aboutsummaryrefslogtreecommitdiffstats
path: root/fs/f2fs/node.h
diff options
context:
space:
mode:
Diffstat (limited to 'fs/f2fs/node.h')
-rw-r--r--fs/f2fs/node.h353
1 files changed, 353 insertions, 0 deletions
diff --git a/fs/f2fs/node.h b/fs/f2fs/node.h
new file mode 100644
index 000000000000..afdb130f782e
--- /dev/null
+++ b/fs/f2fs/node.h
@@ -0,0 +1,353 @@
1/*
2 * fs/f2fs/node.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11/* start node id of a node block dedicated to the given node id */
12#define START_NID(nid) ((nid / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
13
14/* node block offset on the NAT area dedicated to the given start node id */
15#define NAT_BLOCK_OFFSET(start_nid) (start_nid / NAT_ENTRY_PER_BLOCK)
16
17/* # of pages to perform readahead before building free nids */
18#define FREE_NID_PAGES 4
19
20/* maximum # of free node ids to produce during build_free_nids */
21#define MAX_FREE_NIDS (NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES)
22
23/* maximum readahead size for node during getting data blocks */
24#define MAX_RA_NODE 128
25
26/* maximum cached nat entries to manage memory footprint */
27#define NM_WOUT_THRESHOLD (64 * NAT_ENTRY_PER_BLOCK)
28
29/* vector size for gang look-up from nat cache that consists of radix tree */
30#define NATVEC_SIZE 64
31
32/*
33 * For node information
34 */
35struct node_info {
36 nid_t nid; /* node id */
37 nid_t ino; /* inode number of the node's owner */
38 block_t blk_addr; /* block address of the node */
39 unsigned char version; /* version of the node */
40};
41
42struct nat_entry {
43 struct list_head list; /* for clean or dirty nat list */
44 bool checkpointed; /* whether it is checkpointed or not */
45 struct node_info ni; /* in-memory node information */
46};
47
48#define nat_get_nid(nat) (nat->ni.nid)
49#define nat_set_nid(nat, n) (nat->ni.nid = n)
50#define nat_get_blkaddr(nat) (nat->ni.blk_addr)
51#define nat_set_blkaddr(nat, b) (nat->ni.blk_addr = b)
52#define nat_get_ino(nat) (nat->ni.ino)
53#define nat_set_ino(nat, i) (nat->ni.ino = i)
54#define nat_get_version(nat) (nat->ni.version)
55#define nat_set_version(nat, v) (nat->ni.version = v)
56
57#define __set_nat_cache_dirty(nm_i, ne) \
58 list_move_tail(&ne->list, &nm_i->dirty_nat_entries);
59#define __clear_nat_cache_dirty(nm_i, ne) \
60 list_move_tail(&ne->list, &nm_i->nat_entries);
61#define inc_node_version(version) (++version)
62
63static inline void node_info_from_raw_nat(struct node_info *ni,
64 struct f2fs_nat_entry *raw_ne)
65{
66 ni->ino = le32_to_cpu(raw_ne->ino);
67 ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
68 ni->version = raw_ne->version;
69}
70
71/*
72 * For free nid mangement
73 */
74enum nid_state {
75 NID_NEW, /* newly added to free nid list */
76 NID_ALLOC /* it is allocated */
77};
78
79struct free_nid {
80 struct list_head list; /* for free node id list */
81 nid_t nid; /* node id */
82 int state; /* in use or not: NID_NEW or NID_ALLOC */
83};
84
85static inline int next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
86{
87 struct f2fs_nm_info *nm_i = NM_I(sbi);
88 struct free_nid *fnid;
89
90 if (nm_i->fcnt <= 0)
91 return -1;
92 spin_lock(&nm_i->free_nid_list_lock);
93 fnid = list_entry(nm_i->free_nid_list.next, struct free_nid, list);
94 *nid = fnid->nid;
95 spin_unlock(&nm_i->free_nid_list_lock);
96 return 0;
97}
98
99/*
100 * inline functions
101 */
102static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
103{
104 struct f2fs_nm_info *nm_i = NM_I(sbi);
105 memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
106}
107
