aboutsummaryrefslogtreecommitdiffstats
path: root/fs/ceph/messenger.c
diff options
context:
space:
mode:
Diffstat (limited to 'fs/ceph/messenger.c')
-rw-r--r--fs/ceph/messenger.c2240
1 files changed, 2240 insertions, 0 deletions
diff --git a/fs/ceph/messenger.c b/fs/ceph/messenger.c
new file mode 100644
index 000000000000..781656a49bf8
--- /dev/null
+++ b/fs/ceph/messenger.c
@@ -0,0 +1,2240 @@
1#include "ceph_debug.h"
2
3#include <linux/crc32c.h>
4#include <linux/ctype.h>
5#include <linux/highmem.h>
6#include <linux/inet.h>
7#include <linux/kthread.h>
8#include <linux/net.h>
9#include <linux/socket.h>
10#include <linux/string.h>
11#include <net/tcp.h>
12
13#include "super.h"
14#include "messenger.h"
15#include "decode.h"
16#include "pagelist.h"
17
18/*
19 * Ceph uses the messenger to exchange ceph_msg messages with other
20 * hosts in the system. The messenger provides ordered and reliable
21 * delivery. We tolerate TCP disconnects by reconnecting (with
22 * exponential backoff) in the case of a fault (disconnection, bad
23 * crc, protocol error). Acks allow sent messages to be discarded by
24 * the sender.
25 */
26
27/* static tag bytes (protocol control messages) */
28static char tag_msg = CEPH_MSGR_TAG_MSG;
29static char tag_ack = CEPH_MSGR_TAG_ACK;
30static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
31
32
33static void queue_con(struct ceph_connection *con);
34static void con_work(struct work_struct *);
35static void ceph_fault(struct ceph_connection *con);
36
37const char *ceph_name_type_str(int t)
38{
39 switch (t) {
40 case CEPH_ENTITY_TYPE_MON: return "mon";
41 case CEPH_ENTITY_TYPE_MDS: return "mds";
42 case CEPH_ENTITY_TYPE_OSD: return "osd";
43 case CEPH_ENTITY_TYPE_CLIENT: return "client";
44 case CEPH_ENTITY_TYPE_ADMIN: return "admin";
45 default: return "???";
46 }
47}
48
49/*
50 * nicely render a sockaddr as a string.
51 */
52#define MAX_ADDR_STR 20
53static char addr_str[MAX_ADDR_STR][40];
54static DEFINE_SPINLOCK(addr_str_lock);
55static int last_addr_str;
56
57const char *pr_addr(const struct sockaddr_storage *ss)
58{
59 int i;
60 char *s;
61 struct sockaddr_in *in4 = (void *)ss;
62 unsigned char *quad = (void *)&in4->sin_addr.s_addr;
63 struct sockaddr_in6 *in6 = (void *)ss;
64
65 spin_lock(&addr_str_lock);
66 i = last_addr_str++;
67 if (last_addr_str == MAX_ADDR_STR)
68 last_addr_str = 0;
69 spin_unlock(&addr_str_lock);
70 s = addr_str[i];
71
72 switch (ss->ss_family) {
73 case AF_INET:
74 sprintf(s, "%u.%u.%u.%u:%u",
75 (unsigned int)quad[0],
76 (unsigned int)quad[1],
77 (unsigned int)quad[2],
78 (unsigned int)quad[3],
79 (unsigned int)ntohs(in4->sin_port));
80 break;
81
82 case AF_INET6:
83 sprintf(s, "%04x:%04x:%04x:%04x:%04x:%04x:%04x:%04x:%u",
84 in6->sin6_addr.s6_addr16[0],
85 in6->sin6_addr.s6_addr16[1],
86 in6->sin6_addr.s6_addr16[2],
87 in6->sin6_addr.s6_addr16[3],
88 in6->sin6_addr.s6_addr16[4],
89 in6->sin6_addr.s6_addr16[5],
90 in6->sin6_addr.s6_addr16[6],
91 in6->sin6_addr.s6_addr16[7],
92 (unsigned int)ntohs(in6->sin6_port));
93 break;
94
95 default:
96 sprintf(s, "(unknown sockaddr family %d)", (int)ss->ss_family);
97 }
98
99 return s;
100}
101
102static void encode_my_addr(struct ceph_messenger *msgr)
103{
104 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
105 ceph_encode_addr(&msgr->my_enc_addr);
106}
107
108/*
109 * work queue for all reading and writing to/from the socket.
110 */
111struct workqueue_struct *ceph_msgr_wq;
112
113int __init ceph_msgr_init(void)
114{
115 ceph_msgr_wq = create_workqueue("ceph-msgr");
116 if (IS_ERR(ceph_msgr_wq)) {
117 int ret = PTR_ERR(ceph_msgr_wq);
118 pr_err("msgr_init failed to create workqueue: %d\n", ret);
119 ceph_msgr_wq = NULL;
120 return ret;
121 }
122 return 0;
123}
124
125void ceph_msgr_exit(void)
126{
127 destroy_workqueue(ceph_msgr_wq);
128}
129
130/*
131 * socket callback functions
132 */
133
134/* data available on socket, or listen socket received a connect */
135static void ceph_data_ready(struct sock *sk, int count_unused)
136{
137 struct ceph_connection *con =
138 (struct ceph_connection *)sk->sk_user_data;
139 if (sk->sk_state != TCP_CLOSE_WAIT) {
140 dout("ceph_data_ready on %p state = %lu, queueing work\n",
141 con, con->state);
142 queue_con(con);
143 }
144}
145
146/* socket has buffer space for writing */
147static void ceph_write_space(struct sock *sk)
148{
149 struct ceph_connection *con =
150 (struct ceph_connection *)sk->sk_user_data;
151
152 /* only queue to workqueue if there is data we want to write. */
153 if (test_bit(WRITE_PENDING, &con->state)) {
154 dout("ceph_write_space %p queueing write work\n", con);
155 queue_con(con);
156 } else {
157 dout("ceph_write_space %p nothing to write\n", con);
158 }
159
160 /* since we have our own write_space, clear the SOCK_NOSPACE flag */
161 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
162}
163
164/* socket's state has changed */
165static void ceph_state_change(struct sock *sk)
166{
167 struct ceph_connection *con =
168 (struct ceph_connection *)sk->sk_user_data;
169
170 dout("ceph_state_change %p state = %lu sk_state = %u\n",
171 con, con->state, sk->sk_state);
172
173 if (test_bit(CLOSED, &con->state))
174 return;
175
176 switch (sk->sk_state) {
177 case TCP_CLOSE:
178 dout("ceph_state_change TCP_CLOSE\n");
179 case TCP_CLOSE_WAIT:
180 dout("ceph_state_change TCP_CLOSE_WAIT\n");
181 if (test_and_set_bit(SOCK_CLOSED, &con->state) == 0) {
182 if (test_bit(CONNECTING, &con->state))
183 con->error_msg = "connection failed";
184 else
185 con->error_msg = "socket closed";
186 queue_con(con);
187 }
188 break;
189 case TCP_ESTABLISHED:
190 dout("ceph_state_change TCP_ESTABLISHED\n");
191 queue_con(con);
192 break;
193 }
194}
195
196/*
197 * set up socket callbacks
198 */
199static void set_sock_callbacks(struct socket *sock,
200 struct ceph_connection *con)
201{
202 struct sock *sk = sock->sk;
203 sk->sk_user_data = (void *)con;
204 sk->sk_data_ready = ceph_data_ready;
205 sk->sk_write_space = ceph_write_space;
206 sk->sk_state_change = ceph_state_change;
207}
208
209
210/*
211 * socket helpers
212 */
213
214/*
215 * initiate connection to a remote socket.
216 */
217static struct socket *ceph_tcp_connect(struct ceph_connection *con)
218{
219 struct sockaddr *paddr = (struct sockaddr *)&con->peer_addr.in_addr;
220 struct socket *sock;
221 int ret;
222
223 BUG_ON(con->sock);
224 ret = sock_create_kern(AF_INET, SOCK_STREAM, IPPROTO_TCP, &sock);
225 if (ret)
226 return ERR_PTR(ret);
227 con->sock = sock;
228 sock->sk->sk_allocation = GFP_NOFS;
229
230 set_sock_callbacks(sock, con);
231
232 dout("connect %s\n", pr_addr(&con->peer_addr.in_addr));
233
234 ret = sock->ops->connect(sock, paddr, sizeof(*paddr), O_NONBLOCK);
235 if (ret == -EINPROGRESS) {
236 dout("connect %s EINPROGRESS sk_state = %u\n",
237 pr_addr(&con->peer_addr.in_addr),
238 sock->sk->sk_state);
239 ret = 0;
240 }
241 if (ret < 0) {
242 pr_err("connect %s error %d\n",
243 pr_addr(&con->peer_addr.in_addr), ret);
244 sock_release(sock);
245 con->sock = NULL;
246 con->error_msg = "connect error";
247 }
248
249 if (ret < 0)
250 return ERR_PTR(ret);
251 return sock;
252}
253
254static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
255{
256 struct kvec iov = {buf, len};
257 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
258
259 return kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
260}
261
262/*
263 * write something. @more is true if caller will be sending more data
264 * shortly.
265 */
266static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
267 size_t kvlen, size_t len, int more)
268{
269 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
270
271 if (more)
272 msg.msg_flags |= MSG_MORE;
273 else
274 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
275
276 return kernel_sendmsg(sock, &msg, iov, kvlen, len);
277}
278
279
280/*
281 * Shutdown/close the socket for the given connection.
