 | remove_free_nid(NM_I(sbi), ino); | ||
| 1439 | |||
| 1440 | get_node_info(sbi, ino, &old_ni); | ||
| 1441 | SetPageUptodate(ipage); | ||
| 1442 | fill_node_footer(ipage, ino, ino, 0, true); | ||
| 1443 | |||
| 1444 | src = (struct f2fs_node *)page_address(page); | ||
| 1445 | dst = (struct f2fs_node *)page_address(ipage); | ||
| 1446 | |||
| 1447 | memcpy(dst, src, (unsigned long)&src->i.i_ext - (unsigned long)&src->i); | ||
| 1448 | dst->i.i_size = 0; | ||
| 1449 | dst->i.i_blocks = cpu_to_le64(1); | ||
| 1450 | dst->i.i_links = cpu_to_le32(1); | ||
| 1451 | dst->i.i_xattr_nid = 0; | ||
| 1452 | |||
| 1453 | new_ni = old_ni; | ||
| 1454 | new_ni.ino = ino; | ||
| 1455 | |||
| 1456 | set_node_addr(sbi, &new_ni, NEW_ADDR); | ||
| 1457 | inc_valid_inode_count(sbi); | ||
| 1458 | |||
| 1459 | f2fs_put_page(ipage, 1); | ||
| 1460 | return 0; | ||
| 1461 | } | ||
| 1462 | |||
| 1463 | int restore_node_summary(struct f2fs_sb_info *sbi, | ||
| 1464 | unsigned int segno, struct f2fs_summary_block *sum) | ||
| 1465 | { | ||
| 1466 | struct f2fs_node *rn; | ||
| 1467 | struct f2fs_summary *sum_entry; | ||
| 1468 | struct page *page; | ||
| 1469 | block_t addr; | ||
| 1470 | int i, last_offset; | ||
| 1471 | |||
| 1472 | /* alloc temporal page for read node */ | ||
| 1473 | page = alloc_page(GFP_NOFS | __GFP_ZERO); | ||
| 1474 | if (IS_ERR(page)) | ||
| 1475 | return PTR_ERR(page); | ||
| 1476 | lock_page(page); | ||
| 1477 | |||
| 1478 | /* scan the node segment */ | ||
| 1479 | last_offset = sbi->blocks_per_seg; | ||
| 1480 | addr = START_BLOCK(sbi, segno); | ||
| 1481 | sum_entry = &sum->entries[0]; | ||
| 1482 | |||
| 1483 | for (i = 0; i < last_offset; i++, sum_entry++) { | ||
| 1484 | if (f2fs_readpage(sbi, page, addr, READ_SYNC)) | ||
| 1485 | goto out; | ||
| 1486 | |||
| 1487 | rn = (struct f2fs_node *)page_address(page); | ||
| 1488 | sum_entry->nid = rn->footer.nid; | ||
| 1489 | sum_entry->version = 0; | ||
| 1490 | sum_entry->ofs_in_node = 0; | ||
| 1491 | addr++; | ||
| 1492 | |||
| 1493 | /* | ||
| 1494 | * In order to read next node page, | ||
| 1495 | * we must clear PageUptodate flag. | ||
| 1496 | */ | ||
| 1497 | ClearPageUptodate(page); | ||
| 1498 | } | ||
| 1499 | out: | ||
| 1500 | unlock_page(page); | ||
| 1501 | __free_pages(page, 0); | ||
| 1502 | return 0; | ||
| 1503 | } | ||
| 1504 | |||
| 1505 | static bool flush_nats_in_journal(struct f2fs_sb_info *sbi) | ||
| 1506 | { | ||
| 1507 | struct f2fs_nm_info *nm_i = NM_I(sbi); | ||
| 1508 | struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); | ||
| 1509 | struct f2fs_summary_block *sum = curseg->sum_blk; | ||
| 1510 | int i; | ||
| 1511 | |||
| 1512 | mutex_lock(&curseg->curseg_mutex); | ||
| 1513 | |||
| 1514 | if (nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES) { | ||
| 1515 | mutex_unlock(&curseg->curseg_mutex); | ||
| 1516 | return false; | ||
| 1517 | } | ||
| 1518 | |||
| 1519 | for (i = 0; i < nats_in_cursum(sum); i++) { | ||
| 1520 | struct nat_entry *ne; | ||
| 1521 | struct f2fs_nat_entry raw_ne; | ||
| 1522 | nid_t nid = le32_to_cpu(nid_in_journal(sum, i)); | ||
| 1523 | |||
| 1524 | raw_ne = nat_in_journal(sum, i); | ||
| 1525 | retry: | ||
| 1526 | write_lock(&nm_i->nat_tree_lock); | ||
| 1527 | ne = __lookup_nat_cache(nm_i, nid); | ||
| 1528 | if (ne) { | ||
| 1529 | __set_nat_cache_dirty(nm_i, ne); | ||
| 1530 | write_unlock(&nm_i->nat_tree_lock); | ||
| 1531 | continue; | ||
| 1532 | } | ||
| 1533 | ne = grab_nat_entry(nm_i, nid); | ||
| 1534 | if (!ne) { | ||
| 1535 | write_unlock(&nm_i->nat_tree_lock); | ||
| 1536 | goto retry; | ||
| 1537 | } | ||
| 1538 | nat_set_blkaddr(ne, le32_to_cpu(raw_ne.block_addr)); | ||
| 1539 | nat_set_ino(ne, le32_to_cpu(raw_ne.ino)); | ||
| 1540 | nat_set_version(ne, raw_ne.version); | ||
| 1541 | __set_nat_cache_dirty(nm_i, ne); | ||
| 1542 | write_unlock(&nm_i->nat_tree_lock); | ||
| 1543 | } | ||
| 1544 | update_nats_in_cursum(sum, -i); | ||
| 1545 | mutex_unlock(&curseg->curseg_mutex); | ||
| 1546 | return true; | ||
| 1547 | } | ||
| 1548 | |||
| 1549 | /* | ||
| 1550 | * This function is called during the checkpointing process. | ||
| 1551 | */ | ||
| 1552 | void flush_nat_entries(struct f2fs_sb_info *sbi) | ||
| 1553 | { | ||
| 1554 | struct f2fs_nm_info *nm_i = NM_I(sbi); | ||
| 1555 | struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); | ||
| 1556 | struct f2fs_summary_block *sum = curseg->sum_blk; | ||
| 1557 | struct list_head *cur, *n; | ||
| 1558 | struct page *page = NULL; | ||
| 1559 | struct f2fs_nat_block *nat_blk = NULL; | ||
| 1560 | nid_t start_nid = 0, end_nid = 0; | ||
| 1561 | bool flushed; | ||
| 1562 | |||
| 1563 | flushed = flush_nats_in_journal(sbi); | ||
| 1564 | |||
| 1565 | if (!flushed) | ||
| 1566 | mutex_lock(&curseg->curseg_mutex); | ||
| 1567 | |||
| 1568 | /* 1) flush dirty nat caches */ | ||
| 1569 | list_for_each_safe(cur, n, &nm_i->dirty_nat_entries) { | ||
| 1570 | struct nat_entry *ne; | ||
| 1571 | nid_t nid; | ||
| 1572 | struct f2fs_nat_entry raw_ne; | ||
| 1573 | int offset = -1; | ||
| 1574 | block_t old_blkaddr, new_blkaddr; | ||
| 1575 | |||
| 1576 | ne = list_entry(cur, struct nat_entry, list); | ||
| 1577 | nid = nat_get_nid(ne); | ||
| 1578 | |||
| 1579 | if (nat_get_blkaddr(ne) == NEW_ADDR) | ||
| 1580 | continue; | ||
| 1581 | if (flushed) | ||
| 1582 | goto to_nat_page; | ||
| 1583 | |||
| 1584 | /* if there is room for nat enries in curseg->sumpage */ | ||
| 1585 | offset = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 1); | ||
| 1586 | if (offset >= 0) { | ||
| 1587 | raw_ne = nat_in_journal(sum, offset); | ||
| 1588 | old_blkaddr = le32_to_cpu(raw_ne.block_addr); | ||
| 1589 | goto flush_now; | ||
| 1590 | } | ||
| 1591 | to_nat_page: | ||
| 1592 | if (!page || (start_nid > nid || nid > end_nid)) { | ||
| 1593 | if (page) { | ||
| 1594 | f2fs_put_page(page, 1); | ||
| 1595 | page = NULL; | ||
| 1596 | } | ||
| 1597 | start_nid = START_NID(nid); | ||
| 1598 | end_nid = start_nid + NAT_ENTRY_PER_BLOCK - 1; | ||
| 1599 | |||
| 1600 | /* | ||
| 1601 | * get nat block with dirty flag, increased reference | ||
| 1602 | * count, mapped and lock | ||
| 1603 | */ | ||
| 1604 | page = get_next_nat_page(sbi, start_nid); | ||
| 1605 | nat_blk = page_address(page); | ||
| 1606 | } | ||
| 1607 | |||
| 1608 | BUG_ON(!nat_blk); | ||
| 1609 | raw_ne = nat_blk->entries[nid - start_nid]; | ||
| 1610 | old_blkaddr = le32_to_cpu(raw_ne.block_addr); | ||
| 1611 | flush_now: | ||
| 1612 | new_blkaddr = nat_get_blkaddr(ne); | ||
| 1613 | |||
| 1614 | raw_ne.ino = cpu_to_le32(nat_get_ino(ne)); | ||
| 1615 | raw_ne.block_addr = cpu_to_le32(new_blkaddr); | ||
| 1616 | raw_ne.version = nat_get_version(ne); | ||
| 1617 | |||
| 1618 | if (offset < 0) { | ||
| 1619 | nat_blk->entries[nid - start_nid] = raw_ne; | ||
| 1620 | } else { | ||
| 1621 | nat_in_journal(sum, offset) = raw_ne; | ||
| 1622 | nid_in_journal(sum, offset) = cpu_to_le32(nid); | ||
| 1623 | } | ||
| 1624 | |||
| 1625 | if (nat_get_blkaddr(ne) == NULL_ADDR) { | ||
| 1626 | write_lock(&nm_i->nat_tree_lock); | ||
| 1627 | __del_from_nat_cache(nm_i, ne); | ||
| 1628 | write_unlock(&nm_i->nat_tree_lock); | ||
| 1629 | |||
| 1630 | /* We can reuse this freed nid at this point */ | ||
| 1631 | add_free_nid(NM_I(sbi), nid); | ||
| 1632 | } else { | ||
| 1633 | write_lock(&nm_i->nat_tree_lock); | ||
| 1634 | __clear_nat_cache_dirty(nm_i, ne); | ||
| 1635 | ne->checkpointed = true; | ||
| 1636 | write_unlock(&nm_i->nat_tree_lock); | ||
| 1637 | } | ||
| 1638 | } | ||
| 1639 | if (!flushed) | ||
| 1640 | mutex_unlock(&curseg->curseg_mutex); | ||
| 1641 | f2fs_put_page(page, 1); | ||
| 1642 | |||
| 1643 | /* 2) shrink nat caches if necessary */ | ||
| 1644 | try_to_free_nats(sbi, nm_i->nat_cnt - NM_WOUT_THRESHOLD); | ||
| 1645 | } | ||
| 1646 | |||
| 1647 | static int init_node_manager(struct f2fs_sb_info *sbi) | ||
| 1648 | { | ||
| 1649 | struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi); | ||
| 1650 | struct f2fs_nm_info *nm_i = NM_I(sbi); | ||
| 1651 | unsigned char *version_bitmap; | ||
| 1652 | unsigned int nat_segs, nat_blocks; | ||
| 1653 | |||
| 1654 | nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr); | ||
| 1655 | |||
| 1656 | /* segment_count_nat includes pair segment so divide to 2. */ | ||
| 1657 | nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1; | ||
| 1658 | nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg); | ||
| 1659 | nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks; | ||
| 1660 | nm_i->fcnt = 0; | ||
| 1661 | nm_i->nat_cnt = 0; | ||
| 1662 | |||
| 1663 | INIT_LIST_HEAD(&nm_i->free_nid_list); | ||
| 1664 | INIT_RADIX_TREE(&nm_i->nat_root, GFP_ATOMIC); | ||
| 1665 | INIT_LIST_HEAD(&nm_i->nat_entries); | ||
| 1666 | INIT_LIST_HEAD(&nm_i->dirty_nat_entries); | ||
| 1667 | |||
| 1668 | mutex_init(&nm_i->build_lock); | ||
| 1669 | spin_lock_init(&nm_i->free_nid_list_lock); | ||
| 1670 | rwlock_init(&nm_i->nat_tree_lock); | ||
| 1671 | |||
| 1672 | nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP); | ||
| 1673 | nm_i->init_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid); | ||
| 1674 | nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid); | ||
| 1675 | |||
| 1676 | nm_i->nat_bitmap = kzalloc(nm_i->bitmap_size, GFP_KERNEL); | ||
| 1677 | if (!nm_i->nat_bitmap) | ||
| 1678 | return -ENOMEM; | ||
| 1679 | version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP); | ||
| 1680 | if (!version_bitmap) | ||
| 1681 | return -EFAULT; | ||
| 1682 | |||
| 1683 | /* copy version bitmap */ | ||
| 1684 | memcpy(nm_i->nat_bitmap, version_bitmap, nm_i->bitmap_size); | ||
| 1685 | return 0; | ||
| 1686 | } | ||
| 1687 | |||
| 1688 | int build_node_manager(struct f2fs_sb_info *sbi) | ||
| 1689 | { | ||
| 1690 | int err; | ||
| 1691 | |||
| 1692 | sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL); | ||
| 1693 | if (!sbi->nm_info) | ||
| 1694 | return -ENOMEM; | ||
| 1695 | |||
| 1696 | err = init_node_manager(sbi); | ||
| 1697 | if (err) | ||
| 1698 | return err; | ||
| 1699 | |||
| 1700 | build_free_nids(sbi); | ||
| 1701 | return 0; | ||
| 1702 | } | ||
| 1703 | |||
| 1704 | void destroy_node_manager(struct f2fs_sb_info *sbi) | ||
| 1705 | { | ||
| 1706 | struct f2fs_nm_info *nm_i = NM_I(sbi); | ||
| 1707 | struct free_nid *i, *next_i; | ||
| 1708 | struct nat_entry *natvec[NATVEC_SIZE]; | ||
| 1709 | nid_t nid = 0; | ||
| 1710 | unsigned int found; | ||
| 1711 | |||
| 1712 | if (!nm_i) | ||
| 1713 | return; | ||
| 1714 | |||
| 1715 | /* destroy free nid list */ | ||
| 1716 | spin_lock(&nm_i->free_nid_list_lock); | ||
| 1717 | list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) { | ||
| 1718 | BUG_ON(i->state == NID_ALLOC); | ||
| 1719 | __del_from_free_nid_list(i); | ||
| 1720 | nm_i->fcnt--; | ||
| 1721 | } | ||
| 1722 | BUG_ON(nm_i->fcnt); | ||
| 1723 | spin_unlock(&nm_i->free_nid_list_lock); | ||
| 1724 | |||
| 1725 | /* destroy nat cache */ | ||
| 1726 | write_lock(&nm_i->nat_tree_lock); | ||
| 1727 | while ((found = __gang_lookup_nat_cache(nm_i, | ||
| 1728 | nid, NATVEC_SIZE, natvec))) { | ||
| 1729 | unsigned idx; | ||
| 1730 | for (idx = 0; idx < found; idx++) { | ||
| 1731 | struct nat_entry *e = natvec[idx]; | ||
| 1732 | nid = nat_get_nid(e) + 1; | ||
| 1733 | __del_from_nat_cache(nm_i, e); | ||
| 1734 | } | ||
| 1735 | } | ||
| 1736 | BUG_ON(nm_i->nat_cnt); | ||
| 1737 | write_unlock(&nm_i->nat_tree_lock); | ||
| 1738 | |||
| 1739 | kfree(nm_i->nat_bitmap); | ||
| 1740 | sbi->nm_info = NULL; | ||
| 1741 | kfree(nm_i); | ||
| 1742 | } | ||
| 1743 | |||
| 1744 | int create_node_manager_caches(void) | ||
| 1745 | { | ||
| 1746 | nat_entry_slab = f2fs_kmem_cache_create("nat_entry", | ||
| 1747 | sizeof(struct nat_entry), NULL); | ||
| 1748 | if (!nat_entry_slab) | ||
| 1749 | return -ENOMEM; | ||
| 1750 | |||
| 1751 | free_nid_slab = f2fs_kmem_cache_create("free_nid", | ||
| 1752 | sizeof(struct free_nid), NULL); | ||
| 1753 | if (!free_nid_slab) { | ||
| 1754 | kmem_cache_destroy(nat_entry_slab); | ||
| 1755 | return -ENOMEM; | ||
| 1756 | } | ||
| 1757 | return 0; | ||
| 1758 | } | ||
| 1759 | |||
| 1760 | void destroy_node_manager_caches(void) | ||
| 1761 | { | ||
| 1762 | kmem_cache_destroy(free_nid_slab); | ||
| 1763 | kmem_cache_destroy(nat_entry_slab); | ||
| 1764 | } | ||
diff --git a/fs/f2fs/node.h b/fs/f2fs/node.h new file mode 100644 index 000000000000..afdb130f782e --- /dev/null +++ b/fs/f2fs/node.h | |||
| @@ -0,0 +1,353 @@ | |||
| 1 | /* | ||
| 2 | * fs/f2fs/node.h | ||
| 3 | * | ||
| 4 | * Copyright (c) 2012 Samsung Electronics Co., Ltd. | ||
| 5 | * http://www.samsung.com/ | ||
| 6 | * | ||
| 7 | * This program is free software; you can redistribute it and/or modify | ||
| 8 | * it under the terms of the GNU General Public License version 2 as | ||
| 9 | * published by the Free Software Foundation. | ||
| 10 | */ | ||
| 11 | /* start node id of a node block dedicated to the given node id */ | ||
| 12 | #define START_NID(nid) ((nid / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK) | ||
| 13 | |||
| 14 | /* node block offset on the NAT area dedicated to the given start node id */ | ||
| 15 | #define NAT_BLOCK_OFFSET(start_nid) (start_nid / NAT_ENTRY_PER_BLOCK) | ||
| 16 | |||
| 17 | /* # of pages to perform readahead before building free nids */ | ||
| 18 | #define FREE_NID_PAGES 4 | ||
| 19 | |||
| 20 | /* maximum # of free node ids to produce during build_free_nids */ | ||
| 21 | #define MAX_FREE_NIDS (NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES) | ||
| 22 | |||
| 23 | /* maximum readahead size for node during getting data blocks */ | ||
| 24 | #define MAX_RA_NODE 128 | ||
| 25 | |||
| 26 | /* maximum cached nat entries to manage memory footprint */ | ||
| 27 | #define NM_WOUT_THRESHOLD (64 * NAT_ENTRY_PER_BLOCK) | ||
| 28 | |||
| 29 | /* vector size for gang look-up from nat cache that consists of radix tree */ | ||
| 30 | #define NATVEC_SIZE 64 | ||
| 31 | |||
| 32 | /* | ||
| 33 | * For node information | ||
| 34 | */ | ||
| 35 | struct node_info { | ||
| 36 | nid_t nid; /* node id */ | ||
| 37 | nid_t ino; /* inode number of the node's owner */ | ||
| 38 | block_t blk_addr; /* block address of the node */ | ||
| 39 | unsigned char version; /* version of the node */ | ||
| 40 | }; | ||
| 41 | |||
| 42 | struct nat_entry { | ||
| 43 | struct list_head list; /* for clean or dirty nat list */ | ||
| 44 | bool checkpointed; /* whether it is checkpointed or not */ | ||
| 45 | struct node_info ni; /* in-memory node information */ | ||
| 46 | }; | ||
| 47 | |||
| 48 | #define nat_get_nid(nat) (nat->ni.nid) | ||
| 49 | #define nat_set_nid(nat, n) (nat->ni.nid = n) | ||
| 50 | #define nat_get_blkaddr(nat) (nat->ni.blk_addr) | ||
| 51 | #define nat_set_blkaddr(nat, b) (nat->ni.blk_addr = b) | ||
| 52 | #define nat_get_ino(nat) (nat->ni.ino) | ||
| 53 | #define nat_set_ino(nat, i) (nat->ni.ino = i) | ||
| 54 | #define nat_get_version(nat) (nat->ni.version) | ||
| 55 | #define nat_set_version(nat, v) (nat->ni.version = v) | ||
| 56 | |||
| 57 | #define __set_nat_cache_dirty(nm_i, ne) \ | ||
| 58 | list_move_tail(&ne->list, &nm_i->dirty_nat_entries); | ||
| 59 | #define __clear_nat_cache_dirty(nm_i, ne) \ | ||
| 60 | list_move_tail(&ne->list, &nm_i->nat_entries); | ||
| 61 | #define inc_node_version(version) (++version) | ||
| 62 | |||
| 63 | static inline void node_info_from_raw_nat(struct node_info *ni, | ||
| 64 | struct f2fs_nat_entry *raw_ne) | ||
| 65 | { | ||
| 66 | ni->ino = le32_to_cpu(raw_ne->ino); | ||
| 67 | ni->blk_addr = le32_to_cpu(raw_ne->block_addr); | ||
| 68 | ni->version = raw_ne->version; | ||
| 69 | } | ||
| 70 | |||
| 71 | /* | ||
| 72 | * For free nid mangement | ||
| 73 | */ | ||
| 74 | enum nid_state { | ||
| 75 | NID_NEW, /* newly added to free nid list */ | ||
| 76 | NID_ALLOC /* it is allocated */ | ||
| 77 | }; | ||
| 78 | |||
| 79 | struct free_nid { | ||
| 80 | struct list_head list; /* for free node id list */ | ||
| 81 | nid_t nid; /* node id */ | ||
| 82 | int state; /* in use or not: NID_NEW or NID_ALLOC */ | ||
| 83 | }; | ||
| 84 | |||
| 85 | static inline int next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid) | ||
| 86 | { | ||
| 87 | struct f2fs_nm_info *nm_i = NM_I(sbi); | ||
| 88 | struct free_nid *fnid; | ||
| 89 | |||
| 90 | if (nm_i->fcnt <= 0) | ||
| 91 | return -1; | ||
| 92 | spin_lock(&nm_i->free_nid_list_lock); | ||
| 93 | fnid = list_entry(nm_i->free_nid_list.next, struct free_nid, list); | ||
| 94 | *nid = fnid->nid; | ||
| 95 | spin_unlock(&nm_i->free_nid_list_lock); | ||
| 96 | return 0; | ||
| 97 | } | ||
| 98 | |||
| 99 | /* | ||
| 100 | * inline functions | ||
| 101 | */ | ||
| 102 | static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr) | ||
| 103 | { | ||
| 104 | struct f2fs_nm_info *nm_i = NM_I(sbi); | ||
| 105 | memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size); | ||
| 106 | } | ||
| 107 | |||
| 108 | static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start) | ||
| 109 | { | ||
| 110 | struct f2fs_nm_info *nm_i = NM_I(sbi); | ||
| 111 | pgoff_t block_off; | ||
| 112 | pgoff_t block_addr; | ||
| 113 | int seg_off; | ||
| 114 | |||
| 115 | block_off = NAT_BLOCK_OFFSET(start); | ||
| 116 | seg_off = block_off >> sbi->log_blocks_per_seg; | ||
| 117 | |||
| 118 | block_addr = (pgoff_t)(nm_i->nat_blkaddr + | ||
| 119 | (seg_off << sbi->log_blocks_per_seg << 1) + | ||
| 120 | (block_off & ((1 << sbi->log_blocks_per_seg) - 1))); | ||
| 121 | |||
| 122 | if (f2fs_test_bit(block_off, nm_i->nat_bitmap)) | ||
| 123 | block_addr += sbi->blocks_per_seg; | ||
| 124 | |||
| 125 | return block_addr; | ||
| 126 | } | ||
| 127 | |||
| 128 | static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi, | ||
| 129 | pgoff_t block_addr) | ||
| 130 | { | ||
| 131 | struct f2fs_nm_info *nm_i = NM_I(sbi); | ||
| 132 | |||
| 133 | block_addr -= nm_i->nat_blkaddr; | ||
| 134 | if ((block_addr >> sbi->log_blocks_per_seg) % 2) | ||
| 135 | block_addr -= sbi->blocks_per_seg; | ||
| 136 | else | ||
| 137 | block_addr += sbi->blocks_per_seg; | ||
| 138 | |||
| 139 | return block_addr + nm_i->nat_blkaddr; | ||
| 140 | } | ||
| 141 | |||
| 142 | static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid) | ||
| 143 | { | ||
| 144 | unsigned int block_off = NAT_BLOCK_OFFSET(start_nid); | ||
| 145 | |||
| 146 | if (f2fs_test_bit(block_off, nm_i->nat_bitmap)) | ||
| 147 | f2fs_clear_bit(block_off, nm_i->nat_bitmap); | ||
| 148 | else | ||
| 149 | f2fs_set_bit(block_off, nm_i->nat_bitmap); | ||
| 150 | } | ||
| 151 | |||
| 152 | static inline void fill_node_footer(struct page *page, nid_t nid, | ||
| 153 | nid_t ino, unsigned int ofs, bool reset) | ||
| 154 | { | ||
| 155 | void *kaddr = page_address(page); | ||
| 156 | struct f2fs_node *rn = (struct f2fs_node *)kaddr; | ||
| 157 | if (reset) | ||
| 158 | memset(rn, 0, sizeof(*rn)); | ||
| 159 | rn->footer.nid = cpu_to_le32(nid); | ||
| 160 | rn->footer.ino = cpu_to_le32(ino); | ||
| 161 | rn->footer.flag = cpu_to_le32(ofs << OFFSET_BIT_SHIFT); | ||
| 162 | } | ||
| 163 | |||
| 164 | static inline void copy_node_footer(struct page *dst, struct page *src) | ||
| 165 | { | ||
| 166 | void *src_addr = page_address(src); | ||
| 167 | void *dst_addr = page_address(dst); | ||
| 168 | struct f2fs_node *src_rn = (struct f2fs_node *)src_addr; | ||
| 169 | struct f2fs_node *dst_rn = (struct f2fs_node *)dst_addr; | ||
| 170 | memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer)); | ||
| 171 | } | ||
| 172 | |||
| 173 | static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr) | ||
| 174 | { | ||
| 175 | struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb); | ||
| 176 | struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); | ||
| 177 | void *kaddr = page_address(page); | ||
| 178 | struct f2fs_node *rn = (struct f2fs_node *)kaddr; | ||
| 179 | rn->footer.cp_ver = ckpt->checkpoint_ver; | ||
| 180 | rn->footer.next_blkaddr = cpu_to_le32(blkaddr); | ||
| 181 | } | ||
| 182 | |||
| 183 | static inline nid_t ino_of_node(struct page *node_page) | ||
| 184 | { | ||
| 185 | void *kaddr = page_address(node_page); | ||
| 186 | struct f2fs_node *rn = (struct f2fs_node *)kaddr; | ||
| 187 | return le32_to_cpu(rn->footer.ino); | ||
| 188 | } | ||
| 189 | |||
| 190 | static inline nid_t nid_of_node(struct page *node_page) | ||
| 191 | { | ||
| 192 | void *kaddr = page_address(node_page); | ||
| 193 | struct f2fs_node *rn = (struct f2fs_node *)kaddr; | ||
| 194 | return le32_to_cpu(rn->footer.nid); | ||
| 195 | } | ||
| 196 | |||
| 197 | static inline unsigned int ofs_of_node(struct page *node_page) | ||
| 198 | { | ||
| 199 | void *kaddr = page_address(node_page); | ||
| 200 | struct f2fs_node *rn = (struct f2fs_node *)kaddr; | ||
| 201 | unsigned flag = le32_to_cpu(rn->footer.flag); | ||
| 202 | return flag >> OFFSET_BIT_SHIFT; | ||
| 203 | } | ||
| 204 | |||
| 205 | static inline unsigned long long cpver_of_node(struct page *node_page) | ||
| 206 | { | ||
| 207 | void *kaddr = page_address(node_page); | ||
| 208 | struct f2fs_node *rn = (struct f2fs_node *)kaddr; | ||
| 209 | return le64_to_cpu(rn->footer.cp_ver); | ||
| 210 | } | ||
| 211 | |||
| 212 | static inline block_t next_blkaddr_of_node(struct page *node_page) | ||
| 213 | { | ||
| 214 | void *kaddr = page_address(node_page); | ||
| 215 | struct f2fs_node *rn = (struct f2fs_node *)kaddr; | ||
| 216 | return le32_to_cpu(rn->footer.next_blkaddr); | ||
| 217 | } | ||
| 218 | |||
| 219 | /* | ||
| 220 | * f2fs assigns the following node offsets described as (num). | ||
| 221 | * N = NIDS_PER_BLOCK | ||
| 222 | * | ||
| 223 | * Inode block (0) | ||
| 224 | * |- direct node (1) | ||
| 225 | * |- direct node (2) | ||
| 226 | * |- indirect node (3) | ||
| 227 | * | `- direct node (4 => 4 + N - 1) | ||
| 228 | * |- indirect node (4 + N) | ||
| 229 | * | `- direct node (5 + N => 5 + 2N - 1) | ||
| 230 | * `- double indirect node (5 + 2N) | ||
| 231 | * `- indirect node (6 + 2N) | ||
| 232 | * `- direct node (x(N + 1)) | ||
| 233 | */ | ||
| 234 | static inline bool IS_DNODE(struct page *node_page) | ||
| 235 | { | ||
| 236 | unsigned int ofs = ofs_of_node(node_page); | ||
| 237 | if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK || | ||
| 238 | ofs == 5 + 2 * NIDS_PER_BLOCK) | ||
| 239 | return false; | ||
| 240 | if (ofs >= 6 + 2 * NIDS_PER_BLOCK) { | ||
| 241 | ofs -= 6 + 2 * NIDS_PER_BLOCK; | ||
| 242 | if ((long int)ofs % (NIDS_PER_BLOCK + 1)) | ||
| 243 | return false; | ||
| 244 | } | ||
| 245 | return true; | ||
| 246 | } | ||
| 247 | |||
| 248 | static inline void set_nid(struct page *p, int off, nid_t nid, bool i) | ||
| 249 | { | ||
| 250 | struct f2fs_node *rn = (struct f2fs_node *)page_address(p); | ||
