diff options
Diffstat (limited to 'fs/ecryptfs/keystore.c')
-rw-r--r-- | fs/ecryptfs/keystore.c | 1061 |
1 files changed, 1061 insertions, 0 deletions
diff --git a/fs/ecryptfs/keystore.c b/fs/ecryptfs/keystore.c new file mode 100644 index 000000000000..ba454785a0c5 --- /dev/null +++ b/fs/ecryptfs/keystore.c | |||
@@ -0,0 +1,1061 @@ | |||
1 | /** | ||
2 | * eCryptfs: Linux filesystem encryption layer | ||
3 | * In-kernel key management code. Includes functions to parse and | ||
4 | * write authentication token-related packets with the underlying | ||
5 | * file. | ||
6 | * | ||
7 | * Copyright (C) 2004-2006 International Business Machines Corp. | ||
8 | * Author(s): Michael A. Halcrow <mhalcrow@us.ibm.com> | ||
9 | * Michael C. Thompson <mcthomps@us.ibm.com> | ||
10 | * | ||
11 | * This program is free software; you can redistribute it and/or | ||
12 | * modify it under the terms of the GNU General Public License as | ||
13 | * published by the Free Software Foundation; either version 2 of the | ||
14 | * License, or (at your option) any later version. | ||
15 | * | ||
16 | * This program is distributed in the hope that it will be useful, but | ||
17 | * WITHOUT ANY WARRANTY; without even the implied warranty of | ||
18 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | ||
19 | * General Public License for more details. | ||
20 | * | ||
21 | * You should have received a copy of the GNU General Public License | ||
22 | * along with this program; if not, write to the Free Software | ||
23 | * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA | ||
24 | * 02111-1307, USA. | ||
25 | */ | ||
26 | |||
27 | #include <linux/string.h> | ||
28 | #include <linux/sched.h> | ||
29 | #include <linux/syscalls.h> | ||
30 | #include <linux/pagemap.h> | ||
31 | #include <linux/key.h> | ||
32 | #include <linux/random.h> | ||
33 | #include <linux/crypto.h> | ||
34 | #include <linux/scatterlist.h> | ||
35 | #include "ecryptfs_kernel.h" | ||
36 | |||
37 | /** | ||
38 | * request_key returned an error instead of a valid key address; | ||
39 | * determine the type of error, make appropriate log entries, and | ||
40 | * return an error code. | ||
41 | */ | ||
42 | int process_request_key_err(long err_code) | ||
43 | { | ||
44 | int rc = 0; | ||
45 | |||
46 | switch (err_code) { | ||
47 | case ENOKEY: | ||
48 | ecryptfs_printk(KERN_WARNING, "No key\n"); | ||
49 | rc = -ENOENT; | ||
50 | break; | ||
51 | case EKEYEXPIRED: | ||
52 | ecryptfs_printk(KERN_WARNING, "Key expired\n"); | ||
53 | rc = -ETIME; | ||
54 | break; | ||
55 | case EKEYREVOKED: | ||
56 | ecryptfs_printk(KERN_WARNING, "Key revoked\n"); | ||
57 | rc = -EINVAL; | ||
58 | break; | ||
59 | default: | ||
60 | ecryptfs_printk(KERN_WARNING, "Unknown error code: " | ||
61 | "[0x%.16x]\n", err_code); | ||
62 | rc = -EINVAL; | ||
63 | } | ||
64 | return rc; | ||
65 | } | ||
66 | |||
67 | static void wipe_auth_tok_list(struct list_head *auth_tok_list_head) | ||
68 | { | ||
69 | struct list_head *walker; | ||
70 | struct ecryptfs_auth_tok_list_item *auth_tok_list_item; | ||
71 | |||
72 | walker = auth_tok_list_head->next; | ||
73 | while (walker != auth_tok_list_head) { | ||
74 | auth_tok_list_item = | ||
75 | list_entry(walker, struct ecryptfs_auth_tok_list_item, | ||
76 | list); | ||
77 | walker = auth_tok_list_item->list.next; | ||
78 | memset(auth_tok_list_item, 0, | ||
79 | sizeof(struct ecryptfs_auth_tok_list_item)); | ||
80 | kmem_cache_free(ecryptfs_auth_tok_list_item_cache, | ||
81 | auth_tok_list_item); | ||
82 | } | ||
83 | } | ||
84 | |||
85 | struct kmem_cache *ecryptfs_auth_tok_list_item_cache; | ||
86 | |||
87 | /** | ||
88 | * parse_packet_length | ||
89 | * @data: Pointer to memory containing length at offset | ||
90 | * @size: This function writes the decoded size to this memory | ||
91 | * address; zero on error | ||
92 | * @length_size: The number of bytes occupied by the encoded length | ||
93 | * | ||
94 | * Returns Zero on success | ||
95 | */ | ||
96 | static int parse_packet_length(unsigned char *data, size_t *size, | ||
97 | size_t *length_size) | ||
98 | { | ||
99 | int rc = 0; | ||
100 | |||
101 | (*length_size) = 0; | ||
102 | (*size) = 0; | ||
103 | if (data[0] < 192) { | ||
104 | /* One-byte length */ | ||
105 | (*size) = data[0]; | ||
106 | (*length_size) = 1; | ||
107 | } else if (data[0] < 224) { | ||
108 | /* Two-byte length */ | ||
109 | (*size) = ((data[0] - 192) * 256); | ||
110 | (*size) += (data[1] + 192); | ||
111 | (*length_size) = 2; | ||
112 | } else if (data[0] == 255) { | ||
113 | /* Five-byte length; we're not supposed to see this */ | ||
114 | ecryptfs_printk(KERN_ERR, "Five-byte packet length not " | ||
115 | "supported\n"); | ||
116 | rc = -EINVAL; | ||
117 | goto out; | ||
118 | } else { | ||
119 | ecryptfs_printk(KERN_ERR, "Error parsing packet length\n"); | ||
120 | rc = -EINVAL; | ||
121 | goto out; | ||
122 | } | ||
123 | out: | ||
124 | return rc; | ||
125 | } | ||
126 | |||
127 | /** | ||
128 | * write_packet_length | ||
129 | * @dest: The byte array target into which to write the | ||
130 | * length. Must have at least 5 bytes allocated. | ||
131 | * @size: The length to write. | ||
132 | * @packet_size_length: The number of bytes used to encode the | ||
133 | * packet length is written to this address. | ||
134 | * | ||
135 | * Returns zero on success; non-zero on error. | ||
