diff options
Diffstat (limited to 'fs/ext4/inode.c')
-rw-r--r-- | fs/ext4/inode.c | 3219 |
1 files changed, 3219 insertions, 0 deletions
diff --git a/fs/ext4/inode.c b/fs/ext4/inode.c new file mode 100644 index 000000000000..03ba5bcab186 --- /dev/null +++ b/fs/ext4/inode.c | |||
@@ -0,0 +1,3219 @@ | |||
1 | /* | ||
2 | * linux/fs/ext3/inode.c | ||
3 | * | ||
4 | * Copyright (C) 1992, 1993, 1994, 1995 | ||
5 | * Remy Card (card@masi.ibp.fr) | ||
6 | * Laboratoire MASI - Institut Blaise Pascal | ||
7 | * Universite Pierre et Marie Curie (Paris VI) | ||
8 | * | ||
9 | * from | ||
10 | * | ||
11 | * linux/fs/minix/inode.c | ||
12 | * | ||
13 | * Copyright (C) 1991, 1992 Linus Torvalds | ||
14 | * | ||
15 | * Goal-directed block allocation by Stephen Tweedie | ||
16 | * (sct@redhat.com), 1993, 1998 | ||
17 | * Big-endian to little-endian byte-swapping/bitmaps by | ||
18 | * David S. Miller (davem@caip.rutgers.edu), 1995 | ||
19 | * 64-bit file support on 64-bit platforms by Jakub Jelinek | ||
20 | * (jj@sunsite.ms.mff.cuni.cz) | ||
21 | * | ||
22 | * Assorted race fixes, rewrite of ext3_get_block() by Al Viro, 2000 | ||
23 | */ | ||
24 | |||
25 | #include <linux/module.h> | ||
26 | #include <linux/fs.h> | ||
27 | #include <linux/time.h> | ||
28 | #include <linux/ext3_jbd.h> | ||
29 | #include <linux/jbd.h> | ||
30 | #include <linux/smp_lock.h> | ||
31 | #include <linux/highuid.h> | ||
32 | #include <linux/pagemap.h> | ||
33 | #include <linux/quotaops.h> | ||
34 | #include <linux/string.h> | ||
35 | #include <linux/buffer_head.h> | ||
36 | #include <linux/writeback.h> | ||
37 | #include <linux/mpage.h> | ||
38 | #include <linux/uio.h> | ||
39 | #include <linux/bio.h> | ||
40 | #include "xattr.h" | ||
41 | #include "acl.h" | ||
42 | |||
43 | static int ext3_writepage_trans_blocks(struct inode *inode); | ||
44 | |||
45 | /* | ||
46 | * Test whether an inode is a fast symlink. | ||
47 | */ | ||
48 | static int ext3_inode_is_fast_symlink(struct inode *inode) | ||
49 | { | ||
50 | int ea_blocks = EXT3_I(inode)->i_file_acl ? | ||
51 | (inode->i_sb->s_blocksize >> 9) : 0; | ||
52 | |||
53 | return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); | ||
54 | } | ||
55 | |||
56 | /* | ||
57 | * The ext3 forget function must perform a revoke if we are freeing data | ||
58 | * which has been journaled. Metadata (eg. indirect blocks) must be | ||
59 | * revoked in all cases. | ||
60 | * | ||
61 | * "bh" may be NULL: a metadata block may have been freed from memory | ||
62 | * but there may still be a record of it in the journal, and that record | ||
63 | * still needs to be revoked. | ||
64 | */ | ||
65 | int ext3_forget(handle_t *handle, int is_metadata, struct inode *inode, | ||
66 | struct buffer_head *bh, ext3_fsblk_t blocknr) | ||
67 | { | ||
68 | int err; | ||
69 | |||
70 | might_sleep(); | ||
71 | |||
72 | BUFFER_TRACE(bh, "enter"); | ||
73 | |||
74 | jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, " | ||
75 | "data mode %lx\n", | ||
76 | bh, is_metadata, inode->i_mode, | ||
77 | test_opt(inode->i_sb, DATA_FLAGS)); | ||
78 | |||
79 | /* Never use the revoke function if we are doing full data | ||
80 | * journaling: there is no need to, and a V1 superblock won't | ||
81 | * support it. Otherwise, only skip the revoke on un-journaled | ||
82 | * data blocks. */ | ||
83 | |||
84 | if (test_opt(inode->i_sb, DATA_FLAGS) == EXT3_MOUNT_JOURNAL_DATA || | ||
85 | (!is_metadata && !ext3_should_journal_data(inode))) { | ||
86 | if (bh) { | ||
87 | BUFFER_TRACE(bh, "call journal_forget"); | ||
88 | return ext3_journal_forget(handle, bh); | ||
89 | } | ||
90 | return 0; | ||
91 | } | ||
92 | |||
93 | /* | ||
94 | * data!=journal && (is_metadata || should_journal_data(inode)) | ||
95 | */ | ||
96 | BUFFER_TRACE(bh, "call ext3_journal_revoke"); | ||
97 | err = ext3_journal_revoke(handle, blocknr, bh); | ||
98 | if (err) | ||
99 | ext3_abort(inode->i_sb, __FUNCTION__, | ||
100 | "error %d when attempting revoke", err); | ||
101 | BUFFER_TRACE(bh, "exit"); | ||
102 | return err; | ||
103 | } | ||
104 | |||
105 | /* | ||
106 | * Work out how many blocks we need to proceed with the next chunk of a | ||
107 | * truncate transaction. | ||
108 | */ | ||
109 | static unsigned long blocks_for_truncate(struct inode *inode) | ||
110 | { | ||
111 | unsigned long needed; | ||
112 | |||
113 | needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9); | ||
114 | |||
115 | /* Give ourselves just enough room to cope with inodes in which | ||
116 | * i_blocks is corrupt: we've seen disk corruptions in the past | ||
117 | * which resulted in random data in an inode which looked enough | ||
118 | * like a regular file for ext3 to try to delete it. Things | ||
119 | * will go a bit crazy if that happens, but at least we should | ||
120 | * try not to panic the whole kernel. */ | ||
121 | if (needed < 2) | ||
122 | needed = 2; | ||
123 | |||
124 | /* But we need to bound the transaction so we don't overflow the | ||
125 | * journal. */ | ||
126 | if (needed > EXT3_MAX_TRANS_DATA) | ||
127 | needed = EXT3_MAX_TRANS_DATA; | ||
128 | |||
129 | return EXT3_DATA_TRANS_BLOCKS(inode->i_sb) + needed; | ||
130 | } | ||
131 | |||
132 | /* | ||
133 | * Truncate transactions can be complex and absolutely huge. So we need to | ||
134 | * be able to restart the transaction at a conventient checkpoint to make | ||
135 | * sure we don't overflow the journal. | ||
136 | * | ||
137 | * start_transaction gets us a new handle for a truncate transaction, | ||
138 | * and extend_transaction tries to extend the existing one a bit. If | ||
139 | * extend fails, we need to propagate the failure up and restart the | ||
140 | * transaction in the top-level truncate loop. --sct | ||
141 | */ | ||
142 | static handle_t *start_transaction(struct inode *inode) | ||
143 | { | ||
144 | handle_t *result; | ||
145 | |||
146 | result = ext3_journal_start(inode, blocks_for_truncate(inode)); | ||
147 | if (!IS_ERR(result)) | ||
148 | return result; | ||
149 | |||
150 | ext3_std_error(inode->i_sb, PTR_ERR(result)); | ||
151 | return result; | ||
152 | } | ||
153 | |||
154 | /* | ||
155 | * Try to extend this transaction for the purposes of truncation. | ||
156 | * | ||
157 | * Returns 0 if we managed to create more room. If we can't create more | ||
158 | * room, and the transaction must be restarted we return 1. | ||
159 | */ | ||
160 | static int try_to_extend_transaction(handle_t *handle, struct inode *inode) | ||
161 | { | ||
162 | if (handle->h_buffer_credits > EXT3_RESERVE_TRANS_BLOCKS) | ||
163 | return 0; | ||
164 | if (!ext3_journal_extend(handle, blocks_for_truncate(inode))) | ||
165 | return 0; | ||
166 | return 1; | ||
167 | } | ||
168 | |||
169 | /* | ||
170 | * Restart the transaction associated with *handle. This does a commit, | ||
171 | * so before we call here everything must be consistently dirtied against | ||
172 | * this transaction. | ||
173 | */ | ||
174 | static int ext3_journal_test_restart(handle_t *handle, struct inode *inode) | ||
175 | { | ||
176 | jbd_debug(2, "restarting handle %p\n", handle); | ||
177 | return ext3_journal_restart(handle, blocks_for_truncate(inode)); | ||
178 | } | ||
179 | |||
180 | /* | ||
181 | * Called at the last iput() if i_nlink is zero. | ||
182 | */ | ||
183 | void ext3_delete_inode (struct inode * inode) | ||
184 | { | ||
185 | handle_t *handle; | ||
186 | |||
187 | truncate_inode_pages(&inode->i_data, 0); | ||
188 | |||
189 | if (is_bad_inode(inode)) | ||
190 | goto no_delete; | ||
191 | |||
192 | handle = start_transaction(inode); | ||
193 | if (IS_ERR(handle)) { | ||
194 | /* | ||
195 | * If we're going to skip the normal cleanup, we still need to | ||
196 | * make sure that the in-core orphan linked list is properly | ||
197 | * cleaned up. | ||
198 | */ | ||
199 | ext3_orphan_del(NULL, inode); | ||
200 | goto no_delete; | ||
201 | } | ||
202 | |||
203 | if (IS_SYNC(inode)) | ||
204 | handle->h_sync = 1; | ||
205 | inode->i_size = 0; | ||
206 | if (inode->i_blocks) | ||
207 | ext3_truncate(inode); | ||
208 | /* | ||
209 | * Kill off the orphan record which ext3_truncate created. | ||
210 | * AKPM: I think this can be inside the above `if'. | ||
211 | * Note that ext3_orphan_del() has to be able to cope with the | ||
212 | * deletion of a non-existent orphan - this is because we don't | ||
213 | * know if ext3_truncate() actually created an orphan record. | ||
214 | * (Well, we could do this if we need to, but heck - it works) | ||
215 | */ | ||
216 | ext3_orphan_del(handle, inode); | ||
217 | EXT3_I(inode)->i_dtime = get_seconds(); | ||
218 | |||
219 | /* | ||
220 | * One subtle ordering requirement: if anything has gone wrong | ||
221 | * (transaction abort, IO errors, whatever), then we can still | ||
222 | * do these next steps (the fs will already have been marked as | ||
223 | * having errors), but we can't free the inode if the mark_dirty | ||
224 | * fails. | ||
225 | */ | ||
226 | if (ext3_mark_inode_dirty(handle, inode)) | ||
227 | /* If that failed, just do the required in-core inode clear. */ | ||
228 | clear_inode(inode); | ||
229 | else | ||
230 | ext3_free_inode(handle, inode); | ||
231 | ext3_journal_stop(handle); | ||
232 | return; | ||
233 | no_delete: | ||
234 | clear_inode(inode); /* We must guarantee clearing of inode... */ | ||
235 | } | ||
236 | |||
237 | typedef struct { | ||
238 | __le32 *p; | ||
239 | __le32 key; | ||
240 | struct buffer_head *bh; | ||
241 | } Indirect; | ||
242 | |||
243 | static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v) | ||
244 | { | ||
245 | p->key = *(p->p = v); | ||
246 | p->bh = bh; | ||
247 | } | ||
248 | |||
249 | static int verify_chain(Indirect *from, Indirect *to) | ||
250 | { | ||
251 | while (from <= to && from->key == *from->p) | ||
252 | from++; | ||
253 | return (from > to); | ||
254 | } | ||
255 | |||
256 | /** | ||
257 | * ext3_block_to_path - parse the block number into array of offsets | ||
258 | * @inode: inode in question (we are only interested in its superblock) | ||
259 | * @i_block: block number to be parsed | ||
260 | * @offsets: array to store the offsets in | ||
261 | * @boundary: set this non-zero if the referred-to block is likely to be | ||
262 | * followed (on disk) by an indirect block. | ||
263 | * | ||
264 | * To store the locations of file's data ext3 uses a data structure common | ||
265 | * for UNIX filesystems - tree of pointers anchored in the inode, with | ||
266 | * data blocks at leaves and indirect blocks in intermediate nodes. | ||
267 | * This function translates the block number into path in that tree - | ||
268 | * return value is the path length and @offsets[n] is the offset of | ||
269 | * pointer to (n+1)th node in the nth one. If @block is out of range | ||
270 | * (negative or too large) warning is printed and zero returned. | ||
271 | * | ||
272 | * Note: function doesn't find node addresses, so no IO is needed. All | ||
273 | * we need to know is the capacity of indirect blocks (taken from the | ||
274 | * inode->i_sb). | ||
275 | */ | ||
276 | |||
277 | /* | ||
278 | * Portability note: the last comparison (check that we fit into triple | ||
279 | * indirect block) is spelled differently, because otherwise on an | ||
280 | * architecture with 32-bit longs and 8Kb pages we might get into trouble | ||
281 | * if our filesystem had 8Kb blocks. We might use long long, but that would | ||
282 | * kill us on x86. Oh, well, at least the sign propagation does not matter - | ||
283 | * i_block would have to be negative in the very beginning, so we would not | ||
284 | * get there at all. | ||
285 | */ | ||
286 | |||
287 | static int ext3_block_to_path(struct inode *inode, | ||
288 | long i_block, int offsets[4], int *boundary) | ||
289 | { | ||
290 | int ptrs = EXT3_ADDR_PER_BLOCK(inode->i_sb); | ||
291 | int ptrs_bits = EXT3_ADDR_PER_BLOCK_BITS(inode->i_sb); | ||
292 | const long direct_blocks = EXT3_NDIR_BLOCKS, | ||
293 | indirect_blocks = ptrs, | ||
294 | double_blocks = (1 << (ptrs_bits * 2)); | ||
295 | int n = 0; | ||
296 | int final = 0; | ||
297 | |||
298 | if (i_block < 0) { | ||
299 | ext3_warning (inode->i_sb, "ext3_block_to_path", "block < 0"); | ||
300 | } else if (i_block < direct_blocks) { | ||
301 | offsets[n++] = i_block; | ||
302 | final = direct_blocks; | ||
303 | } else if ( (i_block -= direct_blocks) < indirect_blocks) { | ||
304 | offsets[n++] = EXT3_IND_BLOCK; | ||
305 | offsets[n++] = i_block; | ||
306 | final = ptrs; | ||
307 | } else if ((i_block -= indirect_blocks) < double_blocks) { | ||
308 | offsets[n++] = EXT3_DIND_BLOCK; | ||
309 | offsets[n++] = i_block >> ptrs_bits; | ||
310 | offsets[n++] = i_block & (ptrs - 1); | ||
311 | final = ptrs; | ||
312 | } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) { | ||
313 | offsets[n++] = EXT3_TIND_BLOCK; | ||
314 | offsets[n++] = i_block >> (ptrs_bits * 2); | ||
315 | offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1); | ||
316 | offsets[n++] = i_block & (ptrs - 1); | ||
317 | final = ptrs; | ||
318 | } else { | ||
319 | ext3_warning(inode->i_sb, "ext3_block_to_path", "block > big"); | ||
320 | } | ||
321 | if (boundary) | ||
322 | *boundary = final - 1 - (i_block & (ptrs - 1)); | ||
323 | return n; | ||
324 | } | ||
325 | |||
326 | /** | ||
327 | * ext3_get_branch - read the chain of indirect blocks leading to data | ||
328 | * @inode: inode in question | ||
329 | * @depth: depth of the chain (1 - direct pointer, etc.) | ||
330 | * @offsets: offsets of pointers in inode/indirect blocks | ||
331 | * @chain: place to store the result | ||
332 | * @err: here we store the error value | ||
333 | * | ||
334 | * Function fills the array of triples <key, p, bh> and returns %NULL | ||
335 | * if everything went OK or the pointer to the last filled triple | ||
336 | * (incomplete one) otherwise. Upon the return chain[i].key contains | ||
337 | * the number of (i+1)-th block in the chain (as it is stored in memory, | ||
338 | * i.e. little-endian 32-bit), chain[i].p contains the address of that | ||
339 | * number (it points into struct inode for i==0 and into the bh->b_data | ||
340 | * for i>0) and chain[i].bh points to the buffer_head of i-th indirect | ||
341 | * block for i>0 and NULL for i==0. In other words, it holds the block | ||
342 | * numbers of the chain, addresses they were taken from (and where we can | ||
343 | * verify that chain did not change) and buffer_heads hosting these | ||
344 | * numbers. | ||
345 | * | ||
346 | * Function stops when it stumbles upon zero pointer (absent block) | ||
347 | * (pointer to last triple returned, *@err == 0) | ||
348 | * or when it gets an IO error reading an indirect block | ||
349 | * (ditto, *@err == -EIO) | ||
350 | * or when it notices that chain had been changed while it was reading | ||
351 | * (ditto, *@err == -EAGAIN) | ||
352 | * or when it reads all @depth-1 indirect blocks successfully and finds | ||
353 | * the whole chain, all way to the data (returns %NULL, *err == 0). | ||
354 | */ | ||
355 | static Indirect *ext3_get_branch(struct inode *inode, int depth, int *offsets, | ||
356 | Indirect chain[4], int *err) | ||
357 | { | ||
358 | struct super_block *sb = inode->i_sb; | ||
359 | Indirect *p = chain; | ||
360 | struct buffer_head *bh; | ||
361 | |||
362 | *err = 0; | ||
363 | /* i_data is not going away, no lock needed */ | ||
364 | add_chain (chain, NULL, EXT3_I(inode)->i_data + *offsets); | ||
365 | if (!p->key) | ||
366 | goto no_block; | ||
367 | while (--depth) { | ||
368 | bh = sb_bread(sb, le32_to_cpu(p->key)); | ||
369 | if (!bh) | ||
370 | goto failure; | ||
371 | /* Reader: pointers */ | ||
372 | if (!verify_chain(chain, p)) | ||
373 | goto changed; | ||
374 | add_chain(++p, bh, (__le32*)bh->b_data + *++offsets); | ||
375 | /* Reader: end */ | ||
376 | if (!p->key) | ||
377 | goto no_block; | ||
378 | } | ||
379 | return NULL; | ||
380 | |||
381 | changed: | ||
382 | brelse(bh); | ||
383 | *err = -EAGAIN; | ||
384 | goto no_block; | ||