| 251 | |||
| 252 | wait_on_page_writeback(p); | ||
| 253 | |||
| 254 | if (i) | ||
| 255 | rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid); | ||
| 256 | else | ||
| 257 | rn->in.nid[off] = cpu_to_le32(nid); | ||
| 258 | set_page_dirty(p); | ||
| 259 | } | ||
| 260 | |||
| 261 | static inline nid_t get_nid(struct page *p, int off, bool i) | ||
| 262 | { | ||
| 263 | struct f2fs_node *rn = (struct f2fs_node *)page_address(p); | ||
| 264 | if (i) | ||
| 265 | return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]); | ||
| 266 | return le32_to_cpu(rn->in.nid[off]); | ||
| 267 | } | ||
| 268 | |||
| 269 | /* | ||
| 270 | * Coldness identification: | ||
| 271 | * - Mark cold files in f2fs_inode_info | ||
| 272 | * - Mark cold node blocks in their node footer | ||
| 273 | * - Mark cold data pages in page cache | ||
| 274 | */ | ||
| 275 | static inline int is_cold_file(struct inode *inode) | ||
| 276 | { | ||
| 277 | return F2FS_I(inode)->i_advise & FADVISE_COLD_BIT; | ||
| 278 | } | ||
| 279 | |||
| 280 | static inline int is_cold_data(struct page *page) | ||
| 281 | { | ||
| 282 | return PageChecked(page); | ||
| 283 | } | ||
| 284 | |||
| 285 | static inline void set_cold_data(struct page *page) | ||
| 286 | { | ||
| 287 | SetPageChecked(page); | ||
| 288 | } | ||
| 289 | |||
| 290 | static inline void clear_cold_data(struct page *page) | ||
| 291 | { | ||
| 292 | ClearPageChecked(page); | ||
| 293 | } | ||
| 294 | |||
| 295 | static inline int is_cold_node(struct page *page) | ||
| 296 | { | ||
| 297 | void *kaddr = page_address(page); | ||
| 298 | struct f2fs_node *rn = (struct f2fs_node *)kaddr; | ||
| 299 | unsigned int flag = le32_to_cpu(rn->footer.flag); | ||
| 300 | return flag & (0x1 << COLD_BIT_SHIFT); | ||
| 301 | } | ||
| 302 | |||
| 303 | static inline unsigned char is_fsync_dnode(struct page *page) | ||
| 304 | { | ||
| 305 | void *kaddr = page_address(page); | ||
| 306 | struct f2fs_node *rn = (struct f2fs_node *)kaddr; | ||
| 307 | unsigned int flag = le32_to_cpu(rn->footer.flag); | ||
| 308 | return flag & (0x1 << FSYNC_BIT_SHIFT); | ||
| 309 | } | ||
| 310 | |||
| 311 | static inline unsigned char is_dent_dnode(struct page *page) | ||
| 312 | { | ||
| 313 | void *kaddr = page_address(page); | ||
| 314 | struct f2fs_node *rn = (struct f2fs_node *)kaddr; | ||
| 315 | unsigned int flag = le32_to_cpu(rn->footer.flag); | ||
| 316 | return flag & (0x1 << DENT_BIT_SHIFT); | ||
| 317 | } | ||
| 318 | |||
| 319 | static inline void set_cold_node(struct inode *inode, struct page *page) | ||
| 320 | { | ||
| 321 | struct f2fs_node *rn = (struct f2fs_node *)page_address(page); | ||
| 322 | unsigned int flag = le32_to_cpu(rn->footer.flag); | ||
| 323 | |||
| 324 | if (S_ISDIR(inode->i_mode)) | ||
| 325 | flag &= ~(0x1 << COLD_BIT_SHIFT); | ||
| 326 | else | ||
| 327 | flag |= (0x1 << COLD_BIT_SHIFT); | ||
| 328 | rn->footer.flag = cpu_to_le32(flag); | ||
| 329 | } | ||
| 330 | |||
| 331 | static inline void set_fsync_mark(struct page *page, int mark) | ||
| 332 | { | ||
| 333 | void *kaddr = page_address(page); | ||
| 334 | struct f2fs_node *rn = (struct f2fs_node *)kaddr; | ||
| 335 | unsigned int flag = le32_to_cpu(rn->footer.flag); | ||
| 336 | if (mark) | ||
| 337 | flag |= (0x1 << FSYNC_BIT_SHIFT); | ||
| 338 | else | ||
| 339 | flag &= ~(0x1 << FSYNC_BIT_SHIFT); | ||
| 340 | rn->footer.flag = cpu_to_le32(flag); | ||
| 341 | } | ||
| 342 | |||
| 343 | static inline void set_dentry_mark(struct page *page, int mark) | ||
| 344 | { | ||
| 345 | void *kaddr = page_address(page); | ||
| 346 | struct f2fs_node *rn = (struct f2fs_node *)kaddr; | ||
| 347 | unsigned int flag = le32_to_cpu(rn->footer.flag); | ||
| 348 | if (mark) | ||
| 349 | flag |= (0x1 << DENT_BIT_SHIFT); | ||
| 350 | else | ||
| 351 | flag &= ~(0x1 << DENT_BIT_SHIFT); | ||
| 352 | rn->footer.flag = cpu_to_le32(flag); | ||
| 353 | } | ||
diff --git a/fs/f2fs/recovery.c b/fs/f2fs/recovery.c new file mode 100644 index 000000000000..b07e9b6ef376 --- /dev/null +++ b/fs/f2fs/recovery.c | |||
| @@ -0,0 +1,375 @@ | |||
| 1 | /* | ||
| 2 | * fs/f2fs/recovery.c | ||
| 3 | * | ||
| 4 | * Copyright (c) 2012 Samsung Electronics Co., Ltd. | ||
| 5 | * http://www.samsung.com/ | ||
| 6 | * | ||
| 7 | * This program is free software; you can redistribute it and/or modify | ||
| 8 | * it under the terms of the GNU General Public License version 2 as | ||
| 9 | * published by the Free Software Foundation. | ||
| 10 | */ | ||
| 11 | #include <linux/fs.h> | ||
| 12 | #include <linux/f2fs_fs.h> | ||
| 13 | #include "f2fs.h" | ||
| 14 | #include "node.h" | ||
| 15 | #include "segment.h" | ||
| 16 | |||
| 17 | static struct kmem_cache *fsync_entry_slab; | ||
| 18 | |||
| 19 | bool space_for_roll_forward(struct f2fs_sb_info *sbi) | ||
| 20 | { | ||
| 21 | if (sbi->last_valid_block_count + sbi->alloc_valid_block_count | ||
| 22 | > sbi->user_block_count) | ||
| 23 | return false; | ||
| 24 | return true; | ||
| 25 | } | ||
| 26 | |||
| 27 | static struct fsync_inode_entry *get_fsync_inode(struct list_head *head, | ||
| 28 | nid_t ino) | ||
| 29 | { | ||
| 30 | struct list_head *this; | ||
| 31 | struct fsync_inode_entry *entry; | ||
| 32 | |||
| 33 | list_for_each(this, head) { | ||
| 34 | entry = list_entry(this, struct fsync_inode_entry, list); | ||
| 35 | if (entry->inode->i_ino == ino) | ||
| 36 | return entry; | ||
| 37 | } | ||
| 38 | return NULL; | ||
| 39 | } | ||
| 40 | |||
| 41 | static int recover_dentry(struct page *ipage, struct inode *inode) | ||
| 42 | { | ||
| 43 | struct f2fs_node *raw_node = (struct f2fs_node *)kmap(ipage); | ||
| 44 | struct f2fs_inode *raw_inode = &(raw_node->i); | ||
| 45 | struct dentry dent, parent; | ||
| 46 | struct f2fs_dir_entry *de; | ||
| 47 | struct page *page; | ||
| 48 | struct inode *dir; | ||
| 49 | int err = 0; | ||
| 50 | |||
| 51 | if (!is_dent_dnode(ipage)) | ||
| 52 | goto out; | ||
| 53 | |||
| 54 | dir = f2fs_iget(inode->i_sb, le32_to_cpu(raw_inode->i_pino)); | ||
| 55 | if (IS_ERR(dir)) { | ||
| 56 | err = -EINVAL; | ||
| 57 | goto out; | ||
| 58 | } | ||
| 59 | |||
| 60 | parent.d_inode = dir; | ||
| 61 | dent.d_parent = &parent; | ||
| 62 | dent.d_name.len = le32_to_cpu(raw_inode->i_namelen); | ||
| 63 | dent.d_name.name = raw_inode->i_name; | ||
| 64 | |||
| 65 | de = f2fs_find_entry(dir, &dent.d_name, &page); | ||
| 66 | if (de) { | ||
| 67 | kunmap(page); | ||
| 68 | f2fs_put_page(page, 0); | ||
| 69 | } else { | ||
| 70 | f2fs_add_link(&dent, inode); | ||
| 71 | } | ||
| 72 | iput(dir); | ||
| 73 | out: | ||
| 74 | kunmap(ipage); | ||
| 75 | return err; | ||
| 76 | } | ||
| 77 | |||
| 78 | static int recover_inode(struct inode *inode, struct page *node_page) | ||
| 79 | { | ||
| 80 | void *kaddr = page_address(node_page); | ||
| 81 | struct f2fs_node *raw_node = (struct f2fs_node *)kaddr; | ||
| 82 | struct f2fs_inode *raw_inode = &(raw_node->i); | ||
| 83 | |||
| 84 | inode->i_mode = le16_to_cpu(raw_inode->i_mode); | ||
| 85 | i_size_write(inode, le64_to_cpu(raw_inode->i_size)); | ||
| 86 | inode->i_atime.tv_sec = le64_to_cpu(raw_inode->i_mtime); | ||
| 87 | inode->i_ctime.tv_sec = le64_to_cpu(raw_inode->i_ctime); | ||
| 88 | inode->i_mtime.tv_sec = le64_to_cpu(raw_inode->i_mtime); | ||
| 89 | inode->i_atime.tv_nsec = le32_to_cpu(raw_inode->i_mtime_nsec); | ||
| 90 | inode->i_ctime.tv_nsec = le32_to_cpu(raw_inode->i_ctime_nsec); | ||
| 91 | inode->i_mtime.tv_nsec = le32_to_cpu(raw_inode->i_mtime_nsec); | ||
| 92 | |||
| 93 | return recover_dentry(node_page, inode); | ||
| 94 | } | ||
| 95 | |||
| 96 | static int find_fsync_dnodes(struct f2fs_sb_info *sbi, struct list_head *head) | ||
| 97 | { | ||
| 98 | unsigned long long cp_ver = le64_to_cpu(sbi->ckpt->checkpoint_ver); | ||
| 99 | struct curseg_info *curseg; | ||
| 100 | struct page *page; | ||
| 101 | block_t blkaddr; | ||
| 102 | int err = 0; | ||
| 103 | |||
| 104 | /* get node pages in the current segment */ | ||
| 105 | curseg = CURSEG_I(sbi, CURSEG_WARM_NODE); | ||
| 106 | blkaddr = START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff; | ||
| 107 | |||
| 108 | /* read node page */ | ||
| 109 | page = alloc_page(GFP_F2FS_ZERO); | ||
| 110 | if (IS_ERR(page)) | ||
| 111 | return PTR_ERR(page); | ||
| 112 | lock_page(page); | ||
| 113 | |||
| 114 | while (1) { | ||
| 115 | struct fsync_inode_entry *entry; | ||
| 116 | |||
| 117 | if (f2fs_readpage(sbi, page, blkaddr, READ_SYNC)) | ||
| 118 | goto out; | ||
| 119 | |||
| 120 | if (cp_ver != cpver_of_node(page)) | ||
| 121 | goto out; | ||
| 122 | |||
| 123 | if (!is_fsync_dnode(page)) | ||
| 124 | goto next; | ||
| 125 | |||
| 126 | entry = get_fsync_inode(head, ino_of_node(page)); | ||
| 127 | if (entry) { | ||
| 128 | entry->blkaddr = blkaddr; | ||
| 129 | if (IS_INODE(page) && is_dent_dnode(page)) | ||
| 130 | set_inode_flag(F2FS_I(entry->inode), | ||
| 131 | FI_INC_LINK); | ||
| 132 | } else { | ||
| 133 | if (IS_INODE(page) && is_dent_dnode(page)) { | ||
| 134 | if (recover_inode_page(sbi, page)) { | ||
| 135 | err = -ENOMEM; | ||
| 136 | goto out; | ||
| 137 | } | ||
| 138 | } | ||
| 139 | |||
| 140 | /* add this fsync inode to the list */ | ||
| 141 | entry = kmem_cache_alloc(fsync_entry_slab, GFP_NOFS); | ||
| 142 | if (!entry) { | ||
| 143 | err = -ENOMEM; | ||
| 144 | goto out; | ||
| 145 | } | ||
| 146 | |||
| 147 | INIT_LIST_HEAD(&entry->list); | ||
| 148 | list_add_tail(&entry->list, head); | ||
| 149 | |||
| 150 | entry->inode = f2fs_iget(sbi->sb, ino_of_node(page)); | ||
| 151 | if (IS_ERR(entry->inode)) { | ||
| 152 | err = PTR_ERR(entry->inode); | ||
| 153 | goto out; | ||
| 154 | } | ||
| 155 | entry->blkaddr = blkaddr; | ||
| 156 | } | ||
| 157 | if (IS_INODE(page)) { | ||
| 158 | err = recover_inode(entry->inode, page); | ||
| 159 | if (err) | ||
| 160 | goto out; | ||
| 161 | } | ||
| 162 | next: | ||
| 163 | /* check next segment */ | ||
| 164 | blkaddr = next_blkaddr_of_node(page); | ||
| 165 | ClearPageUptodate(page); | ||
| 166 | } | ||
| 167 | out: | ||
| 168 | unlock_page(page); | ||
| 169 | __free_pages(page, 0); | ||
| 170 | return err; | ||
| 171 | } | ||
| 172 | |||
| 173 | static void destroy_fsync_dnodes(struct f2fs_sb_info *sbi, | ||
| 174 | struct list_head *head) | ||
| 175 | { | ||
| 176 | struct list_head *this; | ||
| 177 | struct fsync_inode_entry *entry; | ||
| 178 | list_for_each(this, head) { | ||
| 179 | entry = list_entry(this, struct fsync_inode_entry, list); | ||
| 180 | iput(entry->inode); | ||
| 181 | list_del(&entry->list); | ||
| 182 | kmem_cache_free(fsync_entry_slab, entry); | ||
| 183 | } | ||
| 184 | } | ||
| 185 | |||
| 186 | static void check_index_in_prev_nodes(struct f2fs_sb_info *sbi, | ||
| 187 | block_t blkaddr) | ||
| 188 | { | ||
| 189 | struct seg_entry *sentry; | ||
| 190 | unsigned int segno = GET_SEGNO(sbi, blkaddr); | ||
| 191 | unsigned short blkoff = GET_SEGOFF_FROM_SEG0(sbi, blkaddr) & | ||
| 192 | (sbi->blocks_per_seg - 1); | ||
| 193 | struct f2fs_summary sum; | ||
| 194 | nid_t ino; | ||
| 195 | void *kaddr; | ||
| 196 | struct inode *inode; | ||
| 197 | struct page *node_page; | ||
| 198 | block_t bidx; | ||
| 199 | int i; | ||
| 200 | |||
| 201 | sentry = get_seg_entry(sbi, segno); | ||
| 202 | if (!f2fs_test_bit(blkoff, sentry->cur_valid_map)) | ||
| 203 | return; | ||
| 204 | |||
| 205 | /* Get the previous summary */ | ||
| 206 | for (i = CURSEG_WARM_DATA; i <= CURSEG_COLD_DATA; i++) { | ||
| 207 | struct curseg_info *curseg = CURSEG_I(sbi, i); | ||
| 208 | if (curseg->segno == segno) { | ||
| 209 | sum = curseg->sum_blk->entries[blkoff]; | ||
| 210 | break; | ||
| 211 | } | ||
| 212 | } | ||
| 213 | if (i > CURSEG_COLD_DATA) { | ||
| 214 | struct page *sum_page = get_sum_page(sbi, segno); | ||
| 215 | struct f2fs_summary_block *sum_node; | ||
| 216 | kaddr = page_address(sum_page); | ||
| 217 | sum_node = (struct f2fs_summary_block *)kaddr; | ||
| 218 | sum = sum_node->entries[blkoff]; | ||
| 219 | f2fs_put_page(sum_page, 1); | ||
| 220 | } | ||
| 221 | |||
| 222 | /* Get the node page */ | ||
| 223 | node_page = get_node_page(sbi, le32_to_cpu(sum.nid)); | ||
| 224 | bidx = start_bidx_of_node(ofs_of_node(node_page)) + | ||
| 225 | le16_to_cpu(sum.ofs_in_node); | ||
| 226 | ino = ino_of_node(node_page); | ||
| 227 | f2fs_put_page(node_page, 1); | ||
| 228 | |||
| 229 | /* Deallocate previous index in the node page */ | ||
| 230 | inode = f2fs_iget_nowait(sbi->sb, ino); | ||
| 231 | truncate_hole(inode, bidx, bidx + 1); | ||
| 232 | iput(inode); | ||
| 233 | } | ||
| 234 | |||
| 235 | static void do_recover_data(struct f2fs_sb_info *sbi, struct inode *inode, | ||
| 236 | struct page *page, block_t blkaddr) | ||
| 237 | { | ||
| 238 | unsigned int start, end; | ||
| 239 | struct dnode_of_data dn; | ||
| 240 | struct f2fs_summary sum; | ||
| 241 | struct node_info ni; | ||
| 242 | |||
| 243 | start = start_bidx_of_node(ofs_of_node(page)); | ||
| 244 | if (IS_INODE(page)) | ||
| 245 | end = start + ADDRS_PER_INODE; | ||
| 246 | else | ||
| 247 | end = start + ADDRS_PER_BLOCK; | ||
| 248 | |||
| 249 | set_new_dnode(&dn, inode, NULL, NULL, 0); | ||
| 250 | if (get_dnode_of_data(&dn, start, 0)) | ||
| 251 | return; | ||
| 252 | |||
| 253 | wait_on_page_writeback(dn.node_page); | ||
| 254 | |||
| 255 | get_node_info(sbi, dn.nid, &ni); | ||
| 256 | BUG_ON(ni.ino != ino_of_node(page)); | ||
| 257 | BUG_ON(ofs_of_node(dn.node_page) != ofs_of_node(page)); | ||
| 258 | |||
| 259 | for (; start < end; start++) { | ||
| 260 | block_t src, dest; | ||
| 261 | |||
| 262 | src = datablock_addr(dn.node_page, dn.ofs_in_node); | ||
| 263 | dest = datablock_addr(page, dn.ofs_in_node); | ||
| 264 | |||
| 265 | if (src != dest && dest != NEW_ADDR && dest != NULL_ADDR) { | ||
| 266 | if (src == NULL_ADDR) { | ||
| 267 | int err = reserve_new_block(&dn); | ||
| 268 | /* We should not get -ENOSPC */ | ||
| 269 | BUG_ON(err); | ||
| 270 | } | ||
| 271 | |||
| 272 | /* Check the previous node page having this index */ | ||
| 273 | check_index_in_prev_nodes(sbi, dest); | ||
| 274 | |||
| 275 | set_summary(&sum, dn.nid, dn.ofs_in_node, ni.version); | ||
| 276 | |||
| 277 | /* write dummy data page */ | ||
| 278 | recover_data_page(sbi, NULL, &sum, src, dest); | ||
| 279 | update_extent_cache(dest, &dn); | ||
| 280 | } | ||
| 281 | dn.ofs_in_node++; | ||
| 282 | } | ||
| 283 | |||
| 284 | /* write node page in place */ | ||
| 285 | set_summary(&sum, dn.nid, 0, 0); | ||
| 286 | if (IS_INODE(dn.node_page)) | ||
| 287 | sync_inode_page(&dn); | ||
| 288 | |||
| 289 | copy_node_footer(dn.node_page, page); | ||
| 290 | fill_node_footer(dn.node_page, dn.nid, ni.ino, | ||
| 291 | ofs_of_node(page), false); | ||
| 292 | set_page_dirty(dn.node_page); | ||
| 293 | |||
| 294 | recover_node_page(sbi, dn.node_page, &sum, &ni, blkaddr); | ||
| 295 | f2fs_put_dnode(&dn); | ||
| 296 | } | ||
| 297 | |||
| 298 | static void recover_data(struct f2fs_sb_info *sbi, | ||
| 299 | struct list_head *head, int type) | ||
| 300 | { | ||
| 301 | unsigned long long cp_ver = le64_to_cpu(sbi->ckpt->checkpoint_ver); | ||
| 302 | struct curseg_info *curseg; | ||
| 303 | struct page *page; | ||
| 304 | block_t blkaddr; | ||
| 305 | |||
| 306 | /* get node pages in the current segment */ | ||
| 307 | curseg = CURSEG_I(sbi, type); | ||
| 308 | blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); | ||
| 309 | |||
| 310 | /* read node page */ | ||
| 311 | page = alloc_page(GFP_NOFS | __GFP_ZERO); | ||
| 312 | if (IS_ERR(page)) | ||
| 313 | return; | ||
| 314 | lock_page(page); | ||
| 315 | |||
| 316 | while (1) { | ||
| 317 | struct fsync_inode_entry *entry; | ||
| 318 | |||
| 319 | if (f2fs_readpage(sbi, page, blkaddr, READ_SYNC)) | ||
| 320 | goto out; | ||
| 321 | |||
| 322 | if (cp_ver != cpver_of_node(page)) | ||
| 323 | goto out; | ||
| 324 | |||
| 325 | entry = get_fsync_inode(head, ino_of_node(page)); | ||
| 326 | if (!entry) | ||
| 327 | goto next; | ||
| 328 | |||
| 329 | do_recover_data(sbi, entry->inode, page, blkaddr); | ||
| 330 | |||
| 331 | if (entry->blkaddr == blkaddr) { | ||
| 332 | iput(entry->inode); | ||
| 333 | list_del(&entry->list); | ||
| 334 | kmem_cache_free(fsync_entry_slab, entry); | ||
| 335 | } | ||
| 336 | next: | ||
| 337 | /* check next segment */ | ||
| 338 | blkaddr = next_blkaddr_of_node(page); | ||
| 339 | ClearPageUptodate(page); | ||
| 340 | } | ||
| 341 | out: | ||
| 342 | unlock_page(page); | ||
| 343 | __free_pages(page, 0); | ||
| 344 | |||
| 345 | allocate_new_segments(sbi); | ||
| 346 | } | ||
| 347 | |||
| 348 | void recover_fsync_data(struct f2fs_sb_info *sbi) | ||
| 349 | { | ||
| 350 | struct list_head inode_list; | ||
| 351 | |||
| 352 | fsync_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_inode_entry", | ||
| 353 | sizeof(struct fsync_inode_entry), NULL); | ||
| 354 | if (unlikely(!fsync_entry_slab)) | ||
| 355 | return; | ||
| 356 | |||
| 357 | INIT_LIST_HEAD(&inode_list); | ||
| 358 | |||
| 359 | /* step #1: find fsynced inode numbers */ | ||
| 360 | if (find_fsync_dnodes(sbi, &inode_list)) | ||
| 361 | goto out; | ||
| 362 | |||
| 363 | if (list_empty(&inode_list)) | ||
| 364 | goto out; | ||
| 365 | |||
| 366 | /* step #2: recover data */ | ||
| 367 | sbi->por_doing = 1; | ||
| 368 | recover_data(sbi, &inode_list, CURSEG_WARM_NODE); | ||
| 369 | sbi->por_doing = 0; | ||
| 370 | BUG_ON(!list_empty(&inode_list)); | ||
| 371 | out: | ||
| 372 | destroy_fsync_dnodes(sbi, &inode_list); | ||
| 373 | kmem_cache_destroy(fsync_entry_slab); | ||
| 374 | write_checkpoint(sbi, false, false); | ||
| 375 | } | ||
diff --git a/fs/f2fs/segment.c b/fs/f2fs/segment.c new file mode 100644 index 000000000000..1b26e4ea1016 --- /dev/null +++ b/fs/f2fs/segment.c | |||
| @@ -0,0 +1,1791 @@ | |||
| 1 | /* | ||
| 2 | * fs/f2fs/segment.c | ||
| 3 | * | ||
| 4 | * Copyright (c) 2012 Samsung Electronics Co., Ltd. | ||
| 5 | * http://www.samsung.com/ | ||
| 6 | * | ||
| 7 | * This program is free software; you can redistribute it and/or modify | ||
| 8 | * it under the terms of the GNU General Public License version 2 as | ||
| 9 | * published by the Free Software Foundation. | ||
| 10 | */ | ||
| 11 | #include <linux/fs.h> | ||
| 12 | #include <linux/f2fs_fs.h> | ||
| 13 | #include <linux/bio.h> | ||
| 14 | #include <linux/blkdev.h> | ||
| 15 | #include <linux/vmalloc.h> | ||
| 16 | |||
| 17 | #include "f2fs.h" | ||
| 18 | #include "segment.h" | ||
| 19 | #include "node.h" | ||
| 20 | |||
| 21 | static int need_to_flush(struct f2fs_sb_info *sbi) | ||
| 22 | { | ||
| 23 | unsigned int pages_per_sec = (1 << sbi->log_blocks_per_seg) * | ||
| 24 | sbi->segs_per_sec; | ||
| 25 | int node_secs = ((get_pages(sbi, F2FS_DIRTY_NODES) + pages_per_sec - 1) | ||
| 26 | >> sbi->log_blocks_per_seg) / sbi->segs_per_sec; | ||
| 27 | int dent_secs = ((get_pages(sbi, F2FS_DIRTY_DENTS) + pages_per_sec - 1) | ||
| 28 | >> sbi->log_blocks_per_seg) / sbi->segs_per_sec; | ||
| 29 | |||
| 30 | if (sbi->por_doing) | ||
| 31 | return 0; | ||
| 32 | |||
| 33 | if (free_sections(sbi) <= (node_secs + 2 * dent_secs + | ||
| 34 | reserved_sections(sbi))) | ||
| 35 | return 1; | ||
| 36 | return 0; | ||
| 37 | } | ||
| 38 | |||
| 39 | /* | ||
| 40 | * This function balances dirty node and dentry pages. | ||
| 41 | * In addition, it controls garbage collection. | ||
| 42 | */ | ||
| 43 | void f2fs_balance_fs(struct f2fs_sb_info *sbi) | ||
| 44 | { | ||
| 45 | struct writeback_control wbc = { | ||
| 46 | .sync_mode = WB_SYNC_ALL, | ||
| 47 | .nr_to_write = LONG_MAX, | ||
| 48 | .for_reclaim = 0, | ||
| 49 | }; | ||
| 50 | |||
| 51 | if (sbi->por_doing) | ||
| 52 | return; | ||
| 53 | |||
| 54 | /* | ||
| 55 | * We should do checkpoint when there are so many dirty node pages | ||
| 56 | * with enough free segments. After then, we should do GC. | ||
| 57 | */ | ||
| 58 | if (need_to_flush(sbi)) { | ||
| 59 | sync_dirty_dir_inodes(sbi); | ||
| 60 | sync_node_pages(sbi, 0, &wbc); | ||
| 61 | } | ||
| 62 | |||
| 63 | if (has_not_enough_free_secs(sbi)) { | ||
| 64 | mutex_lock(&sbi->gc_mutex); | ||
| 65 | f2fs_gc(sbi, 1); | ||
| 66 | } | ||
| 67 | } | ||
| 68 | |||
| 69 | static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, | ||
| 70 | enum dirty_type dirty_type) | ||
| 71 | { | ||
| 72 | struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); | ||
| 73 | |||
| 74 | /* need not be added */ | ||
| 75 | if (IS_CURSEG(sbi, segno)) | ||
| 76 | return; | ||
| 77 | |||
| 78 | if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type])) | ||
| 79 | dirty_i->nr_dirty[dirty_type]++; | ||
| 80 | |||
| 81 | if (dirty_type == DIRTY) { | ||
| 82 | struct seg_entry *sentry = get_seg_entry(sbi, segno); | ||
| 83 | dirty_type = sentry->type; | ||
| 84 | if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type])) | ||
| 85 | dirty_i->nr_dirty[dirty_type]++; | ||
| 86 | } | ||
| 87 | } | ||
| 88 | |||
| 89 | static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, | ||
| 90 | enum dirty_type dirty_type) | ||
| 91 | { | ||
| 92 | struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); | ||
| 93 | |||
| 94 | if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type])) | ||
| 95 | dirty_i->nr_dirty[dirty_type]--; | ||
| 96 | |||
| 97 | if (dirty_type == DIRTY) { | ||
| 98 | struct seg_entry *sentry = get_seg_entry(sbi, segno); | ||
| 99 | dirty_type = sentry->type; | ||
| 100 | if (test_and_clear_bit(segno, | ||
| 101 | dirty_i->dirty_segmap[dirty_type])) | ||
| 102 | dirty_i->nr_dirty[dirty_type]--; | ||
| 103 | clear_bit(segno, dirty_i->victim_segmap[FG_GC]); | ||
| 104 | clear_bit(segno, dirty_i->victim_segmap[BG_GC]); | ||
| 105 | } | ||
| 106 | } | ||
| 107 | |||
| 108 | /* | ||
| 109 | * Should not occur error such as -ENOMEM. | ||
| 110 | * Adding dirty entry into seglist is not critical operation. | ||
| 111 | * If a given segment is one of current working segments, it won't be added. | ||
| 112 | */ | ||
| 113 | void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno) | ||
| 114 | { | ||
| 115 | struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); | ||
| 116 | unsigned short valid_blocks; | ||
| 117 | |||
| 118 | if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno)) | ||
| 119 | return; | ||
| 120 | |||
| 121 | mutex_lock(&dirty_i->seglist_lock); | ||
| 122 | |||
| 123 | valid_blocks = get_valid_blocks(sbi, segno, 0); | ||
| 124 | |||
| 125 | if (valid_blocks == 0) { | ||
| 126 | __locate_dirty_segment(sbi, segno, PRE); | ||
| 127 | __remove_dirty_segment(sbi, segno, DIRTY); | ||
| 128 | } else if (valid_blocks < sbi->blocks_per_seg) { | ||
| 129 | __locate_dirty_segment(sbi, segno, DIRTY); | ||
| 130 | } else { | ||
| 131 | /* Recovery routine with SSR needs this */ | ||
| 132 | __remove_dirty_segment(sbi, segno, DIRTY); | ||