136 | */ | ||
137 | static int write_packet_length(char *dest, size_t size, | ||
138 | size_t *packet_size_length) | ||
139 | { | ||
140 | int rc = 0; | ||
141 | |||
142 | if (size < 192) { | ||
143 | dest[0] = size; | ||
144 | (*packet_size_length) = 1; | ||
145 | } else if (size < 65536) { | ||
146 | dest[0] = (((size - 192) / 256) + 192); | ||
147 | dest[1] = ((size - 192) % 256); | ||
148 | (*packet_size_length) = 2; | ||
149 | } else { | ||
150 | rc = -EINVAL; | ||
151 | ecryptfs_printk(KERN_WARNING, | ||
152 | "Unsupported packet size: [%d]\n", size); | ||
153 | } | ||
154 | return rc; | ||
155 | } | ||
156 | |||
157 | /** | ||
158 | * parse_tag_3_packet | ||
159 | * @crypt_stat: The cryptographic context to modify based on packet | ||
160 | * contents. | ||
161 | * @data: The raw bytes of the packet. | ||
162 | * @auth_tok_list: eCryptfs parses packets into authentication tokens; | ||
163 | * a new authentication token will be placed at the end | ||
164 | * of this list for this packet. | ||
165 | * @new_auth_tok: Pointer to a pointer to memory that this function | ||
166 | * allocates; sets the memory address of the pointer to | ||
167 | * NULL on error. This object is added to the | ||
168 | * auth_tok_list. | ||
169 | * @packet_size: This function writes the size of the parsed packet | ||
170 | * into this memory location; zero on error. | ||
171 | * @max_packet_size: maximum number of bytes to parse | ||
172 | * | ||
173 | * Returns zero on success; non-zero on error. | ||
174 | */ | ||
175 | static int | ||
176 | parse_tag_3_packet(struct ecryptfs_crypt_stat *crypt_stat, | ||
177 | unsigned char *data, struct list_head *auth_tok_list, | ||
178 | struct ecryptfs_auth_tok **new_auth_tok, | ||
179 | size_t *packet_size, size_t max_packet_size) | ||
180 | { | ||
181 | int rc = 0; | ||
182 | size_t body_size; | ||
183 | struct ecryptfs_auth_tok_list_item *auth_tok_list_item; | ||
184 | size_t length_size; | ||
185 | |||
186 | (*packet_size) = 0; | ||
187 | (*new_auth_tok) = NULL; | ||
188 | |||
189 | /* we check that: | ||
190 | * one byte for the Tag 3 ID flag | ||
191 | * two bytes for the body size | ||
192 | * do not exceed the maximum_packet_size | ||
193 | */ | ||
194 | if (unlikely((*packet_size) + 3 > max_packet_size)) { | ||
195 | ecryptfs_printk(KERN_ERR, "Packet size exceeds max\n"); | ||
196 | rc = -EINVAL; | ||
197 | goto out; | ||
198 | } | ||
199 | |||
200 | /* check for Tag 3 identifyer - one byte */ | ||
201 | if (data[(*packet_size)++] != ECRYPTFS_TAG_3_PACKET_TYPE) { | ||
202 | ecryptfs_printk(KERN_ERR, "Enter w/ first byte != 0x%.2x\n", | ||
203 | ECRYPTFS_TAG_3_PACKET_TYPE); | ||
204 | rc = -EINVAL; | ||
205 | goto out; | ||
206 | } | ||
207 | /* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or | ||
208 | * at end of function upon failure */ | ||
209 | auth_tok_list_item = | ||
210 | kmem_cache_alloc(ecryptfs_auth_tok_list_item_cache, SLAB_KERNEL); | ||
211 | if (!auth_tok_list_item) { | ||
212 | ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n"); | ||
213 | rc = -ENOMEM; | ||
214 | goto out; | ||
215 | } | ||
216 | memset(auth_tok_list_item, 0, | ||
217 | sizeof(struct ecryptfs_auth_tok_list_item)); | ||
218 | (*new_auth_tok) = &auth_tok_list_item->auth_tok; | ||
219 | |||
220 | /* check for body size - one to two bytes */ | ||
221 | rc = parse_packet_length(&data[(*packet_size)], &body_size, | ||
222 | &length_size); | ||
223 | if (rc) { | ||
224 | ecryptfs_printk(KERN_WARNING, "Error parsing packet length; " | ||
225 | "rc = [%d]\n", rc); | ||
226 | goto out_free; | ||
227 | } | ||
228 | if (unlikely(body_size < (0x05 + ECRYPTFS_SALT_SIZE))) { | ||
229 | ecryptfs_printk(KERN_WARNING, "Invalid body size ([%d])\n", | ||
230 | body_size); | ||
231 | rc = -EINVAL; | ||
232 | goto out_free; | ||
233 | } | ||
234 | (*packet_size) += length_size; | ||
235 | |||
236 | /* now we know the length of the remainting Tag 3 packet size: | ||
237 | * 5 fix bytes for: version string, cipher, S2K ID, hash algo, | ||
238 | * number of hash iterations | ||
239 | * ECRYPTFS_SALT_SIZE bytes for salt | ||
240 | * body_size bytes minus the stuff above is the encrypted key size | ||
241 | */ | ||
242 | if (unlikely((*packet_size) + body_size > max_packet_size)) { | ||
243 | ecryptfs_printk(KERN_ERR, "Packet size exceeds max\n"); | ||
244 | rc = -EINVAL; | ||
245 | goto out_free; | ||
246 | } | ||
247 | |||
248 | /* There are 5 characters of additional information in the | ||
249 | * packet */ | ||
250 | (*new_auth_tok)->session_key.encrypted_key_size = | ||
251 | body_size - (0x05 + ECRYPTFS_SALT_SIZE); | ||
252 | ecryptfs_printk(KERN_DEBUG, "Encrypted key size = [%d]\n", | ||
253 | (*new_auth_tok)->session_key.encrypted_key_size); | ||
254 | |||
255 | /* Version 4 (from RFC2440) - one byte */ | ||
256 | if (unlikely(data[(*packet_size)++] != 0x04)) { | ||
257 | ecryptfs_printk(KERN_DEBUG, "Unknown version number " | ||
258 | "[%d]\n", data[(*packet_size) - 1]); | ||
259 | rc = -EINVAL; | ||
260 | goto out_free; | ||
261 | } | ||
262 | |||
263 | /* cipher - one byte */ | ||
264 | ecryptfs_cipher_code_to_string(crypt_stat->cipher, | ||
265 | (u16)data[(*packet_size)]); | ||
266 | /* A little extra work to differentiate among the AES key | ||
267 | * sizes; see RFC2440 */ | ||
268 | switch(data[(*packet_size)++]) { | ||
269 | case RFC2440_CIPHER_AES_192: | ||
