diff options
Diffstat (limited to 'fs/btrfs')
57 files changed, 43004 insertions, 0 deletions
diff --git a/fs/btrfs/COPYING b/fs/btrfs/COPYING new file mode 100644 index 000000000000..ca442d313d86 --- /dev/null +++ b/fs/btrfs/COPYING | |||
@@ -0,0 +1,356 @@ | |||
1 | |||
2 | NOTE! This copyright does *not* cover user programs that use kernel | ||
3 | services by normal system calls - this is merely considered normal use | ||
4 | of the kernel, and does *not* fall under the heading of "derived work". | ||
5 | Also note that the GPL below is copyrighted by the Free Software | ||
6 | Foundation, but the instance of code that it refers to (the Linux | ||
7 | kernel) is copyrighted by me and others who actually wrote it. | ||
8 | |||
9 | Also note that the only valid version of the GPL as far as the kernel | ||
10 | is concerned is _this_ particular version of the license (ie v2, not | ||
11 | v2.2 or v3.x or whatever), unless explicitly otherwise stated. | ||
12 | |||
13 | Linus Torvalds | ||
14 | |||
15 | ---------------------------------------- | ||
16 | |||
17 | GNU GENERAL PUBLIC LICENSE | ||
18 | Version 2, June 1991 | ||
19 | |||
20 | Copyright (C) 1989, 1991 Free Software Foundation, Inc. | ||
21 | 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA | ||
22 | Everyone is permitted to copy and distribute verbatim copies | ||
23 | of this license document, but changing it is not allowed. | ||
24 | |||
25 | Preamble | ||
26 | |||
27 | The licenses for most software are designed to take away your | ||
28 | freedom to share and change it. By contrast, the GNU General Public | ||
29 | License is intended to guarantee your freedom to share and change free | ||
30 | software--to make sure the software is free for all its users. This | ||
31 | General Public License applies to most of the Free Software | ||
32 | Foundation's software and to any other program whose authors commit to | ||
33 | using it. (Some other Free Software Foundation software is covered by | ||
34 | the GNU Library General Public License instead.) You can apply it to | ||
35 | your programs, too. | ||
36 | |||
37 | When we speak of free software, we are referring to freedom, not | ||
38 | price. Our General Public Licenses are designed to make sure that you | ||
39 | have the freedom to distribute copies of free software (and charge for | ||
40 | this service if you wish), that you receive source code or can get it | ||
41 | if you want it, that you can change the software or use pieces of it | ||
42 | in new free programs; and that you know you can do these things. | ||
43 | |||
44 | To protect your rights, we need to make restrictions that forbid | ||
45 | anyone to deny you these rights or to ask you to surrender the rights. | ||
46 | These restrictions translate to certain responsibilities for you if you | ||
47 | distribute copies of the software, or if you modify it. | ||
48 | |||
49 | For example, if you distribute copies of such a program, whether | ||
50 | gratis or for a fee, you must give the recipients all the rights that | ||
51 | you have. You must make sure that they, too, receive or can get the | ||
52 | source code. And you must show them these terms so they know their | ||
53 | rights. | ||
54 | |||
55 | We protect your rights with two steps: (1) copyright the software, and | ||
56 | (2) offer you this license which gives you legal permission to copy, | ||
57 | distribute and/or modify the software. | ||
58 | |||
59 | Also, for each author's protection and ours, we want to make certain | ||
60 | that everyone understands that there is no warranty for this free | ||
61 | software. If the software is modified by someone else and passed on, we | ||
62 | want its recipients to know that what they have is not the original, so | ||
63 | that any problems introduced by others will not reflect on the original | ||
64 | authors' reputations. | ||
65 | |||
66 | Finally, any free program is threatened constantly by software | ||
67 | patents. We wish to avoid the danger that redistributors of a free | ||
68 | program will individually obtain patent licenses, in effect making the | ||
69 | program proprietary. To prevent this, we have made it clear that any | ||
70 | patent must be licensed for everyone's free use or not licensed at all. | ||
71 | |||
72 | The precise terms and conditions for copying, distribution and | ||
73 | modification follow. | ||
74 | |||
75 | GNU GENERAL PUBLIC LICENSE | ||
76 | TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION | ||
77 | |||
78 | 0. This License applies to any program or other work which contains | ||
79 | a notice placed by the copyright holder saying it may be distributed | ||
80 | under the terms of this General Public License. The "Program", below, | ||
81 | refers to any such program or work, and a "work based on the Program" | ||
82 | means either the Program or any derivative work under copyright law: | ||
83 | that is to say, a work containing the Program or a portion of it, | ||
84 | either verbatim or with modifications and/or translated into another | ||
85 | language. (Hereinafter, translation is included without limitation in | ||
86 | the term "modification".) Each licensee is addressed as "you". | ||
87 | |||
88 | Activities other than copying, distribution and modification are not | ||
89 | covered by this License; they are outside its scope. The act of | ||
90 | running the Program is not restricted, and the output from the Program | ||
91 | is covered only if its contents constitute a work based on the | ||
92 | Program (independent of having been made by running the Program). | ||
93 | Whether that is true depends on what the Program does. | ||
94 | |||
95 | 1. You may copy and distribute verbatim copies of the Program's | ||
96 | source code as you receive it, in any medium, provided that you | ||
97 | conspicuously and appropriately publish on each copy an appropriate | ||
98 | copyright notice and disclaimer of warranty; keep intact all the | ||
99 | notices that refer to this License and to the absence of any warranty; | ||
100 | and give any other recipients of the Program a copy of this License | ||
101 | along with the Program. | ||
102 | |||
103 | You may charge a fee for the physical act of transferring a copy, and | ||
104 | you may at your option offer warranty protection in exchange for a fee. | ||
105 | |||
106 | 2. You may modify your copy or copies of the Program or any portion | ||
107 | of it, thus forming a work based on the Program, and copy and | ||
108 | distribute such modifications or work under the terms of Section 1 | ||
109 | above, provided that you also meet all of these conditions: | ||
110 | |||
111 | a) You must cause the modified files to carry prominent notices | ||
112 | stating that you changed the files and the date of any change. | ||
113 | |||
114 | b) You must cause any work that you distribute or publish, that in | ||
115 | whole or in part contains or is derived from the Program or any | ||
116 | part thereof, to be licensed as a whole at no charge to all third | ||
117 | parties under the terms of this License. | ||
118 | |||
119 | c) If the modified program normally reads commands interactively | ||
120 | when run, you must cause it, when started running for such | ||
121 | interactive use in the most ordinary way, to print or display an | ||
122 | announcement including an appropriate copyright notice and a | ||
123 | notice that there is no warranty (or else, saying that you provide | ||
124 | a warranty) and that users may redistribute the program under | ||
125 | these conditions, and telling the user how to view a copy of this | ||
126 | License. (Exception: if the Program itself is interactive but | ||
127 | does not normally print such an announcement, your work based on | ||
128 | the Program is not required to print an announcement.) | ||
129 | |||
130 | These requirements apply to the modified work as a whole. If | ||
131 | identifiable sections of that work are not derived from the Program, | ||
132 | and can be reasonably considered independent and separate works in | ||
133 | themselves, then this License, and its terms, do not apply to those | ||
134 | sections when you distribute them as separate works. But when you | ||
135 | distribute the same sections as part of a whole which is a work based | ||
136 | on the Program, the distribution of the whole must be on the terms of | ||
137 | this License, whose permissions for other licensees extend to the | ||
138 | entire whole, and thus to each and every part regardless of who wrote it. | ||
139 | |||
140 | Thus, it is not the intent of this section to claim rights or contest | ||
141 | your rights to work written entirely by you; rather, the intent is to | ||
142 | exercise the right to control the distribution of derivative or | ||
143 | collective works based on the Program. | ||
144 | |||
145 | In addition, mere aggregation of another work not based on the Program | ||
146 | with the Program (or with a work based on the Program) on a volume of | ||
147 | a storage or distribution medium does not bring the other work under | ||
148 | the scope of this License. | ||
149 | |||
150 | 3. You may copy and distribute the Program (or a work based on it, | ||
151 | under Section 2) in object code or executable form under the terms of | ||
152 | Sections 1 and 2 above provided that you also do one of the following: | ||
153 | |||
154 | a) Accompany it with the complete corresponding machine-readable | ||
155 | source code, which must be distributed under the terms of Sections | ||
156 | 1 and 2 above on a medium customarily used for software interchange; or, | ||
157 | |||
158 | b) Accompany it with a written offer, valid for at least three | ||
159 | years, to give any third party, for a charge no more than your | ||
160 | cost of physically performing source distribution, a complete | ||
161 | machine-readable copy of the corresponding source code, to be | ||
162 | distributed under the terms of Sections 1 and 2 above on a medium | ||
163 | customarily used for software interchange; or, | ||
164 | |||
165 | c) Accompany it with the information you received as to the offer | ||
166 | to distribute corresponding source code. (This alternative is | ||
167 | allowed only for noncommercial distribution and only if you | ||
168 | received the program in object code or executable form with such | ||
169 | an offer, in accord with Subsection b above.) | ||
170 | |||
171 | The source code for a work means the preferred form of the work for | ||
172 | making modifications to it. For an executable work, complete source | ||
173 | code means all the source code for all modules it contains, plus any | ||
174 | associated interface definition files, plus the scripts used to | ||
175 | control compilation and installation of the executable. However, as a | ||
176 | special exception, the source code distributed need not include | ||
177 | anything that is normally distributed (in either source or binary | ||
178 | form) with the major components (compiler, kernel, and so on) of the | ||
179 | operating system on which the executable runs, unless that component | ||
180 | itself accompanies the executable. | ||
181 | |||
182 | If distribution of executable or object code is made by offering | ||
183 | access to copy from a designated place, then offering equivalent | ||
184 | access to copy the source code from the same place counts as | ||
185 | distribution of the source code, even though third parties are not | ||
186 | compelled to copy the source along with the object code. | ||
187 | |||
188 | 4. You may not copy, modify, sublicense, or distribute the Program | ||
189 | except as expressly provided under this License. Any attempt | ||
190 | otherwise to copy, modify, sublicense or distribute the Program is | ||
191 | void, and will automatically terminate your rights under this License. | ||
192 | However, parties who have received copies, or rights, from you under | ||
193 | this License will not have their licenses terminated so long as such | ||
194 | parties remain in full compliance. | ||
195 | |||
196 | 5. You are not required to accept this License, since you have not | ||
197 | signed it. However, nothing else grants you permission to modify or | ||
198 | distribute the Program or its derivative works. These actions are | ||
199 | prohibited by law if you do not accept this License. Therefore, by | ||
200 | modifying or distributing the Program (or any work based on the | ||
201 | Program), you indicate your acceptance of this License to do so, and | ||
202 | all its terms and conditions for copying, distributing or modifying | ||
203 | the Program or works based on it. | ||
204 | |||
205 | 6. Each time you redistribute the Program (or any work based on the | ||
206 | Program), the recipient automatically receives a license from the | ||
207 | original licensor to copy, distribute or modify the Program subject to | ||
208 | these terms and conditions. You may not impose any further | ||
209 | restrictions on the recipients' exercise of the rights granted herein. | ||
210 | You are not responsible for enforcing compliance by third parties to | ||
211 | this License. | ||
212 | |||
213 | 7. If, as a consequence of a court judgment or allegation of patent | ||
214 | infringement or for any other reason (not limited to patent issues), | ||
215 | conditions are imposed on you (whether by court order, agreement or | ||
216 | otherwise) that contradict the conditions of this License, they do not | ||
217 | excuse you from the conditions of this License. If you cannot | ||
218 | distribute so as to satisfy simultaneously your obligations under this | ||
219 | License and any other pertinent obligations, then as a consequence you | ||
220 | may not distribute the Program at all. For example, if a patent | ||
221 | license would not permit royalty-free redistribution of the Program by | ||
222 | all those who receive copies directly or indirectly through you, then | ||
223 | the only way you could satisfy both it and this License would be to | ||
224 | refrain entirely from distribution of the Program. | ||
225 | |||
226 | If any portion of this section is held invalid or unenforceable under | ||
227 | any particular circumstance, the balance of the section is intended to | ||
228 | apply and the section as a whole is intended to apply in other | ||
229 | circumstances. | ||
230 | |||
231 | It is not the purpose of this section to induce you to infringe any | ||
232 | patents or other property right claims or to contest validity of any | ||
233 | such claims; this section has the sole purpose of protecting the | ||
234 | integrity of the free software distribution system, which is | ||
235 | implemented by public license practices. Many people have made | ||
236 | generous contributions to the wide range of software distributed | ||
237 | through that system in reliance on consistent application of that | ||
238 | system; it is up to the author/donor to decide if he or she is willing | ||
239 | to distribute software through any other system and a licensee cannot | ||
240 | impose that choice. | ||
241 | |||
242 | This section is intended to make thoroughly clear what is believed to | ||
243 | be a consequence of the rest of this License. | ||
244 | |||
245 | 8. If the distribution and/or use of the Program is restricted in | ||
246 | certain countries either by patents or by copyrighted interfaces, the | ||
247 | original copyright holder who places the Program under this License | ||
248 | may add an explicit geographical distribution limitation excluding | ||
249 | those countries, so that distribution is permitted only in or among | ||
250 | countries not thus excluded. In such case, this License incorporates | ||
251 | the limitation as if written in the body of this License. | ||
252 | |||
253 | 9. The Free Software Foundation may publish revised and/or new versions | ||
254 | of the General Public License from time to time. Such new versions will | ||
255 | be similar in spirit to the present version, but may differ in detail to | ||
256 | address new problems or concerns. | ||
257 | |||
258 | Each version is given a distinguishing version number. If the Program | ||
259 | specifies a version number of this License which applies to it and "any | ||
260 | later version", you have the option of following the terms and conditions | ||
261 | either of that version or of any later version published by the Free | ||
262 | Software Foundation. If the Program does not specify a version number of | ||
263 | this License, you may choose any version ever published by the Free Software | ||
264 | Foundation. | ||
265 | |||
266 | 10. If you wish to incorporate parts of the Program into other free | ||
267 | programs whose distribution conditions are different, write to the author | ||
268 | to ask for permission. For software which is copyrighted by the Free | ||
269 | Software Foundation, write to the Free Software Foundation; we sometimes | ||
270 | make exceptions for this. Our decision will be guided by the two goals | ||
271 | of preserving the free status of all derivatives of our free software and | ||
272 | of promoting the sharing and reuse of software generally. | ||
273 | |||
274 | NO WARRANTY | ||
275 | |||
276 | 11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY | ||
277 | FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN | ||
278 | OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES | ||
279 | PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED | ||
280 | OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF | ||
281 | MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS | ||
282 | TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE | ||
283 | PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, | ||
284 | REPAIR OR CORRECTION. | ||
285 | |||
286 | 12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING | ||
287 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR | ||
288 | REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, | ||
289 | INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING | ||
290 | OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED | ||
291 | TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY | ||
292 | YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER | ||
293 | PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE | ||
294 | POSSIBILITY OF SUCH DAMAGES. | ||
295 | |||
296 | END OF TERMS AND CONDITIONS | ||
297 | |||
298 | How to Apply These Terms to Your New Programs | ||
299 | |||
300 | If you develop a new program, and you want it to be of the greatest | ||
301 | possible use to the public, the best way to achieve this is to make it | ||
302 | free software which everyone can redistribute and change under these terms. | ||
303 | |||
304 | To do so, attach the following notices to the program. It is safest | ||
305 | to attach them to the start of each source file to most effectively | ||
306 | convey the exclusion of warranty; and each file should have at least | ||
307 | the "copyright" line and a pointer to where the full notice is found. | ||
308 | |||
309 | <one line to give the program's name and a brief idea of what it does.> | ||
310 | Copyright (C) <year> <name of author> | ||
311 | |||
312 | This program is free software; you can redistribute it and/or modify | ||
313 | it under the terms of the GNU General Public License as published by | ||
314 | the Free Software Foundation; either version 2 of the License, or | ||
315 | (at your option) any later version. | ||
316 | |||
317 | This program is distributed in the hope that it will be useful, | ||
318 | but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
319 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
320 | GNU General Public License for more details. | ||
321 | |||
322 | You should have received a copy of the GNU General Public License | ||
323 | along with this program; if not, write to the Free Software | ||
324 | Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA | ||
325 | |||
326 | |||
327 | Also add information on how to contact you by electronic and paper mail. | ||
328 | |||
329 | If the program is interactive, make it output a short notice like this | ||
330 | when it starts in an interactive mode: | ||
331 | |||
332 | Gnomovision version 69, Copyright (C) year name of author | ||
333 | Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'. | ||
334 | This is free software, and you are welcome to redistribute it | ||
335 | under certain conditions; type `show c' for details. | ||
336 | |||
337 | The hypothetical commands `show w' and `show c' should show the appropriate | ||
338 | parts of the General Public License. Of course, the commands you use may | ||
339 | be called something other than `show w' and `show c'; they could even be | ||
340 | mouse-clicks or menu items--whatever suits your program. | ||
341 | |||
342 | You should also get your employer (if you work as a programmer) or your | ||
343 | school, if any, to sign a "copyright disclaimer" for the program, if | ||
344 | necessary. Here is a sample; alter the names: | ||
345 | |||
346 | Yoyodyne, Inc., hereby disclaims all copyright interest in the program | ||
347 | `Gnomovision' (which makes passes at compilers) written by James Hacker. | ||
348 | |||
349 | <signature of Ty Coon>, 1 April 1989 | ||
350 | Ty Coon, President of Vice | ||
351 | |||
352 | This General Public License does not permit incorporating your program into | ||
353 | proprietary programs. If your program is a subroutine library, you may | ||
354 | consider it more useful to permit linking proprietary applications with the | ||
355 | library. If this is what you want to do, use the GNU Library General | ||
356 | Public License instead of this License. | ||
diff --git a/fs/btrfs/INSTALL b/fs/btrfs/INSTALL new file mode 100644 index 000000000000..16b45a56878d --- /dev/null +++ b/fs/btrfs/INSTALL | |||
@@ -0,0 +1,48 @@ | |||
1 | Install Instructions | ||
2 | |||
3 | Btrfs puts snapshots and subvolumes into the root directory of the FS. This | ||
4 | directory can only be changed by btrfsctl right now, and normal filesystem | ||
5 | operations do not work on it. The default subvolume is called 'default', | ||
6 | and you can create files and directories in mount_point/default | ||
7 | |||
8 | Btrfs uses libcrc32c in the kernel for file and metadata checksums. You need | ||
9 | to compile the kernel with: | ||
10 | |||
11 | CONFIG_LIBCRC32C=m | ||
12 | |||
13 | libcrc32c can be static as well. Once your kernel is setup, typing make in the | ||
14 | btrfs module sources will build against the running kernel. When the build is | ||
15 | complete: | ||
16 | |||
17 | modprobe libcrc32c | ||
18 | insmod btrfs.ko | ||
19 | |||
20 | The Btrfs utility programs require libuuid to build. This can be found | ||
21 | in the e2fsprogs sources, and is usually available as libuuid or | ||
22 | e2fsprogs-devel from various distros. | ||
23 | |||
24 | Building the utilities is just make ; make install. The programs go | ||
25 | into /usr/local/bin. The commands available are: | ||
26 | |||
27 | mkfs.btrfs: create a filesystem | ||
28 | |||
29 | btrfsctl: control program to create snapshots and subvolumes: | ||
30 | |||
31 | mount /dev/sda2 /mnt | ||
32 | btrfsctl -s new_subvol_name /mnt | ||
33 | btrfsctl -s snapshot_of_default /mnt/default | ||
34 | btrfsctl -s snapshot_of_new_subvol /mnt/new_subvol_name | ||
35 | btrfsctl -s snapshot_of_a_snapshot /mnt/snapshot_of_new_subvol | ||
36 | ls /mnt | ||
37 | default snapshot_of_a_snapshot snapshot_of_new_subvol | ||
38 | new_subvol_name snapshot_of_default | ||
39 | |||
40 | Snapshots and subvolumes cannot be deleted right now, but you can | ||
41 | rm -rf all the files and directories inside them. | ||
42 | |||
43 | btrfsck: do a limited check of the FS extent trees.</li> | ||
44 | |||
45 | debug-tree: print all of the FS metadata in text form. Example: | ||
46 | |||
47 | debug-tree /dev/sda2 >& big_output_file | ||
48 | |||
diff --git a/fs/btrfs/Makefile b/fs/btrfs/Makefile new file mode 100644 index 000000000000..d2cf5a54a4b8 --- /dev/null +++ b/fs/btrfs/Makefile | |||
@@ -0,0 +1,25 @@ | |||
1 | ifneq ($(KERNELRELEASE),) | ||
2 | # kbuild part of makefile | ||
3 | |||
4 | obj-$(CONFIG_BTRFS_FS) := btrfs.o | ||
5 | btrfs-y := super.o ctree.o extent-tree.o print-tree.o root-tree.o dir-item.o \ | ||
6 | file-item.o inode-item.o inode-map.o disk-io.o \ | ||
7 | transaction.o inode.o file.o tree-defrag.o \ | ||
8 | extent_map.o sysfs.o struct-funcs.o xattr.o ordered-data.o \ | ||
9 | extent_io.o volumes.o async-thread.o ioctl.o locking.o orphan.o \ | ||
10 | ref-cache.o export.o tree-log.o acl.o free-space-cache.o zlib.o \ | ||
11 | compression.o | ||
12 | else | ||
13 | |||
14 | # Normal Makefile | ||
15 | |||
16 | KERNELDIR := /lib/modules/`uname -r`/build | ||
17 | all: | ||
18 | $(MAKE) -C $(KERNELDIR) M=`pwd` CONFIG_BTRFS_FS=m modules | ||
19 | |||
20 | modules_install: | ||
21 | $(MAKE) -C $(KERNELDIR) M=`pwd` modules_install | ||
22 | clean: | ||
23 | $(MAKE) -C $(KERNELDIR) M=`pwd` clean | ||
24 | |||
25 | endif | ||
diff --git a/fs/btrfs/acl.c b/fs/btrfs/acl.c new file mode 100644 index 000000000000..1d53b62dbba5 --- /dev/null +++ b/fs/btrfs/acl.c | |||
@@ -0,0 +1,351 @@ | |||
1 | /* | ||
2 | * Copyright (C) 2007 Red Hat. All rights reserved. | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or | ||
5 | * modify it under the terms of the GNU General Public | ||
6 | * License v2 as published by the Free Software Foundation. | ||
7 | * | ||
8 | * This program is distributed in the hope that it will be useful, | ||
9 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | ||
11 | * General Public License for more details. | ||
12 | * | ||
13 | * You should have received a copy of the GNU General Public | ||
14 | * License along with this program; if not, write to the | ||
15 | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | ||
16 | * Boston, MA 021110-1307, USA. | ||
17 | */ | ||
18 | |||
19 | #include <linux/fs.h> | ||
20 | #include <linux/string.h> | ||
21 | #include <linux/xattr.h> | ||
22 | #include <linux/posix_acl_xattr.h> | ||
23 | #include <linux/posix_acl.h> | ||
24 | #include <linux/sched.h> | ||
25 | |||
26 | #include "ctree.h" | ||
27 | #include "btrfs_inode.h" | ||
28 | #include "xattr.h" | ||
29 | |||
30 | #ifdef CONFIG_FS_POSIX_ACL | ||
31 | |||
32 | static void btrfs_update_cached_acl(struct inode *inode, | ||
33 | struct posix_acl **p_acl, | ||
34 | struct posix_acl *acl) | ||
35 | { | ||
36 | spin_lock(&inode->i_lock); | ||
37 | if (*p_acl && *p_acl != BTRFS_ACL_NOT_CACHED) | ||
38 | posix_acl_release(*p_acl); | ||
39 | *p_acl = posix_acl_dup(acl); | ||
40 | spin_unlock(&inode->i_lock); | ||
41 | } | ||
42 | |||
43 | static struct posix_acl *btrfs_get_acl(struct inode *inode, int type) | ||
44 | { | ||
45 | int size; | ||
46 | const char *name; | ||
47 | char *value = NULL; | ||
48 | struct posix_acl *acl = NULL, **p_acl; | ||
49 | |||
50 | switch (type) { | ||
51 | case ACL_TYPE_ACCESS: | ||
52 | name = POSIX_ACL_XATTR_ACCESS; | ||
53 | p_acl = &BTRFS_I(inode)->i_acl; | ||
54 | break; | ||
55 | case ACL_TYPE_DEFAULT: | ||
56 | name = POSIX_ACL_XATTR_DEFAULT; | ||
57 | p_acl = &BTRFS_I(inode)->i_default_acl; | ||
58 | break; | ||
59 | default: | ||
60 | return ERR_PTR(-EINVAL); | ||
61 | } | ||
62 | |||
63 | spin_lock(&inode->i_lock); | ||
64 | if (*p_acl != BTRFS_ACL_NOT_CACHED) | ||
65 | acl = posix_acl_dup(*p_acl); | ||
66 | spin_unlock(&inode->i_lock); | ||
67 | |||
68 | if (acl) | ||
69 | return acl; | ||
70 | |||
71 | |||
72 | size = __btrfs_getxattr(inode, name, "", 0); | ||
73 | if (size > 0) { | ||
74 | value = kzalloc(size, GFP_NOFS); | ||
75 | if (!value) | ||
76 | return ERR_PTR(-ENOMEM); | ||
77 | size = __btrfs_getxattr(inode, name, value, size); | ||
78 | if (size > 0) { | ||
79 | acl = posix_acl_from_xattr(value, size); | ||
80 | btrfs_update_cached_acl(inode, p_acl, acl); | ||
81 | } | ||
82 | kfree(value); | ||
83 | } else if (size == -ENOENT) { | ||
84 | acl = NULL; | ||
85 | btrfs_update_cached_acl(inode, p_acl, acl); | ||
86 | } | ||
87 | |||
88 | return acl; | ||
89 | } | ||
90 | |||
91 | static int btrfs_xattr_get_acl(struct inode *inode, int type, | ||
92 | void *value, size_t size) | ||
93 | { | ||
94 | struct posix_acl *acl; | ||
95 | int ret = 0; | ||
96 | |||
97 | acl = btrfs_get_acl(inode, type); | ||
98 | |||
99 | if (IS_ERR(acl)) | ||
100 | return PTR_ERR(acl); | ||
101 | if (acl == NULL) | ||
102 | return -ENODATA; | ||
103 | ret = posix_acl_to_xattr(acl, value, size); | ||
104 | posix_acl_release(acl); | ||
105 | |||
106 | return ret; | ||
107 | } | ||
108 | |||
109 | /* | ||
110 | * Needs to be called with fs_mutex held | ||
111 | */ | ||
112 | static int btrfs_set_acl(struct inode *inode, struct posix_acl *acl, int type) | ||
113 | { | ||
114 | int ret, size = 0; | ||
115 | const char *name; | ||
116 | struct posix_acl **p_acl; | ||
117 | char *value = NULL; | ||
118 | mode_t mode; | ||
119 | |||
120 | if (acl) { | ||
121 | ret = posix_acl_valid(acl); | ||
122 | if (ret < 0) | ||
123 | return ret; | ||
124 | ret = 0; | ||
125 | } | ||
126 | |||
127 | switch (type) { | ||
128 | case ACL_TYPE_ACCESS: | ||
129 | mode = inode->i_mode; | ||
130 | ret = posix_acl_equiv_mode(acl, &mode); | ||
131 | if (ret < 0) | ||
132 | return ret; | ||
133 | ret = 0; | ||
134 | inode->i_mode = mode; | ||
135 | name = POSIX_ACL_XATTR_ACCESS; | ||
136 | p_acl = &BTRFS_I(inode)->i_acl; | ||
137 | break; | ||
138 | case ACL_TYPE_DEFAULT: | ||
139 | if (!S_ISDIR(inode->i_mode)) | ||
140 | return acl ? -EINVAL : 0; | ||
141 | name = POSIX_ACL_XATTR_DEFAULT; | ||
142 | p_acl = &BTRFS_I(inode)->i_default_acl; | ||
143 | break; | ||
144 | default: | ||
145 | return -EINVAL; | ||
146 | } | ||
147 | |||
148 | if (acl) { | ||
149 | size = posix_acl_xattr_size(acl->a_count); | ||
150 | value = kmalloc(size, GFP_NOFS); | ||
151 | if (!value) { | ||
152 | ret = -ENOMEM; | ||
153 | goto out; | ||
154 | } | ||
155 | |||
156 | ret = posix_acl_to_xattr(acl, value, size); | ||
157 | if (ret < 0) | ||
158 | goto out; | ||
159 | } | ||
160 | |||
161 | ret = __btrfs_setxattr(inode, name, value, size, 0); | ||
162 | |||
163 | out: | ||
164 | kfree(value); | ||
165 | |||
166 | if (!ret) | ||
167 | btrfs_update_cached_acl(inode, p_acl, acl); | ||
168 | |||
169 | return ret; | ||
170 | } | ||
171 | |||
172 | static int btrfs_xattr_set_acl(struct inode *inode, int type, | ||
173 | const void *value, size_t size) | ||
174 | { | ||
175 | int ret = 0; | ||
176 | struct posix_acl *acl = NULL; | ||
177 | |||
178 | if (value) { | ||
179 | acl = posix_acl_from_xattr(value, size); | ||
180 | if (acl == NULL) { | ||
181 | value = NULL; | ||
182 | size = 0; | ||
183 | } else if (IS_ERR(acl)) { | ||
184 | return PTR_ERR(acl); | ||
185 | } | ||
186 | } | ||
187 | |||
188 | ret = btrfs_set_acl(inode, acl, type); | ||
189 | |||
190 | posix_acl_release(acl); | ||
191 | |||
192 | return ret; | ||
193 | } | ||
194 | |||
195 | |||
196 | static int btrfs_xattr_acl_access_get(struct inode *inode, const char *name, | ||
197 | void *value, size_t size) | ||
198 | { | ||
199 | return btrfs_xattr_get_acl(inode, ACL_TYPE_ACCESS, value, size); | ||
200 | } | ||
201 | |||
202 | static int btrfs_xattr_acl_access_set(struct inode *inode, const char *name, | ||
203 | const void *value, size_t size, int flags) | ||
204 | { | ||
205 | return btrfs_xattr_set_acl(inode, ACL_TYPE_ACCESS, value, size); | ||
206 | } | ||
207 | |||
208 | static int btrfs_xattr_acl_default_get(struct inode *inode, const char *name, | ||
209 | void *value, size_t size) | ||
210 | { | ||
211 | return btrfs_xattr_get_acl(inode, ACL_TYPE_DEFAULT, value, size); | ||
212 | } | ||
213 | |||
214 | static int btrfs_xattr_acl_default_set(struct inode *inode, const char *name, | ||
215 | const void *value, size_t size, int flags) | ||
216 | { | ||
217 | return btrfs_xattr_set_acl(inode, ACL_TYPE_DEFAULT, value, size); | ||
218 | } | ||
219 | |||
220 | int btrfs_check_acl(struct inode *inode, int mask) | ||
221 | { | ||
222 | struct posix_acl *acl; | ||
223 | int error = -EAGAIN; | ||
224 | |||
225 | acl = btrfs_get_acl(inode, ACL_TYPE_ACCESS); | ||
226 | |||
