aboutsummaryrefslogtreecommitdiffstats
path: root/fs/f2fs/segment.c
diff options
context:
space:
mode:
Diffstat (limited to 'fs/f2fs/segment.c')
-rw-r--r--fs/f2fs/segment.c584
1 files changed, 380 insertions, 204 deletions
diff --git a/fs/f2fs/segment.c b/fs/f2fs/segment.c
index fa284d397199..7caac5f2ca9e 100644
--- a/fs/f2fs/segment.c
+++ b/fs/f2fs/segment.c
@@ -14,12 +14,163 @@
14#include <linux/blkdev.h> 14#include <linux/blkdev.h>
15#include <linux/prefetch.h> 15#include <linux/prefetch.h>
16#include <linux/vmalloc.h> 16#include <linux/vmalloc.h>
17#include <linux/swap.h>
17 18
18#include "f2fs.h" 19#include "f2fs.h"
19#include "segment.h" 20#include "segment.h"
20#include "node.h" 21#include "node.h"
21#include <trace/events/f2fs.h> 22#include <trace/events/f2fs.h>
22 23
24#define __reverse_ffz(x) __reverse_ffs(~(x))
25
26static struct kmem_cache *discard_entry_slab;
27
28/*
29 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
30 * MSB and LSB are reversed in a byte by f2fs_set_bit.
31 */
32static inline unsigned long __reverse_ffs(unsigned long word)
33{
34 int num = 0;
35
36#if BITS_PER_LONG == 64
37 if ((word & 0xffffffff) == 0) {
38 num += 32;
39 word >>= 32;
40 }
41#endif
42 if ((word & 0xffff) == 0) {
43 num += 16;
44 word >>= 16;
45 }
46 if ((word & 0xff) == 0) {
47 num += 8;
48 word >>= 8;
49 }
50 if ((word & 0xf0) == 0)
51 num += 4;
52 else
53 word >>= 4;
54 if ((word & 0xc) == 0)
55 num += 2;
56 else
57 word >>= 2;
58 if ((word & 0x2) == 0)
59 num += 1;
60 return num;
61}
62
63/*
64 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c becasue
65 * f2fs_set_bit makes MSB and LSB reversed in a byte.
66 * Example:
67 * LSB <--> MSB
68 * f2fs_set_bit(0, bitmap) => 0000 0001
69 * f2fs_set_bit(7, bitmap) => 1000 0000
70 */
71static unsigned long __find_rev_next_bit(const unsigned long *addr,
72 unsigned long size, unsigned long offset)
73{
74 const unsigned long *p = addr + BIT_WORD(offset);
75 unsigned long result = offset & ~(BITS_PER_LONG - 1);
76 unsigned long tmp;
77 unsigned long mask, submask;
78 unsigned long quot, rest;
79
80 if (offset >= size)
81 return size;
82
83 size -= result;
84 offset %= BITS_PER_LONG;
85 if (!offset)
86 goto aligned;
87
88 tmp = *(p++);
89 quot = (offset >> 3) << 3;
90 rest = offset & 0x7;
91 mask = ~0UL << quot;
92 submask = (unsigned char)(0xff << rest) >> rest;
93 submask <<= quot;
94 mask &= submask;
95 tmp &= mask;
96 if (size < BITS_PER_LONG)
97 goto found_first;
98 if (tmp)
99 goto found_middle;
100
101 size -= BITS_PER_LONG;
102 result += BITS_PER_LONG;
103aligned:
104 while (size & ~(BITS_PER_LONG-1)) {
105 tmp = *(p++);
106 if (tmp)
107 goto found_middle;
108 result += BITS_PER_LONG;
109 size -= BITS_PER_LONG;
110 }
111 if (!size)
112 return result;
113 tmp = *p;
114found_first:
115 tmp &= (~0UL >> (BITS_PER_LONG - size));
116 if (tmp == 0UL) /* Are any bits set? */
117 return result + size; /* Nope. */
118found_middle:
119 return result + __reverse_ffs(tmp);
120}
121
122static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
123 unsigned long size, unsigned long offset)
124{
125 const unsigned long *p = addr + BIT_WORD(offset);
126 unsigned long result = offset & ~(BITS_PER_LONG - 1);
127 unsigned long tmp;