| 133 | } | ||
| 134 | |||
| 135 | mutex_unlock(&dirty_i->seglist_lock); | ||
| 136 | return; | ||
| 137 | } | ||
| 138 | |||
| 139 | /* | ||
| 140 | * Should call clear_prefree_segments after checkpoint is done. | ||
| 141 | */ | ||
| 142 | static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi) | ||
| 143 | { | ||
| 144 | struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); | ||
| 145 | unsigned int segno, offset = 0; | ||
| 146 | unsigned int total_segs = TOTAL_SEGS(sbi); | ||
| 147 | |||
| 148 | mutex_lock(&dirty_i->seglist_lock); | ||
| 149 | while (1) { | ||
| 150 | segno = find_next_bit(dirty_i->dirty_segmap[PRE], total_segs, | ||
| 151 | offset); | ||
| 152 | if (segno >= total_segs) | ||
| 153 | break; | ||
| 154 | __set_test_and_free(sbi, segno); | ||
| 155 | offset = segno + 1; | ||
| 156 | } | ||
| 157 | mutex_unlock(&dirty_i->seglist_lock); | ||
| 158 | } | ||
| 159 | |||
| 160 | void clear_prefree_segments(struct f2fs_sb_info *sbi) | ||
| 161 | { | ||
| 162 | struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); | ||
| 163 | unsigned int segno, offset = 0; | ||
| 164 | unsigned int total_segs = TOTAL_SEGS(sbi); | ||
| 165 | |||
| 166 | mutex_lock(&dirty_i->seglist_lock); | ||
| 167 | while (1) { | ||
| 168 | segno = find_next_bit(dirty_i->dirty_segmap[PRE], total_segs, | ||
| 169 | offset); | ||
| 170 | if (segno >= total_segs) | ||
| 171 | break; | ||
| 172 | |||
| 173 | offset = segno + 1; | ||
| 174 | if (test_and_clear_bit(segno, dirty_i->dirty_segmap[PRE])) | ||
| 175 | dirty_i->nr_dirty[PRE]--; | ||
| 176 | |||
| 177 | /* Let's use trim */ | ||
| 178 | if (test_opt(sbi, DISCARD)) | ||
| 179 | blkdev_issue_discard(sbi->sb->s_bdev, | ||
| 180 | START_BLOCK(sbi, segno) << | ||
| 181 | sbi->log_sectors_per_block, | ||
| 182 | 1 << (sbi->log_sectors_per_block + | ||
| 183 | sbi->log_blocks_per_seg), | ||
| 184 | GFP_NOFS, 0); | ||
| 185 | } | ||
| 186 | mutex_unlock(&dirty_i->seglist_lock); | ||
| 187 | } | ||
| 188 | |||
| 189 | static void __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno) | ||
| 190 | { | ||
| 191 | struct sit_info *sit_i = SIT_I(sbi); | ||
| 192 | if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) | ||
| 193 | sit_i->dirty_sentries++; | ||
| 194 | } | ||
| 195 | |||
| 196 | static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type, | ||
| 197 | unsigned int segno, int modified) | ||
| 198 | { | ||
| 199 | struct seg_entry *se = get_seg_entry(sbi, segno); | ||
| 200 | se->type = type; | ||
| 201 | if (modified) | ||
| 202 | __mark_sit_entry_dirty(sbi, segno); | ||
| 203 | } | ||
| 204 | |||
| 205 | static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del) | ||
| 206 | { | ||
| 207 | struct seg_entry *se; | ||
| 208 | unsigned int segno, offset; | ||
| 209 | long int new_vblocks; | ||
| 210 | |||
| 211 | segno = GET_SEGNO(sbi, blkaddr); | ||
| 212 | |||
| 213 | se = get_seg_entry(sbi, segno); | ||
| 214 | new_vblocks = se->valid_blocks + del; | ||
| 215 | offset = GET_SEGOFF_FROM_SEG0(sbi, blkaddr) & (sbi->blocks_per_seg - 1); | ||
| 216 | |||
| 217 | BUG_ON((new_vblocks >> (sizeof(unsigned short) << 3) || | ||
| 218 | (new_vblocks > sbi->blocks_per_seg))); | ||
| 219 | |||
| 220 | se->valid_blocks = new_vblocks; | ||
| 221 | se->mtime = get_mtime(sbi); | ||
| 222 | SIT_I(sbi)->max_mtime = se->mtime; | ||
| 223 | |||
| 224 | /* Update valid block bitmap */ | ||
| 225 | if (del > 0) { | ||
| 226 | if (f2fs_set_bit(offset, se->cur_valid_map)) | ||
| 227 | BUG(); | ||
| 228 | } else { | ||
| 229 | if (!f2fs_clear_bit(offset, se->cur_valid_map)) | ||
| 230 | BUG(); | ||
| 231 | } | ||
| 232 | if (!f2fs_test_bit(offset, se->ckpt_valid_map)) | ||
| 233 | se->ckpt_valid_blocks += del; | ||
| 234 | |||
| 235 | __mark_sit_entry_dirty(sbi, segno); | ||
| 236 | |||
| 237 | /* update total number of valid blocks to be written in ckpt area */ | ||
| 238 | SIT_I(sbi)->written_valid_blocks += del; | ||
| 239 | |||
| 240 | if (sbi->segs_per_sec > 1) | ||
| 241 | get_sec_entry(sbi, segno)->valid_blocks += del; | ||
| 242 | } | ||
| 243 | |||
| 244 | static void refresh_sit_entry(struct f2fs_sb_info *sbi, | ||
| 245 | block_t old_blkaddr, block_t new_blkaddr) | ||
| 246 | { | ||
| 247 | update_sit_entry(sbi, new_blkaddr, 1); | ||
| 248 | if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) | ||
| 249 | update_sit_entry(sbi, old_blkaddr, -1); | ||
| 250 | } | ||
| 251 | |||
| 252 | void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr) | ||
| 253 | { | ||
| 254 | unsigned int segno = GET_SEGNO(sbi, addr); | ||
| 255 | struct sit_info *sit_i = SIT_I(sbi); | ||
| 256 | |||
| 257 | BUG_ON(addr == NULL_ADDR); | ||
| 258 | if (addr == NEW_ADDR) | ||
| 259 | return; | ||
| 260 | |||
| 261 | /* add it into sit main buffer */ | ||
| 262 | mutex_lock(&sit_i->sentry_lock); | ||
| 263 | |||
| 264 | update_sit_entry(sbi, addr, -1); | ||
| 265 | |||
| 266 | /* add it into dirty seglist */ | ||
| 267 | locate_dirty_segment(sbi, segno); | ||
| 268 | |||
| 269 | mutex_unlock(&sit_i->sentry_lock); | ||
| 270 | } | ||
| 271 | |||
| 272 | /* | ||
| 273 | * This function should be resided under the curseg_mutex lock | ||
| 274 | */ | ||
| 275 | static void __add_sum_entry(struct f2fs_sb_info *sbi, int type, | ||
| 276 | struct f2fs_summary *sum, unsigned short offset) | ||
| 277 | { | ||
| 278 | struct curseg_info *curseg = CURSEG_I(sbi, type); | ||
| 279 | void *addr = curseg->sum_blk; | ||
| 280 | addr += offset * sizeof(struct f2fs_summary); | ||
| 281 | memcpy(addr, sum, sizeof(struct f2fs_summary)); | ||
| 282 | return; | ||
| 283 | } | ||
| 284 | |||
| 285 | /* | ||
| 286 | * Calculate the number of current summary pages for writing | ||
| 287 | */ | ||
| 288 | int npages_for_summary_flush(struct f2fs_sb_info *sbi) | ||
| 289 | { | ||
| 290 | int total_size_bytes = 0; | ||
| 291 | int valid_sum_count = 0; | ||
| 292 | int i, sum_space; | ||
| 293 | |||
| 294 | for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { | ||
| 295 | if (sbi->ckpt->alloc_type[i] == SSR) | ||
| 296 | valid_sum_count += sbi->blocks_per_seg; | ||
| 297 | else | ||
| 298 | valid_sum_count += curseg_blkoff(sbi, i); | ||
| 299 | } | ||
| 300 | |||
| 301 | total_size_bytes = valid_sum_count * (SUMMARY_SIZE + 1) | ||
| 302 | + sizeof(struct nat_journal) + 2 | ||
| 303 | + sizeof(struct sit_journal) + 2; | ||
| 304 | sum_space = PAGE_CACHE_SIZE - SUM_FOOTER_SIZE; | ||
| 305 | if (total_size_bytes < sum_space) | ||
| 306 | return 1; | ||
| 307 | else if (total_size_bytes < 2 * sum_space) | ||
| 308 | return 2; | ||
| 309 | return 3; | ||
| 310 | } | ||
| 311 | |||
| 312 | /* | ||
| 313 | * Caller should put this summary page | ||
| 314 | */ | ||
| 315 | struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno) | ||
| 316 | { | ||
| 317 | return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno)); | ||
| 318 | } | ||
| 319 | |||
| 320 | static void write_sum_page(struct f2fs_sb_info *sbi, | ||
| 321 | struct f2fs_summary_block *sum_blk, block_t blk_addr) | ||
| 322 | { | ||
| 323 | struct page *page = grab_meta_page(sbi, blk_addr); | ||
| 324 | void *kaddr = page_address(page); | ||
| 325 | memcpy(kaddr, sum_blk, PAGE_CACHE_SIZE); | ||
| 326 | set_page_dirty(page); | ||
| 327 | f2fs_put_page(page, 1); | ||
| 328 | } | ||
| 329 | |||
| 330 | static unsigned int check_prefree_segments(struct f2fs_sb_info *sbi, | ||
| 331 | int ofs_unit, int type) | ||
| 332 | { | ||
| 333 | struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); | ||
| 334 | unsigned long *prefree_segmap = dirty_i->dirty_segmap[PRE]; | ||
| 335 | unsigned int segno, next_segno, i; | ||
| 336 | int ofs = 0; | ||
| 337 | |||
| 338 | /* | ||
| 339 | * If there is not enough reserved sections, | ||
| 340 | * we should not reuse prefree segments. | ||
| 341 | */ | ||
| 342 | if (has_not_enough_free_secs(sbi)) | ||
| 343 | return NULL_SEGNO; | ||
| 344 | |||
| 345 | /* | ||
| 346 | * NODE page should not reuse prefree segment, | ||
| 347 | * since those information is used for SPOR. | ||
| 348 | */ | ||
| 349 | if (IS_NODESEG(type)) | ||
| 350 | return NULL_SEGNO; | ||
| 351 | next: | ||
| 352 | segno = find_next_bit(prefree_segmap, TOTAL_SEGS(sbi), ofs++); | ||
| 353 | ofs = ((segno / ofs_unit) * ofs_unit) + ofs_unit; | ||
| 354 | if (segno < TOTAL_SEGS(sbi)) { | ||
| 355 | /* skip intermediate segments in a section */ | ||
| 356 | if (segno % ofs_unit) | ||
| 357 | goto next; | ||
| 358 | |||
| 359 | /* skip if whole section is not prefree */ | ||
| 360 | next_segno = find_next_zero_bit(prefree_segmap, | ||
| 361 | TOTAL_SEGS(sbi), segno + 1); | ||
| 362 | if (next_segno - segno < ofs_unit) | ||
| 363 | goto next; | ||
| 364 | |||
| 365 | /* skip if whole section was not free at the last checkpoint */ | ||
| 366 | for (i = 0; i < ofs_unit; i++) | ||
| 367 | if (get_seg_entry(sbi, segno)->ckpt_valid_blocks) | ||
| 368 | goto next; | ||
| 369 | return segno; | ||
| 370 | } | ||
| 371 | return NULL_SEGNO; | ||
| 372 | } | ||
| 373 | |||
| 374 | /* | ||
| 375 | * Find a new segment from the free segments bitmap to right order | ||
| 376 | * This function should be returned with success, otherwise BUG | ||
| 377 | */ | ||
| 378 | static void get_new_segment(struct f2fs_sb_info *sbi, | ||
| 379 | unsigned int *newseg, bool new_sec, int dir) | ||
| 380 | { | ||
| 381 | struct free_segmap_info *free_i = FREE_I(sbi); | ||
| 382 | unsigned int total_secs = sbi->total_sections; | ||
| 383 | unsigned int segno, secno, zoneno; | ||
| 384 | unsigned int total_zones = sbi->total_sections / sbi->secs_per_zone; | ||
| 385 | unsigned int hint = *newseg / sbi->segs_per_sec; | ||
| 386 | unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg); | ||
| 387 | unsigned int left_start = hint; | ||
| 388 | bool init = true; | ||
| 389 | int go_left = 0; | ||
| 390 | int i; | ||
| 391 | |||
| 392 | write_lock(&free_i->segmap_lock); | ||
| 393 | |||
| 394 | if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) { | ||
| 395 | segno = find_next_zero_bit(free_i->free_segmap, | ||
| 396 | TOTAL_SEGS(sbi), *newseg + 1); | ||
| 397 | if (segno < TOTAL_SEGS(sbi)) | ||
| 398 | goto got_it; | ||
| 399 | } | ||
| 400 | find_other_zone: | ||
| 401 | secno = find_next_zero_bit(free_i->free_secmap, total_secs, hint); | ||
| 402 | if (secno >= total_secs) { | ||
| 403 | if (dir == ALLOC_RIGHT) { | ||
| 404 | secno = find_next_zero_bit(free_i->free_secmap, | ||
| 405 | total_secs, 0); | ||
| 406 | BUG_ON(secno >= total_secs); | ||
| 407 | } else { | ||
| 408 | go_left = 1; | ||
| 409 | left_start = hint - 1; | ||
| 410 | } | ||
| 411 | } | ||
| 412 | if (go_left == 0) | ||
| 413 | goto skip_left; | ||
| 414 | |||
| 415 | while (test_bit(left_start, free_i->free_secmap)) { | ||
| 416 | if (left_start > 0) { | ||
| 417 | left_start--; | ||
| 418 | continue; | ||
| 419 | } | ||
| 420 | left_start = find_next_zero_bit(free_i->free_secmap, | ||
| 421 | total_secs, 0); | ||
| 422 | BUG_ON(left_start >= total_secs); | ||
| 423 | break; | ||
| 424 | } | ||
| 425 | secno = left_start; | ||
| 426 | skip_left: | ||
| 427 | hint = secno; | ||
| 428 | segno = secno * sbi->segs_per_sec; | ||
| 429 | zoneno = secno / sbi->secs_per_zone; | ||
| 430 | |||
| 431 | /* give up on finding another zone */ | ||
| 432 | if (!init) | ||
| 433 | goto got_it; | ||
| 434 | if (sbi->secs_per_zone == 1) | ||
| 435 | goto got_it; | ||
| 436 | if (zoneno == old_zoneno) | ||
| 437 | goto got_it; | ||
| 438 | if (dir == ALLOC_LEFT) { | ||
| 439 | if (!go_left && zoneno + 1 >= total_zones) | ||
| 440 | goto got_it; | ||
| 441 | if (go_left && zoneno == 0) | ||
| 442 | goto got_it; | ||
| 443 | } | ||
| 444 | for (i = 0; i < NR_CURSEG_TYPE; i++) | ||
| 445 | if (CURSEG_I(sbi, i)->zone == zoneno) | ||
| 446 | break; | ||
| 447 | |||
| 448 | if (i < NR_CURSEG_TYPE) { | ||
| 449 | /* zone is in user, try another */ | ||
| 450 | if (go_left) | ||
| 451 | hint = zoneno * sbi->secs_per_zone - 1; | ||
| 452 | else if (zoneno + 1 >= total_zones) | ||
| 453 | hint = 0; | ||
| 454 | else | ||
| 455 | hint = (zoneno + 1) * sbi->secs_per_zone; | ||
| 456 | init = false; | ||
| 457 | goto find_other_zone; | ||
| 458 | } | ||
| 459 | got_it: | ||
| 460 | /* set it as dirty segment in free segmap */ | ||
| 461 | BUG_ON(test_bit(segno, free_i->free_segmap)); | ||
| 462 | __set_inuse(sbi, segno); | ||
| 463 | *newseg = segno; | ||
| 464 | write_unlock(&free_i->segmap_lock); | ||
| 465 | } | ||
| 466 | |||
| 467 | static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified) | ||
| 468 | { | ||
| 469 | struct curseg_info *curseg = CURSEG_I(sbi, type); | ||
| 470 | struct summary_footer *sum_footer; | ||
| 471 | |||
| 472 | curseg->segno = curseg->next_segno; | ||
| 473 | curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno); | ||
| 474 | curseg->next_blkoff = 0; | ||
| 475 | curseg->next_segno = NULL_SEGNO; | ||
| 476 | |||
| 477 | sum_footer = &(curseg->sum_blk->footer); | ||
| 478 | memset(sum_footer, 0, sizeof(struct summary_footer)); | ||
| 479 | if (IS_DATASEG(type)) | ||
| 480 | SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA); | ||
| 481 | if (IS_NODESEG(type)) | ||
| 482 | SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE); | ||
| 483 | __set_sit_entry_type(sbi, type, curseg->segno, modified); | ||
| 484 | } | ||
| 485 | |||
| 486 | /* | ||
| 487 | * Allocate a current working segment. | ||
| 488 | * This function always allocates a free segment in LFS manner. | ||
| 489 | */ | ||
| 490 | static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec) | ||
| 491 | { | ||
| 492 | struct curseg_info *curseg = CURSEG_I(sbi, type); | ||
| 493 | unsigned int segno = curseg->segno; | ||
| 494 | int dir = ALLOC_LEFT; | ||
| 495 | |||
| 496 | write_sum_page(sbi, curseg->sum_blk, | ||
| 497 | GET_SUM_BLOCK(sbi, curseg->segno)); | ||
| 498 | if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA) | ||
| 499 | dir = ALLOC_RIGHT; | ||
| 500 | |||
| 501 | if (test_opt(sbi, NOHEAP)) | ||
| 502 | dir = ALLOC_RIGHT; | ||
| 503 | |||
| 504 | get_new_segment(sbi, &segno, new_sec, dir); | ||
| 505 | curseg->next_segno = segno; | ||
| 506 | reset_curseg(sbi, type, 1); | ||
| 507 | curseg->alloc_type = LFS; | ||
| 508 | } | ||
| 509 | |||
| 510 | static void __next_free_blkoff(struct f2fs_sb_info *sbi, | ||
| 511 | struct curseg_info *seg, block_t start) | ||
| 512 | { | ||
| 513 | struct seg_entry *se = get_seg_entry(sbi, seg->segno); | ||
| 514 | block_t ofs; | ||
| 515 | for (ofs = start; ofs < sbi->blocks_per_seg; ofs++) { | ||
| 516 | if (!f2fs_test_bit(ofs, se->ckpt_valid_map) | ||
| 517 | && !f2fs_test_bit(ofs, se->cur_valid_map)) | ||
| 518 | break; | ||
| 519 | } | ||
| 520 | seg->next_blkoff = ofs; | ||
| 521 | } | ||
| 522 | |||
| 523 | /* | ||
| 524 | * If a segment is written by LFS manner, next block offset is just obtained | ||
| 525 | * by increasing the current block offset. However, if a segment is written by | ||
| 526 | * SSR manner, next block offset obtained by calling __next_free_blkoff | ||
| 527 | */ | ||
| 528 | static void __refresh_next_blkoff(struct f2fs_sb_info *sbi, | ||
| 529 | struct curseg_info *seg) | ||
| 530 | { | ||
| 531 | if (seg->alloc_type == SSR) | ||
| 532 | __next_free_blkoff(sbi, seg, seg->next_blkoff + 1); | ||
| 533 | else | ||
| 534 | seg->next_blkoff++; | ||
| 535 | } | ||
| 536 | |||
| 537 | /* | ||
| 538 | * This function always allocates a used segment (from dirty seglist) by SSR | ||
| 539 | * manner, so it should recover the existing segment information of valid blocks | ||
| 540 | */ | ||
| 541 | static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse) | ||
| 542 | { | ||
| 543 | struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); | ||
| 544 | struct curseg_info *curseg = CURSEG_I(sbi, type); | ||
| 545 | unsigned int new_segno = curseg->next_segno; | ||
| 546 | struct f2fs_summary_block *sum_node; | ||
| 547 | struct page *sum_page; | ||
| 548 | |||
| 549 | write_sum_page(sbi, curseg->sum_blk, | ||
| 550 | GET_SUM_BLOCK(sbi, curseg->segno)); | ||
| 551 | __set_test_and_inuse(sbi, new_segno); | ||
| 552 | |||
| 553 | mutex_lock(&dirty_i->seglist_lock); | ||
| 554 | __remove_dirty_segment(sbi, new_segno, PRE); | ||
| 555 | __remove_dirty_segment(sbi, new_segno, DIRTY); | ||
| 556 | mutex_unlock(&dirty_i->seglist_lock); | ||
| 557 | |||
| 558 | reset_curseg(sbi, type, 1); | ||
| 559 | curseg->alloc_type = SSR; | ||
| 560 | __next_free_blkoff(sbi, curseg, 0); | ||
| 561 | |||
| 562 | if (reuse) { | ||
| 563 | sum_page = get_sum_page(sbi, new_segno); | ||
| 564 | sum_node = (struct f2fs_summary_block *)page_address(sum_page); | ||
| 565 | memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE); | ||
| 566 | f2fs_put_page(sum_page, 1); | ||
| 567 | } | ||
| 568 | } | ||
| 569 | |||
| 570 | /* | ||
| 571 | * flush out current segment and replace it with new segment | ||
| 572 | * This function should be returned with success, otherwise BUG | ||
| 573 | */ | ||
| 574 | static void allocate_segment_by_default(struct f2fs_sb_info *sbi, | ||
| 575 | int type, bool force) | ||
| 576 | { | ||
| 577 | struct curseg_info *curseg = CURSEG_I(sbi, type); | ||
| 578 | unsigned int ofs_unit; | ||
| 579 | |||
| 580 | if (force) { | ||
| 581 | new_curseg(sbi, type, true); | ||
| 582 | goto out; | ||
| 583 | } | ||
| 584 | |||
| 585 | ofs_unit = need_SSR(sbi) ? 1 : sbi->segs_per_sec; | ||
| 586 | curseg->next_segno = check_prefree_segments(sbi, ofs_unit, type); | ||
| 587 | |||
| 588 | if (curseg->next_segno != NULL_SEGNO) | ||
| 589 | change_curseg(sbi, type, false); | ||
| 590 | else if (type == CURSEG_WARM_NODE) | ||
| 591 | new_curseg(sbi, type, false); | ||
| 592 | else if (need_SSR(sbi) && get_ssr_segment(sbi, type)) | ||
| 593 | change_curseg(sbi, type, true); | ||
| 594 | else | ||
| 595 | new_curseg(sbi, type, false); | ||
| 596 | out: | ||
| 597 | sbi->segment_count[curseg->alloc_type]++; | ||
| 598 | } | ||
| 599 | |||
| 600 | void allocate_new_segments(struct f2fs_sb_info *sbi) | ||
| 601 | { | ||
| 602 | struct curseg_info *curseg; | ||
| 603 | unsigned int old_curseg; | ||
| 604 | int i; | ||
| 605 | |||
| 606 | for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { | ||
| 607 | curseg = CURSEG_I(sbi, i); | ||
| 608 | old_curseg = curseg->segno; | ||
| 609 | SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true); | ||
| 610 | locate_dirty_segment(sbi, old_curseg); | ||
| 611 | } | ||
| 612 | } | ||
| 613 | |||
| 614 | static const struct segment_allocation default_salloc_ops = { | ||
| 615 | .allocate_segment = allocate_segment_by_default, | ||
| 616 | }; | ||
| 617 | |||
| 618 | static void f2fs_end_io_write(struct bio *bio, int err) | ||
| 619 | { | ||
| 620 | const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); | ||
| 621 | struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; | ||
| 622 | struct bio_private *p = bio->bi_private; | ||
| 623 | |||
| 624 | do { | ||
| 625 | struct page *page = bvec->bv_page; | ||
| 626 | |||
| 627 | if (--bvec >= bio->bi_io_vec) | ||
| 628 | prefetchw(&bvec->bv_page->flags); | ||
| 629 | if (!uptodate) { | ||
| 630 | SetPageError(page); | ||
| 631 | if (page->mapping) | ||
| 632 | set_bit(AS_EIO, &page->mapping->flags); | ||
| 633 | set_ckpt_flags(p->sbi->ckpt, CP_ERROR_FLAG); | ||
| 634 | set_page_dirty(page); | ||
| 635 | } | ||
| 636 | end_page_writeback(page); | ||
| 637 | dec_page_count(p->sbi, F2FS_WRITEBACK); | ||
| 638 | } while (bvec >= bio->bi_io_vec); | ||
| 639 | |||
| 640 | if (p->is_sync) | ||
| 641 | complete(p->wait); | ||
| 642 | kfree(p); | ||
| 643 | bio_put(bio); | ||
| 644 | } | ||
| 645 | |||
| 646 | struct bio *f2fs_bio_alloc(struct block_device *bdev, int npages) | ||
| 647 | { | ||
| 648 | struct bio *bio; | ||
| 649 | struct bio_private *priv; | ||
| 650 | retry: | ||
| 651 | priv = kmalloc(sizeof(struct bio_private), GFP_NOFS); | ||
| 652 | if (!priv) { | ||
| 653 | cond_resched(); | ||
| 654 | goto retry; | ||
| 655 | } | ||
| 656 | |||
| 657 | /* No failure on bio allocation */ | ||
| 658 | bio = bio_alloc(GFP_NOIO, npages); | ||
| 659 | bio->bi_bdev = bdev; | ||
| 660 | bio->bi_private = priv; | ||
| 661 | return bio; | ||
| 662 | } | ||
| 663 | |||
| 664 | static void do_submit_bio(struct f2fs_sb_info *sbi, | ||
| 665 | enum page_type type, bool sync) | ||
| 666 | { | ||
| 667 | int rw = sync ? WRITE_SYNC : WRITE; | ||
| 668 | enum page_type btype = type > META ? META : type; | ||
| 669 | |||
| 670 | if (type >= META_FLUSH) | ||
| 671 | rw = WRITE_FLUSH_FUA; | ||
| 672 | |||
| 673 | if (sbi->bio[btype]) { | ||
| 674 | struct bio_private *p = sbi->bio[btype]->bi_private; | ||
| 675 | p->sbi = sbi; | ||
| 676 | sbi->bio[btype]->bi_end_io = f2fs_end_io_write; | ||
| 677 | if (type == META_FLUSH) { | ||
| 678 | DECLARE_COMPLETION_ONSTACK(wait); | ||
| 679 | p->is_sync = true; | ||
| 680 | p->wait = &wait; | ||
| 681 | submit_bio(rw, sbi->bio[btype]); | ||
| 682 | wait_for_completion(&wait); | ||
| 683 | } else { | ||
| 684 | p->is_sync = false; | ||
| 685 | submit_bio(rw, sbi->bio[btype]); | ||
| 686 | } | ||
| 687 | sbi->bio[btype] = NULL; | ||
| 688 | } | ||
| 689 | } | ||
| 690 | |||
| 691 | void f2fs_submit_bio(struct f2fs_sb_info *sbi, enum page_type type, bool sync) | ||
| 692 | { | ||
| 693 | down_write(&sbi->bio_sem); | ||
| 694 | do_submit_bio(sbi, type, sync); | ||
| 695 | up_write(&sbi->bio_sem); | ||
| 696 | } | ||
| 697 | |||
| 698 | static void submit_write_page(struct f2fs_sb_info *sbi, struct page *page, | ||
| 699 | block_t blk_addr, enum page_type type) | ||
| 700 | { | ||
| 701 | struct block_device *bdev = sbi->sb->s_bdev; | ||
| 702 | |||
| 703 | verify_block_addr(sbi, blk_addr); | ||
| 704 | |||
| 705 | down_write(&sbi->bio_sem); | ||
| 706 | |||
| 707 | inc_page_count(sbi, F2FS_WRITEBACK); | ||
| 708 | |||
| 709 | if (sbi->bio[type] && sbi->last_block_in_bio[type] != blk_addr - 1) | ||
| 710 | do_submit_bio(sbi, type, false); | ||
| 711 | alloc_new: | ||
| 712 | if (sbi->bio[type] == NULL) { | ||
| 713 | sbi->bio[type] = f2fs_bio_alloc(bdev, bio_get_nr_vecs(bdev)); | ||
| 714 | sbi->bio[type]->bi_sector = SECTOR_FROM_BLOCK(sbi, blk_addr); | ||
| 715 | /* | ||
| 716 | * The end_io will be assigned at the sumbission phase. | ||
| 717 | * Until then, let bio_add_page() merge consecutive IOs as much | ||
| 718 | * as possible. | ||
| 719 | */ | ||
| 720 | } | ||
| 721 | |||
| 722 | if (bio_add_page(sbi->bio[type], page, PAGE_CACHE_SIZE, 0) < | ||
| 723 | PAGE_CACHE_SIZE) { | ||
| 724 | do_submit_bio(sbi, type, false); | ||
| 725 | goto alloc_new; | ||
| 726 | } | ||
| 727 | |||
| 728 | sbi->last_block_in_bio[type] = blk_addr; | ||
| 729 | |||
| 730 | up_write(&sbi->bio_sem); | ||
| 731 | } | ||