227 | if (IS_ERR(acl)) | ||
228 | return PTR_ERR(acl); | ||
229 | if (acl) { | ||
230 | error = posix_acl_permission(inode, acl, mask); | ||
231 | posix_acl_release(acl); | ||
232 | } | ||
233 | |||
234 | return error; | ||
235 | } | ||
236 | |||
237 | /* | ||
238 | * btrfs_init_acl is already generally called under fs_mutex, so the locking | ||
239 | * stuff has been fixed to work with that. If the locking stuff changes, we | ||
240 | * need to re-evaluate the acl locking stuff. | ||
241 | */ | ||
242 | int btrfs_init_acl(struct inode *inode, struct inode *dir) | ||
243 | { | ||
244 | struct posix_acl *acl = NULL; | ||
245 | int ret = 0; | ||
246 | |||
247 | /* this happens with subvols */ | ||
248 | if (!dir) | ||
249 | return 0; | ||
250 | |||
251 | if (!S_ISLNK(inode->i_mode)) { | ||
252 | if (IS_POSIXACL(dir)) { | ||
253 | acl = btrfs_get_acl(dir, ACL_TYPE_DEFAULT); | ||
254 | if (IS_ERR(acl)) | ||
255 | return PTR_ERR(acl); | ||
256 | } | ||
257 | |||
258 | if (!acl) | ||
259 | inode->i_mode &= ~current->fs->umask; | ||
260 | } | ||
261 | |||
262 | if (IS_POSIXACL(dir) && acl) { | ||
263 | struct posix_acl *clone; | ||
264 | mode_t mode; | ||
265 | |||
266 | if (S_ISDIR(inode->i_mode)) { | ||
267 | ret = btrfs_set_acl(inode, acl, ACL_TYPE_DEFAULT); | ||
268 | if (ret) | ||
269 | goto failed; | ||
270 | } | ||
271 | clone = posix_acl_clone(acl, GFP_NOFS); | ||
272 | ret = -ENOMEM; | ||
273 | if (!clone) | ||
274 | goto failed; | ||
275 | |||
276 | mode = inode->i_mode; | ||
277 | ret = posix_acl_create_masq(clone, &mode); | ||
278 | if (ret >= 0) { | ||
279 | inode->i_mode = mode; | ||
280 | if (ret > 0) { | ||
281 | /* we need an acl */ | ||
282 | ret = btrfs_set_acl(inode, clone, | ||
283 | ACL_TYPE_ACCESS); | ||
284 | } | ||
285 | } | ||
286 | } | ||
287 | failed: | ||
288 | posix_acl_release(acl); | ||
289 | |||
290 | return ret; | ||
291 | } | ||
292 | |||
293 | int btrfs_acl_chmod(struct inode *inode) | ||
294 | { | ||
295 | struct posix_acl *acl, *clone; | ||
296 | int ret = 0; | ||
297 | |||
298 | if (S_ISLNK(inode->i_mode)) | ||
299 | return -EOPNOTSUPP; | ||
300 | |||
301 | if (!IS_POSIXACL(inode)) | ||
302 | return 0; | ||
303 | |||
304 | acl = btrfs_get_acl(inode, ACL_TYPE_ACCESS); | ||
305 | if (IS_ERR(acl) || !acl) | ||
306 | return PTR_ERR(acl); | ||
307 | |||
308 | clone = posix_acl_clone(acl, GFP_KERNEL); | ||
309 | posix_acl_release(acl); | ||
310 | if (!clone) | ||
311 | return -ENOMEM; | ||
312 | |||
313 | ret = posix_acl_chmod_masq(clone, inode->i_mode); | ||
314 | if (!ret) | ||
315 | ret = btrfs_set_acl(inode, clone, ACL_TYPE_ACCESS); | ||
316 | |||
317 | posix_acl_release(clone); | ||
318 | |||
319 | return ret; | ||
320 | } | ||
321 | |||
322 | struct xattr_handler btrfs_xattr_acl_default_handler = { | ||
323 | .prefix = POSIX_ACL_XATTR_DEFAULT, | ||
324 | .get = btrfs_xattr_acl_default_get, | ||
325 | .set = btrfs_xattr_acl_default_set, | ||
326 | }; | ||
327 | |||
328 | struct xattr_handler btrfs_xattr_acl_access_handler = { | ||
329 | .prefix = POSIX_ACL_XATTR_ACCESS, | ||
330 | .get = btrfs_xattr_acl_access_get, | ||
331 | .set = btrfs_xattr_acl_access_set, | ||
332 | }; | ||
333 | |||
334 | #else /* CONFIG_FS_POSIX_ACL */ | ||
335 | |||
336 | int btrfs_acl_chmod(struct inode *inode) | ||
337 | { | ||
338 | return 0; | ||
339 | } | ||
340 | |||
341 | int btrfs_init_acl(struct inode *inode, struct inode *dir) | ||
342 | { | ||
343 | return 0; | ||
344 | } | ||
345 | |||
346 | int btrfs_check_acl(struct inode *inode, int mask) | ||
347 | { | ||
348 | return 0; | ||
349 | } | ||
350 | |||
351 | #endif /* CONFIG_FS_POSIX_ACL */ | ||
diff --git a/fs/btrfs/async-thread.c b/fs/btrfs/async-thread.c new file mode 100644 index 000000000000..8e2fec05dbe0 --- /dev/null +++ b/fs/btrfs/async-thread.c | |||
@@ -0,0 +1,419 @@ | |||
1 | /* | ||
2 | * Copyright (C) 2007 Oracle. All rights reserved. | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or | ||
5 | * modify it under the terms of the GNU General Public | ||
6 | * License v2 as published by the Free Software Foundation. | ||
7 | * | ||
8 | * This program is distributed in the hope that it will be useful, | ||
9 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | ||
11 | * General Public License for more details. | ||
12 | * | ||
13 | * You should have received a copy of the GNU General Public | ||
14 | * License along with this program; if not, write to the | ||
15 | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | ||
16 | * Boston, MA 021110-1307, USA. | ||
17 | */ | ||
18 | |||
19 | #include <linux/version.h> | ||
20 | #include <linux/kthread.h> | ||
21 | #include <linux/list.h> | ||
22 | #include <linux/spinlock.h> | ||
23 | # include <linux/freezer.h> | ||
24 | #include "async-thread.h" | ||
25 | |||
26 | #define WORK_QUEUED_BIT 0 | ||
27 | #define WORK_DONE_BIT 1 | ||
28 | #define WORK_ORDER_DONE_BIT 2 | ||
29 | |||
30 | /* | ||
31 | * container for the kthread task pointer and the list of pending work | ||
32 | * One of these is allocated per thread. | ||
33 | */ | ||
34 | struct btrfs_worker_thread { | ||
35 | /* pool we belong to */ | ||
36 | struct btrfs_workers *workers; | ||
37 | |||
38 | /* list of struct btrfs_work that are waiting for service */ | ||
39 | struct list_head pending; | ||
40 | |||
41 | /* list of worker threads from struct btrfs_workers */ | ||
42 | struct list_head worker_list; | ||
43 | |||
44 | /* kthread */ | ||
45 | struct task_struct *task; | ||
46 | |||
47 | /* number of things on the pending list */ | ||
48 | atomic_t num_pending; | ||
49 | |||
50 | unsigned long sequence; | ||
51 | |||
52 | /* protects the pending list. */ | ||
53 | spinlock_t lock; | ||
54 | |||
55 | /* set to non-zero when this thread is already awake and kicking */ | ||
56 | int working; | ||
57 | |||
58 | /* are we currently idle */ | ||
59 | int idle; | ||
60 | }; | ||
61 | |||
62 | /* | ||
63 | * helper function to move a thread onto the idle list after it | ||
64 | * has finished some requests. | ||
65 | */ | ||
66 | static void check_idle_worker(struct btrfs_worker_thread *worker) | ||
67 | { | ||
68 | if (!worker->idle && atomic_read(&worker->num_pending) < | ||
69 | worker->workers->idle_thresh / 2) { | ||
70 | unsigned long flags; | ||
71 | spin_lock_irqsave(&worker->workers->lock, flags); | ||
72 | worker->idle = 1; | ||
73 | list_move(&worker->worker_list, &worker->workers->idle_list); | ||
74 | spin_unlock_irqrestore(&worker->workers->lock, flags); | ||
75 | } | ||
76 | } | ||
77 | |||
78 | /* | ||
79 | * helper function to move a thread off the idle list after new | ||
80 | * pending work is added. | ||
81 | */ | ||
82 | static void check_busy_worker(struct btrfs_worker_thread *worker) | ||
83 | { | ||
84 | if (worker->idle && atomic_read(&worker->num_pending) >= | ||
85 | worker->workers->idle_thresh) { | ||
86 | unsigned long flags; | ||
87 | spin_lock_irqsave(&worker->workers->lock, flags); | ||
88 | worker->idle = 0; | ||
89 | list_move_tail(&worker->worker_list, | ||
90 | &worker->workers->worker_list); | ||
91 | spin_unlock_irqrestore(&worker->workers->lock, flags); | ||
92 | } | ||
93 | } | ||
94 | |||
95 | static noinline int run_ordered_completions(struct btrfs_workers *workers, | ||
96 | struct btrfs_work *work) | ||
97 | { | ||
98 | unsigned long flags; | ||
99 | |||
100 | if (!workers->ordered) | ||
101 | return 0; | ||
102 | |||
103 | set_bit(WORK_DONE_BIT, &work->flags); | ||
104 | |||
105 | spin_lock_irqsave(&workers->lock, flags); | ||
106 | |||
107 | while (!list_empty(&workers->order_list)) { | ||
108 | work = list_entry(workers->order_list.next, | ||
109 | struct btrfs_work, order_list); | ||
110 | |||
111 | if (!test_bit(WORK_DONE_BIT, &work->flags)) | ||
112 | break; | ||
113 | |||
114 | /* we are going to call the ordered done function, but | ||
115 | * we leave the work item on the list as a barrier so | ||
116 | * that later work items that are done don't have their | ||
117 | * functions called before this one returns | ||
118 | */ | ||
119 | if (test_and_set_bit(WORK_ORDER_DONE_BIT, &work->flags)) | ||
120 | break; | ||
121 | |||
122 | spin_unlock_irqrestore(&workers->lock, flags); | ||
123 | |||
124 | work->ordered_func(work); | ||
125 | |||
126 | /* now take the lock again and call the freeing code */ | ||
127 | spin_lock_irqsave(&workers->lock, flags); | ||
128 | list_del(&work->order_list); | ||
129 | work->ordered_free(work); | ||
130 | } | ||
131 | |||
132 | spin_unlock_irqrestore(&workers->lock, flags); | ||
133 | return 0; | ||
134 | } | ||
135 | |||
136 | /* | ||
137 | * main loop for servicing work items | ||
138 | */ | ||
139 | static int worker_loop(void *arg) | ||
140 | { | ||
141 | struct btrfs_worker_thread *worker = arg; | ||
142 | struct list_head *cur; | ||
143 | struct btrfs_work *work; | ||
144 | do { | ||
145 | spin_lock_irq(&worker->lock); | ||
146 | while (!list_empty(&worker->pending)) { | ||
147 | cur = worker->pending.next; | ||
148 | work = list_entry(cur, struct btrfs_work, list); | ||
149 | list_del(&work->list); | ||
150 | clear_bit(WORK_QUEUED_BIT, &work->flags); | ||
151 | |||
152 | work->worker = worker; | ||
153 | spin_unlock_irq(&worker->lock); | ||
154 | |||
155 | work->func(work); | ||
156 | |||
157 | atomic_dec(&worker->num_pending); | ||
158 | /* | ||
159 | * unless this is an ordered work queue, | ||
160 | * 'work' was probably freed by func above. | ||
161 | */ | ||
162 | run_ordered_completions(worker->workers, work); | ||
163 | |||
164 | spin_lock_irq(&worker->lock); | ||
165 | check_idle_worker(worker); | ||
166 | |||
167 | } | ||
168 | worker->working = 0; | ||
169 | if (freezing(current)) { | ||
170 | refrigerator(); | ||
171 | } else { | ||
172 | set_current_state(TASK_INTERRUPTIBLE); | ||
173 | spin_unlock_irq(&worker->lock); | ||
174 | if (!kthread_should_stop()) | ||
175 | schedule(); | ||
176 | __set_current_state(TASK_RUNNING); | ||
177 | } | ||
178 | } while (!kthread_should_stop()); | ||
179 | return 0; | ||
180 | } | ||
181 | |||
182 | /* | ||
183 | * this will wait for all the worker threads to shutdown | ||
184 | */ | ||
185 | int btrfs_stop_workers(struct btrfs_workers *workers) | ||
186 | { | ||
187 | struct list_head *cur; | ||
188 | struct btrfs_worker_thread *worker; | ||
189 | |||
190 | list_splice_init(&workers->idle_list, &workers->worker_list); | ||
191 | while (!list_empty(&workers->worker_list)) { | ||
192 | cur = workers->worker_list.next; | ||
193 | worker = list_entry(cur, struct btrfs_worker_thread, | ||
194 | worker_list); | ||
195 | kthread_stop(worker->task); | ||
196 | list_del(&worker->worker_list); | ||
197 | kfree(worker); | ||
198 | } | ||
199 | return 0; | ||
200 | } | ||
201 | |||
202 | /* | ||
203 | * simple init on struct btrfs_workers | ||
204 | */ | ||
205 | void btrfs_init_workers(struct btrfs_workers *workers, char *name, int max) | ||
206 | { | ||
207 | workers->num_workers = 0; | ||
208 | INIT_LIST_HEAD(&workers->worker_list); | ||
209 | INIT_LIST_HEAD(&workers->idle_list); | ||
210 | INIT_LIST_HEAD(&workers->order_list); | ||
211 | spin_lock_init(&workers->lock); | ||
212 | workers->max_workers = max; | ||
213 | workers->idle_thresh = 32; | ||
214 | workers->name = name; | ||
215 | workers->ordered = 0; | ||
216 | } | ||
217 | |||
218 | /* | ||
219 | * starts new worker threads. This does not enforce the max worker | ||
220 | * count in case you need to temporarily go past it. | ||
221 | */ | ||
222 | int btrfs_start_workers(struct btrfs_workers *workers, int num_workers) | ||
223 | { | ||
224 | struct btrfs_worker_thread *worker; | ||
225 | int ret = 0; | ||
226 | int i; | ||
227 | |||
228 | for (i = 0; i < num_workers; i++) { | ||
229 | worker = kzalloc(sizeof(*worker), GFP_NOFS); | ||
230 | if (!worker) { | ||
231 | ret = -ENOMEM; | ||
232 | goto fail; | ||
233 | } | ||
234 | |||
235 | INIT_LIST_HEAD(&worker->pending); | ||
236 | INIT_LIST_HEAD(&worker->worker_list); | ||
237 | spin_lock_init(&worker->lock); | ||
238 | atomic_set(&worker->num_pending, 0); | ||
239 | worker->task = kthread_run(worker_loop, worker, | ||
240 | "btrfs-%s-%d", workers->name, | ||
241 | workers->num_workers + i); | ||
242 | worker->workers = workers; | ||
243 | if (IS_ERR(worker->task)) { | ||
244 | kfree(worker); | ||
245 | ret = PTR_ERR(worker->task); | ||
246 | goto fail; | ||
247 | } | ||
248 | |||
249 | spin_lock_irq(&workers->lock); | ||
250 | list_add_tail(&worker->worker_list, &workers->idle_list); | ||
251 | worker->idle = 1; | ||
252 | workers->num_workers++; | ||
253 | spin_unlock_irq(&workers->lock); | ||
254 | } | ||
255 | return 0; | ||
256 | fail: | ||
257 | btrfs_stop_workers(workers); | ||
258 | return ret; | ||
259 | } | ||
260 | |||
261 | /* | ||
262 | * run through the list and find a worker thread that doesn't have a lot | ||
263 | * to do right now. This can return null if we aren't yet at the thread | ||
264 | * count limit and all of the threads are busy. | ||
265 | */ | ||
266 | static struct btrfs_worker_thread *next_worker(struct btrfs_workers *workers) | ||
267 | { | ||
268 | struct btrfs_worker_thread *worker; | ||
269 | struct list_head *next; | ||
270 | int enforce_min = workers->num_workers < workers->max_workers; | ||
271 | |||
272 | /* | ||
273 | * if we find an idle thread, don't move it to the end of the | ||
274 | * idle list. This improves the chance that the next submission | ||
275 | * will reuse the same thread, and maybe catch it while it is still | ||
276 | * working | ||
277 | */ | ||
278 | if (!list_empty(&workers->idle_list)) { | ||
279 | next = workers->idle_list.next; | ||
280 | worker = list_entry(next, struct btrfs_worker_thread, | ||
281 | worker_list); | ||
282 | return worker; | ||
283 | } | ||
284 | if (enforce_min || list_empty(&workers->worker_list)) | ||
285 | return NULL; | ||
286 | |||
287 | /* | ||
288 | * if we pick a busy task, move the task to the end of the list. | ||
289 | * hopefully this will keep things somewhat evenly balanced. | ||
290 | * Do the move in batches based on the sequence number. This groups | ||
291 | * requests submitted at roughly the same time onto the same worker. | ||
292 | */ | ||
293 | next = workers->worker_list.next; | ||
294 | worker = list_entry(next, struct btrfs_worker_thread, worker_list); | ||
295 | atomic_inc(&worker->num_pending); | ||
296 | worker->sequence++; | ||
297 | |||
298 | if (worker->sequence % workers->idle_thresh == 0) | ||
299 | list_move_tail(next, &workers->worker_list); | ||
300 | return worker; | ||
301 | } | ||
302 | |||
303 | /* | ||
304 | * selects a worker thread to take the next job. This will either find | ||
305 | * an idle worker, start a new worker up to the max count, or just return | ||
306 | * one of the existing busy workers. | ||
307 | */ | ||
308 | static struct btrfs_worker_thread *find_worker(struct btrfs_workers *workers) | ||
309 | { | ||
310 | struct btrfs_worker_thread *worker; | ||
311 | unsigned long flags; | ||
312 | |||
313 | again: | ||
314 | spin_lock_irqsave(&workers->lock, flags); | ||
315 | worker = next_worker(workers); | ||
316 | spin_unlock_irqrestore(&workers->lock, flags); | ||
317 | |||
318 | if (!worker) { | ||
319 | spin_lock_irqsave(&workers->lock, flags); | ||
320 | if (workers->num_workers >= workers->max_workers) { | ||
321 | struct list_head *fallback = NULL; | ||
322 | /* | ||
323 | * we have failed to find any workers, just | ||
324 | * return the force one | ||
325 | */ | ||
326 | if (!list_empty(&workers->worker_list)) | ||
327 | fallback = workers->worker_list.next; | ||
328 | if (!list_empty(&workers->idle_list)) | ||
329 | fallback = workers->idle_list.next; | ||
330 | BUG_ON(!fallback); | ||
331 | worker = list_entry(fallback, | ||
332 | struct btrfs_worker_thread, worker_list); | ||
333 | spin_unlock_irqrestore(&workers->lock, flags); | ||
334 | } else { | ||
335 | spin_unlock_irqrestore(&workers->lock, flags); | ||
336 | /* we're below the limit, start another worker */ | ||
337 | btrfs_start_workers(workers, 1); | ||
338 | goto again; | ||
339 | } | ||
340 | } | ||
341 | return worker; | ||
342 | } | ||
343 | |||
344 | /* | ||
345 | * btrfs_requeue_work just puts the work item back on the tail of the list | ||
346 | * it was taken from. It is intended for use with long running work functions | ||
347 | * that make some progress and want to give the cpu up for others. | ||
348 | */ | ||
349 | int btrfs_requeue_work(struct btrfs_work *work) | ||
350 | { | ||
351 | struct btrfs_worker_thread *worker = work->worker; | ||
352 | unsigned long flags; | ||
353 | |||
354 | if (test_and_set_bit(WORK_QUEUED_BIT, &work->flags)) | ||
355 | goto out; | ||
356 | |||
357 | spin_lock_irqsave(&worker->lock, flags); | ||
358 | atomic_inc(&worker->num_pending); | ||
359 | list_add_tail(&work->list, &worker->pending); | ||
360 | |||
361 | /* by definition we're busy, take ourselves off the idle | ||
362 | * list | ||
363 | */ | ||
364 | if (worker->idle) { | ||
365 | spin_lock_irqsave(&worker->workers->lock, flags); | ||
366 | worker->idle = 0; | ||
367 | list_move_tail(&worker->worker_list, | ||
368 | &worker->workers->worker_list); | ||
369 | spin_unlock_irqrestore(&worker->workers->lock, flags); | ||
370 | } | ||
371 | |||
372 | spin_unlock_irqrestore(&worker->lock, flags); | ||
373 | |||
374 | out: | ||
375 | return 0; | ||
376 | } | ||
377 | |||
378 | /* | ||
379 | * places a struct btrfs_work into the pending queue of one of the kthreads | ||
380 | */ | ||
381 | int btrfs_queue_worker(struct btrfs_workers *workers, struct btrfs_work *work) | ||
382 | { | ||
383 | struct btrfs_worker_thread *worker; | ||
384 | unsigned long flags; | ||
385 | int wake = 0; | ||
386 | |||
387 | /* don't requeue something already on a list */ | ||
388 | if (test_and_set_bit(WORK_QUEUED_BIT, &work->flags)) | ||
389 | goto out; | ||
390 | |||
391 | worker = find_worker(workers); | ||
392 | if (workers->ordered) { | ||
393 | spin_lock_irqsave(&workers->lock, flags); | ||
394 | list_add_tail(&work->order_list, &workers->order_list); | ||
395 | spin_unlock_irqrestore(&workers->lock, flags); | ||
396 | } else { | ||
397 | INIT_LIST_HEAD(&work->order_list); | ||
398 | } | ||
399 | |||
400 | spin_lock_irqsave(&worker->lock, flags); | ||
401 | atomic_inc(&worker->num_pending); | ||
402 | check_busy_worker(worker); | ||
403 | list_add_tail(&work->list, &worker->pending); | ||
404 | |||
405 | /* | ||
406 | * avoid calling into wake_up_process if this thread has already | ||
407 | * been kicked | ||
408 | */ | ||
409 | if (!worker->working) | ||
410 | wake = 1; | ||
411 | worker->working = 1; | ||
412 | |||
413 | spin_unlock_irqrestore(&worker->lock, flags); | ||
414 | |||
415 | if (wake) | ||
416 | wake_up_process(worker->task); | ||
417 | out: | ||
418 | return 0; | ||
419 | } | ||
diff --git a/fs/btrfs/async-thread.h b/fs/btrfs/async-thread.h new file mode 100644 index 000000000000..31be4ed8b63e --- /dev/null +++ b/fs/btrfs/async-thread.h | |||
@@ -0,0 +1,101 @@ | |||
1 | /* | ||
2 | * Copyright (C) 2007 Oracle. All rights reserved. | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or | ||
5 | * modify it under the terms of the GNU General Public | ||
6 | * License v2 as published by the Free Software Foundation. | ||
7 | * | ||
8 | * This program is distributed in the hope that it will be useful, | ||
9 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | ||
11 | * General Public License for more details. | ||
12 | * | ||
13 | * You should have received a copy of the GNU General Public | ||
14 | * License along with this program; if not, write to the | ||
15 | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | ||
16 | * Boston, MA 021110-1307, USA. | ||
17 | */ | ||
18 | |||
19 | #ifndef __BTRFS_ASYNC_THREAD_ | ||
20 | #define __BTRFS_ASYNC_THREAD_ | ||
21 | |||
22 | struct btrfs_worker_thread; | ||
23 | |||
24 | /* | ||
25 | * This is similar to a workqueue, but it is meant to spread the operations | ||
26 | * across all available cpus instead of just the CPU that was used to | ||
27 | * queue the work. There is also some batching introduced to try and | ||
28 | * cut down on context switches. | ||
29 | * | ||
30 | * By default threads are added on demand up to 2 * the number of cpus. | ||
31 | * Changing struct btrfs_workers->max_workers is one way to prevent | ||
32 | * demand creation of kthreads. | ||
33 | * | ||
34 | * the basic model of these worker threads is to embed a btrfs_work | ||
35 | * structure in your own data struct, and use container_of in a | ||
36 | * work function to get back to your data struct. | ||
37 | */ | ||
38 | struct btrfs_work { | ||
39 | /* | ||
40 | * func should be set to the function you want called | ||
41 | * your work struct is passed as the only arg | ||
42 | * | ||
43 | * ordered_func must be set for work sent to an ordered work queue, | ||
44 | * and it is called to complete a given work item in the same | ||
45 | * order they were sent to the queue. | ||
46 | */ | ||
47 | void (*func)(struct btrfs_work *work); | ||
48 | void (*ordered_func)(struct btrfs_work *work); | ||
49 | void (*ordered_free)(struct btrfs_work *work); | ||
50 | |||
51 | /* | ||
52 | * flags should be set to zero. It is used to make sure the | ||
53 | * struct is only inserted once into the list. | ||
54 | */ | ||
55 | unsigned long flags; | ||
56 | |||
57 | /* don't touch these */ | ||
58 | struct btrfs_worker_thread *worker; | ||
59 | struct list_head list; | ||
60 | struct list_head order_list; | ||
61 | }; | ||
62 | |||
63 | struct btrfs_workers { | ||
64 | /* current number of running workers */ | ||
65 | int num_workers; | ||
66 | |||
67 | /* max number of workers allowed. changed by btrfs_start_workers */ | ||
68 | int max_workers; | ||
69 | |||
70 | /* once a worker has this many requests or fewer, it is idle */ | ||
71 | int idle_thresh; | ||
72 | |||
73 | /* force completions in the order they were queued */ | ||
74 | int ordered; | ||
75 | |||
76 | /* list with all the work threads. The workers on the idle thread | ||
77 | * may be actively servicing jobs, but they haven't yet hit the | ||
78 | * idle thresh limit above. | ||
79 | */ | ||
80 | struct list_head worker_list; | ||
81 | struct list_head idle_list; | ||
82 | |||
83 | /* | ||
84 | * when operating in ordered mode, this maintains the list | ||
85 | * of work items waiting for completion | ||
86 | */ | ||
87 | struct list_head order_list; | ||
88 | |||
89 | /* lock for finding the next worker thread to queue on */ | ||
90 | spinlock_t lock; | ||
91 | |||
92 | /* extra name for this worker, used for current->name */ | ||
93 | char *name; | ||
94 | }; | ||
95 | |||
96 | int btrfs_queue_worker(struct btrfs_workers *workers, struct btrfs_work *work); | ||
97 | int btrfs_start_workers(struct btrfs_workers *workers, int num_workers); | ||
98 | int btrfs_stop_workers(struct btrfs_workers *workers); | ||
99 | void btrfs_init_workers(struct btrfs_workers *workers, char *name, int max); | ||
100 | int btrfs_requeue_work(struct btrfs_work *work); | ||
101 | #endif | ||
diff --git a/fs/btrfs/btrfs_inode.h b/fs/btrfs/btrfs_inode.h new file mode 100644 index 000000000000..a8c9693b75ac --- /dev/null +++ b/fs/btrfs/btrfs_inode.h | |||
@@ -0,0 +1,131 @@ | |||
1 | /* | ||
2 | * Copyright (C) 2007 Oracle. All rights reserved. | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or | ||
5 | * modify it under the terms of the GNU General Public | ||
6 | * License v2 as published by the Free Software Foundation. | ||
7 | * | ||
8 | * This program is distributed in the hope that it will be useful, | ||
9 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | ||
11 | * General Public License for more details. | ||
12 | * | ||
13 | * You should have received a copy of the GNU General Public | ||
14 | * License along with this program; if not, write to the | ||
15 | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | ||
16 | * Boston, MA 021110-1307, USA. | ||
17 | */ | ||
18 | |||
19 | #ifndef __BTRFS_I__ | ||
20 | #define __BTRFS_I__ | ||
21 | |||
22 | #include "extent_map.h" | ||
23 | #include "extent_io.h" | ||
24 | #include "ordered-data.h" | ||
25 | |||
26 | /* in memory btrfs inode */ | ||
27 | struct btrfs_inode { | ||
28 | /* which subvolume this inode belongs to */ | ||
29 | struct btrfs_root *root; | ||
30 | |||
31 | /* key used to find this inode on disk. This is used by the code | ||
32 | * to read in roots of subvolumes | ||
33 | */ | ||
34 | struct btrfs_key location; | ||
35 | |||
36 | /* the extent_tree has caches of all the extent mappings to disk */ | ||
37 | struct extent_map_tree extent_tree; | ||
38 | |||
39 | /* the io_tree does range state (DIRTY, LOCKED etc) */ | ||
40 | struct extent_io_tree io_tree; | ||
41 | |||
42 | /* special utility tree used to record which mirrors have already been | ||
43 | * tried when checksums fail for a given block | ||
44 | */ | ||
45 | struct extent_io_tree io_failure_tree; | ||
46 | |||
47 | /* held while inesrting or deleting extents from files */ | ||
48 | struct mutex extent_mutex; | ||
49 | |||
50 | /* held while logging the inode in tree-log.c */ | ||
51 | struct mutex log_mutex; | ||
52 | |||
53 | /* used to order data wrt metadata */ | ||
54 | struct btrfs_ordered_inode_tree ordered_tree; | ||
55 | |||
56 | /* standard acl pointers */ | ||
57 | struct posix_acl *i_acl; | ||
58 | struct posix_acl *i_default_acl; | ||
59 | |||
60 | /* for keeping track of orphaned inodes */ | ||
61 | struct list_head i_orphan; | ||
62 | |||
63 | /* list of all the delalloc inodes in the FS. There are times we need | ||
64 | * to write all the delalloc pages to disk, and this list is used | ||
65 | * to walk them all. | ||
66 | */ | ||
67 | struct list_head delalloc_inodes; | ||
68 | |||
69 | /* full 64 bit generation number, struct vfs_inode doesn't have a big | ||
70 | * enough field for this. | ||
71 | */ | ||
72 | u64 generation; | ||
73 | |||
74 | /* sequence number for NFS changes */ | ||
75 | u64 sequence; | ||
76 | |||
77 | /* | ||
78 | * transid of the trans_handle that last modified this inode | ||
79 | */ | ||
80 | u64 last_trans; | ||
81 | /* | ||
82 | * transid that last logged this inode | ||
83 | */ | ||
84 | u64 logged_trans; | ||
85 | |||
86 | /* | ||
87 | * trans that last made a change that should be fully fsync'd. This | ||
88 | * gets reset to zero each time the inode is logged | ||
89 | */ | ||
90 | u64 log_dirty_trans; | ||
91 | |||
92 | /* total number of bytes pending delalloc, used by stat to calc the | ||
93 | * real block usage of the file | ||
94 | */ | ||
95 | u64 delalloc_bytes; | ||
96 | |||
97 | /* | ||
98 | * the size of the file stored in the metadata on disk. data=ordered | ||
99 | * means the in-memory i_size might be larger than the size on disk | ||
100 | * because not all the blocks are written yet. | ||
101 | */ | ||
102 | u64 disk_i_size; | ||
103 | |||
104 | /* flags field from the on disk inode */ | ||
105 | u32 flags; | ||
106 | |||
107 | /* | ||
108 | * if this is a directory then index_cnt is the counter for the index | ||
109 | * number for new files that are created | ||
110 | */ | ||
111 | u64 index_cnt; | ||
112 | |||
113 | /* the start of block group preferred for allocations. */ | ||
114 | u64 block_group; | ||
115 | |||
116 | struct inode vfs_inode; | ||
117 | }; | ||
118 | |||
119 | static inline struct btrfs_inode *BTRFS_I(struct inode *inode) | ||
120 | { | ||
121 | return container_of(inode, struct btrfs_inode, vfs_inode); | ||
122 | } | ||
123 | |||
124 | static inline void btrfs_i_size_write(struct inode *inode, u64 size) | ||
125 | { | ||
126 | inode->i_size = size; | ||
127 | BTRFS_I(inode)->disk_i_size = size; | ||
128 | } | ||
129 | |||
130 | |||
131 | #endif | ||
diff --git a/fs/btrfs/compat.h b/fs/btrfs/compat.h new file mode 100644 index 000000000000..594d60bdd3c4 --- /dev/null +++ b/fs/btrfs/compat.h | |||
@@ -0,0 +1,32 @@ | |||
1 | #ifndef _COMPAT_H_ | ||
2 | #define _COMPAT_H_ | ||
3 | |||
4 | #define btrfs_drop_nlink(inode) drop_nlink(inode) | ||
5 | #define btrfs_inc_nlink(inode) inc_nlink(inode) | ||
6 | |||
7 | #if LINUX_VERSION_CODE <= KERNEL_VERSION(2, 6, 27) | ||
8 | static inline struct dentry *d_obtain_alias(struct inode *inode) | ||
9 | { | ||
10 | struct dentry *d; | ||
11 | |||
12 | if (!inode) | ||
13 | return NULL; | ||
14 | if (IS_ERR(inode)) | ||
15 | return ERR_CAST(inode); | ||
16 | |||
17 | d = d_alloc_anon(inode); | ||
18 | if (!d) | ||
19 | iput(inode); | ||
20 | return d; | ||
21 | } | ||
22 | #endif | ||
23 | |||
24 | #if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 28) | ||
25 | # define __pagevec_lru_add_file __pagevec_lru_add | ||
26 | # define open_bdev_exclusive open_bdev_excl | ||
27 | # define close_bdev_exclusive(bdev, mode) close_bdev_excl(bdev) | ||
28 | typedef unsigned __bitwise__ fmode_t; | ||
29 | #endif | ||
30 | |||
31 | |||
32 | #endif /* _COMPAT_H_ */ | ||
diff --git a/fs/btrfs/compression.c b/fs/btrfs/compression.c new file mode 100644 index 000000000000..ee848d8585d9 --- /dev/null +++ b/fs/btrfs/compression.c | |||
@@ -0,0 +1,709 @@ | |||
1 | /* | ||
2 | * Copyright (C) 2008 Oracle. All rights reserved. | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or | ||
5 | * modify it under the terms of the GNU General Public | ||
6 | * License v2 as published by the Free Software Foundation. | ||
7 | * | ||
8 | * This program is distributed in the hope that it will be useful, | ||
9 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | ||
11 | * General Public License for more details. | ||
12 | * | ||
13 | * You should have received a copy of the GNU General Public | ||
14 | * License along with this program; if not, write to the | ||
15 | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | ||
16 | * Boston, MA 021110-1307, USA. | ||
17 | */ | ||
18 | |||
19 | #include <linux/kernel.h> | ||
20 | #include <linux/bio.h> | ||
21 | #include <linux/buffer_head.h> | ||
22 | #include <linux/file.h> | ||
23 | #include <linux/fs.h> | ||
24 | #include <linux/pagemap.h> | ||
25 | #include <linux/highmem.h> | ||
26 | #include <linux/time.h> | ||
27 | #include <linux/init.h> | ||
28 | #include <linux/string.h> | ||
29 | #include <linux/smp_lock.h> | ||
30 | #include <linux/backing-dev.h> | ||
31 | #include <linux/mpage.h> | ||
32 | #include <linux/swap.h> | ||
33 | #include <linux/writeback.h> | ||
34 | #include <linux/bit_spinlock.h> | ||
35 | #include <linux/version.h> | ||
36 | #include <linux/pagevec.h> | ||
37 | #include "compat.h" | ||
38 | #include "ctree.h" | ||
39 | #include "disk-io.h" | ||
40 | #include "transaction.h" | ||
41 | #include "btrfs_inode.h" | ||
42 | #include "volumes.h" | ||
43 | #include "ordered-data.h" | ||
44 | #include "compression.h" | ||
45 | #include "extent_io.h" | ||
46 | #include "extent_map.h" | ||
47 | |||
48 | struct compressed_bio { | ||
49 | /* number of bios pending for this compressed extent */ | ||
50 | atomic_t pending_bios; | ||
51 | |||
52 | /* the pages with the compressed data on them */ | ||
53 | struct page **compressed_pages; | ||
54 | |||
55 | /* inode that owns this data */ | ||
56 | struct inode *inode; | ||
57 | |||
58 | /* starting offset in the inode for our pages */ | ||
59 | u64 start; | ||
60 | |||
61 | /* number of bytes in the inode we're working on */ | ||
62 | unsigned long len; | ||
63 | |||
64 | /* number of bytes on disk */ | ||
65 | unsigned long compressed_len; | ||
66 | |||
67 | /* number of compressed pages in the array */ | ||
68 | unsigned long nr_pages; | ||
69 | |||
70 | /* IO errors */ | ||
71 | int errors; | ||
72 | int mirror_num; | ||
73 | |||
74 | /* for reads, this is the bio we are copying the data into */ | ||
75 | struct bio *orig_bio; | ||
76 | |||
77 | /* | ||
78 | * the start of a variable length array of checksums only | ||
79 | * used by reads | ||
80 | */ | ||
81 | u32 sums; | ||
82 | }; | ||
83 | |||
84 | static inline int compressed_bio_size(struct btrfs_root *root, | ||
85 | unsigned long disk_size) | ||
86 | { | ||
87 | u16 csum_size = btrfs_super_csum_size(&root->fs_info->super_copy); | ||
88 | return sizeof(struct compressed_bio) + | ||
89 | ((disk_size + root->sectorsize - 1) / root->sectorsize) * | ||
90 | csum_size; | ||
91 | } | ||
92 | |||
93 | static struct bio *compressed_bio_alloc(struct block_device *bdev, | ||
94 | u64 first_byte, gfp_t gfp_flags) | ||
95 | { | ||
96 | struct bio *bio; | ||
97 | int nr_vecs; | ||
98 | |||
99 | nr_vecs = bio_get_nr_vecs(bdev); | ||