108static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
109{
110 struct f2fs_nm_info *nm_i = NM_I(sbi);
111 pgoff_t block_off;
112 pgoff_t block_addr;
113 int seg_off;
114
115 block_off = NAT_BLOCK_OFFSET(start);
116 seg_off = block_off >> sbi->log_blocks_per_seg;
117
118 block_addr = (pgoff_t)(nm_i->nat_blkaddr +
119 (seg_off << sbi->log_blocks_per_seg << 1) +
120 (block_off & ((1 << sbi->log_blocks_per_seg) - 1)));
121
122 if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
123 block_addr += sbi->blocks_per_seg;
124
125 return block_addr;
126}
127
128static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
129 pgoff_t block_addr)
130{
131 struct f2fs_nm_info *nm_i = NM_I(sbi);
132
133 block_addr -= nm_i->nat_blkaddr;
134 if ((block_addr >> sbi->log_blocks_per_seg) % 2)
135 block_addr -= sbi->blocks_per_seg;
136 else
137 block_addr += sbi->blocks_per_seg;
138
139 return block_addr + nm_i->nat_blkaddr;
140}
141
142static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
143{
144 unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
145
146 if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
147 f2fs_clear_bit(block_off, nm_i->nat_bitmap);
148 else
149 f2fs_set_bit(block_off, nm_i->nat_bitmap);
150}
151
152static inline void fill_node_footer(struct page *page, nid_t nid,
153 nid_t ino, unsigned int ofs, bool reset)
154{
155 void *kaddr = page_address(page);
156 struct f2fs_node *rn = (struct f2fs_node *)kaddr;
157 if (reset)
158 memset(rn, 0, sizeof(*rn));
159 rn->footer.nid = cpu_to_le32(nid);
160 rn->footer.ino = cpu_to_le32(ino);
161 rn->footer.flag = cpu_to_le32(ofs << OFFSET_BIT_SHIFT);
162}
163
164static inline void copy_node_footer(struct page *dst, struct page *src)
165{
166 void *src_addr = page_address(src);
167 void *dst_addr = page_address(dst);
168 struct f2fs_node *src_rn = (struct f2fs_node *)src_addr;
169 struct f2fs_node *dst_rn = (struct f2fs_node *)dst_addr;
170 memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
171}
172
173static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
174{
175 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
176 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
177 void *kaddr = page_address(page);
178 struct f2fs_node *rn = (struct f2fs_node *)kaddr;
179 rn->footer.cp_ver = ckpt->checkpoint_ver;
180 rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
181}
182
183static inline nid_t ino_of_node(struct page *node_page)
184{
185 void *kaddr = page_address(node_page);
186 struct f2fs_node *rn = (struct f2fs_node *)kaddr;
187 return le32_to_cpu(rn->footer.ino);
188}
189
190static inline nid_t nid_of_node(struct page *node_page)
191{
192 void *kaddr = page_address(node_page);
193 struct f2fs_node *rn = (struct f2fs_node *)kaddr;
194 return le32_to_cpu(rn->footer.nid);
195}
196
197static inline unsigned int ofs_of_node(struct page *node_page)
198{
199 void *kaddr = page_address(node_page);
200 struct f2fs_node *rn = (struct f2fs_node *)kaddr;
201 unsigned flag = le32_to_cpu(rn->footer.flag);
202 return flag >> OFFSET_BIT_SHIFT;
203}
204
205static inline unsigned long long cpver_of_node(struct page *node_page)
206{
207 void *kaddr = page_address(node_page);
208 struct f2fs_node *rn = (struct f2fs_node *)kaddr;
209 return le64_to_cpu(rn->footer.cp_ver);
210}
211
212static inline block_t next_blkaddr_of_node(struct page *node_page)
213{
214 void *kaddr = page_address(node_page);
215 struct f2fs_node *rn = (struct f2fs_node *)kaddr;
216 return le32_to_cpu(rn->footer.next_blkaddr);
217}
218
219/*
220 * f2fs assigns the following node offsets described as (num).