270 | crypt_stat->key_size = 24; | ||
271 | break; | ||
272 | default: | ||
273 | crypt_stat->key_size = | ||
274 | (*new_auth_tok)->session_key.encrypted_key_size; | ||
275 | } | ||
276 | ecryptfs_init_crypt_ctx(crypt_stat); | ||
277 | /* S2K identifier 3 (from RFC2440) */ | ||
278 | if (unlikely(data[(*packet_size)++] != 0x03)) { | ||
279 | ecryptfs_printk(KERN_ERR, "Only S2K ID 3 is currently " | ||
280 | "supported\n"); | ||
281 | rc = -ENOSYS; | ||
282 | goto out_free; | ||
283 | } | ||
284 | |||
285 | /* TODO: finish the hash mapping */ | ||
286 | /* hash algorithm - one byte */ | ||
287 | switch (data[(*packet_size)++]) { | ||
288 | case 0x01: /* See RFC2440 for these numbers and their mappings */ | ||
289 | /* Choose MD5 */ | ||
290 | /* salt - ECRYPTFS_SALT_SIZE bytes */ | ||
291 | memcpy((*new_auth_tok)->token.password.salt, | ||
292 | &data[(*packet_size)], ECRYPTFS_SALT_SIZE); | ||
293 | (*packet_size) += ECRYPTFS_SALT_SIZE; | ||
294 | |||
295 | /* This conversion was taken straight from RFC2440 */ | ||
296 | /* number of hash iterations - one byte */ | ||
297 | (*new_auth_tok)->token.password.hash_iterations = | ||
298 | ((u32) 16 + (data[(*packet_size)] & 15)) | ||
299 | << ((data[(*packet_size)] >> 4) + 6); | ||
300 | (*packet_size)++; | ||
301 | |||
302 | /* encrypted session key - | ||
303 | * (body_size-5-ECRYPTFS_SALT_SIZE) bytes */ | ||
304 | memcpy((*new_auth_tok)->session_key.encrypted_key, | ||
305 | &data[(*packet_size)], | ||
306 | (*new_auth_tok)->session_key.encrypted_key_size); | ||
307 | (*packet_size) += | ||
308 | (*new_auth_tok)->session_key.encrypted_key_size; | ||
309 | (*new_auth_tok)->session_key.flags &= | ||
310 | ~ECRYPTFS_CONTAINS_DECRYPTED_KEY; | ||
311 | (*new_auth_tok)->session_key.flags |= | ||
312 | ECRYPTFS_CONTAINS_ENCRYPTED_KEY; | ||
313 | (*new_auth_tok)->token.password.hash_algo = 0x01; | ||
314 | break; | ||
315 | default: | ||
316 | ecryptfs_printk(KERN_ERR, "Unsupported hash algorithm: " | ||
317 | "[%d]\n", data[(*packet_size) - 1]); | ||
318 | rc = -ENOSYS; | ||
319 | goto out_free; | ||
320 | } | ||
321 | (*new_auth_tok)->token_type = ECRYPTFS_PASSWORD; | ||
322 | /* TODO: Parametarize; we might actually want userspace to | ||
323 | * decrypt the session key. */ | ||
324 | ECRYPTFS_CLEAR_FLAG((*new_auth_tok)->session_key.flags, | ||
325 | ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT); | ||
326 | ECRYPTFS_CLEAR_FLAG((*new_auth_tok)->session_key.flags, | ||
327 | ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT); | ||
328 | list_add(&auth_tok_list_item->list, auth_tok_list); | ||
329 | goto out; | ||
330 | out_free: | ||
331 | (*new_auth_tok) = NULL; | ||
332 | memset(auth_tok_list_item, 0, | ||
333 | sizeof(struct ecryptfs_auth_tok_list_item)); | ||
334 | kmem_cache_free(ecryptfs_auth_tok_list_item_cache, | ||
335 | auth_tok_list_item); | ||
336 | out: | ||
337 | if (rc) | ||
338 | (*packet_size) = 0; | ||
339 | return rc; | ||
340 | } | ||
341 | |||
342 | /** | ||
343 | * parse_tag_11_packet | ||
344 | * @data: The raw bytes of the packet | ||
345 | * @contents: This function writes the data contents of the literal | ||
346 | * packet into this memory location | ||
347 | * @max_contents_bytes: The maximum number of bytes that this function | ||
348 | * is allowed to write into contents | ||
349 | * @tag_11_contents_size: This function writes the size of the parsed | ||
350 | * contents into this memory location; zero on | ||
351 | * error | ||
352 | * @packet_size: This function writes the size of the parsed packet | ||
353 | * into this memory location; zero on error | ||
354 | * @max_packet_size: maximum number of bytes to parse | ||
355 | * | ||
356 | * Returns zero on success; non-zero on error. | ||
357 | */ | ||
358 | static int | ||
359 | parse_tag_11_packet(unsigned char *data, unsigned char *contents, | ||
360 | size_t max_contents_bytes, size_t *tag_11_contents_size, | ||
361 | size_t *packet_size, size_t max_packet_size) | ||
362 | { | ||
363 | int rc = 0; | ||
364 | size_t body_size; | ||
365 | size_t length_size; | ||
366 | |||
367 | (*packet_size) = 0; | ||
368 | (*tag_11_contents_size) = 0; | ||
369 | |||
370 | /* check that: | ||
371 | * one byte for the Tag 11 ID flag | ||
372 | * two bytes for the Tag 11 length | ||
373 | * do not exceed the maximum_packet_size | ||
374 | */ | ||
375 | if (unlikely((*packet_size) + 3 > max_packet_size)) { | ||
376 | ecryptfs_printk(KERN_ERR, "Packet size exceeds max\n"); | ||
377 | rc = -EINVAL; | ||
378 | goto out; | ||
379 | } | ||
380 | |||
381 | /* check for Tag 11 identifyer - one byte */ | ||
382 | if (data[(*packet_size)++] != ECRYPTFS_TAG_11_PACKET_TYPE) { | ||
383 | ecryptfs_printk(KERN_WARNING, | ||
384 | "Invalid tag 11 packet format\n"); | ||
385 | rc = -EINVAL; | ||
386 | goto out; | ||
387 | } | ||
388 | |||
389 | /* get Tag 11 content length - one or two bytes */ | ||
390 | rc = parse_packet_length(&data[(*packet_size)], &body_size, | ||
391 | &length_size); | ||
392 | if (rc) { | ||
393 | ecryptfs_printk(KERN_WARNING, | ||
394 | "Invalid tag 11 packet format\n"); | ||
395 | goto out; | ||
396 | } | ||
397 | (*packet_size) += length_size; | ||
398 | |||
399 | if (body_size < 13) { | ||
400 | ecryptfs_printk(KERN_WARNING, "Invalid body size ([%d])\n", | ||
401 | body_size); | ||
402 | rc = -EINVAL; | ||
403 | goto out; | ||