| 732 | |||
| 733 | static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type) | ||
| 734 | { | ||
| 735 | struct curseg_info *curseg = CURSEG_I(sbi, type); | ||
| 736 | if (curseg->next_blkoff < sbi->blocks_per_seg) | ||
| 737 | return true; | ||
| 738 | return false; | ||
| 739 | } | ||
| 740 | |||
| 741 | static int __get_segment_type_2(struct page *page, enum page_type p_type) | ||
| 742 | { | ||
| 743 | if (p_type == DATA) | ||
| 744 | return CURSEG_HOT_DATA; | ||
| 745 | else | ||
| 746 | return CURSEG_HOT_NODE; | ||
| 747 | } | ||
| 748 | |||
| 749 | static int __get_segment_type_4(struct page *page, enum page_type p_type) | ||
| 750 | { | ||
| 751 | if (p_type == DATA) { | ||
| 752 | struct inode *inode = page->mapping->host; | ||
| 753 | |||
| 754 | if (S_ISDIR(inode->i_mode)) | ||
| 755 | return CURSEG_HOT_DATA; | ||
| 756 | else | ||
| 757 | return CURSEG_COLD_DATA; | ||
| 758 | } else { | ||
| 759 | if (IS_DNODE(page) && !is_cold_node(page)) | ||
| 760 | return CURSEG_HOT_NODE; | ||
| 761 | else | ||
| 762 | return CURSEG_COLD_NODE; | ||
| 763 | } | ||
| 764 | } | ||
| 765 | |||
| 766 | static int __get_segment_type_6(struct page *page, enum page_type p_type) | ||
| 767 | { | ||
| 768 | if (p_type == DATA) { | ||
| 769 | struct inode *inode = page->mapping->host; | ||
| 770 | |||
| 771 | if (S_ISDIR(inode->i_mode)) | ||
| 772 | return CURSEG_HOT_DATA; | ||
| 773 | else if (is_cold_data(page) || is_cold_file(inode)) | ||
| 774 | return CURSEG_COLD_DATA; | ||
| 775 | else | ||
| 776 | return CURSEG_WARM_DATA; | ||
| 777 | } else { | ||
| 778 | if (IS_DNODE(page)) | ||
| 779 | return is_cold_node(page) ? CURSEG_WARM_NODE : | ||
| 780 | CURSEG_HOT_NODE; | ||
| 781 | else | ||
| 782 | return CURSEG_COLD_NODE; | ||
| 783 | } | ||
| 784 | } | ||
| 785 | |||
| 786 | static int __get_segment_type(struct page *page, enum page_type p_type) | ||
| 787 | { | ||
| 788 | struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb); | ||
| 789 | switch (sbi->active_logs) { | ||
| 790 | case 2: | ||
| 791 | return __get_segment_type_2(page, p_type); | ||
| 792 | case 4: | ||
| 793 | return __get_segment_type_4(page, p_type); | ||
| 794 | case 6: | ||
| 795 | return __get_segment_type_6(page, p_type); | ||
| 796 | default: | ||
| 797 | BUG(); | ||
| 798 | } | ||
| 799 | } | ||
| 800 | |||
| 801 | static void do_write_page(struct f2fs_sb_info *sbi, struct page *page, | ||
| 802 | block_t old_blkaddr, block_t *new_blkaddr, | ||
| 803 | struct f2fs_summary *sum, enum page_type p_type) | ||
| 804 | { | ||
| 805 | struct sit_info *sit_i = SIT_I(sbi); | ||
| 806 | struct curseg_info *curseg; | ||
| 807 | unsigned int old_cursegno; | ||
| 808 | int type; | ||
| 809 | |||
| 810 | type = __get_segment_type(page, p_type); | ||
| 811 | curseg = CURSEG_I(sbi, type); | ||
| 812 | |||
| 813 | mutex_lock(&curseg->curseg_mutex); | ||
| 814 | |||
| 815 | *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); | ||
| 816 | old_cursegno = curseg->segno; | ||
| 817 | |||
| 818 | /* | ||
| 819 | * __add_sum_entry should be resided under the curseg_mutex | ||
| 820 | * because, this function updates a summary entry in the | ||
| 821 | * current summary block. | ||
| 822 | */ | ||
| 823 | __add_sum_entry(sbi, type, sum, curseg->next_blkoff); | ||
| 824 | |||
| 825 | mutex_lock(&sit_i->sentry_lock); | ||
| 826 | __refresh_next_blkoff(sbi, curseg); | ||
| 827 | sbi->block_count[curseg->alloc_type]++; | ||
| 828 | |||
| 829 | /* | ||
| 830 | * SIT information should be updated before segment allocation, | ||
| 831 | * since SSR needs latest valid block information. | ||
| 832 | */ | ||
| 833 | refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr); | ||
| 834 | |||
| 835 | if (!__has_curseg_space(sbi, type)) | ||
| 836 | sit_i->s_ops->allocate_segment(sbi, type, false); | ||
| 837 | |||
| 838 | locate_dirty_segment(sbi, old_cursegno); | ||
| 839 | locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); | ||
| 840 | mutex_unlock(&sit_i->sentry_lock); | ||
| 841 | |||
| 842 | if (p_type == NODE) | ||
| 843 | fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg)); | ||
| 844 | |||
| 845 | /* writeout dirty page into bdev */ | ||
| 846 | submit_write_page(sbi, page, *new_blkaddr, p_type); | ||
| 847 | |||
| 848 | mutex_unlock(&curseg->curseg_mutex); | ||
| 849 | } | ||
| 850 | |||
| 851 | int write_meta_page(struct f2fs_sb_info *sbi, struct page *page, | ||
| 852 | struct writeback_control *wbc) | ||
| 853 | { | ||
| 854 | if (wbc->for_reclaim) | ||
| 855 | return AOP_WRITEPAGE_ACTIVATE; | ||
| 856 | |||
| 857 | set_page_writeback(page); | ||
| 858 | submit_write_page(sbi, page, page->index, META); | ||
| 859 | return 0; | ||
| 860 | } | ||
| 861 | |||
| 862 | void write_node_page(struct f2fs_sb_info *sbi, struct page *page, | ||
| 863 | unsigned int nid, block_t old_blkaddr, block_t *new_blkaddr) | ||
| 864 | { | ||
| 865 | struct f2fs_summary sum; | ||
| 866 | set_summary(&sum, nid, 0, 0); | ||
| 867 | do_write_page(sbi, page, old_blkaddr, new_blkaddr, &sum, NODE); | ||
| 868 | } | ||
| 869 | |||
| 870 | void write_data_page(struct inode *inode, struct page *page, | ||
| 871 | struct dnode_of_data *dn, block_t old_blkaddr, | ||
| 872 | block_t *new_blkaddr) | ||
| 873 | { | ||
| 874 | struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); | ||
| 875 | struct f2fs_summary sum; | ||
| 876 | struct node_info ni; | ||
| 877 | |||
| 878 | BUG_ON(old_blkaddr == NULL_ADDR); | ||
| 879 | get_node_info(sbi, dn->nid, &ni); | ||
| 880 | set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); | ||
| 881 | |||
| 882 | do_write_page(sbi, page, old_blkaddr, | ||
| 883 | new_blkaddr, &sum, DATA); | ||
| 884 | } | ||
| 885 | |||
| 886 | void rewrite_data_page(struct f2fs_sb_info *sbi, struct page *page, | ||
| 887 | block_t old_blk_addr) | ||
| 888 | { | ||
| 889 | submit_write_page(sbi, page, old_blk_addr, DATA); | ||
| 890 | } | ||
| 891 | |||
| 892 | void recover_data_page(struct f2fs_sb_info *sbi, | ||
| 893 | struct page *page, struct f2fs_summary *sum, | ||
| 894 | block_t old_blkaddr, block_t new_blkaddr) | ||
| 895 | { | ||
| 896 | struct sit_info *sit_i = SIT_I(sbi); | ||
| 897 | struct curseg_info *curseg; | ||
| 898 | unsigned int segno, old_cursegno; | ||
| 899 | struct seg_entry *se; | ||
| 900 | int type; | ||
| 901 | |||
| 902 | segno = GET_SEGNO(sbi, new_blkaddr); | ||
| 903 | se = get_seg_entry(sbi, segno); | ||
| 904 | type = se->type; | ||
| 905 | |||
| 906 | if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) { | ||
| 907 | if (old_blkaddr == NULL_ADDR) | ||
| 908 | type = CURSEG_COLD_DATA; | ||
| 909 | else | ||
| 910 | type = CURSEG_WARM_DATA; | ||
| 911 | } | ||
| 912 | curseg = CURSEG_I(sbi, type); | ||
| 913 | |||
| 914 | mutex_lock(&curseg->curseg_mutex); | ||
| 915 | mutex_lock(&sit_i->sentry_lock); | ||
| 916 | |||
| 917 | old_cursegno = curseg->segno; | ||
| 918 | |||
| 919 | /* change the current segment */ | ||
| 920 | if (segno != curseg->segno) { | ||
| 921 | curseg->next_segno = segno; | ||
| 922 | change_curseg(sbi, type, true); | ||
| 923 | } | ||
| 924 | |||
| 925 | curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, new_blkaddr) & | ||
| 926 | (sbi->blocks_per_seg - 1); | ||
| 927 | __add_sum_entry(sbi, type, sum, curseg->next_blkoff); | ||
| 928 | |||
| 929 | refresh_sit_entry(sbi, old_blkaddr, new_blkaddr); | ||
| 930 | |||
| 931 | locate_dirty_segment(sbi, old_cursegno); | ||
| 932 | locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); | ||
| 933 | |||
| 934 | mutex_unlock(&sit_i->sentry_lock); | ||
| 935 | mutex_unlock(&curseg->curseg_mutex); | ||
| 936 | } | ||
| 937 | |||
| 938 | void rewrite_node_page(struct f2fs_sb_info *sbi, | ||
| 939 | struct page *page, struct f2fs_summary *sum, | ||
| 940 | block_t old_blkaddr, block_t new_blkaddr) | ||
| 941 | { | ||
| 942 | struct sit_info *sit_i = SIT_I(sbi); | ||
| 943 | int type = CURSEG_WARM_NODE; | ||
| 944 | struct curseg_info *curseg; | ||
| 945 | unsigned int segno, old_cursegno; | ||
| 946 | block_t next_blkaddr = next_blkaddr_of_node(page); | ||
| 947 | unsigned int next_segno = GET_SEGNO(sbi, next_blkaddr); | ||
| 948 | |||
| 949 | curseg = CURSEG_I(sbi, type); | ||
| 950 | |||
| 951 | mutex_lock(&curseg->curseg_mutex); | ||
| 952 | mutex_lock(&sit_i->sentry_lock); | ||
| 953 | |||
| 954 | segno = GET_SEGNO(sbi, new_blkaddr); | ||
| 955 | old_cursegno = curseg->segno; | ||
| 956 | |||
| 957 | /* change the current segment */ | ||
| 958 | if (segno != curseg->segno) { | ||
| 959 | curseg->next_segno = segno; | ||
| 960 | change_curseg(sbi, type, true); | ||
| 961 | } | ||
| 962 | curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, new_blkaddr) & | ||
| 963 | (sbi->blocks_per_seg - 1); | ||
| 964 | __add_sum_entry(sbi, type, sum, curseg->next_blkoff); | ||
| 965 | |||
| 966 | /* change the current log to the next block addr in advance */ | ||
| 967 | if (next_segno != segno) { | ||
| 968 | curseg->next_segno = next_segno; | ||
| 969 | change_curseg(sbi, type, true); | ||
| 970 | } | ||
| 971 | curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, next_blkaddr) & | ||
| 972 | (sbi->blocks_per_seg - 1); | ||
| 973 | |||
| 974 | /* rewrite node page */ | ||
| 975 | set_page_writeback(page); | ||
| 976 | submit_write_page(sbi, page, new_blkaddr, NODE); | ||
| 977 | f2fs_submit_bio(sbi, NODE, true); | ||
| 978 | refresh_sit_entry(sbi, old_blkaddr, new_blkaddr); | ||
| 979 | |||
| 980 | locate_dirty_segment(sbi, old_cursegno); | ||
| 981 | locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); | ||
| 982 | |||
| 983 | mutex_unlock(&sit_i->sentry_lock); | ||
| 984 | mutex_unlock(&curseg->curseg_mutex); | ||
| 985 | } | ||
| 986 | |||
| 987 | static int read_compacted_summaries(struct f2fs_sb_info *sbi) | ||
| 988 | { | ||
| 989 | struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); | ||
| 990 | struct curseg_info *seg_i; | ||
| 991 | unsigned char *kaddr; | ||
| 992 | struct page *page; | ||
| 993 | block_t start; | ||
| 994 | int i, j, offset; | ||
| 995 | |||
| 996 | start = start_sum_block(sbi); | ||
| 997 | |||
| 998 | page = get_meta_page(sbi, start++); | ||
| 999 | kaddr = (unsigned char *)page_address(page); | ||
| 1000 | |||
| 1001 | /* Step 1: restore nat cache */ | ||
| 1002 | seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); | ||
| 1003 | memcpy(&seg_i->sum_blk->n_nats, kaddr, SUM_JOURNAL_SIZE); | ||
| 1004 | |||
| 1005 | /* Step 2: restore sit cache */ | ||
| 1006 | seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); | ||
| 1007 | memcpy(&seg_i->sum_blk->n_sits, kaddr + SUM_JOURNAL_SIZE, | ||
| 1008 | SUM_JOURNAL_SIZE); | ||
| 1009 | offset = 2 * SUM_JOURNAL_SIZE; | ||
| 1010 | |||
| 1011 | /* Step 3: restore summary entries */ | ||
| 1012 | for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { | ||
| 1013 | unsigned short blk_off; | ||
| 1014 | unsigned int segno; | ||
| 1015 | |||
| 1016 | seg_i = CURSEG_I(sbi, i); | ||
| 1017 | segno = le32_to_cpu(ckpt->cur_data_segno[i]); | ||
| 1018 | blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]); | ||
| 1019 | seg_i->next_segno = segno; | ||
| 1020 | reset_curseg(sbi, i, 0); | ||
| 1021 | seg_i->alloc_type = ckpt->alloc_type[i]; | ||
| 1022 | seg_i->next_blkoff = blk_off; | ||
| 1023 | |||
| 1024 | if (seg_i->alloc_type == SSR) | ||
| 1025 | blk_off = sbi->blocks_per_seg; | ||
| 1026 | |||
| 1027 | for (j = 0; j < blk_off; j++) { | ||
| 1028 | struct f2fs_summary *s; | ||
| 1029 | s = (struct f2fs_summary *)(kaddr + offset); | ||
| 1030 | seg_i->sum_blk->entries[j] = *s; | ||
| 1031 | offset += SUMMARY_SIZE; | ||
| 1032 | if (offset + SUMMARY_SIZE <= PAGE_CACHE_SIZE - | ||
| 1033 | SUM_FOOTER_SIZE) | ||
| 1034 | continue; | ||
| 1035 | |||
| 1036 | f2fs_put_page(page, 1); | ||
| 1037 | page = NULL; | ||
| 1038 | |||
| 1039 | page = get_meta_page(sbi, start++); | ||
| 1040 | kaddr = (unsigned char *)page_address(page); | ||
| 1041 | offset = 0; | ||
| 1042 | } | ||
| 1043 | } | ||
| 1044 | f2fs_put_page(page, 1); | ||
| 1045 | return 0; | ||
| 1046 | } | ||
| 1047 | |||
| 1048 | static int read_normal_summaries(struct f2fs_sb_info *sbi, int type) | ||
| 1049 | { | ||
| 1050 | struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); | ||
| 1051 | struct f2fs_summary_block *sum; | ||
| 1052 | struct curseg_info *curseg; | ||
| 1053 | struct page *new; | ||
| 1054 | unsigned short blk_off; | ||
| 1055 | unsigned int segno = 0; | ||
| 1056 | block_t blk_addr = 0; | ||
| 1057 | |||
| 1058 | /* get segment number and block addr */ | ||
| 1059 | if (IS_DATASEG(type)) { | ||
| 1060 | segno = le32_to_cpu(ckpt->cur_data_segno[type]); | ||
| 1061 | blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type - | ||
| 1062 | CURSEG_HOT_DATA]); | ||
| 1063 | if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG)) | ||
| 1064 | blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type); | ||
| 1065 | else | ||
| 1066 | blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type); | ||
| 1067 | } else { | ||
| 1068 | segno = le32_to_cpu(ckpt->cur_node_segno[type - | ||
| 1069 | CURSEG_HOT_NODE]); | ||
| 1070 | blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type - | ||
| 1071 | CURSEG_HOT_NODE]); | ||
| 1072 | if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG)) | ||
| 1073 | blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE, | ||
| 1074 | type - CURSEG_HOT_NODE); | ||
| 1075 | else | ||
| 1076 | blk_addr = GET_SUM_BLOCK(sbi, segno); | ||
| 1077 | } | ||
| 1078 | |||
| 1079 | new = get_meta_page(sbi, blk_addr); | ||
| 1080 | sum = (struct f2fs_summary_block *)page_address(new); | ||
| 1081 | |||
| 1082 | if (IS_NODESEG(type)) { | ||
| 1083 | if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG)) { | ||
| 1084 | struct f2fs_summary *ns = &sum->entries[0]; | ||
| 1085 | int i; | ||
| 1086 | for (i = 0; i < sbi->blocks_per_seg; i++, ns++) { | ||
| 1087 | ns->version = 0; | ||
| 1088 | ns->ofs_in_node = 0; | ||
| 1089 | } | ||
| 1090 | } else { | ||
| 1091 | if (restore_node_summary(sbi, segno, sum)) { | ||
| 1092 | f2fs_put_page(new, 1); | ||
| 1093 | return -EINVAL; | ||
| 1094 | } | ||
| 1095 | } | ||
| 1096 | } | ||
| 1097 | |||
| 1098 | /* set uncompleted segment to curseg */ | ||
| 1099 | curseg = CURSEG_I(sbi, type); | ||
| 1100 | mutex_lock(&curseg->curseg_mutex); | ||
| 1101 | memcpy(curseg->sum_blk, sum, PAGE_CACHE_SIZE); | ||
| 1102 | curseg->next_segno = segno; | ||
| 1103 | reset_curseg(sbi, type, 0); | ||
| 1104 | curseg->alloc_type = ckpt->alloc_type[type]; | ||
| 1105 | curseg->next_blkoff = blk_off; | ||
| 1106 | mutex_unlock(&curseg->curseg_mutex); | ||
| 1107 | f2fs_put_page(new, 1); | ||
| 1108 | return 0; | ||
| 1109 | } | ||
| 1110 | |||
| 1111 | static int restore_curseg_summaries(struct f2fs_sb_info *sbi) | ||
| 1112 | { | ||
| 1113 | int type = CURSEG_HOT_DATA; | ||
| 1114 | |||
| 1115 | if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) { | ||
| 1116 | /* restore for compacted data summary */ | ||
| 1117 | if (read_compacted_summaries(sbi)) | ||
| 1118 | return -EINVAL; | ||
| 1119 | type = CURSEG_HOT_NODE; | ||
| 1120 | } | ||
| 1121 | |||
| 1122 | for (; type <= CURSEG_COLD_NODE; type++) | ||
| 1123 | if (read_normal_summaries(sbi, type)) | ||
| 1124 | return -EINVAL; | ||
| 1125 | return 0; | ||
| 1126 | } | ||
| 1127 | |||
| 1128 | static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr) | ||
| 1129 | { | ||
| 1130 | struct page *page; | ||
| 1131 | unsigned char *kaddr; | ||
| 1132 | struct f2fs_summary *summary; | ||
| 1133 | struct curseg_info *seg_i; | ||
| 1134 | int written_size = 0; | ||
| 1135 | int i, j; | ||
| 1136 | |||
| 1137 | page = grab_meta_page(sbi, blkaddr++); | ||
| 1138 | kaddr = (unsigned char *)page_address(page); | ||
| 1139 | |||
| 1140 | /* Step 1: write nat cache */ | ||
| 1141 | seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); | ||
| 1142 | memcpy(kaddr, &seg_i->sum_blk->n_nats, SUM_JOURNAL_SIZE); | ||
| 1143 | written_size += SUM_JOURNAL_SIZE; | ||
| 1144 | |||
| 1145 | /* Step 2: write sit cache */ | ||
| 1146 | seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); | ||
| 1147 | memcpy(kaddr + written_size, &seg_i->sum_blk->n_sits, | ||
| 1148 | SUM_JOURNAL_SIZE); | ||
| 1149 | written_size += SUM_JOURNAL_SIZE; | ||
| 1150 | |||
| 1151 | set_page_dirty(page); | ||
| 1152 | |||
| 1153 | /* Step 3: write summary entries */ | ||
| 1154 | for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { | ||
| 1155 | unsigned short blkoff; | ||
| 1156 | seg_i = CURSEG_I(sbi, i); | ||
| 1157 | if (sbi->ckpt->alloc_type[i] == SSR) | ||
| 1158 | blkoff = sbi->blocks_per_seg; | ||
| 1159 | else | ||
| 1160 | blkoff = curseg_blkoff(sbi, i); | ||
| 1161 | |||
| 1162 | for (j = 0; j < blkoff; j++) { | ||
| 1163 | if (!page) { | ||
| 1164 | page = grab_meta_page(sbi, blkaddr++); | ||
| 1165 | kaddr = (unsigned char *)page_address(page); | ||
| 1166 | written_size = 0; | ||
| 1167 | } | ||
| 1168 | summary = (struct f2fs_summary *)(kaddr + written_size); | ||
| 1169 | *summary = seg_i->sum_blk->entries[j]; | ||
| 1170 | written_size += SUMMARY_SIZE; | ||
| 1171 | set_page_dirty(page); | ||
| 1172 | |||
| 1173 | if (written_size + SUMMARY_SIZE <= PAGE_CACHE_SIZE - | ||
| 1174 | SUM_FOOTER_SIZE) | ||
| 1175 | continue; | ||
| 1176 | |||
| 1177 | f2fs_put_page(page, 1); | ||
| 1178 | page = NULL; | ||
| 1179 | } | ||
| 1180 | } | ||
| 1181 | if (page) | ||
| 1182 | f2fs_put_page(page, 1); | ||
| 1183 | } | ||
| 1184 | |||
| 1185 | static void write_normal_summaries(struct f2fs_sb_info *sbi, | ||
| 1186 | block_t blkaddr, int type) | ||
| 1187 | { | ||
| 1188 | int i, end; | ||
| 1189 | if (IS_DATASEG(type)) | ||
| 1190 | end = type + NR_CURSEG_DATA_TYPE; | ||
| 1191 | else | ||
| 1192 | end = type + NR_CURSEG_NODE_TYPE; | ||
| 1193 | |||
| 1194 | for (i = type; i < end; i++) { | ||
| 1195 | struct curseg_info *sum = CURSEG_I(sbi, i); | ||
| 1196 | mutex_lock(&sum->curseg_mutex); | ||
| 1197 | write_sum_page(sbi, sum->sum_blk, blkaddr + (i - type)); | ||
| 1198 | mutex_unlock(&sum->curseg_mutex); | ||
| 1199 | } | ||
| 1200 | } | ||
| 1201 | |||
| 1202 | void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk) | ||
| 1203 | { | ||
| 1204 | if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) | ||
| 1205 | write_compacted_summaries(sbi, start_blk); | ||
| 1206 | else | ||
| 1207 | write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA); | ||
| 1208 | } | ||
| 1209 | |||
| 1210 | void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk) | ||
| 1211 | { | ||
| 1212 | if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG)) | ||
| 1213 | write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE); | ||
| 1214 | return; | ||
| 1215 | } | ||
| 1216 | |||
| 1217 | int lookup_journal_in_cursum(struct f2fs_summary_block *sum, int type, | ||
| 1218 | unsigned int val, int alloc) | ||
| 1219 | { | ||
| 1220 | int i; | ||
| 1221 | |||
| 1222 | if (type == NAT_JOURNAL) { | ||
| 1223 | for (i = 0; i < nats_in_cursum(sum); i++) { | ||
| 1224 | if (le32_to_cpu(nid_in_journal(sum, i)) == val) | ||
| 1225 | return i; | ||
| 1226 | } | ||
| 1227 | if (alloc && nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES) | ||
| 1228 | return update_nats_in_cursum(sum, 1); | ||
| 1229 | } else if (type == SIT_JOURNAL) { | ||
| 1230 | for (i = 0; i < sits_in_cursum(sum); i++) | ||
| 1231 | if (le32_to_cpu(segno_in_journal(sum, i)) == val) | ||
| 1232 | return i; | ||
| 1233 | if (alloc && sits_in_cursum(sum) < SIT_JOURNAL_ENTRIES) | ||
| 1234 | return update_sits_in_cursum(sum, 1); | ||
| 1235 | } | ||
| 1236 | return -1; | ||
| 1237 | } | ||
| 1238 | |||
| 1239 | static struct page *get_current_sit_page(struct f2fs_sb_info *sbi, | ||
| 1240 | unsigned int segno) | ||
| 1241 | { | ||
| 1242 | struct sit_info *sit_i = SIT_I(sbi); | ||
| 1243 | unsigned int offset = SIT_BLOCK_OFFSET(sit_i, segno); | ||
| 1244 | block_t blk_addr = sit_i->sit_base_addr + offset; | ||
| 1245 | |||
| 1246 | check_seg_range(sbi, segno); | ||
| 1247 | |||
| 1248 | /* calculate sit block address */ | ||
| 1249 | if (f2fs_test_bit(offset, sit_i->sit_bitmap)) | ||
| 1250 | blk_addr += sit_i->sit_blocks; | ||
| 1251 | |||
| 1252 | return get_meta_page(sbi, blk_addr); | ||
| 1253 | } | ||
| 1254 | |||
| 1255 | static struct page *get_next_sit_page(struct f2fs_sb_info *sbi, | ||
| 1256 | unsigned int start) | ||
| 1257 | { | ||
| 1258 | struct sit_info *sit_i = SIT_I(sbi); | ||
| 1259 | struct page *src_page, *dst_page; | ||
| 1260 | pgoff_t src_off, dst_off; | ||
| 1261 | void *src_addr, *dst_addr; | ||
| 1262 | |||
| 1263 | src_off = current_sit_addr(sbi, start); | ||
| 1264 | dst_off = next_sit_addr(sbi, src_off); | ||
| 1265 | |||
| 1266 | /* get current sit block page without lock */ | ||
| 1267 | src_page = get_meta_page(sbi, src_off); | ||
| 1268 | dst_page = grab_meta_page(sbi, dst_off); | ||
| 1269 | BUG_ON(PageDirty(src_page)); | ||
| 1270 | |||
| 1271 | src_addr = page_address(src_page); | ||
| 1272 | dst_addr = page_address(dst_page); | ||
| 1273 | memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE); | ||
| 1274 | |||
| 1275 | set_page_dirty(dst_page); | ||
| 1276 | f2fs_put_page(src_page, 1); | ||
| 1277 | |||
| 1278 | set_to_next_sit(sit_i, start); | ||
| 1279 | |||
| 1280 | return dst_page; | ||
| 1281 | } | ||
| 1282 | |||
| 1283 | static bool flush_sits_in_journal(struct f2fs_sb_info *sbi) | ||
| 1284 | { | ||
| 1285 | struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); | ||
| 1286 | struct f2fs_summary_block *sum = curseg->sum_blk; | ||
| 1287 | int i; | ||
| 1288 | |||
| 1289 | /* | ||
| 1290 | * If the journal area in the current summary is full of sit entries, | ||
| 1291 | * all the sit entries will be flushed. Otherwise the sit entries | ||
| 1292 | * are not able to replace with newly hot sit entries. | ||
| 1293 | */ | ||
| 1294 | if (sits_in_cursum(sum) >= SIT_JOURNAL_ENTRIES) { | ||
| 1295 | for (i = sits_in_cursum(sum) - 1; i >= 0; i--) { | ||
| 1296 | unsigned int segno; | ||
| 1297 | segno = le32_to_cpu(segno_in_journal(sum, i)); | ||
| 1298 | __mark_sit_entry_dirty(sbi, segno); | ||
| 1299 | } | ||
| 1300 | update_sits_in_cursum(sum, -sits_in_cursum(sum)); | ||
| 1301 | return 1; | ||
| 1302 | } | ||
| 1303 | return 0; | ||
| 1304 | } | ||
| 1305 | |||
| 1306 | /* | ||
| 1307 | * CP calls this function, which flushes SIT entries including sit_journal, | ||
| 1308 | * and moves prefree segs to free segs. | ||
| 1309 | */ | ||
| 1310 | void flush_sit_entries(struct f2fs_sb_info *sbi) | ||
| 1311 | { | ||
| 1312 | struct sit_info *sit_i = SIT_I(sbi); | ||
| 1313 | unsigned long *bitmap = sit_i->dirty_sentries_bitmap; | ||