385 | failure: | ||
386 | *err = -EIO; | ||
387 | no_block: | ||
388 | return p; | ||
389 | } | ||
390 | |||
391 | /** | ||
392 | * ext3_find_near - find a place for allocation with sufficient locality | ||
393 | * @inode: owner | ||
394 | * @ind: descriptor of indirect block. | ||
395 | * | ||
396 | * This function returns the prefered place for block allocation. | ||
397 | * It is used when heuristic for sequential allocation fails. | ||
398 | * Rules are: | ||
399 | * + if there is a block to the left of our position - allocate near it. | ||
400 | * + if pointer will live in indirect block - allocate near that block. | ||
401 | * + if pointer will live in inode - allocate in the same | ||
402 | * cylinder group. | ||
403 | * | ||
404 | * In the latter case we colour the starting block by the callers PID to | ||
405 | * prevent it from clashing with concurrent allocations for a different inode | ||
406 | * in the same block group. The PID is used here so that functionally related | ||
407 | * files will be close-by on-disk. | ||
408 | * | ||
409 | * Caller must make sure that @ind is valid and will stay that way. | ||
410 | */ | ||
411 | static ext3_fsblk_t ext3_find_near(struct inode *inode, Indirect *ind) | ||
412 | { | ||
413 | struct ext3_inode_info *ei = EXT3_I(inode); | ||
414 | __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data; | ||
415 | __le32 *p; | ||
416 | ext3_fsblk_t bg_start; | ||
417 | ext3_grpblk_t colour; | ||
418 | |||
419 | /* Try to find previous block */ | ||
420 | for (p = ind->p - 1; p >= start; p--) { | ||
421 | if (*p) | ||
422 | return le32_to_cpu(*p); | ||
423 | } | ||
424 | |||
425 | /* No such thing, so let's try location of indirect block */ | ||
426 | if (ind->bh) | ||
427 | return ind->bh->b_blocknr; | ||
428 | |||
429 | /* | ||
430 | * It is going to be referred to from the inode itself? OK, just put it | ||
431 | * into the same cylinder group then. | ||
432 | */ | ||
433 | bg_start = ext3_group_first_block_no(inode->i_sb, ei->i_block_group); | ||
434 | colour = (current->pid % 16) * | ||
435 | (EXT3_BLOCKS_PER_GROUP(inode->i_sb) / 16); | ||
436 | return bg_start + colour; | ||
437 | } | ||
438 | |||
439 | /** | ||
440 | * ext3_find_goal - find a prefered place for allocation. | ||
441 | * @inode: owner | ||
442 | * @block: block we want | ||
443 | * @chain: chain of indirect blocks | ||
444 | * @partial: pointer to the last triple within a chain | ||
445 | * @goal: place to store the result. | ||
446 | * | ||
447 | * Normally this function find the prefered place for block allocation, | ||
448 | * stores it in *@goal and returns zero. | ||
449 | */ | ||
450 | |||
451 | static ext3_fsblk_t ext3_find_goal(struct inode *inode, long block, | ||
452 | Indirect chain[4], Indirect *partial) | ||
453 | { | ||
454 | struct ext3_block_alloc_info *block_i; | ||
455 | |||
456 | block_i = EXT3_I(inode)->i_block_alloc_info; | ||
457 | |||
458 | /* | ||
459 | * try the heuristic for sequential allocation, | ||
460 | * failing that at least try to get decent locality. | ||
461 | */ | ||
462 | if (block_i && (block == block_i->last_alloc_logical_block + 1) | ||
463 | && (block_i->last_alloc_physical_block != 0)) { | ||
464 | return block_i->last_alloc_physical_block + 1; | ||
465 | } | ||
466 | |||
467 | return ext3_find_near(inode, partial); | ||
468 | } | ||
469 | |||
470 | /** | ||
471 | * ext3_blks_to_allocate: Look up the block map and count the number | ||
472 | * of direct blocks need to be allocated for the given branch. | ||
473 | * | ||
474 | * @branch: chain of indirect blocks | ||
475 | * @k: number of blocks need for indirect blocks | ||
476 | * @blks: number of data blocks to be mapped. | ||
477 | * @blocks_to_boundary: the offset in the indirect block | ||
478 | * | ||
479 | * return the total number of blocks to be allocate, including the | ||
480 | * direct and indirect blocks. | ||
481 | */ | ||
482 | static int ext3_blks_to_allocate(Indirect *branch, int k, unsigned long blks, | ||
483 | int blocks_to_boundary) | ||
484 | { | ||
485 | unsigned long count = 0; | ||
486 | |||
487 | /* | ||
488 | * Simple case, [t,d]Indirect block(s) has not allocated yet | ||
489 | * then it's clear blocks on that path have not allocated | ||
490 | */ | ||
491 | if (k > 0) { | ||
492 | /* right now we don't handle cross boundary allocation */ | ||
493 | if (blks < blocks_to_boundary + 1) | ||
494 | count += blks; | ||
495 | else | ||
496 | count += blocks_to_boundary + 1; | ||
497 | return count; | ||
498 | } | ||
499 | |||
500 | count++; | ||
501 | while (count < blks && count <= blocks_to_boundary && | ||
502 | le32_to_cpu(*(branch[0].p + count)) == 0) { | ||
503 | count++; | ||
504 | } | ||
505 | return count; | ||
506 | } | ||
507 | |||
508 | /** | ||
509 | * ext3_alloc_blocks: multiple allocate blocks needed for a branch | ||
510 | * @indirect_blks: the number of blocks need to allocate for indirect | ||
511 | * blocks | ||
512 | * | ||
513 | * @new_blocks: on return it will store the new block numbers for | ||
514 | * the indirect blocks(if needed) and the first direct block, | ||
515 | * @blks: on return it will store the total number of allocated | ||
516 | * direct blocks | ||
517 | */ | ||
518 | static int ext3_alloc_blocks(handle_t *handle, struct inode *inode, | ||
519 | ext3_fsblk_t goal, int indirect_blks, int blks, | ||
520 | ext3_fsblk_t new_blocks[4], int *err) | ||
521 | { | ||
522 | int target, i; | ||
523 | unsigned long count = 0; | ||
524 | int index = 0; | ||
525 | ext3_fsblk_t current_block = 0; | ||
526 | int ret = 0; | ||
527 | |||
528 | /* | ||
529 | * Here we try to allocate the requested multiple blocks at once, | ||
530 | * on a best-effort basis. | ||
531 | * To build a branch, we should allocate blocks for | ||
532 | * the indirect blocks(if not allocated yet), and at least | ||
533 | * the first direct block of this branch. That's the | ||
534 | * minimum number of blocks need to allocate(required) | ||
535 | */ | ||
536 | target = blks + indirect_blks; | ||
537 | |||
538 | while (1) { | ||
539 | count = target; | ||
540 | /* allocating blocks for indirect blocks and direct blocks */ | ||
541 | current_block = ext3_new_blocks(handle,inode,goal,&count,err); | ||
542 | if (*err) | ||
543 | goto failed_out; | ||
544 | |||
545 | target -= count; | ||
546 | /* allocate blocks for indirect blocks */ | ||
547 | while (index < indirect_blks && count) { | ||
548 | new_blocks[index++] = current_block++; | ||
549 | count--; | ||
550 | } | ||
551 | |||
552 | if (count > 0) | ||
553 | break; | ||
554 | } | ||
555 | |||
556 | /* save the new block number for the first direct block */ | ||
557 | new_blocks[index] = current_block; | ||
558 | |||
559 | /* total number of blocks allocated for direct blocks */ | ||
560 | ret = count; | ||
561 | *err = 0; | ||
562 | return ret; | ||
563 | failed_out: | ||
564 | for (i = 0; i <index; i++) | ||
565 | ext3_free_blocks(handle, inode, new_blocks[i], 1); | ||
566 | return ret; | ||
567 | } | ||
568 | |||
569 | /** | ||
570 | * ext3_alloc_branch - allocate and set up a chain of blocks. | ||
571 | * @inode: owner | ||
572 | * @indirect_blks: number of allocated indirect blocks | ||
573 | * @blks: number of allocated direct blocks | ||
574 | * @offsets: offsets (in the blocks) to store the pointers to next. | ||
575 | * @branch: place to store the chain in. | ||
576 | * | ||
577 | * This function allocates blocks, zeroes out all but the last one, | ||
578 | * links them into chain and (if we are synchronous) writes them to disk. | ||
579 | * In other words, it prepares a branch that can be spliced onto the | ||
580 | * inode. It stores the information about that chain in the branch[], in | ||
581 | * the same format as ext3_get_branch() would do. We are calling it after | ||
582 | * we had read the existing part of chain and partial points to the last | ||
583 | * triple of that (one with zero ->key). Upon the exit we have the same | ||
584 | * picture as after the successful ext3_get_block(), except that in one | ||
585 | * place chain is disconnected - *branch->p is still zero (we did not | ||
586 | * set the last link), but branch->key contains the number that should | ||
587 | * be placed into *branch->p to fill that gap. | ||
588 | * | ||
589 | * If allocation fails we free all blocks we've allocated (and forget | ||
590 | * their buffer_heads) and return the error value the from failed | ||
591 | * ext3_alloc_block() (normally -ENOSPC). Otherwise we set the chain | ||
592 | * as described above and return 0. | ||
593 | */ | ||
594 | static int ext3_alloc_branch(handle_t *handle, struct inode *inode, | ||
595 | int indirect_blks, int *blks, ext3_fsblk_t goal, | ||
596 | int *offsets, Indirect *branch) | ||
597 | { | ||
598 | int blocksize = inode->i_sb->s_blocksize; | ||
599 | int i, n = 0; | ||
600 | int err = 0; | ||
601 | struct buffer_head *bh; | ||
602 | int num; | ||
603 | ext3_fsblk_t new_blocks[4]; | ||
604 | ext3_fsblk_t current_block; | ||
605 | |||
606 | num = ext3_alloc_blocks(handle, inode, goal, indirect_blks, | ||
607 | *blks, new_blocks, &err); | ||
608 | if (err) | ||
609 | return err; | ||
610 | |||
611 | branch[0].key = cpu_to_le32(new_blocks[0]); | ||
612 | /* | ||
613 | * metadata blocks and data blocks are allocated. | ||
614 | */ | ||
615 | for (n = 1; n <= indirect_blks; n++) { | ||
616 | /* | ||
617 | * Get buffer_head for parent block, zero it out | ||
618 | * and set the pointer to new one, then send | ||
619 | * parent to disk. | ||
620 | */ | ||
621 | bh = sb_getblk(inode->i_sb, new_blocks[n-1]); | ||
622 | branch[n].bh = bh; | ||
623 | lock_buffer(bh); | ||
624 | BUFFER_TRACE(bh, "call get_create_access"); | ||
625 | err = ext3_journal_get_create_access(handle, bh); | ||
626 | if (err) { | ||
627 | unlock_buffer(bh); | ||
628 | brelse(bh); | ||
629 | goto failed; | ||
630 | } | ||
631 | |||
632 | memset(bh->b_data, 0, blocksize); | ||
633 | branch[n].p = (__le32 *) bh->b_data + offsets[n]; | ||
634 | branch[n].key = cpu_to_le32(new_blocks[n]); | ||
635 | *branch[n].p = branch[n].key; | ||
636 | if ( n == indirect_blks) { | ||
637 | current_block = new_blocks[n]; | ||
638 | /* | ||
639 | * End of chain, update the last new metablock of | ||
640 | * the chain to point to the new allocated | ||
641 | * data blocks numbers | ||
642 | */ | ||
643 | for (i=1; i < num; i++) | ||
644 | *(branch[n].p + i) = cpu_to_le32(++current_block); | ||
645 | } | ||
646 | BUFFER_TRACE(bh, "marking uptodate"); | ||
647 | set_buffer_uptodate(bh); | ||
648 | unlock_buffer(bh); | ||
649 | |||
650 | BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata"); | ||
651 | err = ext3_journal_dirty_metadata(handle, bh); | ||
652 | if (err) | ||
653 | goto failed; | ||
654 | } | ||
655 | *blks = num; | ||
656 | return err; | ||
657 | failed: | ||
658 | /* Allocation failed, free what we already allocated */ | ||
659 | for (i = 1; i <= n ; i++) { | ||
660 | BUFFER_TRACE(branch[i].bh, "call journal_forget"); | ||
661 | ext3_journal_forget(handle, branch[i].bh); | ||
662 | } | ||
663 | for (i = 0; i <indirect_blks; i++) | ||
664 | ext3_free_blocks(handle, inode, new_blocks[i], 1); | ||
665 | |||
666 | ext3_free_blocks(handle, inode, new_blocks[i], num); | ||
667 | |||
668 | return err; | ||
669 | } | ||
670 | |||
671 | /** | ||
672 | * ext3_splice_branch - splice the allocated branch onto inode. | ||
673 | * @inode: owner | ||
674 | * @block: (logical) number of block we are adding | ||
675 | * @chain: chain of indirect blocks (with a missing link - see | ||
676 | * ext3_alloc_branch) | ||
677 | * @where: location of missing link | ||
678 | * @num: number of indirect blocks we are adding | ||
679 | * @blks: number of direct blocks we are adding | ||
680 | * | ||
681 | * This function fills the missing link and does all housekeeping needed in | ||
682 | * inode (->i_blocks, etc.). In case of success we end up with the full | ||
683 | * chain to new block and return 0. | ||
684 | */ | ||
685 | static int ext3_splice_branch(handle_t *handle, struct inode *inode, | ||
686 | long block, Indirect *where, int num, int blks) | ||
687 | { | ||
688 | int i; | ||
689 | int err = 0; | ||
690 | struct ext3_block_alloc_info *block_i; | ||
691 | ext3_fsblk_t current_block; | ||
692 | |||
693 | block_i = EXT3_I(inode)->i_block_alloc_info; | ||
694 | /* | ||
695 | * If we're splicing into a [td]indirect block (as opposed to the | ||
696 | * inode) then we need to get write access to the [td]indirect block | ||
697 | * before the splice. | ||
698 | */ | ||
699 | if (where->bh) { | ||
700 | BUFFER_TRACE(where->bh, "get_write_access"); | ||
701 | err = ext3_journal_get_write_access(handle, where->bh); | ||
702 | if (err) | ||
703 | goto err_out; | ||
704 | } | ||
705 | /* That's it */ | ||
706 | |||
707 | *where->p = where->key; | ||
708 | |||
709 | /* | ||
710 | * Update the host buffer_head or inode to point to more just allocated | ||
711 | * direct blocks blocks | ||
712 | */ | ||
713 | if (num == 0 && blks > 1) { | ||
714 | current_block = le32_to_cpu(where->key) + 1; | ||
715 | for (i = 1; i < blks; i++) | ||
716 | *(where->p + i ) = cpu_to_le32(current_block++); | ||
717 | } | ||
718 | |||
719 | /* | ||
720 | * update the most recently allocated logical & physical block | ||
721 | * in i_block_alloc_info, to assist find the proper goal block for next | ||
722 | * allocation | ||
723 | */ | ||
724 | if (block_i) { | ||
725 | block_i->last_alloc_logical_block = block + blks - 1; | ||
726 | block_i->last_alloc_physical_block = | ||
727 | le32_to_cpu(where[num].key) + blks - 1; | ||
728 | } | ||
729 | |||
730 | /* We are done with atomic stuff, now do the rest of housekeeping */ | ||
731 | |||
732 | inode->i_ctime = CURRENT_TIME_SEC; | ||
733 | ext3_mark_inode_dirty(handle, inode); | ||
734 | |||
735 | /* had we spliced it onto indirect block? */ | ||
736 | if (where->bh) { | ||
737 | /* | ||
738 | * If we spliced it onto an indirect block, we haven't | ||
739 | * altered the inode. Note however that if it is being spliced | ||
740 | * onto an indirect block at the very end of the file (the | ||
741 | * file is growing) then we *will* alter the inode to reflect | ||
742 | * the new i_size. But that is not done here - it is done in | ||
743 | * generic_commit_write->__mark_inode_dirty->ext3_dirty_inode. | ||
744 | */ | ||
745 | jbd_debug(5, "splicing indirect only\n"); | ||
746 | BUFFER_TRACE(where->bh, "call ext3_journal_dirty_metadata"); | ||
747 | err = ext3_journal_dirty_metadata(handle, where->bh); | ||
748 | if (err) | ||
749 | goto err_out; | ||
750 | } else { | ||
751 | /* | ||
752 | * OK, we spliced it into the inode itself on a direct block. | ||
753 | * Inode was dirtied above. | ||
754 | */ | ||
755 | jbd_debug(5, "splicing direct\n"); | ||
756 | } | ||
757 | return err; | ||
758 | |||
759 | err_out: | ||
760 | for (i = 1; i <= num; i++) { | ||
761 | BUFFER_TRACE(where[i].bh, "call journal_forget"); | ||
762 | ext3_journal_forget(handle, where[i].bh); | ||
763 | ext3_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1); | ||
764 | } | ||
765 | ext3_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks); | ||
766 | |||
767 | return err; | ||
768 | } | ||
769 | |||
770 | /* | ||
771 | * Allocation strategy is simple: if we have to allocate something, we will | ||
772 | * have to go the whole way to leaf. So let's do it before attaching anything | ||
773 | * to tree, set linkage between the newborn blocks, write them if sync is | ||
774 | * required, recheck the path, free and repeat if check fails, otherwise | ||
775 | * set the last missing link (that will protect us from any truncate-generated | ||
776 | * removals - all blocks on the path are immune now) and possibly force the | ||
777 | * write on the parent block. | ||
778 | * That has a nice additional property: no special recovery from the failed | ||
779 | * allocations is needed - we simply release blocks and do not touch anything | ||