282 */
283static int con_close_socket(struct ceph_connection *con)
284{
285 int rc;
286
287 dout("con_close_socket on %p sock %p\n", con, con->sock);
288 if (!con->sock)
289 return 0;
290 set_bit(SOCK_CLOSED, &con->state);
291 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
292 sock_release(con->sock);
293 con->sock = NULL;
294 clear_bit(SOCK_CLOSED, &con->state);
295 return rc;
296}
297
298/*
299 * Reset a connection. Discard all incoming and outgoing messages
300 * and clear *_seq state.
301 */
302static void ceph_msg_remove(struct ceph_msg *msg)
303{
304 list_del_init(&msg->list_head);
305 ceph_msg_put(msg);
306}
307static void ceph_msg_remove_list(struct list_head *head)
308{
309 while (!list_empty(head)) {
310 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
311 list_head);
312 ceph_msg_remove(msg);
313 }
314}
315
316static void reset_connection(struct ceph_connection *con)
317{
318 /* reset connection, out_queue, msg_ and connect_seq */
319 /* discard existing out_queue and msg_seq */
320 ceph_msg_remove_list(&con->out_queue);
321 ceph_msg_remove_list(&con->out_sent);
322
323 if (con->in_msg) {
324 ceph_msg_put(con->in_msg);
325 con->in_msg = NULL;
326 }
327
328 con->connect_seq = 0;
329 con->out_seq = 0;
330 if (con->out_msg) {
331 ceph_msg_put(con->out_msg);
332 con->out_msg = NULL;
333 }
334 con->in_seq = 0;
335}
336
337/*
338 * mark a peer down. drop any open connections.
339 */
340void ceph_con_close(struct ceph_connection *con)
341{
342 dout("con_close %p peer %s\n", con, pr_addr(&con->peer_addr.in_addr));
343 set_bit(CLOSED, &con->state); /* in case there's queued work */
344 clear_bit(STANDBY, &con->state); /* avoid connect_seq bump */
345 clear_bit(LOSSYTX, &con->state); /* so we retry next connect */
346 clear_bit(KEEPALIVE_PENDING, &con->state);
347 clear_bit(WRITE_PENDING, &con->state);
348 mutex_lock(&con->mutex);
349 reset_connection(con);
350 cancel_delayed_work(&con->work);
351 mutex_unlock(&con->mutex);
352 queue_con(con);
353}
354
355/*
356 * Reopen a closed connection, with a new peer address.
357 */
358void ceph_con_open(struct ceph_connection *con, struct ceph_entity_addr *addr)
359{
360 dout("con_open %p %s\n", con, pr_addr(&addr->in_addr));
361 set_bit(OPENING, &con->state);
362 clear_bit(CLOSED, &con->state);
363 memcpy(&con->peer_addr, addr, sizeof(*addr));
364 con->delay = 0; /* reset backoff memory */
365 queue_con(con);
366}
367
368/*
369 * generic get/put
370 */
371struct ceph_connection *ceph_con_get(struct ceph_connection *con)
372{
373 dout("con_get %p nref = %d -> %d\n", con,
374 atomic_read(&con->nref), atomic_read(&con->nref) + 1);
375 if (atomic_inc_not_zero(&con->nref))
376 return con;
377 return NULL;
378}
379
380void ceph_con_put(struct ceph_connection *con)
381{
382 dout("con_put %p nref = %d -> %d\n", con,
383 atomic_read(&con->nref), atomic_read(&con->nref) - 1);
384 BUG_ON(atomic_read(&con->nref) == 0);
385 if (atomic_dec_and_test(&con->nref)) {
386 BUG_ON(con->sock);
387 kfree(con);
388 }
389}
390
391/*
392 * initialize a new connection.
393 */
394void ceph_con_init(struct ceph_messenger *msgr, struct ceph_connection *con)
395{
396 dout("con_init %p\n", con);
397 memset(con, 0, sizeof(*con));
398 atomic_set(&con->nref, 1);
399 con->msgr = msgr;
400 mutex_init(&con->mutex);
401 INIT_LIST_HEAD(&con->out_queue);
402 INIT_LIST_HEAD(&con->out_sent);
403 INIT_DELAYED_WORK(&con->work, con_work);
404}
405
406
407/*
408 * We maintain a global counter to order connection attempts. Get
409 * a unique seq greater than @gt.
410 */
411static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
412{
413 u32 ret;
414
415 spin_lock(&msgr->global_seq_lock);
416 if (msgr->global_seq < gt)
417 msgr->global_seq = gt;
418 ret = ++msgr->global_seq;
419 spin_unlock(&msgr->global_seq_lock);
420 return ret;
421}
422
423
424/*
425 * Prepare footer for currently outgoing message, and finish things
426 * off. Assumes out_kvec* are already valid.. we just add on to the end.
427 */
428static void prepare_write_message_footer(struct ceph_connection *con, int v)
429{
430 struct ceph_msg *m = con->out_msg;
431
432 dout("prepare_write_message_footer %p\n", con);
433 con->out_kvec_is_msg = true;
434 con->out_kvec[v].iov_base = &m->footer;
435 con->out_kvec[v].iov_len = sizeof(m->footer);
436 con->out_kvec_bytes += sizeof(m->footer);
437 con->out_kvec_left++;
438 con->out_more = m->more_to_follow;
439 con->out_msg_done = true;
440}
441
442/*
443 * Prepare headers for the next outgoing message.
444 */
445static void prepare_write_message(struct ceph_connection *con)
446{
447 struct ceph_msg *m;
448 int v = 0;
449
450 con->out_kvec_bytes = 0;
451 con->out_kvec_is_msg = true;
452 con->out_msg_done = false;
453
454 /* Sneak an ack in there first? If we can get it into the same
455 * TCP packet that's a good thing. */
456 if (con->in_seq > con->in_seq_acked) {
457 con->in_seq_acked = con->in_seq;
458 con->out_kvec[v].iov_base = &tag_ack;
459 con->out_kvec[v++].iov_len = 1;
460 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
461 con->out_kvec[v].iov_base = &con->out_temp_ack;
462 con->out_kvec[v++].iov_len = sizeof(con->out_temp_ack);
463 con->out_kvec_bytes = 1 + sizeof(con->out_temp_ack);
464 }
465
466 m = list_first_entry(&con->out_queue,
467 struct ceph_msg, list_head);
468 con->out_msg = m;
469 if (test_bit(LOSSYTX, &con->state)) {
470 list_del_init(&m->list_head);
471 } else {
472 /* put message on sent list */
473 ceph_msg_get(m);
474 list_move_tail(&m->list_head, &con->out_sent);
475 }
476
477 m->hdr.seq = cpu_to_le64(++con->out_seq);
478
479 dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
480 m, con->out_seq, le16_to_cpu(m->hdr.type),
481 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
482 le32_to_cpu(m->hdr.data_len),
483 m->nr_pages);
484 BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
485
486 /* tag + hdr + front + middle */
487 con->out_kvec[v].iov_base = &tag_msg;
488 con->out_kvec[v++].iov_len = 1;
489 con->out_kvec[v].iov_base = &m->hdr;
490 con->out_kvec[v++].iov_len = sizeof(m->hdr);
491 con->out_kvec[v++] = m->front;
492 if (m->middle)
493 con->out_kvec[v++] = m->middle->vec;
494 con->out_kvec_left = v;
495 con->out_kvec_bytes += 1 + sizeof(m->hdr) + m->front.iov_len +
496 (m->middle ? m->middle->vec.iov_len : 0);
497 con->out_kvec_cur = con->out_kvec;
498
499 /* fill in crc (except data pages), footer */
500 con->out_msg->hdr.crc =
501 cpu_to_le32(crc32c(0, (void *)&m->hdr,
502 sizeof(m->hdr) - sizeof(m->hdr.crc)));
503 con->out_msg->footer.flags = CEPH_MSG_FOOTER_COMPLETE;
504 con->out_msg->footer.front_crc =
505 cpu_to_le32(crc32c(0, m->front.iov_base, m->front.iov_len));
506 if (m->middle)
507 con->out_msg->footer.middle_crc =
508 cpu_to_le32(crc32c(0, m->middle->vec.iov_base,
509 m->middle->vec.iov_len));
510 else
511 con->out_msg->footer.middle_crc = 0;
512 con->out_msg->footer.data_crc = 0;
513 dout("prepare_write_message front_crc %u data_crc %u\n",
514 le32_to_cpu(con->out_msg->footer.front_crc),
515 le32_to_cpu(con->out_msg->footer.middle_crc));
516
517 /* is there a data payload? */
518 if (le32_to_cpu(m->hdr.data_len) > 0) {
519 /* initialize page iterator */
520 con->out_msg_pos.page = 0;
521 con->out_msg_pos.page_pos =
522 le16_to_cpu(m->hdr.data_off) & ~PAGE_MASK;
523 con->out_msg_pos.data_pos = 0;
524 con->out_msg_pos.did_page_crc = 0;
525 con->out_more = 1; /* data + footer will follow */
526 } else {
527 /* no, queue up footer too and be done */
528 prepare_write_message_footer(con, v);
529 }
530
531 set_bit(WRITE_PENDING, &con->state);
532}
533
534/*
535 * Prepare an ack.