404 | } | ||
405 | /* We have 13 bytes of surrounding packet values */ | ||
406 | (*tag_11_contents_size) = (body_size - 13); | ||
407 | |||
408 | /* now we know the length of the remainting Tag 11 packet size: | ||
409 | * 14 fix bytes for: special flag one, special flag two, | ||
410 | * 12 skipped bytes | ||
411 | * body_size bytes minus the stuff above is the Tag 11 content | ||
412 | */ | ||
413 | /* FIXME why is the body size one byte smaller than the actual | ||
414 | * size of the body? | ||
415 | * this seems to be an error here as well as in | ||
416 | * write_tag_11_packet() */ | ||
417 | if (unlikely((*packet_size) + body_size + 1 > max_packet_size)) { | ||
418 | ecryptfs_printk(KERN_ERR, "Packet size exceeds max\n"); | ||
419 | rc = -EINVAL; | ||
420 | goto out; | ||
421 | } | ||
422 | |||
423 | /* special flag one - one byte */ | ||
424 | if (data[(*packet_size)++] != 0x62) { | ||
425 | ecryptfs_printk(KERN_WARNING, "Unrecognizable packet\n"); | ||
426 | rc = -EINVAL; | ||
427 | goto out; | ||
428 | } | ||
429 | |||
430 | /* special flag two - one byte */ | ||
431 | if (data[(*packet_size)++] != 0x08) { | ||
432 | ecryptfs_printk(KERN_WARNING, "Unrecognizable packet\n"); | ||
433 | rc = -EINVAL; | ||
434 | goto out; | ||
435 | } | ||
436 | |||
437 | /* skip the next 12 bytes */ | ||
438 | (*packet_size) += 12; /* We don't care about the filename or | ||
439 | * the timestamp */ | ||
440 | |||
441 | /* get the Tag 11 contents - tag_11_contents_size bytes */ | ||
442 | memcpy(contents, &data[(*packet_size)], (*tag_11_contents_size)); | ||
443 | (*packet_size) += (*tag_11_contents_size); | ||
444 | |||
445 | out: | ||
446 | if (rc) { | ||
447 | (*packet_size) = 0; | ||
448 | (*tag_11_contents_size) = 0; | ||
449 | } | ||
450 | return rc; | ||
451 | } | ||
452 | |||
453 | /** | ||
454 | * decrypt_session_key - Decrypt the session key with the given auth_tok. | ||
455 | * | ||
456 | * Returns Zero on success; non-zero error otherwise. | ||
457 | */ | ||
458 | static int decrypt_session_key(struct ecryptfs_auth_tok *auth_tok, | ||
459 | struct ecryptfs_crypt_stat *crypt_stat) | ||
460 | { | ||
461 | int rc = 0; | ||
462 | struct ecryptfs_password *password_s_ptr; | ||
463 | struct crypto_tfm *tfm = NULL; | ||
464 | struct scatterlist src_sg[2], dst_sg[2]; | ||
465 | struct mutex *tfm_mutex = NULL; | ||
466 | /* TODO: Use virt_to_scatterlist for these */ | ||
467 | char *encrypted_session_key; | ||
468 | char *session_key; | ||
469 | |||
470 | password_s_ptr = &auth_tok->token.password; | ||
471 | if (ECRYPTFS_CHECK_FLAG(password_s_ptr->flags, | ||
472 | ECRYPTFS_SESSION_KEY_ENCRYPTION_KEY_SET)) | ||
473 | ecryptfs_printk(KERN_DEBUG, "Session key encryption key " | ||
474 | "set; skipping key generation\n"); | ||
475 | ecryptfs_printk(KERN_DEBUG, "Session key encryption key (size [%d])" | ||
476 | ":\n", | ||
477 | password_s_ptr->session_key_encryption_key_bytes); | ||
478 | if (ecryptfs_verbosity > 0) | ||
479 | ecryptfs_dump_hex(password_s_ptr->session_key_encryption_key, | ||
480 | password_s_ptr-> | ||
481 | session_key_encryption_key_bytes); | ||
482 | if (!strcmp(crypt_stat->cipher, | ||
483 | crypt_stat->mount_crypt_stat->global_default_cipher_name) | ||
484 | && crypt_stat->mount_crypt_stat->global_key_tfm) { | ||
485 | tfm = crypt_stat->mount_crypt_stat->global_key_tfm; | ||
486 | tfm_mutex = &crypt_stat->mount_crypt_stat->global_key_tfm_mutex; | ||
487 | } else { | ||
488 | tfm = crypto_alloc_tfm(crypt_stat->cipher, | ||
489 | CRYPTO_TFM_REQ_WEAK_KEY); | ||
490 | if (!tfm) { | ||
491 | printk(KERN_ERR "Error allocating crypto context\n"); | ||
492 | rc = -ENOMEM; | ||
493 | goto out; | ||
494 | } | ||
495 | } | ||
496 | if (password_s_ptr->session_key_encryption_key_bytes | ||
497 | < crypto_tfm_alg_min_keysize(tfm)) { | ||
498 | printk(KERN_WARNING "Session key encryption key is [%d] bytes; " | ||
499 | "minimum keysize for selected cipher is [%d] bytes.\n", | ||
500 | password_s_ptr->session_key_encryption_key_bytes, | ||
501 | crypto_tfm_alg_min_keysize(tfm)); | ||
502 | rc = -EINVAL; | ||
503 | goto out; | ||
504 | } | ||
505 | if (tfm_mutex) | ||
506 | mutex_lock(tfm_mutex); | ||
507 | crypto_cipher_setkey(tfm, password_s_ptr->session_key_encryption_key, | ||
508 | crypt_stat->key_size); | ||
509 | /* TODO: virt_to_scatterlist */ | ||
510 | encrypted_session_key = (char *)__get_free_page(GFP_KERNEL); | ||
511 | if (!encrypted_session_key) { | ||
512 | ecryptfs_printk(KERN_ERR, "Out of memory\n"); | ||
513 | rc = -ENOMEM; | ||
514 | goto out_free_tfm; | ||
515 | } | ||
516 | session_key = (char *)__get_free_page(GFP_KERNEL); | ||
517 | if (!session_key) { | ||
518 | kfree(encrypted_session_key); | ||
519 | ecryptfs_printk(KERN_ERR, "Out of memory\n"); | ||
520 | rc = -ENOMEM; | ||
521 | goto out_free_tfm; | ||
522 | } | ||
523 | memcpy(encrypted_session_key, auth_tok->session_key.encrypted_key, | ||
524 | auth_tok->session_key.encrypted_key_size); | ||
525 | src_sg[0].page = virt_to_page(encrypted_session_key); | ||
526 | src_sg[0].offset = 0; | ||
527 | BUG_ON(auth_tok->session_key.encrypted_key_size > PAGE_CACHE_SIZE); | ||
528 | src_sg[0].length = auth_tok->session_key.encrypted_key_size; | ||
529 | dst_sg[0].page = virt_to_page(session_key); | ||
530 | dst_sg[0].offset = 0; | ||
531 | auth_tok->session_key.decrypted_key_size = | ||