780 | * reachable from inode. | ||
781 | * | ||
782 | * `handle' can be NULL if create == 0. | ||
783 | * | ||
784 | * The BKL may not be held on entry here. Be sure to take it early. | ||
785 | * return > 0, # of blocks mapped or allocated. | ||
786 | * return = 0, if plain lookup failed. | ||
787 | * return < 0, error case. | ||
788 | */ | ||
789 | int ext3_get_blocks_handle(handle_t *handle, struct inode *inode, | ||
790 | sector_t iblock, unsigned long maxblocks, | ||
791 | struct buffer_head *bh_result, | ||
792 | int create, int extend_disksize) | ||
793 | { | ||
794 | int err = -EIO; | ||
795 | int offsets[4]; | ||
796 | Indirect chain[4]; | ||
797 | Indirect *partial; | ||
798 | ext3_fsblk_t goal; | ||
799 | int indirect_blks; | ||
800 | int blocks_to_boundary = 0; | ||
801 | int depth; | ||
802 | struct ext3_inode_info *ei = EXT3_I(inode); | ||
803 | int count = 0; | ||
804 | ext3_fsblk_t first_block = 0; | ||
805 | |||
806 | |||
807 | J_ASSERT(handle != NULL || create == 0); | ||
808 | depth = ext3_block_to_path(inode,iblock,offsets,&blocks_to_boundary); | ||
809 | |||
810 | if (depth == 0) | ||
811 | goto out; | ||
812 | |||
813 | partial = ext3_get_branch(inode, depth, offsets, chain, &err); | ||
814 | |||
815 | /* Simplest case - block found, no allocation needed */ | ||
816 | if (!partial) { | ||
817 | first_block = le32_to_cpu(chain[depth - 1].key); | ||
818 | clear_buffer_new(bh_result); | ||
819 | count++; | ||
820 | /*map more blocks*/ | ||
821 | while (count < maxblocks && count <= blocks_to_boundary) { | ||
822 | ext3_fsblk_t blk; | ||
823 | |||
824 | if (!verify_chain(chain, partial)) { | ||
825 | /* | ||
826 | * Indirect block might be removed by | ||
827 | * truncate while we were reading it. | ||
828 | * Handling of that case: forget what we've | ||
829 | * got now. Flag the err as EAGAIN, so it | ||
830 | * will reread. | ||
831 | */ | ||
832 | err = -EAGAIN; | ||
833 | count = 0; | ||
834 | break; | ||
835 | } | ||
836 | blk = le32_to_cpu(*(chain[depth-1].p + count)); | ||
837 | |||
838 | if (blk == first_block + count) | ||
839 | count++; | ||
840 | else | ||
841 | break; | ||
842 | } | ||
843 | if (err != -EAGAIN) | ||
844 | goto got_it; | ||
845 | } | ||
846 | |||
847 | /* Next simple case - plain lookup or failed read of indirect block */ | ||
848 | if (!create || err == -EIO) | ||
849 | goto cleanup; | ||
850 | |||
851 | mutex_lock(&ei->truncate_mutex); | ||
852 | |||
853 | /* | ||
854 | * If the indirect block is missing while we are reading | ||
855 | * the chain(ext3_get_branch() returns -EAGAIN err), or | ||
856 | * if the chain has been changed after we grab the semaphore, | ||
857 | * (either because another process truncated this branch, or | ||
858 | * another get_block allocated this branch) re-grab the chain to see if | ||
859 | * the request block has been allocated or not. | ||
860 | * | ||
861 | * Since we already block the truncate/other get_block | ||
862 | * at this point, we will have the current copy of the chain when we | ||
863 | * splice the branch into the tree. | ||
864 | */ | ||
865 | if (err == -EAGAIN || !verify_chain(chain, partial)) { | ||
866 | while (partial > chain) { | ||
867 | brelse(partial->bh); | ||
868 | partial--; | ||
869 | } | ||
870 | partial = ext3_get_branch(inode, depth, offsets, chain, &err); | ||
871 | if (!partial) { | ||
872 | count++; | ||
873 | mutex_unlock(&ei->truncate_mutex); | ||
874 | if (err) | ||
875 | goto cleanup; | ||
876 | clear_buffer_new(bh_result); | ||
877 | goto got_it; | ||
878 | } | ||
879 | } | ||
880 | |||
881 | /* | ||
882 | * Okay, we need to do block allocation. Lazily initialize the block | ||
883 | * allocation info here if necessary | ||
884 | */ | ||
885 | if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info)) | ||
886 | ext3_init_block_alloc_info(inode); | ||
887 | |||
888 | goal = ext3_find_goal(inode, iblock, chain, partial); | ||
889 | |||
890 | /* the number of blocks need to allocate for [d,t]indirect blocks */ | ||
891 | indirect_blks = (chain + depth) - partial - 1; | ||
892 | |||
893 | /* | ||
894 | * Next look up the indirect map to count the totoal number of | ||
895 | * direct blocks to allocate for this branch. | ||
896 | */ | ||
897 | count = ext3_blks_to_allocate(partial, indirect_blks, | ||
898 | maxblocks, blocks_to_boundary); | ||
899 | /* | ||
900 | * Block out ext3_truncate while we alter the tree | ||
901 | */ | ||
902 | err = ext3_alloc_branch(handle, inode, indirect_blks, &count, goal, | ||
903 | offsets + (partial - chain), partial); | ||
904 | |||
905 | /* | ||
906 | * The ext3_splice_branch call will free and forget any buffers | ||
907 | * on the new chain if there is a failure, but that risks using | ||
908 | * up transaction credits, especially for bitmaps where the | ||
909 | * credits cannot be returned. Can we handle this somehow? We | ||
910 | * may need to return -EAGAIN upwards in the worst case. --sct | ||
911 | */ | ||
912 | if (!err) | ||
913 | err = ext3_splice_branch(handle, inode, iblock, | ||
914 | partial, indirect_blks, count); | ||
915 | /* | ||
916 | * i_disksize growing is protected by truncate_mutex. Don't forget to | ||
917 | * protect it if you're about to implement concurrent | ||
918 | * ext3_get_block() -bzzz | ||
919 | */ | ||
920 | if (!err && extend_disksize && inode->i_size > ei->i_disksize) | ||
921 | ei->i_disksize = inode->i_size; | ||
922 | mutex_unlock(&ei->truncate_mutex); | ||
923 | if (err) | ||
924 | goto cleanup; | ||
925 | |||
926 | set_buffer_new(bh_result); | ||
927 | got_it: | ||
928 | map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key)); | ||
929 | if (count > blocks_to_boundary) | ||
930 | set_buffer_boundary(bh_result); | ||
931 | err = count; | ||
932 | /* Clean up and exit */ | ||
933 | partial = chain + depth - 1; /* the whole chain */ | ||
934 | cleanup: | ||
935 | while (partial > chain) { | ||
936 | BUFFER_TRACE(partial->bh, "call brelse"); | ||
937 | brelse(partial->bh); | ||
938 | partial--; | ||
939 | } | ||
940 | BUFFER_TRACE(bh_result, "returned"); | ||
941 | out: | ||
942 | return err; | ||
943 | } | ||
944 | |||
945 | #define DIO_CREDITS (EXT3_RESERVE_TRANS_BLOCKS + 32) | ||
946 | |||
947 | static int ext3_get_block(struct inode *inode, sector_t iblock, | ||
948 | struct buffer_head *bh_result, int create) | ||
949 | { | ||
950 | handle_t *handle = journal_current_handle(); | ||
951 | int ret = 0; | ||
952 | unsigned max_blocks = bh_result->b_size >> inode->i_blkbits; | ||
953 | |||
954 | if (!create) | ||
955 | goto get_block; /* A read */ | ||
956 | |||
957 | if (max_blocks == 1) | ||
958 | goto get_block; /* A single block get */ | ||
959 | |||
960 | if (handle->h_transaction->t_state == T_LOCKED) { | ||
961 | /* | ||
962 | * Huge direct-io writes can hold off commits for long | ||
963 | * periods of time. Let this commit run. | ||
964 | */ | ||
965 | ext3_journal_stop(handle); | ||
966 | handle = ext3_journal_start(inode, DIO_CREDITS); | ||
967 | if (IS_ERR(handle)) | ||
968 | ret = PTR_ERR(handle); | ||
969 | goto get_block; | ||
970 | } | ||
971 | |||
972 | if (handle->h_buffer_credits <= EXT3_RESERVE_TRANS_BLOCKS) { | ||
973 | /* | ||
974 | * Getting low on buffer credits... | ||
975 | */ | ||
976 | ret = ext3_journal_extend(handle, DIO_CREDITS); | ||
977 | if (ret > 0) { | ||
978 | /* | ||
979 | * Couldn't extend the transaction. Start a new one. | ||
980 | */ | ||
981 | ret = ext3_journal_restart(handle, DIO_CREDITS); | ||
982 | } | ||
983 | } | ||
984 | |||
985 | get_block: | ||
986 | if (ret == 0) { | ||
987 | ret = ext3_get_blocks_handle(handle, inode, iblock, | ||
988 | max_blocks, bh_result, create, 0); | ||
989 | if (ret > 0) { | ||
990 | bh_result->b_size = (ret << inode->i_blkbits); | ||
991 | ret = 0; | ||
992 | } | ||
993 | } | ||
994 | return ret; | ||
995 | } | ||
996 | |||
997 | /* | ||
998 | * `handle' can be NULL if create is zero | ||
999 | */ | ||
1000 | struct buffer_head *ext3_getblk(handle_t *handle, struct inode *inode, | ||
1001 | long block, int create, int *errp) | ||
1002 | { | ||
1003 | struct buffer_head dummy; | ||
1004 | int fatal = 0, err; | ||
1005 | |||
1006 | J_ASSERT(handle != NULL || create == 0); | ||
1007 | |||
1008 | dummy.b_state = 0; | ||
1009 | dummy.b_blocknr = -1000; | ||
1010 | buffer_trace_init(&dummy.b_history); | ||
1011 | err = ext3_get_blocks_handle(handle, inode, block, 1, | ||
1012 | &dummy, create, 1); | ||
1013 | /* | ||
1014 | * ext3_get_blocks_handle() returns number of blocks | ||
1015 | * mapped. 0 in case of a HOLE. | ||
1016 | */ | ||
1017 | if (err > 0) { | ||
1018 | if (err > 1) | ||
1019 | WARN_ON(1); | ||
1020 | err = 0; | ||
1021 | } | ||
1022 | *errp = err; | ||
1023 | if (!err && buffer_mapped(&dummy)) { | ||
1024 | struct buffer_head *bh; | ||
1025 | bh = sb_getblk(inode->i_sb, dummy.b_blocknr); | ||
1026 | if (!bh) { | ||
1027 | *errp = -EIO; | ||
1028 | goto err; | ||
1029 | } | ||
1030 | if (buffer_new(&dummy)) { | ||
1031 | J_ASSERT(create != 0); | ||
1032 | J_ASSERT(handle != 0); | ||
1033 | |||
1034 | /* | ||
1035 | * Now that we do not always journal data, we should | ||
1036 | * keep in mind whether this should always journal the | ||
1037 | * new buffer as metadata. For now, regular file | ||
1038 | * writes use ext3_get_block instead, so it's not a | ||
1039 | * problem. | ||
1040 | */ | ||
1041 | lock_buffer(bh); | ||
1042 | BUFFER_TRACE(bh, "call get_create_access"); | ||
1043 | fatal = ext3_journal_get_create_access(handle, bh); | ||
1044 | if (!fatal && !buffer_uptodate(bh)) { | ||
1045 | memset(bh->b_data,0,inode->i_sb->s_blocksize); | ||
1046 | set_buffer_uptodate(bh); | ||
1047 | } | ||
1048 | unlock_buffer(bh); | ||
1049 | BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata"); | ||
1050 | err = ext3_journal_dirty_metadata(handle, bh); | ||
1051 | if (!fatal) | ||
1052 | fatal = err; | ||
1053 | } else { | ||
1054 | BUFFER_TRACE(bh, "not a new buffer"); | ||
1055 | } | ||
1056 | if (fatal) { | ||
1057 | *errp = fatal; | ||
1058 | brelse(bh); | ||
1059 | bh = NULL; | ||
1060 | } | ||
1061 | return bh; | ||
1062 | } | ||
1063 | err: | ||
1064 | return NULL; | ||
1065 | } | ||
1066 | |||
1067 | struct buffer_head *ext3_bread(handle_t *handle, struct inode *inode, | ||
1068 | int block, int create, int *err) | ||
1069 | { | ||
1070 | struct buffer_head * bh; | ||
1071 | |||
1072 | bh = ext3_getblk(handle, inode, block, create, err); | ||
1073 | if (!bh) | ||
1074 | return bh; | ||
1075 | if (buffer_uptodate(bh)) | ||
1076 | return bh; | ||
1077 | ll_rw_block(READ_META, 1, &bh); | ||
1078 | wait_on_buffer(bh); | ||
1079 | if (buffer_uptodate(bh)) | ||
1080 | return bh; | ||
1081 | put_bh(bh); | ||
1082 | *err = -EIO; | ||
1083 | return NULL; | ||
1084 | } | ||
1085 | |||
1086 | static int walk_page_buffers( handle_t *handle, | ||
1087 | struct buffer_head *head, | ||
1088 | unsigned from, | ||
1089 | unsigned to, | ||
1090 | int *partial, | ||
1091 | int (*fn)( handle_t *handle, | ||
1092 | struct buffer_head *bh)) | ||
1093 | { | ||
1094 | struct buffer_head *bh; | ||
1095 | unsigned block_start, block_end; | ||
1096 | unsigned blocksize = head->b_size; | ||
1097 | int err, ret = 0; | ||
1098 | struct buffer_head *next; | ||
1099 | |||
1100 | for ( bh = head, block_start = 0; | ||
1101 | ret == 0 && (bh != head || !block_start); | ||
1102 | block_start = block_end, bh = next) | ||
1103 | { | ||
1104 | next = bh->b_this_page; | ||
1105 | block_end = block_start + blocksize; | ||
1106 | if (block_end <= from || block_start >= to) { | ||
1107 | if (partial && !buffer_uptodate(bh)) | ||
1108 | *partial = 1; | ||
1109 | continue; | ||
1110 | } | ||
1111 | err = (*fn)(handle, bh); | ||
1112 | if (!ret) | ||
1113 | ret = err; | ||
1114 | } | ||
1115 | return ret; | ||
1116 | } | ||
1117 | |||
1118 | /* | ||
1119 | * To preserve ordering, it is essential that the hole instantiation and | ||
1120 | * the data write be encapsulated in a single transaction. We cannot | ||
1121 | * close off a transaction and start a new one between the ext3_get_block() | ||
1122 | * and the commit_write(). So doing the journal_start at the start of | ||
1123 | * prepare_write() is the right place. | ||
1124 | * | ||
1125 | * Also, this function can nest inside ext3_writepage() -> | ||
1126 | * block_write_full_page(). In that case, we *know* that ext3_writepage() | ||
1127 | * has generated enough buffer credits to do the whole page. So we won't | ||
1128 | * block on the journal in that case, which is good, because the caller may | ||
1129 | * be PF_MEMALLOC. | ||
1130 | * | ||
1131 | * By accident, ext3 can be reentered when a transaction is open via | ||
1132 | * quota file writes. If we were to commit the transaction while thus | ||
1133 | * reentered, there can be a deadlock - we would be holding a quota | ||
1134 | * lock, and the commit would never complete if another thread had a | ||
1135 | * transaction open and was blocking on the quota lock - a ranking | ||
1136 | * violation. | ||
1137 | * | ||
1138 | * So what we do is to rely on the fact that journal_stop/journal_start | ||
1139 | * will _not_ run commit under these circumstances because handle->h_ref | ||
1140 | * is elevated. We'll still have enough credits for the tiny quotafile | ||
1141 | * write. | ||
1142 | */ | ||
1143 | static int do_journal_get_write_access(handle_t *handle, | ||
1144 | struct buffer_head *bh) | ||
1145 | { | ||
1146 | if (!buffer_mapped(bh) || buffer_freed(bh)) | ||
1147 | return 0; | ||
1148 | return ext3_journal_get_write_access(handle, bh); | ||
1149 | } | ||
1150 | |||
1151 | static int ext3_prepare_write(struct file *file, struct page *page, | ||
1152 | unsigned from, unsigned to) | ||
1153 | { | ||
1154 | struct inode *inode = page->mapping->host; | ||
1155 | int ret, needed_blocks = ext3_writepage_trans_blocks(inode); | ||
1156 | handle_t *handle; | ||
1157 | int retries = 0; | ||
1158 | |||
1159 | retry: | ||
1160 | handle = ext3_journal_start(inode, needed_blocks); | ||
1161 | if (IS_ERR(handle)) { | ||
1162 | ret = PTR_ERR(handle); | ||
1163 | goto out; | ||
1164 | } | ||
1165 | if (test_opt(inode->i_sb, NOBH) && ext3_should_writeback_data(inode)) | ||
1166 | ret = nobh_prepare_write(page, from, to, ext3_get_block); | ||
1167 | else | ||
1168 | ret = block_prepare_write(page, from, to, ext3_get_block); | ||
1169 | if (ret) | ||
1170 | goto prepare_write_failed; | ||
1171 | |||
1172 | if (ext3_should_journal_data(inode)) { | ||
1173 | ret = walk_page_buffers(handle, page_buffers(page), | ||
1174 | from, to, NULL, do_journal_get_write_access); | ||
1175 | } | ||
1176 | prepare_write_failed: | ||
1177 | if (ret) | ||
1178 | ext3_journal_stop(handle); | ||
1179 | if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries)) | ||
1180 | goto retry; | ||
1181 | out: | ||
1182 | return ret; | ||
1183 | } | ||
1184 | |||
1185 | int ext3_journal_dirty_data(handle_t *handle, struct buffer_head *bh) | ||
1186 | { | ||
1187 | int err = journal_dirty_data(handle, bh); | ||
1188 | if (err) | ||
1189 | ext3_journal_abort_handle(__FUNCTION__, __FUNCTION__, | ||
1190 | bh, handle,err); | ||
1191 | return err; | ||
1192 | } | ||
1193 | |||
1194 | /* For commit_write() in data=journal mode */ | ||
1195 | static int commit_write_fn(handle_t *handle, struct buffer_head *bh) | ||
1196 | { | ||
1197 | if (!buffer_mapped(bh) || buffer_freed(bh)) | ||
1198 | return 0; | ||
1199 | set_buffer_uptodate(bh); | ||
1200 | return ext3_journal_dirty_metadata(handle, bh); | ||
1201 | } | ||
1202 | |||
1203 | /* | ||
1204 | * We need to pick up the new inode size which generic_commit_write gave us | ||
1205 | * `file' can be NULL - eg, when called from page_symlink(). | ||
1206 | * | ||
1207 | * ext3 never places buffers on inode->i_mapping->private_list. metadata | ||
1208 | * buffers are managed internally. | ||
1209 | */ | ||
1210 | static int ext3_ordered_commit_write(struct file *file, struct page *page, | ||