536 */
537static void prepare_write_ack(struct ceph_connection *con)
538{
539 dout("prepare_write_ack %p %llu -> %llu\n", con,
540 con->in_seq_acked, con->in_seq);
541 con->in_seq_acked = con->in_seq;
542
543 con->out_kvec[0].iov_base = &tag_ack;
544 con->out_kvec[0].iov_len = 1;
545 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
546 con->out_kvec[1].iov_base = &con->out_temp_ack;
547 con->out_kvec[1].iov_len = sizeof(con->out_temp_ack);
548 con->out_kvec_left = 2;
549 con->out_kvec_bytes = 1 + sizeof(con->out_temp_ack);
550 con->out_kvec_cur = con->out_kvec;
551 con->out_more = 1; /* more will follow.. eventually.. */
552 set_bit(WRITE_PENDING, &con->state);
553}
554
555/*
556 * Prepare to write keepalive byte.
557 */
558static void prepare_write_keepalive(struct ceph_connection *con)
559{
560 dout("prepare_write_keepalive %p\n", con);
561 con->out_kvec[0].iov_base = &tag_keepalive;
562 con->out_kvec[0].iov_len = 1;
563 con->out_kvec_left = 1;
564 con->out_kvec_bytes = 1;
565 con->out_kvec_cur = con->out_kvec;
566 set_bit(WRITE_PENDING, &con->state);
567}
568
569/*
570 * Connection negotiation.
571 */
572
573static void prepare_connect_authorizer(struct ceph_connection *con)
574{
575 void *auth_buf;
576 int auth_len = 0;
577 int auth_protocol = 0;
578
579 mutex_unlock(&con->mutex);
580 if (con->ops->get_authorizer)
581 con->ops->get_authorizer(con, &auth_buf, &auth_len,
582 &auth_protocol, &con->auth_reply_buf,
583 &con->auth_reply_buf_len,
584 con->auth_retry);
585 mutex_lock(&con->mutex);
586
587 con->out_connect.authorizer_protocol = cpu_to_le32(auth_protocol);
588 con->out_connect.authorizer_len = cpu_to_le32(auth_len);
589
590 con->out_kvec[con->out_kvec_left].iov_base = auth_buf;
591 con->out_kvec[con->out_kvec_left].iov_len = auth_len;
592 con->out_kvec_left++;
593 con->out_kvec_bytes += auth_len;
594}
595
596/*
597 * We connected to a peer and are saying hello.
598 */
599static void prepare_write_banner(struct ceph_messenger *msgr,
600 struct ceph_connection *con)
601{
602 int len = strlen(CEPH_BANNER);
603
604 con->out_kvec[0].iov_base = CEPH_BANNER;
605 con->out_kvec[0].iov_len = len;
606 con->out_kvec[1].iov_base = &msgr->my_enc_addr;
607 con->out_kvec[1].iov_len = sizeof(msgr->my_enc_addr);
608 con->out_kvec_left = 2;
609 con->out_kvec_bytes = len + sizeof(msgr->my_enc_addr);
610 con->out_kvec_cur = con->out_kvec;
611 con->out_more = 0;
612 set_bit(WRITE_PENDING, &con->state);
613}
614
615static void prepare_write_connect(struct ceph_messenger *msgr,
616 struct ceph_connection *con,
617 int after_banner)
618{
619 unsigned global_seq = get_global_seq(con->msgr, 0);
620 int proto;
621
622 switch (con->peer_name.type) {
623 case CEPH_ENTITY_TYPE_MON:
624 proto = CEPH_MONC_PROTOCOL;
625 break;
626 case CEPH_ENTITY_TYPE_OSD:
627 proto = CEPH_OSDC_PROTOCOL;
628 break;
629 case CEPH_ENTITY_TYPE_MDS:
630 proto = CEPH_MDSC_PROTOCOL;
631 break;
632 default:
633 BUG();
634 }
635
636 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
637 con->connect_seq, global_seq, proto);
638
639 con->out_connect.features = CEPH_FEATURE_SUPPORTED;
640 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
641 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
642 con->out_connect.global_seq = cpu_to_le32(global_seq);
643 con->out_connect.protocol_version = cpu_to_le32(proto);
644 con->out_connect.flags = 0;
645
646 if (!after_banner) {
647 con->out_kvec_left = 0;
648 con->out_kvec_bytes = 0;
649 }
650 con->out_kvec[con->out_kvec_left].iov_base = &con->out_connect;
651 con->out_kvec[con->out_kvec_left].iov_len = sizeof(con->out_connect);
652 con->out_kvec_left++;
653 con->out_kvec_bytes += sizeof(con->out_connect);
654 con->out_kvec_cur = con->out_kvec;
655 con->out_more = 0;
656 set_bit(WRITE_PENDING, &con->state);
657
658 prepare_connect_authorizer(con);
659}
660
661
662/*
663 * write as much of pending kvecs to the socket as we can.
664 * 1 -> done
665 * 0 -> socket full, but more to do
666 * <0 -> error
667 */
668static int write_partial_kvec(struct ceph_connection *con)
669{
670 int ret;
671
672 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
673 while (con->out_kvec_bytes > 0) {
674 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
675 con->out_kvec_left, con->out_kvec_bytes,
676 con->out_more);
677 if (ret <= 0)
678 goto out;
679 con->out_kvec_bytes -= ret;
680 if (con->out_kvec_bytes == 0)
681 break; /* done */
682 while (ret > 0) {
683 if (ret >= con->out_kvec_cur->iov_len) {
684 ret -= con->out_kvec_cur->iov_len;
685 con->out_kvec_cur++;
686 con->out_kvec_left--;
687 } else {
688 con->out_kvec_cur->iov_len -= ret;
689 con->out_kvec_cur->iov_base += ret;
690 ret = 0;
691 break;
692 }
693 }
694 }
695 con->out_kvec_left = 0;
696 con->out_kvec_is_msg = false;
697 ret = 1;
698out:
699 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
700 con->out_kvec_bytes, con->out_kvec_left, ret);
701 return ret; /* done! */
702}
703
704/*
705 * Write as much message data payload as we can. If we finish, queue
706 * up the footer.
707 * 1 -> done, footer is now queued in out_kvec[].
708 * 0 -> socket full, but more to do
709 * <0 -> error
710 */
711static int write_partial_msg_pages(struct ceph_connection *con)
712{
713 struct ceph_msg *msg = con->out_msg;
714 unsigned data_len = le32_to_cpu(msg->hdr.data_len);
715 size_t len;
716 int crc = con->msgr->nocrc;
717 int ret;
718
719 dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
720 con, con->out_msg, con->out_msg_pos.page, con->out_msg->nr_pages,
721 con->out_msg_pos.page_pos);
722
723 while (con->out_msg_pos.page < con->out_msg->nr_pages) {
724 struct page *page = NULL;
725 void *kaddr = NULL;
726
727 /*
728 * if we are calculating the data crc (the default), we need
729 * to map the page. if our pages[] has been revoked, use the
730 * zero page.
731 */
732 if (msg->pages) {
733 page = msg->pages[con->out_msg_pos.page];
734 if (crc)
735 kaddr = kmap(page);
736 } else if (msg->pagelist) {
737 page = list_first_entry(&msg->pagelist->head,
738 struct page, lru);
739 if (crc)
740 kaddr = kmap(page);
741 } else {
742 page = con->msgr->zero_page;
743 if (crc)
744 kaddr = page_address(con->msgr->zero_page);
745 }
746 len = min((int)(PAGE_SIZE - con->out_msg_pos.page_pos),
747 (int)(data_len - con->out_msg_pos.data_pos));
748 if (crc && !con->out_msg_pos.did_page_crc) {
749 void *base = kaddr + con->out_msg_pos.page_pos;
750 u32 tmpcrc = le32_to_cpu(con->out_msg->footer.data_crc);
751
752 BUG_ON(kaddr == NULL);
753 con->out_msg->footer.data_crc =
754 cpu_to_le32(crc32c(tmpcrc, base, len));
755 con->out_msg_pos.did_page_crc = 1;
756 }
757
758 ret = kernel_sendpage(con->sock, page,
759 con->out_msg_pos.page_pos, len,
760 MSG_DONTWAIT | MSG_NOSIGNAL |
761 MSG_MORE);
762
763 if (crc && (msg->pages || msg->pagelist))
764 kunmap(page);
765
766 if (ret <= 0)
767 goto out;
768
769 con->out_msg_pos.data_pos += ret;
770 con->out_msg_pos.page_pos += ret;
771 if (ret == len) {
772 con->out_msg_pos.page_pos = 0;
773 con->out_msg_pos.page++;
774 con->out_msg_pos.did_page_crc = 0;
775 if (msg->pagelist)
776 list_move_tail(&page->lru,
777 &msg->pagelist->head);
778 }
779 }
780
781 dout("write_partial_msg_pages %p msg %p done\n", con, msg);
782
783 /* prepare and queue up footer, too */
784 if (!crc)
785 con->out_msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
786 con->out_kvec_bytes = 0;
787 con->out_kvec_left = 0;
788 con->out_kvec_cur = con->out_kvec;
789 prepare_write_message_footer(con, 0);
790 ret = 1;
791out:
792 return ret;
793}
794
795/*
796 * write some zeros
797 */
798static int write_partial_skip(struct ceph_connection *con)
799{
800 int ret;
801
802 while (con->out_skip > 0) {
803 struct kvec iov = {
804 .iov_base = page_address(con->msgr->zero_page),
805 .iov_len = min(con->out_skip, (int)PAGE_CACHE_SIZE)
806 };
807
808 ret = ceph_tcp_sendmsg(con->sock, &iov, 1, iov.iov_len, 1);
809 if (ret <= 0)
810 goto out;
811 con->out_skip -= ret;
812 }
813 ret = 1;
814out:
815 return ret;
816}
817
818/*
819 * Prepare to read connection handshake, or an ack.