100 | bio = bio_alloc(gfp_flags, nr_vecs); | ||
101 | |||
102 | if (bio == NULL && (current->flags & PF_MEMALLOC)) { | ||
103 | while (!bio && (nr_vecs /= 2)) | ||
104 | bio = bio_alloc(gfp_flags, nr_vecs); | ||
105 | } | ||
106 | |||
107 | if (bio) { | ||
108 | bio->bi_size = 0; | ||
109 | bio->bi_bdev = bdev; | ||
110 | bio->bi_sector = first_byte >> 9; | ||
111 | } | ||
112 | return bio; | ||
113 | } | ||
114 | |||
115 | static int check_compressed_csum(struct inode *inode, | ||
116 | struct compressed_bio *cb, | ||
117 | u64 disk_start) | ||
118 | { | ||
119 | int ret; | ||
120 | struct btrfs_root *root = BTRFS_I(inode)->root; | ||
121 | struct page *page; | ||
122 | unsigned long i; | ||
123 | char *kaddr; | ||
124 | u32 csum; | ||
125 | u32 *cb_sum = &cb->sums; | ||
126 | |||
127 | if (btrfs_test_flag(inode, NODATASUM)) | ||
128 | return 0; | ||
129 | |||
130 | for (i = 0; i < cb->nr_pages; i++) { | ||
131 | page = cb->compressed_pages[i]; | ||
132 | csum = ~(u32)0; | ||
133 | |||
134 | kaddr = kmap_atomic(page, KM_USER0); | ||
135 | csum = btrfs_csum_data(root, kaddr, csum, PAGE_CACHE_SIZE); | ||
136 | btrfs_csum_final(csum, (char *)&csum); | ||
137 | kunmap_atomic(kaddr, KM_USER0); | ||
138 | |||
139 | if (csum != *cb_sum) { | ||
140 | printk(KERN_INFO "btrfs csum failed ino %lu " | ||
141 | "extent %llu csum %u " | ||
142 | "wanted %u mirror %d\n", inode->i_ino, | ||
143 | (unsigned long long)disk_start, | ||
144 | csum, *cb_sum, cb->mirror_num); | ||
145 | ret = -EIO; | ||
146 | goto fail; | ||
147 | } | ||
148 | cb_sum++; | ||
149 | |||
150 | } | ||
151 | ret = 0; | ||
152 | fail: | ||
153 | return ret; | ||
154 | } | ||
155 | |||
156 | /* when we finish reading compressed pages from the disk, we | ||
157 | * decompress them and then run the bio end_io routines on the | ||
158 | * decompressed pages (in the inode address space). | ||
159 | * | ||
160 | * This allows the checksumming and other IO error handling routines | ||
161 | * to work normally | ||
162 | * | ||
163 | * The compressed pages are freed here, and it must be run | ||
164 | * in process context | ||
165 | */ | ||
166 | static void end_compressed_bio_read(struct bio *bio, int err) | ||
167 | { | ||
168 | struct extent_io_tree *tree; | ||
169 | struct compressed_bio *cb = bio->bi_private; | ||
170 | struct inode *inode; | ||
171 | struct page *page; | ||
172 | unsigned long index; | ||
173 | int ret; | ||
174 | |||
175 | if (err) | ||
176 | cb->errors = 1; | ||
177 | |||
178 | /* if there are more bios still pending for this compressed | ||
179 | * extent, just exit | ||
180 | */ | ||
181 | if (!atomic_dec_and_test(&cb->pending_bios)) | ||
182 | goto out; | ||
183 | |||
184 | inode = cb->inode; | ||
185 | ret = check_compressed_csum(inode, cb, (u64)bio->bi_sector << 9); | ||
186 | if (ret) | ||
187 | goto csum_failed; | ||
188 | |||
189 | /* ok, we're the last bio for this extent, lets start | ||
190 | * the decompression. | ||
191 | */ | ||
192 | tree = &BTRFS_I(inode)->io_tree; | ||
193 | ret = btrfs_zlib_decompress_biovec(cb->compressed_pages, | ||
194 | cb->start, | ||
195 | cb->orig_bio->bi_io_vec, | ||
196 | cb->orig_bio->bi_vcnt, | ||
197 | cb->compressed_len); | ||
198 | csum_failed: | ||
199 | if (ret) | ||
200 | cb->errors = 1; | ||
201 | |||
202 | /* release the compressed pages */ | ||
203 | index = 0; | ||
204 | for (index = 0; index < cb->nr_pages; index++) { | ||
205 | page = cb->compressed_pages[index]; | ||
206 | page->mapping = NULL; | ||
207 | page_cache_release(page); | ||
208 | } | ||
209 | |||
210 | /* do io completion on the original bio */ | ||
211 | if (cb->errors) { | ||
212 | bio_io_error(cb->orig_bio); | ||
213 | } else { | ||
214 | int bio_index = 0; | ||
215 | struct bio_vec *bvec = cb->orig_bio->bi_io_vec; | ||
216 | |||
217 | /* | ||
218 | * we have verified the checksum already, set page | ||
219 | * checked so the end_io handlers know about it | ||
220 | */ | ||
221 | while (bio_index < cb->orig_bio->bi_vcnt) { | ||
222 | SetPageChecked(bvec->bv_page); | ||
223 | bvec++; | ||
224 | bio_index++; | ||
225 | } | ||
226 | bio_endio(cb->orig_bio, 0); | ||
227 | } | ||
228 | |||
229 | /* finally free the cb struct */ | ||
230 | kfree(cb->compressed_pages); | ||
231 | kfree(cb); | ||
232 | out: | ||
233 | bio_put(bio); | ||
234 | } | ||
235 | |||
236 | /* | ||
237 | * Clear the writeback bits on all of the file | ||
238 | * pages for a compressed write | ||
239 | */ | ||
240 | static noinline int end_compressed_writeback(struct inode *inode, u64 start, | ||
241 | unsigned long ram_size) | ||
242 | { | ||
243 | unsigned long index = start >> PAGE_CACHE_SHIFT; | ||
244 | unsigned long end_index = (start + ram_size - 1) >> PAGE_CACHE_SHIFT; | ||
245 | struct page *pages[16]; | ||
246 | unsigned long nr_pages = end_index - index + 1; | ||
247 | int i; | ||
248 | int ret; | ||
249 | |||
250 | while (nr_pages > 0) { | ||
251 | ret = find_get_pages_contig(inode->i_mapping, index, | ||
252 | min_t(unsigned long, | ||
253 | nr_pages, ARRAY_SIZE(pages)), pages); | ||
254 | if (ret == 0) { | ||
255 | nr_pages -= 1; | ||
256 | index += 1; | ||
257 | continue; | ||
258 | } | ||
259 | for (i = 0; i < ret; i++) { | ||
260 | end_page_writeback(pages[i]); | ||
261 | page_cache_release(pages[i]); | ||
262 | } | ||
263 | nr_pages -= ret; | ||
264 | index += ret; | ||
265 | } | ||
266 | /* the inode may be gone now */ | ||
267 | return 0; | ||
268 | } | ||
269 | |||
270 | /* | ||
271 | * do the cleanup once all the compressed pages hit the disk. | ||
272 | * This will clear writeback on the file pages and free the compressed | ||
273 | * pages. | ||
274 | * | ||
275 | * This also calls the writeback end hooks for the file pages so that | ||
276 | * metadata and checksums can be updated in the file. | ||
277 | */ | ||
278 | static void end_compressed_bio_write(struct bio *bio, int err) | ||
279 | { | ||
280 | struct extent_io_tree *tree; | ||
281 | struct compressed_bio *cb = bio->bi_private; | ||
282 | struct inode *inode; | ||
283 | struct page *page; | ||
284 | unsigned long index; | ||
285 | |||
286 | if (err) | ||
287 | cb->errors = 1; | ||
288 | |||
289 | /* if there are more bios still pending for this compressed | ||
290 | * extent, just exit | ||
291 | */ | ||
292 | if (!atomic_dec_and_test(&cb->pending_bios)) | ||
293 | goto out; | ||
294 | |||
295 | /* ok, we're the last bio for this extent, step one is to | ||
296 | * call back into the FS and do all the end_io operations | ||
297 | */ | ||
298 | inode = cb->inode; | ||
299 | tree = &BTRFS_I(inode)->io_tree; | ||
300 | cb->compressed_pages[0]->mapping = cb->inode->i_mapping; | ||
301 | tree->ops->writepage_end_io_hook(cb->compressed_pages[0], | ||
302 | cb->start, | ||
303 | cb->start + cb->len - 1, | ||
304 | NULL, 1); | ||
305 | cb->compressed_pages[0]->mapping = NULL; | ||
306 | |||
307 | end_compressed_writeback(inode, cb->start, cb->len); | ||
308 | /* note, our inode could be gone now */ | ||
309 | |||
310 | /* | ||
311 | * release the compressed pages, these came from alloc_page and | ||
312 | * are not attached to the inode at all | ||
313 | */ | ||
314 | index = 0; | ||
315 | for (index = 0; index < cb->nr_pages; index++) { | ||
316 | page = cb->compressed_pages[index]; | ||
317 | page->mapping = NULL; | ||
318 | page_cache_release(page); | ||
319 | } | ||
320 | |||
321 | /* finally free the cb struct */ | ||
322 | kfree(cb->compressed_pages); | ||
323 | kfree(cb); | ||
324 | out: | ||
325 | bio_put(bio); | ||
326 | } | ||
327 | |||
328 | /* | ||
329 | * worker function to build and submit bios for previously compressed pages. | ||
330 | * The corresponding pages in the inode should be marked for writeback | ||
331 | * and the compressed pages should have a reference on them for dropping | ||
332 | * when the IO is complete. | ||
333 | * | ||
334 | * This also checksums the file bytes and gets things ready for | ||
335 | * the end io hooks. | ||
336 | */ | ||
337 | int btrfs_submit_compressed_write(struct inode *inode, u64 start, | ||
338 | unsigned long len, u64 disk_start, | ||
339 | unsigned long compressed_len, | ||
340 | struct page **compressed_pages, | ||
341 | unsigned long nr_pages) | ||
342 | { | ||
343 | struct bio *bio = NULL; | ||
344 | struct btrfs_root *root = BTRFS_I(inode)->root; | ||
345 | struct compressed_bio *cb; | ||
346 | unsigned long bytes_left; | ||
347 | struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; | ||
348 | int page_index = 0; | ||
349 | struct page *page; | ||
350 | u64 first_byte = disk_start; | ||
351 | struct block_device *bdev; | ||
352 | int ret; | ||
353 | |||
354 | WARN_ON(start & ((u64)PAGE_CACHE_SIZE - 1)); | ||
355 | cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS); | ||
356 | atomic_set(&cb->pending_bios, 0); | ||
357 | cb->errors = 0; | ||
358 | cb->inode = inode; | ||
359 | cb->start = start; | ||
360 | cb->len = len; | ||
361 | cb->mirror_num = 0; | ||
362 | cb->compressed_pages = compressed_pages; | ||
363 | cb->compressed_len = compressed_len; | ||
364 | cb->orig_bio = NULL; | ||
365 | cb->nr_pages = nr_pages; | ||
366 | |||
367 | bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; | ||
368 | |||
369 | bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS); | ||
370 | bio->bi_private = cb; | ||
371 | bio->bi_end_io = end_compressed_bio_write; | ||
372 | atomic_inc(&cb->pending_bios); | ||
373 | |||
374 | /* create and submit bios for the compressed pages */ | ||
375 | bytes_left = compressed_len; | ||
376 | for (page_index = 0; page_index < cb->nr_pages; page_index++) { | ||
377 | page = compressed_pages[page_index]; | ||
378 | page->mapping = inode->i_mapping; | ||
379 | if (bio->bi_size) | ||
380 | ret = io_tree->ops->merge_bio_hook(page, 0, | ||
381 | PAGE_CACHE_SIZE, | ||
382 | bio, 0); | ||
383 | else | ||
384 | ret = 0; | ||
385 | |||
386 | page->mapping = NULL; | ||
387 | if (ret || bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) < | ||
388 | PAGE_CACHE_SIZE) { | ||
389 | bio_get(bio); | ||
390 | |||
391 | /* | ||
392 | * inc the count before we submit the bio so | ||
393 | * we know the end IO handler won't happen before | ||
394 | * we inc the count. Otherwise, the cb might get | ||
395 | * freed before we're done setting it up | ||
396 | */ | ||
397 | atomic_inc(&cb->pending_bios); | ||
398 | ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0); | ||
399 | BUG_ON(ret); | ||
400 | |||
401 | ret = btrfs_csum_one_bio(root, inode, bio, start, 1); | ||
402 | BUG_ON(ret); | ||
403 | |||
404 | ret = btrfs_map_bio(root, WRITE, bio, 0, 1); | ||
405 | BUG_ON(ret); | ||
406 | |||
407 | bio_put(bio); | ||
408 | |||
409 | bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS); | ||
410 | bio->bi_private = cb; | ||
411 | bio->bi_end_io = end_compressed_bio_write; | ||
412 | bio_add_page(bio, page, PAGE_CACHE_SIZE, 0); | ||
413 | } | ||
414 | if (bytes_left < PAGE_CACHE_SIZE) { | ||
415 | printk("bytes left %lu compress len %lu nr %lu\n", | ||
416 | bytes_left, cb->compressed_len, cb->nr_pages); | ||
417 | } | ||
418 | bytes_left -= PAGE_CACHE_SIZE; | ||
419 | first_byte += PAGE_CACHE_SIZE; | ||
420 | cond_resched(); | ||
421 | } | ||
422 | bio_get(bio); | ||
423 | |||
424 | ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0); | ||
425 | BUG_ON(ret); | ||
426 | |||
427 | ret = btrfs_csum_one_bio(root, inode, bio, start, 1); | ||
428 | BUG_ON(ret); | ||
429 | |||
430 | ret = btrfs_map_bio(root, WRITE, bio, 0, 1); | ||
431 | BUG_ON(ret); | ||
432 | |||
433 | bio_put(bio); | ||
434 | return 0; | ||
435 | } | ||
436 | |||
437 | static noinline int add_ra_bio_pages(struct inode *inode, | ||
438 | u64 compressed_end, | ||
439 | struct compressed_bio *cb) | ||
440 | { | ||
441 | unsigned long end_index; | ||
442 | unsigned long page_index; | ||
443 | u64 last_offset; | ||
444 | u64 isize = i_size_read(inode); | ||
445 | int ret; | ||
446 | struct page *page; | ||
447 | unsigned long nr_pages = 0; | ||
448 | struct extent_map *em; | ||
449 | struct address_space *mapping = inode->i_mapping; | ||
450 | struct pagevec pvec; | ||
451 | struct extent_map_tree *em_tree; | ||
452 | struct extent_io_tree *tree; | ||
453 | u64 end; | ||
454 | int misses = 0; | ||
455 | |||
456 | page = cb->orig_bio->bi_io_vec[cb->orig_bio->bi_vcnt - 1].bv_page; | ||
457 | last_offset = (page_offset(page) + PAGE_CACHE_SIZE); | ||
458 | em_tree = &BTRFS_I(inode)->extent_tree; | ||
459 | tree = &BTRFS_I(inode)->io_tree; | ||
460 | |||
461 | if (isize == 0) | ||
462 | return 0; | ||
463 | |||
464 | end_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT; | ||
465 | |||
466 | pagevec_init(&pvec, 0); | ||
467 | while (last_offset < compressed_end) { | ||
468 | page_index = last_offset >> PAGE_CACHE_SHIFT; | ||
469 | |||
470 | if (page_index > end_index) | ||
471 | break; | ||
472 | |||
473 | rcu_read_lock(); | ||
474 | page = radix_tree_lookup(&mapping->page_tree, page_index); | ||
475 | rcu_read_unlock(); | ||
476 | if (page) { | ||
477 | misses++; | ||
478 | if (misses > 4) | ||
479 | break; | ||
480 | goto next; | ||
481 | } | ||
482 | |||
483 | page = alloc_page(mapping_gfp_mask(mapping) | GFP_NOFS); | ||
484 | if (!page) | ||
485 | break; | ||
486 | |||
487 | page->index = page_index; | ||
488 | /* | ||
489 | * what we want to do here is call add_to_page_cache_lru, | ||
490 | * but that isn't exported, so we reproduce it here | ||
491 | */ | ||
492 | if (add_to_page_cache(page, mapping, | ||
493 | page->index, GFP_NOFS)) { | ||
494 | page_cache_release(page); | ||
495 | goto next; | ||
496 | } | ||
497 | |||
498 | /* open coding of lru_cache_add, also not exported */ | ||
499 | page_cache_get(page); | ||
500 | if (!pagevec_add(&pvec, page)) | ||
501 | __pagevec_lru_add_file(&pvec); | ||
502 | |||
503 | end = last_offset + PAGE_CACHE_SIZE - 1; | ||
504 | /* | ||
505 | * at this point, we have a locked page in the page cache | ||
506 | * for these bytes in the file. But, we have to make | ||
507 | * sure they map to this compressed extent on disk. | ||
508 | */ | ||
509 | set_page_extent_mapped(page); | ||
510 | lock_extent(tree, last_offset, end, GFP_NOFS); | ||
511 | spin_lock(&em_tree->lock); | ||
512 | em = lookup_extent_mapping(em_tree, last_offset, | ||
513 | PAGE_CACHE_SIZE); | ||
514 | spin_unlock(&em_tree->lock); | ||
515 | |||
516 | if (!em || last_offset < em->start || | ||
517 | (last_offset + PAGE_CACHE_SIZE > extent_map_end(em)) || | ||
518 | (em->block_start >> 9) != cb->orig_bio->bi_sector) { | ||
519 | free_extent_map(em); | ||
520 | unlock_extent(tree, last_offset, end, GFP_NOFS); | ||
521 | unlock_page(page); | ||
522 | page_cache_release(page); | ||
523 | break; | ||
524 | } | ||
525 | free_extent_map(em); | ||
526 | |||
527 | if (page->index == end_index) { | ||
528 | char *userpage; | ||
529 | size_t zero_offset = isize & (PAGE_CACHE_SIZE - 1); | ||
530 | |||
531 | if (zero_offset) { | ||
532 | int zeros; | ||
533 | zeros = PAGE_CACHE_SIZE - zero_offset; | ||
534 | userpage = kmap_atomic(page, KM_USER0); | ||
535 | memset(userpage + zero_offset, 0, zeros); | ||
536 | flush_dcache_page(page); | ||
537 | kunmap_atomic(userpage, KM_USER0); | ||
538 | } | ||
539 | } | ||
540 | |||
541 | ret = bio_add_page(cb->orig_bio, page, | ||
542 | PAGE_CACHE_SIZE, 0); | ||
543 | |||
544 | if (ret == PAGE_CACHE_SIZE) { | ||
545 | nr_pages++; | ||
546 | page_cache_release(page); | ||
547 | } else { | ||
548 | unlock_extent(tree, last_offset, end, GFP_NOFS); | ||
549 | unlock_page(page); | ||
550 | page_cache_release(page); | ||
551 | break; | ||
552 | } | ||
553 | next: | ||
554 | last_offset += PAGE_CACHE_SIZE; | ||
555 | } | ||
556 | if (pagevec_count(&pvec)) | ||
557 | __pagevec_lru_add_file(&pvec); | ||
558 | return 0; | ||
559 | } | ||
560 | |||
561 | /* | ||
562 | * for a compressed read, the bio we get passed has all the inode pages | ||
563 | * in it. We don't actually do IO on those pages but allocate new ones | ||
564 | * to hold the compressed pages on disk. | ||
565 | * | ||
566 | * bio->bi_sector points to the compressed extent on disk | ||
567 | * bio->bi_io_vec points to all of the inode pages | ||
568 | * bio->bi_vcnt is a count of pages | ||
569 | * | ||
570 | * After the compressed pages are read, we copy the bytes into the | ||
571 | * bio we were passed and then call the bio end_io calls | ||
572 | */ | ||
573 | int btrfs_submit_compressed_read(struct inode *inode, struct bio *bio, | ||
574 | int mirror_num, unsigned long bio_flags) | ||
575 | { | ||
576 | struct extent_io_tree *tree; | ||
577 | struct extent_map_tree *em_tree; | ||
578 | struct compressed_bio *cb; | ||
579 | struct btrfs_root *root = BTRFS_I(inode)->root; | ||
580 | unsigned long uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE; | ||
581 | unsigned long compressed_len; | ||
582 | unsigned long nr_pages; | ||
583 | unsigned long page_index; | ||
584 | struct page *page; | ||
585 | struct block_device *bdev; | ||
586 | struct bio *comp_bio; | ||
587 | u64 cur_disk_byte = (u64)bio->bi_sector << 9; | ||
588 | u64 em_len; | ||
589 | u64 em_start; | ||
590 | struct extent_map *em; | ||
591 | int ret; | ||
592 | u32 *sums; | ||
593 | |||
594 | tree = &BTRFS_I(inode)->io_tree; | ||
595 | em_tree = &BTRFS_I(inode)->extent_tree; | ||
596 | |||
597 | /* we need the actual starting offset of this extent in the file */ | ||
598 | spin_lock(&em_tree->lock); | ||
599 | em = lookup_extent_mapping(em_tree, | ||
600 | page_offset(bio->bi_io_vec->bv_page), | ||
601 | PAGE_CACHE_SIZE); | ||
602 | spin_unlock(&em_tree->lock); | ||
603 | |||
604 | compressed_len = em->block_len; | ||
605 | cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS); | ||
606 | atomic_set(&cb->pending_bios, 0); | ||
607 | cb->errors = 0; | ||
608 | cb->inode = inode; | ||
609 | cb->mirror_num = mirror_num; | ||
610 | sums = &cb->sums; | ||
611 | |||
612 | cb->start = em->orig_start; | ||
613 | em_len = em->len; | ||
614 | em_start = em->start; | ||
615 | |||
616 | free_extent_map(em); | ||
617 | em = NULL; | ||
618 | |||
619 | cb->len = uncompressed_len; | ||
620 | cb->compressed_len = compressed_len; | ||
621 | cb->orig_bio = bio; | ||
622 | |||
623 | nr_pages = (compressed_len + PAGE_CACHE_SIZE - 1) / | ||
624 | PAGE_CACHE_SIZE; | ||
625 | cb->compressed_pages = kmalloc(sizeof(struct page *) * nr_pages, | ||
626 | GFP_NOFS); | ||
627 | bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; | ||
628 | |||
629 | for (page_index = 0; page_index < nr_pages; page_index++) { | ||
630 | cb->compressed_pages[page_index] = alloc_page(GFP_NOFS | | ||
631 | __GFP_HIGHMEM); | ||
632 | } | ||
633 | cb->nr_pages = nr_pages; | ||
634 | |||
635 | add_ra_bio_pages(inode, em_start + em_len, cb); | ||
636 | |||
637 | /* include any pages we added in add_ra-bio_pages */ | ||
638 | uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE; | ||
639 | cb->len = uncompressed_len; | ||
640 | |||
641 | comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, GFP_NOFS); | ||
642 | comp_bio->bi_private = cb; | ||
643 | comp_bio->bi_end_io = end_compressed_bio_read; | ||
644 | atomic_inc(&cb->pending_bios); | ||
645 | |||
646 | for (page_index = 0; page_index < nr_pages; page_index++) { | ||
647 | page = cb->compressed_pages[page_index]; | ||
648 | page->mapping = inode->i_mapping; | ||
649 | page->index = em_start >> PAGE_CACHE_SHIFT; | ||
650 | |||
651 | if (comp_bio->bi_size) | ||
652 | ret = tree->ops->merge_bio_hook(page, 0, | ||
653 | PAGE_CACHE_SIZE, | ||
654 | comp_bio, 0); | ||
655 | else | ||
656 | ret = 0; | ||
657 | |||
658 | page->mapping = NULL; | ||
659 | if (ret || bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0) < | ||
660 | PAGE_CACHE_SIZE) { | ||
661 | bio_get(comp_bio); | ||
662 | |||
663 | ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0); | ||
664 | BUG_ON(ret); | ||
665 | |||
666 | /* | ||
667 | * inc the count before we submit the bio so | ||
668 | * we know the end IO handler won't happen before | ||
669 | * we inc the count. Otherwise, the cb might get | ||
670 | * freed before we're done setting it up | ||
671 | */ | ||
672 | atomic_inc(&cb->pending_bios); | ||
673 | |||
674 | if (!btrfs_test_flag(inode, NODATASUM)) { | ||
675 | btrfs_lookup_bio_sums(root, inode, comp_bio, | ||
676 | sums); | ||
677 | } | ||
678 | sums += (comp_bio->bi_size + root->sectorsize - 1) / | ||
679 | root->sectorsize; | ||
680 | |||
681 | ret = btrfs_map_bio(root, READ, comp_bio, | ||
682 | mirror_num, 0); | ||
683 | BUG_ON(ret); | ||
684 | |||
685 | bio_put(comp_bio); | ||
686 | |||
687 | comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, | ||
688 | GFP_NOFS); | ||
689 | comp_bio->bi_private = cb; | ||
690 | comp_bio->bi_end_io = end_compressed_bio_read; | ||
691 | |||
692 | bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0); | ||
693 | } | ||
694 | cur_disk_byte += PAGE_CACHE_SIZE; | ||
695 | } | ||
696 | bio_get(comp_bio); | ||
697 | |||
698 | ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0); | ||
699 | BUG_ON(ret); | ||
700 | |||
701 | if (!btrfs_test_flag(inode, NODATASUM)) | ||
702 | btrfs_lookup_bio_sums(root, inode, comp_bio, sums); | ||
703 | |||
704 | ret = btrfs_map_bio(root, READ, comp_bio, mirror_num, 0); | ||
705 | BUG_ON(ret); | ||
706 | |||
707 | bio_put(comp_bio); | ||
708 | return 0; | ||
709 | } | ||
diff --git a/fs/btrfs/compression.h b/fs/btrfs/compression.h new file mode 100644 index 000000000000..421f5b4aa715 --- /dev/null +++ b/fs/btrfs/compression.h | |||
@@ -0,0 +1,47 @@ | |||
1 | /* | ||
2 | * Copyright (C) 2008 Oracle. All rights reserved. | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or | ||
5 | * modify it under the terms of the GNU General Public | ||
6 | * License v2 as published by the Free Software Foundation. | ||
7 | * | ||
8 | * This program is distributed in the hope that it will be useful, | ||
9 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | ||
11 | * General Public License for more details. | ||
12 | * | ||
13 | * You should have received a copy of the GNU General Public | ||
14 | * License along with this program; if not, write to the | ||
15 | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | ||
16 | * Boston, MA 021110-1307, USA. | ||
17 | */ | ||
18 | |||
19 | #ifndef __BTRFS_COMPRESSION_ | ||
20 | #define __BTRFS_COMPRESSION_ | ||
21 | |||
22 | int btrfs_zlib_decompress(unsigned char *data_in, | ||
23 | struct page *dest_page, | ||
24 | unsigned long start_byte, | ||
25 | size_t srclen, size_t destlen); | ||
26 | int btrfs_zlib_compress_pages(struct address_space *mapping, | ||
27 | u64 start, unsigned long len, | ||
28 | struct page **pages, | ||
29 | unsigned long nr_dest_pages, | ||
30 | unsigned long *out_pages, | ||
31 | unsigned long *total_in, | ||
32 | unsigned long *total_out, | ||
33 | unsigned long max_out); | ||
34 | int btrfs_zlib_decompress_biovec(struct page **pages_in, | ||
35 | u64 disk_start, | ||
36 | struct bio_vec *bvec, | ||
37 | int vcnt, | ||
38 | size_t srclen); | ||
39 | void btrfs_zlib_exit(void); | ||
40 | int btrfs_submit_compressed_write(struct inode *inode, u64 start, | ||
41 | unsigned long len, u64 disk_start, | ||
42 | unsigned long compressed_len, | ||
43 | struct page **compressed_pages, | ||
44 | unsigned long nr_pages); | ||
45 | int btrfs_submit_compressed_read(struct inode *inode, struct bio *bio, | ||
46 | int mirror_num, unsigned long bio_flags); | ||
47 | #endif | ||
diff --git a/fs/btrfs/crc32c.h b/fs/btrfs/crc32c.h new file mode 100644 index 000000000000..1eaf11d334fd --- /dev/null +++ b/fs/btrfs/crc32c.h | |||
@@ -0,0 +1,120 @@ | |||
1 | /* | ||
2 | * Copyright (C) 2008 Oracle. All rights reserved. | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or | ||
5 | * modify it under the terms of the GNU General Public | ||
6 | * License v2 as published by the Free Software Foundation. | ||
7 | * | ||
8 | * This program is distributed in the hope that it will be useful, | ||
9 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | ||
11 | * General Public License for more details. | ||
12 | * | ||
13 | * You should have received a copy of the GNU General Public | ||
14 | * License along with this program; if not, write to the | ||
15 | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | ||
16 | * Boston, MA 021110-1307, USA. | ||
17 | */ | ||
18 | |||
19 | #ifndef __BTRFS_CRC32C__ | ||
20 | #define __BTRFS_CRC32C__ | ||
21 | #include <asm/byteorder.h> | ||
22 | #include <linux/crc32c.h> | ||
23 | #include <linux/version.h> | ||
24 | |||
25 | /* #define CONFIG_BTRFS_HW_SUM 1 */ | ||
26 | |||
27 | #ifdef CONFIG_BTRFS_HW_SUM | ||
28 | #ifdef CONFIG_X86 | ||
29 | /* | ||
30 | * Using hardware provided CRC32 instruction to accelerate the CRC32 disposal. | ||
31 | * CRC32C polynomial:0x1EDC6F41(BE)/0x82F63B78(LE) | ||
32 | * CRC32 is a new instruction in Intel SSE4.2, the reference can be found at: | ||
33 | * http://www.intel.com/products/processor/manuals/ | ||
34 | * Intel(R) 64 and IA-32 Architectures Software Developer's Manual | ||
35 | * Volume 2A: Instruction Set Reference, A-M | ||
36 | */ | ||
37 | |||
38 | #include <asm/cpufeature.h> | ||
39 | #include <asm/processor.h> | ||
40 | |||
41 | #define X86_FEATURE_XMM4_2 (4*32+20) /* Streaming SIMD Extensions-4.2 */ | ||
42 | #define cpu_has_xmm4_2 boot_cpu_has(X86_FEATURE_XMM4_2) | ||
43 | |||
44 | #ifdef CONFIG_X86_64 | ||
45 | #define REX_PRE "0x48, " | ||
46 | #define SCALE_F 8 | ||
47 | #else | ||
48 | #define REX_PRE | ||
49 | #define SCALE_F 4 | ||
50 | #endif | ||
51 | |||
52 | static inline u32 btrfs_crc32c_le_hw_byte(u32 crc, unsigned char const *data, | ||
53 | size_t length) | ||
54 | { | ||
55 | while (length--) { | ||
56 | __asm__ __volatile__( | ||
57 | ".byte 0xf2, 0xf, 0x38, 0xf0, 0xf1" | ||
58 | :"=S"(crc) | ||
59 | :"0"(crc), "c"(*data) | ||
60 | ); | ||
61 | data++; | ||
62 | } | ||
63 | |||
64 | return crc; | ||
65 | } | ||
66 | |||
67 | static inline u32 __pure btrfs_crc32c_le_hw(u32 crc, unsigned char const *p, | ||
68 | size_t len) | ||
69 | { | ||
70 | unsigned int iquotient = len / SCALE_F; | ||
71 | unsigned int iremainder = len % SCALE_F; | ||
72 | #ifdef CONFIG_X86_64 | ||
73 | u64 *ptmp = (u64 *)p; | ||
74 | #else | ||
75 | u32 *ptmp = (u32 *)p; | ||
76 | #endif | ||
77 | |||
78 | while (iquotient--) { | ||
79 | __asm__ __volatile__( | ||
80 | ".byte 0xf2, " REX_PRE "0xf, 0x38, 0xf1, 0xf1;" | ||
81 | :"=S"(crc) | ||
82 | :"0"(crc), "c"(*ptmp) | ||
83 | ); | ||
84 | ptmp++; | ||
85 | } | ||
86 | |||
87 | if (iremainder) | ||
88 | crc = btrfs_crc32c_le_hw_byte(crc, (unsigned char *)ptmp, | ||
89 | iremainder); | ||
90 | |||
91 | return crc; | ||
92 | } | ||
93 | #endif /* CONFIG_BTRFS_HW_SUM */ | ||
94 | |||
95 | static inline u32 __btrfs_crc32c(u32 crc, unsigned char const *address, | ||
96 | size_t len) | ||
97 | { | ||
98 | #ifdef CONFIG_BTRFS_HW_SUM | ||
99 | if (cpu_has_xmm4_2) | ||
100 | return btrfs_crc32c_le_hw(crc, address, len); | ||
101 | #endif | ||
102 | return crc32c_le(crc, address, len); | ||
103 | } | ||
104 | |||
105 | #else | ||
106 | |||
107 | #define __btrfs_crc32c(seed, data, length) crc32c(seed, data, length) | ||
108 | |||
109 | #endif /* CONFIG_X86 */ | ||
110 | |||
111 | /** | ||
112 | * implementation of crc32c_le() changed in linux-2.6.23, | ||
113 | * has of v0.13 btrfs-progs is using the latest version. | ||
114 | * We must workaround older implementations of crc32c_le() | ||
115 | * found on older kernel versions. | ||
116 | */ | ||
117 | #define btrfs_crc32c(seed, data, length) \ | ||
118 | __btrfs_crc32c(seed, (unsigned char const *)data, length) | ||
119 | #endif | ||
120 | |||
diff --git a/fs/btrfs/ctree.c b/fs/btrfs/ctree.c new file mode 100644 index 000000000000..9e46c0776816 --- /dev/null +++ b/fs/btrfs/ctree.c | |||
@@ -0,0 +1,3953 @@ | |||
1 | /* | ||
2 | * Copyright (C) 2007,2008 Oracle. All rights reserved. | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or | ||
5 | * modify it under the terms of the GNU General Public | ||
6 | * License v2 as published by the Free Software Foundation. | ||
7 | * | ||
8 | * This program is distributed in the hope that it will be useful, | ||
9 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | ||
11 | * General Public License for more details. | ||
12 | * | ||
13 | * You should have received a copy of the GNU General Public | ||
14 | * License along with this program; if not, write to the | ||
15 | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | ||
16 | * Boston, MA 021110-1307, USA. | ||
17 | */ | ||
18 | |||
19 | #include <linux/sched.h> | ||
20 | #include "ctree.h" | ||
21 | #include "disk-io.h" | ||
22 | #include "transaction.h" | ||
23 | #include "print-tree.h" | ||
24 | #include "locking.h" | ||
25 | |||
26 | static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root | ||
27 | *root, struct btrfs_path *path, int level); | ||
28 | static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root | ||
29 | *root, struct btrfs_key *ins_key, | ||
30 | struct btrfs_path *path, int data_size, int extend); | ||
31 | static int push_node_left(struct btrfs_trans_handle *trans, | ||
32 | struct btrfs_root *root, struct extent_buffer *dst, | ||
33 | struct extent_buffer *src, int empty); | ||
34 | static int balance_node_right(struct btrfs_trans_handle *trans, | ||
35 | struct btrfs_root *root, | ||
36 | struct extent_buffer *dst_buf, | ||
37 | struct extent_buffer *src_buf); | ||
38 | static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root, | ||
39 | struct btrfs_path *path, int level, int slot); | ||
40 | |||
41 | inline void btrfs_init_path(struct btrfs_path *p) | ||
42 | { | ||
43 | memset(p, 0, sizeof(*p)); | ||
44 | } | ||
45 | |||
46 | struct btrfs_path *btrfs_alloc_path(void) | ||
47 | { | ||
48 | struct btrfs_path *path; | ||
49 | path = kmem_cache_alloc(btrfs_path_cachep, GFP_NOFS); | ||
50 | if (path) { | ||
51 | btrfs_init_path(path); | ||
52 | path->reada = 1; | ||
53 | } | ||
54 | return path; | ||
55 | } | ||
56 | |||
57 | /* this also releases the path */ | ||
58 | void btrfs_free_path(struct btrfs_path *p) | ||
59 | { | ||
60 | btrfs_release_path(NULL, p); | ||
61 | kmem_cache_free(btrfs_path_cachep, p); | ||
62 | } | ||
63 | |||
64 | /* | ||
65 | * path release drops references on the extent buffers in the path | ||
66 | * and it drops any locks held by this path | ||
67 | * | ||
68 | * It is safe to call this on paths that no locks or extent buffers held. | ||
69 | */ | ||
70 | noinline void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p) | ||
71 | { | ||
72 | int i; | ||
73 | |||
74 | for (i = 0; i < BTRFS_MAX_LEVEL; i++) { | ||
75 | p->slots[i] = 0; | ||
76 | if (!p->nodes[i]) | ||
77 | continue; | ||
78 | if (p->locks[i]) { | ||
79 | btrfs_tree_unlock(p->nodes[i]); | ||
80 | p->locks[i] = 0; | ||
81 | } | ||
82 | free_extent_buffer(p->nodes[i]); | ||
83 | p->nodes[i] = NULL; | ||
84 | } | ||
85 | } | ||
86 | |||
87 | /* | ||
88 | * safely gets a reference on the root node of a tree. A lock | ||
89 | * is not taken, so a concurrent writer may put a different node | ||
90 | * at the root of the tree. See btrfs_lock_root_node for the | ||
91 | * looping required. | ||
92 | * | ||
93 | * The extent buffer returned by this has a reference taken, so | ||
94 | * it won't disappear. It may stop being the root of the tree | ||
95 | * at any time because there are no locks held. | ||
96 | */ | ||
97 | struct extent_buffer *btrfs_root_node(struct btrfs_root *root) | ||
98 | { | ||
99 | struct extent_buffer *eb; | ||
100 | spin_lock(&root->node_lock); | ||
101 | eb = root->node; | ||
102 | extent_buffer_get(eb); | ||
103 | spin_unlock(&root->node_lock); | ||
104 | return eb; | ||
105 | } | ||
106 | |||
107 | /* loop around taking references on and locking the root node of the | ||
108 | * tree until you end up with a lock on the root. A locked buffer | ||
109 | * is returned, with a reference held. | ||
110 | */ | ||
111 | struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root) | ||
112 | { | ||
113 | struct extent_buffer *eb; | ||
114 | |||
115 | while (1) { | ||
116 | eb = btrfs_root_node(root); | ||
117 | btrfs_tree_lock(eb); | ||
118 | |||
119 | spin_lock(&root->node_lock); | ||
120 | if (eb == root->node) { | ||
121 | spin_unlock(&root->node_lock); | ||
122 | break; | ||
123 | } | ||
124 | spin_unlock(&root->node_lock); | ||
125 | |||
126 | btrfs_tree_unlock(eb); | ||
127 | free_extent_buffer(eb); | ||