532 | auth_tok->session_key.encrypted_key_size; | ||
533 | dst_sg[0].length = auth_tok->session_key.encrypted_key_size; | ||
534 | /* TODO: Handle error condition */ | ||
535 | crypto_cipher_decrypt(tfm, dst_sg, src_sg, | ||
536 | auth_tok->session_key.encrypted_key_size); | ||
537 | auth_tok->session_key.decrypted_key_size = | ||
538 | auth_tok->session_key.encrypted_key_size; | ||
539 | memcpy(auth_tok->session_key.decrypted_key, session_key, | ||
540 | auth_tok->session_key.decrypted_key_size); | ||
541 | auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY; | ||
542 | memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key, | ||
543 | auth_tok->session_key.decrypted_key_size); | ||
544 | ECRYPTFS_SET_FLAG(crypt_stat->flags, ECRYPTFS_KEY_VALID); | ||
545 | ecryptfs_printk(KERN_DEBUG, "Decrypted session key:\n"); | ||
546 | if (ecryptfs_verbosity > 0) | ||
547 | ecryptfs_dump_hex(crypt_stat->key, | ||
548 | crypt_stat->key_size); | ||
549 | memset(encrypted_session_key, 0, PAGE_CACHE_SIZE); | ||
550 | free_page((unsigned long)encrypted_session_key); | ||
551 | memset(session_key, 0, PAGE_CACHE_SIZE); | ||
552 | free_page((unsigned long)session_key); | ||
553 | out_free_tfm: | ||
554 | if (tfm_mutex) | ||
555 | mutex_unlock(tfm_mutex); | ||
556 | else | ||
557 | crypto_free_tfm(tfm); | ||
558 | out: | ||
559 | return rc; | ||
560 | } | ||
561 | |||
562 | /** | ||
563 | * ecryptfs_parse_packet_set | ||
564 | * @dest: The header page in memory | ||
565 | * @version: Version of file format, to guide parsing behavior | ||
566 | * | ||
567 | * Get crypt_stat to have the file's session key if the requisite key | ||
568 | * is available to decrypt the session key. | ||
569 | * | ||
570 | * Returns Zero if a valid authentication token was retrieved and | ||
571 | * processed; negative value for file not encrypted or for error | ||
572 | * conditions. | ||
573 | */ | ||
574 | int ecryptfs_parse_packet_set(struct ecryptfs_crypt_stat *crypt_stat, | ||
575 | unsigned char *src, | ||
576 | struct dentry *ecryptfs_dentry) | ||
577 | { | ||
578 | size_t i = 0; | ||
579 | int rc = 0; | ||
580 | size_t found_auth_tok = 0; | ||
581 | size_t next_packet_is_auth_tok_packet; | ||
582 | char sig[ECRYPTFS_SIG_SIZE_HEX]; | ||
583 | struct list_head auth_tok_list; | ||
584 | struct list_head *walker; | ||
585 | struct ecryptfs_auth_tok *chosen_auth_tok = NULL; | ||
586 | struct ecryptfs_mount_crypt_stat *mount_crypt_stat = | ||
587 | &ecryptfs_superblock_to_private( | ||
588 | ecryptfs_dentry->d_sb)->mount_crypt_stat; | ||
589 | struct ecryptfs_auth_tok *candidate_auth_tok = NULL; | ||
590 | size_t packet_size; | ||
591 | struct ecryptfs_auth_tok *new_auth_tok; | ||
592 | unsigned char sig_tmp_space[ECRYPTFS_SIG_SIZE]; | ||
593 | size_t tag_11_contents_size; | ||
594 | size_t tag_11_packet_size; | ||
595 | |||
596 | INIT_LIST_HEAD(&auth_tok_list); | ||
597 | /* Parse the header to find as many packets as we can, these will be | ||
598 | * added the our &auth_tok_list */ | ||
599 | next_packet_is_auth_tok_packet = 1; | ||
600 | while (next_packet_is_auth_tok_packet) { | ||
601 | size_t max_packet_size = ((PAGE_CACHE_SIZE - 8) - i); | ||
602 | |||
603 | switch (src[i]) { | ||
604 | case ECRYPTFS_TAG_3_PACKET_TYPE: | ||
605 | rc = parse_tag_3_packet(crypt_stat, | ||
606 | (unsigned char *)&src[i], | ||
607 | &auth_tok_list, &new_auth_tok, | ||
608 | &packet_size, max_packet_size); | ||
609 | if (rc) { | ||
610 | ecryptfs_printk(KERN_ERR, "Error parsing " | ||
611 | "tag 3 packet\n"); | ||
612 | rc = -EIO; | ||
613 | goto out_wipe_list; | ||
614 | } | ||
615 | i += packet_size; | ||
616 | rc = parse_tag_11_packet((unsigned char *)&src[i], | ||
617 | sig_tmp_space, | ||
618 | ECRYPTFS_SIG_SIZE, | ||
619 | &tag_11_contents_size, | ||
620 | &tag_11_packet_size, | ||
621 | max_packet_size); | ||
622 | if (rc) { | ||
623 | ecryptfs_printk(KERN_ERR, "No valid " | ||
624 | "(ecryptfs-specific) literal " | ||
625 | "packet containing " | ||
626 | "authentication token " | ||
627 | "signature found after " | ||
628 | "tag 3 packet\n"); | ||
629 | rc = -EIO; | ||
630 | goto out_wipe_list; | ||
631 | } | ||
632 | i += tag_11_packet_size; | ||
633 | if (ECRYPTFS_SIG_SIZE != tag_11_contents_size) { | ||
634 | ecryptfs_printk(KERN_ERR, "Expected " | ||
635 | "signature of size [%d]; " | ||
636 | "read size [%d]\n", | ||
637 | ECRYPTFS_SIG_SIZE, | ||
638 | tag_11_contents_size); | ||
639 | rc = -EIO; | ||
640 | goto out_wipe_list; | ||
641 | } | ||
642 | ecryptfs_to_hex(new_auth_tok->token.password.signature, | ||
643 | sig_tmp_space, tag_11_contents_size); | ||
644 | new_auth_tok->token.password.signature[ | ||
645 | ECRYPTFS_PASSWORD_SIG_SIZE] = '\0'; | ||
646 | ECRYPTFS_SET_FLAG(crypt_stat->flags, | ||
647 | ECRYPTFS_ENCRYPTED); | ||
648 | break; | ||
649 | case ECRYPTFS_TAG_11_PACKET_TYPE: | ||
650 | ecryptfs_printk(KERN_WARNING, "Invalid packet set " | ||
651 | "(Tag 11 not allowed by itself)\n"); | ||
652 | rc = -EIO; | ||
653 | goto out_wipe_list; | ||
654 | break; | ||
655 | default: | ||
656 | ecryptfs_printk(KERN_DEBUG, "No packet at offset " | ||
657 | "[%d] of the file header; hex value of " | ||
658 | "character is [0x%.2x]\n", i, src[i]); | ||
659 | next_packet_is_auth_tok_packet = 0; | ||
660 | } | ||
661 | } | ||
662 | if (list_empty(&auth_tok_list)) { | ||
663 | rc = -EINVAL; /* Do not support non-encrypted files in | ||