128 unsigned long mask, submask;
129 unsigned long quot, rest;
130
131 if (offset >= size)
132 return size;
133
134 size -= result;
135 offset %= BITS_PER_LONG;
136 if (!offset)
137 goto aligned;
138
139 tmp = *(p++);
140 quot = (offset >> 3) << 3;
141 rest = offset & 0x7;
142 mask = ~(~0UL << quot);
143 submask = (unsigned char)~((unsigned char)(0xff << rest) >> rest);
144 submask <<= quot;
145 mask += submask;
146 tmp |= mask;
147 if (size < BITS_PER_LONG)
148 goto found_first;
149 if (~tmp)
150 goto found_middle;
151
152 size -= BITS_PER_LONG;
153 result += BITS_PER_LONG;
154aligned:
155 while (size & ~(BITS_PER_LONG - 1)) {
156 tmp = *(p++);
157 if (~tmp)
158 goto found_middle;
159 result += BITS_PER_LONG;
160 size -= BITS_PER_LONG;
161 }
162 if (!size)
163 return result;
164 tmp = *p;
165
166found_first:
167 tmp |= ~0UL << size;
168 if (tmp == ~0UL) /* Are any bits zero? */
169 return result + size; /* Nope. */
170found_middle:
171 return result + __reverse_ffz(tmp);
172}
173
23/* 174/*
24 * This function balances dirty node and dentry pages. 175 * This function balances dirty node and dentry pages.
25 * In addition, it controls garbage collection. 176 * In addition, it controls garbage collection.
@@ -116,6 +267,56 @@ static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
116 mutex_unlock(&dirty_i->seglist_lock); 267 mutex_unlock(&dirty_i->seglist_lock);
117} 268}
118 269
270static void f2fs_issue_discard(struct f2fs_sb_info *sbi,
271 block_t blkstart, block_t blklen)
272{
273 sector_t start = SECTOR_FROM_BLOCK(sbi, blkstart);
274 sector_t len = SECTOR_FROM_BLOCK(sbi, blklen);
275 blkdev_issue_discard(sbi->sb->s_bdev, start, len, GFP_NOFS, 0);
276 trace_f2fs_issue_discard(sbi->sb, blkstart, blklen);
277}
278
279static void add_discard_addrs(struct f2fs_sb_info *sbi,
280 unsigned int segno, struct seg_entry *se)
281{
282 struct list_head *head = &SM_I(sbi)->discard_list;
283 struct discard_entry *new;
284 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
285 int max_blocks = sbi->blocks_per_seg;
286 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
287 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
288 unsigned long dmap[entries];
289 unsigned int start = 0, end = -1;
290 int i;
291
292 if (!test_opt(sbi, DISCARD))
293 return;
294
295 /* zero block will be discarded through the prefree list */
296 if (!se->valid_blocks || se->valid_blocks == max_blocks)
297 return;
298
299 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
300 for (i = 0; i < entries; i++)
301 dmap[i] = (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
302
303 while (SM_I(sbi)->nr_discards <= SM_I(sbi)->max_discards) {
304 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
305 if (start >= max_blocks)
306 break;
307
308 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
309
310 new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS);
311 INIT_LIST_HEAD(&new->list);
312 new->blkaddr = START_BLOCK(sbi, segno) + start;
313 new->len = end - start;
314
315 list_add_tail(&new->list, head);
316 SM_I(sbi)->nr_discards += end - start;
317 }
318}
319
119/* 320/*
120 * Should call clear_prefree_segments after checkpoint is done. 321 * Should call clear_prefree_segments after checkpoint is done.