1211 | unsigned from, unsigned to) | ||
1212 | { | ||
1213 | handle_t *handle = ext3_journal_current_handle(); | ||
1214 | struct inode *inode = page->mapping->host; | ||
1215 | int ret = 0, ret2; | ||
1216 | |||
1217 | ret = walk_page_buffers(handle, page_buffers(page), | ||
1218 | from, to, NULL, ext3_journal_dirty_data); | ||
1219 | |||
1220 | if (ret == 0) { | ||
1221 | /* | ||
1222 | * generic_commit_write() will run mark_inode_dirty() if i_size | ||
1223 | * changes. So let's piggyback the i_disksize mark_inode_dirty | ||
1224 | * into that. | ||
1225 | */ | ||
1226 | loff_t new_i_size; | ||
1227 | |||
1228 | new_i_size = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to; | ||
1229 | if (new_i_size > EXT3_I(inode)->i_disksize) | ||
1230 | EXT3_I(inode)->i_disksize = new_i_size; | ||
1231 | ret = generic_commit_write(file, page, from, to); | ||
1232 | } | ||
1233 | ret2 = ext3_journal_stop(handle); | ||
1234 | if (!ret) | ||
1235 | ret = ret2; | ||
1236 | return ret; | ||
1237 | } | ||
1238 | |||
1239 | static int ext3_writeback_commit_write(struct file *file, struct page *page, | ||
1240 | unsigned from, unsigned to) | ||
1241 | { | ||
1242 | handle_t *handle = ext3_journal_current_handle(); | ||
1243 | struct inode *inode = page->mapping->host; | ||
1244 | int ret = 0, ret2; | ||
1245 | loff_t new_i_size; | ||
1246 | |||
1247 | new_i_size = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to; | ||
1248 | if (new_i_size > EXT3_I(inode)->i_disksize) | ||
1249 | EXT3_I(inode)->i_disksize = new_i_size; | ||
1250 | |||
1251 | if (test_opt(inode->i_sb, NOBH) && ext3_should_writeback_data(inode)) | ||
1252 | ret = nobh_commit_write(file, page, from, to); | ||
1253 | else | ||
1254 | ret = generic_commit_write(file, page, from, to); | ||
1255 | |||
1256 | ret2 = ext3_journal_stop(handle); | ||
1257 | if (!ret) | ||
1258 | ret = ret2; | ||
1259 | return ret; | ||
1260 | } | ||
1261 | |||
1262 | static int ext3_journalled_commit_write(struct file *file, | ||
1263 | struct page *page, unsigned from, unsigned to) | ||
1264 | { | ||
1265 | handle_t *handle = ext3_journal_current_handle(); | ||
1266 | struct inode *inode = page->mapping->host; | ||
1267 | int ret = 0, ret2; | ||
1268 | int partial = 0; | ||
1269 | loff_t pos; | ||
1270 | |||
1271 | /* | ||
1272 | * Here we duplicate the generic_commit_write() functionality | ||
1273 | */ | ||
1274 | pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to; | ||
1275 | |||
1276 | ret = walk_page_buffers(handle, page_buffers(page), from, | ||
1277 | to, &partial, commit_write_fn); | ||
1278 | if (!partial) | ||
1279 | SetPageUptodate(page); | ||
1280 | if (pos > inode->i_size) | ||
1281 | i_size_write(inode, pos); | ||
1282 | EXT3_I(inode)->i_state |= EXT3_STATE_JDATA; | ||
1283 | if (inode->i_size > EXT3_I(inode)->i_disksize) { | ||
1284 | EXT3_I(inode)->i_disksize = inode->i_size; | ||
1285 | ret2 = ext3_mark_inode_dirty(handle, inode); | ||
1286 | if (!ret) | ||
1287 | ret = ret2; | ||
1288 | } | ||
1289 | ret2 = ext3_journal_stop(handle); | ||
1290 | if (!ret) | ||
1291 | ret = ret2; | ||
1292 | return ret; | ||
1293 | } | ||
1294 | |||
1295 | /* | ||
1296 | * bmap() is special. It gets used by applications such as lilo and by | ||
1297 | * the swapper to find the on-disk block of a specific piece of data. | ||
1298 | * | ||
1299 | * Naturally, this is dangerous if the block concerned is still in the | ||
1300 | * journal. If somebody makes a swapfile on an ext3 data-journaling | ||
1301 | * filesystem and enables swap, then they may get a nasty shock when the | ||
1302 | * data getting swapped to that swapfile suddenly gets overwritten by | ||
1303 | * the original zero's written out previously to the journal and | ||
1304 | * awaiting writeback in the kernel's buffer cache. | ||
1305 | * | ||
1306 | * So, if we see any bmap calls here on a modified, data-journaled file, | ||
1307 | * take extra steps to flush any blocks which might be in the cache. | ||
1308 | */ | ||
1309 | static sector_t ext3_bmap(struct address_space *mapping, sector_t block) | ||
1310 | { | ||
1311 | struct inode *inode = mapping->host; | ||
1312 | journal_t *journal; | ||
1313 | int err; | ||
1314 | |||
1315 | if (EXT3_I(inode)->i_state & EXT3_STATE_JDATA) { | ||
1316 | /* | ||
1317 | * This is a REALLY heavyweight approach, but the use of | ||
1318 | * bmap on dirty files is expected to be extremely rare: | ||
1319 | * only if we run lilo or swapon on a freshly made file | ||
1320 | * do we expect this to happen. | ||
1321 | * | ||
1322 | * (bmap requires CAP_SYS_RAWIO so this does not | ||
1323 | * represent an unprivileged user DOS attack --- we'd be | ||
1324 | * in trouble if mortal users could trigger this path at | ||
1325 | * will.) | ||
1326 | * | ||
1327 | * NB. EXT3_STATE_JDATA is not set on files other than | ||
1328 | * regular files. If somebody wants to bmap a directory | ||
1329 | * or symlink and gets confused because the buffer | ||
1330 | * hasn't yet been flushed to disk, they deserve | ||
1331 | * everything they get. | ||
1332 | */ | ||
1333 | |||
1334 | EXT3_I(inode)->i_state &= ~EXT3_STATE_JDATA; | ||
1335 | journal = EXT3_JOURNAL(inode); | ||
1336 | journal_lock_updates(journal); | ||
1337 | err = journal_flush(journal); | ||
1338 | journal_unlock_updates(journal); | ||
1339 | |||
1340 | if (err) | ||
1341 | return 0; | ||
1342 | } | ||
1343 | |||
1344 | return generic_block_bmap(mapping,block,ext3_get_block); | ||
1345 | } | ||
1346 | |||
1347 | static int bget_one(handle_t *handle, struct buffer_head *bh) | ||
1348 | { | ||
1349 | get_bh(bh); | ||
1350 | return 0; | ||
1351 | } | ||
1352 | |||
1353 | static int bput_one(handle_t *handle, struct buffer_head *bh) | ||
1354 | { | ||
1355 | put_bh(bh); | ||
1356 | return 0; | ||
1357 | } | ||
1358 | |||
1359 | static int journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh) | ||
1360 | { | ||
1361 | if (buffer_mapped(bh)) | ||
1362 | return ext3_journal_dirty_data(handle, bh); | ||
1363 | return 0; | ||
1364 | } | ||
1365 | |||
1366 | /* | ||
1367 | * Note that we always start a transaction even if we're not journalling | ||
1368 | * data. This is to preserve ordering: any hole instantiation within | ||
1369 | * __block_write_full_page -> ext3_get_block() should be journalled | ||
1370 | * along with the data so we don't crash and then get metadata which | ||
1371 | * refers to old data. | ||
1372 | * | ||
1373 | * In all journalling modes block_write_full_page() will start the I/O. | ||
1374 | * | ||
1375 | * Problem: | ||
1376 | * | ||
1377 | * ext3_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> | ||
1378 | * ext3_writepage() | ||
1379 | * | ||
1380 | * Similar for: | ||
1381 | * | ||
1382 | * ext3_file_write() -> generic_file_write() -> __alloc_pages() -> ... | ||
1383 | * | ||
1384 | * Same applies to ext3_get_block(). We will deadlock on various things like | ||
1385 | * lock_journal and i_truncate_mutex. | ||
1386 | * | ||
1387 | * Setting PF_MEMALLOC here doesn't work - too many internal memory | ||
1388 | * allocations fail. | ||
1389 | * | ||
1390 | * 16May01: If we're reentered then journal_current_handle() will be | ||
1391 | * non-zero. We simply *return*. | ||
1392 | * | ||
1393 | * 1 July 2001: @@@ FIXME: | ||
1394 | * In journalled data mode, a data buffer may be metadata against the | ||
1395 | * current transaction. But the same file is part of a shared mapping | ||
1396 | * and someone does a writepage() on it. | ||
1397 | * | ||
1398 | * We will move the buffer onto the async_data list, but *after* it has | ||
1399 | * been dirtied. So there's a small window where we have dirty data on | ||
1400 | * BJ_Metadata. | ||
1401 | * | ||
1402 | * Note that this only applies to the last partial page in the file. The | ||
1403 | * bit which block_write_full_page() uses prepare/commit for. (That's | ||
1404 | * broken code anyway: it's wrong for msync()). | ||
1405 | * | ||
1406 | * It's a rare case: affects the final partial page, for journalled data | ||
1407 | * where the file is subject to bith write() and writepage() in the same | ||
1408 | * transction. To fix it we'll need a custom block_write_full_page(). | ||
1409 | * We'll probably need that anyway for journalling writepage() output. | ||
1410 | * | ||
1411 | * We don't honour synchronous mounts for writepage(). That would be | ||
1412 | * disastrous. Any write() or metadata operation will sync the fs for | ||
1413 | * us. | ||
1414 | * | ||
1415 | * AKPM2: if all the page's buffers are mapped to disk and !data=journal, | ||
1416 | * we don't need to open a transaction here. | ||
1417 | */ | ||
1418 | static int ext3_ordered_writepage(struct page *page, | ||
1419 | struct writeback_control *wbc) | ||
1420 | { | ||
1421 | struct inode *inode = page->mapping->host; | ||
1422 | struct buffer_head *page_bufs; | ||
1423 | handle_t *handle = NULL; | ||
1424 | int ret = 0; | ||
1425 | int err; | ||
1426 | |||
1427 | J_ASSERT(PageLocked(page)); | ||
1428 | |||
1429 | /* | ||
1430 | * We give up here if we're reentered, because it might be for a | ||
1431 | * different filesystem. | ||
1432 | */ | ||
1433 | if (ext3_journal_current_handle()) | ||
1434 | goto out_fail; | ||
1435 | |||
1436 | handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode)); | ||
1437 | |||
1438 | if (IS_ERR(handle)) { | ||
1439 | ret = PTR_ERR(handle); | ||
1440 | goto out_fail; | ||
1441 | } | ||
1442 | |||
1443 | if (!page_has_buffers(page)) { | ||
1444 | create_empty_buffers(page, inode->i_sb->s_blocksize, | ||
1445 | (1 << BH_Dirty)|(1 << BH_Uptodate)); | ||
1446 | } | ||
1447 | page_bufs = page_buffers(page); | ||
1448 | walk_page_buffers(handle, page_bufs, 0, | ||
1449 | PAGE_CACHE_SIZE, NULL, bget_one); | ||
1450 | |||
1451 | ret = block_write_full_page(page, ext3_get_block, wbc); | ||
1452 | |||
1453 | /* | ||
1454 | * The page can become unlocked at any point now, and | ||
1455 | * truncate can then come in and change things. So we | ||
1456 | * can't touch *page from now on. But *page_bufs is | ||
1457 | * safe due to elevated refcount. | ||
1458 | */ | ||
1459 | |||
1460 | /* | ||
1461 | * And attach them to the current transaction. But only if | ||
1462 | * block_write_full_page() succeeded. Otherwise they are unmapped, | ||
1463 | * and generally junk. | ||
1464 | */ | ||
1465 | if (ret == 0) { | ||
1466 | err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, | ||
1467 | NULL, journal_dirty_data_fn); | ||
1468 | if (!ret) | ||
1469 | ret = err; | ||
1470 | } | ||
1471 | walk_page_buffers(handle, page_bufs, 0, | ||
1472 | PAGE_CACHE_SIZE, NULL, bput_one); | ||
1473 | err = ext3_journal_stop(handle); | ||
1474 | if (!ret) | ||
1475 | ret = err; | ||
1476 | return ret; | ||
1477 | |||
1478 | out_fail: | ||
1479 | redirty_page_for_writepage(wbc, page); | ||
1480 | unlock_page(page); | ||
1481 | return ret; | ||
1482 | } | ||
1483 | |||
1484 | static int ext3_writeback_writepage(struct page *page, | ||
1485 | struct writeback_control *wbc) | ||
1486 | { | ||
1487 | struct inode *inode = page->mapping->host; | ||
1488 | handle_t *handle = NULL; | ||
1489 | int ret = 0; | ||
1490 | int err; | ||
1491 | |||
1492 | if (ext3_journal_current_handle()) | ||
1493 | goto out_fail; | ||
1494 | |||
1495 | handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode)); | ||
1496 | if (IS_ERR(handle)) { | ||
1497 | ret = PTR_ERR(handle); | ||
1498 | goto out_fail; | ||
1499 | } | ||
1500 | |||
1501 | if (test_opt(inode->i_sb, NOBH) && ext3_should_writeback_data(inode)) | ||
1502 | ret = nobh_writepage(page, ext3_get_block, wbc); | ||
1503 | else | ||
1504 | ret = block_write_full_page(page, ext3_get_block, wbc); | ||
1505 | |||
1506 | err = ext3_journal_stop(handle); | ||
1507 | if (!ret) | ||
1508 | ret = err; | ||
1509 | return ret; | ||
1510 | |||
1511 | out_fail: | ||
1512 | redirty_page_for_writepage(wbc, page); | ||
1513 | unlock_page(page); | ||
1514 | return ret; | ||
1515 | } | ||
1516 | |||
1517 | static int ext3_journalled_writepage(struct page *page, | ||
1518 | struct writeback_control *wbc) | ||
1519 | { | ||
1520 | struct inode *inode = page->mapping->host; | ||
1521 | handle_t *handle = NULL; | ||
1522 | int ret = 0; | ||
1523 | int err; | ||
1524 | |||
1525 | if (ext3_journal_current_handle()) | ||
1526 | goto no_write; | ||
1527 | |||
1528 | handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode)); | ||
1529 | if (IS_ERR(handle)) { | ||
1530 | ret = PTR_ERR(handle); | ||
1531 | goto no_write; | ||
1532 | } | ||
1533 | |||
1534 | if (!page_has_buffers(page) || PageChecked(page)) { | ||
1535 | /* | ||
1536 | * It's mmapped pagecache. Add buffers and journal it. There | ||
1537 | * doesn't seem much point in redirtying the page here. | ||
1538 | */ | ||
1539 | ClearPageChecked(page); | ||
1540 | ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE, | ||
1541 | ext3_get_block); | ||
1542 | if (ret != 0) { | ||
1543 | ext3_journal_stop(handle); | ||
1544 | goto out_unlock; | ||
1545 | } | ||
1546 | ret = walk_page_buffers(handle, page_buffers(page), 0, | ||
1547 | PAGE_CACHE_SIZE, NULL, do_journal_get_write_access); | ||
1548 | |||
1549 | err = walk_page_buffers(handle, page_buffers(page), 0, | ||
1550 | PAGE_CACHE_SIZE, NULL, commit_write_fn); | ||
1551 | if (ret == 0) | ||
1552 | ret = err; | ||
1553 | EXT3_I(inode)->i_state |= EXT3_STATE_JDATA; | ||
1554 | unlock_page(page); | ||
1555 | } else { | ||
1556 | /* | ||
1557 | * It may be a page full of checkpoint-mode buffers. We don't | ||
1558 | * really know unless we go poke around in the buffer_heads. | ||
1559 | * But block_write_full_page will do the right thing. | ||
1560 | */ | ||
1561 | ret = block_write_full_page(page, ext3_get_block, wbc); | ||
1562 | } | ||
1563 | err = ext3_journal_stop(handle); | ||
1564 | if (!ret) | ||
1565 | ret = err; | ||
1566 | out: | ||
1567 | return ret; | ||
1568 | |||
1569 | no_write: | ||
1570 | redirty_page_for_writepage(wbc, page); | ||
1571 | out_unlock: | ||
1572 | unlock_page(page); | ||
1573 | goto out; | ||
1574 | } | ||
1575 | |||
1576 | static int ext3_readpage(struct file *file, struct page *page) | ||
1577 | { | ||
1578 | return mpage_readpage(page, ext3_get_block); | ||
1579 | } | ||
1580 | |||
1581 | static int | ||
1582 | ext3_readpages(struct file *file, struct address_space *mapping, | ||
1583 | struct list_head *pages, unsigned nr_pages) | ||
1584 | { | ||
1585 | return mpage_readpages(mapping, pages, nr_pages, ext3_get_block); | ||
1586 | } | ||
1587 | |||
1588 | static void ext3_invalidatepage(struct page *page, unsigned long offset) | ||
1589 | { | ||
1590 | journal_t *journal = EXT3_JOURNAL(page->mapping->host); | ||
1591 | |||
1592 | /* | ||
1593 | * If it's a full truncate we just forget about the pending dirtying | ||
1594 | */ | ||
1595 | if (offset == 0) | ||
1596 | ClearPageChecked(page); | ||
1597 | |||
1598 | journal_invalidatepage(journal, page, offset); | ||
1599 | } | ||
1600 | |||
1601 | static int ext3_releasepage(struct page *page, gfp_t wait) | ||
1602 | { | ||
1603 | journal_t *journal = EXT3_JOURNAL(page->mapping->host); | ||
1604 | |||
1605 | WARN_ON(PageChecked(page)); | ||
1606 | if (!page_has_buffers(page)) | ||
1607 | return 0; | ||
1608 | return journal_try_to_free_buffers(journal, page, wait); | ||
1609 | } | ||
1610 | |||
1611 | /* | ||
1612 | * If the O_DIRECT write will extend the file then add this inode to the | ||
1613 | * orphan list. So recovery will truncate it back to the original size | ||
1614 | * if the machine crashes during the write. | ||
1615 | * | ||
1616 | * If the O_DIRECT write is intantiating holes inside i_size and the machine | ||
1617 | * crashes then stale disk data _may_ be exposed inside the file. | ||
1618 | */ | ||
1619 | static ssize_t ext3_direct_IO(int rw, struct kiocb *iocb, | ||
1620 | const struct iovec *iov, loff_t offset, | ||
1621 | unsigned long nr_segs) | ||
1622 | { | ||
1623 | struct file *file = iocb->ki_filp; | ||