| 1314 | struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); | ||
| 1315 | struct f2fs_summary_block *sum = curseg->sum_blk; | ||
| 1316 | unsigned long nsegs = TOTAL_SEGS(sbi); | ||
| 1317 | struct page *page = NULL; | ||
| 1318 | struct f2fs_sit_block *raw_sit = NULL; | ||
| 1319 | unsigned int start = 0, end = 0; | ||
| 1320 | unsigned int segno = -1; | ||
| 1321 | bool flushed; | ||
| 1322 | |||
| 1323 | mutex_lock(&curseg->curseg_mutex); | ||
| 1324 | mutex_lock(&sit_i->sentry_lock); | ||
| 1325 | |||
| 1326 | /* | ||
| 1327 | * "flushed" indicates whether sit entries in journal are flushed | ||
| 1328 | * to the SIT area or not. | ||
| 1329 | */ | ||
| 1330 | flushed = flush_sits_in_journal(sbi); | ||
| 1331 | |||
| 1332 | while ((segno = find_next_bit(bitmap, nsegs, segno + 1)) < nsegs) { | ||
| 1333 | struct seg_entry *se = get_seg_entry(sbi, segno); | ||
| 1334 | int sit_offset, offset; | ||
| 1335 | |||
| 1336 | sit_offset = SIT_ENTRY_OFFSET(sit_i, segno); | ||
| 1337 | |||
| 1338 | if (flushed) | ||
| 1339 | goto to_sit_page; | ||
| 1340 | |||
| 1341 | offset = lookup_journal_in_cursum(sum, SIT_JOURNAL, segno, 1); | ||
| 1342 | if (offset >= 0) { | ||
| 1343 | segno_in_journal(sum, offset) = cpu_to_le32(segno); | ||
| 1344 | seg_info_to_raw_sit(se, &sit_in_journal(sum, offset)); | ||
| 1345 | goto flush_done; | ||
| 1346 | } | ||
| 1347 | to_sit_page: | ||
| 1348 | if (!page || (start > segno) || (segno > end)) { | ||
| 1349 | if (page) { | ||
| 1350 | f2fs_put_page(page, 1); | ||
| 1351 | page = NULL; | ||
| 1352 | } | ||
| 1353 | |||
| 1354 | start = START_SEGNO(sit_i, segno); | ||
| 1355 | end = start + SIT_ENTRY_PER_BLOCK - 1; | ||
| 1356 | |||
| 1357 | /* read sit block that will be updated */ | ||
| 1358 | page = get_next_sit_page(sbi, start); | ||
| 1359 | raw_sit = page_address(page); | ||
| 1360 | } | ||
| 1361 | |||
| 1362 | /* udpate entry in SIT block */ | ||
| 1363 | seg_info_to_raw_sit(se, &raw_sit->entries[sit_offset]); | ||
| 1364 | flush_done: | ||
| 1365 | __clear_bit(segno, bitmap); | ||
| 1366 | sit_i->dirty_sentries--; | ||
| 1367 | } | ||
| 1368 | mutex_unlock(&sit_i->sentry_lock); | ||
| 1369 | mutex_unlock(&curseg->curseg_mutex); | ||
| 1370 | |||
| 1371 | /* writeout last modified SIT block */ | ||
| 1372 | f2fs_put_page(page, 1); | ||
| 1373 | |||
| 1374 | set_prefree_as_free_segments(sbi); | ||
| 1375 | } | ||
| 1376 | |||
| 1377 | static int build_sit_info(struct f2fs_sb_info *sbi) | ||
| 1378 | { | ||
| 1379 | struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); | ||
| 1380 | struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); | ||
| 1381 | struct sit_info *sit_i; | ||
| 1382 | unsigned int sit_segs, start; | ||
| 1383 | char *src_bitmap, *dst_bitmap; | ||
| 1384 | unsigned int bitmap_size; | ||
| 1385 | |||
| 1386 | /* allocate memory for SIT information */ | ||
| 1387 | sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL); | ||
| 1388 | if (!sit_i) | ||
| 1389 | return -ENOMEM; | ||
| 1390 | |||
| 1391 | SM_I(sbi)->sit_info = sit_i; | ||
| 1392 | |||
| 1393 | sit_i->sentries = vzalloc(TOTAL_SEGS(sbi) * sizeof(struct seg_entry)); | ||
| 1394 | if (!sit_i->sentries) | ||
| 1395 | return -ENOMEM; | ||
| 1396 | |||
| 1397 | bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi)); | ||
| 1398 | sit_i->dirty_sentries_bitmap = kzalloc(bitmap_size, GFP_KERNEL); | ||
| 1399 | if (!sit_i->dirty_sentries_bitmap) | ||
| 1400 | return -ENOMEM; | ||
| 1401 | |||
| 1402 | for (start = 0; start < TOTAL_SEGS(sbi); start++) { | ||
| 1403 | sit_i->sentries[start].cur_valid_map | ||
| 1404 | = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); | ||
| 1405 | sit_i->sentries[start].ckpt_valid_map | ||
| 1406 | = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); | ||
| 1407 | if (!sit_i->sentries[start].cur_valid_map | ||
| 1408 | || !sit_i->sentries[start].ckpt_valid_map) | ||
| 1409 | return -ENOMEM; | ||
| 1410 | } | ||
| 1411 | |||
| 1412 | if (sbi->segs_per_sec > 1) { | ||
| 1413 | sit_i->sec_entries = vzalloc(sbi->total_sections * | ||
| 1414 | sizeof(struct sec_entry)); | ||
| 1415 | if (!sit_i->sec_entries) | ||
| 1416 | return -ENOMEM; | ||
| 1417 | } | ||
| 1418 | |||
| 1419 | /* get information related with SIT */ | ||
| 1420 | sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1; | ||
| 1421 | |||
| 1422 | /* setup SIT bitmap from ckeckpoint pack */ | ||
| 1423 | bitmap_size = __bitmap_size(sbi, SIT_BITMAP); | ||
| 1424 | src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP); | ||
| 1425 | |||
| 1426 | dst_bitmap = kzalloc(bitmap_size, GFP_KERNEL); | ||
| 1427 | if (!dst_bitmap) | ||
| 1428 | return -ENOMEM; | ||
| 1429 | memcpy(dst_bitmap, src_bitmap, bitmap_size); | ||
| 1430 | |||
| 1431 | /* init SIT information */ | ||
| 1432 | sit_i->s_ops = &default_salloc_ops; | ||
| 1433 | |||
| 1434 | sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr); | ||
| 1435 | sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg; | ||
| 1436 | sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count); | ||
| 1437 | sit_i->sit_bitmap = dst_bitmap; | ||
| 1438 | sit_i->bitmap_size = bitmap_size; | ||
| 1439 | sit_i->dirty_sentries = 0; | ||
| 1440 | sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK; | ||
| 1441 | sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time); | ||
| 1442 | sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec; | ||
| 1443 | mutex_init(&sit_i->sentry_lock); | ||
| 1444 | return 0; | ||
| 1445 | } | ||
| 1446 | |||
| 1447 | static int build_free_segmap(struct f2fs_sb_info *sbi) | ||
| 1448 | { | ||
| 1449 | struct f2fs_sm_info *sm_info = SM_I(sbi); | ||
| 1450 | struct free_segmap_info *free_i; | ||
| 1451 | unsigned int bitmap_size, sec_bitmap_size; | ||
| 1452 | |||
| 1453 | /* allocate memory for free segmap information */ | ||
| 1454 | free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL); | ||
| 1455 | if (!free_i) | ||
| 1456 | return -ENOMEM; | ||
| 1457 | |||
| 1458 | SM_I(sbi)->free_info = free_i; | ||
| 1459 | |||
| 1460 | bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi)); | ||
| 1461 | free_i->free_segmap = kmalloc(bitmap_size, GFP_KERNEL); | ||
| 1462 | if (!free_i->free_segmap) | ||
| 1463 | return -ENOMEM; | ||
| 1464 | |||
| 1465 | sec_bitmap_size = f2fs_bitmap_size(sbi->total_sections); | ||
| 1466 | free_i->free_secmap = kmalloc(sec_bitmap_size, GFP_KERNEL); | ||
| 1467 | if (!free_i->free_secmap) | ||
| 1468 | return -ENOMEM; | ||
| 1469 | |||
| 1470 | /* set all segments as dirty temporarily */ | ||
| 1471 | memset(free_i->free_segmap, 0xff, bitmap_size); | ||
| 1472 | memset(free_i->free_secmap, 0xff, sec_bitmap_size); | ||
| 1473 | |||
| 1474 | /* init free segmap information */ | ||
| 1475 | free_i->start_segno = | ||
| 1476 | (unsigned int) GET_SEGNO_FROM_SEG0(sbi, sm_info->main_blkaddr); | ||
| 1477 | free_i->free_segments = 0; | ||
| 1478 | free_i->free_sections = 0; | ||
| 1479 | rwlock_init(&free_i->segmap_lock); | ||
| 1480 | return 0; | ||
| 1481 | } | ||
| 1482 | |||
| 1483 | static int build_curseg(struct f2fs_sb_info *sbi) | ||
| 1484 | { | ||
| 1485 | struct curseg_info *array; | ||
| 1486 | int i; | ||
| 1487 | |||
| 1488 | array = kzalloc(sizeof(*array) * NR_CURSEG_TYPE, GFP_KERNEL); | ||
| 1489 | if (!array) | ||
| 1490 | return -ENOMEM; | ||
| 1491 | |||
| 1492 | SM_I(sbi)->curseg_array = array; | ||
| 1493 | |||
| 1494 | for (i = 0; i < NR_CURSEG_TYPE; i++) { | ||
| 1495 | mutex_init(&array[i].curseg_mutex); | ||
| 1496 | array[i].sum_blk = kzalloc(PAGE_CACHE_SIZE, GFP_KERNEL); | ||
| 1497 | if (!array[i].sum_blk) | ||
| 1498 | return -ENOMEM; | ||
| 1499 | array[i].segno = NULL_SEGNO; | ||
| 1500 | array[i].next_blkoff = 0; | ||
| 1501 | } | ||
| 1502 | return restore_curseg_summaries(sbi); | ||
| 1503 | } | ||
| 1504 | |||
| 1505 | static void build_sit_entries(struct f2fs_sb_info *sbi) | ||
| 1506 | { | ||
| 1507 | struct sit_info *sit_i = SIT_I(sbi); | ||
| 1508 | struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); | ||
| 1509 | struct f2fs_summary_block *sum = curseg->sum_blk; | ||
| 1510 | unsigned int start; | ||
| 1511 | |||
| 1512 | for (start = 0; start < TOTAL_SEGS(sbi); start++) { | ||
| 1513 | struct seg_entry *se = &sit_i->sentries[start]; | ||
| 1514 | struct f2fs_sit_block *sit_blk; | ||
| 1515 | struct f2fs_sit_entry sit; | ||
| 1516 | struct page *page; | ||
| 1517 | int i; | ||
| 1518 | |||
| 1519 | mutex_lock(&curseg->curseg_mutex); | ||
| 1520 | for (i = 0; i < sits_in_cursum(sum); i++) { | ||
| 1521 | if (le32_to_cpu(segno_in_journal(sum, i)) == start) { | ||
| 1522 | sit = sit_in_journal(sum, i); | ||
| 1523 | mutex_unlock(&curseg->curseg_mutex); | ||
| 1524 | goto got_it; | ||
| 1525 | } | ||
| 1526 | } | ||
| 1527 | mutex_unlock(&curseg->curseg_mutex); | ||
| 1528 | page = get_current_sit_page(sbi, start); | ||
| 1529 | sit_blk = (struct f2fs_sit_block *)page_address(page); | ||
| 1530 | sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)]; | ||
| 1531 | f2fs_put_page(page, 1); | ||
| 1532 | got_it: | ||
| 1533 | check_block_count(sbi, start, &sit); | ||
| 1534 | seg_info_from_raw_sit(se, &sit); | ||
| 1535 | if (sbi->segs_per_sec > 1) { | ||
| 1536 | struct sec_entry *e = get_sec_entry(sbi, start); | ||
| 1537 | e->valid_blocks += se->valid_blocks; | ||
| 1538 | } | ||
| 1539 | } | ||
| 1540 | } | ||
| 1541 | |||
| 1542 | static void init_free_segmap(struct f2fs_sb_info *sbi) | ||
| 1543 | { | ||
| 1544 | unsigned int start; | ||
| 1545 | int type; | ||
| 1546 | |||
| 1547 | for (start = 0; start < TOTAL_SEGS(sbi); start++) { | ||
| 1548 | struct seg_entry *sentry = get_seg_entry(sbi, start); | ||
| 1549 | if (!sentry->valid_blocks) | ||
| 1550 | __set_free(sbi, start); | ||
| 1551 | } | ||
| 1552 | |||
| 1553 | /* set use the current segments */ | ||
| 1554 | for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) { | ||
| 1555 | struct curseg_info *curseg_t = CURSEG_I(sbi, type); | ||
| 1556 | __set_test_and_inuse(sbi, curseg_t->segno); | ||
| 1557 | } | ||
| 1558 | } | ||
| 1559 | |||
| 1560 | static void init_dirty_segmap(struct f2fs_sb_info *sbi) | ||
| 1561 | { | ||
| 1562 | struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); | ||
| 1563 | struct free_segmap_info *free_i = FREE_I(sbi); | ||
| 1564 | unsigned int segno = 0, offset = 0; | ||
| 1565 | unsigned short valid_blocks; | ||
| 1566 | |||
| 1567 | while (segno < TOTAL_SEGS(sbi)) { | ||
| 1568 | /* find dirty segment based on free segmap */ | ||
| 1569 | segno = find_next_inuse(free_i, TOTAL_SEGS(sbi), offset); | ||
| 1570 | if (segno >= TOTAL_SEGS(sbi)) | ||
| 1571 | break; | ||
| 1572 | offset = segno + 1; | ||
| 1573 | valid_blocks = get_valid_blocks(sbi, segno, 0); | ||
| 1574 | if (valid_blocks >= sbi->blocks_per_seg || !valid_blocks) | ||
| 1575 | continue; | ||
| 1576 | mutex_lock(&dirty_i->seglist_lock); | ||
| 1577 | __locate_dirty_segment(sbi, segno, DIRTY); | ||
| 1578 | mutex_unlock(&dirty_i->seglist_lock); | ||
| 1579 | } | ||
| 1580 | } | ||
| 1581 | |||
| 1582 | static int init_victim_segmap(struct f2fs_sb_info *sbi) | ||
| 1583 | { | ||
| 1584 | struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); | ||
| 1585 | unsigned int bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi)); | ||
| 1586 | |||
| 1587 | dirty_i->victim_segmap[FG_GC] = kzalloc(bitmap_size, GFP_KERNEL); | ||
| 1588 | dirty_i->victim_segmap[BG_GC] = kzalloc(bitmap_size, GFP_KERNEL); | ||
| 1589 | if (!dirty_i->victim_segmap[FG_GC] || !dirty_i->victim_segmap[BG_GC]) | ||
| 1590 | return -ENOMEM; | ||
| 1591 | return 0; | ||
| 1592 | } | ||
| 1593 | |||
| 1594 | static int build_dirty_segmap(struct f2fs_sb_info *sbi) | ||
| 1595 | { | ||
| 1596 | struct dirty_seglist_info *dirty_i; | ||
| 1597 | unsigned int bitmap_size, i; | ||
| 1598 | |||
| 1599 | /* allocate memory for dirty segments list information */ | ||
| 1600 | dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL); | ||
| 1601 | if (!dirty_i) | ||
| 1602 | return -ENOMEM; | ||
| 1603 | |||
| 1604 | SM_I(sbi)->dirty_info = dirty_i; | ||
| 1605 | mutex_init(&dirty_i->seglist_lock); | ||
| 1606 | |||
| 1607 | bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi)); | ||
| 1608 | |||
| 1609 | for (i = 0; i < NR_DIRTY_TYPE; i++) { | ||
| 1610 | dirty_i->dirty_segmap[i] = kzalloc(bitmap_size, GFP_KERNEL); | ||
| 1611 | dirty_i->nr_dirty[i] = 0; | ||
| 1612 | if (!dirty_i->dirty_segmap[i]) | ||
| 1613 | return -ENOMEM; | ||
| 1614 | } | ||
| 1615 | |||
| 1616 | init_dirty_segmap(sbi); | ||
| 1617 | return init_victim_segmap(sbi); | ||
| 1618 | } | ||
| 1619 | |||
| 1620 | /* | ||
| 1621 | * Update min, max modified time for cost-benefit GC algorithm | ||
| 1622 | */ | ||
| 1623 | static void init_min_max_mtime(struct f2fs_sb_info *sbi) | ||
| 1624 | { | ||
| 1625 | struct sit_info *sit_i = SIT_I(sbi); | ||
| 1626 | unsigned int segno; | ||
| 1627 | |||
| 1628 | mutex_lock(&sit_i->sentry_lock); | ||
| 1629 | |||
| 1630 | sit_i->min_mtime = LLONG_MAX; | ||
| 1631 | |||
| 1632 | for (segno = 0; segno < TOTAL_SEGS(sbi); segno += sbi->segs_per_sec) { | ||
| 1633 | unsigned int i; | ||
| 1634 | unsigned long long mtime = 0; | ||
| 1635 | |||
| 1636 | for (i = 0; i < sbi->segs_per_sec; i++) | ||
| 1637 | mtime += get_seg_entry(sbi, segno + i)->mtime; | ||
| 1638 | |||
| 1639 | mtime = div_u64(mtime, sbi->segs_per_sec); | ||
| 1640 | |||
| 1641 | if (sit_i->min_mtime > mtime) | ||
| 1642 | sit_i->min_mtime = mtime; | ||
| 1643 | } | ||
| 1644 | sit_i->max_mtime = get_mtime(sbi); | ||
| 1645 | mutex_unlock(&sit_i->sentry_lock); | ||
| 1646 | } | ||
| 1647 | |||
| 1648 | int build_segment_manager(struct f2fs_sb_info *sbi) | ||
| 1649 | { | ||
| 1650 | struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); | ||
| 1651 | struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); | ||
| 1652 | struct f2fs_sm_info *sm_info; | ||
| 1653 | int err; | ||
| 1654 | |||
| 1655 | sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL); | ||
| 1656 | if (!sm_info) | ||
| 1657 | return -ENOMEM; | ||
| 1658 | |||
| 1659 | /* init sm info */ | ||
| 1660 | sbi->sm_info = sm_info; | ||
| 1661 | INIT_LIST_HEAD(&sm_info->wblist_head); | ||
| 1662 | spin_lock_init(&sm_info->wblist_lock); | ||
| 1663 | sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); | ||
| 1664 | sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); | ||
| 1665 | sm_info->segment_count = le32_to_cpu(raw_super->segment_count); | ||
| 1666 | sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); | ||
| 1667 | sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); | ||
| 1668 | sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main); | ||
| 1669 | sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); | ||
| 1670 | |||
| 1671 | err = build_sit_info(sbi); | ||
| 1672 | if (err) | ||
| 1673 | return err; | ||
| 1674 | err = build_free_segmap(sbi); | ||
| 1675 | if (err) | ||
| 1676 | return err; | ||
| 1677 | err = build_curseg(sbi); | ||
| 1678 | if (err) | ||
| 1679 | return err; | ||
| 1680 | |||
| 1681 | /* reinit free segmap based on SIT */ | ||
| 1682 | build_sit_entries(sbi); | ||
| 1683 | |||
| 1684 | init_free_segmap(sbi); | ||
| 1685 | err = build_dirty_segmap(sbi); | ||
| 1686 | if (err) | ||
| 1687 | return err; | ||
| 1688 | |||
| 1689 | init_min_max_mtime(sbi); | ||
| 1690 | return 0; | ||
| 1691 | } | ||
| 1692 | |||
| 1693 | static void discard_dirty_segmap(struct f2fs_sb_info *sbi, | ||
| 1694 | enum dirty_type dirty_type) | ||
| 1695 | { | ||
| 1696 | struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); | ||
| 1697 | |||
| 1698 | mutex_lock(&dirty_i->seglist_lock); | ||
| 1699 | kfree(dirty_i->dirty_segmap[dirty_type]); | ||
| 1700 | dirty_i->nr_dirty[dirty_type] = 0; | ||
| 1701 | mutex_unlock(&dirty_i->seglist_lock); | ||
| 1702 | } | ||
| 1703 | |||
| 1704 | void reset_victim_segmap(struct f2fs_sb_info *sbi) | ||
| 1705 | { | ||
| 1706 | unsigned int bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi)); | ||
| 1707 | memset(DIRTY_I(sbi)->victim_segmap[FG_GC], 0, bitmap_size); | ||
| 1708 | } | ||
| 1709 | |||
| 1710 | static void destroy_victim_segmap(struct f2fs_sb_info *sbi) | ||
| 1711 | { | ||
| 1712 | struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); | ||
| 1713 | |||
| 1714 | kfree(dirty_i->victim_segmap[FG_GC]); | ||
| 1715 | kfree(dirty_i->victim_segmap[BG_GC]); | ||
| 1716 | } | ||
| 1717 | |||
| 1718 | static void destroy_dirty_segmap(struct f2fs_sb_info *sbi) | ||
| 1719 | { | ||
| 1720 | struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); | ||
| 1721 | int i; | ||
| 1722 | |||
| 1723 | if (!dirty_i) | ||
| 1724 | return; | ||
| 1725 | |||
| 1726 | /* discard pre-free/dirty segments list */ | ||
| 1727 | for (i = 0; i < NR_DIRTY_TYPE; i++) | ||
| 1728 | discard_dirty_segmap(sbi, i); | ||
| 1729 | |||
| 1730 | destroy_victim_segmap(sbi); | ||
| 1731 | SM_I(sbi)->dirty_info = NULL; | ||
| 1732 | kfree(dirty_i); | ||
| 1733 | } | ||
| 1734 | |||
| 1735 | static void destroy_curseg(struct f2fs_sb_info *sbi) | ||
| 1736 | { | ||
| 1737 | struct curseg_info *array = SM_I(sbi)->curseg_array; | ||
| 1738 | int i; | ||
| 1739 | |||
| 1740 | if (!array) | ||
| 1741 | return; | ||
| 1742 | SM_I(sbi)->curseg_array = NULL; | ||
| 1743 | for (i = 0; i < NR_CURSEG_TYPE; i++) | ||
| 1744 | kfree(array[i].sum_blk); | ||
| 1745 | kfree(array); | ||
| 1746 | } | ||
| 1747 | |||
| 1748 | static void destroy_free_segmap(struct f2fs_sb_info *sbi) | ||
| 1749 | { | ||
| 1750 | struct free_segmap_info *free_i = SM_I(sbi)->free_info; | ||
| 1751 | if (!free_i) | ||
| 1752 | return; | ||
| 1753 | SM_I(sbi)->free_info = NULL; | ||
| 1754 | kfree(free_i->free_segmap); | ||
| 1755 | kfree(free_i->free_secmap); | ||
| 1756 | kfree(free_i); | ||
| 1757 | } | ||
| 1758 | |||
| 1759 | static void destroy_sit_info(struct f2fs_sb_info *sbi) | ||
| 1760 | { | ||
| 1761 | struct sit_info *sit_i = SIT_I(sbi); | ||
| 1762 | unsigned int start; | ||
| 1763 | |||
| 1764 | if (!sit_i) | ||
| 1765 | return; | ||
| 1766 | |||
| 1767 | if (sit_i->sentries) { | ||
| 1768 | for (start = 0; start < TOTAL_SEGS(sbi); start++) { | ||
| 1769 | kfree(sit_i->sentries[start].cur_valid_map); | ||
| 1770 | kfree(sit_i->sentries[start].ckpt_valid_map); | ||
| 1771 | } | ||
| 1772 | } | ||
| 1773 | vfree(sit_i->sentries); | ||
| 1774 | vfree(sit_i->sec_entries); | ||
| 1775 | kfree(sit_i->dirty_sentries_bitmap); | ||
| 1776 | |||
| 1777 | SM_I(sbi)->sit_info = NULL; | ||
| 1778 | kfree(sit_i->sit_bitmap); | ||
| 1779 | kfree(sit_i); | ||
| 1780 | } | ||
| 1781 | |||
| 1782 | void destroy_segment_manager(struct f2fs_sb_info *sbi) | ||
| 1783 | { | ||
| 1784 | struct f2fs_sm_info *sm_info = SM_I(sbi); | ||
| 1785 | destroy_dirty_segmap(sbi); | ||
| 1786 | destroy_curseg(sbi); | ||
| 1787 | destroy_free_segmap(sbi); | ||
| 1788 | destroy_sit_info(sbi); | ||
| 1789 | sbi->sm_info = NULL; | ||
| 1790 | kfree(sm_info); | ||
| 1791 | } | ||
diff --git a/fs/f2fs/segment.h b/fs/f2fs/segment.h new file mode 100644 index 000000000000..0948405af6f5 --- /dev/null +++ b/fs/f2fs/segment.h | |||
| @@ -0,0 +1,618 @@ | |||
| 1 | /* | ||
| 2 | * fs/f2fs/segment.h | ||
| 3 | * | ||
| 4 | * Copyright (c) 2012 Samsung Electronics Co., Ltd. | ||
| 5 | * http://www.samsung.com/ | ||
| 6 | * | ||
| 7 | * This program is free software; you can redistribute it and/or modify | ||
| 8 | * it under the terms of the GNU General Public License version 2 as | ||
| 9 | * published by the Free Software Foundation. | ||
| 10 | */ | ||
| 11 | /* constant macro */ | ||
| 12 | #define NULL_SEGNO ((unsigned int)(~0)) | ||
| 13 | |||
| 14 | /* V: Logical segment # in volume, R: Relative segment # in main area */ | ||
| 15 | #define GET_L2R_SEGNO(free_i, segno) (segno - free_i->start_segno) | ||
| 16 | #define GET_R2L_SEGNO(free_i, segno) (segno + free_i->start_segno) | ||
| 17 | |||
| 18 | #define IS_DATASEG(t) \ | ||
| 19 | ((t == CURSEG_HOT_DATA) || (t == CURSEG_COLD_DATA) || \ | ||
| 20 | (t == CURSEG_WARM_DATA)) | ||
| 21 | |||
| 22 | #define IS_NODESEG(t) \ | ||
| 23 | ((t == CURSEG_HOT_NODE) || (t == CURSEG_COLD_NODE) || \ | ||
| 24 | (t == CURSEG_WARM_NODE)) | ||
| 25 | |||
| 26 | #define IS_CURSEG(sbi, segno) \ | ||
| 27 | ((segno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \ | ||
| 28 | (segno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \ | ||
| 29 | (segno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \ | ||
| 30 | (segno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \ | ||
| 31 | (segno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \ | ||
| 32 | (segno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno)) | ||
| 33 | |||
| 34 | #define IS_CURSEC(sbi, secno) \ | ||
| 35 | ((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \ | ||
| 36 | sbi->segs_per_sec) || \ | ||
| 37 | (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \ | ||
| 38 | sbi->segs_per_sec) || \ | ||
| 39 | (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \ | ||
| 40 | sbi->segs_per_sec) || \ | ||
| 41 | (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \ | ||
| 42 | sbi->segs_per_sec) || \ | ||
| 43 | (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \ | ||
| 44 | sbi->segs_per_sec) || \ | ||
| 45 | (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \ | ||
| 46 | sbi->segs_per_sec)) \ | ||
| 47 | |||
| 48 | #define START_BLOCK(sbi, segno) \ | ||
| 49 | (SM_I(sbi)->seg0_blkaddr + \ | ||
| 50 | (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg)) | ||
| 51 | #define NEXT_FREE_BLKADDR(sbi, curseg) \ | ||
| 52 | (START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff) | ||
| 53 | |||
| 54 | #define MAIN_BASE_BLOCK(sbi) (SM_I(sbi)->main_blkaddr) | ||
| 55 | |||
| 56 | #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) \ | ||
| 57 | ((blk_addr) - SM_I(sbi)->seg0_blkaddr) | ||
| 58 | #define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \ | ||
| 59 | (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg) | ||
| 60 | #define GET_SEGNO(sbi, blk_addr) \ | ||
| 61 | (((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ? \ | ||
| 62 | NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \ | ||
| 63 | GET_SEGNO_FROM_SEG0(sbi, blk_addr))) | ||
| 64 | #define GET_SECNO(sbi, segno) \ | ||
| 65 | ((segno) / sbi->segs_per_sec) | ||
| 66 | #define GET_ZONENO_FROM_SEGNO(sbi, segno) \ | ||
| 67 | ((segno / sbi->segs_per_sec) / sbi->secs_per_zone) | ||
| 68 | |||
| 69 | #define GET_SUM_BLOCK(sbi, segno) \ | ||
| 70 | ((sbi->sm_info->ssa_blkaddr) + segno) | ||
| 71 | |||
| 72 | #define GET_SUM_TYPE(footer) ((footer)->entry_type) | ||
| 73 | #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type) | ||
| 74 | |||
| 75 | #define SIT_ENTRY_OFFSET(sit_i, segno) \ | ||