121 */ 322 */
@@ -138,6 +339,9 @@ static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
138 339
139void clear_prefree_segments(struct f2fs_sb_info *sbi) 340void clear_prefree_segments(struct f2fs_sb_info *sbi)
140{ 341{
342 struct list_head *head = &(SM_I(sbi)->discard_list);
343 struct list_head *this, *next;
344 struct discard_entry *entry;
141 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 345 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
142 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE]; 346 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
143 unsigned int total_segs = TOTAL_SEGS(sbi); 347 unsigned int total_segs = TOTAL_SEGS(sbi);
@@ -160,14 +364,19 @@ void clear_prefree_segments(struct f2fs_sb_info *sbi)
160 if (!test_opt(sbi, DISCARD)) 364 if (!test_opt(sbi, DISCARD))
161 continue; 365 continue;
162 366
163 blkdev_issue_discard(sbi->sb->s_bdev, 367 f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
164 START_BLOCK(sbi, start) << 368 (end - start) << sbi->log_blocks_per_seg);
165 sbi->log_sectors_per_block,
166 (1 << (sbi->log_sectors_per_block +
167 sbi->log_blocks_per_seg)) * (end - start),
168 GFP_NOFS, 0);
169 } 369 }
170 mutex_unlock(&dirty_i->seglist_lock); 370 mutex_unlock(&dirty_i->seglist_lock);
371
372 /* send small discards */
373 list_for_each_safe(this, next, head) {
374 entry = list_entry(this, struct discard_entry, list);
375 f2fs_issue_discard(sbi, entry->blkaddr, entry->len);
376 list_del(&entry->list);
377 SM_I(sbi)->nr_discards -= entry->len;
378 kmem_cache_free(discard_entry_slab, entry);
379 }
171} 380}
172 381
173static void __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno) 382static void __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
@@ -459,13 +668,18 @@ static void __next_free_blkoff(struct f2fs_sb_info *sbi,
459 struct curseg_info *seg, block_t start) 668 struct curseg_info *seg, block_t start)
460{ 669{
461 struct seg_entry *se = get_seg_entry(sbi, seg->segno); 670 struct seg_entry *se = get_seg_entry(sbi, seg->segno);
462 block_t ofs; 671 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
463 for (ofs = start; ofs < sbi->blocks_per_seg; ofs++) { 672 unsigned long target_map[entries];
464 if (!f2fs_test_bit(ofs, se->ckpt_valid_map) 673 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
465 && !f2fs_test_bit(ofs, se->cur_valid_map)) 674 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
466 break; 675 int i, pos;
467 } 676
468 seg->next_blkoff = ofs; 677 for (i = 0; i < entries; i++)
678 target_map[i] = ckpt_map[i] | cur_map[i];
679
680 pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
681
682 seg->next_blkoff = pos;
469} 683}
470 684
471/* 685/*
@@ -573,148 +787,6 @@ static const struct segment_allocation default_salloc_ops = {
573 .allocate_segment = allocate_segment_by_default, 787 .allocate_segment = allocate_segment_by_default,
574}; 788};
575 789
576static void f2fs_end_io_write(struct bio *bio, int err)
577{
578 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