820 */
821static void prepare_read_banner(struct ceph_connection *con)
822{
823 dout("prepare_read_banner %p\n", con);
824 con->in_base_pos = 0;
825}
826
827static void prepare_read_connect(struct ceph_connection *con)
828{
829 dout("prepare_read_connect %p\n", con);
830 con->in_base_pos = 0;
831}
832
833static void prepare_read_connect_retry(struct ceph_connection *con)
834{
835 dout("prepare_read_connect_retry %p\n", con);
836 con->in_base_pos = strlen(CEPH_BANNER) + sizeof(con->actual_peer_addr)
837 + sizeof(con->peer_addr_for_me);
838}
839
840static void prepare_read_ack(struct ceph_connection *con)
841{
842 dout("prepare_read_ack %p\n", con);
843 con->in_base_pos = 0;
844}
845
846static void prepare_read_tag(struct ceph_connection *con)
847{
848 dout("prepare_read_tag %p\n", con);
849 con->in_base_pos = 0;
850 con->in_tag = CEPH_MSGR_TAG_READY;
851}
852
853/*
854 * Prepare to read a message.
855 */
856static int prepare_read_message(struct ceph_connection *con)
857{
858 dout("prepare_read_message %p\n", con);
859 BUG_ON(con->in_msg != NULL);
860 con->in_base_pos = 0;
861 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
862 return 0;
863}
864
865
866static int read_partial(struct ceph_connection *con,
867 int *to, int size, void *object)
868{
869 *to += size;
870 while (con->in_base_pos < *to) {
871 int left = *to - con->in_base_pos;
872 int have = size - left;
873 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
874 if (ret <= 0)
875 return ret;
876 con->in_base_pos += ret;
877 }
878 return 1;
879}
880
881
882/*
883 * Read all or part of the connect-side handshake on a new connection
884 */
885static int read_partial_banner(struct ceph_connection *con)
886{
887 int ret, to = 0;
888
889 dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
890
891 /* peer's banner */
892 ret = read_partial(con, &to, strlen(CEPH_BANNER), con->in_banner);
893 if (ret <= 0)
894 goto out;
895 ret = read_partial(con, &to, sizeof(con->actual_peer_addr),
896 &con->actual_peer_addr);
897 if (ret <= 0)
898 goto out;
899 ret = read_partial(con, &to, sizeof(con->peer_addr_for_me),
900 &con->peer_addr_for_me);
901 if (ret <= 0)
902 goto out;
903out:
904 return ret;
905}
906
907static int read_partial_connect(struct ceph_connection *con)
908{
909 int ret, to = 0;
910
911 dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
912
913 ret = read_partial(con, &to, sizeof(con->in_reply), &con->in_reply);
914 if (ret <= 0)
915 goto out;
916 ret = read_partial(con, &to, le32_to_cpu(con->in_reply.authorizer_len),
917 con->auth_reply_buf);
918 if (ret <= 0)
919 goto out;
920
921 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
922 con, (int)con->in_reply.tag,
923 le32_to_cpu(con->in_reply.connect_seq),
924 le32_to_cpu(con->in_reply.global_seq));
925out:
926 return ret;
927
928}
929
930/*
931 * Verify the hello banner looks okay.
932 */
933static int verify_hello(struct ceph_connection *con)
934{
935 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
936 pr_err("connect to %s got bad banner\n",
937 pr_addr(&con->peer_addr.in_addr));
938 con->error_msg = "protocol error, bad banner";
939 return -1;
940 }
941 return 0;
942}
943
944static bool addr_is_blank(struct sockaddr_storage *ss)
945{
946 switch (ss->ss_family) {
947 case AF_INET:
948 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
949 case AF_INET6:
950 return
951 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
952 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
953 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
954 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
955 }
956 return false;
957}
958
959static int addr_port(struct sockaddr_storage *ss)
960{
961 switch (ss->ss_family) {
962 case AF_INET:
963 return ntohs(((struct sockaddr_in *)ss)->sin_port);
964 case AF_INET6:
965 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
966 }
967 return 0;
968}
969
970static void addr_set_port(struct sockaddr_storage *ss, int p)
971{
972 switch (ss->ss_family) {
973 case AF_INET:
974 ((struct sockaddr_in *)ss)->sin_port = htons(p);
975 case AF_INET6:
976 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
977 }
978}
979
980/*
981 * Parse an ip[:port] list into an addr array. Use the default
982 * monitor port if a port isn't specified.
983 */
984int ceph_parse_ips(const char *c, const char *end,
985 struct ceph_entity_addr *addr,
986 int max_count, int *count)
987{
988 int i;
989 const char *p = c;
990
991 dout("parse_ips on '%.*s'\n", (int)(end-c), c);
992 for (i = 0; i < max_count; i++) {
993 const char *ipend;
994 struct sockaddr_storage *ss = &addr[i].in_addr;
995 struct sockaddr_in *in4 = (void *)ss;
996 struct sockaddr_in6 *in6 = (void *)ss;
997 int port;
998
999 memset(ss, 0, sizeof(*ss));
1000 if (in4_pton(p, end - p, (u8 *)&in4->sin_addr.s_addr,
1001 ',', &ipend)) {
1002 ss->ss_family = AF_INET;
1003 } else if (in6_pton(p, end - p, (u8 *)&in6->sin6_addr.s6_addr,
1004 ',', &ipend)) {
1005 ss->ss_family = AF_INET6;
1006 } else {
1007 goto bad;
1008 }
1009 p = ipend;
1010
1011 /* port? */
1012 if (p < end && *p == ':') {
1013 port = 0;
1014 p++;
1015 while (p < end && *p >= '0' && *p <= '9') {
1016 port = (port * 10) + (*p - '0');
1017 p++;
1018 }
1019 if (port > 65535 || port == 0)
1020 goto bad;
1021 } else {
1022 port = CEPH_MON_PORT;
1023 }
1024
1025 addr_set_port(ss, port);
1026
1027 dout("parse_ips got %s\n", pr_addr(ss));
1028
1029 if (p == end)
1030 break;
1031 if (*p != ',')
1032 goto bad;
1033 p++;
1034 }
1035
1036 if (p != end)
1037 goto bad;
1038
1039 if (count)
1040 *count = i + 1;
1041 return 0;
1042
1043bad:
1044 pr_err("parse_ips bad ip '%s'\n", c);
1045 return -EINVAL;
1046}
1047
1048static int process_banner(struct ceph_connection *con)
1049{
1050 dout("process_banner on %p\n", con);
1051
1052 if (verify_hello(con) < 0)
1053 return -1;
1054
1055 ceph_decode_addr(&con->actual_peer_addr);
1056 ceph_decode_addr(&con->peer_addr_for_me);
1057
1058 /*
1059 * Make sure the other end is who we wanted. note that the other
1060 * end may not yet know their ip address, so if it's 0.0.0.0, give
1061 * them the benefit of the doubt.
1062 */
1063 if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1064 sizeof(con->peer_addr)) != 0 &&
1065 !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1066 con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1067 pr_warning("wrong peer, want %s/%lld, got %s/%lld\n",
1068 pr_addr(&con->peer_addr.in_addr),
1069 le64_to_cpu(con->peer_addr.nonce),
1070 pr_addr(&con->actual_peer_addr.in_addr),
1071 le64_to_cpu(con->actual_peer_addr.nonce));
1072 con->error_msg = "wrong peer at address";
1073 return -1;
1074 }
1075
1076 /*
1077 * did we learn our address?
1078 */
1079 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1080 int port = addr_port(&con->msgr->inst.addr.in_addr);
1081
1082 memcpy(&con->msgr->inst.addr.in_addr,
1083 &con->peer_addr_for_me.in_addr,
1084 sizeof(con->peer_addr_for_me.in_addr));
1085 addr_set_port(&con->msgr->inst.addr.in_addr, port);
1086 encode_my_addr(con->msgr);
1087 dout("process_banner learned my addr is %s\n",
1088 pr_addr(&con->msgr->inst.addr.in_addr));
1089 }
1090
1091 set_bit(NEGOTIATING, &con->state);
1092 prepare_read_connect(con);
1093 return 0;
1094}
1095
1096static void fail_protocol(struct ceph_connection *con)
1097{
1098 reset_connection(con);
1099 set_bit(CLOSED, &con->state); /* in case there's queued work */
1100
1101 mutex_unlock(&con->mutex);
1102 if (con->ops->bad_proto)
1103 con->ops->bad_proto(con);
1104 mutex_lock(&con->mutex);
1105}
1106
1107static int process_connect(struct ceph_connection *con)
1108{
1109 u64 sup_feat = CEPH_FEATURE_SUPPORTED;
1110 u64 req_feat = CEPH_FEATURE_REQUIRED;
1111 u64 server_feat = le64_to_cpu(con->in_reply.features);
1112
1113 dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1114
1115 switch (con->in_reply.tag) {
1116 case CEPH_MSGR_TAG_FEATURES:
1117 pr_err("%s%lld %s feature set mismatch,"
1118 " my %llx < server's %llx, missing %llx\n",
1119 ENTITY_NAME(con->peer_name),
1120 pr_addr(&con->peer_addr.in_addr),
1121 sup_feat, server_feat, server_feat & ~sup_feat);
1122 con->error_msg = "missing required protocol features";
1123 fail_protocol(con);
1124 return -1;
1125
1126 case CEPH_MSGR_TAG_BADPROTOVER:
1127 pr_err("%s%lld %s protocol version mismatch,"
1128 " my %d != server's %d\n",
1129 ENTITY_NAME(con->peer_name),
1130 pr_addr(&con->peer_addr.in_addr),
1131 le32_to_cpu(con->out_connect.protocol_version),
1132 le32_to_cpu(con->in_reply.protocol_version));
1133 con->error_msg = "protocol version mismatch";
1134 fail_protocol(con);
1135 return -1;
1136
1137 case CEPH_MSGR_TAG_BADAUTHORIZER:
1138 con->auth_retry++;
1139 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1140 con->auth_retry);
1141 if (con->auth_retry == 2) {
1142 con->error_msg = "connect authorization failure";
1143 reset_connection(con);
1144 set_bit(CLOSED, &con->state);
1145 return -1;
1146 }
1147 con->auth_retry = 1;
1148 prepare_write_connect(con->msgr, con, 0);
1149 prepare_read_connect_retry(con);
1150 break;
1151
1152 case CEPH_MSGR_TAG_RESETSESSION:
1153 /*
1154 * If we connected with a large connect_seq but the peer
1155 * has no record of a session with us (no connection, or
1156 * connect_seq == 0), they will send RESETSESION to indicate
1157 * that they must have reset their session, and may have
1158 * dropped messages.