1624 | struct inode *inode = file->f_mapping->host; | ||
1625 | struct ext3_inode_info *ei = EXT3_I(inode); | ||
1626 | handle_t *handle = NULL; | ||
1627 | ssize_t ret; | ||
1628 | int orphan = 0; | ||
1629 | size_t count = iov_length(iov, nr_segs); | ||
1630 | |||
1631 | if (rw == WRITE) { | ||
1632 | loff_t final_size = offset + count; | ||
1633 | |||
1634 | handle = ext3_journal_start(inode, DIO_CREDITS); | ||
1635 | if (IS_ERR(handle)) { | ||
1636 | ret = PTR_ERR(handle); | ||
1637 | goto out; | ||
1638 | } | ||
1639 | if (final_size > inode->i_size) { | ||
1640 | ret = ext3_orphan_add(handle, inode); | ||
1641 | if (ret) | ||
1642 | goto out_stop; | ||
1643 | orphan = 1; | ||
1644 | ei->i_disksize = inode->i_size; | ||
1645 | } | ||
1646 | } | ||
1647 | |||
1648 | ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov, | ||
1649 | offset, nr_segs, | ||
1650 | ext3_get_block, NULL); | ||
1651 | |||
1652 | /* | ||
1653 | * Reacquire the handle: ext3_get_block() can restart the transaction | ||
1654 | */ | ||
1655 | handle = journal_current_handle(); | ||
1656 | |||
1657 | out_stop: | ||
1658 | if (handle) { | ||
1659 | int err; | ||
1660 | |||
1661 | if (orphan && inode->i_nlink) | ||
1662 | ext3_orphan_del(handle, inode); | ||
1663 | if (orphan && ret > 0) { | ||
1664 | loff_t end = offset + ret; | ||
1665 | if (end > inode->i_size) { | ||
1666 | ei->i_disksize = end; | ||
1667 | i_size_write(inode, end); | ||
1668 | /* | ||
1669 | * We're going to return a positive `ret' | ||
1670 | * here due to non-zero-length I/O, so there's | ||
1671 | * no way of reporting error returns from | ||
1672 | * ext3_mark_inode_dirty() to userspace. So | ||
1673 | * ignore it. | ||
1674 | */ | ||
1675 | ext3_mark_inode_dirty(handle, inode); | ||
1676 | } | ||
1677 | } | ||
1678 | err = ext3_journal_stop(handle); | ||
1679 | if (ret == 0) | ||
1680 | ret = err; | ||
1681 | } | ||
1682 | out: | ||
1683 | return ret; | ||
1684 | } | ||
1685 | |||
1686 | /* | ||
1687 | * Pages can be marked dirty completely asynchronously from ext3's journalling | ||
1688 | * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do | ||
1689 | * much here because ->set_page_dirty is called under VFS locks. The page is | ||
1690 | * not necessarily locked. | ||
1691 | * | ||
1692 | * We cannot just dirty the page and leave attached buffers clean, because the | ||
1693 | * buffers' dirty state is "definitive". We cannot just set the buffers dirty | ||
1694 | * or jbddirty because all the journalling code will explode. | ||
1695 | * | ||
1696 | * So what we do is to mark the page "pending dirty" and next time writepage | ||
1697 | * is called, propagate that into the buffers appropriately. | ||
1698 | */ | ||
1699 | static int ext3_journalled_set_page_dirty(struct page *page) | ||
1700 | { | ||
1701 | SetPageChecked(page); | ||
1702 | return __set_page_dirty_nobuffers(page); | ||
1703 | } | ||
1704 | |||
1705 | static const struct address_space_operations ext3_ordered_aops = { | ||
1706 | .readpage = ext3_readpage, | ||
1707 | .readpages = ext3_readpages, | ||
1708 | .writepage = ext3_ordered_writepage, | ||
1709 | .sync_page = block_sync_page, | ||
1710 | .prepare_write = ext3_prepare_write, | ||
1711 | .commit_write = ext3_ordered_commit_write, | ||
1712 | .bmap = ext3_bmap, | ||
1713 | .invalidatepage = ext3_invalidatepage, | ||
1714 | .releasepage = ext3_releasepage, | ||
1715 | .direct_IO = ext3_direct_IO, | ||
1716 | .migratepage = buffer_migrate_page, | ||
1717 | }; | ||
1718 | |||
1719 | static const struct address_space_operations ext3_writeback_aops = { | ||
1720 | .readpage = ext3_readpage, | ||
1721 | .readpages = ext3_readpages, | ||
1722 | .writepage = ext3_writeback_writepage, | ||
1723 | .sync_page = block_sync_page, | ||
1724 | .prepare_write = ext3_prepare_write, | ||
1725 | .commit_write = ext3_writeback_commit_write, | ||
1726 | .bmap = ext3_bmap, | ||
1727 | .invalidatepage = ext3_invalidatepage, | ||
1728 | .releasepage = ext3_releasepage, | ||
1729 | .direct_IO = ext3_direct_IO, | ||
1730 | .migratepage = buffer_migrate_page, | ||
1731 | }; | ||
1732 | |||
1733 | static const struct address_space_operations ext3_journalled_aops = { | ||
1734 | .readpage = ext3_readpage, | ||
1735 | .readpages = ext3_readpages, | ||
1736 | .writepage = ext3_journalled_writepage, | ||
1737 | .sync_page = block_sync_page, | ||
1738 | .prepare_write = ext3_prepare_write, | ||
1739 | .commit_write = ext3_journalled_commit_write, | ||
1740 | .set_page_dirty = ext3_journalled_set_page_dirty, | ||
1741 | .bmap = ext3_bmap, | ||
1742 | .invalidatepage = ext3_invalidatepage, | ||
1743 | .releasepage = ext3_releasepage, | ||
1744 | }; | ||
1745 | |||
1746 | void ext3_set_aops(struct inode *inode) | ||
1747 | { | ||
1748 | if (ext3_should_order_data(inode)) | ||
1749 | inode->i_mapping->a_ops = &ext3_ordered_aops; | ||
1750 | else if (ext3_should_writeback_data(inode)) | ||
1751 | inode->i_mapping->a_ops = &ext3_writeback_aops; | ||
1752 | else | ||
1753 | inode->i_mapping->a_ops = &ext3_journalled_aops; | ||
1754 | } | ||
1755 | |||
1756 | /* | ||
1757 | * ext3_block_truncate_page() zeroes out a mapping from file offset `from' | ||
1758 | * up to the end of the block which corresponds to `from'. | ||
1759 | * This required during truncate. We need to physically zero the tail end | ||
1760 | * of that block so it doesn't yield old data if the file is later grown. | ||
1761 | */ | ||
1762 | static int ext3_block_truncate_page(handle_t *handle, struct page *page, | ||
1763 | struct address_space *mapping, loff_t from) | ||
1764 | { | ||
1765 | ext3_fsblk_t index = from >> PAGE_CACHE_SHIFT; | ||
1766 | unsigned offset = from & (PAGE_CACHE_SIZE-1); | ||
1767 | unsigned blocksize, iblock, length, pos; | ||
1768 | struct inode *inode = mapping->host; | ||
1769 | struct buffer_head *bh; | ||
1770 | int err = 0; | ||
1771 | void *kaddr; | ||
1772 | |||
1773 | blocksize = inode->i_sb->s_blocksize; | ||
1774 | length = blocksize - (offset & (blocksize - 1)); | ||
1775 | iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); | ||
1776 | |||
1777 | /* | ||
1778 | * For "nobh" option, we can only work if we don't need to | ||
1779 | * read-in the page - otherwise we create buffers to do the IO. | ||
1780 | */ | ||
1781 | if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) && | ||
1782 | ext3_should_writeback_data(inode) && PageUptodate(page)) { | ||
1783 | kaddr = kmap_atomic(page, KM_USER0); | ||
1784 | memset(kaddr + offset, 0, length); | ||
1785 | flush_dcache_page(page); | ||
1786 | kunmap_atomic(kaddr, KM_USER0); | ||
1787 | set_page_dirty(page); | ||
1788 | goto unlock; | ||
1789 | } | ||
1790 | |||
1791 | if (!page_has_buffers(page)) | ||
1792 | create_empty_buffers(page, blocksize, 0); | ||
1793 | |||
1794 | /* Find the buffer that contains "offset" */ | ||
1795 | bh = page_buffers(page); | ||
1796 | pos = blocksize; | ||
1797 | while (offset >= pos) { | ||
1798 | bh = bh->b_this_page; | ||
1799 | iblock++; | ||
1800 | pos += blocksize; | ||
1801 | } | ||
1802 | |||
1803 | err = 0; | ||
1804 | if (buffer_freed(bh)) { | ||
1805 | BUFFER_TRACE(bh, "freed: skip"); | ||
1806 | goto unlock; | ||
1807 | } | ||
1808 | |||
1809 | if (!buffer_mapped(bh)) { | ||
1810 | BUFFER_TRACE(bh, "unmapped"); | ||
1811 | ext3_get_block(inode, iblock, bh, 0); | ||
1812 | /* unmapped? It's a hole - nothing to do */ | ||
1813 | if (!buffer_mapped(bh)) { | ||
1814 | BUFFER_TRACE(bh, "still unmapped"); | ||
1815 | goto unlock; | ||
1816 | } | ||
1817 | } | ||
1818 | |||
1819 | /* Ok, it's mapped. Make sure it's up-to-date */ | ||
1820 | if (PageUptodate(page)) | ||
1821 | set_buffer_uptodate(bh); | ||
1822 | |||
1823 | if (!buffer_uptodate(bh)) { | ||
1824 | err = -EIO; | ||
1825 | ll_rw_block(READ, 1, &bh); | ||
1826 | wait_on_buffer(bh); | ||
1827 | /* Uhhuh. Read error. Complain and punt. */ | ||
1828 | if (!buffer_uptodate(bh)) | ||
1829 | goto unlock; | ||
1830 | } | ||
1831 | |||
1832 | if (ext3_should_journal_data(inode)) { | ||
1833 | BUFFER_TRACE(bh, "get write access"); | ||
1834 | err = ext3_journal_get_write_access(handle, bh); | ||
1835 | if (err) | ||
1836 | goto unlock; | ||
1837 | } | ||
1838 | |||
1839 | kaddr = kmap_atomic(page, KM_USER0); | ||
1840 | memset(kaddr + offset, 0, length); | ||
1841 | flush_dcache_page(page); | ||
1842 | kunmap_atomic(kaddr, KM_USER0); | ||
1843 | |||
1844 | BUFFER_TRACE(bh, "zeroed end of block"); | ||
1845 | |||
1846 | err = 0; | ||
1847 | if (ext3_should_journal_data(inode)) { | ||
1848 | err = ext3_journal_dirty_metadata(handle, bh); | ||
1849 | } else { | ||
1850 | if (ext3_should_order_data(inode)) | ||
1851 | err = ext3_journal_dirty_data(handle, bh); | ||
1852 | mark_buffer_dirty(bh); | ||
1853 | } | ||
1854 | |||
1855 | unlock: | ||
1856 | unlock_page(page); | ||
1857 | page_cache_release(page); | ||
1858 | return err; | ||
1859 | } | ||
1860 | |||
1861 | /* | ||
1862 | * Probably it should be a library function... search for first non-zero word | ||
1863 | * or memcmp with zero_page, whatever is better for particular architecture. | ||
1864 | * Linus? | ||
1865 | */ | ||
1866 | static inline int all_zeroes(__le32 *p, __le32 *q) | ||
1867 | { | ||
1868 | while (p < q) | ||
1869 | if (*p++) | ||
1870 | return 0; | ||
1871 | return 1; | ||
1872 | } | ||
1873 | |||
1874 | /** | ||
1875 | * ext3_find_shared - find the indirect blocks for partial truncation. | ||
1876 | * @inode: inode in question | ||
1877 | * @depth: depth of the affected branch | ||
1878 | * @offsets: offsets of pointers in that branch (see ext3_block_to_path) | ||
1879 | * @chain: place to store the pointers to partial indirect blocks | ||
1880 | * @top: place to the (detached) top of branch | ||
1881 | * | ||
1882 | * This is a helper function used by ext3_truncate(). | ||
1883 | * | ||
1884 | * When we do truncate() we may have to clean the ends of several | ||
1885 | * indirect blocks but leave the blocks themselves alive. Block is | ||
1886 | * partially truncated if some data below the new i_size is refered | ||
1887 | * from it (and it is on the path to the first completely truncated | ||
1888 | * data block, indeed). We have to free the top of that path along | ||
1889 | * with everything to the right of the path. Since no allocation | ||
1890 | * past the truncation point is possible until ext3_truncate() | ||
1891 | * finishes, we may safely do the latter, but top of branch may | ||
1892 | * require special attention - pageout below the truncation point | ||
1893 | * might try to populate it. | ||
1894 | * | ||
1895 | * We atomically detach the top of branch from the tree, store the | ||
1896 | * block number of its root in *@top, pointers to buffer_heads of | ||
1897 | * partially truncated blocks - in @chain[].bh and pointers to | ||
1898 | * their last elements that should not be removed - in | ||
1899 | * @chain[].p. Return value is the pointer to last filled element | ||
1900 | * of @chain. | ||
1901 | * | ||
1902 | * The work left to caller to do the actual freeing of subtrees: | ||
1903 | * a) free the subtree starting from *@top | ||
1904 | * b) free the subtrees whose roots are stored in | ||
1905 | * (@chain[i].p+1 .. end of @chain[i].bh->b_data) | ||
1906 | * c) free the subtrees growing from the inode past the @chain[0]. | ||
1907 | * (no partially truncated stuff there). */ | ||
1908 | |||
1909 | static Indirect *ext3_find_shared(struct inode *inode, int depth, | ||
1910 | int offsets[4], Indirect chain[4], __le32 *top) | ||
1911 | { | ||
1912 | Indirect *partial, *p; | ||
1913 | int k, err; | ||
1914 | |||
1915 | *top = 0; | ||
1916 | /* Make k index the deepest non-null offest + 1 */ | ||
1917 | for (k = depth; k > 1 && !offsets[k-1]; k--) | ||
1918 | ; | ||
1919 | partial = ext3_get_branch(inode, k, offsets, chain, &err); | ||
1920 | /* Writer: pointers */ | ||
1921 | if (!partial) | ||
1922 | partial = chain + k-1; | ||
1923 | /* | ||
1924 | * If the branch acquired continuation since we've looked at it - | ||
1925 | * fine, it should all survive and (new) top doesn't belong to us. | ||
1926 | */ | ||
1927 | if (!partial->key && *partial->p) | ||
1928 | /* Writer: end */ | ||
1929 | goto no_top; | ||
1930 | for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--) | ||
1931 | ; | ||
1932 | /* | ||
1933 | * OK, we've found the last block that must survive. The rest of our | ||
1934 | * branch should be detached before unlocking. However, if that rest | ||
1935 | * of branch is all ours and does not grow immediately from the inode | ||
1936 | * it's easier to cheat and just decrement partial->p. | ||
1937 | */ | ||
1938 | if (p == chain + k - 1 && p > chain) { | ||
1939 | p->p--; | ||
1940 | } else { | ||
1941 | *top = *p->p; | ||
1942 | /* Nope, don't do this in ext3. Must leave the tree intact */ | ||
1943 | #if 0 | ||
1944 | *p->p = 0; | ||
1945 | #endif | ||
1946 | } | ||
1947 | /* Writer: end */ | ||
1948 | |||
1949 | while(partial > p) { | ||
1950 | brelse(partial->bh); | ||
1951 | partial--; | ||
1952 | } | ||
1953 | no_top: | ||
1954 | return partial; | ||
1955 | } | ||
1956 | |||
1957 | /* | ||
1958 | * Zero a number of block pointers in either an inode or an indirect block. | ||
1959 | * If we restart the transaction we must again get write access to the | ||
1960 | * indirect block for further modification. | ||
1961 | * | ||
1962 | * We release `count' blocks on disk, but (last - first) may be greater | ||
1963 | * than `count' because there can be holes in there. | ||
1964 | */ | ||
1965 | static void ext3_clear_blocks(handle_t *handle, struct inode *inode, | ||
1966 | struct buffer_head *bh, ext3_fsblk_t block_to_free, | ||
1967 | unsigned long count, __le32 *first, __le32 *last) | ||
1968 | { | ||
1969 | __le32 *p; | ||
1970 | if (try_to_extend_transaction(handle, inode)) { | ||
1971 | if (bh) { | ||
1972 | BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata"); | ||
1973 | ext3_journal_dirty_metadata(handle, bh); | ||
1974 | } | ||
1975 | ext3_mark_inode_dirty(handle, inode); | ||
1976 | ext3_journal_test_restart(handle, inode); | ||
1977 | if (bh) { | ||
1978 | BUFFER_TRACE(bh, "retaking write access"); | ||
1979 | ext3_journal_get_write_access(handle, bh); | ||
1980 | } | ||
1981 | } | ||
1982 | |||
1983 | /* | ||
1984 | * Any buffers which are on the journal will be in memory. We find | ||
1985 | * them on the hash table so journal_revoke() will run journal_forget() | ||
1986 | * on them. We've already detached each block from the file, so | ||
1987 | * bforget() in journal_forget() should be safe. | ||
1988 | * | ||
1989 | * AKPM: turn on bforget in journal_forget()!!! | ||
1990 | */ | ||
1991 | for (p = first; p < last; p++) { | ||
1992 | u32 nr = le32_to_cpu(*p); | ||
1993 | if (nr) { | ||
1994 | struct buffer_head *bh; | ||
1995 | |||
1996 | *p = 0; | ||
1997 | bh = sb_find_get_block(inode->i_sb, nr); | ||
1998 | ext3_forget(handle, 0, inode, bh, nr); | ||
1999 | } | ||
2000 | } | ||
2001 | |||
2002 | ext3_free_blocks(handle, inode, block_to_free, count); | ||
2003 | } | ||
2004 | |||
2005 | /** | ||
2006 | * ext3_free_data - free a list of data blocks | ||
2007 | * @handle: handle for this transaction | ||
2008 | * @inode: inode we are dealing with | ||
2009 | * @this_bh: indirect buffer_head which contains *@first and *@last | ||
2010 | * @first: array of block numbers | ||
2011 | * @last: points immediately past the end of array | ||
2012 | * | ||
2013 | * We are freeing all blocks refered from that array (numbers are stored as | ||
2014 | * little-endian 32-bit) and updating @inode->i_blocks appropriately. | ||
2015 | * | ||
2016 | * We accumulate contiguous runs of blocks to free. Conveniently, if these | ||
2017 | * blocks are contiguous then releasing them at one time will only affect one | ||
2018 | * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't | ||
2019 | * actually use a lot of journal space. | ||
2020 | * | ||
2021 | * @this_bh will be %NULL if @first and @last point into the inode's direct | ||