664 | * the 0.1 release */ | ||
665 | goto out; | ||
666 | } | ||
667 | /* If we have a global auth tok, then we should try to use | ||
668 | * it */ | ||
669 | if (mount_crypt_stat->global_auth_tok) { | ||
670 | memcpy(sig, mount_crypt_stat->global_auth_tok_sig, | ||
671 | ECRYPTFS_SIG_SIZE_HEX); | ||
672 | chosen_auth_tok = mount_crypt_stat->global_auth_tok; | ||
673 | } else | ||
674 | BUG(); /* We should always have a global auth tok in | ||
675 | * the 0.1 release */ | ||
676 | /* Scan list to see if our chosen_auth_tok works */ | ||
677 | list_for_each(walker, &auth_tok_list) { | ||
678 | struct ecryptfs_auth_tok_list_item *auth_tok_list_item; | ||
679 | auth_tok_list_item = | ||
680 | list_entry(walker, struct ecryptfs_auth_tok_list_item, | ||
681 | list); | ||
682 | candidate_auth_tok = &auth_tok_list_item->auth_tok; | ||
683 | if (unlikely(ecryptfs_verbosity > 0)) { | ||
684 | ecryptfs_printk(KERN_DEBUG, | ||
685 | "Considering cadidate auth tok:\n"); | ||
686 | ecryptfs_dump_auth_tok(candidate_auth_tok); | ||
687 | } | ||
688 | /* TODO: Replace ECRYPTFS_SIG_SIZE_HEX w/ dynamic value */ | ||
689 | if (candidate_auth_tok->token_type == ECRYPTFS_PASSWORD | ||
690 | && !strncmp(candidate_auth_tok->token.password.signature, | ||
691 | sig, ECRYPTFS_SIG_SIZE_HEX)) { | ||
692 | found_auth_tok = 1; | ||
693 | goto leave_list; | ||
694 | /* TODO: Transfer the common salt into the | ||
695 | * crypt_stat salt */ | ||
696 | } | ||
697 | } | ||
698 | leave_list: | ||
699 | if (!found_auth_tok) { | ||
700 | ecryptfs_printk(KERN_ERR, "Could not find authentication " | ||
701 | "token on temporary list for sig [%.*s]\n", | ||
702 | ECRYPTFS_SIG_SIZE_HEX, sig); | ||
703 | rc = -EIO; | ||
704 | goto out_wipe_list; | ||
705 | } else { | ||
706 | memcpy(&(candidate_auth_tok->token.password), | ||
707 | &(chosen_auth_tok->token.password), | ||
708 | sizeof(struct ecryptfs_password)); | ||
709 | rc = decrypt_session_key(candidate_auth_tok, crypt_stat); | ||
710 | if (rc) { | ||
711 | ecryptfs_printk(KERN_ERR, "Error decrypting the " | ||
712 | "session key\n"); | ||
713 | goto out_wipe_list; | ||
714 | } | ||
715 | rc = ecryptfs_compute_root_iv(crypt_stat); | ||
716 | if (rc) { | ||
717 | ecryptfs_printk(KERN_ERR, "Error computing " | ||
718 | "the root IV\n"); | ||
719 | goto out_wipe_list; | ||
720 | } | ||
721 | } | ||
722 | rc = ecryptfs_init_crypt_ctx(crypt_stat); | ||
723 | if (rc) { | ||
724 | ecryptfs_printk(KERN_ERR, "Error initializing crypto " | ||
725 | "context for cipher [%s]; rc = [%d]\n", | ||
726 | crypt_stat->cipher, rc); | ||
727 | } | ||
728 | out_wipe_list: | ||
729 | wipe_auth_tok_list(&auth_tok_list); | ||
730 | out: | ||
731 | return rc; | ||
732 | } | ||
733 | |||
734 | /** | ||
735 | * write_tag_11_packet | ||
736 | * @dest: Target into which Tag 11 packet is to be written | ||
737 | * @max: Maximum packet length | ||
738 | * @contents: Byte array of contents to copy in | ||
739 | * @contents_length: Number of bytes in contents | ||
740 | * @packet_length: Length of the Tag 11 packet written; zero on error | ||
741 | * | ||
742 | * Returns zero on success; non-zero on error. | ||
743 | */ | ||
744 | static int | ||
745 | write_tag_11_packet(char *dest, int max, char *contents, size_t contents_length, | ||
746 | size_t *packet_length) | ||
747 | { | ||
748 | int rc = 0; | ||
749 | size_t packet_size_length; | ||
750 | |||
751 | (*packet_length) = 0; | ||
752 | if ((13 + contents_length) > max) { | ||
753 | rc = -EINVAL; | ||
754 | ecryptfs_printk(KERN_ERR, "Packet length larger than " | ||
755 | "maximum allowable\n"); | ||
756 | goto out; | ||
757 | } | ||
758 | /* General packet header */ | ||
759 | /* Packet tag */ | ||
760 | dest[(*packet_length)++] = ECRYPTFS_TAG_11_PACKET_TYPE; | ||
761 | /* Packet length */ | ||
762 | rc = write_packet_length(&dest[(*packet_length)], | ||
763 | (13 + contents_length), &packet_size_length); | ||
764 | if (rc) { | ||
765 | ecryptfs_printk(KERN_ERR, "Error generating tag 11 packet " | ||
766 | "header; cannot generate packet length\n"); | ||
767 | goto out; | ||
768 | } | ||
769 | (*packet_length) += packet_size_length; | ||
770 | /* Tag 11 specific */ | ||
771 | /* One-octet field that describes how the data is formatted */ | ||
772 | dest[(*packet_length)++] = 0x62; /* binary data */ | ||
773 | /* One-octet filename length followed by filename */ | ||
774 | dest[(*packet_length)++] = 8; | ||
775 | memcpy(&dest[(*packet_length)], "_CONSOLE", 8); | ||
776 | (*packet_length) += 8; | ||
777 | /* Four-octet number indicating modification date */ | ||
778 | memset(&dest[(*packet_length)], 0x00, 4); | ||
779 | (*packet_length) += 4; | ||
780 | /* Remainder is literal data */ | ||
781 | memcpy(&dest[(*packet_length)], contents, contents_length); | ||
782 | (*packet_length) += contents_length; | ||
783 | out: | ||
784 | if (rc) | ||
785 | (*packet_length) = 0; | ||
786 | return rc; | ||
787 | } | ||
788 | |||
789 | /** | ||
790 | * write_tag_3_packet | ||
791 | * @dest: Buffer into which to write the packet | ||
792 | * @max: Maximum number of bytes that can be written | ||
793 | * @auth_tok: Authentication token | ||
794 | * @crypt_stat: The cryptographic context | ||
795 | * @key_rec: encrypted key | ||
796 | * @packet_size: This function will write the number of bytes that end | ||