1159 */
1160 dout("process_connect got RESET peer seq %u\n",
1161 le32_to_cpu(con->in_connect.connect_seq));
1162 pr_err("%s%lld %s connection reset\n",
1163 ENTITY_NAME(con->peer_name),
1164 pr_addr(&con->peer_addr.in_addr));
1165 reset_connection(con);
1166 prepare_write_connect(con->msgr, con, 0);
1167 prepare_read_connect(con);
1168
1169 /* Tell ceph about it. */
1170 mutex_unlock(&con->mutex);
1171 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
1172 if (con->ops->peer_reset)
1173 con->ops->peer_reset(con);
1174 mutex_lock(&con->mutex);
1175 break;
1176
1177 case CEPH_MSGR_TAG_RETRY_SESSION:
1178 /*
1179 * If we sent a smaller connect_seq than the peer has, try
1180 * again with a larger value.
1181 */
1182 dout("process_connect got RETRY my seq = %u, peer_seq = %u\n",
1183 le32_to_cpu(con->out_connect.connect_seq),
1184 le32_to_cpu(con->in_connect.connect_seq));
1185 con->connect_seq = le32_to_cpu(con->in_connect.connect_seq);
1186 prepare_write_connect(con->msgr, con, 0);
1187 prepare_read_connect(con);
1188 break;
1189
1190 case CEPH_MSGR_TAG_RETRY_GLOBAL:
1191 /*
1192 * If we sent a smaller global_seq than the peer has, try
1193 * again with a larger value.
1194 */
1195 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
1196 con->peer_global_seq,
1197 le32_to_cpu(con->in_connect.global_seq));
1198 get_global_seq(con->msgr,
1199 le32_to_cpu(con->in_connect.global_seq));
1200 prepare_write_connect(con->msgr, con, 0);
1201 prepare_read_connect(con);
1202 break;
1203
1204 case CEPH_MSGR_TAG_READY:
1205 if (req_feat & ~server_feat) {
1206 pr_err("%s%lld %s protocol feature mismatch,"
1207 " my required %llx > server's %llx, need %llx\n",
1208 ENTITY_NAME(con->peer_name),
1209 pr_addr(&con->peer_addr.in_addr),
1210 req_feat, server_feat, req_feat & ~server_feat);
1211 con->error_msg = "missing required protocol features";
1212 fail_protocol(con);
1213 return -1;
1214 }
1215 clear_bit(CONNECTING, &con->state);
1216 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
1217 con->connect_seq++;
1218 dout("process_connect got READY gseq %d cseq %d (%d)\n",
1219 con->peer_global_seq,
1220 le32_to_cpu(con->in_reply.connect_seq),
1221 con->connect_seq);
1222 WARN_ON(con->connect_seq !=
1223 le32_to_cpu(con->in_reply.connect_seq));
1224
1225 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
1226 set_bit(LOSSYTX, &con->state);
1227
1228 prepare_read_tag(con);
1229 break;
1230
1231 case CEPH_MSGR_TAG_WAIT:
1232 /*
1233 * If there is a connection race (we are opening
1234 * connections to each other), one of us may just have
1235 * to WAIT. This shouldn't happen if we are the
1236 * client.
1237 */
1238 pr_err("process_connect peer connecting WAIT\n");
1239
1240 default:
1241 pr_err("connect protocol error, will retry\n");
1242 con->error_msg = "protocol error, garbage tag during connect";
1243 return -1;
1244 }
1245 return 0;
1246}
1247
1248
1249/*
1250 * read (part of) an ack
1251 */
1252static int read_partial_ack(struct ceph_connection *con)
1253{
1254 int to = 0;
1255
1256 return read_partial(con, &to, sizeof(con->in_temp_ack),
1257 &con->in_temp_ack);
1258}
1259
1260
1261/*
1262 * We can finally discard anything that's been acked.
1263 */
1264static void process_ack(struct ceph_connection *con)
1265{
1266 struct ceph_msg *m;
1267 u64 ack = le64_to_cpu(con->in_temp_ack);
1268 u64 seq;
1269
1270 while (!list_empty(&con->out_sent)) {
1271 m = list_first_entry(&con->out_sent, struct ceph_msg,
1272 list_head);
1273 seq = le64_to_cpu(m->hdr.seq);
1274 if (seq > ack)
1275 break;
1276 dout("got ack for seq %llu type %d at %p\n", seq,
1277 le16_to_cpu(m->hdr.type), m);
1278 ceph_msg_remove(m);
1279 }
1280 prepare_read_tag(con);
1281}
1282
1283
1284
1285
1286static int read_partial_message_section(struct ceph_connection *con,
1287 struct kvec *section, unsigned int sec_len,
1288 u32 *crc)
1289{
1290 int left;
1291 int ret;
1292
1293 BUG_ON(!section);
1294
1295 while (section->iov_len < sec_len) {
1296 BUG_ON(section->iov_base == NULL);
1297 left = sec_len - section->iov_len;
1298 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
1299 section->iov_len, left);
1300 if (ret <= 0)
1301 return ret;
1302 section->iov_len += ret;
1303 if (section->iov_len == sec_len)
1304 *crc = crc32c(0, section->iov_base,
1305 section->iov_len);
1306 }
1307
1308 return 1;
1309}
1310
1311static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
1312 struct ceph_msg_header *hdr,
1313 int *skip);
1314/*
1315 * read (part of) a message.
1316 */
1317static int read_partial_message(struct ceph_connection *con)
1318{
1319 struct ceph_msg *m = con->in_msg;
1320 void *p;
1321 int ret;
1322 int to, left;
1323 unsigned front_len, middle_len, data_len, data_off;
1324 int datacrc = con->msgr->nocrc;
1325 int skip;
1326
1327 dout("read_partial_message con %p msg %p\n", con, m);
1328
1329 /* header */
1330 while (con->in_base_pos < sizeof(con->in_hdr)) {
1331 left = sizeof(con->in_hdr) - con->in_base_pos;
1332 ret = ceph_tcp_recvmsg(con->sock,
1333 (char *)&con->in_hdr + con->in_base_pos,
1334 left);
1335 if (ret <= 0)
1336 return ret;
1337 con->in_base_pos += ret;
1338 if (con->in_base_pos == sizeof(con->in_hdr)) {
1339 u32 crc = crc32c(0, (void *)&con->in_hdr,
1340 sizeof(con->in_hdr) - sizeof(con->in_hdr.crc));
1341 if (crc != le32_to_cpu(con->in_hdr.crc)) {
1342 pr_err("read_partial_message bad hdr "
1343 " crc %u != expected %u\n",
1344 crc, con->in_hdr.crc);
1345 return -EBADMSG;
1346 }
1347 }
1348 }
1349 front_len = le32_to_cpu(con->in_hdr.front_len);
1350 if (front_len > CEPH_MSG_MAX_FRONT_LEN)
1351 return -EIO;
1352 middle_len = le32_to_cpu(con->in_hdr.middle_len);
1353 if (middle_len > CEPH_MSG_MAX_DATA_LEN)
1354 return -EIO;
1355 data_len = le32_to_cpu(con->in_hdr.data_len);
1356 if (data_len > CEPH_MSG_MAX_DATA_LEN)
1357 return -EIO;
1358 data_off = le16_to_cpu(con->in_hdr.data_off);
1359
1360 /* allocate message? */
1361 if (!con->in_msg) {
1362 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
1363 con->in_hdr.front_len, con->in_hdr.data_len);
1364 con->in_msg = ceph_alloc_msg(con, &con->in_hdr, &skip);
1365 if (skip) {
1366 /* skip this message */
1367 dout("alloc_msg returned NULL, skipping message\n");
1368 con->in_base_pos = -front_len - middle_len - data_len -
1369 sizeof(m->footer);
1370 con->in_tag = CEPH_MSGR_TAG_READY;
1371 return 0;
1372 }
1373 if (IS_ERR(con->in_msg)) {
1374 ret = PTR_ERR(con->in_msg);
1375 con->in_msg = NULL;
1376 con->error_msg =
1377 "error allocating memory for incoming message";
1378 return ret;
1379 }
1380 m = con->in_msg;
1381 m->front.iov_len = 0; /* haven't read it yet */
1382 if (m->middle)
1383 m->middle->vec.iov_len = 0;
1384
1385 con->in_msg_pos.page = 0;
1386 con->in_msg_pos.page_pos = data_off & ~PAGE_MASK;
1387 con->in_msg_pos.data_pos = 0;
1388 }
1389
1390 /* front */
1391 ret = read_partial_message_section(con, &m->front, front_len,
1392 &con->in_front_crc);
1393 if (ret <= 0)
1394 return ret;
1395
1396 /* middle */
1397 if (m->middle) {
1398 ret = read_partial_message_section(con, &m->middle->vec, middle_len,
1399 &con->in_middle_crc);
1400 if (ret <= 0)
1401 return ret;
1402 }
1403
1404 /* (page) data */
1405 while (con->in_msg_pos.data_pos < data_len) {
1406 left = min((int)(data_len - con->in_msg_pos.data_pos),
1407 (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
1408 BUG_ON(m->pages == NULL);
1409 p = kmap(m->pages[con->in_msg_pos.page]);
1410 ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1411 left);
1412 if (ret > 0 && datacrc)
1413 con->in_data_crc =
1414 crc32c(con->in_data_crc,
1415 p + con->in_msg_pos.page_pos, ret);
1416 kunmap(m->pages[con->in_msg_pos.page]);
1417 if (ret <= 0)
1418 return ret;
1419 con->in_msg_pos.data_pos += ret;
1420 con->in_msg_pos.page_pos += ret;
1421 if (con->in_msg_pos.page_pos == PAGE_SIZE) {
1422 con->in_msg_pos.page_pos = 0;
1423 con->in_msg_pos.page++;
1424 }
1425 }
1426
1427 /* footer */
1428 to = sizeof(m->hdr) + sizeof(m->footer);
1429 while (con->in_base_pos < to) {
1430 left = to - con->in_base_pos;
1431 ret = ceph_tcp_recvmsg(con->sock, (char *)&m->footer +
1432 (con->in_base_pos - sizeof(m->hdr)),
1433 left);
1434 if (ret <= 0)
1435 return ret;
1436 con->in_base_pos += ret;
1437 }
1438 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
1439 m, front_len, m->footer.front_crc, middle_len,
1440 m->footer.middle_crc, data_len, m->footer.data_crc);
1441
1442 /* crc ok? */
1443 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
1444 pr_err("read_partial_message %p front crc %u != exp. %u\n",
1445 m, con->in_front_crc, m->footer.front_crc);
1446 return -EBADMSG;
1447 }
1448 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
1449 pr_err("read_partial_message %p middle crc %u != exp %u\n",
1450 m, con->in_middle_crc, m->footer.middle_crc);
1451 return -EBADMSG;
1452 }
1453 if (datacrc &&
1454 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
1455 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
1456 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
1457 con->in_data_crc, le32_to_cpu(m->footer.data_crc));
1458 return -EBADMSG;
1459 }
1460
1461 return 1; /* done! */
1462}
1463
1464/*
1465 * Process message. This happens in the worker thread. The callback should
1466 * be careful not to do anything that waits on other incoming messages or it
1467 * may deadlock.