579 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
580 struct bio_private *p = bio->bi_private;
581
582 do {
583 struct page *page = bvec->bv_page;
584
585 if (--bvec >= bio->bi_io_vec)
586 prefetchw(&bvec->bv_page->flags);
587 if (!uptodate) {
588 SetPageError(page);
589 if (page->mapping)
590 set_bit(AS_EIO, &page->mapping->flags);
591 set_ckpt_flags(p->sbi->ckpt, CP_ERROR_FLAG);
592 p->sbi->sb->s_flags |= MS_RDONLY;
593 }
594 end_page_writeback(page);
595 dec_page_count(p->sbi, F2FS_WRITEBACK);
596 } while (bvec >= bio->bi_io_vec);
597
598 if (p->is_sync)
599 complete(p->wait);
600
601 if (!get_pages(p->sbi, F2FS_WRITEBACK) &&
602 !list_empty(&p->sbi->cp_wait.task_list))
603 wake_up(&p->sbi->cp_wait);
604
605 kfree(p);
606 bio_put(bio);
607}
608
609struct bio *f2fs_bio_alloc(struct block_device *bdev, int npages)
610{
611 struct bio *bio;
612
613 /* No failure on bio allocation */
614 bio = bio_alloc(GFP_NOIO, npages);
615 bio->bi_bdev = bdev;
616 bio->bi_private = NULL;
617
618 return bio;
619}
620
621static void do_submit_bio(struct f2fs_sb_info *sbi,
622 enum page_type type, bool sync)
623{
624 int rw = sync ? WRITE_SYNC : WRITE;
625 enum page_type btype = type > META ? META : type;
626
627 if (type >= META_FLUSH)
628 rw = WRITE_FLUSH_FUA;
629
630 if (btype == META)
631 rw |= REQ_META;
632
633 if (sbi->bio[btype]) {
634 struct bio_private *p = sbi->bio[btype]->bi_private;
635 p->sbi = sbi;
636 sbi->bio[btype]->bi_end_io = f2fs_end_io_write;
637
638 trace_f2fs_do_submit_bio(sbi->sb, btype, sync, sbi->bio[btype]);
639
640 if (type == META_FLUSH) {
641 DECLARE_COMPLETION_ONSTACK(wait);
642 p->is_sync = true;
643 p->wait = &wait;
644 submit_bio(rw, sbi->bio[btype]);
645 wait_for_completion(&wait);
646 } else {
647 p->is_sync = false;
648 submit_bio(rw, sbi->bio[btype]);
649 }
650 sbi->bio[btype] = NULL;
651 }
652}
653
654void f2fs_submit_bio(struct f2fs_sb_info *sbi, enum page_type type, bool sync)
655{
656 down_write(&sbi->bio_sem);
657 do_submit_bio(sbi, type, sync);
658 up_write(&sbi->bio_sem);
659}
660
661static void submit_write_page(struct f2fs_sb_info *sbi, struct page *page,
662 block_t blk_addr, enum page_type type)
663{
664 struct block_device *bdev = sbi->sb->s_bdev;
665 int bio_blocks;
666
667 verify_block_addr(sbi, blk_addr);
668
669 down_write(&sbi->bio_sem);
670
671 inc_page_count(sbi, F2FS_WRITEBACK);
672
673 if (sbi->bio[type] && sbi->last_block_in_bio[type] != blk_addr - 1)
674 do_submit_bio(sbi, type, false);
675alloc_new:
676 if (sbi->bio[type] == NULL) {
677 struct bio_private *priv;
678retry:
679 priv = kmalloc(sizeof(struct bio_private), GFP_NOFS);
680 if (!priv) {
681 cond_resched();
682 goto retry;
683 }
684
685 bio_blocks = MAX_BIO_BLOCKS(max_hw_blocks(sbi));
686 sbi->bio[type] = f2fs_bio_alloc(bdev, bio_blocks);
687 sbi->bio[type]->bi_sector = SECTOR_FROM_BLOCK(sbi, blk_addr);
688 sbi->bio[type]->bi_private = priv;
689 /*
690 * The end_io will be assigned at the sumbission phase.
691 * Until then, let bio_add_page() merge consecutive IOs as much
692 * as possible.