128 | } | ||
129 | return eb; | ||
130 | } | ||
131 | |||
132 | /* cowonly root (everything not a reference counted cow subvolume), just get | ||
133 | * put onto a simple dirty list. transaction.c walks this to make sure they | ||
134 | * get properly updated on disk. | ||
135 | */ | ||
136 | static void add_root_to_dirty_list(struct btrfs_root *root) | ||
137 | { | ||
138 | if (root->track_dirty && list_empty(&root->dirty_list)) { | ||
139 | list_add(&root->dirty_list, | ||
140 | &root->fs_info->dirty_cowonly_roots); | ||
141 | } | ||
142 | } | ||
143 | |||
144 | /* | ||
145 | * used by snapshot creation to make a copy of a root for a tree with | ||
146 | * a given objectid. The buffer with the new root node is returned in | ||
147 | * cow_ret, and this func returns zero on success or a negative error code. | ||
148 | */ | ||
149 | int btrfs_copy_root(struct btrfs_trans_handle *trans, | ||
150 | struct btrfs_root *root, | ||
151 | struct extent_buffer *buf, | ||
152 | struct extent_buffer **cow_ret, u64 new_root_objectid) | ||
153 | { | ||
154 | struct extent_buffer *cow; | ||
155 | u32 nritems; | ||
156 | int ret = 0; | ||
157 | int level; | ||
158 | struct btrfs_root *new_root; | ||
159 | |||
160 | new_root = kmalloc(sizeof(*new_root), GFP_NOFS); | ||
161 | if (!new_root) | ||
162 | return -ENOMEM; | ||
163 | |||
164 | memcpy(new_root, root, sizeof(*new_root)); | ||
165 | new_root->root_key.objectid = new_root_objectid; | ||
166 | |||
167 | WARN_ON(root->ref_cows && trans->transid != | ||
168 | root->fs_info->running_transaction->transid); | ||
169 | WARN_ON(root->ref_cows && trans->transid != root->last_trans); | ||
170 | |||
171 | level = btrfs_header_level(buf); | ||
172 | nritems = btrfs_header_nritems(buf); | ||
173 | |||
174 | cow = btrfs_alloc_free_block(trans, new_root, buf->len, 0, | ||
175 | new_root_objectid, trans->transid, | ||
176 | level, buf->start, 0); | ||
177 | if (IS_ERR(cow)) { | ||
178 | kfree(new_root); | ||
179 | return PTR_ERR(cow); | ||
180 | } | ||
181 | |||
182 | copy_extent_buffer(cow, buf, 0, 0, cow->len); | ||
183 | btrfs_set_header_bytenr(cow, cow->start); | ||
184 | btrfs_set_header_generation(cow, trans->transid); | ||
185 | btrfs_set_header_owner(cow, new_root_objectid); | ||
186 | btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN); | ||
187 | |||
188 | write_extent_buffer(cow, root->fs_info->fsid, | ||
189 | (unsigned long)btrfs_header_fsid(cow), | ||
190 | BTRFS_FSID_SIZE); | ||
191 | |||
192 | WARN_ON(btrfs_header_generation(buf) > trans->transid); | ||
193 | ret = btrfs_inc_ref(trans, new_root, buf, cow, NULL); | ||
194 | kfree(new_root); | ||
195 | |||
196 | if (ret) | ||
197 | return ret; | ||
198 | |||
199 | btrfs_mark_buffer_dirty(cow); | ||
200 | *cow_ret = cow; | ||
201 | return 0; | ||
202 | } | ||
203 | |||
204 | /* | ||
205 | * does the dirty work in cow of a single block. The parent block (if | ||
206 | * supplied) is updated to point to the new cow copy. The new buffer is marked | ||
207 | * dirty and returned locked. If you modify the block it needs to be marked | ||
208 | * dirty again. | ||
209 | * | ||
210 | * search_start -- an allocation hint for the new block | ||
211 | * | ||
212 | * empty_size -- a hint that you plan on doing more cow. This is the size in | ||
213 | * bytes the allocator should try to find free next to the block it returns. | ||
214 | * This is just a hint and may be ignored by the allocator. | ||
215 | * | ||
216 | * prealloc_dest -- if you have already reserved a destination for the cow, | ||
217 | * this uses that block instead of allocating a new one. | ||
218 | * btrfs_alloc_reserved_extent is used to finish the allocation. | ||
219 | */ | ||
220 | static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans, | ||
221 | struct btrfs_root *root, | ||
222 | struct extent_buffer *buf, | ||
223 | struct extent_buffer *parent, int parent_slot, | ||
224 | struct extent_buffer **cow_ret, | ||
225 | u64 search_start, u64 empty_size, | ||
226 | u64 prealloc_dest) | ||
227 | { | ||
228 | u64 parent_start; | ||
229 | struct extent_buffer *cow; | ||
230 | u32 nritems; | ||
231 | int ret = 0; | ||
232 | int level; | ||
233 | int unlock_orig = 0; | ||
234 | |||
235 | if (*cow_ret == buf) | ||
236 | unlock_orig = 1; | ||
237 | |||
238 | WARN_ON(!btrfs_tree_locked(buf)); | ||
239 | |||
240 | if (parent) | ||
241 | parent_start = parent->start; | ||
242 | else | ||
243 | parent_start = 0; | ||
244 | |||
245 | WARN_ON(root->ref_cows && trans->transid != | ||
246 | root->fs_info->running_transaction->transid); | ||
247 | WARN_ON(root->ref_cows && trans->transid != root->last_trans); | ||
248 | |||
249 | level = btrfs_header_level(buf); | ||
250 | nritems = btrfs_header_nritems(buf); | ||
251 | |||
252 | if (prealloc_dest) { | ||
253 | struct btrfs_key ins; | ||
254 | |||
255 | ins.objectid = prealloc_dest; | ||
256 | ins.offset = buf->len; | ||
257 | ins.type = BTRFS_EXTENT_ITEM_KEY; | ||
258 | |||
259 | ret = btrfs_alloc_reserved_extent(trans, root, parent_start, | ||
260 | root->root_key.objectid, | ||
261 | trans->transid, level, &ins); | ||
262 | BUG_ON(ret); | ||
263 | cow = btrfs_init_new_buffer(trans, root, prealloc_dest, | ||
264 | buf->len); | ||
265 | } else { | ||
266 | cow = btrfs_alloc_free_block(trans, root, buf->len, | ||
267 | parent_start, | ||
268 | root->root_key.objectid, | ||
269 | trans->transid, level, | ||
270 | search_start, empty_size); | ||
271 | } | ||
272 | if (IS_ERR(cow)) | ||
273 | return PTR_ERR(cow); | ||
274 | |||
275 | copy_extent_buffer(cow, buf, 0, 0, cow->len); | ||
276 | btrfs_set_header_bytenr(cow, cow->start); | ||
277 | btrfs_set_header_generation(cow, trans->transid); | ||
278 | btrfs_set_header_owner(cow, root->root_key.objectid); | ||
279 | btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN); | ||
280 | |||
281 | write_extent_buffer(cow, root->fs_info->fsid, | ||
282 | (unsigned long)btrfs_header_fsid(cow), | ||
283 | BTRFS_FSID_SIZE); | ||
284 | |||
285 | WARN_ON(btrfs_header_generation(buf) > trans->transid); | ||
286 | if (btrfs_header_generation(buf) != trans->transid) { | ||
287 | u32 nr_extents; | ||
288 | ret = btrfs_inc_ref(trans, root, buf, cow, &nr_extents); | ||
289 | if (ret) | ||
290 | return ret; | ||
291 | |||
292 | ret = btrfs_cache_ref(trans, root, buf, nr_extents); | ||
293 | WARN_ON(ret); | ||
294 | } else if (btrfs_header_owner(buf) == BTRFS_TREE_RELOC_OBJECTID) { | ||
295 | /* | ||
296 | * There are only two places that can drop reference to | ||
297 | * tree blocks owned by living reloc trees, one is here, | ||
298 | * the other place is btrfs_drop_subtree. In both places, | ||
299 | * we check reference count while tree block is locked. | ||
300 | * Furthermore, if reference count is one, it won't get | ||
301 | * increased by someone else. | ||
302 | */ | ||
303 | u32 refs; | ||
304 | ret = btrfs_lookup_extent_ref(trans, root, buf->start, | ||
305 | buf->len, &refs); | ||
306 | BUG_ON(ret); | ||
307 | if (refs == 1) { | ||
308 | ret = btrfs_update_ref(trans, root, buf, cow, | ||
309 | 0, nritems); | ||
310 | clean_tree_block(trans, root, buf); | ||
311 | } else { | ||
312 | ret = btrfs_inc_ref(trans, root, buf, cow, NULL); | ||
313 | } | ||
314 | BUG_ON(ret); | ||
315 | } else { | ||
316 | ret = btrfs_update_ref(trans, root, buf, cow, 0, nritems); | ||
317 | if (ret) | ||
318 | return ret; | ||
319 | clean_tree_block(trans, root, buf); | ||
320 | } | ||
321 | |||
322 | if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { | ||
323 | ret = btrfs_reloc_tree_cache_ref(trans, root, cow, buf->start); | ||
324 | WARN_ON(ret); | ||
325 | } | ||
326 | |||
327 | if (buf == root->node) { | ||
328 | WARN_ON(parent && parent != buf); | ||
329 | |||
330 | spin_lock(&root->node_lock); | ||
331 | root->node = cow; | ||
332 | extent_buffer_get(cow); | ||
333 | spin_unlock(&root->node_lock); | ||
334 | |||
335 | if (buf != root->commit_root) { | ||
336 | btrfs_free_extent(trans, root, buf->start, | ||
337 | buf->len, buf->start, | ||
338 | root->root_key.objectid, | ||
339 | btrfs_header_generation(buf), | ||
340 | level, 1); | ||
341 | } | ||
342 | free_extent_buffer(buf); | ||
343 | add_root_to_dirty_list(root); | ||
344 | } else { | ||
345 | btrfs_set_node_blockptr(parent, parent_slot, | ||
346 | cow->start); | ||
347 | WARN_ON(trans->transid == 0); | ||
348 | btrfs_set_node_ptr_generation(parent, parent_slot, | ||
349 | trans->transid); | ||
350 | btrfs_mark_buffer_dirty(parent); | ||
351 | WARN_ON(btrfs_header_generation(parent) != trans->transid); | ||
352 | btrfs_free_extent(trans, root, buf->start, buf->len, | ||
353 | parent_start, btrfs_header_owner(parent), | ||
354 | btrfs_header_generation(parent), level, 1); | ||
355 | } | ||
356 | if (unlock_orig) | ||
357 | btrfs_tree_unlock(buf); | ||
358 | free_extent_buffer(buf); | ||
359 | btrfs_mark_buffer_dirty(cow); | ||
360 | *cow_ret = cow; | ||
361 | return 0; | ||
362 | } | ||
363 | |||
364 | /* | ||
365 | * cows a single block, see __btrfs_cow_block for the real work. | ||
366 | * This version of it has extra checks so that a block isn't cow'd more than | ||
367 | * once per transaction, as long as it hasn't been written yet | ||
368 | */ | ||
369 | noinline int btrfs_cow_block(struct btrfs_trans_handle *trans, | ||
370 | struct btrfs_root *root, struct extent_buffer *buf, | ||
371 | struct extent_buffer *parent, int parent_slot, | ||
372 | struct extent_buffer **cow_ret, u64 prealloc_dest) | ||
373 | { | ||
374 | u64 search_start; | ||
375 | int ret; | ||
376 | |||
377 | if (trans->transaction != root->fs_info->running_transaction) { | ||
378 | printk(KERN_CRIT "trans %llu running %llu\n", | ||
379 | (unsigned long long)trans->transid, | ||
380 | (unsigned long long) | ||
381 | root->fs_info->running_transaction->transid); | ||
382 | WARN_ON(1); | ||
383 | } | ||
384 | if (trans->transid != root->fs_info->generation) { | ||
385 | printk(KERN_CRIT "trans %llu running %llu\n", | ||
386 | (unsigned long long)trans->transid, | ||
387 | (unsigned long long)root->fs_info->generation); | ||
388 | WARN_ON(1); | ||
389 | } | ||
390 | |||
391 | spin_lock(&root->fs_info->hash_lock); | ||
392 | if (btrfs_header_generation(buf) == trans->transid && | ||
393 | btrfs_header_owner(buf) == root->root_key.objectid && | ||
394 | !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { | ||
395 | *cow_ret = buf; | ||
396 | spin_unlock(&root->fs_info->hash_lock); | ||
397 | WARN_ON(prealloc_dest); | ||
398 | return 0; | ||
399 | } | ||
400 | spin_unlock(&root->fs_info->hash_lock); | ||
401 | search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1); | ||
402 | ret = __btrfs_cow_block(trans, root, buf, parent, | ||
403 | parent_slot, cow_ret, search_start, 0, | ||
404 | prealloc_dest); | ||
405 | return ret; | ||
406 | } | ||
407 | |||
408 | /* | ||
409 | * helper function for defrag to decide if two blocks pointed to by a | ||
410 | * node are actually close by | ||
411 | */ | ||
412 | static int close_blocks(u64 blocknr, u64 other, u32 blocksize) | ||
413 | { | ||
414 | if (blocknr < other && other - (blocknr + blocksize) < 32768) | ||
415 | return 1; | ||
416 | if (blocknr > other && blocknr - (other + blocksize) < 32768) | ||
417 | return 1; | ||
418 | return 0; | ||
419 | } | ||
420 | |||
421 | /* | ||
422 | * compare two keys in a memcmp fashion | ||
423 | */ | ||
424 | static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2) | ||
425 | { | ||
426 | struct btrfs_key k1; | ||
427 | |||
428 | btrfs_disk_key_to_cpu(&k1, disk); | ||
429 | |||
430 | if (k1.objectid > k2->objectid) | ||
431 | return 1; | ||
432 | if (k1.objectid < k2->objectid) | ||
433 | return -1; | ||
434 | if (k1.type > k2->type) | ||
435 | return 1; | ||
436 | if (k1.type < k2->type) | ||
437 | return -1; | ||
438 | if (k1.offset > k2->offset) | ||
439 | return 1; | ||
440 | if (k1.offset < k2->offset) | ||
441 | return -1; | ||
442 | return 0; | ||
443 | } | ||
444 | |||
445 | /* | ||
446 | * same as comp_keys only with two btrfs_key's | ||
447 | */ | ||
448 | static int comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2) | ||
449 | { | ||
450 | if (k1->objectid > k2->objectid) | ||
451 | return 1; | ||
452 | if (k1->objectid < k2->objectid) | ||
453 | return -1; | ||
454 | if (k1->type > k2->type) | ||
455 | return 1; | ||
456 | if (k1->type < k2->type) | ||
457 | return -1; | ||
458 | if (k1->offset > k2->offset) | ||
459 | return 1; | ||
460 | if (k1->offset < k2->offset) | ||
461 | return -1; | ||
462 | return 0; | ||
463 | } | ||
464 | |||
465 | /* | ||
466 | * this is used by the defrag code to go through all the | ||
467 | * leaves pointed to by a node and reallocate them so that | ||
468 | * disk order is close to key order | ||
469 | */ | ||
470 | int btrfs_realloc_node(struct btrfs_trans_handle *trans, | ||
471 | struct btrfs_root *root, struct extent_buffer *parent, | ||
472 | int start_slot, int cache_only, u64 *last_ret, | ||
473 | struct btrfs_key *progress) | ||
474 | { | ||
475 | struct extent_buffer *cur; | ||
476 | u64 blocknr; | ||
477 | u64 gen; | ||
478 | u64 search_start = *last_ret; | ||
479 | u64 last_block = 0; | ||
480 | u64 other; | ||
481 | u32 parent_nritems; | ||
482 | int end_slot; | ||
483 | int i; | ||
484 | int err = 0; | ||
485 | int parent_level; | ||
486 | int uptodate; | ||
487 | u32 blocksize; | ||
488 | int progress_passed = 0; | ||
489 | struct btrfs_disk_key disk_key; | ||
490 | |||
491 | parent_level = btrfs_header_level(parent); | ||
492 | if (cache_only && parent_level != 1) | ||
493 | return 0; | ||
494 | |||
495 | if (trans->transaction != root->fs_info->running_transaction) | ||
496 | WARN_ON(1); | ||
497 | if (trans->transid != root->fs_info->generation) | ||
498 | WARN_ON(1); | ||
499 | |||
500 | parent_nritems = btrfs_header_nritems(parent); | ||
501 | blocksize = btrfs_level_size(root, parent_level - 1); | ||
502 | end_slot = parent_nritems; | ||
503 | |||
504 | if (parent_nritems == 1) | ||
505 | return 0; | ||
506 | |||
507 | for (i = start_slot; i < end_slot; i++) { | ||
508 | int close = 1; | ||
509 | |||
510 | if (!parent->map_token) { | ||
511 | map_extent_buffer(parent, | ||
512 | btrfs_node_key_ptr_offset(i), | ||
513 | sizeof(struct btrfs_key_ptr), | ||
514 | &parent->map_token, &parent->kaddr, | ||
515 | &parent->map_start, &parent->map_len, | ||
516 | KM_USER1); | ||
517 | } | ||
518 | btrfs_node_key(parent, &disk_key, i); | ||
519 | if (!progress_passed && comp_keys(&disk_key, progress) < 0) | ||
520 | continue; | ||
521 | |||
522 | progress_passed = 1; | ||
523 | blocknr = btrfs_node_blockptr(parent, i); | ||
524 | gen = btrfs_node_ptr_generation(parent, i); | ||
525 | if (last_block == 0) | ||
526 | last_block = blocknr; | ||
527 | |||
528 | if (i > 0) { | ||
529 | other = btrfs_node_blockptr(parent, i - 1); | ||
530 | close = close_blocks(blocknr, other, blocksize); | ||
531 | } | ||
532 | if (!close && i < end_slot - 2) { | ||
533 | other = btrfs_node_blockptr(parent, i + 1); | ||
534 | close = close_blocks(blocknr, other, blocksize); | ||
535 | } | ||
536 | if (close) { | ||
537 | last_block = blocknr; | ||
538 | continue; | ||
539 | } | ||
540 | if (parent->map_token) { | ||
541 | unmap_extent_buffer(parent, parent->map_token, | ||
542 | KM_USER1); | ||
543 | parent->map_token = NULL; | ||
544 | } | ||
545 | |||
546 | cur = btrfs_find_tree_block(root, blocknr, blocksize); | ||
547 | if (cur) | ||
548 | uptodate = btrfs_buffer_uptodate(cur, gen); | ||
549 | else | ||
550 | uptodate = 0; | ||
551 | if (!cur || !uptodate) { | ||
552 | if (cache_only) { | ||
553 | free_extent_buffer(cur); | ||
554 | continue; | ||
555 | } | ||
556 | if (!cur) { | ||
557 | cur = read_tree_block(root, blocknr, | ||
558 | blocksize, gen); | ||
559 | } else if (!uptodate) { | ||
560 | btrfs_read_buffer(cur, gen); | ||
561 | } | ||
562 | } | ||
563 | if (search_start == 0) | ||
564 | search_start = last_block; | ||
565 | |||
566 | btrfs_tree_lock(cur); | ||
567 | err = __btrfs_cow_block(trans, root, cur, parent, i, | ||
568 | &cur, search_start, | ||
569 | min(16 * blocksize, | ||
570 | (end_slot - i) * blocksize), 0); | ||
571 | if (err) { | ||
572 | btrfs_tree_unlock(cur); | ||
573 | free_extent_buffer(cur); | ||
574 | break; | ||
575 | } | ||
576 | search_start = cur->start; | ||
577 | last_block = cur->start; | ||
578 | *last_ret = search_start; | ||
579 | btrfs_tree_unlock(cur); | ||
580 | free_extent_buffer(cur); | ||
581 | } | ||
582 | if (parent->map_token) { | ||
583 | unmap_extent_buffer(parent, parent->map_token, | ||
584 | KM_USER1); | ||
585 | parent->map_token = NULL; | ||
586 | } | ||
587 | return err; | ||
588 | } | ||
589 | |||
590 | /* | ||
591 | * The leaf data grows from end-to-front in the node. | ||
592 | * this returns the address of the start of the last item, | ||
593 | * which is the stop of the leaf data stack | ||
594 | */ | ||
595 | static inline unsigned int leaf_data_end(struct btrfs_root *root, | ||
596 | struct extent_buffer *leaf) | ||
597 | { | ||
598 | u32 nr = btrfs_header_nritems(leaf); | ||
599 | if (nr == 0) | ||
600 | return BTRFS_LEAF_DATA_SIZE(root); | ||
601 | return btrfs_item_offset_nr(leaf, nr - 1); | ||
602 | } | ||
603 | |||
604 | /* | ||
605 | * extra debugging checks to make sure all the items in a key are | ||
606 | * well formed and in the proper order | ||
607 | */ | ||
608 | static int check_node(struct btrfs_root *root, struct btrfs_path *path, | ||
609 | int level) | ||
610 | { | ||
611 | struct extent_buffer *parent = NULL; | ||
612 | struct extent_buffer *node = path->nodes[level]; | ||
613 | struct btrfs_disk_key parent_key; | ||
614 | struct btrfs_disk_key node_key; | ||
615 | int parent_slot; | ||
616 | int slot; | ||
617 | struct btrfs_key cpukey; | ||
618 | u32 nritems = btrfs_header_nritems(node); | ||
619 | |||
620 | if (path->nodes[level + 1]) | ||
621 | parent = path->nodes[level + 1]; | ||
622 | |||
623 | slot = path->slots[level]; | ||
624 | BUG_ON(nritems == 0); | ||
625 | if (parent) { | ||
626 | parent_slot = path->slots[level + 1]; | ||
627 | btrfs_node_key(parent, &parent_key, parent_slot); | ||
628 | btrfs_node_key(node, &node_key, 0); | ||
629 | BUG_ON(memcmp(&parent_key, &node_key, | ||
630 | sizeof(struct btrfs_disk_key))); | ||
631 | BUG_ON(btrfs_node_blockptr(parent, parent_slot) != | ||
632 | btrfs_header_bytenr(node)); | ||
633 | } | ||
634 | BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root)); | ||
635 | if (slot != 0) { | ||
636 | btrfs_node_key_to_cpu(node, &cpukey, slot - 1); | ||
637 | btrfs_node_key(node, &node_key, slot); | ||
638 | BUG_ON(comp_keys(&node_key, &cpukey) <= 0); | ||
639 | } | ||
640 | if (slot < nritems - 1) { | ||
641 | btrfs_node_key_to_cpu(node, &cpukey, slot + 1); | ||
642 | btrfs_node_key(node, &node_key, slot); | ||
643 | BUG_ON(comp_keys(&node_key, &cpukey) >= 0); | ||
644 | } | ||
645 | return 0; | ||
646 | } | ||
647 | |||
648 | /* | ||
649 | * extra checking to make sure all the items in a leaf are | ||
650 | * well formed and in the proper order | ||
651 | */ | ||
652 | static int check_leaf(struct btrfs_root *root, struct btrfs_path *path, | ||
653 | int level) | ||
654 | { | ||
655 | struct extent_buffer *leaf = path->nodes[level]; | ||
656 | struct extent_buffer *parent = NULL; | ||
657 | int parent_slot; | ||
658 | struct btrfs_key cpukey; | ||
659 | struct btrfs_disk_key parent_key; | ||
660 | struct btrfs_disk_key leaf_key; | ||
661 | int slot = path->slots[0]; | ||
662 | |||
663 | u32 nritems = btrfs_header_nritems(leaf); | ||
664 | |||
665 | if (path->nodes[level + 1]) | ||
666 | parent = path->nodes[level + 1]; | ||
667 | |||
668 | if (nritems == 0) | ||
669 | return 0; | ||
670 | |||
671 | if (parent) { | ||
672 | parent_slot = path->slots[level + 1]; | ||
673 | btrfs_node_key(parent, &parent_key, parent_slot); | ||
674 | btrfs_item_key(leaf, &leaf_key, 0); | ||
675 | |||
676 | BUG_ON(memcmp(&parent_key, &leaf_key, | ||
677 | sizeof(struct btrfs_disk_key))); | ||
678 | BUG_ON(btrfs_node_blockptr(parent, parent_slot) != | ||
679 | btrfs_header_bytenr(leaf)); | ||
680 | } | ||
681 | if (slot != 0 && slot < nritems - 1) { | ||
682 | btrfs_item_key(leaf, &leaf_key, slot); | ||
683 | btrfs_item_key_to_cpu(leaf, &cpukey, slot - 1); | ||
684 | if (comp_keys(&leaf_key, &cpukey) <= 0) { | ||
685 | btrfs_print_leaf(root, leaf); | ||
686 | printk(KERN_CRIT "slot %d offset bad key\n", slot); | ||
687 | BUG_ON(1); | ||
688 | } | ||
689 | if (btrfs_item_offset_nr(leaf, slot - 1) != | ||
690 | btrfs_item_end_nr(leaf, slot)) { | ||
691 | btrfs_print_leaf(root, leaf); | ||
692 | printk(KERN_CRIT "slot %d offset bad\n", slot); | ||
693 | BUG_ON(1); | ||
694 | } | ||
695 | } | ||
696 | if (slot < nritems - 1) { | ||
697 | btrfs_item_key(leaf, &leaf_key, slot); | ||
698 | btrfs_item_key_to_cpu(leaf, &cpukey, slot + 1); | ||
699 | BUG_ON(comp_keys(&leaf_key, &cpukey) >= 0); | ||
700 | if (btrfs_item_offset_nr(leaf, slot) != | ||
701 | btrfs_item_end_nr(leaf, slot + 1)) { | ||
702 | btrfs_print_leaf(root, leaf); | ||
703 | printk(KERN_CRIT "slot %d offset bad\n", slot); | ||
704 | BUG_ON(1); | ||
705 | } | ||
706 | } | ||
707 | BUG_ON(btrfs_item_offset_nr(leaf, 0) + | ||
708 | btrfs_item_size_nr(leaf, 0) != BTRFS_LEAF_DATA_SIZE(root)); | ||
709 | return 0; | ||
710 | } | ||
711 | |||
712 | static noinline int check_block(struct btrfs_root *root, | ||
713 | struct btrfs_path *path, int level) | ||
714 | { | ||
715 | return 0; | ||
716 | if (level == 0) | ||
717 | return check_leaf(root, path, level); | ||
718 | return check_node(root, path, level); | ||
719 | } | ||
720 | |||
721 | /* | ||
722 | * search for key in the extent_buffer. The items start at offset p, | ||
723 | * and they are item_size apart. There are 'max' items in p. | ||
724 | * | ||
725 | * the slot in the array is returned via slot, and it points to | ||
726 | * the place where you would insert key if it is not found in | ||
727 | * the array. | ||
728 | * | ||
729 | * slot may point to max if the key is bigger than all of the keys | ||
730 | */ | ||
731 | static noinline int generic_bin_search(struct extent_buffer *eb, | ||
732 | unsigned long p, | ||
733 | int item_size, struct btrfs_key *key, | ||
734 | int max, int *slot) | ||
735 | { | ||
736 | int low = 0; | ||
737 | int high = max; | ||
738 | int mid; | ||
739 | int ret; | ||
740 | struct btrfs_disk_key *tmp = NULL; | ||
741 | struct btrfs_disk_key unaligned; | ||
742 | unsigned long offset; | ||
743 | char *map_token = NULL; | ||
744 | char *kaddr = NULL; | ||
745 | unsigned long map_start = 0; | ||
746 | unsigned long map_len = 0; | ||
747 | int err; | ||
748 | |||
749 | while (low < high) { | ||
750 | mid = (low + high) / 2; | ||
751 | offset = p + mid * item_size; | ||
752 | |||
753 | if (!map_token || offset < map_start || | ||
754 | (offset + sizeof(struct btrfs_disk_key)) > | ||
755 | map_start + map_len) { | ||
756 | if (map_token) { | ||
757 | unmap_extent_buffer(eb, map_token, KM_USER0); | ||
758 | map_token = NULL; | ||
759 | } | ||
760 | |||
761 | err = map_private_extent_buffer(eb, offset, | ||
762 | sizeof(struct btrfs_disk_key), | ||
763 | &map_token, &kaddr, | ||
764 | &map_start, &map_len, KM_USER0); | ||
765 | |||
766 | if (!err) { | ||
767 | tmp = (struct btrfs_disk_key *)(kaddr + offset - | ||
768 | map_start); | ||
769 | } else { | ||
770 | read_extent_buffer(eb, &unaligned, | ||
771 | offset, sizeof(unaligned)); | ||
772 | tmp = &unaligned; | ||
773 | } | ||
774 | |||
775 | } else { | ||
776 | tmp = (struct btrfs_disk_key *)(kaddr + offset - | ||
777 | map_start); | ||
778 | } | ||
779 | ret = comp_keys(tmp, key); | ||
780 | |||
781 | if (ret < 0) | ||
782 | low = mid + 1; | ||
783 | else if (ret > 0) | ||
784 | high = mid; | ||
785 | else { | ||
786 | *slot = mid; | ||
787 | if (map_token) | ||
788 | unmap_extent_buffer(eb, map_token, KM_USER0); | ||
789 | return 0; | ||
790 | } | ||
791 | } | ||
792 | *slot = low; | ||
793 | if (map_token) | ||
794 | unmap_extent_buffer(eb, map_token, KM_USER0); | ||
795 | return 1; | ||
796 | } | ||
797 | |||
798 | /* | ||
799 | * simple bin_search frontend that does the right thing for | ||
800 | * leaves vs nodes | ||
801 | */ | ||
802 | static int bin_search(struct extent_buffer *eb, struct btrfs_key *key, | ||
803 | int level, int *slot) | ||
804 | { | ||
805 | if (level == 0) { | ||
806 | return generic_bin_search(eb, | ||
807 | offsetof(struct btrfs_leaf, items), | ||
808 | sizeof(struct btrfs_item), | ||
809 | key, btrfs_header_nritems(eb), | ||
810 | slot); | ||
811 | } else { | ||
812 | return generic_bin_search(eb, | ||
813 | offsetof(struct btrfs_node, ptrs), | ||
814 | sizeof(struct btrfs_key_ptr), | ||
815 | key, btrfs_header_nritems(eb), | ||
816 | slot); | ||
817 | } | ||
818 | return -1; | ||
819 | } | ||
820 | |||
821 | /* given a node and slot number, this reads the blocks it points to. The | ||
822 | * extent buffer is returned with a reference taken (but unlocked). | ||
823 | * NULL is returned on error. | ||
824 | */ | ||
825 | static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root, | ||
826 | struct extent_buffer *parent, int slot) | ||
827 | { | ||
828 | int level = btrfs_header_level(parent); | ||
829 | if (slot < 0) | ||
830 | return NULL; | ||
831 | if (slot >= btrfs_header_nritems(parent)) | ||
832 | return NULL; | ||
833 | |||
834 | BUG_ON(level == 0); | ||
835 | |||
836 | return read_tree_block(root, btrfs_node_blockptr(parent, slot), | ||
837 | btrfs_level_size(root, level - 1), | ||
838 | btrfs_node_ptr_generation(parent, slot)); | ||
839 | } | ||
840 | |||
841 | /* | ||
842 | * node level balancing, used to make sure nodes are in proper order for | ||
843 | * item deletion. We balance from the top down, so we have to make sure | ||
844 | * that a deletion won't leave an node completely empty later on. | ||
845 | */ | ||
846 | static noinline int balance_level(struct btrfs_trans_handle *trans, | ||
847 | struct btrfs_root *root, | ||
848 | struct btrfs_path *path, int level) | ||
849 | { | ||
850 | struct extent_buffer *right = NULL; | ||
851 | struct extent_buffer *mid; | ||
852 | struct extent_buffer *left = NULL; | ||
853 | struct extent_buffer *parent = NULL; | ||
854 | int ret = 0; | ||
855 | int wret; | ||
856 | int pslot; | ||
857 | int orig_slot = path->slots[level]; | ||
858 | int err_on_enospc = 0; | ||
859 | u64 orig_ptr; | ||
860 | |||
861 | if (level == 0) | ||
862 | return 0; | ||
863 | |||
864 | mid = path->nodes[level]; | ||
865 | WARN_ON(!path->locks[level]); | ||
866 | WARN_ON(btrfs_header_generation(mid) != trans->transid); | ||
867 | |||
868 | orig_ptr = btrfs_node_blockptr(mid, orig_slot); | ||
869 | |||
870 | if (level < BTRFS_MAX_LEVEL - 1) | ||
871 | parent = path->nodes[level + 1]; | ||
872 | pslot = path->slots[level + 1]; | ||
873 | |||
874 | /* | ||
875 | * deal with the case where there is only one pointer in the root | ||
876 | * by promoting the node below to a root | ||
877 | */ | ||
878 | if (!parent) { | ||
879 | struct extent_buffer *child; | ||
880 | |||
881 | if (btrfs_header_nritems(mid) != 1) | ||
882 | return 0; | ||
883 | |||
884 | /* promote the child to a root */ | ||
885 | child = read_node_slot(root, mid, 0); | ||
886 | btrfs_tree_lock(child); | ||
887 | BUG_ON(!child); | ||
888 | ret = btrfs_cow_block(trans, root, child, mid, 0, &child, 0); | ||
889 | BUG_ON(ret); | ||
890 | |||
891 | spin_lock(&root->node_lock); | ||
892 | root->node = child; | ||
893 | spin_unlock(&root->node_lock); | ||
894 | |||
895 | ret = btrfs_update_extent_ref(trans, root, child->start, | ||
896 | mid->start, child->start, | ||
897 | root->root_key.objectid, | ||
898 | trans->transid, level - 1); | ||
899 | BUG_ON(ret); | ||
900 | |||
901 | add_root_to_dirty_list(root); | ||
902 | btrfs_tree_unlock(child); | ||
903 | path->locks[level] = 0; | ||
904 | path->nodes[level] = NULL; | ||
905 | clean_tree_block(trans, root, mid); | ||
906 | btrfs_tree_unlock(mid); | ||
907 | /* once for the path */ | ||
908 | free_extent_buffer(mid); | ||
909 | ret = btrfs_free_extent(trans, root, mid->start, mid->len, | ||
910 | mid->start, root->root_key.objectid, | ||
911 | btrfs_header_generation(mid), | ||
912 | level, 1); | ||
913 | /* once for the root ptr */ | ||
914 | free_extent_buffer(mid); | ||
915 | return ret; | ||
916 | } | ||
917 | if (btrfs_header_nritems(mid) > | ||
918 | BTRFS_NODEPTRS_PER_BLOCK(root) / 4) | ||
919 | return 0; | ||
920 | |||
921 | if (btrfs_header_nritems(mid) < 2) | ||
922 | err_on_enospc = 1; | ||
923 | |||
924 | left = read_node_slot(root, parent, pslot - 1); | ||
925 | if (left) { | ||
926 | btrfs_tree_lock(left); | ||
927 | wret = btrfs_cow_block(trans, root, left, | ||
928 | parent, pslot - 1, &left, 0); | ||
929 | if (wret) { | ||
930 | ret = wret; | ||
931 | goto enospc; | ||
932 | } | ||
933 | } | ||
934 | right = read_node_slot(root, parent, pslot + 1); | ||
935 | if (right) { | ||
936 | btrfs_tree_lock(right); | ||
937 | wret = btrfs_cow_block(trans, root, right, | ||
938 | parent, pslot + 1, &right, 0); | ||
939 | if (wret) { | ||
940 | ret = wret; | ||
941 | goto enospc; | ||
942 | } | ||
943 | } | ||
944 | |||
945 | /* first, try to make some room in the middle buffer */ | ||
946 | if (left) { | ||
947 | orig_slot += btrfs_header_nritems(left); | ||
948 | wret = push_node_left(trans, root, left, mid, 1); | ||
949 | if (wret < 0) | ||
950 | ret = wret; | ||
951 | if (btrfs_header_nritems(mid) < 2) | ||
952 | err_on_enospc = 1; | ||
953 | } | ||
954 | |||
955 | /* | ||
956 | * then try to empty the right most buffer into the middle | ||
957 | */ | ||
958 | if (right) { | ||
959 | wret = push_node_left(trans, root, mid, right, 1); | ||
960 | if (wret < 0 && wret != -ENOSPC) | ||
961 | ret = wret; | ||
962 | if (btrfs_header_nritems(right) == 0) { | ||
963 | u64 bytenr = right->start; | ||
964 | u64 generation = btrfs_header_generation(parent); | ||
965 | u32 blocksize = right->len; | ||
966 | |||
967 | clean_tree_block(trans, root, right); | ||
968 | btrfs_tree_unlock(right); | ||
969 | free_extent_buffer(right); | ||
970 | right = NULL; | ||
971 | wret = del_ptr(trans, root, path, level + 1, pslot + | ||
972 | 1); | ||
973 | if (wret) | ||
974 | ret = wret; | ||
975 | wret = btrfs_free_extent(trans, root, bytenr, | ||
976 | blocksize, parent->start, | ||
977 | btrfs_header_owner(parent), | ||
978 | generation, level, 1); | ||
979 | if (wret) | ||
980 | ret = wret; | ||
981 | } else { | ||
982 | struct btrfs_disk_key right_key; | ||
983 | btrfs_node_key(right, &right_key, 0); | ||
984 | btrfs_set_node_key(parent, &right_key, pslot + 1); | ||
985 | btrfs_mark_buffer_dirty(parent); | ||
986 | } | ||
987 | } | ||
988 | if (btrfs_header_nritems(mid) == 1) { | ||
989 | /* | ||
990 | * we're not allowed to leave a node with one item in the | ||
991 | * tree during a delete. A deletion from lower in the tree | ||
992 | * could try to delete the only pointer in this node. | ||
993 | * So, pull some keys from the left. | ||
994 | * There has to be a left pointer at this point because | ||
995 | * otherwise we would have pulled some pointers from the | ||
996 | * right | ||
997 | */ | ||
998 | BUG_ON(!left); | ||
999 | wret = balance_node_right(trans, root, mid, left); | ||
1000 | if (wret < 0) { | ||
1001 | ret = wret; | ||
1002 | goto enospc; | ||
1003 | } | ||
1004 | if (wret == 1) { | ||
1005 | wret = push_node_left(trans, root, left, mid, 1); | ||
1006 | if (wret < 0) | ||
1007 | ret = wret; | ||
1008 | } | ||
1009 | BUG_ON(wret == 1); | ||
1010 | } | ||
1011 | if (btrfs_header_nritems(mid) == 0) { | ||
1012 | /* we've managed to empty the middle node, drop it */ | ||
1013 | u64 root_gen = btrfs_header_generation(parent); | ||
1014 | u64 bytenr = mid->start; | ||
1015 | u32 blocksize = mid->len; | ||
1016 | |||
1017 | clean_tree_block(trans, root, mid); | ||
1018 | btrfs_tree_unlock(mid); | ||
1019 | free_extent_buffer(mid); | ||
1020 | mid = NULL; | ||
1021 | wret = del_ptr(trans, root, path, level + 1, pslot); | ||
1022 | if (wret) | ||
1023 | ret = wret; | ||
1024 | wret = btrfs_free_extent(trans, root, bytenr, blocksize, | ||
1025 | parent->start, | ||
1026 | btrfs_header_owner(parent), | ||
1027 | root_gen, level, 1); | ||
1028 | if (wret) | ||
1029 | ret = wret; | ||
1030 | } else { | ||
1031 | /* update the parent key to reflect our changes */ | ||
1032 | struct btrfs_disk_key mid_key; | ||