797 | * up constituting the packet; set to zero on error | ||
798 | * | ||
799 | * Returns zero on success; non-zero on error. | ||
800 | */ | ||
801 | static int | ||
802 | write_tag_3_packet(char *dest, size_t max, struct ecryptfs_auth_tok *auth_tok, | ||
803 | struct ecryptfs_crypt_stat *crypt_stat, | ||
804 | struct ecryptfs_key_record *key_rec, size_t *packet_size) | ||
805 | { | ||
806 | int rc = 0; | ||
807 | |||
808 | size_t i; | ||
809 | size_t signature_is_valid = 0; | ||
810 | size_t encrypted_session_key_valid = 0; | ||
811 | char session_key_encryption_key[ECRYPTFS_MAX_KEY_BYTES]; | ||
812 | struct scatterlist dest_sg[2]; | ||
813 | struct scatterlist src_sg[2]; | ||
814 | struct crypto_tfm *tfm = NULL; | ||
815 | struct mutex *tfm_mutex = NULL; | ||
816 | size_t key_rec_size; | ||
817 | size_t packet_size_length; | ||
818 | size_t cipher_code; | ||
819 | |||
820 | (*packet_size) = 0; | ||
821 | /* Check for a valid signature on the auth_tok */ | ||
822 | for (i = 0; i < ECRYPTFS_SIG_SIZE_HEX; i++) | ||
823 | signature_is_valid |= auth_tok->token.password.signature[i]; | ||
824 | if (!signature_is_valid) | ||
825 | BUG(); | ||
826 | ecryptfs_from_hex((*key_rec).sig, auth_tok->token.password.signature, | ||
827 | ECRYPTFS_SIG_SIZE); | ||
828 | encrypted_session_key_valid = 0; | ||
829 | for (i = 0; i < crypt_stat->key_size; i++) | ||
830 | encrypted_session_key_valid |= | ||
831 | auth_tok->session_key.encrypted_key[i]; | ||
832 | if (encrypted_session_key_valid) { | ||
833 | memcpy((*key_rec).enc_key, | ||
834 | auth_tok->session_key.encrypted_key, | ||
835 | auth_tok->session_key.encrypted_key_size); | ||
836 | goto encrypted_session_key_set; | ||
837 | } | ||
838 | if (auth_tok->session_key.encrypted_key_size == 0) | ||
839 | auth_tok->session_key.encrypted_key_size = | ||
840 | crypt_stat->key_size; | ||
841 | if (crypt_stat->key_size == 24 | ||
842 | && strcmp("aes", crypt_stat->cipher) == 0) { | ||
843 | memset((crypt_stat->key + 24), 0, 8); | ||
844 | auth_tok->session_key.encrypted_key_size = 32; | ||
845 | } | ||
846 | (*key_rec).enc_key_size = | ||
847 | auth_tok->session_key.encrypted_key_size; | ||
848 | if (ECRYPTFS_CHECK_FLAG(auth_tok->token.password.flags, | ||
849 | ECRYPTFS_SESSION_KEY_ENCRYPTION_KEY_SET)) { | ||
850 | ecryptfs_printk(KERN_DEBUG, "Using previously generated " | ||
851 | "session key encryption key of size [%d]\n", | ||
852 | auth_tok->token.password. | ||
853 | session_key_encryption_key_bytes); | ||
854 | memcpy(session_key_encryption_key, | ||
855 | auth_tok->token.password.session_key_encryption_key, | ||
856 | crypt_stat->key_size); | ||
857 | ecryptfs_printk(KERN_DEBUG, | ||
858 | "Cached session key " "encryption key: \n"); | ||
859 | if (ecryptfs_verbosity > 0) | ||
860 | ecryptfs_dump_hex(session_key_encryption_key, 16); | ||
861 | } | ||
862 | if (unlikely(ecryptfs_verbosity > 0)) { | ||
863 | ecryptfs_printk(KERN_DEBUG, "Session key encryption key:\n"); | ||
864 | ecryptfs_dump_hex(session_key_encryption_key, 16); | ||
865 | } | ||
866 | rc = virt_to_scatterlist(crypt_stat->key, | ||
867 | (*key_rec).enc_key_size, src_sg, 2); | ||
868 | if (!rc) { | ||
869 | ecryptfs_printk(KERN_ERR, "Error generating scatterlist " | ||
870 | "for crypt_stat session key\n"); | ||
871 | rc = -ENOMEM; | ||
872 | goto out; | ||
873 | } | ||
874 | rc = virt_to_scatterlist((*key_rec).enc_key, | ||
875 | (*key_rec).enc_key_size, dest_sg, 2); | ||
876 | if (!rc) { | ||
877 | ecryptfs_printk(KERN_ERR, "Error generating scatterlist " | ||
878 | "for crypt_stat encrypted session key\n"); | ||
879 | rc = -ENOMEM; | ||
880 | goto out; | ||
881 | } | ||
882 | if (!strcmp(crypt_stat->cipher, | ||
883 | crypt_stat->mount_crypt_stat->global_default_cipher_name) | ||
884 | && crypt_stat->mount_crypt_stat->global_key_tfm) { | ||
885 | tfm = crypt_stat->mount_crypt_stat->global_key_tfm; | ||
886 | tfm_mutex = &crypt_stat->mount_crypt_stat->global_key_tfm_mutex; | ||
887 | } else | ||
888 | tfm = crypto_alloc_tfm(crypt_stat->cipher, 0); | ||
889 | if (!tfm) { | ||
890 | ecryptfs_printk(KERN_ERR, "Could not initialize crypto " | ||
891 | "context for cipher [%s]\n", | ||
892 | crypt_stat->cipher); | ||
893 | rc = -EINVAL; | ||
894 | goto out; | ||
895 | } | ||
896 | if (tfm_mutex) | ||
897 | mutex_lock(tfm_mutex); | ||
898 | rc = crypto_cipher_setkey(tfm, session_key_encryption_key, | ||
899 | crypt_stat->key_size); | ||
900 | if (rc < 0) { | ||
901 | if (tfm_mutex) | ||
902 | mutex_unlock(tfm_mutex); | ||
903 | ecryptfs_printk(KERN_ERR, "Error setting key for crypto " | ||
904 | "context\n"); | ||
905 | goto out; | ||
906 | } | ||
907 | rc = 0; | ||
908 | ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes of the key\n", | ||
909 | crypt_stat->key_size); | ||
910 | crypto_cipher_encrypt(tfm, dest_sg, src_sg, | ||
911 | (*key_rec).enc_key_size); | ||
912 | if (tfm_mutex) | ||
913 | mutex_unlock(tfm_mutex); | ||
914 | ecryptfs_printk(KERN_DEBUG, "This should be the encrypted key:\n"); | ||
915 | if (ecryptfs_verbosity > 0) | ||
916 | ecryptfs_dump_hex((*key_rec).enc_key, | ||
917 | (*key_rec).enc_key_size); | ||
918 | encrypted_session_key_set: | ||
919 | /* Now we have a valid key_rec. Append it to the | ||
920 | * key_rec set. */ | ||
921 | key_rec_size = (sizeof(struct ecryptfs_key_record) | ||
922 | - ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES | ||