221 * N = NIDS_PER_BLOCK
222 *
223 * Inode block (0)
224 * |- direct node (1)
225 * |- direct node (2)
226 * |- indirect node (3)
227 * | `- direct node (4 => 4 + N - 1)
228 * |- indirect node (4 + N)
229 * | `- direct node (5 + N => 5 + 2N - 1)
230 * `- double indirect node (5 + 2N)
231 * `- indirect node (6 + 2N)
232 * `- direct node (x(N + 1))
233 */
234static inline bool IS_DNODE(struct page *node_page)
235{
236 unsigned int ofs = ofs_of_node(node_page);
237 if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
238 ofs == 5 + 2 * NIDS_PER_BLOCK)
239 return false;
240 if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
241 ofs -= 6 + 2 * NIDS_PER_BLOCK;
242 if ((long int)ofs % (NIDS_PER_BLOCK + 1))
243 return false;
244 }
245 return true;
246}
247
248static inline void set_nid(struct page *p, int off, nid_t nid, bool i)
249{
250 struct f2fs_node *rn = (struct f2fs_node *)page_address(p);
251
252 wait_on_page_writeback(p);
253
254 if (i)
255 rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
256 else
257 rn->in.nid[off] = cpu_to_le32(nid);
258 set_page_dirty(p);
259}
260
261static inline nid_t get_nid(struct page *p, int off, bool i)
262{
263 struct f2fs_node *rn = (struct f2fs_node *)page_address(p);
264 if (i)
265 return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
266 return le32_to_cpu(rn->in.nid[off]);
267}
268
269/*
270 * Coldness identification:
271 * - Mark cold files in f2fs_inode_info
272 * - Mark cold node blocks in their node footer
273 * - Mark cold data pages in page cache
274 */
275static inline int is_cold_file(struct inode *inode)
276{
277 return F2FS_I(inode)->i_advise & FADVISE_COLD_BIT;
278}
279
280static inline int is_cold_data(struct page *page)
281{
282 return PageChecked(page);
283}
284
285static inline void set_cold_data(struct page *page)
286{
287 SetPageChecked(page);
288}
289
290static inline void clear_cold_data(struct page *page)
291{
292 ClearPageChecked(page);
293}
294
295static inline int is_cold_node(struct page *page)
296{
297 void *kaddr = page_address(page);
298 struct f2fs_node *rn = (struct f2fs_node *)kaddr;
299 unsigned int flag = le32_to_cpu(rn->footer.flag);
300 return flag & (0x1 << COLD_BIT_SHIFT);
301}
302
303static inline unsigned char is_fsync_dnode(struct page *page)
304{
305 void *kaddr = page_address(page);
306 struct f2fs_node *rn = (struct f2fs_node *)kaddr;
307 unsigned int flag = le32_to_cpu(rn->footer.flag);
308 return flag & (0x1 << FSYNC_BIT_SHIFT);
309}
310
311static inline unsigned char is_dent_dnode(struct page *page)
312{
313 void *kaddr = page_address(page);
314 struct f2fs_node *rn = (struct f2fs_node *)kaddr;
315 unsigned int flag = le32_to_cpu(rn->footer.flag);
316 return flag & (0x1 << DENT_BIT_SHIFT);
317}
318
319static inline void set_cold_node(struct inode *inode, struct page *page)
320{
321 struct f2fs_node *rn = (struct f2fs_node *)page_address(page);
322 unsigned int flag = le32_to_cpu(rn->footer.flag);
323
324 if (S_ISDIR(inode->i_mode))
325 flag &= ~(0x1 << COLD_BIT_SHIFT);
326 else
327 flag |= (0x1 << COLD_BIT_SHIFT);
328 rn->footer.flag = cpu_to_le32(flag);
329}
330
331static inline void set_fsync_mark(struct page *page, int mark)
332{
333 void *kaddr = page_address(page);
334 struct f2fs_node *rn = (struct f2fs_node *)kaddr;
335 unsigned int flag = le32_to_cpu(rn->footer.flag);
336 if (mark)
337 flag |= (0x1 << FSYNC_BIT_SHIFT);
338 else
339 flag &= ~(0x1 << FSYNC_BIT_SHIFT);
340 rn->footer.flag = cpu_to_le32(flag);
341}
342
343static inline void set_dentry_mark(struct page *page, int mark)
344{
345 void *kaddr = page_address(page);
346 struct f2fs_node *rn = (struct f2fs_node *)kaddr;
347 unsigned int flag = le32_to_cpu(rn->footer.flag);
348 if (mark)
349 flag |= (0x1 << DENT_BIT_SHIFT);
350 else
351 flag &= ~(0x1 << DENT_BIT_SHIFT);
352 rn->footer.flag = cpu_to_le32(flag);
353}