| 76 | (segno % sit_i->sents_per_block) | ||
| 77 | #define SIT_BLOCK_OFFSET(sit_i, segno) \ | ||
| 78 | (segno / SIT_ENTRY_PER_BLOCK) | ||
| 79 | #define START_SEGNO(sit_i, segno) \ | ||
| 80 | (SIT_BLOCK_OFFSET(sit_i, segno) * SIT_ENTRY_PER_BLOCK) | ||
| 81 | #define f2fs_bitmap_size(nr) \ | ||
| 82 | (BITS_TO_LONGS(nr) * sizeof(unsigned long)) | ||
| 83 | #define TOTAL_SEGS(sbi) (SM_I(sbi)->main_segments) | ||
| 84 | |||
| 85 | #define SECTOR_FROM_BLOCK(sbi, blk_addr) \ | ||
| 86 | (blk_addr << ((sbi)->log_blocksize - F2FS_LOG_SECTOR_SIZE)) | ||
| 87 | |||
| 88 | /* during checkpoint, bio_private is used to synchronize the last bio */ | ||
| 89 | struct bio_private { | ||
| 90 | struct f2fs_sb_info *sbi; | ||
| 91 | bool is_sync; | ||
| 92 | void *wait; | ||
| 93 | }; | ||
| 94 | |||
| 95 | /* | ||
| 96 | * indicate a block allocation direction: RIGHT and LEFT. | ||
| 97 | * RIGHT means allocating new sections towards the end of volume. | ||
| 98 | * LEFT means the opposite direction. | ||
| 99 | */ | ||
| 100 | enum { | ||
| 101 | ALLOC_RIGHT = 0, | ||
| 102 | ALLOC_LEFT | ||
| 103 | }; | ||
| 104 | |||
| 105 | /* | ||
| 106 | * In the victim_sel_policy->alloc_mode, there are two block allocation modes. | ||
| 107 | * LFS writes data sequentially with cleaning operations. | ||
| 108 | * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations. | ||
| 109 | */ | ||
| 110 | enum { | ||
| 111 | LFS = 0, | ||
| 112 | SSR | ||
| 113 | }; | ||
| 114 | |||
| 115 | /* | ||
| 116 | * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes. | ||
| 117 | * GC_CB is based on cost-benefit algorithm. | ||
| 118 | * GC_GREEDY is based on greedy algorithm. | ||
| 119 | */ | ||
| 120 | enum { | ||
| 121 | GC_CB = 0, | ||
| 122 | GC_GREEDY | ||
| 123 | }; | ||
| 124 | |||
| 125 | /* | ||
| 126 | * BG_GC means the background cleaning job. | ||
| 127 | * FG_GC means the on-demand cleaning job. | ||
| 128 | */ | ||
| 129 | enum { | ||
| 130 | BG_GC = 0, | ||
| 131 | FG_GC | ||
| 132 | }; | ||
| 133 | |||
| 134 | /* for a function parameter to select a victim segment */ | ||
| 135 | struct victim_sel_policy { | ||
| 136 | int alloc_mode; /* LFS or SSR */ | ||
| 137 | int gc_mode; /* GC_CB or GC_GREEDY */ | ||
| 138 | unsigned long *dirty_segmap; /* dirty segment bitmap */ | ||
| 139 | unsigned int offset; /* last scanned bitmap offset */ | ||
| 140 | unsigned int ofs_unit; /* bitmap search unit */ | ||
| 141 | unsigned int min_cost; /* minimum cost */ | ||
| 142 | unsigned int min_segno; /* segment # having min. cost */ | ||
| 143 | }; | ||
| 144 | |||
| 145 | struct seg_entry { | ||
| 146 | unsigned short valid_blocks; /* # of valid blocks */ | ||
| 147 | unsigned char *cur_valid_map; /* validity bitmap of blocks */ | ||
| 148 | /* | ||
| 149 | * # of valid blocks and the validity bitmap stored in the the last | ||
| 150 | * checkpoint pack. This information is used by the SSR mode. | ||
| 151 | */ | ||
| 152 | unsigned short ckpt_valid_blocks; | ||
| 153 | unsigned char *ckpt_valid_map; | ||
| 154 | unsigned char type; /* segment type like CURSEG_XXX_TYPE */ | ||
| 155 | unsigned long long mtime; /* modification time of the segment */ | ||
| 156 | }; | ||
| 157 | |||
| 158 | struct sec_entry { | ||
| 159 | unsigned int valid_blocks; /* # of valid blocks in a section */ | ||
| 160 | }; | ||
| 161 | |||
| 162 | struct segment_allocation { | ||
| 163 | void (*allocate_segment)(struct f2fs_sb_info *, int, bool); | ||
| 164 | }; | ||
| 165 | |||
| 166 | struct sit_info { | ||
| 167 | const struct segment_allocation *s_ops; | ||
| 168 | |||
| 169 | block_t sit_base_addr; /* start block address of SIT area */ | ||
| 170 | block_t sit_blocks; /* # of blocks used by SIT area */ | ||
| 171 | block_t written_valid_blocks; /* # of valid blocks in main area */ | ||
| 172 | char *sit_bitmap; /* SIT bitmap pointer */ | ||
| 173 | unsigned int bitmap_size; /* SIT bitmap size */ | ||
| 174 | |||
| 175 | unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */ | ||
| 176 | unsigned int dirty_sentries; /* # of dirty sentries */ | ||
| 177 | unsigned int sents_per_block; /* # of SIT entries per block */ | ||
| 178 | struct mutex sentry_lock; /* to protect SIT cache */ | ||
| 179 | struct seg_entry *sentries; /* SIT segment-level cache */ | ||
| 180 | struct sec_entry *sec_entries; /* SIT section-level cache */ | ||
| 181 | |||
| 182 | /* for cost-benefit algorithm in cleaning procedure */ | ||
| 183 | unsigned long long elapsed_time; /* elapsed time after mount */ | ||
| 184 | unsigned long long mounted_time; /* mount time */ | ||
| 185 | unsigned long long min_mtime; /* min. modification time */ | ||
| 186 | unsigned long long max_mtime; /* max. modification time */ | ||
| 187 | }; | ||
| 188 | |||
| 189 | struct free_segmap_info { | ||
| 190 | unsigned int start_segno; /* start segment number logically */ | ||
| 191 | unsigned int free_segments; /* # of free segments */ | ||
| 192 | unsigned int free_sections; /* # of free sections */ | ||
| 193 | rwlock_t segmap_lock; /* free segmap lock */ | ||
| 194 | unsigned long *free_segmap; /* free segment bitmap */ | ||
| 195 | unsigned long *free_secmap; /* free section bitmap */ | ||
| 196 | }; | ||
| 197 | |||
| 198 | /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */ | ||
| 199 | enum dirty_type { | ||
| 200 | DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */ | ||
| 201 | DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */ | ||
| 202 | DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */ | ||
| 203 | DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */ | ||
| 204 | DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */ | ||
| 205 | DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */ | ||
| 206 | DIRTY, /* to count # of dirty segments */ | ||
| 207 | PRE, /* to count # of entirely obsolete segments */ | ||
| 208 | NR_DIRTY_TYPE | ||
| 209 | }; | ||
| 210 | |||
| 211 | struct dirty_seglist_info { | ||
| 212 | const struct victim_selection *v_ops; /* victim selction operation */ | ||
| 213 | unsigned long *dirty_segmap[NR_DIRTY_TYPE]; | ||
| 214 | struct mutex seglist_lock; /* lock for segment bitmaps */ | ||
| 215 | int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */ | ||
| 216 | unsigned long *victim_segmap[2]; /* BG_GC, FG_GC */ | ||
| 217 | }; | ||
| 218 | |||
| 219 | /* victim selection function for cleaning and SSR */ | ||
| 220 | struct victim_selection { | ||
| 221 | int (*get_victim)(struct f2fs_sb_info *, unsigned int *, | ||
| 222 | int, int, char); | ||
| 223 | }; | ||
| 224 | |||
| 225 | /* for active log information */ | ||
| 226 | struct curseg_info { | ||
| 227 | struct mutex curseg_mutex; /* lock for consistency */ | ||
| 228 | struct f2fs_summary_block *sum_blk; /* cached summary block */ | ||
| 229 | unsigned char alloc_type; /* current allocation type */ | ||
| 230 | unsigned int segno; /* current segment number */ | ||
| 231 | unsigned short next_blkoff; /* next block offset to write */ | ||
| 232 | unsigned int zone; /* current zone number */ | ||
| 233 | unsigned int next_segno; /* preallocated segment */ | ||
| 234 | }; | ||
| 235 | |||
| 236 | /* | ||
| 237 | * inline functions | ||
| 238 | */ | ||
| 239 | static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type) | ||
| 240 | { | ||
| 241 | return (struct curseg_info *)(SM_I(sbi)->curseg_array + type); | ||
| 242 | } | ||
| 243 | |||
| 244 | static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi, | ||
| 245 | unsigned int segno) | ||
| 246 | { | ||
| 247 | struct sit_info *sit_i = SIT_I(sbi); | ||
| 248 | return &sit_i->sentries[segno]; | ||
| 249 | } | ||
| 250 | |||
| 251 | static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi, | ||
| 252 | unsigned int segno) | ||
| 253 | { | ||
| 254 | struct sit_info *sit_i = SIT_I(sbi); | ||
| 255 | return &sit_i->sec_entries[GET_SECNO(sbi, segno)]; | ||
| 256 | } | ||
| 257 | |||
| 258 | static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi, | ||
| 259 | unsigned int segno, int section) | ||
| 260 | { | ||
| 261 | /* | ||
| 262 | * In order to get # of valid blocks in a section instantly from many | ||
| 263 | * segments, f2fs manages two counting structures separately. | ||
| 264 | */ | ||
| 265 | if (section > 1) | ||
| 266 | return get_sec_entry(sbi, segno)->valid_blocks; | ||
| 267 | else | ||
| 268 | return get_seg_entry(sbi, segno)->valid_blocks; | ||
| 269 | } | ||
| 270 | |||
| 271 | static inline void seg_info_from_raw_sit(struct seg_entry *se, | ||
| 272 | struct f2fs_sit_entry *rs) | ||
| 273 | { | ||
| 274 | se->valid_blocks = GET_SIT_VBLOCKS(rs); | ||
| 275 | se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs); | ||
| 276 | memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); | ||
| 277 | memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); | ||
| 278 | se->type = GET_SIT_TYPE(rs); | ||
| 279 | se->mtime = le64_to_cpu(rs->mtime); | ||
| 280 | } | ||
| 281 | |||
| 282 | static inline void seg_info_to_raw_sit(struct seg_entry *se, | ||
| 283 | struct f2fs_sit_entry *rs) | ||
| 284 | { | ||
| 285 | unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) | | ||
| 286 | se->valid_blocks; | ||
| 287 | rs->vblocks = cpu_to_le16(raw_vblocks); | ||
| 288 | memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE); | ||
| 289 | memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); | ||
| 290 | se->ckpt_valid_blocks = se->valid_blocks; | ||
| 291 | rs->mtime = cpu_to_le64(se->mtime); | ||
| 292 | } | ||
| 293 | |||
| 294 | static inline unsigned int find_next_inuse(struct free_segmap_info *free_i, | ||
| 295 | unsigned int max, unsigned int segno) | ||
| 296 | { | ||
| 297 | unsigned int ret; | ||
| 298 | read_lock(&free_i->segmap_lock); | ||
| 299 | ret = find_next_bit(free_i->free_segmap, max, segno); | ||
| 300 | read_unlock(&free_i->segmap_lock); | ||
| 301 | return ret; | ||
| 302 | } | ||
| 303 | |||
| 304 | static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno) | ||
| 305 | { | ||
| 306 | struct free_segmap_info *free_i = FREE_I(sbi); | ||
| 307 | unsigned int secno = segno / sbi->segs_per_sec; | ||
| 308 | unsigned int start_segno = secno * sbi->segs_per_sec; | ||
| 309 | unsigned int next; | ||
| 310 | |||
| 311 | write_lock(&free_i->segmap_lock); | ||
| 312 | clear_bit(segno, free_i->free_segmap); | ||
| 313 | free_i->free_segments++; | ||
| 314 | |||
| 315 | next = find_next_bit(free_i->free_segmap, TOTAL_SEGS(sbi), start_segno); | ||
| 316 | if (next >= start_segno + sbi->segs_per_sec) { | ||
| 317 | clear_bit(secno, free_i->free_secmap); | ||
| 318 | free_i->free_sections++; | ||
| 319 | } | ||
| 320 | write_unlock(&free_i->segmap_lock); | ||
| 321 | } | ||
| 322 | |||
| 323 | static inline void __set_inuse(struct f2fs_sb_info *sbi, | ||
| 324 | unsigned int segno) | ||
| 325 | { | ||
| 326 | struct free_segmap_info *free_i = FREE_I(sbi); | ||
| 327 | unsigned int secno = segno / sbi->segs_per_sec; | ||
| 328 | set_bit(segno, free_i->free_segmap); | ||
| 329 | free_i->free_segments--; | ||
| 330 | if (!test_and_set_bit(secno, free_i->free_secmap)) | ||
| 331 | free_i->free_sections--; | ||
| 332 | } | ||
| 333 | |||
| 334 | static inline void __set_test_and_free(struct f2fs_sb_info *sbi, | ||
| 335 | unsigned int segno) | ||
| 336 | { | ||
| 337 | struct free_segmap_info *free_i = FREE_I(sbi); | ||
| 338 | unsigned int secno = segno / sbi->segs_per_sec; | ||
| 339 | unsigned int start_segno = secno * sbi->segs_per_sec; | ||
| 340 | unsigned int next; | ||
| 341 | |||
| 342 | write_lock(&free_i->segmap_lock); | ||
| 343 | if (test_and_clear_bit(segno, free_i->free_segmap)) { | ||
| 344 | free_i->free_segments++; | ||
| 345 | |||
| 346 | next = find_next_bit(free_i->free_segmap, TOTAL_SEGS(sbi), | ||
| 347 | start_segno); | ||
| 348 | if (next >= start_segno + sbi->segs_per_sec) { | ||
| 349 | if (test_and_clear_bit(secno, free_i->free_secmap)) | ||
| 350 | free_i->free_sections++; | ||
| 351 | } | ||
| 352 | } | ||
| 353 | write_unlock(&free_i->segmap_lock); | ||
| 354 | } | ||
| 355 | |||
| 356 | static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi, | ||
| 357 | unsigned int segno) | ||
| 358 | { | ||
| 359 | struct free_segmap_info *free_i = FREE_I(sbi); | ||
| 360 | unsigned int secno = segno / sbi->segs_per_sec; | ||
| 361 | write_lock(&free_i->segmap_lock); | ||
| 362 | if (!test_and_set_bit(segno, free_i->free_segmap)) { | ||
| 363 | free_i->free_segments--; | ||
| 364 | if (!test_and_set_bit(secno, free_i->free_secmap)) | ||
| 365 | free_i->free_sections--; | ||
| 366 | } | ||
| 367 | write_unlock(&free_i->segmap_lock); | ||
| 368 | } | ||
| 369 | |||
| 370 | static inline void get_sit_bitmap(struct f2fs_sb_info *sbi, | ||
| 371 | void *dst_addr) | ||
| 372 | { | ||
| 373 | struct sit_info *sit_i = SIT_I(sbi); | ||
| 374 | memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size); | ||
| 375 | } | ||
| 376 | |||
| 377 | static inline block_t written_block_count(struct f2fs_sb_info *sbi) | ||
| 378 | { | ||
| 379 | struct sit_info *sit_i = SIT_I(sbi); | ||
| 380 | block_t vblocks; | ||
| 381 | |||
| 382 | mutex_lock(&sit_i->sentry_lock); | ||
| 383 | vblocks = sit_i->written_valid_blocks; | ||
| 384 | mutex_unlock(&sit_i->sentry_lock); | ||
| 385 | |||
| 386 | return vblocks; | ||
| 387 | } | ||
| 388 | |||
| 389 | static inline unsigned int free_segments(struct f2fs_sb_info *sbi) | ||
| 390 | { | ||
| 391 | struct free_segmap_info *free_i = FREE_I(sbi); | ||
| 392 | unsigned int free_segs; | ||
| 393 | |||
| 394 | read_lock(&free_i->segmap_lock); | ||
| 395 | free_segs = free_i->free_segments; | ||
| 396 | read_unlock(&free_i->segmap_lock); | ||
| 397 | |||
| 398 | return free_segs; | ||
| 399 | } | ||
| 400 | |||
| 401 | static inline int reserved_segments(struct f2fs_sb_info *sbi) | ||
| 402 | { | ||
| 403 | return SM_I(sbi)->reserved_segments; | ||
| 404 | } | ||
| 405 | |||
| 406 | static inline unsigned int free_sections(struct f2fs_sb_info *sbi) | ||
| 407 | { | ||
| 408 | struct free_segmap_info *free_i = FREE_I(sbi); | ||
| 409 | unsigned int free_secs; | ||
| 410 | |||
| 411 | read_lock(&free_i->segmap_lock); | ||
| 412 | free_secs = free_i->free_sections; | ||
| 413 | read_unlock(&free_i->segmap_lock); | ||
| 414 | |||
| 415 | return free_secs; | ||
| 416 | } | ||
| 417 | |||
| 418 | static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi) | ||
| 419 | { | ||
| 420 | return DIRTY_I(sbi)->nr_dirty[PRE]; | ||
| 421 | } | ||
| 422 | |||
| 423 | static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi) | ||
| 424 | { | ||
| 425 | return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] + | ||
| 426 | DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] + | ||
| 427 | DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] + | ||
| 428 | DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] + | ||
| 429 | DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] + | ||
| 430 | DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE]; | ||
| 431 | } | ||
| 432 | |||
| 433 | static inline int overprovision_segments(struct f2fs_sb_info *sbi) | ||
| 434 | { | ||
| 435 | return SM_I(sbi)->ovp_segments; | ||
| 436 | } | ||
| 437 | |||
| 438 | static inline int overprovision_sections(struct f2fs_sb_info *sbi) | ||
| 439 | { | ||
| 440 | return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec; | ||
| 441 | } | ||
| 442 | |||
| 443 | static inline int reserved_sections(struct f2fs_sb_info *sbi) | ||
| 444 | { | ||
| 445 | return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec; | ||
| 446 | } | ||
| 447 | |||
| 448 | static inline bool need_SSR(struct f2fs_sb_info *sbi) | ||
| 449 | { | ||
| 450 | return (free_sections(sbi) < overprovision_sections(sbi)); | ||
| 451 | } | ||
| 452 | |||
| 453 | static inline int get_ssr_segment(struct f2fs_sb_info *sbi, int type) | ||
| 454 | { | ||
| 455 | struct curseg_info *curseg = CURSEG_I(sbi, type); | ||
| 456 | return DIRTY_I(sbi)->v_ops->get_victim(sbi, | ||
| 457 | &(curseg)->next_segno, BG_GC, type, SSR); | ||
| 458 | } | ||
| 459 | |||
| 460 | static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi) | ||
| 461 | { | ||
| 462 | return free_sections(sbi) <= reserved_sections(sbi); | ||
| 463 | } | ||
| 464 | |||
| 465 | static inline int utilization(struct f2fs_sb_info *sbi) | ||
| 466 | { | ||
| 467 | return (long int)valid_user_blocks(sbi) * 100 / | ||
| 468 | (long int)sbi->user_block_count; | ||
| 469 | } | ||
| 470 | |||
| 471 | /* | ||
| 472 | * Sometimes f2fs may be better to drop out-of-place update policy. | ||
| 473 | * So, if fs utilization is over MIN_IPU_UTIL, then f2fs tries to write | ||
| 474 | * data in the original place likewise other traditional file systems. | ||
| 475 | * But, currently set 100 in percentage, which means it is disabled. | ||
| 476 | * See below need_inplace_update(). | ||
| 477 | */ | ||
| 478 | #define MIN_IPU_UTIL 100 | ||
| 479 | static inline bool need_inplace_update(struct inode *inode) | ||
| 480 | { | ||
| 481 | struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); | ||
| 482 | if (S_ISDIR(inode->i_mode)) | ||
| 483 | return false; | ||
| 484 | if (need_SSR(sbi) && utilization(sbi) > MIN_IPU_UTIL) | ||
| 485 | return true; | ||
| 486 | return false; | ||
| 487 | } | ||
| 488 | |||
| 489 | static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi, | ||
| 490 | int type) | ||
| 491 | { | ||
| 492 | struct curseg_info *curseg = CURSEG_I(sbi, type); | ||
| 493 | return curseg->segno; | ||
| 494 | } | ||
| 495 | |||
| 496 | static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi, | ||
| 497 | int type) | ||
| 498 | { | ||
| 499 | struct curseg_info *curseg = CURSEG_I(sbi, type); | ||
| 500 | return curseg->alloc_type; | ||
| 501 | } | ||
| 502 | |||
| 503 | static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type) | ||
| 504 | { | ||
| 505 | struct curseg_info *curseg = CURSEG_I(sbi, type); | ||
| 506 | return curseg->next_blkoff; | ||
| 507 | } | ||
| 508 | |||
| 509 | static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno) | ||
| 510 | { | ||
| 511 | unsigned int end_segno = SM_I(sbi)->segment_count - 1; | ||
| 512 | BUG_ON(segno > end_segno); | ||
| 513 | } | ||
| 514 | |||
| 515 | /* | ||
| 516 | * This function is used for only debugging. | ||
| 517 | * NOTE: In future, we have to remove this function. | ||
| 518 | */ | ||
| 519 | static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr) | ||
| 520 | { | ||
| 521 | struct f2fs_sm_info *sm_info = SM_I(sbi); | ||
| 522 | block_t total_blks = sm_info->segment_count << sbi->log_blocks_per_seg; | ||
| 523 | block_t start_addr = sm_info->seg0_blkaddr; | ||
| 524 | block_t end_addr = start_addr + total_blks - 1; | ||
| 525 | BUG_ON(blk_addr < start_addr); | ||
| 526 | BUG_ON(blk_addr > end_addr); | ||
| 527 | } | ||
| 528 | |||
| 529 | /* | ||
| 530 | * Summary block is always treated as invalid block | ||
| 531 | */ | ||
| 532 | static inline void check_block_count(struct f2fs_sb_info *sbi, | ||
| 533 | int segno, struct f2fs_sit_entry *raw_sit) | ||
| 534 | { | ||
| 535 | struct f2fs_sm_info *sm_info = SM_I(sbi); | ||
| 536 | unsigned int end_segno = sm_info->segment_count - 1; | ||
| 537 | int valid_blocks = 0; | ||
| 538 | int i; | ||
| 539 | |||
| 540 | /* check segment usage */ | ||
| 541 | BUG_ON(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg); | ||
| 542 | |||
| 543 | /* check boundary of a given segment number */ | ||
| 544 | BUG_ON(segno > end_segno); | ||
| 545 | |||
| 546 | /* check bitmap with valid block count */ | ||
| 547 | for (i = 0; i < sbi->blocks_per_seg; i++) | ||
| 548 | if (f2fs_test_bit(i, raw_sit->valid_map)) | ||
| 549 | valid_blocks++; | ||
| 550 | BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks); | ||
| 551 | } | ||
| 552 | |||
| 553 | static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi, | ||
| 554 | unsigned int start) | ||
| 555 | { | ||
| 556 | struct sit_info *sit_i = SIT_I(sbi); | ||
| 557 | unsigned int offset = SIT_BLOCK_OFFSET(sit_i, start); | ||
| 558 | block_t blk_addr = sit_i->sit_base_addr + offset; | ||
| 559 | |||
| 560 | check_seg_range(sbi, start); | ||
| 561 | |||
| 562 | /* calculate sit block address */ | ||
| 563 | if (f2fs_test_bit(offset, sit_i->sit_bitmap)) | ||
| 564 | blk_addr += sit_i->sit_blocks; | ||
| 565 | |||
| 566 | return blk_addr; | ||
| 567 | } | ||
| 568 | |||
| 569 | static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi, | ||
| 570 | pgoff_t block_addr) | ||
| 571 | { | ||
| 572 | struct sit_info *sit_i = SIT_I(sbi); | ||
| 573 | block_addr -= sit_i->sit_base_addr; | ||
| 574 | if (block_addr < sit_i->sit_blocks) | ||
| 575 | block_addr += sit_i->sit_blocks; | ||
| 576 | else | ||
| 577 | block_addr -= sit_i->sit_blocks; | ||
| 578 | |||
| 579 | return block_addr + sit_i->sit_base_addr; | ||
| 580 | } | ||
| 581 | |||
| 582 | static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start) | ||
| 583 | { | ||
| 584 | unsigned int block_off = SIT_BLOCK_OFFSET(sit_i, start); | ||
| 585 | |||
| 586 | if (f2fs_test_bit(block_off, sit_i->sit_bitmap)) | ||
| 587 | f2fs_clear_bit(block_off, sit_i->sit_bitmap); | ||
| 588 | else | ||
| 589 | f2fs_set_bit(block_off, sit_i->sit_bitmap); | ||
| 590 | } | ||
| 591 | |||
| 592 | static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi) | ||
| 593 | { | ||
| 594 | struct sit_info *sit_i = SIT_I(sbi); | ||
| 595 | return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec - | ||
| 596 | sit_i->mounted_time; | ||
| 597 | } | ||
| 598 | |||
| 599 | static inline void set_summary(struct f2fs_summary *sum, nid_t nid, | ||
| 600 | unsigned int ofs_in_node, unsigned char version) | ||
| 601 | { | ||
| 602 | sum->nid = cpu_to_le32(nid); | ||
| 603 | sum->ofs_in_node = cpu_to_le16(ofs_in_node); | ||
| 604 | sum->version = version; | ||
| 605 | } | ||
| 606 | |||
| 607 | static inline block_t start_sum_block(struct f2fs_sb_info *sbi) | ||
| 608 | { | ||
| 609 | return __start_cp_addr(sbi) + | ||
| 610 | le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); | ||
| 611 | } | ||
| 612 | |||
| 613 | static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type) | ||
| 614 | { | ||
| 615 | return __start_cp_addr(sbi) + | ||
| 616 | le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count) | ||
| 617 | - (base + 1) + type; | ||
| 618 | } | ||
diff --git a/fs/f2fs/super.c b/fs/f2fs/super.c new file mode 100644 index 000000000000..13867322cf5a --- /dev/null +++ b/fs/f2fs/super.c | |||
| @@ -0,0 +1,657 @@ | |||
| 1 | /* | ||
| 2 | * fs/f2fs/super.c | ||
| 3 | * | ||
| 4 | * Copyright (c) 2012 Samsung Electronics Co., Ltd. | ||
| 5 | * http://www.samsung.com/ | ||
| 6 | * | ||