923 | + ((*key_rec).enc_key_size)); | ||
924 | /* TODO: Include a packet size limit as a parameter to this | ||
925 | * function once we have multi-packet headers (for versions | ||
926 | * later than 0.1 */ | ||
927 | if (key_rec_size >= ECRYPTFS_MAX_KEYSET_SIZE) { | ||
928 | ecryptfs_printk(KERN_ERR, "Keyset too large\n"); | ||
929 | rc = -EINVAL; | ||
930 | goto out; | ||
931 | } | ||
932 | /* TODO: Packet size limit */ | ||
933 | /* We have 5 bytes of surrounding packet data */ | ||
934 | if ((0x05 + ECRYPTFS_SALT_SIZE | ||
935 | + (*key_rec).enc_key_size) >= max) { | ||
936 | ecryptfs_printk(KERN_ERR, "Authentication token is too " | ||
937 | "large\n"); | ||
938 | rc = -EINVAL; | ||
939 | goto out; | ||
940 | } | ||
941 | /* This format is inspired by OpenPGP; see RFC 2440 | ||
942 | * packet tag 3 */ | ||
943 | dest[(*packet_size)++] = ECRYPTFS_TAG_3_PACKET_TYPE; | ||
944 | /* ver+cipher+s2k+hash+salt+iter+enc_key */ | ||
945 | rc = write_packet_length(&dest[(*packet_size)], | ||
946 | (0x05 + ECRYPTFS_SALT_SIZE | ||
947 | + (*key_rec).enc_key_size), | ||
948 | &packet_size_length); | ||
949 | if (rc) { | ||
950 | ecryptfs_printk(KERN_ERR, "Error generating tag 3 packet " | ||
951 | "header; cannot generate packet length\n"); | ||
952 | goto out; | ||
953 | } | ||
954 | (*packet_size) += packet_size_length; | ||
955 | dest[(*packet_size)++] = 0x04; /* version 4 */ | ||
956 | cipher_code = ecryptfs_code_for_cipher_string(crypt_stat); | ||
957 | if (cipher_code == 0) { | ||
958 | ecryptfs_printk(KERN_WARNING, "Unable to generate code for " | ||
959 | "cipher [%s]\n", crypt_stat->cipher); | ||
960 | rc = -EINVAL; | ||
961 | goto out; | ||
962 | } | ||
963 | dest[(*packet_size)++] = cipher_code; | ||
964 | dest[(*packet_size)++] = 0x03; /* S2K */ | ||
965 | dest[(*packet_size)++] = 0x01; /* MD5 (TODO: parameterize) */ | ||
966 | memcpy(&dest[(*packet_size)], auth_tok->token.password.salt, | ||
967 | ECRYPTFS_SALT_SIZE); | ||
968 | (*packet_size) += ECRYPTFS_SALT_SIZE; /* salt */ | ||
969 | dest[(*packet_size)++] = 0x60; /* hash iterations (65536) */ | ||
970 | memcpy(&dest[(*packet_size)], (*key_rec).enc_key, | ||
971 | (*key_rec).enc_key_size); | ||
972 | (*packet_size) += (*key_rec).enc_key_size; | ||
973 | out: | ||
974 | if (tfm && !tfm_mutex) | ||
975 | crypto_free_tfm(tfm); | ||
976 | if (rc) | ||
977 | (*packet_size) = 0; | ||
978 | return rc; | ||
979 | } | ||
980 | |||
981 | /** | ||
982 | * ecryptfs_generate_key_packet_set | ||
983 | * @dest: Virtual address from which to write the key record set | ||
984 | * @crypt_stat: The cryptographic context from which the | ||
985 | * authentication tokens will be retrieved | ||
986 | * @ecryptfs_dentry: The dentry, used to retrieve the mount crypt stat | ||
987 | * for the global parameters | ||
988 | * @len: The amount written | ||
989 | * @max: The maximum amount of data allowed to be written | ||
990 | * | ||
991 | * Generates a key packet set and writes it to the virtual address | ||
992 | * passed in. | ||
993 | * | ||
994 | * Returns zero on success; non-zero on error. | ||
995 | */ | ||
996 | int | ||
997 | ecryptfs_generate_key_packet_set(char *dest_base, | ||
998 | struct ecryptfs_crypt_stat *crypt_stat, | ||
999 | struct dentry *ecryptfs_dentry, size_t *len, | ||
1000 | size_t max) | ||
1001 | { | ||
1002 | int rc = 0; | ||
1003 | struct ecryptfs_auth_tok *auth_tok; | ||
1004 | struct ecryptfs_mount_crypt_stat *mount_crypt_stat = | ||
1005 | &ecryptfs_superblock_to_private( | ||
1006 | ecryptfs_dentry->d_sb)->mount_crypt_stat; | ||
1007 | size_t written; | ||
1008 | struct ecryptfs_key_record key_rec; | ||
1009 | |||
1010 | (*len) = 0; | ||
1011 | if (mount_crypt_stat->global_auth_tok) { | ||
1012 | auth_tok = mount_crypt_stat->global_auth_tok; | ||
1013 | if (auth_tok->token_type == ECRYPTFS_PASSWORD) { | ||
1014 | rc = write_tag_3_packet((dest_base + (*len)), | ||
1015 | max, auth_tok, | ||
1016 | crypt_stat, &key_rec, | ||
1017 | &written); | ||
1018 | if (rc) { | ||
1019 | ecryptfs_printk(KERN_WARNING, "Error " | ||
1020 | "writing tag 3 packet\n"); | ||
1021 | goto out; | ||
1022 | } | ||
1023 | (*len) += written; | ||
1024 | /* Write auth tok signature packet */ | ||
1025 | rc = write_tag_11_packet( | ||
1026 | (dest_base + (*len)), | ||
1027 | (max - (*len)), | ||
1028 | key_rec.sig, ECRYPTFS_SIG_SIZE, &written); | ||
1029 | if (rc) { | ||
1030 | ecryptfs_printk(KERN_ERR, "Error writing " | ||
1031 | "auth tok signature packet\n"); | ||
1032 | goto out; | ||
1033 | } | ||
1034 | (*len) += written; | ||
1035 | } else { | ||
1036 | ecryptfs_printk(KERN_WARNING, "Unsupported " | ||
1037 | "authentication token type\n"); | ||
1038 | rc = -EINVAL; | ||
1039 | goto out; | ||
1040 | } | ||
1041 | if (rc) { | ||
1042 | ecryptfs_printk(KERN_WARNING, "Error writing " | ||
1043 | "authentication token packet with sig " | ||
1044 | "= [%s]\n", | ||
1045 | mount_crypt_stat->global_auth_tok_sig); | ||
1046 | rc = -EIO; | ||
1047 | goto out; | ||
1048 | } | ||
1049 | } else | ||
1050 | BUG(); | ||
1051 | if (likely((max - (*len)) > 0)) { | ||
1052 | dest_base[(*len)] = 0x00; | ||
1053 | } else { | ||
1054 | ecryptfs_printk(KERN_ERR, "Error writing boundary byte\n"); | ||
1055 | rc = -EIO; | ||
1056 | } | ||
1057 | out: | ||
1058 | if (rc) | ||
1059 | (*len) = 0; | ||
1060 | return rc; | ||
1061 | } | ||