693 */
694 }
695
696 if (bio_add_page(sbi->bio[type], page, PAGE_CACHE_SIZE, 0) <
697 PAGE_CACHE_SIZE) {
698 do_submit_bio(sbi, type, false);
699 goto alloc_new;
700 }
701
702 sbi->last_block_in_bio[type] = blk_addr;
703
704 up_write(&sbi->bio_sem);
705 trace_f2fs_submit_write_page(page, blk_addr, type);
706}
707
708void f2fs_wait_on_page_writeback(struct page *page,
709 enum page_type type, bool sync)
710{
711 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
712 if (PageWriteback(page)) {
713 f2fs_submit_bio(sbi, type, sync);
714 wait_on_page_writeback(page);
715 }
716}
717
718static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type) 790static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
719{ 791{
720 struct curseg_info *curseg = CURSEG_I(sbi, type); 792 struct curseg_info *curseg = CURSEG_I(sbi, type);
@@ -782,16 +854,14 @@ static int __get_segment_type(struct page *page, enum page_type p_type)
782 return __get_segment_type_6(page, p_type); 854 return __get_segment_type_6(page, p_type);
783} 855}
784 856
785static void do_write_page(struct f2fs_sb_info *sbi, struct page *page, 857void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
786 block_t old_blkaddr, block_t *new_blkaddr, 858 block_t old_blkaddr, block_t *new_blkaddr,
787 struct f2fs_summary *sum, enum page_type p_type) 859 struct f2fs_summary *sum, int type)
788{ 860{
789 struct sit_info *sit_i = SIT_I(sbi); 861 struct sit_info *sit_i = SIT_I(sbi);
790 struct curseg_info *curseg; 862 struct curseg_info *curseg;
791 unsigned int old_cursegno; 863 unsigned int old_cursegno;
792 int type;
793 864
794 type = __get_segment_type(page, p_type);
795 curseg = CURSEG_I(sbi, type); 865 curseg = CURSEG_I(sbi, type);
796 866
797 mutex_lock(&curseg->curseg_mutex); 867 mutex_lock(&curseg->curseg_mutex);
@@ -824,49 +894,64 @@ static void do_write_page(struct f2fs_sb_info *sbi, struct page *page,
824 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); 894 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
825 mutex_unlock(&sit_i->sentry_lock); 895 mutex_unlock(&sit_i->sentry_lock);
826 896
827 if (p_type == NODE) 897 if (page && IS_NODESEG(type))
828 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg)); 898 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
829 899
830 /* writeout dirty page into bdev */
831 submit_write_page(sbi, page, *new_blkaddr, p_type);
832
833 mutex_unlock(&curseg->curseg_mutex); 900 mutex_unlock(&curseg->curseg_mutex);
834} 901}
835 902
903static void do_write_page(struct f2fs_sb_info *sbi, struct page *page,
904 block_t old_blkaddr, block_t *new_blkaddr,
905 struct f2fs_summary *sum, struct f2fs_io_info *fio)
906{
907 int type = __get_segment_type(page, fio->type);
908
909 allocate_data_block(sbi, page, old_blkaddr, new_blkaddr, sum, type);
910
911 /* writeout dirty page into bdev */
912 f2fs_submit_page_mbio(sbi, page, *new_blkaddr, fio);
913}
914
836void write_meta_page(struct f2fs_sb_info *sbi, struct page *page) 915void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
837{ 916{
917 struct f2fs_io_info fio = {
918 .type = META,
919 .rw = WRITE_SYNC | REQ_META | REQ_PRIO
920 };
921
838 set_page_writeback(page); 922 set_page_writeback(page);
839 submit_write_page(sbi, page, page->index, META); 923 f2fs_submit_page_mbio(sbi, page, page->index, &fio);