2022 | * block pointers. | ||
2023 | */ | ||
2024 | static void ext3_free_data(handle_t *handle, struct inode *inode, | ||
2025 | struct buffer_head *this_bh, | ||
2026 | __le32 *first, __le32 *last) | ||
2027 | { | ||
2028 | ext3_fsblk_t block_to_free = 0; /* Starting block # of a run */ | ||
2029 | unsigned long count = 0; /* Number of blocks in the run */ | ||
2030 | __le32 *block_to_free_p = NULL; /* Pointer into inode/ind | ||
2031 | corresponding to | ||
2032 | block_to_free */ | ||
2033 | ext3_fsblk_t nr; /* Current block # */ | ||
2034 | __le32 *p; /* Pointer into inode/ind | ||
2035 | for current block */ | ||
2036 | int err; | ||
2037 | |||
2038 | if (this_bh) { /* For indirect block */ | ||
2039 | BUFFER_TRACE(this_bh, "get_write_access"); | ||
2040 | err = ext3_journal_get_write_access(handle, this_bh); | ||
2041 | /* Important: if we can't update the indirect pointers | ||
2042 | * to the blocks, we can't free them. */ | ||
2043 | if (err) | ||
2044 | return; | ||
2045 | } | ||
2046 | |||
2047 | for (p = first; p < last; p++) { | ||
2048 | nr = le32_to_cpu(*p); | ||
2049 | if (nr) { | ||
2050 | /* accumulate blocks to free if they're contiguous */ | ||
2051 | if (count == 0) { | ||
2052 | block_to_free = nr; | ||
2053 | block_to_free_p = p; | ||
2054 | count = 1; | ||
2055 | } else if (nr == block_to_free + count) { | ||
2056 | count++; | ||
2057 | } else { | ||
2058 | ext3_clear_blocks(handle, inode, this_bh, | ||
2059 | block_to_free, | ||
2060 | count, block_to_free_p, p); | ||
2061 | block_to_free = nr; | ||
2062 | block_to_free_p = p; | ||
2063 | count = 1; | ||
2064 | } | ||
2065 | } | ||
2066 | } | ||
2067 | |||
2068 | if (count > 0) | ||
2069 | ext3_clear_blocks(handle, inode, this_bh, block_to_free, | ||
2070 | count, block_to_free_p, p); | ||
2071 | |||
2072 | if (this_bh) { | ||
2073 | BUFFER_TRACE(this_bh, "call ext3_journal_dirty_metadata"); | ||
2074 | ext3_journal_dirty_metadata(handle, this_bh); | ||
2075 | } | ||
2076 | } | ||
2077 | |||
2078 | /** | ||
2079 | * ext3_free_branches - free an array of branches | ||
2080 | * @handle: JBD handle for this transaction | ||
2081 | * @inode: inode we are dealing with | ||
2082 | * @parent_bh: the buffer_head which contains *@first and *@last | ||
2083 | * @first: array of block numbers | ||
2084 | * @last: pointer immediately past the end of array | ||
2085 | * @depth: depth of the branches to free | ||
2086 | * | ||
2087 | * We are freeing all blocks refered from these branches (numbers are | ||
2088 | * stored as little-endian 32-bit) and updating @inode->i_blocks | ||
2089 | * appropriately. | ||
2090 | */ | ||
2091 | static void ext3_free_branches(handle_t *handle, struct inode *inode, | ||
2092 | struct buffer_head *parent_bh, | ||
2093 | __le32 *first, __le32 *last, int depth) | ||
2094 | { | ||
2095 | ext3_fsblk_t nr; | ||
2096 | __le32 *p; | ||
2097 | |||
2098 | if (is_handle_aborted(handle)) | ||
2099 | return; | ||
2100 | |||
2101 | if (depth--) { | ||
2102 | struct buffer_head *bh; | ||
2103 | int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb); | ||
2104 | p = last; | ||
2105 | while (--p >= first) { | ||
2106 | nr = le32_to_cpu(*p); | ||
2107 | if (!nr) | ||
2108 | continue; /* A hole */ | ||
2109 | |||
2110 | /* Go read the buffer for the next level down */ | ||
2111 | bh = sb_bread(inode->i_sb, nr); | ||
2112 | |||
2113 | /* | ||
2114 | * A read failure? Report error and clear slot | ||
2115 | * (should be rare). | ||
2116 | */ | ||
2117 | if (!bh) { | ||
2118 | ext3_error(inode->i_sb, "ext3_free_branches", | ||
2119 | "Read failure, inode=%lu, block="E3FSBLK, | ||
2120 | inode->i_ino, nr); | ||
2121 | continue; | ||
2122 | } | ||
2123 | |||
2124 | /* This zaps the entire block. Bottom up. */ | ||
2125 | BUFFER_TRACE(bh, "free child branches"); | ||
2126 | ext3_free_branches(handle, inode, bh, | ||
2127 | (__le32*)bh->b_data, | ||
2128 | (__le32*)bh->b_data + addr_per_block, | ||
2129 | depth); | ||
2130 | |||
2131 | /* | ||
2132 | * We've probably journalled the indirect block several | ||
2133 | * times during the truncate. But it's no longer | ||
2134 | * needed and we now drop it from the transaction via | ||
2135 | * journal_revoke(). | ||
2136 | * | ||
2137 | * That's easy if it's exclusively part of this | ||
2138 | * transaction. But if it's part of the committing | ||
2139 | * transaction then journal_forget() will simply | ||
2140 | * brelse() it. That means that if the underlying | ||
2141 | * block is reallocated in ext3_get_block(), | ||
2142 | * unmap_underlying_metadata() will find this block | ||
2143 | * and will try to get rid of it. damn, damn. | ||
2144 | * | ||
2145 | * If this block has already been committed to the | ||
2146 | * journal, a revoke record will be written. And | ||
2147 | * revoke records must be emitted *before* clearing | ||
2148 | * this block's bit in the bitmaps. | ||
2149 | */ | ||
2150 | ext3_forget(handle, 1, inode, bh, bh->b_blocknr); | ||
2151 | |||
2152 | /* | ||
2153 | * Everything below this this pointer has been | ||
2154 | * released. Now let this top-of-subtree go. | ||
2155 | * | ||
2156 | * We want the freeing of this indirect block to be | ||
2157 | * atomic in the journal with the updating of the | ||
2158 | * bitmap block which owns it. So make some room in | ||
2159 | * the journal. | ||
2160 | * | ||
2161 | * We zero the parent pointer *after* freeing its | ||
2162 | * pointee in the bitmaps, so if extend_transaction() | ||
2163 | * for some reason fails to put the bitmap changes and | ||
2164 | * the release into the same transaction, recovery | ||
2165 | * will merely complain about releasing a free block, | ||
2166 | * rather than leaking blocks. | ||
2167 | */ | ||
2168 | if (is_handle_aborted(handle)) | ||
2169 | return; | ||
2170 | if (try_to_extend_transaction(handle, inode)) { | ||
2171 | ext3_mark_inode_dirty(handle, inode); | ||
2172 | ext3_journal_test_restart(handle, inode); | ||
2173 | } | ||
2174 | |||
2175 | ext3_free_blocks(handle, inode, nr, 1); | ||
2176 | |||
2177 | if (parent_bh) { | ||
2178 | /* | ||
2179 | * The block which we have just freed is | ||
2180 | * pointed to by an indirect block: journal it | ||
2181 | */ | ||
2182 | BUFFER_TRACE(parent_bh, "get_write_access"); | ||
2183 | if (!ext3_journal_get_write_access(handle, | ||
2184 | parent_bh)){ | ||
2185 | *p = 0; | ||
2186 | BUFFER_TRACE(parent_bh, | ||
2187 | "call ext3_journal_dirty_metadata"); | ||
2188 | ext3_journal_dirty_metadata(handle, | ||
2189 | parent_bh); | ||
2190 | } | ||
2191 | } | ||
2192 | } | ||
2193 | } else { | ||
2194 | /* We have reached the bottom of the tree. */ | ||
2195 | BUFFER_TRACE(parent_bh, "free data blocks"); | ||
2196 | ext3_free_data(handle, inode, parent_bh, first, last); | ||
2197 | } | ||
2198 | } | ||
2199 | |||
2200 | /* | ||
2201 | * ext3_truncate() | ||
2202 | * | ||
2203 | * We block out ext3_get_block() block instantiations across the entire | ||
2204 | * transaction, and VFS/VM ensures that ext3_truncate() cannot run | ||
2205 | * simultaneously on behalf of the same inode. | ||
2206 | * | ||
2207 | * As we work through the truncate and commmit bits of it to the journal there | ||
2208 | * is one core, guiding principle: the file's tree must always be consistent on | ||
2209 | * disk. We must be able to restart the truncate after a crash. | ||
2210 | * | ||
2211 | * The file's tree may be transiently inconsistent in memory (although it | ||
2212 | * probably isn't), but whenever we close off and commit a journal transaction, | ||
2213 | * the contents of (the filesystem + the journal) must be consistent and | ||
2214 | * restartable. It's pretty simple, really: bottom up, right to left (although | ||
2215 | * left-to-right works OK too). | ||
2216 | * | ||
2217 | * Note that at recovery time, journal replay occurs *before* the restart of | ||
2218 | * truncate against the orphan inode list. | ||
2219 | * | ||
2220 | * The committed inode has the new, desired i_size (which is the same as | ||
2221 | * i_disksize in this case). After a crash, ext3_orphan_cleanup() will see | ||
2222 | * that this inode's truncate did not complete and it will again call | ||
2223 | * ext3_truncate() to have another go. So there will be instantiated blocks | ||
2224 | * to the right of the truncation point in a crashed ext3 filesystem. But | ||
2225 | * that's fine - as long as they are linked from the inode, the post-crash | ||
2226 | * ext3_truncate() run will find them and release them. | ||
2227 | */ | ||
2228 | void ext3_truncate(struct inode *inode) | ||
2229 | { | ||
2230 | handle_t *handle; | ||
2231 | struct ext3_inode_info *ei = EXT3_I(inode); | ||
2232 | __le32 *i_data = ei->i_data; | ||
2233 | int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb); | ||
2234 | struct address_space *mapping = inode->i_mapping; | ||
2235 | int offsets[4]; | ||
2236 | Indirect chain[4]; | ||
2237 | Indirect *partial; | ||
2238 | __le32 nr = 0; | ||
2239 | int n; | ||
2240 | long last_block; | ||
2241 | unsigned blocksize = inode->i_sb->s_blocksize; | ||
2242 | struct page *page; | ||
2243 | |||
2244 | if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || | ||
2245 | S_ISLNK(inode->i_mode))) | ||
2246 | return; | ||
2247 | if (ext3_inode_is_fast_symlink(inode)) | ||
2248 | return; | ||
2249 | if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) | ||
2250 | return; | ||
2251 | |||
2252 | /* | ||
2253 | * We have to lock the EOF page here, because lock_page() nests | ||
2254 | * outside journal_start(). | ||
2255 | */ | ||
2256 | if ((inode->i_size & (blocksize - 1)) == 0) { | ||
2257 | /* Block boundary? Nothing to do */ | ||
2258 | page = NULL; | ||
2259 | } else { | ||
2260 | page = grab_cache_page(mapping, | ||
2261 | inode->i_size >> PAGE_CACHE_SHIFT); | ||
2262 | if (!page) | ||
2263 | return; | ||
2264 | } | ||
2265 | |||
2266 | handle = start_transaction(inode); | ||
2267 | if (IS_ERR(handle)) { | ||
2268 | if (page) { | ||
2269 | clear_highpage(page); | ||
2270 | flush_dcache_page(page); | ||
2271 | unlock_page(page); | ||
2272 | page_cache_release(page); | ||
2273 | } | ||
2274 | return; /* AKPM: return what? */ | ||
2275 | } | ||
2276 | |||
2277 | last_block = (inode->i_size + blocksize-1) | ||
2278 | >> EXT3_BLOCK_SIZE_BITS(inode->i_sb); | ||
2279 | |||
2280 | if (page) | ||
2281 | ext3_block_truncate_page(handle, page, mapping, inode->i_size); | ||
2282 | |||
2283 | n = ext3_block_to_path(inode, last_block, offsets, NULL); | ||
2284 | if (n == 0) | ||
2285 | goto out_stop; /* error */ | ||
2286 | |||
2287 | /* | ||
2288 | * OK. This truncate is going to happen. We add the inode to the | ||
2289 | * orphan list, so that if this truncate spans multiple transactions, | ||
2290 | * and we crash, we will resume the truncate when the filesystem | ||
2291 | * recovers. It also marks the inode dirty, to catch the new size. | ||
2292 | * | ||
2293 | * Implication: the file must always be in a sane, consistent | ||
2294 | * truncatable state while each transaction commits. | ||
2295 | */ | ||
2296 | if (ext3_orphan_add(handle, inode)) | ||
2297 | goto out_stop; | ||
2298 | |||
2299 | /* | ||
2300 | * The orphan list entry will now protect us from any crash which | ||
2301 | * occurs before the truncate completes, so it is now safe to propagate | ||
2302 | * the new, shorter inode size (held for now in i_size) into the | ||
2303 | * on-disk inode. We do this via i_disksize, which is the value which | ||
2304 | * ext3 *really* writes onto the disk inode. | ||
2305 | */ | ||
2306 | ei->i_disksize = inode->i_size; | ||
2307 | |||
2308 | /* | ||
2309 | * From here we block out all ext3_get_block() callers who want to | ||
2310 | * modify the block allocation tree. | ||
2311 | */ | ||
2312 | mutex_lock(&ei->truncate_mutex); | ||
2313 | |||
2314 | if (n == 1) { /* direct blocks */ | ||
2315 | ext3_free_data(handle, inode, NULL, i_data+offsets[0], | ||
2316 | i_data + EXT3_NDIR_BLOCKS); | ||
2317 | goto do_indirects; | ||
2318 | } | ||
2319 | |||
2320 | partial = ext3_find_shared(inode, n, offsets, chain, &nr); | ||
2321 | /* Kill the top of shared branch (not detached) */ | ||
2322 | if (nr) { | ||
2323 | if (partial == chain) { | ||
2324 | /* Shared branch grows from the inode */ | ||
2325 | ext3_free_branches(handle, inode, NULL, | ||
2326 | &nr, &nr+1, (chain+n-1) - partial); | ||
2327 | *partial->p = 0; | ||
2328 | /* | ||
2329 | * We mark the inode dirty prior to restart, | ||
2330 | * and prior to stop. No need for it here. | ||
2331 | */ | ||
2332 | } else { | ||
2333 | /* Shared branch grows from an indirect block */ | ||
2334 | BUFFER_TRACE(partial->bh, "get_write_access"); | ||
2335 | ext3_free_branches(handle, inode, partial->bh, | ||
2336 | partial->p, | ||
2337 | partial->p+1, (chain+n-1) - partial); | ||
2338 | } | ||
2339 | } | ||
2340 | /* Clear the ends of indirect blocks on the shared branch */ | ||
2341 | while (partial > chain) { | ||
2342 | ext3_free_branches(handle, inode, partial->bh, partial->p + 1, | ||
2343 | (__le32*)partial->bh->b_data+addr_per_block, | ||
2344 | (chain+n-1) - partial); | ||
2345 | BUFFER_TRACE(partial->bh, "call brelse"); | ||
2346 | brelse (partial->bh); | ||
2347 | partial--; | ||
2348 | } | ||
2349 | do_indirects: | ||
2350 | /* Kill the remaining (whole) subtrees */ | ||
2351 | switch (offsets[0]) { | ||
2352 | default: | ||
2353 | nr = i_data[EXT3_IND_BLOCK]; | ||
2354 | if (nr) { | ||
2355 | ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 1); | ||
2356 | i_data[EXT3_IND_BLOCK] = 0; | ||
2357 | } | ||
2358 | case EXT3_IND_BLOCK: | ||
2359 | nr = i_data[EXT3_DIND_BLOCK]; | ||
2360 | if (nr) { | ||
2361 | ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 2); | ||
2362 | i_data[EXT3_DIND_BLOCK] = 0; | ||
2363 | } | ||
2364 | case EXT3_DIND_BLOCK: | ||
2365 | nr = i_data[EXT3_TIND_BLOCK]; | ||
2366 | if (nr) { | ||
2367 | ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 3); | ||
2368 | i_data[EXT3_TIND_BLOCK] = 0; | ||
2369 | } | ||
2370 | case EXT3_TIND_BLOCK: | ||
2371 | ; | ||
2372 | } | ||
2373 | |||
2374 | ext3_discard_reservation(inode); | ||
2375 | |||
2376 | mutex_unlock(&ei->truncate_mutex); | ||
2377 | inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC; | ||
2378 | ext3_mark_inode_dirty(handle, inode); | ||
2379 | |||
2380 | /* | ||
2381 | * In a multi-transaction truncate, we only make the final transaction | ||
2382 | * synchronous | ||
2383 | */ | ||
2384 | if (IS_SYNC(inode)) | ||
2385 | handle->h_sync = 1; | ||
2386 | out_stop: | ||
2387 | /* | ||
2388 | * If this was a simple ftruncate(), and the file will remain alive | ||
2389 | * then we need to clear up the orphan record which we created above. | ||
2390 | * However, if this was a real unlink then we were called by | ||
2391 | * ext3_delete_inode(), and we allow that function to clean up the | ||
2392 | * orphan info for us. | ||
2393 | */ | ||
2394 | if (inode->i_nlink) | ||
2395 | ext3_orphan_del(handle, inode); | ||
2396 | |||
2397 | ext3_journal_stop(handle); | ||
2398 | } | ||
2399 | |||
2400 | static ext3_fsblk_t ext3_get_inode_block(struct super_block *sb, | ||
2401 | unsigned long ino, struct ext3_iloc *iloc) | ||
2402 | { | ||
2403 | unsigned long desc, group_desc, block_group; | ||
2404 | unsigned long offset; | ||
2405 | ext3_fsblk_t block; | ||
2406 | struct buffer_head *bh; | ||
2407 | struct ext3_group_desc * gdp; | ||
2408 | |||
2409 | if (!ext3_valid_inum(sb, ino)) { | ||
2410 | /* | ||
2411 | * This error is already checked for in namei.c unless we are | ||
2412 | * looking at an NFS filehandle, in which case no error | ||
2413 | * report is needed | ||
2414 | */ | ||
2415 | return 0; | ||
2416 | } | ||
2417 | |||
2418 | block_group = (ino - 1) / EXT3_INODES_PER_GROUP(sb); | ||
2419 | if (block_group >= EXT3_SB(sb)->s_groups_count) { | ||
2420 | ext3_error(sb,"ext3_get_inode_block","group >= groups count"); | ||
2421 | return 0; | ||
2422 | } | ||