1468 */
1469static void process_message(struct ceph_connection *con)
1470{
1471 struct ceph_msg *msg;
1472
1473 msg = con->in_msg;
1474 con->in_msg = NULL;
1475
1476 /* if first message, set peer_name */
1477 if (con->peer_name.type == 0)
1478 con->peer_name = msg->hdr.src.name;
1479
1480 con->in_seq++;
1481 mutex_unlock(&con->mutex);
1482
1483 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
1484 msg, le64_to_cpu(msg->hdr.seq),
1485 ENTITY_NAME(msg->hdr.src.name),
1486 le16_to_cpu(msg->hdr.type),
1487 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1488 le32_to_cpu(msg->hdr.front_len),
1489 le32_to_cpu(msg->hdr.data_len),
1490 con->in_front_crc, con->in_middle_crc, con->in_data_crc);
1491 con->ops->dispatch(con, msg);
1492
1493 mutex_lock(&con->mutex);
1494 prepare_read_tag(con);
1495}
1496
1497
1498/*
1499 * Write something to the socket. Called in a worker thread when the
1500 * socket appears to be writeable and we have something ready to send.
1501 */
1502static int try_write(struct ceph_connection *con)
1503{
1504 struct ceph_messenger *msgr = con->msgr;
1505 int ret = 1;
1506
1507 dout("try_write start %p state %lu nref %d\n", con, con->state,
1508 atomic_read(&con->nref));
1509
1510 mutex_lock(&con->mutex);
1511more:
1512 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
1513
1514 /* open the socket first? */
1515 if (con->sock == NULL) {
1516 /*
1517 * if we were STANDBY and are reconnecting _this_
1518 * connection, bump connect_seq now. Always bump
1519 * global_seq.
1520 */
1521 if (test_and_clear_bit(STANDBY, &con->state))
1522 con->connect_seq++;
1523
1524 prepare_write_banner(msgr, con);
1525 prepare_write_connect(msgr, con, 1);
1526 prepare_read_banner(con);
1527 set_bit(CONNECTING, &con->state);
1528 clear_bit(NEGOTIATING, &con->state);
1529
1530 BUG_ON(con->in_msg);
1531 con->in_tag = CEPH_MSGR_TAG_READY;
1532 dout("try_write initiating connect on %p new state %lu\n",
1533 con, con->state);
1534 con->sock = ceph_tcp_connect(con);
1535 if (IS_ERR(con->sock)) {
1536 con->sock = NULL;
1537 con->error_msg = "connect error";
1538 ret = -1;
1539 goto out;
1540 }
1541 }
1542
1543more_kvec:
1544 /* kvec data queued? */
1545 if (con->out_skip) {
1546 ret = write_partial_skip(con);
1547 if (ret <= 0)
1548 goto done;
1549 if (ret < 0) {
1550 dout("try_write write_partial_skip err %d\n", ret);
1551 goto done;
1552 }
1553 }
1554 if (con->out_kvec_left) {
1555 ret = write_partial_kvec(con);
1556 if (ret <= 0)
1557 goto done;
1558 }
1559
1560 /* msg pages? */
1561 if (con->out_msg) {
1562 if (con->out_msg_done) {
1563 ceph_msg_put(con->out_msg);
1564 con->out_msg = NULL; /* we're done with this one */
1565 goto do_next;
1566 }
1567
1568 ret = write_partial_msg_pages(con);
1569 if (ret == 1)
1570 goto more_kvec; /* we need to send the footer, too! */
1571 if (ret == 0)
1572 goto done;
1573 if (ret < 0) {
1574 dout("try_write write_partial_msg_pages err %d\n",
1575 ret);
1576 goto done;
1577 }
1578 }
1579
1580do_next:
1581 if (!test_bit(CONNECTING, &con->state)) {
1582 /* is anything else pending? */
1583 if (!list_empty(&con->out_queue)) {
1584 prepare_write_message(con);
1585 goto more;
1586 }
1587 if (con->in_seq > con->in_seq_acked) {
1588 prepare_write_ack(con);
1589 goto more;
1590 }
1591 if (test_and_clear_bit(KEEPALIVE_PENDING, &con->state)) {
1592 prepare_write_keepalive(con);
1593 goto more;
1594 }
1595 }
1596
1597 /* Nothing to do! */
1598 clear_bit(WRITE_PENDING, &con->state);
1599 dout("try_write nothing else to write.\n");
1600done:
1601 ret = 0;
1602out:
1603 mutex_unlock(&con->mutex);
1604 dout("try_write done on %p\n", con);
1605 return ret;
1606}
1607
1608
1609
1610/*
1611 * Read what we can from the socket.
1612 */
1613static int try_read(struct ceph_connection *con)
1614{
1615 struct ceph_messenger *msgr;
1616 int ret = -1;
1617
1618 if (!con->sock)
1619 return 0;
1620
1621 if (test_bit(STANDBY, &con->state))
1622 return 0;
1623
1624 dout("try_read start on %p\n", con);
1625 msgr = con->msgr;
1626
1627 mutex_lock(&con->mutex);
1628
1629more:
1630 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
1631 con->in_base_pos);
1632 if (test_bit(CONNECTING, &con->state)) {
1633 if (!test_bit(NEGOTIATING, &con->state)) {
1634 dout("try_read connecting\n");
1635 ret = read_partial_banner(con);
1636 if (ret <= 0)
1637 goto done;
1638 if (process_banner(con) < 0) {
1639 ret = -1;
1640 goto out;
1641 }
1642 }
1643 ret = read_partial_connect(con);
1644 if (ret <= 0)
1645 goto done;
1646 if (process_connect(con) < 0) {
1647 ret = -1;
1648 goto out;
1649 }
1650 goto more;
1651 }
1652
1653 if (con->in_base_pos < 0) {
1654 /*
1655 * skipping + discarding content.
1656 *
1657 * FIXME: there must be a better way to do this!
1658 */
1659 static char buf[1024];
1660 int skip = min(1024, -con->in_base_pos);
1661 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
1662 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
1663 if (ret <= 0)
1664 goto done;
1665 con->in_base_pos += ret;
1666 if (con->in_base_pos)
1667 goto more;
1668 }
1669 if (con->in_tag == CEPH_MSGR_TAG_READY) {
1670 /*
1671 * what's next?