840} 924}
841 925
842void write_node_page(struct f2fs_sb_info *sbi, struct page *page, 926void write_node_page(struct f2fs_sb_info *sbi, struct page *page,
927 struct f2fs_io_info *fio,
843 unsigned int nid, block_t old_blkaddr, block_t *new_blkaddr) 928 unsigned int nid, block_t old_blkaddr, block_t *new_blkaddr)
844{ 929{
845 struct f2fs_summary sum; 930 struct f2fs_summary sum;
846 set_summary(&sum, nid, 0, 0); 931 set_summary(&sum, nid, 0, 0);
847 do_write_page(sbi, page, old_blkaddr, new_blkaddr, &sum, NODE); 932 do_write_page(sbi, page, old_blkaddr, new_blkaddr, &sum, fio);
848} 933}
849 934
850void write_data_page(struct inode *inode, struct page *page, 935void write_data_page(struct page *page, struct dnode_of_data *dn,
851 struct dnode_of_data *dn, block_t old_blkaddr, 936 block_t *new_blkaddr, struct f2fs_io_info *fio)
852 block_t *new_blkaddr)
853{ 937{
854 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 938 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
855 struct f2fs_summary sum; 939 struct f2fs_summary sum;
856 struct node_info ni; 940 struct node_info ni;
857 941
858 f2fs_bug_on(old_blkaddr == NULL_ADDR); 942 f2fs_bug_on(dn->data_blkaddr == NULL_ADDR);
859 get_node_info(sbi, dn->nid, &ni); 943 get_node_info(sbi, dn->nid, &ni);
860 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); 944 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
861 945
862 do_write_page(sbi, page, old_blkaddr, 946 do_write_page(sbi, page, dn->data_blkaddr, new_blkaddr, &sum, fio);
863 new_blkaddr, &sum, DATA);
864} 947}
865 948
866void rewrite_data_page(struct f2fs_sb_info *sbi, struct page *page, 949void rewrite_data_page(struct page *page, block_t old_blkaddr,
867 block_t old_blk_addr) 950 struct f2fs_io_info *fio)
868{ 951{
869 submit_write_page(sbi, page, old_blk_addr, DATA); 952 struct inode *inode = page->mapping->host;
953 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
954 f2fs_submit_page_mbio(sbi, page, old_blkaddr, fio);
870} 955}
871 956
872void recover_data_page(struct f2fs_sb_info *sbi, 957void recover_data_page(struct f2fs_sb_info *sbi,
@@ -925,6 +1010,10 @@ void rewrite_node_page(struct f2fs_sb_info *sbi,
925 unsigned int segno, old_cursegno; 1010 unsigned int segno, old_cursegno;
926 block_t next_blkaddr = next_blkaddr_of_node(page); 1011 block_t next_blkaddr = next_blkaddr_of_node(page);
927 unsigned int next_segno = GET_SEGNO(sbi, next_blkaddr); 1012 unsigned int next_segno = GET_SEGNO(sbi, next_blkaddr);
1013 struct f2fs_io_info fio = {
1014 .type = NODE,
1015 .rw = WRITE_SYNC,
1016 };
928 1017
929 curseg = CURSEG_I(sbi, type); 1018 curseg = CURSEG_I(sbi, type);
930 1019
@@ -953,8 +1042,8 @@ void rewrite_node_page(struct f2fs_sb_info *sbi,
953 1042
954 /* rewrite node page */ 1043 /* rewrite node page */
955 set_page_writeback(page); 1044 set_page_writeback(page);
956 submit_write_page(sbi, page, new_blkaddr, NODE); 1045 f2fs_submit_page_mbio(sbi, page, new_blkaddr, &fio);
957 f2fs_submit_bio(sbi, NODE, true); 1046 f2fs_submit_merged_bio(sbi, NODE, WRITE);
958 refresh_sit_entry(sbi, old_blkaddr, new_blkaddr); 1047 refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
959 1048
960 locate_dirty_segment(sbi, old_cursegno); 1049 locate_dirty_segment(sbi, old_cursegno);
@@ -964,6 +1053,16 @@ void rewrite_node_page(struct f2fs_sb_info *sbi,