2423 | smp_rmb(); | ||
2424 | group_desc = block_group >> EXT3_DESC_PER_BLOCK_BITS(sb); | ||
2425 | desc = block_group & (EXT3_DESC_PER_BLOCK(sb) - 1); | ||
2426 | bh = EXT3_SB(sb)->s_group_desc[group_desc]; | ||
2427 | if (!bh) { | ||
2428 | ext3_error (sb, "ext3_get_inode_block", | ||
2429 | "Descriptor not loaded"); | ||
2430 | return 0; | ||
2431 | } | ||
2432 | |||
2433 | gdp = (struct ext3_group_desc *)bh->b_data; | ||
2434 | /* | ||
2435 | * Figure out the offset within the block group inode table | ||
2436 | */ | ||
2437 | offset = ((ino - 1) % EXT3_INODES_PER_GROUP(sb)) * | ||
2438 | EXT3_INODE_SIZE(sb); | ||
2439 | block = le32_to_cpu(gdp[desc].bg_inode_table) + | ||
2440 | (offset >> EXT3_BLOCK_SIZE_BITS(sb)); | ||
2441 | |||
2442 | iloc->block_group = block_group; | ||
2443 | iloc->offset = offset & (EXT3_BLOCK_SIZE(sb) - 1); | ||
2444 | return block; | ||
2445 | } | ||
2446 | |||
2447 | /* | ||
2448 | * ext3_get_inode_loc returns with an extra refcount against the inode's | ||
2449 | * underlying buffer_head on success. If 'in_mem' is true, we have all | ||
2450 | * data in memory that is needed to recreate the on-disk version of this | ||
2451 | * inode. | ||
2452 | */ | ||
2453 | static int __ext3_get_inode_loc(struct inode *inode, | ||
2454 | struct ext3_iloc *iloc, int in_mem) | ||
2455 | { | ||
2456 | ext3_fsblk_t block; | ||
2457 | struct buffer_head *bh; | ||
2458 | |||
2459 | block = ext3_get_inode_block(inode->i_sb, inode->i_ino, iloc); | ||
2460 | if (!block) | ||
2461 | return -EIO; | ||
2462 | |||
2463 | bh = sb_getblk(inode->i_sb, block); | ||
2464 | if (!bh) { | ||
2465 | ext3_error (inode->i_sb, "ext3_get_inode_loc", | ||
2466 | "unable to read inode block - " | ||
2467 | "inode=%lu, block="E3FSBLK, | ||
2468 | inode->i_ino, block); | ||
2469 | return -EIO; | ||
2470 | } | ||
2471 | if (!buffer_uptodate(bh)) { | ||
2472 | lock_buffer(bh); | ||
2473 | if (buffer_uptodate(bh)) { | ||
2474 | /* someone brought it uptodate while we waited */ | ||
2475 | unlock_buffer(bh); | ||
2476 | goto has_buffer; | ||
2477 | } | ||
2478 | |||
2479 | /* | ||
2480 | * If we have all information of the inode in memory and this | ||
2481 | * is the only valid inode in the block, we need not read the | ||
2482 | * block. | ||
2483 | */ | ||
2484 | if (in_mem) { | ||
2485 | struct buffer_head *bitmap_bh; | ||
2486 | struct ext3_group_desc *desc; | ||
2487 | int inodes_per_buffer; | ||
2488 | int inode_offset, i; | ||
2489 | int block_group; | ||
2490 | int start; | ||
2491 | |||
2492 | block_group = (inode->i_ino - 1) / | ||
2493 | EXT3_INODES_PER_GROUP(inode->i_sb); | ||
2494 | inodes_per_buffer = bh->b_size / | ||
2495 | EXT3_INODE_SIZE(inode->i_sb); | ||
2496 | inode_offset = ((inode->i_ino - 1) % | ||
2497 | EXT3_INODES_PER_GROUP(inode->i_sb)); | ||
2498 | start = inode_offset & ~(inodes_per_buffer - 1); | ||
2499 | |||
2500 | /* Is the inode bitmap in cache? */ | ||
2501 | desc = ext3_get_group_desc(inode->i_sb, | ||
2502 | block_group, NULL); | ||
2503 | if (!desc) | ||
2504 | goto make_io; | ||
2505 | |||
2506 | bitmap_bh = sb_getblk(inode->i_sb, | ||
2507 | le32_to_cpu(desc->bg_inode_bitmap)); | ||
2508 | if (!bitmap_bh) | ||
2509 | goto make_io; | ||
2510 | |||
2511 | /* | ||
2512 | * If the inode bitmap isn't in cache then the | ||
2513 | * optimisation may end up performing two reads instead | ||
2514 | * of one, so skip it. | ||
2515 | */ | ||
2516 | if (!buffer_uptodate(bitmap_bh)) { | ||
2517 | brelse(bitmap_bh); | ||
2518 | goto make_io; | ||
2519 | } | ||
2520 | for (i = start; i < start + inodes_per_buffer; i++) { | ||
2521 | if (i == inode_offset) | ||
2522 | continue; | ||
2523 | if (ext3_test_bit(i, bitmap_bh->b_data)) | ||
2524 | break; | ||
2525 | } | ||
2526 | brelse(bitmap_bh); | ||
2527 | if (i == start + inodes_per_buffer) { | ||
2528 | /* all other inodes are free, so skip I/O */ | ||
2529 | memset(bh->b_data, 0, bh->b_size); | ||
2530 | set_buffer_uptodate(bh); | ||
2531 | unlock_buffer(bh); | ||
2532 | goto has_buffer; | ||
2533 | } | ||
2534 | } | ||
2535 | |||
2536 | make_io: | ||
2537 | /* | ||
2538 | * There are other valid inodes in the buffer, this inode | ||
2539 | * has in-inode xattrs, or we don't have this inode in memory. | ||
2540 | * Read the block from disk. | ||
2541 | */ | ||
2542 | get_bh(bh); | ||
2543 | bh->b_end_io = end_buffer_read_sync; | ||
2544 | submit_bh(READ_META, bh); | ||
2545 | wait_on_buffer(bh); | ||
2546 | if (!buffer_uptodate(bh)) { | ||
2547 | ext3_error(inode->i_sb, "ext3_get_inode_loc", | ||
2548 | "unable to read inode block - " | ||
2549 | "inode=%lu, block="E3FSBLK, | ||
2550 | inode->i_ino, block); | ||
2551 | brelse(bh); | ||
2552 | return -EIO; | ||
2553 | } | ||
2554 | } | ||
2555 | has_buffer: | ||
2556 | iloc->bh = bh; | ||
2557 | return 0; | ||
2558 | } | ||
2559 | |||
2560 | int ext3_get_inode_loc(struct inode *inode, struct ext3_iloc *iloc) | ||
2561 | { | ||
2562 | /* We have all inode data except xattrs in memory here. */ | ||
2563 | return __ext3_get_inode_loc(inode, iloc, | ||
2564 | !(EXT3_I(inode)->i_state & EXT3_STATE_XATTR)); | ||
2565 | } | ||
2566 | |||
2567 | void ext3_set_inode_flags(struct inode *inode) | ||
2568 | { | ||
2569 | unsigned int flags = EXT3_I(inode)->i_flags; | ||
2570 | |||
2571 | inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); | ||
2572 | if (flags & EXT3_SYNC_FL) | ||
2573 | inode->i_flags |= S_SYNC; | ||
2574 | if (flags & EXT3_APPEND_FL) | ||
2575 | inode->i_flags |= S_APPEND; | ||
2576 | if (flags & EXT3_IMMUTABLE_FL) | ||
2577 | inode->i_flags |= S_IMMUTABLE; | ||
2578 | if (flags & EXT3_NOATIME_FL) | ||
2579 | inode->i_flags |= S_NOATIME; | ||
2580 | if (flags & EXT3_DIRSYNC_FL) | ||
2581 | inode->i_flags |= S_DIRSYNC; | ||
2582 | } | ||
2583 | |||
2584 | void ext3_read_inode(struct inode * inode) | ||
2585 | { | ||
2586 | struct ext3_iloc iloc; | ||
2587 | struct ext3_inode *raw_inode; | ||
2588 | struct ext3_inode_info *ei = EXT3_I(inode); | ||
2589 | struct buffer_head *bh; | ||
2590 | int block; | ||
2591 | |||
2592 | #ifdef CONFIG_EXT3_FS_POSIX_ACL | ||
2593 | ei->i_acl = EXT3_ACL_NOT_CACHED; | ||
2594 | ei->i_default_acl = EXT3_ACL_NOT_CACHED; | ||
2595 | #endif | ||
2596 | ei->i_block_alloc_info = NULL; | ||
2597 | |||
2598 | if (__ext3_get_inode_loc(inode, &iloc, 0)) | ||
2599 | goto bad_inode; | ||
2600 | bh = iloc.bh; | ||
2601 | raw_inode = ext3_raw_inode(&iloc); | ||
2602 | inode->i_mode = le16_to_cpu(raw_inode->i_mode); | ||
2603 | inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); | ||
2604 | inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); | ||
2605 | if(!(test_opt (inode->i_sb, NO_UID32))) { | ||
2606 | inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; | ||
2607 | inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; | ||
2608 | } | ||
2609 | inode->i_nlink = le16_to_cpu(raw_inode->i_links_count); | ||
2610 | inode->i_size = le32_to_cpu(raw_inode->i_size); | ||
2611 | inode->i_atime.tv_sec = le32_to_cpu(raw_inode->i_atime); | ||
2612 | inode->i_ctime.tv_sec = le32_to_cpu(raw_inode->i_ctime); | ||
2613 | inode->i_mtime.tv_sec = le32_to_cpu(raw_inode->i_mtime); | ||
2614 | inode->i_atime.tv_nsec = inode->i_ctime.tv_nsec = inode->i_mtime.tv_nsec = 0; | ||
2615 | |||
2616 | ei->i_state = 0; | ||
2617 | ei->i_dir_start_lookup = 0; | ||
2618 | ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); | ||
2619 | /* We now have enough fields to check if the inode was active or not. | ||
2620 | * This is needed because nfsd might try to access dead inodes | ||
2621 | * the test is that same one that e2fsck uses | ||
2622 | * NeilBrown 1999oct15 | ||
2623 | */ | ||
2624 | if (inode->i_nlink == 0) { | ||
2625 | if (inode->i_mode == 0 || | ||
2626 | !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ORPHAN_FS)) { | ||
2627 | /* this inode is deleted */ | ||
2628 | brelse (bh); | ||
2629 | goto bad_inode; | ||
2630 | } | ||
2631 | /* The only unlinked inodes we let through here have | ||
2632 | * valid i_mode and are being read by the orphan | ||
2633 | * recovery code: that's fine, we're about to complete | ||
2634 | * the process of deleting those. */ | ||
2635 | } | ||
2636 | inode->i_blocks = le32_to_cpu(raw_inode->i_blocks); | ||
2637 | ei->i_flags = le32_to_cpu(raw_inode->i_flags); | ||
2638 | #ifdef EXT3_FRAGMENTS | ||
2639 | ei->i_faddr = le32_to_cpu(raw_inode->i_faddr); | ||
2640 | ei->i_frag_no = raw_inode->i_frag; | ||
2641 | ei->i_frag_size = raw_inode->i_fsize; | ||
2642 | #endif | ||
2643 | ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl); | ||
2644 | if (!S_ISREG(inode->i_mode)) { | ||
2645 | ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl); | ||
2646 | } else { | ||
2647 | inode->i_size |= | ||
2648 | ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32; | ||
2649 | } | ||
2650 | ei->i_disksize = inode->i_size; | ||
2651 | inode->i_generation = le32_to_cpu(raw_inode->i_generation); | ||
2652 | ei->i_block_group = iloc.block_group; | ||
2653 | /* | ||
2654 | * NOTE! The in-memory inode i_data array is in little-endian order | ||
2655 | * even on big-endian machines: we do NOT byteswap the block numbers! | ||
2656 | */ | ||
2657 | for (block = 0; block < EXT3_N_BLOCKS; block++) | ||
2658 | ei->i_data[block] = raw_inode->i_block[block]; | ||
2659 | INIT_LIST_HEAD(&ei->i_orphan); | ||
2660 | |||
2661 | if (inode->i_ino >= EXT3_FIRST_INO(inode->i_sb) + 1 && | ||
2662 | EXT3_INODE_SIZE(inode->i_sb) > EXT3_GOOD_OLD_INODE_SIZE) { | ||
2663 | /* | ||
2664 | * When mke2fs creates big inodes it does not zero out | ||
2665 | * the unused bytes above EXT3_GOOD_OLD_INODE_SIZE, | ||
2666 | * so ignore those first few inodes. | ||
2667 | */ | ||
2668 | ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); | ||
2669 | if (EXT3_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > | ||
2670 | EXT3_INODE_SIZE(inode->i_sb)) | ||
2671 | goto bad_inode; | ||
2672 | if (ei->i_extra_isize == 0) { | ||
2673 | /* The extra space is currently unused. Use it. */ | ||
2674 | ei->i_extra_isize = sizeof(struct ext3_inode) - | ||
2675 | EXT3_GOOD_OLD_INODE_SIZE; | ||
2676 | } else { | ||
2677 | __le32 *magic = (void *)raw_inode + | ||
2678 | EXT3_GOOD_OLD_INODE_SIZE + | ||
2679 | ei->i_extra_isize; | ||
2680 | if (*magic == cpu_to_le32(EXT3_XATTR_MAGIC)) | ||
2681 | ei->i_state |= EXT3_STATE_XATTR; | ||
2682 | } | ||
2683 | } else | ||
2684 | ei->i_extra_isize = 0; | ||
2685 | |||
2686 | if (S_ISREG(inode->i_mode)) { | ||
2687 | inode->i_op = &ext3_file_inode_operations; | ||
2688 | inode->i_fop = &ext3_file_operations; | ||
2689 | ext3_set_aops(inode); | ||
2690 | } else if (S_ISDIR(inode->i_mode)) { | ||
2691 | inode->i_op = &ext3_dir_inode_operations; | ||
2692 | inode->i_fop = &ext3_dir_operations; | ||
2693 | } else if (S_ISLNK(inode->i_mode)) { | ||
2694 | if (ext3_inode_is_fast_symlink(inode)) | ||
2695 | inode->i_op = &ext3_fast_symlink_inode_operations; | ||
2696 | else { | ||
2697 | inode->i_op = &ext3_symlink_inode_operations; | ||
2698 | ext3_set_aops(inode); | ||
2699 | } | ||
2700 | } else { | ||
2701 | inode->i_op = &ext3_special_inode_operations; | ||
2702 | if (raw_inode->i_block[0]) | ||
2703 | init_special_inode(inode, inode->i_mode, | ||
2704 | old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); | ||
2705 | else | ||
2706 | init_special_inode(inode, inode->i_mode, | ||
2707 | new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); | ||
2708 | } | ||
2709 | brelse (iloc.bh); | ||
2710 | ext3_set_inode_flags(inode); | ||
2711 | return; | ||
2712 | |||
2713 | bad_inode: | ||
2714 | make_bad_inode(inode); | ||
2715 | return; | ||
2716 | } | ||
2717 | |||
2718 | /* | ||
2719 | * Post the struct inode info into an on-disk inode location in the | ||
2720 | * buffer-cache. This gobbles the caller's reference to the | ||
2721 | * buffer_head in the inode location struct. | ||
2722 | * | ||
2723 | * The caller must have write access to iloc->bh. | ||
2724 | */ | ||
2725 | static int ext3_do_update_inode(handle_t *handle, | ||
2726 | struct inode *inode, | ||
2727 | struct ext3_iloc *iloc) | ||
2728 | { | ||
2729 | struct ext3_inode *raw_inode = ext3_raw_inode(iloc); | ||
2730 | struct ext3_inode_info *ei = EXT3_I(inode); | ||
2731 | struct buffer_head *bh = iloc->bh; | ||
2732 | int err = 0, rc, block; | ||
2733 | |||
2734 | /* For fields not not tracking in the in-memory inode, | ||
2735 | * initialise them to zero for new inodes. */ | ||
2736 | if (ei->i_state & EXT3_STATE_NEW) | ||
2737 | memset(raw_inode, 0, EXT3_SB(inode->i_sb)->s_inode_size); | ||
2738 | |||
2739 | raw_inode->i_mode = cpu_to_le16(inode->i_mode); | ||
2740 | if(!(test_opt(inode->i_sb, NO_UID32))) { | ||
2741 | raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid)); | ||
2742 | raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid)); | ||
2743 | /* | ||
2744 | * Fix up interoperability with old kernels. Otherwise, old inodes get | ||
2745 | * re-used with the upper 16 bits of the uid/gid intact | ||
2746 | */ | ||
2747 | if(!ei->i_dtime) { | ||
2748 | raw_inode->i_uid_high = | ||
2749 | cpu_to_le16(high_16_bits(inode->i_uid)); | ||
2750 | raw_inode->i_gid_high = | ||
2751 | cpu_to_le16(high_16_bits(inode->i_gid)); | ||
2752 | } else { | ||
2753 | raw_inode->i_uid_high = 0; | ||
2754 | raw_inode->i_gid_high = 0; | ||
2755 | } | ||
2756 | } else { | ||
2757 | raw_inode->i_uid_low = | ||
2758 | cpu_to_le16(fs_high2lowuid(inode->i_uid)); | ||
2759 | raw_inode->i_gid_low = | ||
2760 | cpu_to_le16(fs_high2lowgid(inode->i_gid)); | ||
2761 | raw_inode->i_uid_high = 0; | ||
2762 | raw_inode->i_gid_high = 0; | ||
2763 | } | ||
2764 | raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); | ||
2765 | raw_inode->i_size = cpu_to_le32(ei->i_disksize); | ||
2766 | raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec); | ||
2767 | raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec); | ||
2768 | raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec); | ||
2769 | raw_inode->i_blocks = cpu_to_le32(inode->i_blocks); | ||
2770 | raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); | ||
2771 | raw_inode->i_flags = cpu_to_le32(ei->i_flags); | ||
2772 | #ifdef EXT3_FRAGMENTS | ||
2773 | raw_inode->i_faddr = cpu_to_le32(ei->i_faddr); | ||
2774 | raw_inode->i_frag = ei->i_frag_no; | ||
2775 | raw_inode->i_fsize = ei->i_frag_size; | ||
2776 | #endif | ||
2777 | raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl); | ||
2778 | if (!S_ISREG(inode->i_mode)) { | ||
2779 | raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl); | ||
2780 | } else { | ||
2781 | raw_inode->i_size_high = | ||
2782 | cpu_to_le32(ei->i_disksize >> 32); | ||
2783 | if (ei->i_disksize > 0x7fffffffULL) { | ||
2784 | struct super_block *sb = inode->i_sb; | ||
2785 | if (!EXT3_HAS_RO_COMPAT_FEATURE(sb, | ||
2786 | EXT3_FEATURE_RO_COMPAT_LARGE_FILE) || | ||
2787 | EXT3_SB(sb)->s_es->s_rev_level == | ||
2788 | cpu_to_le32(EXT3_GOOD_OLD_REV)) { | ||
2789 | /* If this is the first large file | ||
2790 | * created, add a flag to the superblock. | ||
2791 | */ | ||
2792 | err = ext3_journal_get_write_access(handle, | ||
2793 | EXT3_SB(sb)->s_sbh); | ||
2794 | if (err) | ||
2795 | goto out_brelse; | ||
2796 | ext3_update_dynamic_rev(sb); | ||
2797 | EXT3_SET_RO_COMPAT_FEATURE(sb, | ||
2798 | EXT3_FEATURE_RO_COMPAT_LARGE_FILE); | ||
2799 | sb->s_dirt = 1; | ||
2800 | handle->h_sync = 1; | ||
2801 | err = ext3_journal_dirty_metadata(handle, | ||
2802 | EXT3_SB(sb)->s_sbh); | ||
2803 | } | ||
2804 | } | ||
2805 | } | ||
2806 | raw_inode->i_generation = cpu_to_le32(inode->i_generation); | ||
2807 | if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { | ||
2808 | if (old_valid_dev(inode->i_rdev)) { | ||
2809 | raw_inode->i_block[0] = | ||
2810 | cpu_to_le32(old_encode_dev(inode->i_rdev)); | ||
2811 | raw_inode->i_block[1] = 0; | ||
2812 | } else { | ||
2813 | raw_inode->i_block[0] = 0; | ||
2814 | raw_inode->i_block[1] = | ||