| 7 | * This program is free software; you can redistribute it and/or modify | ||
| 8 | * it under the terms of the GNU General Public License version 2 as | ||
| 9 | * published by the Free Software Foundation. | ||
| 10 | */ | ||
| 11 | #include <linux/module.h> | ||
| 12 | #include <linux/init.h> | ||
| 13 | #include <linux/fs.h> | ||
| 14 | #include <linux/statfs.h> | ||
| 15 | #include <linux/proc_fs.h> | ||
| 16 | #include <linux/buffer_head.h> | ||
| 17 | #include <linux/backing-dev.h> | ||
| 18 | #include <linux/kthread.h> | ||
| 19 | #include <linux/parser.h> | ||
| 20 | #include <linux/mount.h> | ||
| 21 | #include <linux/seq_file.h> | ||
| 22 | #include <linux/random.h> | ||
| 23 | #include <linux/exportfs.h> | ||
| 24 | #include <linux/f2fs_fs.h> | ||
| 25 | |||
| 26 | #include "f2fs.h" | ||
| 27 | #include "node.h" | ||
| 28 | #include "xattr.h" | ||
| 29 | |||
| 30 | static struct kmem_cache *f2fs_inode_cachep; | ||
| 31 | |||
| 32 | enum { | ||
| 33 | Opt_gc_background_off, | ||
| 34 | Opt_disable_roll_forward, | ||
| 35 | Opt_discard, | ||
| 36 | Opt_noheap, | ||
| 37 | Opt_nouser_xattr, | ||
| 38 | Opt_noacl, | ||
| 39 | Opt_active_logs, | ||
| 40 | Opt_disable_ext_identify, | ||
| 41 | Opt_err, | ||
| 42 | }; | ||
| 43 | |||
| 44 | static match_table_t f2fs_tokens = { | ||
| 45 | {Opt_gc_background_off, "background_gc_off"}, | ||
| 46 | {Opt_disable_roll_forward, "disable_roll_forward"}, | ||
| 47 | {Opt_discard, "discard"}, | ||
| 48 | {Opt_noheap, "no_heap"}, | ||
| 49 | {Opt_nouser_xattr, "nouser_xattr"}, | ||
| 50 | {Opt_noacl, "noacl"}, | ||
| 51 | {Opt_active_logs, "active_logs=%u"}, | ||
| 52 | {Opt_disable_ext_identify, "disable_ext_identify"}, | ||
| 53 | {Opt_err, NULL}, | ||
| 54 | }; | ||
| 55 | |||
| 56 | static void init_once(void *foo) | ||
| 57 | { | ||
| 58 | struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo; | ||
| 59 | |||
| 60 | inode_init_once(&fi->vfs_inode); | ||
| 61 | } | ||
| 62 | |||
| 63 | static struct inode *f2fs_alloc_inode(struct super_block *sb) | ||
| 64 | { | ||
| 65 | struct f2fs_inode_info *fi; | ||
| 66 | |||
| 67 | fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_NOFS | __GFP_ZERO); | ||
| 68 | if (!fi) | ||
| 69 | return NULL; | ||
| 70 | |||
| 71 | init_once((void *) fi); | ||
| 72 | |||
| 73 | /* Initilize f2fs-specific inode info */ | ||
| 74 | fi->vfs_inode.i_version = 1; | ||
| 75 | atomic_set(&fi->dirty_dents, 0); | ||
| 76 | fi->i_current_depth = 1; | ||
| 77 | fi->i_advise = 0; | ||
| 78 | rwlock_init(&fi->ext.ext_lock); | ||
| 79 | |||
| 80 | set_inode_flag(fi, FI_NEW_INODE); | ||
| 81 | |||
| 82 | return &fi->vfs_inode; | ||
| 83 | } | ||
| 84 | |||
| 85 | static void f2fs_i_callback(struct rcu_head *head) | ||
| 86 | { | ||
| 87 | struct inode *inode = container_of(head, struct inode, i_rcu); | ||
| 88 | kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode)); | ||
| 89 | } | ||
| 90 | |||
| 91 | static void f2fs_destroy_inode(struct inode *inode) | ||
| 92 | { | ||
| 93 | call_rcu(&inode->i_rcu, f2fs_i_callback); | ||
| 94 | } | ||
| 95 | |||
| 96 | static void f2fs_put_super(struct super_block *sb) | ||
| 97 | { | ||
| 98 | struct f2fs_sb_info *sbi = F2FS_SB(sb); | ||
| 99 | |||
| 100 | f2fs_destroy_stats(sbi); | ||
| 101 | stop_gc_thread(sbi); | ||
| 102 | |||
| 103 | write_checkpoint(sbi, false, true); | ||
| 104 | |||
| 105 | iput(sbi->node_inode); | ||
| 106 | iput(sbi->meta_inode); | ||
| 107 | |||
| 108 | /* destroy f2fs internal modules */ | ||
| 109 | destroy_node_manager(sbi); | ||
| 110 | destroy_segment_manager(sbi); | ||
| 111 | |||
| 112 | kfree(sbi->ckpt); | ||
| 113 | |||
| 114 | sb->s_fs_info = NULL; | ||
| 115 | brelse(sbi->raw_super_buf); | ||
| 116 | kfree(sbi); | ||
| 117 | } | ||
| 118 | |||
| 119 | int f2fs_sync_fs(struct super_block *sb, int sync) | ||
| 120 | { | ||
| 121 | struct f2fs_sb_info *sbi = F2FS_SB(sb); | ||
| 122 | int ret = 0; | ||
| 123 | |||
| 124 | if (!sbi->s_dirty && !get_pages(sbi, F2FS_DIRTY_NODES)) | ||
| 125 | return 0; | ||
| 126 | |||
| 127 | if (sync) | ||
| 128 | write_checkpoint(sbi, false, false); | ||
| 129 | |||
| 130 | return ret; | ||
| 131 | } | ||
| 132 | |||
| 133 | static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf) | ||
| 134 | { | ||
| 135 | struct super_block *sb = dentry->d_sb; | ||
| 136 | struct f2fs_sb_info *sbi = F2FS_SB(sb); | ||
| 137 | u64 id = huge_encode_dev(sb->s_bdev->bd_dev); | ||
| 138 | block_t total_count, user_block_count, start_count, ovp_count; | ||
| 139 | |||
| 140 | total_count = le64_to_cpu(sbi->raw_super->block_count); | ||
| 141 | user_block_count = sbi->user_block_count; | ||
| 142 | start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr); | ||
| 143 | ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg; | ||
| 144 | buf->f_type = F2FS_SUPER_MAGIC; | ||
| 145 | buf->f_bsize = sbi->blocksize; | ||
| 146 | |||
| 147 | buf->f_blocks = total_count - start_count; | ||
| 148 | buf->f_bfree = buf->f_blocks - valid_user_blocks(sbi) - ovp_count; | ||
| 149 | buf->f_bavail = user_block_count - valid_user_blocks(sbi); | ||
| 150 | |||
| 151 | buf->f_files = valid_inode_count(sbi); | ||
| 152 | buf->f_ffree = sbi->total_node_count - valid_node_count(sbi); | ||
| 153 | |||
| 154 | buf->f_namelen = F2FS_MAX_NAME_LEN; | ||
| 155 | buf->f_fsid.val[0] = (u32)id; | ||
| 156 | buf->f_fsid.val[1] = (u32)(id >> 32); | ||
| 157 | |||
| 158 | return 0; | ||
| 159 | } | ||
| 160 | |||
| 161 | static int f2fs_show_options(struct seq_file *seq, struct dentry *root) | ||
| 162 | { | ||
| 163 | struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb); | ||
| 164 | |||
| 165 | if (test_opt(sbi, BG_GC)) | ||
| 166 | seq_puts(seq, ",background_gc_on"); | ||
| 167 | else | ||
| 168 | seq_puts(seq, ",background_gc_off"); | ||
| 169 | if (test_opt(sbi, DISABLE_ROLL_FORWARD)) | ||
| 170 | seq_puts(seq, ",disable_roll_forward"); | ||
| 171 | if (test_opt(sbi, DISCARD)) | ||
| 172 | seq_puts(seq, ",discard"); | ||
| 173 | if (test_opt(sbi, NOHEAP)) | ||
| 174 | seq_puts(seq, ",no_heap_alloc"); | ||
| 175 | #ifdef CONFIG_F2FS_FS_XATTR | ||
| 176 | if (test_opt(sbi, XATTR_USER)) | ||
| 177 | seq_puts(seq, ",user_xattr"); | ||
| 178 | else | ||
| 179 | seq_puts(seq, ",nouser_xattr"); | ||
| 180 | #endif | ||
| 181 | #ifdef CONFIG_F2FS_FS_POSIX_ACL | ||
| 182 | if (test_opt(sbi, POSIX_ACL)) | ||
| 183 | seq_puts(seq, ",acl"); | ||
| 184 | else | ||
| 185 | seq_puts(seq, ",noacl"); | ||
| 186 | #endif | ||
| 187 | if (test_opt(sbi, DISABLE_EXT_IDENTIFY)) | ||
| 188 | seq_puts(seq, ",disable_ext_indentify"); | ||
| 189 | |||
| 190 | seq_printf(seq, ",active_logs=%u", sbi->active_logs); | ||
| 191 | |||
| 192 | return 0; | ||
| 193 | } | ||
| 194 | |||
| 195 | static struct super_operations f2fs_sops = { | ||
| 196 | .alloc_inode = f2fs_alloc_inode, | ||
| 197 | .destroy_inode = f2fs_destroy_inode, | ||
| 198 | .write_inode = f2fs_write_inode, | ||
| 199 | .show_options = f2fs_show_options, | ||
| 200 | .evict_inode = f2fs_evict_inode, | ||
| 201 | .put_super = f2fs_put_super, | ||
| 202 | .sync_fs = f2fs_sync_fs, | ||
| 203 | .statfs = f2fs_statfs, | ||
| 204 | }; | ||
| 205 | |||
| 206 | static struct inode *f2fs_nfs_get_inode(struct super_block *sb, | ||
| 207 | u64 ino, u32 generation) | ||
| 208 | { | ||
| 209 | struct f2fs_sb_info *sbi = F2FS_SB(sb); | ||
| 210 | struct inode *inode; | ||
| 211 | |||
| 212 | if (ino < F2FS_ROOT_INO(sbi)) | ||
| 213 | return ERR_PTR(-ESTALE); | ||
| 214 | |||
| 215 | /* | ||
| 216 | * f2fs_iget isn't quite right if the inode is currently unallocated! | ||
| 217 | * However f2fs_iget currently does appropriate checks to handle stale | ||
| 218 | * inodes so everything is OK. | ||
| 219 | */ | ||
| 220 | inode = f2fs_iget(sb, ino); | ||
| 221 | if (IS_ERR(inode)) | ||
| 222 | return ERR_CAST(inode); | ||
| 223 | if (generation && inode->i_generation != generation) { | ||
| 224 | /* we didn't find the right inode.. */ | ||
| 225 | iput(inode); | ||
| 226 | return ERR_PTR(-ESTALE); | ||
| 227 | } | ||
| 228 | return inode; | ||
| 229 | } | ||
| 230 | |||
| 231 | static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid, | ||
| 232 | int fh_len, int fh_type) | ||
| 233 | { | ||
| 234 | return generic_fh_to_dentry(sb, fid, fh_len, fh_type, | ||
| 235 | f2fs_nfs_get_inode); | ||
| 236 | } | ||
| 237 | |||
| 238 | static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid, | ||
| 239 | int fh_len, int fh_type) | ||
| 240 | { | ||
| 241 | return generic_fh_to_parent(sb, fid, fh_len, fh_type, | ||
| 242 | f2fs_nfs_get_inode); | ||
| 243 | } | ||
| 244 | |||
| 245 | static const struct export_operations f2fs_export_ops = { | ||
| 246 | .fh_to_dentry = f2fs_fh_to_dentry, | ||
| 247 | .fh_to_parent = f2fs_fh_to_parent, | ||
| 248 | .get_parent = f2fs_get_parent, | ||
| 249 | }; | ||
| 250 | |||
| 251 | static int parse_options(struct f2fs_sb_info *sbi, char *options) | ||
| 252 | { | ||
| 253 | substring_t args[MAX_OPT_ARGS]; | ||
| 254 | char *p; | ||
| 255 | int arg = 0; | ||
| 256 | |||
| 257 | if (!options) | ||
| 258 | return 0; | ||
| 259 | |||
| 260 | while ((p = strsep(&options, ",")) != NULL) { | ||
| 261 | int token; | ||
| 262 | if (!*p) | ||
| 263 | continue; | ||
| 264 | /* | ||
| 265 | * Initialize args struct so we know whether arg was | ||
| 266 | * found; some options take optional arguments. | ||
| 267 | */ | ||
| 268 | args[0].to = args[0].from = NULL; | ||
| 269 | token = match_token(p, f2fs_tokens, args); | ||
| 270 | |||
| 271 | switch (token) { | ||
| 272 | case Opt_gc_background_off: | ||
| 273 | clear_opt(sbi, BG_GC); | ||
| 274 | break; | ||
| 275 | case Opt_disable_roll_forward: | ||
| 276 | set_opt(sbi, DISABLE_ROLL_FORWARD); | ||
| 277 | break; | ||
| 278 | case Opt_discard: | ||
| 279 | set_opt(sbi, DISCARD); | ||
| 280 | break; | ||
| 281 | case Opt_noheap: | ||
| 282 | set_opt(sbi, NOHEAP); | ||
| 283 | break; | ||
| 284 | #ifdef CONFIG_F2FS_FS_XATTR | ||
| 285 | case Opt_nouser_xattr: | ||
| 286 | clear_opt(sbi, XATTR_USER); | ||
| 287 | break; | ||
| 288 | #else | ||
| 289 | case Opt_nouser_xattr: | ||
| 290 | pr_info("nouser_xattr options not supported\n"); | ||
| 291 | break; | ||
| 292 | #endif | ||
| 293 | #ifdef CONFIG_F2FS_FS_POSIX_ACL | ||
| 294 | case Opt_noacl: | ||
| 295 | clear_opt(sbi, POSIX_ACL); | ||
| 296 | break; | ||
| 297 | #else | ||
| 298 | case Opt_noacl: | ||
| 299 | pr_info("noacl options not supported\n"); | ||
| 300 | break; | ||
| 301 | #endif | ||
| 302 | case Opt_active_logs: | ||
| 303 | if (args->from && match_int(args, &arg)) | ||
| 304 | return -EINVAL; | ||
| 305 | if (arg != 2 && arg != 4 && arg != 6) | ||
| 306 | return -EINVAL; | ||
| 307 | sbi->active_logs = arg; | ||
| 308 | break; | ||
| 309 | case Opt_disable_ext_identify: | ||
| 310 | set_opt(sbi, DISABLE_EXT_IDENTIFY); | ||
| 311 | break; | ||
| 312 | default: | ||
| 313 | pr_err("Unrecognized mount option \"%s\" or missing value\n", | ||
| 314 | p); | ||
| 315 | return -EINVAL; | ||
| 316 | } | ||
| 317 | } | ||
| 318 | return 0; | ||
| 319 | } | ||
| 320 | |||
| 321 | static loff_t max_file_size(unsigned bits) | ||
| 322 | { | ||
| 323 | loff_t result = ADDRS_PER_INODE; | ||
| 324 | loff_t leaf_count = ADDRS_PER_BLOCK; | ||
| 325 | |||
| 326 | /* two direct node blocks */ | ||
| 327 | result += (leaf_count * 2); | ||
| 328 | |||
| 329 | /* two indirect node blocks */ | ||
| 330 | leaf_count *= NIDS_PER_BLOCK; | ||
| 331 | result += (leaf_count * 2); | ||
| 332 | |||
| 333 | /* one double indirect node block */ | ||
| 334 | leaf_count *= NIDS_PER_BLOCK; | ||
| 335 | result += leaf_count; | ||
| 336 | |||
| 337 | result <<= bits; | ||
| 338 | return result; | ||
| 339 | } | ||
| 340 | |||
| 341 | static int sanity_check_raw_super(struct f2fs_super_block *raw_super) | ||
| 342 | { | ||
| 343 | unsigned int blocksize; | ||
| 344 | |||
| 345 | if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) | ||
| 346 | return 1; | ||
| 347 | |||
| 348 | /* Currently, support only 4KB block size */ | ||
| 349 | blocksize = 1 << le32_to_cpu(raw_super->log_blocksize); | ||
| 350 | if (blocksize != PAGE_CACHE_SIZE) | ||
| 351 | return 1; | ||
| 352 | if (le32_to_cpu(raw_super->log_sectorsize) != | ||
| 353 | F2FS_LOG_SECTOR_SIZE) | ||
| 354 | return 1; | ||
| 355 | if (le32_to_cpu(raw_super->log_sectors_per_block) != | ||
| 356 | F2FS_LOG_SECTORS_PER_BLOCK) | ||
| 357 | return 1; | ||
| 358 | return 0; | ||
| 359 | } | ||
| 360 | |||
| 361 | static int sanity_check_ckpt(struct f2fs_super_block *raw_super, | ||
| 362 | struct f2fs_checkpoint *ckpt) | ||
| 363 | { | ||
| 364 | unsigned int total, fsmeta; | ||
| 365 | |||
| 366 | total = le32_to_cpu(raw_super->segment_count); | ||
| 367 | fsmeta = le32_to_cpu(raw_super->segment_count_ckpt); | ||
| 368 | fsmeta += le32_to_cpu(raw_super->segment_count_sit); | ||
| 369 | fsmeta += le32_to_cpu(raw_super->segment_count_nat); | ||
| 370 | fsmeta += le32_to_cpu(ckpt->rsvd_segment_count); | ||
| 371 | fsmeta += le32_to_cpu(raw_super->segment_count_ssa); | ||
| 372 | |||
| 373 | if (fsmeta >= total) | ||
| 374 | return 1; | ||
| 375 | return 0; | ||
| 376 | } | ||
| 377 | |||
| 378 | static void init_sb_info(struct f2fs_sb_info *sbi) | ||
| 379 | { | ||
| 380 | struct f2fs_super_block *raw_super = sbi->raw_super; | ||
| 381 | int i; | ||
| 382 | |||
| 383 | sbi->log_sectors_per_block = | ||
| 384 | le32_to_cpu(raw_super->log_sectors_per_block); | ||
| 385 | sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize); | ||
| 386 | sbi->blocksize = 1 << sbi->log_blocksize; | ||
| 387 | sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); | ||
| 388 | sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg; | ||
| 389 | sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); | ||
| 390 | sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); | ||
| 391 | sbi->total_sections = le32_to_cpu(raw_super->section_count); | ||
| 392 | sbi->total_node_count = | ||
| 393 | (le32_to_cpu(raw_super->segment_count_nat) / 2) | ||
| 394 | * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK; | ||
| 395 | sbi->root_ino_num = le32_to_cpu(raw_super->root_ino); | ||
| 396 | sbi->node_ino_num = le32_to_cpu(raw_super->node_ino); | ||
| 397 | sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino); | ||
| 398 | |||
| 399 | for (i = 0; i < NR_COUNT_TYPE; i++) | ||
| 400 | atomic_set(&sbi->nr_pages[i], 0); | ||
| 401 | } | ||
| 402 | |||
| 403 | static int f2fs_fill_super(struct super_block *sb, void *data, int silent) | ||
| 404 | { | ||
| 405 | struct f2fs_sb_info *sbi; | ||
| 406 | struct f2fs_super_block *raw_super; | ||
| 407 | struct buffer_head *raw_super_buf; | ||
| 408 | struct inode *root; | ||
| 409 | long err = -EINVAL; | ||
| 410 | int i; | ||
| 411 | |||
| 412 | /* allocate memory for f2fs-specific super block info */ | ||
| 413 | sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL); | ||
| 414 | if (!sbi) | ||
| 415 | return -ENOMEM; | ||
| 416 | |||
| 417 | /* set a temporary block size */ | ||
| 418 | if (!sb_set_blocksize(sb, F2FS_BLKSIZE)) | ||
| 419 | goto free_sbi; | ||
| 420 | |||
| 421 | /* read f2fs raw super block */ | ||
| 422 | raw_super_buf = sb_bread(sb, 0); | ||
| 423 | if (!raw_super_buf) { | ||
| 424 | err = -EIO; | ||
| 425 | goto free_sbi; | ||
| 426 | } | ||
| 427 | raw_super = (struct f2fs_super_block *) | ||
| 428 | ((char *)raw_super_buf->b_data + F2FS_SUPER_OFFSET); | ||
| 429 | |||
| 430 | /* init some FS parameters */ | ||
| 431 | sbi->active_logs = NR_CURSEG_TYPE; | ||
| 432 | |||
| 433 | set_opt(sbi, BG_GC); | ||
| 434 | |||
| 435 | #ifdef CONFIG_F2FS_FS_XATTR | ||
| 436 | set_opt(sbi, XATTR_USER); | ||
| 437 | #endif | ||
| 438 | #ifdef CONFIG_F2FS_FS_POSIX_ACL | ||
| 439 | set_opt(sbi, POSIX_ACL); | ||
| 440 | #endif | ||
| 441 | /* parse mount options */ | ||
| 442 | if (parse_options(sbi, (char *)data)) | ||
| 443 | goto free_sb_buf; | ||
| 444 | |||
| 445 | /* sanity checking of raw super */ | ||
| 446 | if (sanity_check_raw_super(raw_super)) | ||
| 447 | goto free_sb_buf; | ||
| 448 | |||
| 449 | sb->s_maxbytes = max_file_size(le32_to_cpu(raw_super->log_blocksize)); | ||
| 450 | sb->s_max_links = F2FS_LINK_MAX; | ||
| 451 | get_random_bytes(&sbi->s_next_generation, sizeof(u32)); | ||
| 452 | |||
| 453 | sb->s_op = &f2fs_sops; | ||
| 454 | sb->s_xattr = f2fs_xattr_handlers; | ||
| 455 | sb->s_export_op = &f2fs_export_ops; | ||
| 456 | sb->s_magic = F2FS_SUPER_MAGIC; | ||
| 457 | sb->s_fs_info = sbi; | ||
| 458 | sb->s_time_gran = 1; | ||
| 459 | sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | | ||
| 460 | (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0); | ||
| 461 | memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid)); | ||
| 462 | |||
| 463 | /* init f2fs-specific super block info */ | ||
| 464 | sbi->sb = sb; | ||
| 465 | sbi->raw_super = raw_super; | ||
| 466 | sbi->raw_super_buf = raw_super_buf; | ||
| 467 | mutex_init(&sbi->gc_mutex); | ||
| 468 | mutex_init(&sbi->write_inode); | ||
| 469 | mutex_init(&sbi->writepages); | ||
| 470 | mutex_init(&sbi->cp_mutex); | ||
| 471 | for (i = 0; i < NR_LOCK_TYPE; i++) | ||
| 472 | mutex_init(&sbi->fs_lock[i]); | ||
| 473 | sbi->por_doing = 0; | ||
| 474 | spin_lock_init(&sbi->stat_lock); | ||
| 475 | init_rwsem(&sbi->bio_sem); | ||
| 476 | init_sb_info(sbi); | ||
| 477 | |||
| 478 | /* get an inode for meta space */ | ||
| 479 | sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi)); | ||
| 480 | if (IS_ERR(sbi->meta_inode)) { | ||
| 481 | err = PTR_ERR(sbi->meta_inode); | ||
| 482 | goto free_sb_buf; | ||
| 483 | } | ||
| 484 | |||
| 485 | err = get_valid_checkpoint(sbi); | ||
| 486 | if (err) | ||
| 487 | goto free_meta_inode; | ||
| 488 | |||
| 489 | /* sanity checking of checkpoint */ | ||
| 490 | err = -EINVAL; | ||
| 491 | if (sanity_check_ckpt(raw_super, sbi->ckpt)) | ||
| 492 | goto free_cp; | ||
| 493 | |||
| 494 | sbi->total_valid_node_count = | ||
| 495 | le32_to_cpu(sbi->ckpt->valid_node_count); | ||
| 496 | sbi->total_valid_inode_count = | ||
| 497 | le32_to_cpu(sbi->ckpt->valid_inode_count); | ||
| 498 | sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count); | ||
| 499 | sbi->total_valid_block_count = | ||
| 500 | le64_to_cpu(sbi->ckpt->valid_block_count); | ||
| 501 | sbi->last_valid_block_count = sbi->total_valid_block_count; | ||
| 502 | sbi->alloc_valid_block_count = 0; | ||
| 503 | INIT_LIST_HEAD(&sbi->dir_inode_list); | ||
| 504 | spin_lock_init(&sbi->dir_inode_lock); | ||
| 505 | |||
| 506 | /* init super block */ | ||
| 507 | if (!sb_set_blocksize(sb, sbi->blocksize)) | ||
| 508 | goto free_cp; | ||
| 509 | |||
| 510 | init_orphan_info(sbi); | ||
| 511 | |||
| 512 | /* setup f2fs internal modules */ | ||
| 513 | err = build_segment_manager(sbi); | ||
| 514 | if (err) | ||
| 515 | goto free_sm; | ||
| 516 | err = build_node_manager(sbi); | ||
| 517 | if (err) | ||
| 518 | goto free_nm; | ||
| 519 | |||
| 520 | build_gc_manager(sbi); | ||
| 521 | |||
| 522 | /* get an inode for node space */ | ||
| 523 | sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi)); | ||
| 524 | if (IS_ERR(sbi->node_inode)) { | ||
| 525 | err = PTR_ERR(sbi->node_inode); | ||
| 526 | goto free_nm; | ||
| 527 | } | ||
| 528 | |||
| 529 | /* if there are nt orphan nodes free them */ | ||
| 530 | err = -EINVAL; | ||
| 531 | if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG) && | ||
| 532 | recover_orphan_inodes(sbi)) | ||
| 533 | goto free_node_inode; | ||
| 534 | |||
| 535 | /* read root inode and dentry */ | ||
| 536 | root = f2fs_iget(sb, F2FS_ROOT_INO(sbi)); | ||
| 537 | if (IS_ERR(root)) { | ||
| 538 | err = PTR_ERR(root); | ||
| 539 | goto free_node_inode; | ||
| 540 | } | ||
| 541 | if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) | ||
| 542 | goto free_root_inode; | ||
| 543 | |||
| 544 | sb->s_root = d_make_root(root); /* allocate root dentry */ | ||
| 545 | if (!sb->s_root) { | ||
| 546 | err = -ENOMEM; | ||
| 547 | goto free_root_inode; | ||
| 548 | } | ||
| 549 | |||
| 550 | /* recover fsynced data */ | ||
| 551 | if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG) && | ||
| 552 | !test_opt(sbi, DISABLE_ROLL_FORWARD)) | ||
| 553 | recover_fsync_data(sbi); | ||
| 554 | |||
| 555 | /* After POR, we can run background GC thread */ | ||
| 556 | err = start_gc_thread(sbi); | ||
| 557 | if (err) | ||
| 558 | goto fail; | ||
| 559 | |||
| 560 | err = f2fs_build_stats(sbi); | ||
| 561 | if (err) | ||
| 562 | goto fail; | ||
| 563 | |||
| 564 | return 0; | ||
| 565 | fail: | ||
| 566 | stop_gc_thread(sbi); | ||
| 567 | free_root_inode: | ||
| 568 | dput(sb->s_root); | ||
| 569 | sb->s_root = NULL; | ||
| 570 | free_node_inode: | ||
| 571 | iput(sbi->node_inode); | ||
| 572 | free_nm: | ||
| 573 | destroy_node_manager(sbi); | ||
| 574 | free_sm: | ||
| 575 | destroy_segment_manager(sbi); | ||
| 576 | free_cp: | ||
| 577 | kfree(sbi->ckpt); | ||
| 578 | free_meta_inode: | ||
| 579 | make_bad_inode(sbi->meta_inode); | ||
| 580 | iput(sbi->meta_inode); | ||
| 581 | free_sb_buf: | ||
| 582 | brelse(raw_super_buf); | ||
| 583 | free_sbi: | ||
| 584 | kfree(sbi); | ||
| 585 | return err; | ||
| 586 | } | ||
| 587 | |||
| 588 | static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags, | ||
| 589 | const char *dev_name, void *data) | ||
| 590 | { | ||
| 591 | return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super); | ||
| 592 | } | ||
| 593 | |||
| 594 | static struct file_system_type f2fs_fs_type = { | ||
| 595 | .owner = THIS_MODULE, | ||
| 596 | .name = "f2fs", | ||
| 597 | .mount = f2fs_mount, | ||
| 598 | .kill_sb = kill_block_super, | ||
| 599 | .fs_flags = FS_REQUIRES_DEV, | ||
| 600 | }; | ||
| 601 | |||
| 602 | static int init_inodecache(void) | ||
| 603 | { | ||
| 604 | f2fs_inode_cachep = f2fs_kmem_cache_create("f2fs_inode_cache", | ||
| 605 | sizeof(struct f2fs_inode_info), NULL); | ||
| 606 | if (f2fs_inode_cachep == NULL) | ||
| 607 | return -ENOMEM; | ||
| 608 | return 0; | ||
| 609 | } | ||
| 610 | |||
| 611 | static void destroy_inodecache(void) | ||
| 612 | { | ||
| 613 | /* | ||
| 614 | * Make sure all delayed rcu free inodes are flushed before we | ||
| 615 | * destroy cache. | ||
| 616 | */ | ||
| 617 | rcu_barrier(); | ||
| 618 | kmem_cache_destroy(f2fs_inode_cachep); | ||
| 619 | } | ||
| 620 | |||
| 621 | static int __init init_f2fs_fs(void) | ||
| 622 | { | ||
| 623 | int err; | ||
| 624 | |||
| 625 | err = init_inodecache(); | ||
| 626 | if (err) | ||
| 627 | goto fail; | ||
| 628 | err = create_node_manager_caches(); | ||
| 629 | if (err) | ||
| 630 | goto fail; | ||
| 631 | err = create_gc_caches(); | ||
| 632 | if (err) | ||
| 633 | goto fail; | ||
| 634 | err = create_checkpoint_caches(); | ||
| 635 | if (err) | ||