1033 | btrfs_node_key(mid, &mid_key, 0); | ||
1034 | btrfs_set_node_key(parent, &mid_key, pslot); | ||
1035 | btrfs_mark_buffer_dirty(parent); | ||
1036 | } | ||
1037 | |||
1038 | /* update the path */ | ||
1039 | if (left) { | ||
1040 | if (btrfs_header_nritems(left) > orig_slot) { | ||
1041 | extent_buffer_get(left); | ||
1042 | /* left was locked after cow */ | ||
1043 | path->nodes[level] = left; | ||
1044 | path->slots[level + 1] -= 1; | ||
1045 | path->slots[level] = orig_slot; | ||
1046 | if (mid) { | ||
1047 | btrfs_tree_unlock(mid); | ||
1048 | free_extent_buffer(mid); | ||
1049 | } | ||
1050 | } else { | ||
1051 | orig_slot -= btrfs_header_nritems(left); | ||
1052 | path->slots[level] = orig_slot; | ||
1053 | } | ||
1054 | } | ||
1055 | /* double check we haven't messed things up */ | ||
1056 | check_block(root, path, level); | ||
1057 | if (orig_ptr != | ||
1058 | btrfs_node_blockptr(path->nodes[level], path->slots[level])) | ||
1059 | BUG(); | ||
1060 | enospc: | ||
1061 | if (right) { | ||
1062 | btrfs_tree_unlock(right); | ||
1063 | free_extent_buffer(right); | ||
1064 | } | ||
1065 | if (left) { | ||
1066 | if (path->nodes[level] != left) | ||
1067 | btrfs_tree_unlock(left); | ||
1068 | free_extent_buffer(left); | ||
1069 | } | ||
1070 | return ret; | ||
1071 | } | ||
1072 | |||
1073 | /* Node balancing for insertion. Here we only split or push nodes around | ||
1074 | * when they are completely full. This is also done top down, so we | ||
1075 | * have to be pessimistic. | ||
1076 | */ | ||
1077 | static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans, | ||
1078 | struct btrfs_root *root, | ||
1079 | struct btrfs_path *path, int level) | ||
1080 | { | ||
1081 | struct extent_buffer *right = NULL; | ||
1082 | struct extent_buffer *mid; | ||
1083 | struct extent_buffer *left = NULL; | ||
1084 | struct extent_buffer *parent = NULL; | ||
1085 | int ret = 0; | ||
1086 | int wret; | ||
1087 | int pslot; | ||
1088 | int orig_slot = path->slots[level]; | ||
1089 | u64 orig_ptr; | ||
1090 | |||
1091 | if (level == 0) | ||
1092 | return 1; | ||
1093 | |||
1094 | mid = path->nodes[level]; | ||
1095 | WARN_ON(btrfs_header_generation(mid) != trans->transid); | ||
1096 | orig_ptr = btrfs_node_blockptr(mid, orig_slot); | ||
1097 | |||
1098 | if (level < BTRFS_MAX_LEVEL - 1) | ||
1099 | parent = path->nodes[level + 1]; | ||
1100 | pslot = path->slots[level + 1]; | ||
1101 | |||
1102 | if (!parent) | ||
1103 | return 1; | ||
1104 | |||
1105 | left = read_node_slot(root, parent, pslot - 1); | ||
1106 | |||
1107 | /* first, try to make some room in the middle buffer */ | ||
1108 | if (left) { | ||
1109 | u32 left_nr; | ||
1110 | |||
1111 | btrfs_tree_lock(left); | ||
1112 | left_nr = btrfs_header_nritems(left); | ||
1113 | if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) { | ||
1114 | wret = 1; | ||
1115 | } else { | ||
1116 | ret = btrfs_cow_block(trans, root, left, parent, | ||
1117 | pslot - 1, &left, 0); | ||
1118 | if (ret) | ||
1119 | wret = 1; | ||
1120 | else { | ||
1121 | wret = push_node_left(trans, root, | ||
1122 | left, mid, 0); | ||
1123 | } | ||
1124 | } | ||
1125 | if (wret < 0) | ||
1126 | ret = wret; | ||
1127 | if (wret == 0) { | ||
1128 | struct btrfs_disk_key disk_key; | ||
1129 | orig_slot += left_nr; | ||
1130 | btrfs_node_key(mid, &disk_key, 0); | ||
1131 | btrfs_set_node_key(parent, &disk_key, pslot); | ||
1132 | btrfs_mark_buffer_dirty(parent); | ||
1133 | if (btrfs_header_nritems(left) > orig_slot) { | ||
1134 | path->nodes[level] = left; | ||
1135 | path->slots[level + 1] -= 1; | ||
1136 | path->slots[level] = orig_slot; | ||
1137 | btrfs_tree_unlock(mid); | ||
1138 | free_extent_buffer(mid); | ||
1139 | } else { | ||
1140 | orig_slot -= | ||
1141 | btrfs_header_nritems(left); | ||
1142 | path->slots[level] = orig_slot; | ||
1143 | btrfs_tree_unlock(left); | ||
1144 | free_extent_buffer(left); | ||
1145 | } | ||
1146 | return 0; | ||
1147 | } | ||
1148 | btrfs_tree_unlock(left); | ||
1149 | free_extent_buffer(left); | ||
1150 | } | ||
1151 | right = read_node_slot(root, parent, pslot + 1); | ||
1152 | |||
1153 | /* | ||
1154 | * then try to empty the right most buffer into the middle | ||
1155 | */ | ||
1156 | if (right) { | ||
1157 | u32 right_nr; | ||
1158 | btrfs_tree_lock(right); | ||
1159 | right_nr = btrfs_header_nritems(right); | ||
1160 | if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) { | ||
1161 | wret = 1; | ||
1162 | } else { | ||
1163 | ret = btrfs_cow_block(trans, root, right, | ||
1164 | parent, pslot + 1, | ||
1165 | &right, 0); | ||
1166 | if (ret) | ||
1167 | wret = 1; | ||
1168 | else { | ||
1169 | wret = balance_node_right(trans, root, | ||
1170 | right, mid); | ||
1171 | } | ||
1172 | } | ||
1173 | if (wret < 0) | ||
1174 | ret = wret; | ||
1175 | if (wret == 0) { | ||
1176 | struct btrfs_disk_key disk_key; | ||
1177 | |||
1178 | btrfs_node_key(right, &disk_key, 0); | ||
1179 | btrfs_set_node_key(parent, &disk_key, pslot + 1); | ||
1180 | btrfs_mark_buffer_dirty(parent); | ||
1181 | |||
1182 | if (btrfs_header_nritems(mid) <= orig_slot) { | ||
1183 | path->nodes[level] = right; | ||
1184 | path->slots[level + 1] += 1; | ||
1185 | path->slots[level] = orig_slot - | ||
1186 | btrfs_header_nritems(mid); | ||
1187 | btrfs_tree_unlock(mid); | ||
1188 | free_extent_buffer(mid); | ||
1189 | } else { | ||
1190 | btrfs_tree_unlock(right); | ||
1191 | free_extent_buffer(right); | ||
1192 | } | ||
1193 | return 0; | ||
1194 | } | ||
1195 | btrfs_tree_unlock(right); | ||
1196 | free_extent_buffer(right); | ||
1197 | } | ||
1198 | return 1; | ||
1199 | } | ||
1200 | |||
1201 | /* | ||
1202 | * readahead one full node of leaves, finding things that are close | ||
1203 | * to the block in 'slot', and triggering ra on them. | ||
1204 | */ | ||
1205 | static noinline void reada_for_search(struct btrfs_root *root, | ||
1206 | struct btrfs_path *path, | ||
1207 | int level, int slot, u64 objectid) | ||
1208 | { | ||
1209 | struct extent_buffer *node; | ||
1210 | struct btrfs_disk_key disk_key; | ||
1211 | u32 nritems; | ||
1212 | u64 search; | ||
1213 | u64 lowest_read; | ||
1214 | u64 highest_read; | ||
1215 | u64 nread = 0; | ||
1216 | int direction = path->reada; | ||
1217 | struct extent_buffer *eb; | ||
1218 | u32 nr; | ||
1219 | u32 blocksize; | ||
1220 | u32 nscan = 0; | ||
1221 | |||
1222 | if (level != 1) | ||
1223 | return; | ||
1224 | |||
1225 | if (!path->nodes[level]) | ||
1226 | return; | ||
1227 | |||
1228 | node = path->nodes[level]; | ||
1229 | |||
1230 | search = btrfs_node_blockptr(node, slot); | ||
1231 | blocksize = btrfs_level_size(root, level - 1); | ||
1232 | eb = btrfs_find_tree_block(root, search, blocksize); | ||
1233 | if (eb) { | ||
1234 | free_extent_buffer(eb); | ||
1235 | return; | ||
1236 | } | ||
1237 | |||
1238 | highest_read = search; | ||
1239 | lowest_read = search; | ||
1240 | |||
1241 | nritems = btrfs_header_nritems(node); | ||
1242 | nr = slot; | ||
1243 | while (1) { | ||
1244 | if (direction < 0) { | ||
1245 | if (nr == 0) | ||
1246 | break; | ||
1247 | nr--; | ||
1248 | } else if (direction > 0) { | ||
1249 | nr++; | ||
1250 | if (nr >= nritems) | ||
1251 | break; | ||
1252 | } | ||
1253 | if (path->reada < 0 && objectid) { | ||
1254 | btrfs_node_key(node, &disk_key, nr); | ||
1255 | if (btrfs_disk_key_objectid(&disk_key) != objectid) | ||
1256 | break; | ||
1257 | } | ||
1258 | search = btrfs_node_blockptr(node, nr); | ||
1259 | if ((search >= lowest_read && search <= highest_read) || | ||
1260 | (search < lowest_read && lowest_read - search <= 16384) || | ||
1261 | (search > highest_read && search - highest_read <= 16384)) { | ||
1262 | readahead_tree_block(root, search, blocksize, | ||
1263 | btrfs_node_ptr_generation(node, nr)); | ||
1264 | nread += blocksize; | ||
1265 | } | ||
1266 | nscan++; | ||
1267 | if (path->reada < 2 && (nread > (64 * 1024) || nscan > 32)) | ||
1268 | break; | ||
1269 | |||
1270 | if (nread > (256 * 1024) || nscan > 128) | ||
1271 | break; | ||
1272 | |||
1273 | if (search < lowest_read) | ||
1274 | lowest_read = search; | ||
1275 | if (search > highest_read) | ||
1276 | highest_read = search; | ||
1277 | } | ||
1278 | } | ||
1279 | |||
1280 | /* | ||
1281 | * when we walk down the tree, it is usually safe to unlock the higher layers | ||
1282 | * in the tree. The exceptions are when our path goes through slot 0, because | ||
1283 | * operations on the tree might require changing key pointers higher up in the | ||
1284 | * tree. | ||
1285 | * | ||
1286 | * callers might also have set path->keep_locks, which tells this code to keep | ||
1287 | * the lock if the path points to the last slot in the block. This is part of | ||
1288 | * walking through the tree, and selecting the next slot in the higher block. | ||
1289 | * | ||
1290 | * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so | ||
1291 | * if lowest_unlock is 1, level 0 won't be unlocked | ||
1292 | */ | ||
1293 | static noinline void unlock_up(struct btrfs_path *path, int level, | ||
1294 | int lowest_unlock) | ||
1295 | { | ||
1296 | int i; | ||
1297 | int skip_level = level; | ||
1298 | int no_skips = 0; | ||
1299 | struct extent_buffer *t; | ||
1300 | |||
1301 | for (i = level; i < BTRFS_MAX_LEVEL; i++) { | ||
1302 | if (!path->nodes[i]) | ||
1303 | break; | ||
1304 | if (!path->locks[i]) | ||
1305 | break; | ||
1306 | if (!no_skips && path->slots[i] == 0) { | ||
1307 | skip_level = i + 1; | ||
1308 | continue; | ||
1309 | } | ||
1310 | if (!no_skips && path->keep_locks) { | ||
1311 | u32 nritems; | ||
1312 | t = path->nodes[i]; | ||
1313 | nritems = btrfs_header_nritems(t); | ||
1314 | if (nritems < 1 || path->slots[i] >= nritems - 1) { | ||
1315 | skip_level = i + 1; | ||
1316 | continue; | ||
1317 | } | ||
1318 | } | ||
1319 | if (skip_level < i && i >= lowest_unlock) | ||
1320 | no_skips = 1; | ||
1321 | |||
1322 | t = path->nodes[i]; | ||
1323 | if (i >= lowest_unlock && i > skip_level && path->locks[i]) { | ||
1324 | btrfs_tree_unlock(t); | ||
1325 | path->locks[i] = 0; | ||
1326 | } | ||
1327 | } | ||
1328 | } | ||
1329 | |||
1330 | /* | ||
1331 | * look for key in the tree. path is filled in with nodes along the way | ||
1332 | * if key is found, we return zero and you can find the item in the leaf | ||
1333 | * level of the path (level 0) | ||
1334 | * | ||
1335 | * If the key isn't found, the path points to the slot where it should | ||
1336 | * be inserted, and 1 is returned. If there are other errors during the | ||
1337 | * search a negative error number is returned. | ||
1338 | * | ||
1339 | * if ins_len > 0, nodes and leaves will be split as we walk down the | ||
1340 | * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if | ||
1341 | * possible) | ||
1342 | */ | ||
1343 | int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root | ||
1344 | *root, struct btrfs_key *key, struct btrfs_path *p, int | ||
1345 | ins_len, int cow) | ||
1346 | { | ||
1347 | struct extent_buffer *b; | ||
1348 | struct extent_buffer *tmp; | ||
1349 | int slot; | ||
1350 | int ret; | ||
1351 | int level; | ||
1352 | int should_reada = p->reada; | ||
1353 | int lowest_unlock = 1; | ||
1354 | int blocksize; | ||
1355 | u8 lowest_level = 0; | ||
1356 | u64 blocknr; | ||
1357 | u64 gen; | ||
1358 | struct btrfs_key prealloc_block; | ||
1359 | |||
1360 | lowest_level = p->lowest_level; | ||
1361 | WARN_ON(lowest_level && ins_len > 0); | ||
1362 | WARN_ON(p->nodes[0] != NULL); | ||
1363 | |||
1364 | if (ins_len < 0) | ||
1365 | lowest_unlock = 2; | ||
1366 | |||
1367 | prealloc_block.objectid = 0; | ||
1368 | |||
1369 | again: | ||
1370 | if (p->skip_locking) | ||
1371 | b = btrfs_root_node(root); | ||
1372 | else | ||
1373 | b = btrfs_lock_root_node(root); | ||
1374 | |||
1375 | while (b) { | ||
1376 | level = btrfs_header_level(b); | ||
1377 | |||
1378 | /* | ||
1379 | * setup the path here so we can release it under lock | ||
1380 | * contention with the cow code | ||
1381 | */ | ||
1382 | p->nodes[level] = b; | ||
1383 | if (!p->skip_locking) | ||
1384 | p->locks[level] = 1; | ||
1385 | |||
1386 | if (cow) { | ||
1387 | int wret; | ||
1388 | |||
1389 | /* is a cow on this block not required */ | ||
1390 | spin_lock(&root->fs_info->hash_lock); | ||
1391 | if (btrfs_header_generation(b) == trans->transid && | ||
1392 | btrfs_header_owner(b) == root->root_key.objectid && | ||
1393 | !btrfs_header_flag(b, BTRFS_HEADER_FLAG_WRITTEN)) { | ||
1394 | spin_unlock(&root->fs_info->hash_lock); | ||
1395 | goto cow_done; | ||
1396 | } | ||
1397 | spin_unlock(&root->fs_info->hash_lock); | ||
1398 | |||
1399 | /* ok, we have to cow, is our old prealloc the right | ||
1400 | * size? | ||
1401 | */ | ||
1402 | if (prealloc_block.objectid && | ||
1403 | prealloc_block.offset != b->len) { | ||
1404 | btrfs_free_reserved_extent(root, | ||
1405 | prealloc_block.objectid, | ||
1406 | prealloc_block.offset); | ||
1407 | prealloc_block.objectid = 0; | ||
1408 | } | ||
1409 | |||
1410 | /* | ||
1411 | * for higher level blocks, try not to allocate blocks | ||
1412 | * with the block and the parent locks held. | ||
1413 | */ | ||
1414 | if (level > 1 && !prealloc_block.objectid && | ||
1415 | btrfs_path_lock_waiting(p, level)) { | ||
1416 | u32 size = b->len; | ||
1417 | u64 hint = b->start; | ||
1418 | |||
1419 | btrfs_release_path(root, p); | ||
1420 | ret = btrfs_reserve_extent(trans, root, | ||
1421 | size, size, 0, | ||
1422 | hint, (u64)-1, | ||
1423 | &prealloc_block, 0); | ||
1424 | BUG_ON(ret); | ||
1425 | goto again; | ||
1426 | } | ||
1427 | |||
1428 | wret = btrfs_cow_block(trans, root, b, | ||
1429 | p->nodes[level + 1], | ||
1430 | p->slots[level + 1], | ||
1431 | &b, prealloc_block.objectid); | ||
1432 | prealloc_block.objectid = 0; | ||
1433 | if (wret) { | ||
1434 | free_extent_buffer(b); | ||
1435 | ret = wret; | ||
1436 | goto done; | ||
1437 | } | ||
1438 | } | ||
1439 | cow_done: | ||
1440 | BUG_ON(!cow && ins_len); | ||
1441 | if (level != btrfs_header_level(b)) | ||
1442 | WARN_ON(1); | ||
1443 | level = btrfs_header_level(b); | ||
1444 | |||
1445 | p->nodes[level] = b; | ||
1446 | if (!p->skip_locking) | ||
1447 | p->locks[level] = 1; | ||
1448 | |||
1449 | ret = check_block(root, p, level); | ||
1450 | if (ret) { | ||
1451 | ret = -1; | ||
1452 | goto done; | ||
1453 | } | ||
1454 | |||
1455 | ret = bin_search(b, key, level, &slot); | ||
1456 | if (level != 0) { | ||
1457 | if (ret && slot > 0) | ||
1458 | slot -= 1; | ||
1459 | p->slots[level] = slot; | ||
1460 | if ((p->search_for_split || ins_len > 0) && | ||
1461 | btrfs_header_nritems(b) >= | ||
1462 | BTRFS_NODEPTRS_PER_BLOCK(root) - 3) { | ||
1463 | int sret = split_node(trans, root, p, level); | ||
1464 | BUG_ON(sret > 0); | ||
1465 | if (sret) { | ||
1466 | ret = sret; | ||
1467 | goto done; | ||
1468 | } | ||
1469 | b = p->nodes[level]; | ||
1470 | slot = p->slots[level]; | ||
1471 | } else if (ins_len < 0) { | ||
1472 | int sret = balance_level(trans, root, p, | ||
1473 | level); | ||
1474 | if (sret) { | ||
1475 | ret = sret; | ||
1476 | goto done; | ||
1477 | } | ||
1478 | b = p->nodes[level]; | ||
1479 | if (!b) { | ||
1480 | btrfs_release_path(NULL, p); | ||
1481 | goto again; | ||
1482 | } | ||
1483 | slot = p->slots[level]; | ||
1484 | BUG_ON(btrfs_header_nritems(b) == 1); | ||
1485 | } | ||
1486 | unlock_up(p, level, lowest_unlock); | ||
1487 | |||
1488 | /* this is only true while dropping a snapshot */ | ||
1489 | if (level == lowest_level) { | ||
1490 | ret = 0; | ||
1491 | goto done; | ||
1492 | } | ||
1493 | |||
1494 | blocknr = btrfs_node_blockptr(b, slot); | ||
1495 | gen = btrfs_node_ptr_generation(b, slot); | ||
1496 | blocksize = btrfs_level_size(root, level - 1); | ||
1497 | |||
1498 | tmp = btrfs_find_tree_block(root, blocknr, blocksize); | ||
1499 | if (tmp && btrfs_buffer_uptodate(tmp, gen)) { | ||
1500 | b = tmp; | ||
1501 | } else { | ||
1502 | /* | ||
1503 | * reduce lock contention at high levels | ||
1504 | * of the btree by dropping locks before | ||
1505 | * we read. | ||
1506 | */ | ||
1507 | if (level > 1) { | ||
1508 | btrfs_release_path(NULL, p); | ||
1509 | if (tmp) | ||
1510 | free_extent_buffer(tmp); | ||
1511 | if (should_reada) | ||
1512 | reada_for_search(root, p, | ||
1513 | level, slot, | ||
1514 | key->objectid); | ||
1515 | |||
1516 | tmp = read_tree_block(root, blocknr, | ||
1517 | blocksize, gen); | ||
1518 | if (tmp) | ||
1519 | free_extent_buffer(tmp); | ||
1520 | goto again; | ||
1521 | } else { | ||
1522 | if (tmp) | ||
1523 | free_extent_buffer(tmp); | ||
1524 | if (should_reada) | ||
1525 | reada_for_search(root, p, | ||
1526 | level, slot, | ||
1527 | key->objectid); | ||
1528 | b = read_node_slot(root, b, slot); | ||
1529 | } | ||
1530 | } | ||
1531 | if (!p->skip_locking) | ||
1532 | btrfs_tree_lock(b); | ||
1533 | } else { | ||
1534 | p->slots[level] = slot; | ||
1535 | if (ins_len > 0 && | ||
1536 | btrfs_leaf_free_space(root, b) < ins_len) { | ||
1537 | int sret = split_leaf(trans, root, key, | ||
1538 | p, ins_len, ret == 0); | ||
1539 | BUG_ON(sret > 0); | ||
1540 | if (sret) { | ||
1541 | ret = sret; | ||
1542 | goto done; | ||
1543 | } | ||
1544 | } | ||
1545 | if (!p->search_for_split) | ||
1546 | unlock_up(p, level, lowest_unlock); | ||
1547 | goto done; | ||
1548 | } | ||
1549 | } | ||
1550 | ret = 1; | ||
1551 | done: | ||
1552 | if (prealloc_block.objectid) { | ||
1553 | btrfs_free_reserved_extent(root, | ||
1554 | prealloc_block.objectid, | ||
1555 | prealloc_block.offset); | ||
1556 | } | ||
1557 | |||
1558 | return ret; | ||
1559 | } | ||
1560 | |||
1561 | int btrfs_merge_path(struct btrfs_trans_handle *trans, | ||
1562 | struct btrfs_root *root, | ||
1563 | struct btrfs_key *node_keys, | ||
1564 | u64 *nodes, int lowest_level) | ||
1565 | { | ||
1566 | struct extent_buffer *eb; | ||
1567 | struct extent_buffer *parent; | ||
1568 | struct btrfs_key key; | ||
1569 | u64 bytenr; | ||
1570 | u64 generation; | ||
1571 | u32 blocksize; | ||
1572 | int level; | ||
1573 | int slot; | ||
1574 | int key_match; | ||
1575 | int ret; | ||
1576 | |||
1577 | eb = btrfs_lock_root_node(root); | ||
1578 | ret = btrfs_cow_block(trans, root, eb, NULL, 0, &eb, 0); | ||
1579 | BUG_ON(ret); | ||
1580 | |||
1581 | parent = eb; | ||
1582 | while (1) { | ||
1583 | level = btrfs_header_level(parent); | ||
1584 | if (level == 0 || level <= lowest_level) | ||
1585 | break; | ||
1586 | |||
1587 | ret = bin_search(parent, &node_keys[lowest_level], level, | ||
1588 | &slot); | ||
1589 | if (ret && slot > 0) | ||
1590 | slot--; | ||
1591 | |||
1592 | bytenr = btrfs_node_blockptr(parent, slot); | ||
1593 | if (nodes[level - 1] == bytenr) | ||
1594 | break; | ||
1595 | |||
1596 | blocksize = btrfs_level_size(root, level - 1); | ||
1597 | generation = btrfs_node_ptr_generation(parent, slot); | ||
1598 | btrfs_node_key_to_cpu(eb, &key, slot); | ||
1599 | key_match = !memcmp(&key, &node_keys[level - 1], sizeof(key)); | ||
1600 | |||
1601 | if (generation == trans->transid) { | ||
1602 | eb = read_tree_block(root, bytenr, blocksize, | ||
1603 | generation); | ||
1604 | btrfs_tree_lock(eb); | ||
1605 | } | ||
1606 | |||
1607 | /* | ||
1608 | * if node keys match and node pointer hasn't been modified | ||
1609 | * in the running transaction, we can merge the path. for | ||
1610 | * blocks owened by reloc trees, the node pointer check is | ||
1611 | * skipped, this is because these blocks are fully controlled | ||
1612 | * by the space balance code, no one else can modify them. | ||
1613 | */ | ||
1614 | if (!nodes[level - 1] || !key_match || | ||
1615 | (generation == trans->transid && | ||
1616 | btrfs_header_owner(eb) != BTRFS_TREE_RELOC_OBJECTID)) { | ||
1617 | if (level == 1 || level == lowest_level + 1) { | ||
1618 | if (generation == trans->transid) { | ||
1619 | btrfs_tree_unlock(eb); | ||
1620 | free_extent_buffer(eb); | ||
1621 | } | ||
1622 | break; | ||
1623 | } | ||
1624 | |||
1625 | if (generation != trans->transid) { | ||
1626 | eb = read_tree_block(root, bytenr, blocksize, | ||
1627 | generation); | ||
1628 | btrfs_tree_lock(eb); | ||
1629 | } | ||
1630 | |||
1631 | ret = btrfs_cow_block(trans, root, eb, parent, slot, | ||
1632 | &eb, 0); | ||
1633 | BUG_ON(ret); | ||
1634 | |||
1635 | if (root->root_key.objectid == | ||
1636 | BTRFS_TREE_RELOC_OBJECTID) { | ||
1637 | if (!nodes[level - 1]) { | ||
1638 | nodes[level - 1] = eb->start; | ||
1639 | memcpy(&node_keys[level - 1], &key, | ||
1640 | sizeof(node_keys[0])); | ||
1641 | } else { | ||
1642 | WARN_ON(1); | ||
1643 | } | ||
1644 | } | ||
1645 | |||
1646 | btrfs_tree_unlock(parent); | ||
1647 | free_extent_buffer(parent); | ||
1648 | parent = eb; | ||
1649 | continue; | ||
1650 | } | ||
1651 | |||
1652 | btrfs_set_node_blockptr(parent, slot, nodes[level - 1]); | ||
1653 | btrfs_set_node_ptr_generation(parent, slot, trans->transid); | ||
1654 | btrfs_mark_buffer_dirty(parent); | ||
1655 | |||
1656 | ret = btrfs_inc_extent_ref(trans, root, | ||
1657 | nodes[level - 1], | ||
1658 | blocksize, parent->start, | ||
1659 | btrfs_header_owner(parent), | ||
1660 | btrfs_header_generation(parent), | ||
1661 | level - 1); | ||
1662 | BUG_ON(ret); | ||
1663 | |||
1664 | /* | ||
1665 | * If the block was created in the running transaction, | ||
1666 | * it's possible this is the last reference to it, so we | ||
1667 | * should drop the subtree. | ||
1668 | */ | ||
1669 | if (generation == trans->transid) { | ||
1670 | ret = btrfs_drop_subtree(trans, root, eb, parent); | ||
1671 | BUG_ON(ret); | ||
1672 | btrfs_tree_unlock(eb); | ||
1673 | free_extent_buffer(eb); | ||
1674 | } else { | ||
1675 | ret = btrfs_free_extent(trans, root, bytenr, | ||
1676 | blocksize, parent->start, | ||
1677 | btrfs_header_owner(parent), | ||
1678 | btrfs_header_generation(parent), | ||
1679 | level - 1, 1); | ||
1680 | BUG_ON(ret); | ||
1681 | } | ||
1682 | break; | ||
1683 | } | ||
1684 | btrfs_tree_unlock(parent); | ||
1685 | free_extent_buffer(parent); | ||
1686 | return 0; | ||
1687 | } | ||
1688 | |||
1689 | /* | ||
1690 | * adjust the pointers going up the tree, starting at level | ||
1691 | * making sure the right key of each node is points to 'key'. | ||
1692 | * This is used after shifting pointers to the left, so it stops | ||
1693 | * fixing up pointers when a given leaf/node is not in slot 0 of the | ||
1694 | * higher levels | ||
1695 | * | ||
1696 | * If this fails to write a tree block, it returns -1, but continues | ||
1697 | * fixing up the blocks in ram so the tree is consistent. | ||
1698 | */ | ||
1699 | static int fixup_low_keys(struct btrfs_trans_handle *trans, | ||
1700 | struct btrfs_root *root, struct btrfs_path *path, | ||
1701 | struct btrfs_disk_key *key, int level) | ||
1702 | { | ||
1703 | int i; | ||
1704 | int ret = 0; | ||
1705 | struct extent_buffer *t; | ||
1706 | |||
1707 | for (i = level; i < BTRFS_MAX_LEVEL; i++) { | ||
1708 | int tslot = path->slots[i]; | ||
1709 | if (!path->nodes[i]) | ||
1710 | break; | ||
1711 | t = path->nodes[i]; | ||
1712 | btrfs_set_node_key(t, key, tslot); | ||
1713 | btrfs_mark_buffer_dirty(path->nodes[i]); | ||
1714 | if (tslot != 0) | ||
1715 | break; | ||
1716 | } | ||
1717 | return ret; | ||
1718 | } | ||
1719 | |||
1720 | /* | ||
1721 | * update item key. | ||
1722 | * | ||
1723 | * This function isn't completely safe. It's the caller's responsibility | ||
1724 | * that the new key won't break the order | ||
1725 | */ | ||
1726 | int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans, | ||
1727 | struct btrfs_root *root, struct btrfs_path *path, | ||
1728 | struct btrfs_key *new_key) | ||
1729 | { | ||
1730 | struct btrfs_disk_key disk_key; | ||
1731 | struct extent_buffer *eb; | ||
1732 | int slot; | ||
1733 | |||
1734 | eb = path->nodes[0]; | ||
1735 | slot = path->slots[0]; | ||
1736 | if (slot > 0) { | ||
1737 | btrfs_item_key(eb, &disk_key, slot - 1); | ||
1738 | if (comp_keys(&disk_key, new_key) >= 0) | ||
1739 | return -1; | ||
1740 | } | ||
1741 | if (slot < btrfs_header_nritems(eb) - 1) { | ||
1742 | btrfs_item_key(eb, &disk_key, slot + 1); | ||
1743 | if (comp_keys(&disk_key, new_key) <= 0) | ||
1744 | return -1; | ||
1745 | } | ||
1746 | |||
1747 | btrfs_cpu_key_to_disk(&disk_key, new_key); | ||
1748 | btrfs_set_item_key(eb, &disk_key, slot); | ||
1749 | btrfs_mark_buffer_dirty(eb); | ||
1750 | if (slot == 0) | ||
1751 | fixup_low_keys(trans, root, path, &disk_key, 1); | ||
1752 | return 0; | ||
1753 | } | ||
1754 | |||
1755 | /* | ||
1756 | * try to push data from one node into the next node left in the | ||
1757 | * tree. | ||
1758 | * | ||
1759 | * returns 0 if some ptrs were pushed left, < 0 if there was some horrible | ||
1760 | * error, and > 0 if there was no room in the left hand block. | ||
1761 | */ | ||
1762 | static int push_node_left(struct btrfs_trans_handle *trans, | ||
1763 | struct btrfs_root *root, struct extent_buffer *dst, | ||
1764 | struct extent_buffer *src, int empty) | ||
1765 | { | ||
1766 | int push_items = 0; | ||
1767 | int src_nritems; | ||
1768 | int dst_nritems; | ||
1769 | int ret = 0; | ||
1770 | |||
1771 | src_nritems = btrfs_header_nritems(src); | ||
1772 | dst_nritems = btrfs_header_nritems(dst); | ||
1773 | push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems; | ||
1774 | WARN_ON(btrfs_header_generation(src) != trans->transid); | ||
1775 | WARN_ON(btrfs_header_generation(dst) != trans->transid); | ||
1776 | |||
1777 | if (!empty && src_nritems <= 8) | ||
1778 | return 1; | ||
1779 | |||
1780 | if (push_items <= 0) | ||
1781 | return 1; | ||
1782 | |||
1783 | if (empty) { | ||
1784 | push_items = min(src_nritems, push_items); | ||
1785 | if (push_items < src_nritems) { | ||
1786 | /* leave at least 8 pointers in the node if | ||
1787 | * we aren't going to empty it | ||
1788 | */ | ||
1789 | if (src_nritems - push_items < 8) { | ||
1790 | if (push_items <= 8) | ||
1791 | return 1; | ||
1792 | push_items -= 8; | ||
1793 | } | ||
1794 | } | ||
1795 | } else | ||
1796 | push_items = min(src_nritems - 8, push_items); | ||
1797 | |||
1798 | copy_extent_buffer(dst, src, | ||
1799 | btrfs_node_key_ptr_offset(dst_nritems), | ||
1800 | btrfs_node_key_ptr_offset(0), | ||
1801 | push_items * sizeof(struct btrfs_key_ptr)); | ||
1802 | |||
1803 | if (push_items < src_nritems) { | ||
1804 | memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0), | ||
1805 | btrfs_node_key_ptr_offset(push_items), | ||
1806 | (src_nritems - push_items) * | ||
1807 | sizeof(struct btrfs_key_ptr)); | ||
1808 | } | ||
1809 | btrfs_set_header_nritems(src, src_nritems - push_items); | ||
1810 | btrfs_set_header_nritems(dst, dst_nritems + push_items); | ||
1811 | btrfs_mark_buffer_dirty(src); | ||
1812 | btrfs_mark_buffer_dirty(dst); | ||
1813 | |||
1814 | ret = btrfs_update_ref(trans, root, src, dst, dst_nritems, push_items); | ||
1815 | BUG_ON(ret); | ||
1816 | |||
1817 | return ret; | ||
1818 | } | ||
1819 | |||
1820 | /* | ||
1821 | * try to push data from one node into the next node right in the | ||
1822 | * tree. | ||
1823 | * | ||
1824 | * returns 0 if some ptrs were pushed, < 0 if there was some horrible | ||
1825 | * error, and > 0 if there was no room in the right hand block. | ||
1826 | * | ||
1827 | * this will only push up to 1/2 the contents of the left node over | ||
1828 | */ | ||
1829 | static int balance_node_right(struct btrfs_trans_handle *trans, | ||
1830 | struct btrfs_root *root, | ||
1831 | struct extent_buffer *dst, | ||
1832 | struct extent_buffer *src) | ||
1833 | { | ||
1834 | int push_items = 0; | ||
1835 | int max_push; | ||
1836 | int src_nritems; | ||
1837 | int dst_nritems; | ||
1838 | int ret = 0; | ||
1839 | |||
1840 | WARN_ON(btrfs_header_generation(src) != trans->transid); | ||
1841 | WARN_ON(btrfs_header_generation(dst) != trans->transid); | ||
1842 | |||
1843 | src_nritems = btrfs_header_nritems(src); | ||
1844 | dst_nritems = btrfs_header_nritems(dst); | ||
1845 | push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems; | ||
1846 | if (push_items <= 0) | ||
1847 | return 1; | ||
1848 | |||
1849 | if (src_nritems < 4) | ||
1850 | return 1; | ||
1851 | |||
1852 | max_push = src_nritems / 2 + 1; | ||
1853 | /* don't try to empty the node */ | ||
1854 | if (max_push >= src_nritems) | ||
1855 | return 1; | ||
1856 | |||
1857 | if (max_push < push_items) | ||
1858 | push_items = max_push; | ||
1859 | |||
1860 | memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items), | ||
1861 | btrfs_node_key_ptr_offset(0), | ||
1862 | (dst_nritems) * | ||
1863 | sizeof(struct btrfs_key_ptr)); | ||
1864 | |||
1865 | copy_extent_buffer(dst, src, | ||
1866 | btrfs_node_key_ptr_offset(0), | ||
1867 | btrfs_node_key_ptr_offset(src_nritems - push_items), | ||
1868 | push_items * sizeof(struct btrfs_key_ptr)); | ||
1869 | |||
1870 | btrfs_set_header_nritems(src, src_nritems - push_items); | ||
1871 | btrfs_set_header_nritems(dst, dst_nritems + push_items); | ||
1872 | |||
1873 | btrfs_mark_buffer_dirty(src); | ||
1874 | btrfs_mark_buffer_dirty(dst); | ||
1875 | |||
1876 | ret = btrfs_update_ref(trans, root, src, dst, 0, push_items); | ||
1877 | BUG_ON(ret); | ||
1878 | |||
1879 | return ret; | ||
1880 | } | ||
1881 | |||
1882 | /* | ||
1883 | * helper function to insert a new root level in the tree. | ||
1884 | * A new node is allocated, and a single item is inserted to | ||
1885 | * point to the existing root | ||
1886 | * | ||
1887 | * returns zero on success or < 0 on failure. | ||
1888 | */ | ||
1889 | static noinline int insert_new_root(struct btrfs_trans_handle *trans, | ||
1890 | struct btrfs_root *root, | ||
1891 | struct btrfs_path *path, int level) | ||
1892 | { | ||
1893 | u64 lower_gen; | ||
1894 | struct extent_buffer *lower; | ||
1895 | struct extent_buffer *c; | ||
1896 | struct extent_buffer *old; | ||
1897 | struct btrfs_disk_key lower_key; | ||
1898 | int ret; | ||
1899 | |||
1900 | BUG_ON(path->nodes[level]); | ||
1901 | BUG_ON(path->nodes[level-1] != root->node); | ||
1902 | |||
1903 | lower = path->nodes[level-1]; | ||
1904 | if (level == 1) | ||
1905 | btrfs_item_key(lower, &lower_key, 0); | ||
1906 | else | ||
1907 | btrfs_node_key(lower, &lower_key, 0); | ||
1908 | |||
1909 | c = btrfs_alloc_free_block(trans, root, root->nodesize, 0, | ||
1910 | root->root_key.objectid, trans->transid, | ||
1911 | level, root->node->start, 0); | ||
1912 | if (IS_ERR(c)) | ||
1913 | return PTR_ERR(c); | ||
1914 | |||
1915 | memset_extent_buffer(c, 0, 0, root->nodesize); | ||
1916 | btrfs_set_header_nritems(c, 1); | ||
1917 | btrfs_set_header_level(c, level); | ||
1918 | btrfs_set_header_bytenr(c, c->start); | ||
1919 | btrfs_set_header_generation(c, trans->transid); | ||
1920 | btrfs_set_header_owner(c, root->root_key.objectid); | ||
1921 | |||
1922 | write_extent_buffer(c, root->fs_info->fsid, | ||
1923 | (unsigned long)btrfs_header_fsid(c), | ||
1924 | BTRFS_FSID_SIZE); | ||
1925 | |||
1926 | write_extent_buffer(c, root->fs_info->chunk_tree_uuid, | ||
1927 | (unsigned long)btrfs_header_chunk_tree_uuid(c), | ||
1928 | BTRFS_UUID_SIZE); | ||
1929 | |||
1930 | btrfs_set_node_key(c, &lower_key, 0); | ||
1931 | btrfs_set_node_blockptr(c, 0, lower->start); | ||
1932 | lower_gen = btrfs_header_generation(lower); | ||
1933 | WARN_ON(lower_gen != trans->transid); | ||
1934 | |||
1935 | btrfs_set_node_ptr_generation(c, 0, lower_gen); | ||
1936 | |||
1937 | btrfs_mark_buffer_dirty(c); | ||
1938 | |||
1939 | spin_lock(&root->node_lock); | ||
1940 | old = root->node; | ||
1941 | root->node = c; | ||
1942 | spin_unlock(&root->node_lock); | ||
1943 | |||
1944 | ret = btrfs_update_extent_ref(trans, root, lower->start, | ||
1945 | lower->start, c->start, | ||
1946 | root->root_key.objectid, | ||
1947 | trans->transid, level - 1); | ||
1948 | BUG_ON(ret); | ||
1949 | |||
1950 | /* the super has an extra ref to root->node */ | ||
1951 | free_extent_buffer(old); | ||
1952 | |||
1953 | add_root_to_dirty_list(root); | ||
1954 | extent_buffer_get(c); | ||
1955 | path->nodes[level] = c; | ||
1956 | path->locks[level] = 1; | ||
1957 | path->slots[level] = 0; | ||
1958 | return 0; | ||
1959 | } | ||
1960 | |||
1961 | /* | ||
1962 | * worker function to insert a single pointer in a node. | ||
1963 | * the node should have enough room for the pointer already | ||
1964 | * | ||
1965 | * slot and level indicate where you want the key to go, and | ||
1966 | * blocknr is the block the key points to. | ||