964 mutex_unlock(&curseg->curseg_mutex); 1053 mutex_unlock(&curseg->curseg_mutex);
965} 1054}
966 1055
1056void f2fs_wait_on_page_writeback(struct page *page,
1057 enum page_type type)
1058{
1059 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
1060 if (PageWriteback(page)) {
1061 f2fs_submit_merged_bio(sbi, type, WRITE);
1062 wait_on_page_writeback(page);
1063 }
1064}
1065
967static int read_compacted_summaries(struct f2fs_sb_info *sbi) 1066static int read_compacted_summaries(struct f2fs_sb_info *sbi)
968{ 1067{
969 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1068 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
@@ -1314,6 +1413,10 @@ void flush_sit_entries(struct f2fs_sb_info *sbi)
1314 1413
1315 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno); 1414 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
1316 1415
1416 /* add discard candidates */
1417 if (SM_I(sbi)->nr_discards < SM_I(sbi)->max_discards)
1418 add_discard_addrs(sbi, segno, se);
1419
1317 if (flushed) 1420 if (flushed)
1318 goto to_sit_page; 1421 goto to_sit_page;
1319 1422
@@ -1480,41 +1583,94 @@ static int build_curseg(struct f2fs_sb_info *sbi)
1480 return restore_curseg_summaries(sbi); 1583 return restore_curseg_summaries(sbi);
1481} 1584}
1482 1585
1586static int ra_sit_pages(struct f2fs_sb_info *sbi, int start, int nrpages)
1587{
1588 struct address_space *mapping = META_MAPPING(sbi);
1589 struct page *page;
1590 block_t blk_addr, prev_blk_addr = 0;
1591 int sit_blk_cnt = SIT_BLK_CNT(sbi);
1592 int blkno = start;
1593 struct f2fs_io_info fio = {
1594 .type = META,
1595 .rw = READ_SYNC | REQ_META | REQ_PRIO
1596 };
1597
1598 for (; blkno < start + nrpages && blkno < sit_blk_cnt; blkno++) {
1599
1600 blk_addr = current_sit_addr(sbi, blkno * SIT_ENTRY_PER_BLOCK);
1601
1602 if (blkno != start && prev_blk_addr + 1 != blk_addr)
1603 break;
1604 prev_blk_addr = blk_addr;
1605repeat:
1606 page = grab_cache_page(mapping, blk_addr);
1607 if (!page) {
1608 cond_resched();
1609 goto repeat;
1610 }
1611 if (PageUptodate(page)) {
1612 mark_page_accessed(page);
1613 f2fs_put_page(page, 1);
1614 continue;
1615 }
1616
1617 f2fs_submit_page_mbio(sbi, page, blk_addr, &fio);
1618
1619 mark_page_accessed(page);
1620 f2fs_put_page(page, 0);
1621 }
1622
1623 f2fs_submit_merged_bio(sbi, META, READ);
1624 return blkno - start;
1625}
1626
1483static void build_sit_entries(struct f2fs_sb_info *sbi) 1627static void build_sit_entries(struct f2fs_sb_info *sbi)
1484{ 1628{
1485 struct sit_info *sit_i = SIT_I(sbi); 1629 struct sit_info *sit_i = SIT_I(sbi);
1486 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 1630 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1487 struct f2fs_summary_block *sum = curseg->sum_blk; 1631 struct f2fs_summary_block *sum = curseg->sum_blk;
1488 unsigned int start; 1632 int sit_blk_cnt = SIT_BLK_CNT(sbi);
1633 unsigned int i, start, end;
1634 unsigned int readed, start_blk = 0;
1635 int nrpages = MAX_BIO_BLOCKS(max_hw_blocks(sbi));
1489 1636
1490 for (start = 0; start < TOTAL_SEGS(sbi); start++) { 1637 do {
1491 struct seg_entry *se = &sit_i->sentries[start]; 1638 readed = ra_sit_pages(sbi, start_blk, nrpages);
1492 struct f2fs_sit_block *sit_blk; 1639
1493 struct f2fs_sit_entry sit; 1640 start = start_blk * sit_i->sents_per_block;