2815 | cpu_to_le32(new_encode_dev(inode->i_rdev)); | ||
2816 | raw_inode->i_block[2] = 0; | ||
2817 | } | ||
2818 | } else for (block = 0; block < EXT3_N_BLOCKS; block++) | ||
2819 | raw_inode->i_block[block] = ei->i_data[block]; | ||
2820 | |||
2821 | if (ei->i_extra_isize) | ||
2822 | raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize); | ||
2823 | |||
2824 | BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata"); | ||
2825 | rc = ext3_journal_dirty_metadata(handle, bh); | ||
2826 | if (!err) | ||
2827 | err = rc; | ||
2828 | ei->i_state &= ~EXT3_STATE_NEW; | ||
2829 | |||
2830 | out_brelse: | ||
2831 | brelse (bh); | ||
2832 | ext3_std_error(inode->i_sb, err); | ||
2833 | return err; | ||
2834 | } | ||
2835 | |||
2836 | /* | ||
2837 | * ext3_write_inode() | ||
2838 | * | ||
2839 | * We are called from a few places: | ||
2840 | * | ||
2841 | * - Within generic_file_write() for O_SYNC files. | ||
2842 | * Here, there will be no transaction running. We wait for any running | ||
2843 | * trasnaction to commit. | ||
2844 | * | ||
2845 | * - Within sys_sync(), kupdate and such. | ||
2846 | * We wait on commit, if tol to. | ||
2847 | * | ||
2848 | * - Within prune_icache() (PF_MEMALLOC == true) | ||
2849 | * Here we simply return. We can't afford to block kswapd on the | ||
2850 | * journal commit. | ||
2851 | * | ||
2852 | * In all cases it is actually safe for us to return without doing anything, | ||
2853 | * because the inode has been copied into a raw inode buffer in | ||
2854 | * ext3_mark_inode_dirty(). This is a correctness thing for O_SYNC and for | ||
2855 | * knfsd. | ||
2856 | * | ||
2857 | * Note that we are absolutely dependent upon all inode dirtiers doing the | ||
2858 | * right thing: they *must* call mark_inode_dirty() after dirtying info in | ||
2859 | * which we are interested. | ||
2860 | * | ||
2861 | * It would be a bug for them to not do this. The code: | ||
2862 | * | ||
2863 | * mark_inode_dirty(inode) | ||
2864 | * stuff(); | ||
2865 | * inode->i_size = expr; | ||
2866 | * | ||
2867 | * is in error because a kswapd-driven write_inode() could occur while | ||
2868 | * `stuff()' is running, and the new i_size will be lost. Plus the inode | ||
2869 | * will no longer be on the superblock's dirty inode list. | ||
2870 | */ | ||
2871 | int ext3_write_inode(struct inode *inode, int wait) | ||
2872 | { | ||
2873 | if (current->flags & PF_MEMALLOC) | ||
2874 | return 0; | ||
2875 | |||
2876 | if (ext3_journal_current_handle()) { | ||
2877 | jbd_debug(0, "called recursively, non-PF_MEMALLOC!\n"); | ||
2878 | dump_stack(); | ||
2879 | return -EIO; | ||
2880 | } | ||
2881 | |||
2882 | if (!wait) | ||
2883 | return 0; | ||
2884 | |||
2885 | return ext3_force_commit(inode->i_sb); | ||
2886 | } | ||
2887 | |||
2888 | /* | ||
2889 | * ext3_setattr() | ||
2890 | * | ||
2891 | * Called from notify_change. | ||
2892 | * | ||
2893 | * We want to trap VFS attempts to truncate the file as soon as | ||
2894 | * possible. In particular, we want to make sure that when the VFS | ||
2895 | * shrinks i_size, we put the inode on the orphan list and modify | ||
2896 | * i_disksize immediately, so that during the subsequent flushing of | ||
2897 | * dirty pages and freeing of disk blocks, we can guarantee that any | ||
2898 | * commit will leave the blocks being flushed in an unused state on | ||
2899 | * disk. (On recovery, the inode will get truncated and the blocks will | ||
2900 | * be freed, so we have a strong guarantee that no future commit will | ||
2901 | * leave these blocks visible to the user.) | ||
2902 | * | ||
2903 | * Called with inode->sem down. | ||
2904 | */ | ||
2905 | int ext3_setattr(struct dentry *dentry, struct iattr *attr) | ||
2906 | { | ||
2907 | struct inode *inode = dentry->d_inode; | ||
2908 | int error, rc = 0; | ||
2909 | const unsigned int ia_valid = attr->ia_valid; | ||
2910 | |||
2911 | error = inode_change_ok(inode, attr); | ||
2912 | if (error) | ||
2913 | return error; | ||
2914 | |||
2915 | if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) || | ||
2916 | (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) { | ||
2917 | handle_t *handle; | ||
2918 | |||
2919 | /* (user+group)*(old+new) structure, inode write (sb, | ||
2920 | * inode block, ? - but truncate inode update has it) */ | ||
2921 | handle = ext3_journal_start(inode, 2*(EXT3_QUOTA_INIT_BLOCKS(inode->i_sb)+ | ||
2922 | EXT3_QUOTA_DEL_BLOCKS(inode->i_sb))+3); | ||
2923 | if (IS_ERR(handle)) { | ||
2924 | error = PTR_ERR(handle); | ||
2925 | goto err_out; | ||
2926 | } | ||
2927 | error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0; | ||
2928 | if (error) { | ||
2929 | ext3_journal_stop(handle); | ||
2930 | return error; | ||
2931 | } | ||
2932 | /* Update corresponding info in inode so that everything is in | ||
2933 | * one transaction */ | ||
2934 | if (attr->ia_valid & ATTR_UID) | ||
2935 | inode->i_uid = attr->ia_uid; | ||
2936 | if (attr->ia_valid & ATTR_GID) | ||
2937 | inode->i_gid = attr->ia_gid; | ||
2938 | error = ext3_mark_inode_dirty(handle, inode); | ||
2939 | ext3_journal_stop(handle); | ||
2940 | } | ||
2941 | |||
2942 | if (S_ISREG(inode->i_mode) && | ||
2943 | attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) { | ||
2944 | handle_t *handle; | ||
2945 | |||
2946 | handle = ext3_journal_start(inode, 3); | ||
2947 | if (IS_ERR(handle)) { | ||
2948 | error = PTR_ERR(handle); | ||
2949 | goto err_out; | ||
2950 | } | ||
2951 | |||
2952 | error = ext3_orphan_add(handle, inode); | ||
2953 | EXT3_I(inode)->i_disksize = attr->ia_size; | ||
2954 | rc = ext3_mark_inode_dirty(handle, inode); | ||
2955 | if (!error) | ||
2956 | error = rc; | ||
2957 | ext3_journal_stop(handle); | ||
2958 | } | ||
2959 | |||
2960 | rc = inode_setattr(inode, attr); | ||
2961 | |||
2962 | /* If inode_setattr's call to ext3_truncate failed to get a | ||
2963 | * transaction handle at all, we need to clean up the in-core | ||
2964 | * orphan list manually. */ | ||
2965 | if (inode->i_nlink) | ||
2966 | ext3_orphan_del(NULL, inode); | ||
2967 | |||
2968 | if (!rc && (ia_valid & ATTR_MODE)) | ||
2969 | rc = ext3_acl_chmod(inode); | ||
2970 | |||
2971 | err_out: | ||
2972 | ext3_std_error(inode->i_sb, error); | ||
2973 | if (!error) | ||
2974 | error = rc; | ||
2975 | return error; | ||
2976 | } | ||
2977 | |||
2978 | |||
2979 | /* | ||
2980 | * How many blocks doth make a writepage()? | ||
2981 | * | ||
2982 | * With N blocks per page, it may be: | ||
2983 | * N data blocks | ||
2984 | * 2 indirect block | ||
2985 | * 2 dindirect | ||
2986 | * 1 tindirect | ||
2987 | * N+5 bitmap blocks (from the above) | ||
2988 | * N+5 group descriptor summary blocks | ||
2989 | * 1 inode block | ||
2990 | * 1 superblock. | ||
2991 | * 2 * EXT3_SINGLEDATA_TRANS_BLOCKS for the quote files | ||
2992 | * | ||
2993 | * 3 * (N + 5) + 2 + 2 * EXT3_SINGLEDATA_TRANS_BLOCKS | ||
2994 | * | ||
2995 | * With ordered or writeback data it's the same, less the N data blocks. | ||
2996 | * | ||
2997 | * If the inode's direct blocks can hold an integral number of pages then a | ||
2998 | * page cannot straddle two indirect blocks, and we can only touch one indirect | ||
2999 | * and dindirect block, and the "5" above becomes "3". | ||
3000 | * | ||
3001 | * This still overestimates under most circumstances. If we were to pass the | ||
3002 | * start and end offsets in here as well we could do block_to_path() on each | ||
3003 | * block and work out the exact number of indirects which are touched. Pah. | ||
3004 | */ | ||
3005 | |||
3006 | static int ext3_writepage_trans_blocks(struct inode *inode) | ||
3007 | { | ||
3008 | int bpp = ext3_journal_blocks_per_page(inode); | ||
3009 | int indirects = (EXT3_NDIR_BLOCKS % bpp) ? 5 : 3; | ||
3010 | int ret; | ||
3011 | |||
3012 | if (ext3_should_journal_data(inode)) | ||
3013 | ret = 3 * (bpp + indirects) + 2; | ||
3014 | else | ||
3015 | ret = 2 * (bpp + indirects) + 2; | ||
3016 | |||
3017 | #ifdef CONFIG_QUOTA | ||
3018 | /* We know that structure was already allocated during DQUOT_INIT so | ||
3019 | * we will be updating only the data blocks + inodes */ | ||
3020 | ret += 2*EXT3_QUOTA_TRANS_BLOCKS(inode->i_sb); | ||
3021 | #endif | ||
3022 | |||
3023 | return ret; | ||
3024 | } | ||
3025 | |||
3026 | /* | ||
3027 | * The caller must have previously called ext3_reserve_inode_write(). | ||
3028 | * Give this, we know that the caller already has write access to iloc->bh. | ||
3029 | */ | ||
3030 | int ext3_mark_iloc_dirty(handle_t *handle, | ||
3031 | struct inode *inode, struct ext3_iloc *iloc) | ||
3032 | { | ||
3033 | int err = 0; | ||
3034 | |||
3035 | /* the do_update_inode consumes one bh->b_count */ | ||
3036 | get_bh(iloc->bh); | ||
3037 | |||
3038 | /* ext3_do_update_inode() does journal_dirty_metadata */ | ||
3039 | err = ext3_do_update_inode(handle, inode, iloc); | ||
3040 | put_bh(iloc->bh); | ||
3041 | return err; | ||
3042 | } | ||
3043 | |||
3044 | /* | ||
3045 | * On success, We end up with an outstanding reference count against | ||
3046 | * iloc->bh. This _must_ be cleaned up later. | ||
3047 | */ | ||
3048 | |||
3049 | int | ||
3050 | ext3_reserve_inode_write(handle_t *handle, struct inode *inode, | ||
3051 | struct ext3_iloc *iloc) | ||
3052 | { | ||
3053 | int err = 0; | ||
3054 | if (handle) { | ||
3055 | err = ext3_get_inode_loc(inode, iloc); | ||
3056 | if (!err) { | ||
3057 | BUFFER_TRACE(iloc->bh, "get_write_access"); | ||
3058 | err = ext3_journal_get_write_access(handle, iloc->bh); | ||
3059 | if (err) { | ||
3060 | brelse(iloc->bh); | ||
3061 | iloc->bh = NULL; | ||
3062 | } | ||
3063 | } | ||
3064 | } | ||
3065 | ext3_std_error(inode->i_sb, err); | ||
3066 | return err; | ||
3067 | } | ||
3068 | |||
3069 | /* | ||
3070 | * What we do here is to mark the in-core inode as clean with respect to inode | ||
3071 | * dirtiness (it may still be data-dirty). | ||
3072 | * This means that the in-core inode may be reaped by prune_icache | ||
3073 | * without having to perform any I/O. This is a very good thing, | ||
3074 | * because *any* task may call prune_icache - even ones which | ||
3075 | * have a transaction open against a different journal. | ||
3076 | * | ||
3077 | * Is this cheating? Not really. Sure, we haven't written the | ||
3078 | * inode out, but prune_icache isn't a user-visible syncing function. | ||
3079 | * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) | ||
3080 | * we start and wait on commits. | ||
3081 | * | ||
3082 | * Is this efficient/effective? Well, we're being nice to the system | ||
3083 | * by cleaning up our inodes proactively so they can be reaped | ||
3084 | * without I/O. But we are potentially leaving up to five seconds' | ||
3085 | * worth of inodes floating about which prune_icache wants us to | ||
3086 | * write out. One way to fix that would be to get prune_icache() | ||
3087 | * to do a write_super() to free up some memory. It has the desired | ||
3088 | * effect. | ||
3089 | */ | ||
3090 | int ext3_mark_inode_dirty(handle_t *handle, struct inode *inode) | ||
3091 | { | ||
3092 | struct ext3_iloc iloc; | ||
3093 | int err; | ||
3094 | |||
3095 | might_sleep(); | ||
3096 | err = ext3_reserve_inode_write(handle, inode, &iloc); | ||
3097 | if (!err) | ||
3098 | err = ext3_mark_iloc_dirty(handle, inode, &iloc); | ||
3099 | return err; | ||
3100 | } | ||
3101 | |||
3102 | /* | ||
3103 | * ext3_dirty_inode() is called from __mark_inode_dirty() | ||
3104 | * | ||
3105 | * We're really interested in the case where a file is being extended. | ||
3106 | * i_size has been changed by generic_commit_write() and we thus need | ||
3107 | * to include the updated inode in the current transaction. | ||
3108 | * | ||
3109 | * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks | ||
3110 | * are allocated to the file. | ||
3111 | * | ||
3112 | * If the inode is marked synchronous, we don't honour that here - doing | ||
3113 | * so would cause a commit on atime updates, which we don't bother doing. | ||
3114 | * We handle synchronous inodes at the highest possible level. | ||
3115 | */ | ||
3116 | void ext3_dirty_inode(struct inode *inode) | ||
3117 | { | ||
3118 | handle_t *current_handle = ext3_journal_current_handle(); | ||
3119 | handle_t *handle; | ||
3120 | |||
3121 | handle = ext3_journal_start(inode, 2); | ||
3122 | if (IS_ERR(handle)) | ||
3123 | goto out; | ||
3124 | if (current_handle && | ||
3125 | current_handle->h_transaction != handle->h_transaction) { | ||
3126 | /* This task has a transaction open against a different fs */ | ||
3127 | printk(KERN_EMERG "%s: transactions do not match!\n", | ||
3128 | __FUNCTION__); | ||
3129 | } else { | ||
3130 | jbd_debug(5, "marking dirty. outer handle=%p\n", | ||
3131 | current_handle); | ||
3132 | ext3_mark_inode_dirty(handle, inode); | ||
3133 | } | ||
3134 | ext3_journal_stop(handle); | ||
3135 | out: | ||
3136 | return; | ||
3137 | } | ||
3138 | |||
3139 | #if 0 | ||
3140 | /* | ||
3141 | * Bind an inode's backing buffer_head into this transaction, to prevent | ||
3142 | * it from being flushed to disk early. Unlike | ||
3143 | * ext3_reserve_inode_write, this leaves behind no bh reference and | ||
3144 | * returns no iloc structure, so the caller needs to repeat the iloc | ||
3145 | * lookup to mark the inode dirty later. | ||
3146 | */ | ||
3147 | static int ext3_pin_inode(handle_t *handle, struct inode *inode) | ||
3148 | { | ||
3149 | struct ext3_iloc iloc; | ||
3150 | |||
3151 | int err = 0; | ||
3152 | if (handle) { | ||
3153 | err = ext3_get_inode_loc(inode, &iloc); | ||
3154 | if (!err) { | ||
3155 | BUFFER_TRACE(iloc.bh, "get_write_access"); | ||
3156 | err = journal_get_write_access(handle, iloc.bh); | ||
3157 | if (!err) | ||
3158 | err = ext3_journal_dirty_metadata(handle, | ||
3159 | iloc.bh); | ||
3160 | brelse(iloc.bh); | ||
3161 | } | ||
3162 | } | ||
3163 | ext3_std_error(inode->i_sb, err); | ||
3164 | return err; | ||
3165 | } | ||
3166 | #endif | ||
3167 | |||
3168 | int ext3_change_inode_journal_flag(struct inode *inode, int val) | ||
3169 | { | ||
3170 | journal_t *journal; | ||
3171 | handle_t *handle; | ||
3172 | int err; | ||
3173 | |||
3174 | /* | ||
3175 | * We have to be very careful here: changing a data block's | ||
3176 | * journaling status dynamically is dangerous. If we write a | ||
3177 | * data block to the journal, change the status and then delete | ||
3178 | * that block, we risk forgetting to revoke the old log record | ||
3179 | * from the journal and so a subsequent replay can corrupt data. | ||
3180 | * So, first we make sure that the journal is empty and that | ||
3181 | * nobody is changing anything. | ||
3182 | */ | ||
3183 | |||
3184 | journal = EXT3_JOURNAL(inode); | ||
3185 | if (is_journal_aborted(journal) || IS_RDONLY(inode)) | ||
3186 | return -EROFS; | ||
3187 | |||
3188 | journal_lock_updates(journal); | ||
3189 | journal_flush(journal); | ||
3190 | |||
3191 | /* | ||
3192 | * OK, there are no updates running now, and all cached data is | ||
3193 | * synced to disk. We are now in a completely consistent state | ||
3194 | * which doesn't have anything in the journal, and we know that | ||
3195 | * no filesystem updates are running, so it is safe to modify | ||
3196 | * the inode's in-core data-journaling state flag now. | ||
3197 | */ | ||
3198 | |||
3199 | if (val) | ||
3200 | EXT3_I(inode)->i_flags |= EXT3_JOURNAL_DATA_FL; | ||
3201 | else | ||
3202 | EXT3_I(inode)->i_flags &= ~EXT3_JOURNAL_DATA_FL; | ||
3203 | ext3_set_aops(inode); | ||
3204 | |||
3205 | journal_unlock_updates(journal); | ||
3206 | |||
3207 | /* Finally we can mark the inode as dirty. */ | ||
3208 | |||
3209 | handle = ext3_journal_start(inode, 1); | ||
3210 | if (IS_ERR(handle)) | ||
3211 | return PTR_ERR(handle); | ||
3212 | |||
3213 | err = ext3_mark_inode_dirty(handle, inode); | ||
3214 | handle->h_sync = 1; | ||
3215 | ext3_journal_stop(handle); | ||
3216 | ext3_std_error(inode->i_sb, err); | ||
3217 | |||
3218 | return err; | ||
3219 | } | ||