1967 | * | ||
1968 | * returns zero on success and < 0 on any error | ||
1969 | */ | ||
1970 | static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root | ||
1971 | *root, struct btrfs_path *path, struct btrfs_disk_key | ||
1972 | *key, u64 bytenr, int slot, int level) | ||
1973 | { | ||
1974 | struct extent_buffer *lower; | ||
1975 | int nritems; | ||
1976 | |||
1977 | BUG_ON(!path->nodes[level]); | ||
1978 | lower = path->nodes[level]; | ||
1979 | nritems = btrfs_header_nritems(lower); | ||
1980 | if (slot > nritems) | ||
1981 | BUG(); | ||
1982 | if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root)) | ||
1983 | BUG(); | ||
1984 | if (slot != nritems) { | ||
1985 | memmove_extent_buffer(lower, | ||
1986 | btrfs_node_key_ptr_offset(slot + 1), | ||
1987 | btrfs_node_key_ptr_offset(slot), | ||
1988 | (nritems - slot) * sizeof(struct btrfs_key_ptr)); | ||
1989 | } | ||
1990 | btrfs_set_node_key(lower, key, slot); | ||
1991 | btrfs_set_node_blockptr(lower, slot, bytenr); | ||
1992 | WARN_ON(trans->transid == 0); | ||
1993 | btrfs_set_node_ptr_generation(lower, slot, trans->transid); | ||
1994 | btrfs_set_header_nritems(lower, nritems + 1); | ||
1995 | btrfs_mark_buffer_dirty(lower); | ||
1996 | return 0; | ||
1997 | } | ||
1998 | |||
1999 | /* | ||
2000 | * split the node at the specified level in path in two. | ||
2001 | * The path is corrected to point to the appropriate node after the split | ||
2002 | * | ||
2003 | * Before splitting this tries to make some room in the node by pushing | ||
2004 | * left and right, if either one works, it returns right away. | ||
2005 | * | ||
2006 | * returns 0 on success and < 0 on failure | ||
2007 | */ | ||
2008 | static noinline int split_node(struct btrfs_trans_handle *trans, | ||
2009 | struct btrfs_root *root, | ||
2010 | struct btrfs_path *path, int level) | ||
2011 | { | ||
2012 | struct extent_buffer *c; | ||
2013 | struct extent_buffer *split; | ||
2014 | struct btrfs_disk_key disk_key; | ||
2015 | int mid; | ||
2016 | int ret; | ||
2017 | int wret; | ||
2018 | u32 c_nritems; | ||
2019 | |||
2020 | c = path->nodes[level]; | ||
2021 | WARN_ON(btrfs_header_generation(c) != trans->transid); | ||
2022 | if (c == root->node) { | ||
2023 | /* trying to split the root, lets make a new one */ | ||
2024 | ret = insert_new_root(trans, root, path, level + 1); | ||
2025 | if (ret) | ||
2026 | return ret; | ||
2027 | } else { | ||
2028 | ret = push_nodes_for_insert(trans, root, path, level); | ||
2029 | c = path->nodes[level]; | ||
2030 | if (!ret && btrfs_header_nritems(c) < | ||
2031 | BTRFS_NODEPTRS_PER_BLOCK(root) - 3) | ||
2032 | return 0; | ||
2033 | if (ret < 0) | ||
2034 | return ret; | ||
2035 | } | ||
2036 | |||
2037 | c_nritems = btrfs_header_nritems(c); | ||
2038 | |||
2039 | split = btrfs_alloc_free_block(trans, root, root->nodesize, | ||
2040 | path->nodes[level + 1]->start, | ||
2041 | root->root_key.objectid, | ||
2042 | trans->transid, level, c->start, 0); | ||
2043 | if (IS_ERR(split)) | ||
2044 | return PTR_ERR(split); | ||
2045 | |||
2046 | btrfs_set_header_flags(split, btrfs_header_flags(c)); | ||
2047 | btrfs_set_header_level(split, btrfs_header_level(c)); | ||
2048 | btrfs_set_header_bytenr(split, split->start); | ||
2049 | btrfs_set_header_generation(split, trans->transid); | ||
2050 | btrfs_set_header_owner(split, root->root_key.objectid); | ||
2051 | btrfs_set_header_flags(split, 0); | ||
2052 | write_extent_buffer(split, root->fs_info->fsid, | ||
2053 | (unsigned long)btrfs_header_fsid(split), | ||
2054 | BTRFS_FSID_SIZE); | ||
2055 | write_extent_buffer(split, root->fs_info->chunk_tree_uuid, | ||
2056 | (unsigned long)btrfs_header_chunk_tree_uuid(split), | ||
2057 | BTRFS_UUID_SIZE); | ||
2058 | |||
2059 | mid = (c_nritems + 1) / 2; | ||
2060 | |||
2061 | copy_extent_buffer(split, c, | ||
2062 | btrfs_node_key_ptr_offset(0), | ||
2063 | btrfs_node_key_ptr_offset(mid), | ||
2064 | (c_nritems - mid) * sizeof(struct btrfs_key_ptr)); | ||
2065 | btrfs_set_header_nritems(split, c_nritems - mid); | ||
2066 | btrfs_set_header_nritems(c, mid); | ||
2067 | ret = 0; | ||
2068 | |||
2069 | btrfs_mark_buffer_dirty(c); | ||
2070 | btrfs_mark_buffer_dirty(split); | ||
2071 | |||
2072 | btrfs_node_key(split, &disk_key, 0); | ||
2073 | wret = insert_ptr(trans, root, path, &disk_key, split->start, | ||
2074 | path->slots[level + 1] + 1, | ||
2075 | level + 1); | ||
2076 | if (wret) | ||
2077 | ret = wret; | ||
2078 | |||
2079 | ret = btrfs_update_ref(trans, root, c, split, 0, c_nritems - mid); | ||
2080 | BUG_ON(ret); | ||
2081 | |||
2082 | if (path->slots[level] >= mid) { | ||
2083 | path->slots[level] -= mid; | ||
2084 | btrfs_tree_unlock(c); | ||
2085 | free_extent_buffer(c); | ||
2086 | path->nodes[level] = split; | ||
2087 | path->slots[level + 1] += 1; | ||
2088 | } else { | ||
2089 | btrfs_tree_unlock(split); | ||
2090 | free_extent_buffer(split); | ||
2091 | } | ||
2092 | return ret; | ||
2093 | } | ||
2094 | |||
2095 | /* | ||
2096 | * how many bytes are required to store the items in a leaf. start | ||
2097 | * and nr indicate which items in the leaf to check. This totals up the | ||
2098 | * space used both by the item structs and the item data | ||
2099 | */ | ||
2100 | static int leaf_space_used(struct extent_buffer *l, int start, int nr) | ||
2101 | { | ||
2102 | int data_len; | ||
2103 | int nritems = btrfs_header_nritems(l); | ||
2104 | int end = min(nritems, start + nr) - 1; | ||
2105 | |||
2106 | if (!nr) | ||
2107 | return 0; | ||
2108 | data_len = btrfs_item_end_nr(l, start); | ||
2109 | data_len = data_len - btrfs_item_offset_nr(l, end); | ||
2110 | data_len += sizeof(struct btrfs_item) * nr; | ||
2111 | WARN_ON(data_len < 0); | ||
2112 | return data_len; | ||
2113 | } | ||
2114 | |||
2115 | /* | ||
2116 | * The space between the end of the leaf items and | ||
2117 | * the start of the leaf data. IOW, how much room | ||
2118 | * the leaf has left for both items and data | ||
2119 | */ | ||
2120 | noinline int btrfs_leaf_free_space(struct btrfs_root *root, | ||
2121 | struct extent_buffer *leaf) | ||
2122 | { | ||
2123 | int nritems = btrfs_header_nritems(leaf); | ||
2124 | int ret; | ||
2125 | ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems); | ||
2126 | if (ret < 0) { | ||
2127 | printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, " | ||
2128 | "used %d nritems %d\n", | ||
2129 | ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root), | ||
2130 | leaf_space_used(leaf, 0, nritems), nritems); | ||
2131 | } | ||
2132 | return ret; | ||
2133 | } | ||
2134 | |||
2135 | /* | ||
2136 | * push some data in the path leaf to the right, trying to free up at | ||
2137 | * least data_size bytes. returns zero if the push worked, nonzero otherwise | ||
2138 | * | ||
2139 | * returns 1 if the push failed because the other node didn't have enough | ||
2140 | * room, 0 if everything worked out and < 0 if there were major errors. | ||
2141 | */ | ||
2142 | static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root | ||
2143 | *root, struct btrfs_path *path, int data_size, | ||
2144 | int empty) | ||
2145 | { | ||
2146 | struct extent_buffer *left = path->nodes[0]; | ||
2147 | struct extent_buffer *right; | ||
2148 | struct extent_buffer *upper; | ||
2149 | struct btrfs_disk_key disk_key; | ||
2150 | int slot; | ||
2151 | u32 i; | ||
2152 | int free_space; | ||
2153 | int push_space = 0; | ||
2154 | int push_items = 0; | ||
2155 | struct btrfs_item *item; | ||
2156 | u32 left_nritems; | ||
2157 | u32 nr; | ||
2158 | u32 right_nritems; | ||
2159 | u32 data_end; | ||
2160 | u32 this_item_size; | ||
2161 | int ret; | ||
2162 | |||
2163 | slot = path->slots[1]; | ||
2164 | if (!path->nodes[1]) | ||
2165 | return 1; | ||
2166 | |||
2167 | upper = path->nodes[1]; | ||
2168 | if (slot >= btrfs_header_nritems(upper) - 1) | ||
2169 | return 1; | ||
2170 | |||
2171 | WARN_ON(!btrfs_tree_locked(path->nodes[1])); | ||
2172 | |||
2173 | right = read_node_slot(root, upper, slot + 1); | ||
2174 | btrfs_tree_lock(right); | ||
2175 | free_space = btrfs_leaf_free_space(root, right); | ||
2176 | if (free_space < data_size) | ||
2177 | goto out_unlock; | ||
2178 | |||
2179 | /* cow and double check */ | ||
2180 | ret = btrfs_cow_block(trans, root, right, upper, | ||
2181 | slot + 1, &right, 0); | ||
2182 | if (ret) | ||
2183 | goto out_unlock; | ||
2184 | |||
2185 | free_space = btrfs_leaf_free_space(root, right); | ||
2186 | if (free_space < data_size) | ||
2187 | goto out_unlock; | ||
2188 | |||
2189 | left_nritems = btrfs_header_nritems(left); | ||
2190 | if (left_nritems == 0) | ||
2191 | goto out_unlock; | ||
2192 | |||
2193 | if (empty) | ||
2194 | nr = 0; | ||
2195 | else | ||
2196 | nr = 1; | ||
2197 | |||
2198 | if (path->slots[0] >= left_nritems) | ||
2199 | push_space += data_size; | ||
2200 | |||
2201 | i = left_nritems - 1; | ||
2202 | while (i >= nr) { | ||
2203 | item = btrfs_item_nr(left, i); | ||
2204 | |||
2205 | if (!empty && push_items > 0) { | ||
2206 | if (path->slots[0] > i) | ||
2207 | break; | ||
2208 | if (path->slots[0] == i) { | ||
2209 | int space = btrfs_leaf_free_space(root, left); | ||
2210 | if (space + push_space * 2 > free_space) | ||
2211 | break; | ||
2212 | } | ||
2213 | } | ||
2214 | |||
2215 | if (path->slots[0] == i) | ||
2216 | push_space += data_size; | ||
2217 | |||
2218 | if (!left->map_token) { | ||
2219 | map_extent_buffer(left, (unsigned long)item, | ||
2220 | sizeof(struct btrfs_item), | ||
2221 | &left->map_token, &left->kaddr, | ||
2222 | &left->map_start, &left->map_len, | ||
2223 | KM_USER1); | ||
2224 | } | ||
2225 | |||
2226 | this_item_size = btrfs_item_size(left, item); | ||
2227 | if (this_item_size + sizeof(*item) + push_space > free_space) | ||
2228 | break; | ||
2229 | |||
2230 | push_items++; | ||
2231 | push_space += this_item_size + sizeof(*item); | ||
2232 | if (i == 0) | ||
2233 | break; | ||
2234 | i--; | ||
2235 | } | ||
2236 | if (left->map_token) { | ||
2237 | unmap_extent_buffer(left, left->map_token, KM_USER1); | ||
2238 | left->map_token = NULL; | ||
2239 | } | ||
2240 | |||
2241 | if (push_items == 0) | ||
2242 | goto out_unlock; | ||
2243 | |||
2244 | if (!empty && push_items == left_nritems) | ||
2245 | WARN_ON(1); | ||
2246 | |||
2247 | /* push left to right */ | ||
2248 | right_nritems = btrfs_header_nritems(right); | ||
2249 | |||
2250 | push_space = btrfs_item_end_nr(left, left_nritems - push_items); | ||
2251 | push_space -= leaf_data_end(root, left); | ||
2252 | |||
2253 | /* make room in the right data area */ | ||
2254 | data_end = leaf_data_end(root, right); | ||
2255 | memmove_extent_buffer(right, | ||
2256 | btrfs_leaf_data(right) + data_end - push_space, | ||
2257 | btrfs_leaf_data(right) + data_end, | ||
2258 | BTRFS_LEAF_DATA_SIZE(root) - data_end); | ||
2259 | |||
2260 | /* copy from the left data area */ | ||
2261 | copy_extent_buffer(right, left, btrfs_leaf_data(right) + | ||
2262 | BTRFS_LEAF_DATA_SIZE(root) - push_space, | ||
2263 | btrfs_leaf_data(left) + leaf_data_end(root, left), | ||
2264 | push_space); | ||
2265 | |||
2266 | memmove_extent_buffer(right, btrfs_item_nr_offset(push_items), | ||
2267 | btrfs_item_nr_offset(0), | ||
2268 | right_nritems * sizeof(struct btrfs_item)); | ||
2269 | |||
2270 | /* copy the items from left to right */ | ||
2271 | copy_extent_buffer(right, left, btrfs_item_nr_offset(0), | ||
2272 | btrfs_item_nr_offset(left_nritems - push_items), | ||
2273 | push_items * sizeof(struct btrfs_item)); | ||
2274 | |||
2275 | /* update the item pointers */ | ||
2276 | right_nritems += push_items; | ||
2277 | btrfs_set_header_nritems(right, right_nritems); | ||
2278 | push_space = BTRFS_LEAF_DATA_SIZE(root); | ||
2279 | for (i = 0; i < right_nritems; i++) { | ||
2280 | item = btrfs_item_nr(right, i); | ||
2281 | if (!right->map_token) { | ||
2282 | map_extent_buffer(right, (unsigned long)item, | ||
2283 | sizeof(struct btrfs_item), | ||
2284 | &right->map_token, &right->kaddr, | ||
2285 | &right->map_start, &right->map_len, | ||
2286 | KM_USER1); | ||
2287 | } | ||
2288 | push_space -= btrfs_item_size(right, item); | ||
2289 | btrfs_set_item_offset(right, item, push_space); | ||
2290 | } | ||
2291 | |||
2292 | if (right->map_token) { | ||
2293 | unmap_extent_buffer(right, right->map_token, KM_USER1); | ||
2294 | right->map_token = NULL; | ||
2295 | } | ||
2296 | left_nritems -= push_items; | ||
2297 | btrfs_set_header_nritems(left, left_nritems); | ||
2298 | |||
2299 | if (left_nritems) | ||
2300 | btrfs_mark_buffer_dirty(left); | ||
2301 | btrfs_mark_buffer_dirty(right); | ||
2302 | |||
2303 | ret = btrfs_update_ref(trans, root, left, right, 0, push_items); | ||
2304 | BUG_ON(ret); | ||
2305 | |||
2306 | btrfs_item_key(right, &disk_key, 0); | ||
2307 | btrfs_set_node_key(upper, &disk_key, slot + 1); | ||
2308 | btrfs_mark_buffer_dirty(upper); | ||
2309 | |||
2310 | /* then fixup the leaf pointer in the path */ | ||
2311 | if (path->slots[0] >= left_nritems) { | ||
2312 | path->slots[0] -= left_nritems; | ||
2313 | if (btrfs_header_nritems(path->nodes[0]) == 0) | ||
2314 | clean_tree_block(trans, root, path->nodes[0]); | ||
2315 | btrfs_tree_unlock(path->nodes[0]); | ||
2316 | free_extent_buffer(path->nodes[0]); | ||
2317 | path->nodes[0] = right; | ||
2318 | path->slots[1] += 1; | ||
2319 | } else { | ||
2320 | btrfs_tree_unlock(right); | ||
2321 | free_extent_buffer(right); | ||
2322 | } | ||
2323 | return 0; | ||
2324 | |||
2325 | out_unlock: | ||
2326 | btrfs_tree_unlock(right); | ||
2327 | free_extent_buffer(right); | ||
2328 | return 1; | ||
2329 | } | ||
2330 | |||
2331 | /* | ||
2332 | * push some data in the path leaf to the left, trying to free up at | ||
2333 | * least data_size bytes. returns zero if the push worked, nonzero otherwise | ||
2334 | */ | ||
2335 | static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root | ||
2336 | *root, struct btrfs_path *path, int data_size, | ||
2337 | int empty) | ||
2338 | { | ||
2339 | struct btrfs_disk_key disk_key; | ||
2340 | struct extent_buffer *right = path->nodes[0]; | ||
2341 | struct extent_buffer *left; | ||
2342 | int slot; | ||
2343 | int i; | ||
2344 | int free_space; | ||
2345 | int push_space = 0; | ||
2346 | int push_items = 0; | ||
2347 | struct btrfs_item *item; | ||
2348 | u32 old_left_nritems; | ||
2349 | u32 right_nritems; | ||
2350 | u32 nr; | ||
2351 | int ret = 0; | ||
2352 | int wret; | ||
2353 | u32 this_item_size; | ||
2354 | u32 old_left_item_size; | ||
2355 | |||
2356 | slot = path->slots[1]; | ||
2357 | if (slot == 0) | ||
2358 | return 1; | ||
2359 | if (!path->nodes[1]) | ||
2360 | return 1; | ||
2361 | |||
2362 | right_nritems = btrfs_header_nritems(right); | ||
2363 | if (right_nritems == 0) | ||
2364 | return 1; | ||
2365 | |||
2366 | WARN_ON(!btrfs_tree_locked(path->nodes[1])); | ||
2367 | |||
2368 | left = read_node_slot(root, path->nodes[1], slot - 1); | ||
2369 | btrfs_tree_lock(left); | ||
2370 | free_space = btrfs_leaf_free_space(root, left); | ||
2371 | if (free_space < data_size) { | ||
2372 | ret = 1; | ||
2373 | goto out; | ||
2374 | } | ||
2375 | |||
2376 | /* cow and double check */ | ||
2377 | ret = btrfs_cow_block(trans, root, left, | ||
2378 | path->nodes[1], slot - 1, &left, 0); | ||
2379 | if (ret) { | ||
2380 | /* we hit -ENOSPC, but it isn't fatal here */ | ||
2381 | ret = 1; | ||
2382 | goto out; | ||
2383 | } | ||
2384 | |||
2385 | free_space = btrfs_leaf_free_space(root, left); | ||
2386 | if (free_space < data_size) { | ||
2387 | ret = 1; | ||
2388 | goto out; | ||
2389 | } | ||
2390 | |||
2391 | if (empty) | ||
2392 | nr = right_nritems; | ||
2393 | else | ||
2394 | nr = right_nritems - 1; | ||
2395 | |||
2396 | for (i = 0; i < nr; i++) { | ||
2397 | item = btrfs_item_nr(right, i); | ||
2398 | if (!right->map_token) { | ||
2399 | map_extent_buffer(right, (unsigned long)item, | ||
2400 | sizeof(struct btrfs_item), | ||
2401 | &right->map_token, &right->kaddr, | ||
2402 | &right->map_start, &right->map_len, | ||
2403 | KM_USER1); | ||
2404 | } | ||
2405 | |||
2406 | if (!empty && push_items > 0) { | ||
2407 | if (path->slots[0] < i) | ||
2408 | break; | ||
2409 | if (path->slots[0] == i) { | ||
2410 | int space = btrfs_leaf_free_space(root, right); | ||
2411 | if (space + push_space * 2 > free_space) | ||
2412 | break; | ||
2413 | } | ||
2414 | } | ||
2415 | |||
2416 | if (path->slots[0] == i) | ||
2417 | push_space += data_size; | ||
2418 | |||
2419 | this_item_size = btrfs_item_size(right, item); | ||
2420 | if (this_item_size + sizeof(*item) + push_space > free_space) | ||
2421 | break; | ||
2422 | |||
2423 | push_items++; | ||
2424 | push_space += this_item_size + sizeof(*item); | ||
2425 | } | ||
2426 | |||
2427 | if (right->map_token) { | ||
2428 | unmap_extent_buffer(right, right->map_token, KM_USER1); | ||
2429 | right->map_token = NULL; | ||
2430 | } | ||
2431 | |||
2432 | if (push_items == 0) { | ||
2433 | ret = 1; | ||
2434 | goto out; | ||
2435 | } | ||
2436 | if (!empty && push_items == btrfs_header_nritems(right)) | ||
2437 | WARN_ON(1); | ||
2438 | |||
2439 | /* push data from right to left */ | ||
2440 | copy_extent_buffer(left, right, | ||
2441 | btrfs_item_nr_offset(btrfs_header_nritems(left)), | ||
2442 | btrfs_item_nr_offset(0), | ||
2443 | push_items * sizeof(struct btrfs_item)); | ||
2444 | |||
2445 | push_space = BTRFS_LEAF_DATA_SIZE(root) - | ||
2446 | btrfs_item_offset_nr(right, push_items - 1); | ||
2447 | |||
2448 | copy_extent_buffer(left, right, btrfs_leaf_data(left) + | ||
2449 | leaf_data_end(root, left) - push_space, | ||
2450 | btrfs_leaf_data(right) + | ||
2451 | btrfs_item_offset_nr(right, push_items - 1), | ||
2452 | push_space); | ||
2453 | old_left_nritems = btrfs_header_nritems(left); | ||
2454 | BUG_ON(old_left_nritems <= 0); | ||
2455 | |||
2456 | old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1); | ||
2457 | for (i = old_left_nritems; i < old_left_nritems + push_items; i++) { | ||
2458 | u32 ioff; | ||
2459 | |||
2460 | item = btrfs_item_nr(left, i); | ||
2461 | if (!left->map_token) { | ||
2462 | map_extent_buffer(left, (unsigned long)item, | ||
2463 | sizeof(struct btrfs_item), | ||
2464 | &left->map_token, &left->kaddr, | ||
2465 | &left->map_start, &left->map_len, | ||
2466 | KM_USER1); | ||
2467 | } | ||
2468 | |||
2469 | ioff = btrfs_item_offset(left, item); | ||
2470 | btrfs_set_item_offset(left, item, | ||
2471 | ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size)); | ||
2472 | } | ||
2473 | btrfs_set_header_nritems(left, old_left_nritems + push_items); | ||
2474 | if (left->map_token) { | ||
2475 | unmap_extent_buffer(left, left->map_token, KM_USER1); | ||
2476 | left->map_token = NULL; | ||
2477 | } | ||
2478 | |||
2479 | /* fixup right node */ | ||
2480 | if (push_items > right_nritems) { | ||
2481 | printk(KERN_CRIT "push items %d nr %u\n", push_items, | ||
2482 | right_nritems); | ||
2483 | WARN_ON(1); | ||
2484 | } | ||
2485 | |||
2486 | if (push_items < right_nritems) { | ||
2487 | push_space = btrfs_item_offset_nr(right, push_items - 1) - | ||
2488 | leaf_data_end(root, right); | ||
2489 | memmove_extent_buffer(right, btrfs_leaf_data(right) + | ||
2490 | BTRFS_LEAF_DATA_SIZE(root) - push_space, | ||
2491 | btrfs_leaf_data(right) + | ||
2492 | leaf_data_end(root, right), push_space); | ||
2493 | |||
2494 | memmove_extent_buffer(right, btrfs_item_nr_offset(0), | ||
2495 | btrfs_item_nr_offset(push_items), | ||
2496 | (btrfs_header_nritems(right) - push_items) * | ||
2497 | sizeof(struct btrfs_item)); | ||
2498 | } | ||
2499 | right_nritems -= push_items; | ||
2500 | btrfs_set_header_nritems(right, right_nritems); | ||
2501 | push_space = BTRFS_LEAF_DATA_SIZE(root); | ||
2502 | for (i = 0; i < right_nritems; i++) { | ||
2503 | item = btrfs_item_nr(right, i); | ||
2504 | |||
2505 | if (!right->map_token) { | ||
2506 | map_extent_buffer(right, (unsigned long)item, | ||
2507 | sizeof(struct btrfs_item), | ||
2508 | &right->map_token, &right->kaddr, | ||
2509 | &right->map_start, &right->map_len, | ||
2510 | KM_USER1); | ||
2511 | } | ||
2512 | |||
2513 | push_space = push_space - btrfs_item_size(right, item); | ||
2514 | btrfs_set_item_offset(right, item, push_space); | ||
2515 | } | ||
2516 | if (right->map_token) { | ||
2517 | unmap_extent_buffer(right, right->map_token, KM_USER1); | ||
2518 | right->map_token = NULL; | ||
2519 | } | ||
2520 | |||
2521 | btrfs_mark_buffer_dirty(left); | ||
2522 | if (right_nritems) | ||
2523 | btrfs_mark_buffer_dirty(right); | ||
2524 | |||
2525 | ret = btrfs_update_ref(trans, root, right, left, | ||
2526 | old_left_nritems, push_items); | ||
2527 | BUG_ON(ret); | ||
2528 | |||
2529 | btrfs_item_key(right, &disk_key, 0); | ||
2530 | wret = fixup_low_keys(trans, root, path, &disk_key, 1); | ||
2531 | if (wret) | ||
2532 | ret = wret; | ||
2533 | |||
2534 | /* then fixup the leaf pointer in the path */ | ||
2535 | if (path->slots[0] < push_items) { | ||
2536 | path->slots[0] += old_left_nritems; | ||
2537 | if (btrfs_header_nritems(path->nodes[0]) == 0) | ||
2538 | clean_tree_block(trans, root, path->nodes[0]); | ||
2539 | btrfs_tree_unlock(path->nodes[0]); | ||
2540 | free_extent_buffer(path->nodes[0]); | ||
2541 | path->nodes[0] = left; | ||
2542 | path->slots[1] -= 1; | ||
2543 | } else { | ||
2544 | btrfs_tree_unlock(left); | ||
2545 | free_extent_buffer(left); | ||
2546 | path->slots[0] -= push_items; | ||
2547 | } | ||
2548 | BUG_ON(path->slots[0] < 0); | ||
2549 | return ret; | ||
2550 | out: | ||
2551 | btrfs_tree_unlock(left); | ||
2552 | free_extent_buffer(left); | ||
2553 | return ret; | ||
2554 | } | ||
2555 | |||
2556 | /* | ||
2557 | * split the path's leaf in two, making sure there is at least data_size | ||
2558 | * available for the resulting leaf level of the path. | ||
2559 | * | ||
2560 | * returns 0 if all went well and < 0 on failure. | ||
2561 | */ | ||
2562 | static noinline int split_leaf(struct btrfs_trans_handle *trans, | ||
2563 | struct btrfs_root *root, | ||
2564 | struct btrfs_key *ins_key, | ||
2565 | struct btrfs_path *path, int data_size, | ||
2566 | int extend) | ||
2567 | { | ||
2568 | struct extent_buffer *l; | ||
2569 | u32 nritems; | ||
2570 | int mid; | ||
2571 | int slot; | ||
2572 | struct extent_buffer *right; | ||
2573 | int data_copy_size; | ||
2574 | int rt_data_off; | ||
2575 | int i; | ||
2576 | int ret = 0; | ||
2577 | int wret; | ||
2578 | int double_split; | ||
2579 | int num_doubles = 0; | ||
2580 | struct btrfs_disk_key disk_key; | ||
2581 | |||
2582 | /* first try to make some room by pushing left and right */ | ||
2583 | if (data_size && ins_key->type != BTRFS_DIR_ITEM_KEY) { | ||
2584 | wret = push_leaf_right(trans, root, path, data_size, 0); | ||
2585 | if (wret < 0) | ||
2586 | return wret; | ||
2587 | if (wret) { | ||
2588 | wret = push_leaf_left(trans, root, path, data_size, 0); | ||
2589 | if (wret < 0) | ||
2590 | return wret; | ||
2591 | } | ||
2592 | l = path->nodes[0]; | ||
2593 | |||
2594 | /* did the pushes work? */ | ||
2595 | if (btrfs_leaf_free_space(root, l) >= data_size) | ||
2596 | return 0; | ||
2597 | } | ||
2598 | |||
2599 | if (!path->nodes[1]) { | ||
2600 | ret = insert_new_root(trans, root, path, 1); | ||
2601 | if (ret) | ||
2602 | return ret; | ||
2603 | } | ||
2604 | again: | ||
2605 | double_split = 0; | ||
2606 | l = path->nodes[0]; | ||
2607 | slot = path->slots[0]; | ||
2608 | nritems = btrfs_header_nritems(l); | ||
2609 | mid = (nritems + 1) / 2; | ||
2610 | |||
2611 | right = btrfs_alloc_free_block(trans, root, root->leafsize, | ||
2612 | path->nodes[1]->start, | ||
2613 | root->root_key.objectid, | ||
2614 | trans->transid, 0, l->start, 0); | ||
2615 | if (IS_ERR(right)) { | ||
2616 | BUG_ON(1); | ||
2617 | return PTR_ERR(right); | ||
2618 | } | ||
2619 | |||
2620 | memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header)); | ||
2621 | btrfs_set_header_bytenr(right, right->start); | ||
2622 | btrfs_set_header_generation(right, trans->transid); | ||
2623 | btrfs_set_header_owner(right, root->root_key.objectid); | ||
2624 | btrfs_set_header_level(right, 0); | ||
2625 | write_extent_buffer(right, root->fs_info->fsid, | ||
2626 | (unsigned long)btrfs_header_fsid(right), | ||
2627 | BTRFS_FSID_SIZE); | ||
2628 | |||
2629 | write_extent_buffer(right, root->fs_info->chunk_tree_uuid, | ||
2630 | (unsigned long)btrfs_header_chunk_tree_uuid(right), | ||
2631 | BTRFS_UUID_SIZE); | ||
2632 | if (mid <= slot) { | ||
2633 | if (nritems == 1 || | ||
2634 | leaf_space_used(l, mid, nritems - mid) + data_size > | ||
2635 | BTRFS_LEAF_DATA_SIZE(root)) { | ||
2636 | if (slot >= nritems) { | ||
2637 | btrfs_cpu_key_to_disk(&disk_key, ins_key); | ||
2638 | btrfs_set_header_nritems(right, 0); | ||
2639 | wret = insert_ptr(trans, root, path, | ||
2640 | &disk_key, right->start, | ||
2641 | path->slots[1] + 1, 1); | ||
2642 | if (wret) | ||
2643 | ret = wret; | ||
2644 | |||
2645 | btrfs_tree_unlock(path->nodes[0]); | ||
2646 | free_extent_buffer(path->nodes[0]); | ||
2647 | path->nodes[0] = right; | ||
2648 | path->slots[0] = 0; | ||
2649 | path->slots[1] += 1; | ||
2650 | btrfs_mark_buffer_dirty(right); | ||
2651 | return ret; | ||
2652 | } | ||
2653 | mid = slot; | ||
2654 | if (mid != nritems && | ||
2655 | leaf_space_used(l, mid, nritems - mid) + | ||
2656 | data_size > BTRFS_LEAF_DATA_SIZE(root)) { | ||
2657 | double_split = 1; | ||
2658 | } | ||
2659 | } | ||
2660 | } else { | ||
2661 | if (leaf_space_used(l, 0, mid) + data_size > | ||
2662 | BTRFS_LEAF_DATA_SIZE(root)) { | ||
2663 | if (!extend && data_size && slot == 0) { | ||
2664 | btrfs_cpu_key_to_disk(&disk_key, ins_key); | ||
2665 | btrfs_set_header_nritems(right, 0); | ||
2666 | wret = insert_ptr(trans, root, path, | ||
2667 | &disk_key, | ||
2668 | right->start, | ||
2669 | path->slots[1], 1); | ||
2670 | if (wret) | ||
2671 | ret = wret; | ||
2672 | btrfs_tree_unlock(path->nodes[0]); | ||
2673 | free_extent_buffer(path->nodes[0]); | ||
2674 | path->nodes[0] = right; | ||
2675 | path->slots[0] = 0; | ||
2676 | if (path->slots[1] == 0) { | ||
2677 | wret = fixup_low_keys(trans, root, | ||
2678 | path, &disk_key, 1); | ||
2679 | if (wret) | ||
2680 | ret = wret; | ||
2681 | } | ||
2682 | btrfs_mark_buffer_dirty(right); | ||
2683 | return ret; | ||
2684 | } else if ((extend || !data_size) && slot == 0) { | ||
2685 | mid = 1; | ||
2686 | } else { | ||
2687 | mid = slot; | ||
2688 | if (mid != nritems && | ||
2689 | leaf_space_used(l, mid, nritems - mid) + | ||
2690 | data_size > BTRFS_LEAF_DATA_SIZE(root)) { | ||
2691 | double_split = 1; | ||
2692 | } | ||
2693 | } | ||
2694 | } | ||
2695 | } | ||
2696 | nritems = nritems - mid; | ||
2697 | btrfs_set_header_nritems(right, nritems); | ||
2698 | data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l); | ||
2699 | |||
2700 | copy_extent_buffer(right, l, btrfs_item_nr_offset(0), | ||
2701 | btrfs_item_nr_offset(mid), | ||
2702 | nritems * sizeof(struct btrfs_item)); | ||
2703 | |||
2704 | copy_extent_buffer(right, l, | ||
2705 | btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) - | ||
2706 | data_copy_size, btrfs_leaf_data(l) + | ||
2707 | leaf_data_end(root, l), data_copy_size); | ||
2708 | |||
2709 | rt_data_off = BTRFS_LEAF_DATA_SIZE(root) - | ||
2710 | btrfs_item_end_nr(l, mid); | ||
2711 | |||
2712 | for (i = 0; i < nritems; i++) { | ||
2713 | struct btrfs_item *item = btrfs_item_nr(right, i); | ||
2714 | u32 ioff; | ||
2715 | |||
2716 | if (!right->map_token) { | ||
2717 | map_extent_buffer(right, (unsigned long)item, | ||
2718 | sizeof(struct btrfs_item), | ||
2719 | &right->map_token, &right->kaddr, | ||
2720 | &right->map_start, &right->map_len, | ||
2721 | KM_USER1); | ||
2722 | } | ||
2723 | |||
2724 | ioff = btrfs_item_offset(right, item); | ||
2725 | btrfs_set_item_offset(right, item, ioff + rt_data_off); | ||
2726 | } | ||
2727 | |||
2728 | if (right->map_token) { | ||
2729 | unmap_extent_buffer(right, right->map_token, KM_USER1); | ||
2730 | right->map_token = NULL; | ||
2731 | } | ||
2732 | |||
2733 | btrfs_set_header_nritems(l, mid); | ||
2734 | ret = 0; | ||
2735 | btrfs_item_key(right, &disk_key, 0); | ||
2736 | wret = insert_ptr(trans, root, path, &disk_key, right->start, | ||
2737 | path->slots[1] + 1, 1); | ||
2738 | if (wret) | ||
2739 | ret = wret; | ||
2740 | |||
2741 | btrfs_mark_buffer_dirty(right); | ||
2742 | btrfs_mark_buffer_dirty(l); | ||
2743 | BUG_ON(path->slots[0] != slot); | ||
2744 | |||
2745 | ret = btrfs_update_ref(trans, root, l, right, 0, nritems); | ||
2746 | BUG_ON(ret); | ||
2747 | |||
2748 | if (mid <= slot) { | ||
2749 | btrfs_tree_unlock(path->nodes[0]); | ||
2750 | free_extent_buffer(path->nodes[0]); | ||
2751 | path->nodes[0] = right; | ||
2752 | path->slots[0] -= mid; | ||
2753 | path->slots[1] += 1; | ||
2754 | } else { | ||
2755 | btrfs_tree_unlock(right); | ||
2756 | free_extent_buffer(right); | ||
2757 | } | ||
2758 | |||
2759 | BUG_ON(path->slots[0] < 0); | ||
2760 | |||
2761 | if (double_split) { | ||
2762 | BUG_ON(num_doubles != 0); | ||
2763 | num_doubles++; | ||
2764 | goto again; | ||
2765 | } | ||
2766 | return ret; | ||
2767 | } | ||
2768 | |||
2769 | /* | ||
2770 | * This function splits a single item into two items, | ||
2771 | * giving 'new_key' to the new item and splitting the | ||
2772 | * old one at split_offset (from the start of the item). | ||
2773 | * | ||
2774 | * The path may be released by this operation. After | ||
2775 | * the split, the path is pointing to the old item. The | ||
2776 | * new item is going to be in the same node as the old one. | ||
2777 | * | ||
2778 | * Note, the item being split must be smaller enough to live alone on | ||
2779 | * a tree block with room for one extra struct btrfs_item | ||
2780 | * | ||
2781 | * This allows us to split the item in place, keeping a lock on the | ||
2782 | * leaf the entire time. | ||
2783 | */ | ||
2784 | int btrfs_split_item(struct btrfs_trans_handle *trans, | ||
2785 | struct btrfs_root *root, | ||
2786 | struct btrfs_path *path, | ||
2787 | struct btrfs_key *new_key, | ||
2788 | unsigned long split_offset) | ||
2789 | { | ||
2790 | u32 item_size; | ||
2791 | struct extent_buffer *leaf; | ||
2792 | struct btrfs_key orig_key; | ||
2793 | struct btrfs_item *item; | ||
2794 | struct btrfs_item *new_item; | ||
2795 | int ret = 0; | ||
2796 | int slot; | ||
2797 | u32 nritems; | ||
2798 | u32 orig_offset; | ||
2799 | struct btrfs_disk_key disk_key; | ||
2800 | char *buf; | ||
2801 | |||
2802 | leaf = path->nodes[0]; | ||
2803 | btrfs_item_key_to_cpu(leaf, &orig_key, path->slots[0]); | ||
2804 | if (btrfs_leaf_free_space(root, leaf) >= sizeof(struct btrfs_item)) | ||
2805 | goto split; | ||
2806 | |||
2807 | item_size = btrfs_item_size_nr(leaf, path->slots[0]); | ||
2808 | btrfs_release_path(root, path); | ||
2809 | |||
2810 | path->search_for_split = 1; | ||
2811 | path->keep_locks = 1; | ||
2812 | |||
2813 | ret = btrfs_search_slot(trans, root, &orig_key, path, 0, 1); | ||
2814 | path->search_for_split = 0; | ||
2815 | |||
2816 | /* if our item isn't there or got smaller, return now */ | ||
2817 | if (ret != 0 || item_size != btrfs_item_size_nr(path->nodes[0], | ||
2818 | path->slots[0])) { | ||
2819 | path->keep_locks = 0; | ||
2820 | return -EAGAIN; | ||
2821 | } | ||
2822 | |||
2823 | ret = split_leaf(trans, root, &orig_key, path, | ||
2824 | sizeof(struct btrfs_item), 1); | ||
2825 | path->keep_locks = 0; | ||
2826 | BUG_ON(ret); | ||
2827 | |||
2828 | leaf = path->nodes[0]; | ||
2829 | BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item)); | ||
2830 | |||
2831 | split: | ||
2832 | item = btrfs_item_nr(leaf, path->slots[0]); | ||
2833 | orig_offset = btrfs_item_offset(leaf, item); | ||
2834 | item_size = btrfs_item_size(leaf, item); | ||
2835 | |||
2836 | |||
2837 | buf = kmalloc(item_size, GFP_NOFS); | ||
2838 | read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, | ||
2839 | path->slots[0]), item_size); | ||
2840 | slot = path->slots[0] + 1; | ||
2841 | leaf = path->nodes[0]; | ||
2842 | |||
2843 | nritems = btrfs_header_nritems(leaf); | ||
2844 | |||
2845 | if (slot != nritems) { | ||
2846 | /* shift the items */ | ||
2847 | memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1), | ||
2848 | btrfs_item_nr_offset(slot), | ||
2849 | (nritems - slot) * sizeof(struct btrfs_item)); | ||
2850 | |||
2851 | } | ||
2852 | |||