1494 struct page *page; 1641 end = (start_blk + readed) * sit_i->sents_per_block;
1495 int i; 1642
1496 1643 for (; start < end && start < TOTAL_SEGS(sbi); start++) {
1497 mutex_lock(&curseg->curseg_mutex); 1644 struct seg_entry *se = &sit_i->sentries[start];
1498 for (i = 0; i < sits_in_cursum(sum); i++) { 1645 struct f2fs_sit_block *sit_blk;
1499 if (le32_to_cpu(segno_in_journal(sum, i)) == start) { 1646 struct f2fs_sit_entry sit;
1500 sit = sit_in_journal(sum, i); 1647 struct page *page;
1501 mutex_unlock(&curseg->curseg_mutex); 1648
1502 goto got_it; 1649 mutex_lock(&curseg->curseg_mutex);
1650 for (i = 0; i < sits_in_cursum(sum); i++) {
1651 if (le32_to_cpu(segno_in_journal(sum, i))
1652 == start) {
1653 sit = sit_in_journal(sum, i);
1654 mutex_unlock(&curseg->curseg_mutex);
1655 goto got_it;
1656 }
1503 } 1657 }
1504 } 1658 mutex_unlock(&curseg->curseg_mutex);
1505 mutex_unlock(&curseg->curseg_mutex); 1659
1506 page = get_current_sit_page(sbi, start); 1660 page = get_current_sit_page(sbi, start);
1507 sit_blk = (struct f2fs_sit_block *)page_address(page); 1661 sit_blk = (struct f2fs_sit_block *)page_address(page);
1508 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)]; 1662 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
1509 f2fs_put_page(page, 1); 1663 f2fs_put_page(page, 1);
1510got_it: 1664got_it:
1511 check_block_count(sbi, start, &sit); 1665 check_block_count(sbi, start, &sit);
1512 seg_info_from_raw_sit(se, &sit); 1666 seg_info_from_raw_sit(se, &sit);
1513 if (sbi->segs_per_sec > 1) { 1667 if (sbi->segs_per_sec > 1) {
1514 struct sec_entry *e = get_sec_entry(sbi, start); 1668 struct sec_entry *e = get_sec_entry(sbi, start);
1515 e->valid_blocks += se->valid_blocks; 1669 e->valid_blocks += se->valid_blocks;
1670 }
1516 } 1671 }
1517 } 1672 start_blk += readed;
1673 } while (start_blk < sit_blk_cnt);
1518} 1674}
1519 1675
1520static void init_free_segmap(struct f2fs_sb_info *sbi) 1676static void init_free_segmap(struct f2fs_sb_info *sbi)
@@ -1644,6 +1800,12 @@ int build_segment_manager(struct f2fs_sb_info *sbi)
1644 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main); 1800 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
1645 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 1801 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
1646 sm_info->rec_prefree_segments = DEF_RECLAIM_PREFREE_SEGMENTS; 1802 sm_info->rec_prefree_segments = DEF_RECLAIM_PREFREE_SEGMENTS;
1803 sm_info->ipu_policy = F2FS_IPU_DISABLE;
1804 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
1805
1806 INIT_LIST_HEAD(&sm_info->discard_list);
1807 sm_info->nr_discards = 0;
1808 sm_info->max_discards = 0;
1647 1809
1648 err = build_sit_info(sbi); 1810 err = build_sit_info(sbi);
1649 if (err) 1811 if (err)
@@ -1760,3 +1922,17 @@ void destroy_segment_manager(struct f2fs_sb_info *sbi)
1760 sbi->sm_info = NULL; 1922 sbi->sm_info = NULL;
1761 kfree(sm_info); 1923 kfree(sm_info);
1762} 1924}
1925
1926int __init create_segment_manager_caches(void)
1927{
1928 discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
1929 sizeof(struct discard_entry), NULL);
1930 if (!discard_entry_slab)
1931 return -ENOMEM;
1932 return 0;
1933}
1934
1935void destroy_segment_manager_caches(void)
1936{
1937 kmem_cache_destroy(discard_entry_slab);
1938}