1672 */
1673 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
1674 if (ret <= 0)
1675 goto done;
1676 dout("try_read got tag %d\n", (int)con->in_tag);
1677 switch (con->in_tag) {
1678 case CEPH_MSGR_TAG_MSG:
1679 prepare_read_message(con);
1680 break;
1681 case CEPH_MSGR_TAG_ACK:
1682 prepare_read_ack(con);
1683 break;
1684 case CEPH_MSGR_TAG_CLOSE:
1685 set_bit(CLOSED, &con->state); /* fixme */
1686 goto done;
1687 default:
1688 goto bad_tag;
1689 }
1690 }
1691 if (con->in_tag == CEPH_MSGR_TAG_MSG) {
1692 ret = read_partial_message(con);
1693 if (ret <= 0) {
1694 switch (ret) {
1695 case -EBADMSG:
1696 con->error_msg = "bad crc";
1697 ret = -EIO;
1698 goto out;
1699 case -EIO:
1700 con->error_msg = "io error";
1701 goto out;
1702 default:
1703 goto done;
1704 }
1705 }
1706 if (con->in_tag == CEPH_MSGR_TAG_READY)
1707 goto more;
1708 process_message(con);
1709 goto more;
1710 }
1711 if (con->in_tag == CEPH_MSGR_TAG_ACK) {
1712 ret = read_partial_ack(con);
1713 if (ret <= 0)
1714 goto done;
1715 process_ack(con);
1716 goto more;
1717 }
1718
1719done:
1720 ret = 0;
1721out:
1722 mutex_unlock(&con->mutex);
1723 dout("try_read done on %p\n", con);
1724 return ret;
1725
1726bad_tag:
1727 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
1728 con->error_msg = "protocol error, garbage tag";
1729 ret = -1;
1730 goto out;
1731}
1732
1733
1734/*
1735 * Atomically queue work on a connection. Bump @con reference to
1736 * avoid races with connection teardown.
1737 *
1738 * There is some trickery going on with QUEUED and BUSY because we
1739 * only want a _single_ thread operating on each connection at any
1740 * point in time, but we want to use all available CPUs.
1741 *
1742 * The worker thread only proceeds if it can atomically set BUSY. It
1743 * clears QUEUED and does it's thing. When it thinks it's done, it
1744 * clears BUSY, then rechecks QUEUED.. if it's set again, it loops
1745 * (tries again to set BUSY).
1746 *
1747 * To queue work, we first set QUEUED, _then_ if BUSY isn't set, we
1748 * try to queue work. If that fails (work is already queued, or BUSY)
1749 * we give up (work also already being done or is queued) but leave QUEUED
1750 * set so that the worker thread will loop if necessary.
1751 */
1752static void queue_con(struct ceph_connection *con)
1753{
1754 if (test_bit(DEAD, &con->state)) {
1755 dout("queue_con %p ignoring: DEAD\n",
1756 con);
1757 return;
1758 }
1759
1760 if (!con->ops->get(con)) {
1761 dout("queue_con %p ref count 0\n", con);
1762 return;
1763 }
1764
1765 set_bit(QUEUED, &con->state);
1766 if (test_bit(BUSY, &con->state)) {
1767 dout("queue_con %p - already BUSY\n", con);
1768 con->ops->put(con);
1769 } else if (!queue_work(ceph_msgr_wq, &con->work.work)) {
1770 dout("queue_con %p - already queued\n", con);
1771 con->ops->put(con);
1772 } else {
1773 dout("queue_con %p\n", con);
1774 }
1775}
1776
1777/*
1778 * Do some work on a connection. Drop a connection ref when we're done.
1779 */
1780static void con_work(struct work_struct *work)
1781{
1782 struct ceph_connection *con = container_of(work, struct ceph_connection,
1783 work.work);
1784 int backoff = 0;
1785
1786more:
1787 if (test_and_set_bit(BUSY, &con->state) != 0) {
1788 dout("con_work %p BUSY already set\n", con);
1789 goto out;
1790 }
1791 dout("con_work %p start, clearing QUEUED\n", con);
1792 clear_bit(QUEUED, &con->state);
1793
1794 if (test_bit(CLOSED, &con->state)) { /* e.g. if we are replaced */
1795 dout("con_work CLOSED\n");
1796 con_close_socket(con);
1797 goto done;
1798 }
1799 if (test_and_clear_bit(OPENING, &con->state)) {
1800 /* reopen w/ new peer */
1801 dout("con_work OPENING\n");
1802 con_close_socket(con);
1803 }
1804
1805 if (test_and_clear_bit(SOCK_CLOSED, &con->state) ||
1806 try_read(con) < 0 ||
1807 try_write(con) < 0) {
1808 backoff = 1;
1809 ceph_fault(con); /* error/fault path */
1810 }
1811
1812done:
1813 clear_bit(BUSY, &con->state);
1814 dout("con->state=%lu\n", con->state);
1815 if (test_bit(QUEUED, &con->state)) {
1816 if (!backoff || test_bit(OPENING, &con->state)) {
1817 dout("con_work %p QUEUED reset, looping\n", con);
1818 goto more;
1819 }
1820 dout("con_work %p QUEUED reset, but just faulted\n", con);
1821 clear_bit(QUEUED, &con->state);
1822 }
1823 dout("con_work %p done\n", con);
1824
1825out:
1826 con->ops->put(con);
1827}
1828
1829
1830/*
1831 * Generic error/fault handler. A retry mechanism is used with
1832 * exponential backoff
1833 */
1834static void ceph_fault(struct ceph_connection *con)
1835{
1836 pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
1837 pr_addr(&con->peer_addr.in_addr), con->error_msg);
1838 dout("fault %p state %lu to peer %s\n",
1839 con, con->state, pr_addr(&con->peer_addr.in_addr));
1840
1841 if (test_bit(LOSSYTX, &con->state)) {
1842 dout("fault on LOSSYTX channel\n");
1843 goto out;
1844 }
1845
1846 clear_bit(BUSY, &con->state); /* to avoid an improbable race */
1847
1848 mutex_lock(&con->mutex);
1849 if (test_bit(CLOSED, &con->state))
1850 goto out_unlock;
1851
1852 con_close_socket(con);
1853
1854 if (con->in_msg) {
1855 ceph_msg_put(con->in_msg);
1856 con->in_msg = NULL;
1857 }
1858
1859 /* Requeue anything that hasn't been acked */
1860 list_splice_init(&con->out_sent, &con->out_queue);
1861
1862 /* If there are no messages in the queue, place the connection
1863 * in a STANDBY state (i.e., don't try to reconnect just yet). */
1864 if (list_empty(&con->out_queue) && !con->out_keepalive_pending) {
1865 dout("fault setting STANDBY\n");
1866 set_bit(STANDBY, &con->state);
1867 } else {
1868 /* retry after a delay. */
1869 if (con->delay == 0)
1870 con->delay = BASE_DELAY_INTERVAL;
1871 else if (con->delay < MAX_DELAY_INTERVAL)
1872 con->delay *= 2;
1873 dout("fault queueing %p delay %lu\n", con, con->delay);
1874 con->ops->get(con);
1875 if (queue_delayed_work(ceph_msgr_wq, &con->work,
1876 round_jiffies_relative(con->delay)) == 0)
1877 con->ops->put(con);
1878 }
1879
1880out_unlock:
1881 mutex_unlock(&con->mutex);
1882out:
1883 /*
1884 * in case we faulted due to authentication, invalidate our
1885 * current tickets so that we can get new ones.
1886 */
1887 if (con->auth_retry && con->ops->invalidate_authorizer) {
1888 dout("calling invalidate_authorizer()\n");
1889 con->ops->invalidate_authorizer(con);
1890 }
1891
1892 if (con->ops->fault)
1893 con->ops->fault(con);
1894}
1895
1896
1897
1898/*
1899 * create a new messenger instance
1900 */
1901struct ceph_messenger *ceph_messenger_create(struct ceph_entity_addr *myaddr)
1902{
1903 struct ceph_messenger *msgr;
1904
1905 msgr = kzalloc(sizeof(*msgr), GFP_KERNEL);
1906 if (msgr == NULL)
1907 return ERR_PTR(-ENOMEM);
1908
1909 spin_lock_init(&msgr->global_seq_lock);
1910
1911 /* the zero page is needed if a request is "canceled" while the message
1912 * is being written over the socket */
1913 msgr->zero_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
1914 if (!msgr->zero_page) {
1915 kfree(msgr);
1916 return ERR_PTR(-ENOMEM);
1917 }
1918 kmap(msgr->zero_page);
1919
1920 if (myaddr)
1921 msgr->inst.addr = *myaddr;
1922
1923 /* select a random nonce */
1924 msgr->inst.addr.type = 0;
1925 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
1926 encode_my_addr(msgr);
1927
1928 dout("messenger_create %p\n", msgr);
1929 return msgr;
1930}
1931
1932void ceph_messenger_destroy(struct ceph_messenger *msgr)
1933{
1934 dout("destroy %p\n", msgr);
1935 kunmap(msgr->zero_page);
1936 __free_page(msgr->zero_page);
1937 kfree(msgr);
1938 dout("destroyed messenger %p\n", msgr);
1939}
1940
1941/*
1942 * Queue up an outgoing message on the given connection.