2853 | btrfs_cpu_key_to_disk(&disk_key, new_key); | ||
2854 | btrfs_set_item_key(leaf, &disk_key, slot); | ||
2855 | |||
2856 | new_item = btrfs_item_nr(leaf, slot); | ||
2857 | |||
2858 | btrfs_set_item_offset(leaf, new_item, orig_offset); | ||
2859 | btrfs_set_item_size(leaf, new_item, item_size - split_offset); | ||
2860 | |||
2861 | btrfs_set_item_offset(leaf, item, | ||
2862 | orig_offset + item_size - split_offset); | ||
2863 | btrfs_set_item_size(leaf, item, split_offset); | ||
2864 | |||
2865 | btrfs_set_header_nritems(leaf, nritems + 1); | ||
2866 | |||
2867 | /* write the data for the start of the original item */ | ||
2868 | write_extent_buffer(leaf, buf, | ||
2869 | btrfs_item_ptr_offset(leaf, path->slots[0]), | ||
2870 | split_offset); | ||
2871 | |||
2872 | /* write the data for the new item */ | ||
2873 | write_extent_buffer(leaf, buf + split_offset, | ||
2874 | btrfs_item_ptr_offset(leaf, slot), | ||
2875 | item_size - split_offset); | ||
2876 | btrfs_mark_buffer_dirty(leaf); | ||
2877 | |||
2878 | ret = 0; | ||
2879 | if (btrfs_leaf_free_space(root, leaf) < 0) { | ||
2880 | btrfs_print_leaf(root, leaf); | ||
2881 | BUG(); | ||
2882 | } | ||
2883 | kfree(buf); | ||
2884 | return ret; | ||
2885 | } | ||
2886 | |||
2887 | /* | ||
2888 | * make the item pointed to by the path smaller. new_size indicates | ||
2889 | * how small to make it, and from_end tells us if we just chop bytes | ||
2890 | * off the end of the item or if we shift the item to chop bytes off | ||
2891 | * the front. | ||
2892 | */ | ||
2893 | int btrfs_truncate_item(struct btrfs_trans_handle *trans, | ||
2894 | struct btrfs_root *root, | ||
2895 | struct btrfs_path *path, | ||
2896 | u32 new_size, int from_end) | ||
2897 | { | ||
2898 | int ret = 0; | ||
2899 | int slot; | ||
2900 | int slot_orig; | ||
2901 | struct extent_buffer *leaf; | ||
2902 | struct btrfs_item *item; | ||
2903 | u32 nritems; | ||
2904 | unsigned int data_end; | ||
2905 | unsigned int old_data_start; | ||
2906 | unsigned int old_size; | ||
2907 | unsigned int size_diff; | ||
2908 | int i; | ||
2909 | |||
2910 | slot_orig = path->slots[0]; | ||
2911 | leaf = path->nodes[0]; | ||
2912 | slot = path->slots[0]; | ||
2913 | |||
2914 | old_size = btrfs_item_size_nr(leaf, slot); | ||
2915 | if (old_size == new_size) | ||
2916 | return 0; | ||
2917 | |||
2918 | nritems = btrfs_header_nritems(leaf); | ||
2919 | data_end = leaf_data_end(root, leaf); | ||
2920 | |||
2921 | old_data_start = btrfs_item_offset_nr(leaf, slot); | ||
2922 | |||
2923 | size_diff = old_size - new_size; | ||
2924 | |||
2925 | BUG_ON(slot < 0); | ||
2926 | BUG_ON(slot >= nritems); | ||
2927 | |||
2928 | /* | ||
2929 | * item0..itemN ... dataN.offset..dataN.size .. data0.size | ||
2930 | */ | ||
2931 | /* first correct the data pointers */ | ||
2932 | for (i = slot; i < nritems; i++) { | ||
2933 | u32 ioff; | ||
2934 | item = btrfs_item_nr(leaf, i); | ||
2935 | |||
2936 | if (!leaf->map_token) { | ||
2937 | map_extent_buffer(leaf, (unsigned long)item, | ||
2938 | sizeof(struct btrfs_item), | ||
2939 | &leaf->map_token, &leaf->kaddr, | ||
2940 | &leaf->map_start, &leaf->map_len, | ||
2941 | KM_USER1); | ||
2942 | } | ||
2943 | |||
2944 | ioff = btrfs_item_offset(leaf, item); | ||
2945 | btrfs_set_item_offset(leaf, item, ioff + size_diff); | ||
2946 | } | ||
2947 | |||
2948 | if (leaf->map_token) { | ||
2949 | unmap_extent_buffer(leaf, leaf->map_token, KM_USER1); | ||
2950 | leaf->map_token = NULL; | ||
2951 | } | ||
2952 | |||
2953 | /* shift the data */ | ||
2954 | if (from_end) { | ||
2955 | memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + | ||
2956 | data_end + size_diff, btrfs_leaf_data(leaf) + | ||
2957 | data_end, old_data_start + new_size - data_end); | ||
2958 | } else { | ||
2959 | struct btrfs_disk_key disk_key; | ||
2960 | u64 offset; | ||
2961 | |||
2962 | btrfs_item_key(leaf, &disk_key, slot); | ||
2963 | |||
2964 | if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) { | ||
2965 | unsigned long ptr; | ||
2966 | struct btrfs_file_extent_item *fi; | ||
2967 | |||
2968 | fi = btrfs_item_ptr(leaf, slot, | ||
2969 | struct btrfs_file_extent_item); | ||
2970 | fi = (struct btrfs_file_extent_item *)( | ||
2971 | (unsigned long)fi - size_diff); | ||
2972 | |||
2973 | if (btrfs_file_extent_type(leaf, fi) == | ||
2974 | BTRFS_FILE_EXTENT_INLINE) { | ||
2975 | ptr = btrfs_item_ptr_offset(leaf, slot); | ||
2976 | memmove_extent_buffer(leaf, ptr, | ||
2977 | (unsigned long)fi, | ||
2978 | offsetof(struct btrfs_file_extent_item, | ||
2979 | disk_bytenr)); | ||
2980 | } | ||
2981 | } | ||
2982 | |||
2983 | memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + | ||
2984 | data_end + size_diff, btrfs_leaf_data(leaf) + | ||
2985 | data_end, old_data_start - data_end); | ||
2986 | |||
2987 | offset = btrfs_disk_key_offset(&disk_key); | ||
2988 | btrfs_set_disk_key_offset(&disk_key, offset + size_diff); | ||
2989 | btrfs_set_item_key(leaf, &disk_key, slot); | ||
2990 | if (slot == 0) | ||
2991 | fixup_low_keys(trans, root, path, &disk_key, 1); | ||
2992 | } | ||
2993 | |||
2994 | item = btrfs_item_nr(leaf, slot); | ||
2995 | btrfs_set_item_size(leaf, item, new_size); | ||
2996 | btrfs_mark_buffer_dirty(leaf); | ||
2997 | |||
2998 | ret = 0; | ||
2999 | if (btrfs_leaf_free_space(root, leaf) < 0) { | ||
3000 | btrfs_print_leaf(root, leaf); | ||
3001 | BUG(); | ||
3002 | } | ||
3003 | return ret; | ||
3004 | } | ||
3005 | |||
3006 | /* | ||
3007 | * make the item pointed to by the path bigger, data_size is the new size. | ||
3008 | */ | ||
3009 | int btrfs_extend_item(struct btrfs_trans_handle *trans, | ||
3010 | struct btrfs_root *root, struct btrfs_path *path, | ||
3011 | u32 data_size) | ||
3012 | { | ||
3013 | int ret = 0; | ||
3014 | int slot; | ||
3015 | int slot_orig; | ||
3016 | struct extent_buffer *leaf; | ||
3017 | struct btrfs_item *item; | ||
3018 | u32 nritems; | ||
3019 | unsigned int data_end; | ||
3020 | unsigned int old_data; | ||
3021 | unsigned int old_size; | ||
3022 | int i; | ||
3023 | |||
3024 | slot_orig = path->slots[0]; | ||
3025 | leaf = path->nodes[0]; | ||
3026 | |||
3027 | nritems = btrfs_header_nritems(leaf); | ||
3028 | data_end = leaf_data_end(root, leaf); | ||
3029 | |||
3030 | if (btrfs_leaf_free_space(root, leaf) < data_size) { | ||
3031 | btrfs_print_leaf(root, leaf); | ||
3032 | BUG(); | ||
3033 | } | ||
3034 | slot = path->slots[0]; | ||
3035 | old_data = btrfs_item_end_nr(leaf, slot); | ||
3036 | |||
3037 | BUG_ON(slot < 0); | ||
3038 | if (slot >= nritems) { | ||
3039 | btrfs_print_leaf(root, leaf); | ||
3040 | printk(KERN_CRIT "slot %d too large, nritems %d\n", | ||
3041 | slot, nritems); | ||
3042 | BUG_ON(1); | ||
3043 | } | ||
3044 | |||
3045 | /* | ||
3046 | * item0..itemN ... dataN.offset..dataN.size .. data0.size | ||
3047 | */ | ||
3048 | /* first correct the data pointers */ | ||
3049 | for (i = slot; i < nritems; i++) { | ||
3050 | u32 ioff; | ||
3051 | item = btrfs_item_nr(leaf, i); | ||
3052 | |||
3053 | if (!leaf->map_token) { | ||
3054 | map_extent_buffer(leaf, (unsigned long)item, | ||
3055 | sizeof(struct btrfs_item), | ||
3056 | &leaf->map_token, &leaf->kaddr, | ||
3057 | &leaf->map_start, &leaf->map_len, | ||
3058 | KM_USER1); | ||
3059 | } | ||
3060 | ioff = btrfs_item_offset(leaf, item); | ||
3061 | btrfs_set_item_offset(leaf, item, ioff - data_size); | ||
3062 | } | ||
3063 | |||
3064 | if (leaf->map_token) { | ||
3065 | unmap_extent_buffer(leaf, leaf->map_token, KM_USER1); | ||
3066 | leaf->map_token = NULL; | ||
3067 | } | ||
3068 | |||
3069 | /* shift the data */ | ||
3070 | memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + | ||
3071 | data_end - data_size, btrfs_leaf_data(leaf) + | ||
3072 | data_end, old_data - data_end); | ||
3073 | |||
3074 | data_end = old_data; | ||
3075 | old_size = btrfs_item_size_nr(leaf, slot); | ||
3076 | item = btrfs_item_nr(leaf, slot); | ||
3077 | btrfs_set_item_size(leaf, item, old_size + data_size); | ||
3078 | btrfs_mark_buffer_dirty(leaf); | ||
3079 | |||
3080 | ret = 0; | ||
3081 | if (btrfs_leaf_free_space(root, leaf) < 0) { | ||
3082 | btrfs_print_leaf(root, leaf); | ||
3083 | BUG(); | ||
3084 | } | ||
3085 | return ret; | ||
3086 | } | ||
3087 | |||
3088 | /* | ||
3089 | * Given a key and some data, insert items into the tree. | ||
3090 | * This does all the path init required, making room in the tree if needed. | ||
3091 | * Returns the number of keys that were inserted. | ||
3092 | */ | ||
3093 | int btrfs_insert_some_items(struct btrfs_trans_handle *trans, | ||
3094 | struct btrfs_root *root, | ||
3095 | struct btrfs_path *path, | ||
3096 | struct btrfs_key *cpu_key, u32 *data_size, | ||
3097 | int nr) | ||
3098 | { | ||
3099 | struct extent_buffer *leaf; | ||
3100 | struct btrfs_item *item; | ||
3101 | int ret = 0; | ||
3102 | int slot; | ||
3103 | int i; | ||
3104 | u32 nritems; | ||
3105 | u32 total_data = 0; | ||
3106 | u32 total_size = 0; | ||
3107 | unsigned int data_end; | ||
3108 | struct btrfs_disk_key disk_key; | ||
3109 | struct btrfs_key found_key; | ||
3110 | |||
3111 | for (i = 0; i < nr; i++) { | ||
3112 | if (total_size + data_size[i] + sizeof(struct btrfs_item) > | ||
3113 | BTRFS_LEAF_DATA_SIZE(root)) { | ||
3114 | break; | ||
3115 | nr = i; | ||
3116 | } | ||
3117 | total_data += data_size[i]; | ||
3118 | total_size += data_size[i] + sizeof(struct btrfs_item); | ||
3119 | } | ||
3120 | BUG_ON(nr == 0); | ||
3121 | |||
3122 | ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1); | ||
3123 | if (ret == 0) | ||
3124 | return -EEXIST; | ||
3125 | if (ret < 0) | ||
3126 | goto out; | ||
3127 | |||
3128 | leaf = path->nodes[0]; | ||
3129 | |||
3130 | nritems = btrfs_header_nritems(leaf); | ||
3131 | data_end = leaf_data_end(root, leaf); | ||
3132 | |||
3133 | if (btrfs_leaf_free_space(root, leaf) < total_size) { | ||
3134 | for (i = nr; i >= 0; i--) { | ||
3135 | total_data -= data_size[i]; | ||
3136 | total_size -= data_size[i] + sizeof(struct btrfs_item); | ||
3137 | if (total_size < btrfs_leaf_free_space(root, leaf)) | ||
3138 | break; | ||
3139 | } | ||
3140 | nr = i; | ||
3141 | } | ||
3142 | |||
3143 | slot = path->slots[0]; | ||
3144 | BUG_ON(slot < 0); | ||
3145 | |||
3146 | if (slot != nritems) { | ||
3147 | unsigned int old_data = btrfs_item_end_nr(leaf, slot); | ||
3148 | |||
3149 | item = btrfs_item_nr(leaf, slot); | ||
3150 | btrfs_item_key_to_cpu(leaf, &found_key, slot); | ||
3151 | |||
3152 | /* figure out how many keys we can insert in here */ | ||
3153 | total_data = data_size[0]; | ||
3154 | for (i = 1; i < nr; i++) { | ||
3155 | if (comp_cpu_keys(&found_key, cpu_key + i) <= 0) | ||
3156 | break; | ||
3157 | total_data += data_size[i]; | ||
3158 | } | ||
3159 | nr = i; | ||
3160 | |||
3161 | if (old_data < data_end) { | ||
3162 | btrfs_print_leaf(root, leaf); | ||
3163 | printk(KERN_CRIT "slot %d old_data %d data_end %d\n", | ||
3164 | slot, old_data, data_end); | ||
3165 | BUG_ON(1); | ||
3166 | } | ||
3167 | /* | ||
3168 | * item0..itemN ... dataN.offset..dataN.size .. data0.size | ||
3169 | */ | ||
3170 | /* first correct the data pointers */ | ||
3171 | WARN_ON(leaf->map_token); | ||
3172 | for (i = slot; i < nritems; i++) { | ||
3173 | u32 ioff; | ||
3174 | |||
3175 | item = btrfs_item_nr(leaf, i); | ||
3176 | if (!leaf->map_token) { | ||
3177 | map_extent_buffer(leaf, (unsigned long)item, | ||
3178 | sizeof(struct btrfs_item), | ||
3179 | &leaf->map_token, &leaf->kaddr, | ||
3180 | &leaf->map_start, &leaf->map_len, | ||
3181 | KM_USER1); | ||
3182 | } | ||
3183 | |||
3184 | ioff = btrfs_item_offset(leaf, item); | ||
3185 | btrfs_set_item_offset(leaf, item, ioff - total_data); | ||
3186 | } | ||
3187 | if (leaf->map_token) { | ||
3188 | unmap_extent_buffer(leaf, leaf->map_token, KM_USER1); | ||
3189 | leaf->map_token = NULL; | ||
3190 | } | ||
3191 | |||
3192 | /* shift the items */ | ||
3193 | memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr), | ||
3194 | btrfs_item_nr_offset(slot), | ||
3195 | (nritems - slot) * sizeof(struct btrfs_item)); | ||
3196 | |||
3197 | /* shift the data */ | ||
3198 | memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + | ||
3199 | data_end - total_data, btrfs_leaf_data(leaf) + | ||
3200 | data_end, old_data - data_end); | ||
3201 | data_end = old_data; | ||
3202 | } else { | ||
3203 | /* | ||
3204 | * this sucks but it has to be done, if we are inserting at | ||
3205 | * the end of the leaf only insert 1 of the items, since we | ||
3206 | * have no way of knowing whats on the next leaf and we'd have | ||
3207 | * to drop our current locks to figure it out | ||
3208 | */ | ||
3209 | nr = 1; | ||
3210 | } | ||
3211 | |||
3212 | /* setup the item for the new data */ | ||
3213 | for (i = 0; i < nr; i++) { | ||
3214 | btrfs_cpu_key_to_disk(&disk_key, cpu_key + i); | ||
3215 | btrfs_set_item_key(leaf, &disk_key, slot + i); | ||
3216 | item = btrfs_item_nr(leaf, slot + i); | ||
3217 | btrfs_set_item_offset(leaf, item, data_end - data_size[i]); | ||
3218 | data_end -= data_size[i]; | ||
3219 | btrfs_set_item_size(leaf, item, data_size[i]); | ||
3220 | } | ||
3221 | btrfs_set_header_nritems(leaf, nritems + nr); | ||
3222 | btrfs_mark_buffer_dirty(leaf); | ||
3223 | |||
3224 | ret = 0; | ||
3225 | if (slot == 0) { | ||
3226 | btrfs_cpu_key_to_disk(&disk_key, cpu_key); | ||
3227 | ret = fixup_low_keys(trans, root, path, &disk_key, 1); | ||
3228 | } | ||
3229 | |||
3230 | if (btrfs_leaf_free_space(root, leaf) < 0) { | ||
3231 | btrfs_print_leaf(root, leaf); | ||
3232 | BUG(); | ||
3233 | } | ||
3234 | out: | ||
3235 | if (!ret) | ||
3236 | ret = nr; | ||
3237 | return ret; | ||
3238 | } | ||
3239 | |||
3240 | /* | ||
3241 | * Given a key and some data, insert items into the tree. | ||
3242 | * This does all the path init required, making room in the tree if needed. | ||
3243 | */ | ||
3244 | int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, | ||
3245 | struct btrfs_root *root, | ||
3246 | struct btrfs_path *path, | ||
3247 | struct btrfs_key *cpu_key, u32 *data_size, | ||
3248 | int nr) | ||
3249 | { | ||
3250 | struct extent_buffer *leaf; | ||
3251 | struct btrfs_item *item; | ||
3252 | int ret = 0; | ||
3253 | int slot; | ||
3254 | int slot_orig; | ||
3255 | int i; | ||
3256 | u32 nritems; | ||
3257 | u32 total_size = 0; | ||
3258 | u32 total_data = 0; | ||
3259 | unsigned int data_end; | ||
3260 | struct btrfs_disk_key disk_key; | ||
3261 | |||
3262 | for (i = 0; i < nr; i++) | ||
3263 | total_data += data_size[i]; | ||
3264 | |||
3265 | total_size = total_data + (nr * sizeof(struct btrfs_item)); | ||
3266 | ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1); | ||
3267 | if (ret == 0) | ||
3268 | return -EEXIST; | ||
3269 | if (ret < 0) | ||
3270 | goto out; | ||
3271 | |||
3272 | slot_orig = path->slots[0]; | ||
3273 | leaf = path->nodes[0]; | ||
3274 | |||
3275 | nritems = btrfs_header_nritems(leaf); | ||
3276 | data_end = leaf_data_end(root, leaf); | ||
3277 | |||
3278 | if (btrfs_leaf_free_space(root, leaf) < total_size) { | ||
3279 | btrfs_print_leaf(root, leaf); | ||
3280 | printk(KERN_CRIT "not enough freespace need %u have %d\n", | ||
3281 | total_size, btrfs_leaf_free_space(root, leaf)); | ||
3282 | BUG(); | ||
3283 | } | ||
3284 | |||
3285 | slot = path->slots[0]; | ||
3286 | BUG_ON(slot < 0); | ||
3287 | |||
3288 | if (slot != nritems) { | ||
3289 | unsigned int old_data = btrfs_item_end_nr(leaf, slot); | ||
3290 | |||
3291 | if (old_data < data_end) { | ||
3292 | btrfs_print_leaf(root, leaf); | ||
3293 | printk(KERN_CRIT "slot %d old_data %d data_end %d\n", | ||
3294 | slot, old_data, data_end); | ||
3295 | BUG_ON(1); | ||
3296 | } | ||
3297 | /* | ||
3298 | * item0..itemN ... dataN.offset..dataN.size .. data0.size | ||
3299 | */ | ||
3300 | /* first correct the data pointers */ | ||
3301 | WARN_ON(leaf->map_token); | ||
3302 | for (i = slot; i < nritems; i++) { | ||
3303 | u32 ioff; | ||
3304 | |||
3305 | item = btrfs_item_nr(leaf, i); | ||
3306 | if (!leaf->map_token) { | ||
3307 | map_extent_buffer(leaf, (unsigned long)item, | ||
3308 | sizeof(struct btrfs_item), | ||
3309 | &leaf->map_token, &leaf->kaddr, | ||
3310 | &leaf->map_start, &leaf->map_len, | ||
3311 | KM_USER1); | ||
3312 | } | ||
3313 | |||
3314 | ioff = btrfs_item_offset(leaf, item); | ||
3315 | btrfs_set_item_offset(leaf, item, ioff - total_data); | ||
3316 | } | ||
3317 | if (leaf->map_token) { | ||
3318 | unmap_extent_buffer(leaf, leaf->map_token, KM_USER1); | ||
3319 | leaf->map_token = NULL; | ||
3320 | } | ||
3321 | |||
3322 | /* shift the items */ | ||
3323 | memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr), | ||
3324 | btrfs_item_nr_offset(slot), | ||
3325 | (nritems - slot) * sizeof(struct btrfs_item)); | ||
3326 | |||
3327 | /* shift the data */ | ||
3328 | memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + | ||
3329 | data_end - total_data, btrfs_leaf_data(leaf) + | ||
3330 | data_end, old_data - data_end); | ||
3331 | data_end = old_data; | ||
3332 | } | ||
3333 | |||
3334 | /* setup the item for the new data */ | ||
3335 | for (i = 0; i < nr; i++) { | ||
3336 | btrfs_cpu_key_to_disk(&disk_key, cpu_key + i); | ||
3337 | btrfs_set_item_key(leaf, &disk_key, slot + i); | ||
3338 | item = btrfs_item_nr(leaf, slot + i); | ||
3339 | btrfs_set_item_offset(leaf, item, data_end - data_size[i]); | ||
3340 | data_end -= data_size[i]; | ||
3341 | btrfs_set_item_size(leaf, item, data_size[i]); | ||
3342 | } | ||
3343 | btrfs_set_header_nritems(leaf, nritems + nr); | ||
3344 | btrfs_mark_buffer_dirty(leaf); | ||
3345 | |||
3346 | ret = 0; | ||
3347 | if (slot == 0) { | ||
3348 | btrfs_cpu_key_to_disk(&disk_key, cpu_key); | ||
3349 | ret = fixup_low_keys(trans, root, path, &disk_key, 1); | ||
3350 | } | ||
3351 | |||
3352 | if (btrfs_leaf_free_space(root, leaf) < 0) { | ||
3353 | btrfs_print_leaf(root, leaf); | ||
3354 | BUG(); | ||
3355 | } | ||
3356 | out: | ||
3357 | return ret; | ||
3358 | } | ||
3359 | |||
3360 | /* | ||
3361 | * Given a key and some data, insert an item into the tree. | ||
3362 | * This does all the path init required, making room in the tree if needed. | ||
3363 | */ | ||
3364 | int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root | ||
3365 | *root, struct btrfs_key *cpu_key, void *data, u32 | ||
3366 | data_size) | ||
3367 | { | ||
3368 | int ret = 0; | ||
3369 | struct btrfs_path *path; | ||
3370 | struct extent_buffer *leaf; | ||
3371 | unsigned long ptr; | ||
3372 | |||
3373 | path = btrfs_alloc_path(); | ||
3374 | BUG_ON(!path); | ||
3375 | ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size); | ||
3376 | if (!ret) { | ||
3377 | leaf = path->nodes[0]; | ||
3378 | ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); | ||
3379 | write_extent_buffer(leaf, data, ptr, data_size); | ||
3380 | btrfs_mark_buffer_dirty(leaf); | ||
3381 | } | ||
3382 | btrfs_free_path(path); | ||
3383 | return ret; | ||
3384 | } | ||
3385 | |||
3386 | /* | ||
3387 | * delete the pointer from a given node. | ||
3388 | * | ||
3389 | * the tree should have been previously balanced so the deletion does not | ||
3390 | * empty a node. | ||
3391 | */ | ||
3392 | static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root, | ||
3393 | struct btrfs_path *path, int level, int slot) | ||
3394 | { | ||
3395 | struct extent_buffer *parent = path->nodes[level]; | ||
3396 | u32 nritems; | ||
3397 | int ret = 0; | ||
3398 | int wret; | ||
3399 | |||
3400 | nritems = btrfs_header_nritems(parent); | ||
3401 | if (slot != nritems - 1) { | ||
3402 | memmove_extent_buffer(parent, | ||
3403 | btrfs_node_key_ptr_offset(slot), | ||
3404 | btrfs_node_key_ptr_offset(slot + 1), | ||
3405 | sizeof(struct btrfs_key_ptr) * | ||
3406 | (nritems - slot - 1)); | ||
3407 | } | ||
3408 | nritems--; | ||
3409 | btrfs_set_header_nritems(parent, nritems); | ||
3410 | if (nritems == 0 && parent == root->node) { | ||
3411 | BUG_ON(btrfs_header_level(root->node) != 1); | ||
3412 | /* just turn the root into a leaf and break */ | ||
3413 | btrfs_set_header_level(root->node, 0); | ||
3414 | } else if (slot == 0) { | ||
3415 | struct btrfs_disk_key disk_key; | ||
3416 | |||
3417 | btrfs_node_key(parent, &disk_key, 0); | ||
3418 | wret = fixup_low_keys(trans, root, path, &disk_key, level + 1); | ||
3419 | if (wret) | ||
3420 | ret = wret; | ||
3421 | } | ||
3422 | btrfs_mark_buffer_dirty(parent); | ||
3423 | return ret; | ||
3424 | } | ||
3425 | |||
3426 | /* | ||
3427 | * a helper function to delete the leaf pointed to by path->slots[1] and | ||
3428 | * path->nodes[1]. bytenr is the node block pointer, but since the callers | ||
3429 | * already know it, it is faster to have them pass it down than to | ||
3430 | * read it out of the node again. | ||
3431 | * | ||
3432 | * This deletes the pointer in path->nodes[1] and frees the leaf | ||
3433 | * block extent. zero is returned if it all worked out, < 0 otherwise. | ||
3434 | * | ||
3435 | * The path must have already been setup for deleting the leaf, including | ||
3436 | * all the proper balancing. path->nodes[1] must be locked. | ||
3437 | */ | ||
3438 | noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans, | ||
3439 | struct btrfs_root *root, | ||
3440 | struct btrfs_path *path, u64 bytenr) | ||
3441 | { | ||
3442 | int ret; | ||
3443 | u64 root_gen = btrfs_header_generation(path->nodes[1]); | ||
3444 | |||
3445 | ret = del_ptr(trans, root, path, 1, path->slots[1]); | ||
3446 | if (ret) | ||
3447 | return ret; | ||
3448 | |||
3449 | ret = btrfs_free_extent(trans, root, bytenr, | ||
3450 | btrfs_level_size(root, 0), | ||
3451 | path->nodes[1]->start, | ||
3452 | btrfs_header_owner(path->nodes[1]), | ||
3453 | root_gen, 0, 1); | ||
3454 | return ret; | ||
3455 | } | ||
3456 | /* | ||
3457 | * delete the item at the leaf level in path. If that empties | ||
3458 | * the leaf, remove it from the tree | ||
3459 | */ | ||
3460 | int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, | ||
3461 | struct btrfs_path *path, int slot, int nr) | ||
3462 | { | ||
3463 | struct extent_buffer *leaf; | ||
3464 | struct btrfs_item *item; | ||
3465 | int last_off; | ||
3466 | int dsize = 0; | ||
3467 | int ret = 0; | ||
3468 | int wret; | ||
3469 | int i; | ||
3470 | u32 nritems; | ||
3471 | |||
3472 | leaf = path->nodes[0]; | ||
3473 | last_off = btrfs_item_offset_nr(leaf, slot + nr - 1); | ||
3474 | |||
3475 | for (i = 0; i < nr; i++) | ||
3476 | dsize += btrfs_item_size_nr(leaf, slot + i); | ||
3477 | |||
3478 | nritems = btrfs_header_nritems(leaf); | ||
3479 | |||
3480 | if (slot + nr != nritems) { | ||
3481 | int data_end = leaf_data_end(root, leaf); | ||
3482 | |||
3483 | memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + | ||
3484 | data_end + dsize, | ||
3485 | btrfs_leaf_data(leaf) + data_end, | ||
3486 | last_off - data_end); | ||
3487 | |||
3488 | for (i = slot + nr; i < nritems; i++) { | ||
3489 | u32 ioff; | ||
3490 | |||
3491 | item = btrfs_item_nr(leaf, i); | ||
3492 | if (!leaf->map_token) { | ||
3493 | map_extent_buffer(leaf, (unsigned long)item, | ||
3494 | sizeof(struct btrfs_item), | ||
3495 | &leaf->map_token, &leaf->kaddr, | ||
3496 | &leaf->map_start, &leaf->map_len, | ||
3497 | KM_USER1); | ||
3498 | } | ||
3499 | ioff = btrfs_item_offset(leaf, item); | ||
3500 | btrfs_set_item_offset(leaf, item, ioff + dsize); | ||
3501 | } | ||
3502 | |||
3503 | if (leaf->map_token) { | ||
3504 | unmap_extent_buffer(leaf, leaf->map_token, KM_USER1); | ||
3505 | leaf->map_token = NULL; | ||
3506 | } | ||
3507 | |||
3508 | memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot), | ||
3509 | btrfs_item_nr_offset(slot + nr), | ||
3510 | sizeof(struct btrfs_item) * | ||
3511 | (nritems - slot - nr)); | ||
3512 | } | ||
3513 | btrfs_set_header_nritems(leaf, nritems - nr); | ||
3514 | nritems -= nr; | ||
3515 | |||
3516 | /* delete the leaf if we've emptied it */ | ||
3517 | if (nritems == 0) { | ||
3518 | if (leaf == root->node) { | ||
3519 | btrfs_set_header_level(leaf, 0); | ||
3520 | } else { | ||
3521 | ret = btrfs_del_leaf(trans, root, path, leaf->start); | ||
3522 | BUG_ON(ret); | ||
3523 | } | ||
3524 | } else { | ||
3525 | int used = leaf_space_used(leaf, 0, nritems); | ||
3526 | if (slot == 0) { | ||
3527 | struct btrfs_disk_key disk_key; | ||
3528 | |||
3529 | btrfs_item_key(leaf, &disk_key, 0); | ||
3530 | wret = fixup_low_keys(trans, root, path, | ||
3531 | &disk_key, 1); | ||
3532 | if (wret) | ||
3533 | ret = wret; | ||
3534 | } | ||
3535 | |||
3536 | /* delete the leaf if it is mostly empty */ | ||
3537 | if (used < BTRFS_LEAF_DATA_SIZE(root) / 4) { | ||
3538 | /* push_leaf_left fixes the path. | ||
3539 | * make sure the path still points to our leaf | ||
3540 | * for possible call to del_ptr below | ||
3541 | */ | ||
3542 | slot = path->slots[1]; | ||
3543 | extent_buffer_get(leaf); | ||
3544 | |||
3545 | wret = push_leaf_left(trans, root, path, 1, 1); | ||
3546 | if (wret < 0 && wret != -ENOSPC) | ||
3547 | ret = wret; | ||
3548 | |||
3549 | if (path->nodes[0] == leaf && | ||
3550 | btrfs_header_nritems(leaf)) { | ||
3551 | wret = push_leaf_right(trans, root, path, 1, 1); | ||
3552 | if (wret < 0 && wret != -ENOSPC) | ||
3553 | ret = wret; | ||
3554 | } | ||
3555 | |||
3556 | if (btrfs_header_nritems(leaf) == 0) { | ||
3557 | path->slots[1] = slot; | ||
3558 | ret = btrfs_del_leaf(trans, root, path, | ||
3559 | leaf->start); | ||
3560 | BUG_ON(ret); | ||
3561 | free_extent_buffer(leaf); | ||
3562 | } else { | ||
3563 | /* if we're still in the path, make sure | ||
3564 | * we're dirty. Otherwise, one of the | ||
3565 | * push_leaf functions must have already | ||
3566 | * dirtied this buffer | ||
3567 | */ | ||
3568 | if (path->nodes[0] == leaf) | ||
3569 | btrfs_mark_buffer_dirty(leaf); | ||
3570 | free_extent_buffer(leaf); | ||
3571 | } | ||
3572 | } else { | ||
3573 | btrfs_mark_buffer_dirty(leaf); | ||
3574 | } | ||
3575 | } | ||
3576 | return ret; | ||
3577 | } | ||
3578 | |||
3579 | /* | ||
3580 | * search the tree again to find a leaf with lesser keys | ||
3581 | * returns 0 if it found something or 1 if there are no lesser leaves. | ||
3582 | * returns < 0 on io errors. | ||
3583 | * | ||
3584 | * This may release the path, and so you may lose any locks held at the | ||
3585 | * time you call it. | ||
3586 | */ | ||
3587 | int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path) | ||
3588 | { | ||
3589 | struct btrfs_key key; | ||
3590 | struct btrfs_disk_key found_key; | ||
3591 | int ret; | ||
3592 | |||
3593 | btrfs_item_key_to_cpu(path->nodes[0], &key, 0); | ||
3594 | |||
3595 | if (key.offset > 0) | ||
3596 | key.offset--; | ||
3597 | else if (key.type > 0) | ||
3598 | key.type--; | ||
3599 | else if (key.objectid > 0) | ||
3600 | key.objectid--; | ||
3601 | else | ||
3602 | return 1; | ||
3603 | |||
3604 | btrfs_release_path(root, path); | ||
3605 | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | ||
3606 | if (ret < 0) | ||
3607 | return ret; | ||
3608 | btrfs_item_key(path->nodes[0], &found_key, 0); | ||
3609 | ret = comp_keys(&found_key, &key); | ||
3610 | if (ret < 0) | ||
3611 | return 0; | ||
3612 | return 1; | ||
3613 | } | ||
3614 | |||
3615 | /* | ||
3616 | * A helper function to walk down the tree starting at min_key, and looking | ||
3617 | * for nodes or leaves that are either in cache or have a minimum | ||
3618 | * transaction id. This is used by the btree defrag code, and tree logging | ||
3619 | * | ||
3620 | * This does not cow, but it does stuff the starting key it finds back | ||
3621 | * into min_key, so you can call btrfs_search_slot with cow=1 on the | ||
3622 | * key and get a writable path. | ||
3623 | * | ||
3624 | * This does lock as it descends, and path->keep_locks should be set | ||
3625 | * to 1 by the caller. | ||
3626 | * | ||
3627 | * This honors path->lowest_level to prevent descent past a given level | ||
3628 | * of the tree. | ||
3629 | * | ||
3630 | * min_trans indicates the oldest transaction that you are interested | ||
3631 | * in walking through. Any nodes or leaves older than min_trans are | ||
3632 | * skipped over (without reading them). | ||
3633 | * | ||
3634 | * returns zero if something useful was found, < 0 on error and 1 if there | ||
3635 | * was nothing in the tree that matched the search criteria. | ||
3636 | */ | ||
3637 | int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, | ||
3638 | struct btrfs_key *max_key, | ||
3639 | struct btrfs_path *path, int cache_only, | ||
3640 | u64 min_trans) | ||
3641 | { | ||
3642 | struct extent_buffer *cur; | ||
3643 | struct btrfs_key found_key; | ||
3644 | int slot; | ||
3645 | int sret; | ||
3646 | u32 nritems; | ||
3647 | int level; | ||
3648 | int ret = 1; | ||
3649 | |||
3650 | WARN_ON(!path->keep_locks); | ||
3651 | again: | ||
3652 | cur = btrfs_lock_root_node(root); | ||
3653 | level = btrfs_header_level(cur); | ||
3654 | WARN_ON(path->nodes[level]); | ||
3655 | path->nodes[level] = cur; | ||
3656 | path->locks[level] = 1; | ||
3657 | |||
3658 | if (btrfs_header_generation(cur) < min_trans) { | ||
3659 | ret = 1; | ||
3660 | goto out; | ||
3661 | } | ||
3662 | while (1) { | ||
3663 | nritems = btrfs_header_nritems(cur); | ||
3664 | level = btrfs_header_level(cur); | ||
3665 | sret = bin_search(cur, min_key, level, &slot); | ||
3666 | |||
3667 | /* at the lowest level, we're done, setup the path and exit */ | ||
3668 | if (level == path->lowest_level) { | ||
3669 | if (slot >= nritems) | ||
3670 | goto find_next_key; | ||
3671 | ret = 0; | ||
3672 | path->slots[level] = slot; | ||
3673 | btrfs_item_key_to_cpu(cur, &found_key, slot); | ||
3674 | goto out; | ||
3675 | } | ||
3676 | if (sret && slot > 0) | ||
3677 | slot--; | ||
3678 | /* | ||
3679 | * check this node pointer against the cache_only and | ||
3680 | * min_trans parameters. If it isn't in cache or is too | ||
3681 | * old, skip to the next one. | ||
3682 | */ | ||
3683 | while (slot < nritems) { | ||
3684 | u64 blockptr; | ||
3685 | u64 gen; | ||
3686 | struct extent_buffer *tmp; | ||
3687 | struct btrfs_disk_key disk_key; | ||
3688 | |||
3689 | blockptr = btrfs_node_blockptr(cur, slot); | ||
3690 | gen = btrfs_node_ptr_generation(cur, slot); | ||
3691 | if (gen < min_trans) { | ||
3692 | slot++; | ||
3693 | continue; | ||
3694 | } | ||
3695 | if (!cache_only) | ||
3696 | break; | ||
3697 | |||
3698 | if (max_key) { | ||
3699 | btrfs_node_key(cur, &disk_key, slot); | ||
3700 | if (comp_keys(&disk_key, max_key) >= 0) { | ||
3701 | ret = 1; | ||
3702 | goto out; | ||
3703 | } | ||
3704 | } | ||
3705 | |||
3706 | tmp = btrfs_find_tree_block(root, blockptr, | ||
3707 | btrfs_level_size(root, level - 1)); | ||
3708 | |||
3709 | if (tmp && btrfs_buffer_uptodate(tmp, gen)) { | ||
3710 | free_extent_buffer(tmp); | ||
3711 | break; | ||
3712 | } | ||
3713 | if (tmp) | ||
3714 | free_extent_buffer(tmp); | ||
3715 | slot++; | ||
3716 | } | ||
3717 | find_next_key: | ||
3718 | /* | ||
3719 | * we didn't find a candidate key in this node, walk forward | ||
3720 | * and find another one | ||
3721 | */ | ||
3722 | if (slot >= nritems) { | ||
3723 | path->slots[level] = slot; | ||
3724 | sret = btrfs_find_next_key(root, path, min_key, level, | ||
3725 | cache_only, min_trans); | ||
3726 | if (sret == 0) { | ||
3727 | btrfs_release_path(root, path); | ||
3728 | goto again; | ||
3729 | } else { | ||
3730 | goto out; | ||
3731 | } | ||
3732 | } | ||
3733 | /* save our key for returning back */ | ||
3734 | btrfs_node_key_to_cpu(cur, &found_key, slot); | ||
3735 | path->slots[level] = slot; | ||
3736 | if (level == path->lowest_level) { | ||
3737 | ret = 0; | ||
3738 | unlock_up(path, level, 1); | ||
3739 | goto out; | ||
3740 | } | ||
3741 | cur = read_node_slot(root, cur, slot); | ||
3742 | |||
3743 | btrfs_tree_lock(cur); | ||
3744 | path->locks[level - 1] = 1; | ||
3745 | path->nodes[level - 1] = cur; | ||
3746 | unlock_up(path, level, 1); | ||
3747 | } | ||
3748 | out: | ||
3749 | if (ret == 0) | ||
3750 | memcpy(min_key, &found_key, sizeof(found_key)); | ||
3751 | return ret; | ||
3752 | } | ||
3753 | |||
3754 | /* | ||
3755 | * this is similar to btrfs_next_leaf, but does not try to preserve | ||
3756 | * and fixup the path. It looks for and returns the next key in the | ||
3757 | * tree based on the current path and the cache_only and min_trans | ||
3758 | * parameters. | ||
3759 | * | ||
3760 | * 0 is returned if another key is found, < 0 if there are any errors | ||