| 636 | goto fail; | ||
| 637 | return register_filesystem(&f2fs_fs_type); | ||
| 638 | fail: | ||
| 639 | return err; | ||
| 640 | } | ||
| 641 | |||
| 642 | static void __exit exit_f2fs_fs(void) | ||
| 643 | { | ||
| 644 | destroy_root_stats(); | ||
| 645 | unregister_filesystem(&f2fs_fs_type); | ||
| 646 | destroy_checkpoint_caches(); | ||
| 647 | destroy_gc_caches(); | ||
| 648 | destroy_node_manager_caches(); | ||
| 649 | destroy_inodecache(); | ||
| 650 | } | ||
| 651 | |||
| 652 | module_init(init_f2fs_fs) | ||
| 653 | module_exit(exit_f2fs_fs) | ||
| 654 | |||
| 655 | MODULE_AUTHOR("Samsung Electronics's Praesto Team"); | ||
| 656 | MODULE_DESCRIPTION("Flash Friendly File System"); | ||
| 657 | MODULE_LICENSE("GPL"); | ||
diff --git a/fs/f2fs/xattr.c b/fs/f2fs/xattr.c new file mode 100644 index 000000000000..7d52e8dc0c59 --- /dev/null +++ b/fs/f2fs/xattr.c | |||
| @@ -0,0 +1,440 @@ | |||
| 1 | /* | ||
| 2 | * fs/f2fs/xattr.c | ||
| 3 | * | ||
| 4 | * Copyright (c) 2012 Samsung Electronics Co., Ltd. | ||
| 5 | * http://www.samsung.com/ | ||
| 6 | * | ||
| 7 | * Portions of this code from linux/fs/ext2/xattr.c | ||
| 8 | * | ||
| 9 | * Copyright (C) 2001-2003 Andreas Gruenbacher <agruen@suse.de> | ||
| 10 | * | ||
| 11 | * Fix by Harrison Xing <harrison@mountainviewdata.com>. | ||
| 12 | * Extended attributes for symlinks and special files added per | ||
| 13 | * suggestion of Luka Renko <luka.renko@hermes.si>. | ||
| 14 | * xattr consolidation Copyright (c) 2004 James Morris <jmorris@redhat.com>, | ||
| 15 | * Red Hat Inc. | ||
| 16 | * | ||
| 17 | * This program is free software; you can redistribute it and/or modify | ||
| 18 | * it under the terms of the GNU General Public License version 2 as | ||
| 19 | * published by the Free Software Foundation. | ||
| 20 | */ | ||
| 21 | #include <linux/rwsem.h> | ||
| 22 | #include <linux/f2fs_fs.h> | ||
| 23 | #include "f2fs.h" | ||
| 24 | #include "xattr.h" | ||
| 25 | |||
| 26 | static size_t f2fs_xattr_generic_list(struct dentry *dentry, char *list, | ||
| 27 | size_t list_size, const char *name, size_t name_len, int type) | ||
| 28 | { | ||
| 29 | struct f2fs_sb_info *sbi = F2FS_SB(dentry->d_sb); | ||
| 30 | int total_len, prefix_len = 0; | ||
| 31 | const char *prefix = NULL; | ||
| 32 | |||
| 33 | switch (type) { | ||
| 34 | case F2FS_XATTR_INDEX_USER: | ||
| 35 | if (!test_opt(sbi, XATTR_USER)) | ||
| 36 | return -EOPNOTSUPP; | ||
| 37 | prefix = XATTR_USER_PREFIX; | ||
| 38 | prefix_len = XATTR_USER_PREFIX_LEN; | ||
| 39 | break; | ||
| 40 | case F2FS_XATTR_INDEX_TRUSTED: | ||
| 41 | if (!capable(CAP_SYS_ADMIN)) | ||
| 42 | return -EPERM; | ||
| 43 | prefix = XATTR_TRUSTED_PREFIX; | ||
| 44 | prefix_len = XATTR_TRUSTED_PREFIX_LEN; | ||
| 45 | break; | ||
| 46 | default: | ||
| 47 | return -EINVAL; | ||
| 48 | } | ||
| 49 | |||
| 50 | total_len = prefix_len + name_len + 1; | ||
| 51 | if (list && total_len <= list_size) { | ||
| 52 | memcpy(list, prefix, prefix_len); | ||
| 53 | memcpy(list+prefix_len, name, name_len); | ||
| 54 | list[prefix_len + name_len] = '\0'; | ||
| 55 | } | ||
| 56 | return total_len; | ||
| 57 | } | ||
| 58 | |||
| 59 | static int f2fs_xattr_generic_get(struct dentry *dentry, const char *name, | ||
| 60 | void *buffer, size_t size, int type) | ||
| 61 | { | ||
| 62 | struct f2fs_sb_info *sbi = F2FS_SB(dentry->d_sb); | ||
| 63 | |||
| 64 | switch (type) { | ||
| 65 | case F2FS_XATTR_INDEX_USER: | ||
| 66 | if (!test_opt(sbi, XATTR_USER)) | ||
| 67 | return -EOPNOTSUPP; | ||
| 68 | break; | ||
| 69 | case F2FS_XATTR_INDEX_TRUSTED: | ||
| 70 | if (!capable(CAP_SYS_ADMIN)) | ||
| 71 | return -EPERM; | ||
| 72 | break; | ||
| 73 | default: | ||
| 74 | return -EINVAL; | ||
| 75 | } | ||
| 76 | if (strcmp(name, "") == 0) | ||
| 77 | return -EINVAL; | ||
| 78 | return f2fs_getxattr(dentry->d_inode, type, name, | ||
| 79 | buffer, size); | ||
| 80 | } | ||
| 81 | |||
| 82 | static int f2fs_xattr_generic_set(struct dentry *dentry, const char *name, | ||
| 83 | const void *value, size_t size, int flags, int type) | ||
| 84 | { | ||
| 85 | struct f2fs_sb_info *sbi = F2FS_SB(dentry->d_sb); | ||
| 86 | |||
| 87 | switch (type) { | ||
| 88 | case F2FS_XATTR_INDEX_USER: | ||
| 89 | if (!test_opt(sbi, XATTR_USER)) | ||
| 90 | return -EOPNOTSUPP; | ||
| 91 | break; | ||
| 92 | case F2FS_XATTR_INDEX_TRUSTED: | ||
| 93 | if (!capable(CAP_SYS_ADMIN)) | ||
| 94 | return -EPERM; | ||
| 95 | break; | ||
| 96 | default: | ||
| 97 | return -EINVAL; | ||
| 98 | } | ||
| 99 | if (strcmp(name, "") == 0) | ||
| 100 | return -EINVAL; | ||
| 101 | |||
| 102 | return f2fs_setxattr(dentry->d_inode, type, name, value, size); | ||
| 103 | } | ||
| 104 | |||
| 105 | static size_t f2fs_xattr_advise_list(struct dentry *dentry, char *list, | ||
| 106 | size_t list_size, const char *name, size_t name_len, int type) | ||
| 107 | { | ||
| 108 | const char *xname = F2FS_SYSTEM_ADVISE_PREFIX; | ||
| 109 | size_t size; | ||
| 110 | |||
| 111 | if (type != F2FS_XATTR_INDEX_ADVISE) | ||
| 112 | return 0; | ||
| 113 | |||
| 114 | size = strlen(xname) + 1; | ||
| 115 | if (list && size <= list_size) | ||
| 116 | memcpy(list, xname, size); | ||
| 117 | return size; | ||
| 118 | } | ||
| 119 | |||
| 120 | static int f2fs_xattr_advise_get(struct dentry *dentry, const char *name, | ||
| 121 | void *buffer, size_t size, int type) | ||
| 122 | { | ||
| 123 | struct inode *inode = dentry->d_inode; | ||
| 124 | |||
| 125 | if (strcmp(name, "") != 0) | ||
| 126 | return -EINVAL; | ||
| 127 | |||
| 128 | *((char *)buffer) = F2FS_I(inode)->i_advise; | ||
| 129 | return sizeof(char); | ||
| 130 | } | ||
| 131 | |||
| 132 | static int f2fs_xattr_advise_set(struct dentry *dentry, const char *name, | ||
| 133 | const void *value, size_t size, int flags, int type) | ||
| 134 | { | ||
| 135 | struct inode *inode = dentry->d_inode; | ||
| 136 | |||
| 137 | if (strcmp(name, "") != 0) | ||
| 138 | return -EINVAL; | ||
| 139 | if (!inode_owner_or_capable(inode)) | ||
| 140 | return -EPERM; | ||
| 141 | if (value == NULL) | ||
| 142 | return -EINVAL; | ||
| 143 | |||
| 144 | F2FS_I(inode)->i_advise |= *(char *)value; | ||
| 145 | return 0; | ||
| 146 | } | ||
| 147 | |||
| 148 | const struct xattr_handler f2fs_xattr_user_handler = { | ||
| 149 | .prefix = XATTR_USER_PREFIX, | ||
| 150 | .flags = F2FS_XATTR_INDEX_USER, | ||
| 151 | .list = f2fs_xattr_generic_list, | ||
| 152 | .get = f2fs_xattr_generic_get, | ||
| 153 | .set = f2fs_xattr_generic_set, | ||
| 154 | }; | ||
| 155 | |||
| 156 | const struct xattr_handler f2fs_xattr_trusted_handler = { | ||
| 157 | .prefix = XATTR_TRUSTED_PREFIX, | ||
| 158 | .flags = F2FS_XATTR_INDEX_TRUSTED, | ||
| 159 | .list = f2fs_xattr_generic_list, | ||
| 160 | .get = f2fs_xattr_generic_get, | ||
| 161 | .set = f2fs_xattr_generic_set, | ||
| 162 | }; | ||
| 163 | |||
| 164 | const struct xattr_handler f2fs_xattr_advise_handler = { | ||
| 165 | .prefix = F2FS_SYSTEM_ADVISE_PREFIX, | ||
| 166 | .flags = F2FS_XATTR_INDEX_ADVISE, | ||
| 167 | .list = f2fs_xattr_advise_list, | ||
| 168 | .get = f2fs_xattr_advise_get, | ||
| 169 | .set = f2fs_xattr_advise_set, | ||
| 170 | }; | ||
| 171 | |||
| 172 | static const struct xattr_handler *f2fs_xattr_handler_map[] = { | ||
| 173 | [F2FS_XATTR_INDEX_USER] = &f2fs_xattr_user_handler, | ||
| 174 | #ifdef CONFIG_F2FS_FS_POSIX_ACL | ||
| 175 | [F2FS_XATTR_INDEX_POSIX_ACL_ACCESS] = &f2fs_xattr_acl_access_handler, | ||
| 176 | [F2FS_XATTR_INDEX_POSIX_ACL_DEFAULT] = &f2fs_xattr_acl_default_handler, | ||
| 177 | #endif | ||
| 178 | [F2FS_XATTR_INDEX_TRUSTED] = &f2fs_xattr_trusted_handler, | ||
| 179 | [F2FS_XATTR_INDEX_ADVISE] = &f2fs_xattr_advise_handler, | ||
| 180 | }; | ||
| 181 | |||
| 182 | const struct xattr_handler *f2fs_xattr_handlers[] = { | ||
| 183 | &f2fs_xattr_user_handler, | ||
| 184 | #ifdef CONFIG_F2FS_FS_POSIX_ACL | ||
| 185 | &f2fs_xattr_acl_access_handler, | ||
| 186 | &f2fs_xattr_acl_default_handler, | ||
| 187 | #endif | ||
| 188 | &f2fs_xattr_trusted_handler, | ||
| 189 | &f2fs_xattr_advise_handler, | ||
| 190 | NULL, | ||
| 191 | }; | ||
| 192 | |||
| 193 | static inline const struct xattr_handler *f2fs_xattr_handler(int name_index) | ||
| 194 | { | ||
| 195 | const struct xattr_handler *handler = NULL; | ||
| 196 | |||
| 197 | if (name_index > 0 && name_index < ARRAY_SIZE(f2fs_xattr_handler_map)) | ||
| 198 | handler = f2fs_xattr_handler_map[name_index]; | ||
| 199 | return handler; | ||
| 200 | } | ||
| 201 | |||
| 202 | int f2fs_getxattr(struct inode *inode, int name_index, const char *name, | ||
| 203 | void *buffer, size_t buffer_size) | ||
| 204 | { | ||
| 205 | struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); | ||
| 206 | struct f2fs_inode_info *fi = F2FS_I(inode); | ||
| 207 | struct f2fs_xattr_entry *entry; | ||
| 208 | struct page *page; | ||
| 209 | void *base_addr; | ||
| 210 | int error = 0, found = 0; | ||
| 211 | int value_len, name_len; | ||
| 212 | |||
| 213 | if (name == NULL) | ||
| 214 | return -EINVAL; | ||
| 215 | name_len = strlen(name); | ||
| 216 | |||
| 217 | if (!fi->i_xattr_nid) | ||
| 218 | return -ENODATA; | ||
| 219 | |||
| 220 | page = get_node_page(sbi, fi->i_xattr_nid); | ||
| 221 | base_addr = page_address(page); | ||
| 222 | |||
| 223 | list_for_each_xattr(entry, base_addr) { | ||
| 224 | if (entry->e_name_index != name_index) | ||
| 225 | continue; | ||
| 226 | if (entry->e_name_len != name_len) | ||
| 227 | continue; | ||
| 228 | if (!memcmp(entry->e_name, name, name_len)) { | ||
| 229 | found = 1; | ||
| 230 | break; | ||
| 231 | } | ||
| 232 | } | ||
| 233 | if (!found) { | ||
| 234 | error = -ENODATA; | ||
| 235 | goto cleanup; | ||
| 236 | } | ||
| 237 | |||
| 238 | value_len = le16_to_cpu(entry->e_value_size); | ||
| 239 | |||
| 240 | if (buffer && value_len > buffer_size) { | ||
| 241 | error = -ERANGE; | ||
| 242 | goto cleanup; | ||
| 243 | } | ||
| 244 | |||
| 245 | if (buffer) { | ||
| 246 | char *pval = entry->e_name + entry->e_name_len; | ||
| 247 | memcpy(buffer, pval, value_len); | ||
| 248 | } | ||
| 249 | error = value_len; | ||
| 250 | |||
| 251 | cleanup: | ||
| 252 | f2fs_put_page(page, 1); | ||
| 253 | return error; | ||
| 254 | } | ||
| 255 | |||
| 256 | ssize_t f2fs_listxattr(struct dentry *dentry, char *buffer, size_t buffer_size) | ||
| 257 | { | ||
| 258 | struct inode *inode = dentry->d_inode; | ||
| 259 | struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); | ||
| 260 | struct f2fs_inode_info *fi = F2FS_I(inode); | ||
| 261 | struct f2fs_xattr_entry *entry; | ||
| 262 | struct page *page; | ||
| 263 | void *base_addr; | ||
| 264 | int error = 0; | ||
| 265 | size_t rest = buffer_size; | ||
| 266 | |||
| 267 | if (!fi->i_xattr_nid) | ||
| 268 | return 0; | ||
| 269 | |||
| 270 | page = get_node_page(sbi, fi->i_xattr_nid); | ||
| 271 | base_addr = page_address(page); | ||
| 272 | |||
| 273 | list_for_each_xattr(entry, base_addr) { | ||
| 274 | const struct xattr_handler *handler = | ||
| 275 | f2fs_xattr_handler(entry->e_name_index); | ||
| 276 | size_t size; | ||
| 277 | |||
| 278 | if (!handler) | ||
| 279 | continue; | ||
| 280 | |||
| 281 | size = handler->list(dentry, buffer, rest, entry->e_name, | ||
| 282 | entry->e_name_len, handler->flags); | ||
| 283 | if (buffer && size > rest) { | ||
| 284 | error = -ERANGE; | ||
| 285 | goto cleanup; | ||
| 286 | } | ||
| 287 | |||
| 288 | if (buffer) | ||
| 289 | buffer += size; | ||
| 290 | rest -= size; | ||
| 291 | } | ||
| 292 | error = buffer_size - rest; | ||
| 293 | cleanup: | ||
| 294 | f2fs_put_page(page, 1); | ||
| 295 | return error; | ||
| 296 | } | ||
| 297 | |||
| 298 | int f2fs_setxattr(struct inode *inode, int name_index, const char *name, | ||
| 299 | const void *value, size_t value_len) | ||
| 300 | { | ||
| 301 | struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); | ||
| 302 | struct f2fs_inode_info *fi = F2FS_I(inode); | ||
| 303 | struct f2fs_xattr_header *header = NULL; | ||
| 304 | struct f2fs_xattr_entry *here, *last; | ||
| 305 | struct page *page; | ||
| 306 | void *base_addr; | ||
| 307 | int error, found, free, name_len, newsize; | ||
| 308 | char *pval; | ||
| 309 | |||
| 310 | if (name == NULL) | ||
| 311 | return -EINVAL; | ||
| 312 | name_len = strlen(name); | ||
| 313 | |||
| 314 | if (value == NULL) | ||
| 315 | value_len = 0; | ||
| 316 | |||
| 317 | if (name_len > 255 || value_len > MAX_VALUE_LEN) | ||
| 318 | return -ERANGE; | ||
| 319 | |||
| 320 | mutex_lock_op(sbi, NODE_NEW); | ||
| 321 | if (!fi->i_xattr_nid) { | ||
| 322 | /* Allocate new attribute block */ | ||
| 323 | struct dnode_of_data dn; | ||
| 324 | |||
| 325 | if (!alloc_nid(sbi, &fi->i_xattr_nid)) { | ||
| 326 | mutex_unlock_op(sbi, NODE_NEW); | ||
| 327 | return -ENOSPC; | ||
| 328 | } | ||
| 329 | set_new_dnode(&dn, inode, NULL, NULL, fi->i_xattr_nid); | ||
| 330 | mark_inode_dirty(inode); | ||
| 331 | |||
| 332 | page = new_node_page(&dn, XATTR_NODE_OFFSET); | ||
| 333 | if (IS_ERR(page)) { | ||
| 334 | alloc_nid_failed(sbi, fi->i_xattr_nid); | ||
| 335 | fi->i_xattr_nid = 0; | ||
| 336 | mutex_unlock_op(sbi, NODE_NEW); | ||
| 337 | return PTR_ERR(page); | ||
| 338 | } | ||
| 339 | |||
| 340 | alloc_nid_done(sbi, fi->i_xattr_nid); | ||
| 341 | base_addr = page_address(page); | ||
| 342 | header = XATTR_HDR(base_addr); | ||
| 343 | header->h_magic = cpu_to_le32(F2FS_XATTR_MAGIC); | ||
| 344 | header->h_refcount = cpu_to_le32(1); | ||
| 345 | } else { | ||
| 346 | /* The inode already has an extended attribute block. */ | ||
| 347 | page = get_node_page(sbi, fi->i_xattr_nid); | ||
| 348 | if (IS_ERR(page)) { | ||
| 349 | mutex_unlock_op(sbi, NODE_NEW); | ||
| 350 | return PTR_ERR(page); | ||
| 351 | } | ||
| 352 | |||
| 353 | base_addr = page_address(page); | ||
| 354 | header = XATTR_HDR(base_addr); | ||
| 355 | } | ||
| 356 | |||
| 357 | if (le32_to_cpu(header->h_magic) != F2FS_XATTR_MAGIC) { | ||
| 358 | error = -EIO; | ||
| 359 | goto cleanup; | ||
| 360 | } | ||
| 361 | |||
| 362 | /* find entry with wanted name. */ | ||
| 363 | found = 0; | ||
| 364 | list_for_each_xattr(here, base_addr) { | ||
| 365 | if (here->e_name_index != name_index) | ||
| 366 | continue; | ||
| 367 | if (here->e_name_len != name_len) | ||
| 368 | continue; | ||
| 369 | if (!memcmp(here->e_name, name, name_len)) { | ||
| 370 | found = 1; | ||
| 371 | break; | ||
| 372 | } | ||
| 373 | } | ||
| 374 | |||
| 375 | last = here; | ||
| 376 | |||
| 377 | while (!IS_XATTR_LAST_ENTRY(last)) | ||
| 378 | last = XATTR_NEXT_ENTRY(last); | ||
| 379 | |||
| 380 | newsize = XATTR_ALIGN(sizeof(struct f2fs_xattr_entry) + | ||
| 381 | name_len + value_len); | ||
| 382 | |||
| 383 | /* 1. Check space */ | ||
| 384 | if (value) { | ||
| 385 | /* If value is NULL, it is remove operation. | ||
| 386 | * In case of update operation, we caculate free. | ||
| 387 | */ | ||
| 388 | free = MIN_OFFSET - ((char *)last - (char *)header); | ||
| 389 | if (found) | ||
| 390 | free = free - ENTRY_SIZE(here); | ||
| 391 | |||
| 392 | if (free < newsize) { | ||
| 393 | error = -ENOSPC; | ||
| 394 | goto cleanup; | ||
| 395 | } | ||
| 396 | } | ||
| 397 | |||
| 398 | /* 2. Remove old entry */ | ||
| 399 | if (found) { | ||
| 400 | /* If entry is found, remove old entry. | ||
| 401 | * If not found, remove operation is not needed. | ||
| 402 | */ | ||
| 403 | struct f2fs_xattr_entry *next = XATTR_NEXT_ENTRY(here); | ||
| 404 | int oldsize = ENTRY_SIZE(here); | ||
| 405 | |||
| 406 | memmove(here, next, (char *)last - (char *)next); | ||
| 407 | last = (struct f2fs_xattr_entry *)((char *)last - oldsize); | ||
| 408 | memset(last, 0, oldsize); | ||
| 409 | } | ||
| 410 | |||
| 411 | /* 3. Write new entry */ | ||
| 412 | if (value) { | ||
| 413 | /* Before we come here, old entry is removed. | ||
| 414 | * We just write new entry. */ | ||
| 415 | memset(last, 0, newsize); | ||
| 416 | last->e_name_index = name_index; | ||
| 417 | last->e_name_len = name_len; | ||
| 418 | memcpy(last->e_name, name, name_len); | ||
| 419 | pval = last->e_name + name_len; | ||
| 420 | memcpy(pval, value, value_len); | ||
| 421 | last->e_value_size = cpu_to_le16(value_len); | ||
| 422 | } | ||
| 423 | |||
| 424 | set_page_dirty(page); | ||
| 425 | f2fs_put_page(page, 1); | ||
| 426 | |||
| 427 | if (is_inode_flag_set(fi, FI_ACL_MODE)) { | ||
| 428 | inode->i_mode = fi->i_acl_mode; | ||
| 429 | inode->i_ctime = CURRENT_TIME; | ||
| 430 | clear_inode_flag(fi, FI_ACL_MODE); | ||
| 431 | } | ||
| 432 | f2fs_write_inode(inode, NULL); | ||
| 433 | mutex_unlock_op(sbi, NODE_NEW); | ||
| 434 | |||
| 435 | return 0; | ||
| 436 | cleanup: | ||
| 437 | f2fs_put_page(page, 1); | ||
| 438 | mutex_unlock_op(sbi, NODE_NEW); | ||
| 439 | return error; | ||
| 440 | } | ||
diff --git a/fs/f2fs/xattr.h b/fs/f2fs/xattr.h new file mode 100644 index 000000000000..49c9558305e3 --- /dev/null +++ b/fs/f2fs/xattr.h | |||
| @@ -0,0 +1,145 @@ | |||
| 1 | /* | ||
| 2 | * fs/f2fs/xattr.h | ||
| 3 | * | ||
| 4 | * Copyright (c) 2012 Samsung Electronics Co., Ltd. | ||
| 5 | * http://www.samsung.com/ | ||
| 6 | * | ||
| 7 | * Portions of this code from linux/fs/ext2/xattr.h | ||
| 8 | * | ||
| 9 | * On-disk format of extended attributes for the ext2 filesystem. | ||
| 10 | * | ||
| 11 | * (C) 2001 Andreas Gruenbacher, <a.gruenbacher@computer.org> | ||
| 12 | * | ||
| 13 | * This program is free software; you can redistribute it and/or modify | ||
| 14 | * it under the terms of the GNU General Public License version 2 as | ||
| 15 | * published by the Free Software Foundation. | ||
| 16 | */ | ||
| 17 | #ifndef __F2FS_XATTR_H__ | ||
| 18 | #define __F2FS_XATTR_H__ | ||
| 19 | |||
| 20 | #include <linux/init.h> | ||
| 21 | #include <linux/xattr.h> | ||
| 22 | |||
| 23 | /* Magic value in attribute blocks */ | ||
| 24 | #define F2FS_XATTR_MAGIC 0xF2F52011 | ||
| 25 | |||
| 26 | /* Maximum number of references to one attribute block */ | ||
| 27 | #define F2FS_XATTR_REFCOUNT_MAX 1024 | ||
| 28 | |||
| 29 | /* Name indexes */ | ||
| 30 | #define F2FS_SYSTEM_ADVISE_PREFIX "system.advise" | ||
| 31 | #define F2FS_XATTR_INDEX_USER 1 | ||
| 32 | #define F2FS_XATTR_INDEX_POSIX_ACL_ACCESS 2 | ||
| 33 | #define F2FS_XATTR_INDEX_POSIX_ACL_DEFAULT 3 | ||
| 34 | #define F2FS_XATTR_INDEX_TRUSTED 4 | ||
| 35 | #define F2FS_XATTR_INDEX_LUSTRE 5 | ||
| 36 | #define F2FS_XATTR_INDEX_SECURITY 6 | ||
| 37 | #define F2FS_XATTR_INDEX_ADVISE 7 | ||
| 38 | |||
| 39 | struct f2fs_xattr_header { | ||
| 40 | __le32 h_magic; /* magic number for identification */ | ||
| 41 | __le32 h_refcount; /* reference count */ | ||
| 42 | __u32 h_reserved[4]; /* zero right now */ | ||
| 43 | }; | ||
| 44 | |||
| 45 | struct f2fs_xattr_entry { | ||
| 46 | __u8 e_name_index; | ||
| 47 | __u8 e_name_len; | ||
| 48 | __le16 e_value_size; /* size of attribute value */ | ||
| 49 | char e_name[0]; /* attribute name */ | ||
| 50 | }; | ||
| 51 | |||
| 52 | #define XATTR_HDR(ptr) ((struct f2fs_xattr_header *)(ptr)) | ||
| 53 | #define XATTR_ENTRY(ptr) ((struct f2fs_xattr_entry *)(ptr)) | ||
| 54 | #define XATTR_FIRST_ENTRY(ptr) (XATTR_ENTRY(XATTR_HDR(ptr)+1)) | ||
| 55 | #define XATTR_ROUND (3) | ||
| 56 | |||
| 57 | #define XATTR_ALIGN(size) ((size + XATTR_ROUND) & ~XATTR_ROUND) | ||
| 58 | |||
| 59 | #define ENTRY_SIZE(entry) (XATTR_ALIGN(sizeof(struct f2fs_xattr_entry) + \ | ||
| 60 | entry->e_name_len + le16_to_cpu(entry->e_value_size))) | ||
| 61 | |||
| 62 | #define XATTR_NEXT_ENTRY(entry) ((struct f2fs_xattr_entry *)((char *)(entry) +\ | ||
| 63 | ENTRY_SIZE(entry))) | ||
| 64 | |||
| 65 | #define IS_XATTR_LAST_ENTRY(entry) (*(__u32 *)(entry) == 0) | ||
| 66 | |||
| 67 | #define list_for_each_xattr(entry, addr) \ | ||
| 68 | for (entry = XATTR_FIRST_ENTRY(addr);\ | ||
| 69 | !IS_XATTR_LAST_ENTRY(entry);\ | ||
| 70 | entry = XATTR_NEXT_ENTRY(entry)) | ||
| 71 | |||
| 72 | |||
| 73 | #define MIN_OFFSET XATTR_ALIGN(PAGE_SIZE - \ | ||
| 74 | sizeof(struct node_footer) - \ | ||
| 75 | sizeof(__u32)) | ||
| 76 | |||
| 77 | #define MAX_VALUE_LEN (MIN_OFFSET - sizeof(struct f2fs_xattr_header) - \ | ||
| 78 | sizeof(struct f2fs_xattr_entry)) | ||
| 79 | |||
| 80 | /* | ||
| 81 | * On-disk structure of f2fs_xattr | ||
| 82 | * We use only 1 block for xattr. | ||
| 83 | * | ||
| 84 | * +--------------------+ | ||
| 85 | * | f2fs_xattr_header | | ||
| 86 | * | | | ||
| 87 | * +--------------------+ | ||
| 88 | * | f2fs_xattr_entry | | ||
| 89 | * | .e_name_index = 1 | | ||
| 90 | * | .e_name_len = 3 | | ||
| 91 | * | .e_value_size = 14 | | ||
| 92 | * | .e_name = "foo" | | ||
| 93 | * | "value_of_xattr" |<- value_offs = e_name + e_name_len | ||
| 94 | * +--------------------+ | ||
| 95 | * | f2fs_xattr_entry | | ||
| 96 | * | .e_name_index = 4 | | ||
| 97 | * | .e_name = "bar" | | ||
| 98 | * +--------------------+ | ||
| 99 | * | | | ||
| 100 | * | Free | | ||
| 101 | * | | | ||
| 102 | * +--------------------+<- MIN_OFFSET | ||
| 103 | * | node_footer | | ||
| 104 | * | (nid, ino, offset) | | ||
| 105 | * +--------------------+ | ||
| 106 | * | ||
| 107 | **/ | ||
| 108 | |||
| 109 | #ifdef CONFIG_F2FS_FS_XATTR | ||
| 110 | extern const struct xattr_handler f2fs_xattr_user_handler; | ||
| 111 | extern const struct xattr_handler f2fs_xattr_trusted_handler; | ||
| 112 | extern const struct xattr_handler f2fs_xattr_acl_access_handler; | ||
| 113 | extern const struct xattr_handler f2fs_xattr_acl_default_handler; | ||
| 114 | extern const struct xattr_handler f2fs_xattr_advise_handler; | ||
| 115 | |||
| 116 | extern const struct xattr_handler *f2fs_xattr_handlers[]; | ||
| 117 | |||
| 118 | extern int f2fs_setxattr(struct inode *inode, int name_index, const char *name, | ||
| 119 | const void *value, size_t value_len); | ||
| 120 | extern int f2fs_getxattr(struct inode *inode, int name_index, const char *name, | ||
| 121 | void *buffer, size_t buffer_size); | ||
| 122 | extern ssize_t f2fs_listxattr(struct dentry *dentry, char *buffer, | ||
| 123 | size_t buffer_size); | ||
| 124 | |||
| 125 | #else | ||
| 126 | |||
| 127 | #define f2fs_xattr_handlers NULL | ||
| 128 | static inline int f2fs_setxattr(struct inode *inode, int name_index, | ||
| 129 | const char *name, const void *value, size_t value_len) | ||
| 130 | { | ||
| 131 | return -EOPNOTSUPP; | ||
| 132 | } | ||
| 133 | static inline int f2fs_getxattr(struct inode *inode, int name_index, | ||
| 134 | const char *name, void *buffer, size_t buffer_size) | ||
| 135 | { | ||
| 136 | return -EOPNOTSUPP; | ||
| 137 | } | ||
| 138 | static inline ssize_t f2fs_listxattr(struct dentry *dentry, char *buffer, | ||
| 139 | size_t buffer_size) | ||
| 140 | { | ||
| 141 | return -EOPNOTSUPP; | ||
| 142 | } | ||
| 143 | #endif | ||
| 144 | |||
| 145 | #endif /* __F2FS_XATTR_H__ */ | ||