1943 */
1944void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
1945{
1946 if (test_bit(CLOSED, &con->state)) {
1947 dout("con_send %p closed, dropping %p\n", con, msg);
1948 ceph_msg_put(msg);
1949 return;
1950 }
1951
1952 /* set src+dst */
1953 msg->hdr.src.name = con->msgr->inst.name;
1954 msg->hdr.src.addr = con->msgr->my_enc_addr;
1955 msg->hdr.orig_src = msg->hdr.src;
1956
1957 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
1958
1959 /* queue */
1960 mutex_lock(&con->mutex);
1961 BUG_ON(!list_empty(&msg->list_head));
1962 list_add_tail(&msg->list_head, &con->out_queue);
1963 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
1964 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
1965 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1966 le32_to_cpu(msg->hdr.front_len),
1967 le32_to_cpu(msg->hdr.middle_len),
1968 le32_to_cpu(msg->hdr.data_len));
1969 mutex_unlock(&con->mutex);
1970
1971 /* if there wasn't anything waiting to send before, queue
1972 * new work */
1973 if (test_and_set_bit(WRITE_PENDING, &con->state) == 0)
1974 queue_con(con);
1975}
1976
1977/*
1978 * Revoke a message that was previously queued for send
1979 */
1980void ceph_con_revoke(struct ceph_connection *con, struct ceph_msg *msg)
1981{
1982 mutex_lock(&con->mutex);
1983 if (!list_empty(&msg->list_head)) {
1984 dout("con_revoke %p msg %p\n", con, msg);
1985 list_del_init(&msg->list_head);
1986 ceph_msg_put(msg);
1987 msg->hdr.seq = 0;
1988 if (con->out_msg == msg) {
1989 ceph_msg_put(con->out_msg);
1990 con->out_msg = NULL;
1991 }
1992 if (con->out_kvec_is_msg) {
1993 con->out_skip = con->out_kvec_bytes;
1994 con->out_kvec_is_msg = false;
1995 }
1996 } else {
1997 dout("con_revoke %p msg %p - not queued (sent?)\n", con, msg);
1998 }
1999 mutex_unlock(&con->mutex);
2000}
2001
2002/*
2003 * Revoke a message that we may be reading data into
2004 */
2005void ceph_con_revoke_message(struct ceph_connection *con, struct ceph_msg *msg)
2006{
2007 mutex_lock(&con->mutex);
2008 if (con->in_msg && con->in_msg == msg) {
2009 unsigned front_len = le32_to_cpu(con->in_hdr.front_len);
2010 unsigned middle_len = le32_to_cpu(con->in_hdr.middle_len);
2011 unsigned data_len = le32_to_cpu(con->in_hdr.data_len);
2012
2013 /* skip rest of message */
2014 dout("con_revoke_pages %p msg %p revoked\n", con, msg);
2015 con->in_base_pos = con->in_base_pos -
2016 sizeof(struct ceph_msg_header) -
2017 front_len -
2018 middle_len -
2019 data_len -
2020 sizeof(struct ceph_msg_footer);
2021 ceph_msg_put(con->in_msg);
2022 con->in_msg = NULL;
2023 con->in_tag = CEPH_MSGR_TAG_READY;
2024 } else {
2025 dout("con_revoke_pages %p msg %p pages %p no-op\n",
2026 con, con->in_msg, msg);
2027 }
2028 mutex_unlock(&con->mutex);
2029}
2030
2031/*
2032 * Queue a keepalive byte to ensure the tcp connection is alive.
2033 */
2034void ceph_con_keepalive(struct ceph_connection *con)
2035{
2036 if (test_and_set_bit(KEEPALIVE_PENDING, &con->state) == 0 &&
2037 test_and_set_bit(WRITE_PENDING, &con->state) == 0)
2038 queue_con(con);
2039}
2040
2041
2042/*
2043 * construct a new message with given type, size
2044 * the new msg has a ref count of 1.
2045 */
2046struct ceph_msg *ceph_msg_new(int type, int front_len,
2047 int page_len, int page_off, struct page **pages)
2048{
2049 struct ceph_msg *m;
2050
2051 m = kmalloc(sizeof(*m), GFP_NOFS);
2052 if (m == NULL)
2053 goto out;
2054 kref_init(&m->kref);
2055 INIT_LIST_HEAD(&m->list_head);
2056
2057 m->hdr.type = cpu_to_le16(type);
2058 m->hdr.front_len = cpu_to_le32(front_len);
2059 m->hdr.middle_len = 0;
2060 m->hdr.data_len = cpu_to_le32(page_len);
2061 m->hdr.data_off = cpu_to_le16(page_off);
2062 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
2063 m->footer.front_crc = 0;
2064 m->footer.middle_crc = 0;
2065 m->footer.data_crc = 0;
2066 m->front_max = front_len;
2067 m->front_is_vmalloc = false;
2068 m->more_to_follow = false;
2069 m->pool = NULL;
2070
2071 /* front */
2072 if (front_len) {
2073 if (front_len > PAGE_CACHE_SIZE) {
2074 m->front.iov_base = __vmalloc(front_len, GFP_NOFS,
2075 PAGE_KERNEL);
2076 m->front_is_vmalloc = true;
2077 } else {
2078 m->front.iov_base = kmalloc(front_len, GFP_NOFS);
2079 }
2080 if (m->front.iov_base == NULL) {
2081 pr_err("msg_new can't allocate %d bytes\n",
2082 front_len);
2083 goto out2;
2084 }
2085 } else {
2086 m->front.iov_base = NULL;
2087 }
2088 m->front.iov_len = front_len;
2089
2090 /* middle */
2091 m->middle = NULL;
2092
2093 /* data */
2094 m->nr_pages = calc_pages_for(page_off, page_len);
2095 m->pages = pages;
2096 m->pagelist = NULL;
2097
2098 dout("ceph_msg_new %p page %d~%d -> %d\n", m, page_off, page_len,
2099 m->nr_pages);
2100 return m;
2101
2102out2:
2103 ceph_msg_put(m);
2104out:
2105 pr_err("msg_new can't create type %d len %d\n", type, front_len);
2106 return ERR_PTR(-ENOMEM);
2107}
2108
2109/*
2110 * Allocate "middle" portion of a message, if it is needed and wasn't
2111 * allocated by alloc_msg. This allows us to read a small fixed-size
2112 * per-type header in the front and then gracefully fail (i.e.,
2113 * propagate the error to the caller based on info in the front) when
2114 * the middle is too large.
2115 */
2116static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2117{
2118 int type = le16_to_cpu(msg->hdr.type);
2119 int middle_len = le32_to_cpu(msg->hdr.middle_len);
2120
2121 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2122 ceph_msg_type_name(type), middle_len);
2123 BUG_ON(!middle_len);
2124 BUG_ON(msg->middle);
2125
2126 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
2127 if (!msg->middle)
2128 return -ENOMEM;
2129 return 0;
2130}
2131
2132/*
2133 * Generic message allocator, for incoming messages.
2134 */
2135static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
2136 struct ceph_msg_header *hdr,
2137 int *skip)
2138{
2139 int type = le16_to_cpu(hdr->type);
2140 int front_len = le32_to_cpu(hdr->front_len);
2141 int middle_len = le32_to_cpu(hdr->middle_len);
2142 struct ceph_msg *msg = NULL;
2143 int ret;
2144
2145 if (con->ops->alloc_msg) {
2146 mutex_unlock(&con->mutex);
2147 msg = con->ops->alloc_msg(con, hdr, skip);
2148 mutex_lock(&con->mutex);
2149 if (IS_ERR(msg))
2150 return msg;
2151
2152 if (*skip)
2153 return NULL;
2154 }
2155 if (!msg) {
2156 *skip = 0;
2157 msg = ceph_msg_new(type, front_len, 0, 0, NULL);
2158 if (!msg) {
2159 pr_err("unable to allocate msg type %d len %d\n",
2160 type, front_len);
2161 return ERR_PTR(-ENOMEM);
2162 }
2163 }
2164 memcpy(&msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
2165
2166 if (middle_len) {
2167 ret = ceph_alloc_middle(con, msg);
2168
2169 if (ret < 0) {
2170 ceph_msg_put(msg);
2171 return msg;
2172 }
2173 }
2174
2175 return msg;
2176}
2177
2178
2179/*
2180 * Free a generically kmalloc'd message.
2181 */
2182void ceph_msg_kfree(struct ceph_msg *m)
2183{
2184 dout("msg_kfree %p\n", m);
2185 if (m->front_is_vmalloc)
2186 vfree(m->front.iov_base);
2187 else
2188 kfree(m->front.iov_base);
2189 kfree(m);
2190}
2191
2192/*
2193 * Drop a msg ref. Destroy as needed.
2194 */
2195void ceph_msg_last_put(struct kref *kref)
2196{
2197 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2198
2199 dout("ceph_msg_put last one on %p\n", m);
2200 WARN_ON(!list_empty(&m->list_head));
2201
2202 /* drop middle, data, if any */
2203 if (m->middle) {
2204 ceph_buffer_put(m->middle);
2205 m->middle = NULL;
2206 }
2207 m->nr_pages = 0;
2208 m->pages = NULL;
2209
2210 if (m->pagelist) {
2211 ceph_pagelist_release(m->pagelist);
2212 kfree(m->pagelist);
2213 m->pagelist = NULL;
2214 }
2215
2216 if (m->pool)
2217 ceph_msgpool_put(m->pool, m);
2218 else
2219 ceph_msg_kfree(m);
2220}
2221
2222void ceph_msg_dump(struct ceph_msg *msg)
2223{
2224 pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg,
2225 msg->front_max, msg->nr_pages);
2226 print_hex_dump(KERN_DEBUG, "header: ",
2227 DUMP_PREFIX_OFFSET, 16, 1,
2228 &msg->hdr, sizeof(msg->hdr), true);
2229 print_hex_dump(KERN_DEBUG, " front: ",
2230 DUMP_PREFIX_OFFSET, 16, 1,
2231 msg->front.iov_base, msg->front.iov_len, true);
2232 if (msg->middle)
2233 print_hex_dump(KERN_DEBUG, "middle: ",
2234 DUMP_PREFIX_OFFSET, 16, 1,
2235 msg->middle->vec.iov_base,
2236 msg->middle->vec.iov_len, true);
2237 print_hex_dump(KERN_DEBUG, "footer: ",
2238 DUMP_PREFIX_OFFSET, 16, 1,
2239 &msg->footer, sizeof(msg->footer), true);
2240}