3761 | * and 1 is returned if there are no higher keys in the tree | ||
3762 | * | ||
3763 | * path->keep_locks should be set to 1 on the search made before | ||
3764 | * calling this function. | ||
3765 | */ | ||
3766 | int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, | ||
3767 | struct btrfs_key *key, int lowest_level, | ||
3768 | int cache_only, u64 min_trans) | ||
3769 | { | ||
3770 | int level = lowest_level; | ||
3771 | int slot; | ||
3772 | struct extent_buffer *c; | ||
3773 | |||
3774 | WARN_ON(!path->keep_locks); | ||
3775 | while (level < BTRFS_MAX_LEVEL) { | ||
3776 | if (!path->nodes[level]) | ||
3777 | return 1; | ||
3778 | |||
3779 | slot = path->slots[level] + 1; | ||
3780 | c = path->nodes[level]; | ||
3781 | next: | ||
3782 | if (slot >= btrfs_header_nritems(c)) { | ||
3783 | level++; | ||
3784 | if (level == BTRFS_MAX_LEVEL) | ||
3785 | return 1; | ||
3786 | continue; | ||
3787 | } | ||
3788 | if (level == 0) | ||
3789 | btrfs_item_key_to_cpu(c, key, slot); | ||
3790 | else { | ||
3791 | u64 blockptr = btrfs_node_blockptr(c, slot); | ||
3792 | u64 gen = btrfs_node_ptr_generation(c, slot); | ||
3793 | |||
3794 | if (cache_only) { | ||
3795 | struct extent_buffer *cur; | ||
3796 | cur = btrfs_find_tree_block(root, blockptr, | ||
3797 | btrfs_level_size(root, level - 1)); | ||
3798 | if (!cur || !btrfs_buffer_uptodate(cur, gen)) { | ||
3799 | slot++; | ||
3800 | if (cur) | ||
3801 | free_extent_buffer(cur); | ||
3802 | goto next; | ||
3803 | } | ||
3804 | free_extent_buffer(cur); | ||
3805 | } | ||
3806 | if (gen < min_trans) { | ||
3807 | slot++; | ||
3808 | goto next; | ||
3809 | } | ||
3810 | btrfs_node_key_to_cpu(c, key, slot); | ||
3811 | } | ||
3812 | return 0; | ||
3813 | } | ||
3814 | return 1; | ||
3815 | } | ||
3816 | |||
3817 | /* | ||
3818 | * search the tree again to find a leaf with greater keys | ||
3819 | * returns 0 if it found something or 1 if there are no greater leaves. | ||
3820 | * returns < 0 on io errors. | ||
3821 | */ | ||
3822 | int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path) | ||
3823 | { | ||
3824 | int slot; | ||
3825 | int level = 1; | ||
3826 | struct extent_buffer *c; | ||
3827 | struct extent_buffer *next = NULL; | ||
3828 | struct btrfs_key key; | ||
3829 | u32 nritems; | ||
3830 | int ret; | ||
3831 | |||
3832 | nritems = btrfs_header_nritems(path->nodes[0]); | ||
3833 | if (nritems == 0) | ||
3834 | return 1; | ||
3835 | |||
3836 | btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1); | ||
3837 | |||
3838 | btrfs_release_path(root, path); | ||
3839 | path->keep_locks = 1; | ||
3840 | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | ||
3841 | path->keep_locks = 0; | ||
3842 | |||
3843 | if (ret < 0) | ||
3844 | return ret; | ||
3845 | |||
3846 | nritems = btrfs_header_nritems(path->nodes[0]); | ||
3847 | /* | ||
3848 | * by releasing the path above we dropped all our locks. A balance | ||
3849 | * could have added more items next to the key that used to be | ||
3850 | * at the very end of the block. So, check again here and | ||
3851 | * advance the path if there are now more items available. | ||
3852 | */ | ||
3853 | if (nritems > 0 && path->slots[0] < nritems - 1) { | ||
3854 | path->slots[0]++; | ||
3855 | goto done; | ||
3856 | } | ||
3857 | |||
3858 | while (level < BTRFS_MAX_LEVEL) { | ||
3859 | if (!path->nodes[level]) | ||
3860 | return 1; | ||
3861 | |||
3862 | slot = path->slots[level] + 1; | ||
3863 | c = path->nodes[level]; | ||
3864 | if (slot >= btrfs_header_nritems(c)) { | ||
3865 | level++; | ||
3866 | if (level == BTRFS_MAX_LEVEL) | ||
3867 | return 1; | ||
3868 | continue; | ||
3869 | } | ||
3870 | |||
3871 | if (next) { | ||
3872 | btrfs_tree_unlock(next); | ||
3873 | free_extent_buffer(next); | ||
3874 | } | ||
3875 | |||
3876 | if (level == 1 && (path->locks[1] || path->skip_locking) && | ||
3877 | path->reada) | ||
3878 | reada_for_search(root, path, level, slot, 0); | ||
3879 | |||
3880 | next = read_node_slot(root, c, slot); | ||
3881 | if (!path->skip_locking) { | ||
3882 | WARN_ON(!btrfs_tree_locked(c)); | ||
3883 | btrfs_tree_lock(next); | ||
3884 | } | ||
3885 | break; | ||
3886 | } | ||
3887 | path->slots[level] = slot; | ||
3888 | while (1) { | ||
3889 | level--; | ||
3890 | c = path->nodes[level]; | ||
3891 | if (path->locks[level]) | ||
3892 | btrfs_tree_unlock(c); | ||
3893 | free_extent_buffer(c); | ||
3894 | path->nodes[level] = next; | ||
3895 | path->slots[level] = 0; | ||
3896 | if (!path->skip_locking) | ||
3897 | path->locks[level] = 1; | ||
3898 | if (!level) | ||
3899 | break; | ||
3900 | if (level == 1 && path->locks[1] && path->reada) | ||
3901 | reada_for_search(root, path, level, slot, 0); | ||
3902 | next = read_node_slot(root, next, 0); | ||
3903 | if (!path->skip_locking) { | ||
3904 | WARN_ON(!btrfs_tree_locked(path->nodes[level])); | ||
3905 | btrfs_tree_lock(next); | ||
3906 | } | ||
3907 | } | ||
3908 | done: | ||
3909 | unlock_up(path, 0, 1); | ||
3910 | return 0; | ||
3911 | } | ||
3912 | |||
3913 | /* | ||
3914 | * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps | ||
3915 | * searching until it gets past min_objectid or finds an item of 'type' | ||
3916 | * | ||
3917 | * returns 0 if something is found, 1 if nothing was found and < 0 on error | ||
3918 | */ | ||
3919 | int btrfs_previous_item(struct btrfs_root *root, | ||
3920 | struct btrfs_path *path, u64 min_objectid, | ||
3921 | int type) | ||
3922 | { | ||
3923 | struct btrfs_key found_key; | ||
3924 | struct extent_buffer *leaf; | ||
3925 | u32 nritems; | ||
3926 | int ret; | ||
3927 | |||
3928 | while (1) { | ||
3929 | if (path->slots[0] == 0) { | ||
3930 | ret = btrfs_prev_leaf(root, path); | ||
3931 | if (ret != 0) | ||
3932 | return ret; | ||
3933 | } else { | ||
3934 | path->slots[0]--; | ||
3935 | } | ||
3936 | leaf = path->nodes[0]; | ||
3937 | nritems = btrfs_header_nritems(leaf); | ||
3938 | if (nritems == 0) | ||
3939 | return 1; | ||
3940 | if (path->slots[0] == nritems) | ||
3941 | path->slots[0]--; | ||
3942 | |||
3943 | btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); | ||
3944 | if (found_key.type == type) | ||
3945 | return 0; | ||
3946 | if (found_key.objectid < min_objectid) | ||
3947 | break; | ||
3948 | if (found_key.objectid == min_objectid && | ||
3949 | found_key.type < type) | ||
3950 | break; | ||
3951 | } | ||
3952 | return 1; | ||
3953 | } | ||
diff --git a/fs/btrfs/ctree.h b/fs/btrfs/ctree.h new file mode 100644 index 000000000000..eee060f88113 --- /dev/null +++ b/fs/btrfs/ctree.h | |||
@@ -0,0 +1,2129 @@ | |||
1 | /* | ||
2 | * Copyright (C) 2007 Oracle. All rights reserved. | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or | ||
5 | * modify it under the terms of the GNU General Public | ||
6 | * License v2 as published by the Free Software Foundation. | ||
7 | * | ||
8 | * This program is distributed in the hope that it will be useful, | ||
9 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | ||
11 | * General Public License for more details. | ||
12 | * | ||
13 | * You should have received a copy of the GNU General Public | ||
14 | * License along with this program; if not, write to the | ||
15 | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | ||
16 | * Boston, MA 021110-1307, USA. | ||
17 | */ | ||
18 | |||
19 | #ifndef __BTRFS_CTREE__ | ||
20 | #define __BTRFS_CTREE__ | ||
21 | |||
22 | #include <linux/version.h> | ||
23 | #include <linux/mm.h> | ||
24 | #include <linux/highmem.h> | ||
25 | #include <linux/fs.h> | ||
26 | #include <linux/completion.h> | ||
27 | #include <linux/backing-dev.h> | ||
28 | #include <linux/wait.h> | ||
29 | #include <asm/kmap_types.h> | ||
30 | #include "extent_io.h" | ||
31 | #include "extent_map.h" | ||
32 | #include "async-thread.h" | ||
33 | |||
34 | struct btrfs_trans_handle; | ||
35 | struct btrfs_transaction; | ||
36 | extern struct kmem_cache *btrfs_trans_handle_cachep; | ||
37 | extern struct kmem_cache *btrfs_transaction_cachep; | ||
38 | extern struct kmem_cache *btrfs_bit_radix_cachep; | ||
39 | extern struct kmem_cache *btrfs_path_cachep; | ||
40 | struct btrfs_ordered_sum; | ||
41 | |||
42 | #define BTRFS_MAGIC "_BHRfS_M" | ||
43 | |||
44 | #define BTRFS_ACL_NOT_CACHED ((void *)-1) | ||
45 | |||
46 | #ifdef CONFIG_LOCKDEP | ||
47 | # define BTRFS_MAX_LEVEL 7 | ||
48 | #else | ||
49 | # define BTRFS_MAX_LEVEL 8 | ||
50 | #endif | ||
51 | |||
52 | /* holds pointers to all of the tree roots */ | ||
53 | #define BTRFS_ROOT_TREE_OBJECTID 1ULL | ||
54 | |||
55 | /* stores information about which extents are in use, and reference counts */ | ||
56 | #define BTRFS_EXTENT_TREE_OBJECTID 2ULL | ||
57 | |||
58 | /* | ||
59 | * chunk tree stores translations from logical -> physical block numbering | ||
60 | * the super block points to the chunk tree | ||
61 | */ | ||
62 | #define BTRFS_CHUNK_TREE_OBJECTID 3ULL | ||
63 | |||
64 | /* | ||
65 | * stores information about which areas of a given device are in use. | ||
66 | * one per device. The tree of tree roots points to the device tree | ||
67 | */ | ||
68 | #define BTRFS_DEV_TREE_OBJECTID 4ULL | ||
69 | |||
70 | /* one per subvolume, storing files and directories */ | ||
71 | #define BTRFS_FS_TREE_OBJECTID 5ULL | ||
72 | |||
73 | /* directory objectid inside the root tree */ | ||
74 | #define BTRFS_ROOT_TREE_DIR_OBJECTID 6ULL | ||
75 | |||
76 | /* holds checksums of all the data extents */ | ||
77 | #define BTRFS_CSUM_TREE_OBJECTID 7ULL | ||
78 | |||
79 | /* orhpan objectid for tracking unlinked/truncated files */ | ||
80 | #define BTRFS_ORPHAN_OBJECTID -5ULL | ||
81 | |||
82 | /* does write ahead logging to speed up fsyncs */ | ||
83 | #define BTRFS_TREE_LOG_OBJECTID -6ULL | ||
84 | #define BTRFS_TREE_LOG_FIXUP_OBJECTID -7ULL | ||
85 | |||
86 | /* for space balancing */ | ||
87 | #define BTRFS_TREE_RELOC_OBJECTID -8ULL | ||
88 | #define BTRFS_DATA_RELOC_TREE_OBJECTID -9ULL | ||
89 | |||
90 | /* | ||
91 | * extent checksums all have this objectid | ||
92 | * this allows them to share the logging tree | ||
93 | * for fsyncs | ||
94 | */ | ||
95 | #define BTRFS_EXTENT_CSUM_OBJECTID -10ULL | ||
96 | |||
97 | /* dummy objectid represents multiple objectids */ | ||
98 | #define BTRFS_MULTIPLE_OBJECTIDS -255ULL | ||
99 | |||
100 | /* | ||
101 | * All files have objectids in this range. | ||
102 | */ | ||
103 | #define BTRFS_FIRST_FREE_OBJECTID 256ULL | ||
104 | #define BTRFS_LAST_FREE_OBJECTID -256ULL | ||
105 | #define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256ULL | ||
106 | |||
107 | |||
108 | /* | ||
109 | * the device items go into the chunk tree. The key is in the form | ||
110 | * [ 1 BTRFS_DEV_ITEM_KEY device_id ] | ||
111 | */ | ||
112 | #define BTRFS_DEV_ITEMS_OBJECTID 1ULL | ||
113 | |||
114 | /* | ||
115 | * we can actually store much bigger names, but lets not confuse the rest | ||
116 | * of linux | ||
117 | */ | ||
118 | #define BTRFS_NAME_LEN 255 | ||
119 | |||
120 | /* 32 bytes in various csum fields */ | ||
121 | #define BTRFS_CSUM_SIZE 32 | ||
122 | |||
123 | /* csum types */ | ||
124 | #define BTRFS_CSUM_TYPE_CRC32 0 | ||
125 | |||
126 | static int btrfs_csum_sizes[] = { 4, 0 }; | ||
127 | |||
128 | /* four bytes for CRC32 */ | ||
129 | #define BTRFS_EMPTY_DIR_SIZE 0 | ||
130 | |||
131 | #define BTRFS_FT_UNKNOWN 0 | ||
132 | #define BTRFS_FT_REG_FILE 1 | ||
133 | #define BTRFS_FT_DIR 2 | ||
134 | #define BTRFS_FT_CHRDEV 3 | ||
135 | #define BTRFS_FT_BLKDEV 4 | ||
136 | #define BTRFS_FT_FIFO 5 | ||
137 | #define BTRFS_FT_SOCK 6 | ||
138 | #define BTRFS_FT_SYMLINK 7 | ||
139 | #define BTRFS_FT_XATTR 8 | ||
140 | #define BTRFS_FT_MAX 9 | ||
141 | |||
142 | /* | ||
143 | * the key defines the order in the tree, and so it also defines (optimal) | ||
144 | * block layout. objectid corresonds to the inode number. The flags | ||
145 | * tells us things about the object, and is a kind of stream selector. | ||
146 | * so for a given inode, keys with flags of 1 might refer to the inode | ||
147 | * data, flags of 2 may point to file data in the btree and flags == 3 | ||
148 | * may point to extents. | ||
149 | * | ||
150 | * offset is the starting byte offset for this key in the stream. | ||
151 | * | ||
152 | * btrfs_disk_key is in disk byte order. struct btrfs_key is always | ||
153 | * in cpu native order. Otherwise they are identical and their sizes | ||
154 | * should be the same (ie both packed) | ||
155 | */ | ||
156 | struct btrfs_disk_key { | ||
157 | __le64 objectid; | ||
158 | u8 type; | ||
159 | __le64 offset; | ||
160 | } __attribute__ ((__packed__)); | ||
161 | |||
162 | struct btrfs_key { | ||
163 | u64 objectid; | ||
164 | u8 type; | ||
165 | u64 offset; | ||
166 | } __attribute__ ((__packed__)); | ||
167 | |||
168 | struct btrfs_mapping_tree { | ||
169 | struct extent_map_tree map_tree; | ||
170 | }; | ||
171 | |||
172 | #define BTRFS_UUID_SIZE 16 | ||
173 | struct btrfs_dev_item { | ||
174 | /* the internal btrfs device id */ | ||
175 | __le64 devid; | ||
176 | |||
177 | /* size of the device */ | ||
178 | __le64 total_bytes; | ||
179 | |||
180 | /* bytes used */ | ||
181 | __le64 bytes_used; | ||
182 | |||
183 | /* optimal io alignment for this device */ | ||
184 | __le32 io_align; | ||
185 | |||
186 | /* optimal io width for this device */ | ||
187 | __le32 io_width; | ||
188 | |||
189 | /* minimal io size for this device */ | ||
190 | __le32 sector_size; | ||
191 | |||
192 | /* type and info about this device */ | ||
193 | __le64 type; | ||
194 | |||
195 | /* expected generation for this device */ | ||
196 | __le64 generation; | ||
197 | |||
198 | /* | ||
199 | * starting byte of this partition on the device, | ||
200 | * to allowr for stripe alignment in the future | ||
201 | */ | ||
202 | __le64 start_offset; | ||
203 | |||
204 | /* grouping information for allocation decisions */ | ||
205 | __le32 dev_group; | ||
206 | |||
207 | /* seek speed 0-100 where 100 is fastest */ | ||
208 | u8 seek_speed; | ||
209 | |||
210 | /* bandwidth 0-100 where 100 is fastest */ | ||
211 | u8 bandwidth; | ||
212 | |||
213 | /* btrfs generated uuid for this device */ | ||
214 | u8 uuid[BTRFS_UUID_SIZE]; | ||
215 | |||
216 | /* uuid of FS who owns this device */ | ||
217 | u8 fsid[BTRFS_UUID_SIZE]; | ||
218 | } __attribute__ ((__packed__)); | ||
219 | |||
220 | struct btrfs_stripe { | ||
221 | __le64 devid; | ||
222 | __le64 offset; | ||
223 | u8 dev_uuid[BTRFS_UUID_SIZE]; | ||
224 | } __attribute__ ((__packed__)); | ||
225 | |||
226 | struct btrfs_chunk { | ||
227 | /* size of this chunk in bytes */ | ||
228 | __le64 length; | ||
229 | |||
230 | /* objectid of the root referencing this chunk */ | ||
231 | __le64 owner; | ||
232 | |||
233 | __le64 stripe_len; | ||
234 | __le64 type; | ||
235 | |||
236 | /* optimal io alignment for this chunk */ | ||
237 | __le32 io_align; | ||
238 | |||
239 | /* optimal io width for this chunk */ | ||
240 | __le32 io_width; | ||
241 | |||
242 | /* minimal io size for this chunk */ | ||
243 | __le32 sector_size; | ||
244 | |||
245 | /* 2^16 stripes is quite a lot, a second limit is the size of a single | ||
246 | * item in the btree | ||
247 | */ | ||
248 | __le16 num_stripes; | ||
249 | |||
250 | /* sub stripes only matter for raid10 */ | ||
251 | __le16 sub_stripes; | ||
252 | struct btrfs_stripe stripe; | ||
253 | /* additional stripes go here */ | ||
254 | } __attribute__ ((__packed__)); | ||
255 | |||
256 | static inline unsigned long btrfs_chunk_item_size(int num_stripes) | ||
257 | { | ||
258 | BUG_ON(num_stripes == 0); | ||
259 | return sizeof(struct btrfs_chunk) + | ||
260 | sizeof(struct btrfs_stripe) * (num_stripes - 1); | ||
261 | } | ||
262 | |||
263 | #define BTRFS_FSID_SIZE 16 | ||
264 | #define BTRFS_HEADER_FLAG_WRITTEN (1 << 0) | ||
265 | |||
266 | /* | ||
267 | * every tree block (leaf or node) starts with this header. | ||
268 | */ | ||
269 | struct btrfs_header { | ||
270 | /* these first four must match the super block */ | ||
271 | u8 csum[BTRFS_CSUM_SIZE]; | ||
272 | u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */ | ||
273 | __le64 bytenr; /* which block this node is supposed to live in */ | ||
274 | __le64 flags; | ||
275 | |||
276 | /* allowed to be different from the super from here on down */ | ||
277 | u8 chunk_tree_uuid[BTRFS_UUID_SIZE]; | ||
278 | __le64 generation; | ||
279 | __le64 owner; | ||
280 | __le32 nritems; | ||
281 | u8 level; | ||
282 | } __attribute__ ((__packed__)); | ||
283 | |||
284 | #define BTRFS_NODEPTRS_PER_BLOCK(r) (((r)->nodesize - \ | ||
285 | sizeof(struct btrfs_header)) / \ | ||
286 | sizeof(struct btrfs_key_ptr)) | ||
287 | #define __BTRFS_LEAF_DATA_SIZE(bs) ((bs) - sizeof(struct btrfs_header)) | ||
288 | #define BTRFS_LEAF_DATA_SIZE(r) (__BTRFS_LEAF_DATA_SIZE(r->leafsize)) | ||
289 | #define BTRFS_MAX_INLINE_DATA_SIZE(r) (BTRFS_LEAF_DATA_SIZE(r) - \ | ||
290 | sizeof(struct btrfs_item) - \ | ||
291 | sizeof(struct btrfs_file_extent_item)) | ||
292 | |||
293 | #define BTRFS_SUPER_FLAG_SEEDING (1ULL << 32) | ||
294 | |||
295 | /* | ||
296 | * this is a very generous portion of the super block, giving us | ||
297 | * room to translate 14 chunks with 3 stripes each. | ||
298 | */ | ||
299 | #define BTRFS_SYSTEM_CHUNK_ARRAY_SIZE 2048 | ||
300 | #define BTRFS_LABEL_SIZE 256 | ||
301 | |||
302 | /* | ||
303 | * the super block basically lists the main trees of the FS | ||
304 | * it currently lacks any block count etc etc | ||
305 | */ | ||
306 | struct btrfs_super_block { | ||
307 | u8 csum[BTRFS_CSUM_SIZE]; | ||
308 | /* the first 4 fields must match struct btrfs_header */ | ||
309 | u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */ | ||
310 | __le64 bytenr; /* this block number */ | ||
311 | __le64 flags; | ||
312 | |||
313 | /* allowed to be different from the btrfs_header from here own down */ | ||
314 | __le64 magic; | ||
315 | __le64 generation; | ||
316 | __le64 root; | ||
317 | __le64 chunk_root; | ||
318 | __le64 log_root; | ||
319 | |||
320 | /* this will help find the new super based on the log root */ | ||
321 | __le64 log_root_transid; | ||
322 | __le64 total_bytes; | ||
323 | __le64 bytes_used; | ||
324 | __le64 root_dir_objectid; | ||
325 | __le64 num_devices; | ||
326 | __le32 sectorsize; | ||
327 | __le32 nodesize; | ||
328 | __le32 leafsize; | ||
329 | __le32 stripesize; | ||
330 | __le32 sys_chunk_array_size; | ||
331 | __le64 chunk_root_generation; | ||
332 | __le64 compat_flags; | ||
333 | __le64 compat_ro_flags; | ||
334 | __le64 incompat_flags; | ||
335 | __le16 csum_type; | ||
336 | u8 root_level; | ||
337 | u8 chunk_root_level; | ||
338 | u8 log_root_level; | ||
339 | struct btrfs_dev_item dev_item; | ||
340 | |||
341 | char label[BTRFS_LABEL_SIZE]; | ||
342 | |||
343 | /* future expansion */ | ||
344 | __le64 reserved[32]; | ||
345 | u8 sys_chunk_array[BTRFS_SYSTEM_CHUNK_ARRAY_SIZE]; | ||
346 | } __attribute__ ((__packed__)); | ||
347 | |||
348 | /* | ||
349 | * Compat flags that we support. If any incompat flags are set other than the | ||
350 | * ones specified below then we will fail to mount | ||
351 | */ | ||
352 | #define BTRFS_FEATURE_COMPAT_SUPP 0x0 | ||
353 | #define BTRFS_FEATURE_COMPAT_RO_SUPP 0x0 | ||
354 | #define BTRFS_FEATURE_INCOMPAT_SUPP 0x0 | ||
355 | |||
356 | /* | ||
357 | * A leaf is full of items. offset and size tell us where to find | ||
358 | * the item in the leaf (relative to the start of the data area) | ||
359 | */ | ||
360 | struct btrfs_item { | ||
361 | struct btrfs_disk_key key; | ||
362 | __le32 offset; | ||
363 | __le32 size; | ||
364 | } __attribute__ ((__packed__)); | ||
365 | |||
366 | /* | ||
367 | * leaves have an item area and a data area: | ||
368 | * [item0, item1....itemN] [free space] [dataN...data1, data0] | ||
369 | * | ||
370 | * The data is separate from the items to get the keys closer together | ||
371 | * during searches. | ||
372 | */ | ||
373 | struct btrfs_leaf { | ||
374 | struct btrfs_header header; | ||
375 | struct btrfs_item items[]; | ||
376 | } __attribute__ ((__packed__)); | ||
377 | |||
378 | /* | ||
379 | * all non-leaf blocks are nodes, they hold only keys and pointers to | ||
380 | * other blocks | ||
381 | */ | ||
382 | struct btrfs_key_ptr { | ||
383 | struct btrfs_disk_key key; | ||
384 | __le64 blockptr; | ||
385 | __le64 generation; | ||
386 | } __attribute__ ((__packed__)); | ||
387 | |||
388 | struct btrfs_node { | ||
389 | struct btrfs_header header; | ||
390 | struct btrfs_key_ptr ptrs[]; | ||
391 | } __attribute__ ((__packed__)); | ||
392 | |||
393 | /* | ||
394 | * btrfs_paths remember the path taken from the root down to the leaf. | ||
395 | * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point | ||
396 | * to any other levels that are present. | ||
397 | * | ||
398 | * The slots array records the index of the item or block pointer | ||
399 | * used while walking the tree. | ||
400 | */ | ||
401 | struct btrfs_path { | ||
402 | struct extent_buffer *nodes[BTRFS_MAX_LEVEL]; | ||
403 | int slots[BTRFS_MAX_LEVEL]; | ||
404 | /* if there is real range locking, this locks field will change */ | ||
405 | int locks[BTRFS_MAX_LEVEL]; | ||
406 | int reada; | ||
407 | /* keep some upper locks as we walk down */ | ||
408 | int keep_locks; | ||
409 | int skip_locking; | ||
410 | int lowest_level; | ||
411 | |||
412 | /* | ||
413 | * set by btrfs_split_item, tells search_slot to keep all locks | ||
414 | * and to force calls to keep space in the nodes | ||
415 | */ | ||
416 | int search_for_split; | ||
417 | }; | ||
418 | |||
419 | /* | ||
420 | * items in the extent btree are used to record the objectid of the | ||
421 | * owner of the block and the number of references | ||
422 | */ | ||
423 | struct btrfs_extent_item { | ||
424 | __le32 refs; | ||
425 | } __attribute__ ((__packed__)); | ||
426 | |||
427 | struct btrfs_extent_ref { | ||
428 | __le64 root; | ||
429 | __le64 generation; | ||
430 | __le64 objectid; | ||
431 | __le32 num_refs; | ||
432 | } __attribute__ ((__packed__)); | ||
433 | |||
434 | /* dev extents record free space on individual devices. The owner | ||
435 | * field points back to the chunk allocation mapping tree that allocated | ||
436 | * the extent. The chunk tree uuid field is a way to double check the owner | ||
437 | */ | ||
438 | struct btrfs_dev_extent { | ||
439 | __le64 chunk_tree; | ||
440 | __le64 chunk_objectid; | ||
441 | __le64 chunk_offset; | ||
442 | __le64 length; | ||
443 | u8 chunk_tree_uuid[BTRFS_UUID_SIZE]; | ||
444 | } __attribute__ ((__packed__)); | ||
445 | |||
446 | struct btrfs_inode_ref { | ||
447 | __le64 index; | ||
448 | __le16 name_len; | ||
449 | /* name goes here */ | ||
450 | } __attribute__ ((__packed__)); | ||
451 | |||
452 | struct btrfs_timespec { | ||
453 | __le64 sec; | ||
454 | __le32 nsec; | ||
455 | } __attribute__ ((__packed__)); | ||
456 | |||
457 | typedef enum { | ||
458 | BTRFS_COMPRESS_NONE = 0, | ||
459 | BTRFS_COMPRESS_ZLIB = 1, | ||
460 | BTRFS_COMPRESS_LAST = 2, | ||
461 | } btrfs_compression_type; | ||
462 | |||
463 | /* we don't understand any encryption methods right now */ | ||
464 | typedef enum { | ||
465 | BTRFS_ENCRYPTION_NONE = 0, | ||
466 | BTRFS_ENCRYPTION_LAST = 1, | ||
467 | } btrfs_encryption_type; | ||
468 | |||
469 | struct btrfs_inode_item { | ||
470 | /* nfs style generation number */ | ||
471 | __le64 generation; | ||
472 | /* transid that last touched this inode */ | ||
473 | __le64 transid; | ||
474 | __le64 size; | ||
475 | __le64 nbytes; | ||
476 | __le64 block_group; | ||
477 | __le32 nlink; | ||
478 | __le32 uid; | ||
479 | __le32 gid; | ||
480 | __le32 mode; | ||
481 | __le64 rdev; | ||
482 | __le64 flags; | ||
483 | |||
484 | /* modification sequence number for NFS */ | ||
485 | __le64 sequence; | ||
486 | |||
487 | /* | ||
488 | * a little future expansion, for more than this we can | ||
489 | * just grow the inode item and version it | ||
490 | */ | ||
491 | __le64 reserved[4]; | ||
492 | struct btrfs_timespec atime; | ||
493 | struct btrfs_timespec ctime; | ||
494 | struct btrfs_timespec mtime; | ||
495 | struct btrfs_timespec otime; | ||
496 | } __attribute__ ((__packed__)); | ||
497 | |||
498 | struct btrfs_dir_log_item { | ||
499 | __le64 end; | ||
500 | } __attribute__ ((__packed__)); | ||
501 | |||
502 | struct btrfs_dir_item { | ||
503 | struct btrfs_disk_key location; | ||
504 | __le64 transid; | ||
505 | __le16 data_len; | ||
506 | __le16 name_len; | ||
507 | u8 type; | ||
508 | } __attribute__ ((__packed__)); | ||
509 | |||
510 | struct btrfs_root_item { | ||
511 | struct btrfs_inode_item inode; | ||
512 | __le64 generation; | ||
513 | __le64 root_dirid; | ||
514 | __le64 bytenr; | ||
515 | __le64 byte_limit; | ||
516 | __le64 bytes_used; | ||
517 | __le64 last_snapshot; | ||
518 | __le64 flags; | ||
519 | __le32 refs; | ||
520 | struct btrfs_disk_key drop_progress; | ||
521 | u8 drop_level; | ||
522 | u8 level; | ||
523 | } __attribute__ ((__packed__)); | ||
524 | |||
525 | /* | ||
526 | * this is used for both forward and backward root refs | ||
527 | */ | ||
528 | struct btrfs_root_ref { | ||
529 | __le64 dirid; | ||
530 | __le64 sequence; | ||
531 | __le16 name_len; | ||
532 | } __attribute__ ((__packed__)); | ||
533 | |||
534 | #define BTRFS_FILE_EXTENT_INLINE 0 | ||
535 | #define BTRFS_FILE_EXTENT_REG 1 | ||
536 | #define BTRFS_FILE_EXTENT_PREALLOC 2 | ||
537 | |||
538 | struct btrfs_file_extent_item { | ||
539 | /* | ||
540 | * transaction id that created this extent | ||
541 | */ | ||
542 | __le64 generation; | ||
543 | /* | ||
544 | * max number of bytes to hold this extent in ram | ||
545 | * when we split a compressed extent we can't know how big | ||
546 | * each of the resulting pieces will be. So, this is | ||
547 | * an upper limit on the size of the extent in ram instead of | ||
548 | * an exact limit. | ||
549 | */ | ||
550 | __le64 ram_bytes; | ||
551 | |||
552 | /* | ||
553 | * 32 bits for the various ways we might encode the data, | ||
554 | * including compression and encryption. If any of these | ||
555 | * are set to something a given disk format doesn't understand | ||
556 | * it is treated like an incompat flag for reading and writing, | ||
557 | * but not for stat. | ||
558 | */ | ||
559 | u8 compression; | ||
560 | u8 encryption; | ||
561 | __le16 other_encoding; /* spare for later use */ | ||
562 | |||
563 | /* are we inline data or a real extent? */ | ||
564 | u8 type; | ||
565 | |||
566 | /* | ||
567 | * disk space consumed by the extent, checksum blocks are included | ||
568 | * in these numbers | ||
569 | */ | ||
570 | __le64 disk_bytenr; | ||
571 | __le64 disk_num_bytes; | ||
572 | /* | ||
573 | * the logical offset in file blocks (no csums) | ||
574 | * this extent record is for. This allows a file extent to point | ||
575 | * into the middle of an existing extent on disk, sharing it | ||
576 | * between two snapshots (useful if some bytes in the middle of the | ||
577 | * extent have changed | ||
578 | */ | ||
579 | __le64 offset; | ||
580 | /* | ||
581 | * the logical number of file blocks (no csums included). This | ||
582 | * always reflects the size uncompressed and without encoding. | ||
583 | */ | ||
584 | __le64 num_bytes; | ||
585 | |||
586 | } __attribute__ ((__packed__)); | ||
587 | |||
588 | struct btrfs_csum_item { | ||
589 | u8 csum; | ||
590 | } __attribute__ ((__packed__)); | ||
591 | |||
592 | /* different types of block groups (and chunks) */ | ||
593 | #define BTRFS_BLOCK_GROUP_DATA (1 << 0) | ||
594 | #define BTRFS_BLOCK_GROUP_SYSTEM (1 << 1) | ||
595 | #define BTRFS_BLOCK_GROUP_METADATA (1 << 2) | ||
596 | #define BTRFS_BLOCK_GROUP_RAID0 (1 << 3) | ||
597 | #define BTRFS_BLOCK_GROUP_RAID1 (1 << 4) | ||
598 | #define BTRFS_BLOCK_GROUP_DUP (1 << 5) | ||
599 | #define BTRFS_BLOCK_GROUP_RAID10 (1 << 6) | ||
600 | |||
601 | struct btrfs_block_group_item { | ||
602 | __le64 used; | ||
603 | __le64 chunk_objectid; | ||
604 | __le64 flags; | ||
605 | } __attribute__ ((__packed__)); | ||
606 | |||
607 | struct btrfs_space_info { | ||
608 | u64 flags; | ||
609 | u64 total_bytes; | ||
610 | u64 bytes_used; | ||
611 | u64 bytes_pinned; | ||
612 | u64 bytes_reserved; | ||
613 | u64 bytes_readonly; | ||
614 | int full; | ||
615 | int force_alloc; | ||
616 | struct list_head list; | ||
617 | |||
618 | /* for block groups in our same type */ | ||
619 | struct list_head block_groups; | ||
620 | spinlock_t lock; | ||
621 | struct rw_semaphore groups_sem; | ||
622 | }; | ||
623 | |||
624 | struct btrfs_free_space { | ||
625 | struct rb_node bytes_index; | ||
626 | struct rb_node offset_index; | ||
627 | u64 offset; | ||
628 | u64 bytes; | ||
629 | }; | ||
630 | |||
631 | struct btrfs_block_group_cache { | ||
632 | struct btrfs_key key; | ||
633 | struct btrfs_block_group_item item; | ||
634 | spinlock_t lock; | ||
635 | struct mutex alloc_mutex; | ||
636 | struct mutex cache_mutex; | ||
637 | u64 pinned; | ||
638 | u64 reserved; | ||
639 | u64 flags; | ||
640 | int cached; | ||
641 | int ro; | ||
642 | int dirty; | ||
643 | |||
644 | struct btrfs_space_info *space_info; | ||
645 | |||
646 | /* free space cache stuff */ | ||
647 | struct rb_root free_space_bytes; | ||
648 | struct rb_root free_space_offset; | ||
649 | |||
650 | /* block group cache stuff */ | ||
651 | struct rb_node cache_node; | ||
652 | |||
653 | /* for block groups in the same raid type */ | ||
654 | struct list_head list; | ||
655 | |||
656 | /* usage count */ | ||
657 | atomic_t count; | ||
658 | }; | ||
659 | |||
660 | struct btrfs_leaf_ref_tree { | ||
661 | struct rb_root root; | ||
662 | struct list_head list; | ||
663 | spinlock_t lock; | ||
664 | }; | ||
665 | |||
666 | struct btrfs_device; | ||
667 | struct btrfs_fs_devices; | ||
668 | struct btrfs_fs_info { | ||
669 | u8 fsid[BTRFS_FSID_SIZE]; | ||
670 | u8 chunk_tree_uuid[BTRFS_UUID_SIZE]; | ||
671 | struct btrfs_root *extent_root; | ||
672 | struct btrfs_root *tree_root; | ||
673 | struct btrfs_root *chunk_root; | ||
674 | struct btrfs_root *dev_root; | ||
675 | struct btrfs_root *fs_root; | ||
676 | struct btrfs_root *csum_root; | ||
677 | |||
678 | /* the log root tree is a directory of all the other log roots */ | ||
679 | struct btrfs_root *log_root_tree; | ||
680 | struct radix_tree_root fs_roots_radix; | ||
681 | |||
682 | /* block group cache stuff */ | ||
683 | spinlock_t block_group_cache_lock; | ||
684 | struct rb_root block_group_cache_tree; | ||
685 | |||
686 | struct extent_io_tree pinned_extents; | ||
687 | struct extent_io_tree pending_del; | ||
688 | struct extent_io_tree extent_ins; | ||
689 | |||
690 | /* logical->physical extent mapping */ | ||
691 | struct btrfs_mapping_tree mapping_tree; | ||
692 | |||
693 | u64 generation; | ||
694 | u64 last_trans_committed; | ||
695 | u64 last_trans_new_blockgroup; | ||
696 | u64 open_ioctl_trans; | ||
697 | unsigned long mount_opt; | ||
698 | u64 max_extent; | ||
699 | u64 max_inline; | ||
700 | u64 alloc_start; | ||
701 | struct btrfs_transaction *running_transaction; | ||
702 | wait_queue_head_t transaction_throttle; | ||
703 | wait_queue_head_t transaction_wait; | ||
704 | |||
705 | wait_queue_head_t async_submit_wait; | ||
706 | wait_queue_head_t tree_log_wait; | ||
707 | |||
708 | struct btrfs_super_block super_copy; | ||
709 | struct btrfs_super_block super_for_commit; | ||
710 | struct block_device *__bdev; | ||
711 | struct super_block *sb; | ||
712 | struct inode *btree_inode; | ||
713 | struct backing_dev_info bdi; | ||
714 | spinlock_t hash_lock; | ||
715 | struct mutex trans_mutex; | ||
716 | struct mutex tree_log_mutex; | ||
717 | struct mutex transaction_kthread_mutex; | ||
718 | struct mutex cleaner_mutex; | ||
719 | struct mutex extent_ins_mutex; | ||
720 | struct mutex pinned_mutex; | ||
721 | struct mutex chunk_mutex; | ||
722 | struct mutex drop_mutex; | ||
723 | struct mutex volume_mutex; | ||
724 | struct mutex tree_reloc_mutex; | ||
725 | struct list_head trans_list; | ||
726 | struct list_head hashers; | ||
727 | struct list_head dead_roots; | ||
728 | |||
729 | atomic_t nr_async_submits; | ||
730 | atomic_t async_submit_draining; | ||
731 | atomic_t nr_async_bios; | ||
732 | atomic_t async_delalloc_pages; | ||
733 | atomic_t tree_log_writers; | ||
734 | atomic_t tree_log_commit; | ||
735 | unsigned long tree_log_batch; | ||
736 | u64 tree_log_transid; | ||
737 | |||
738 | /* | ||
739 | * this is used by the balancing code to wait for all the pending | ||
740 | * ordered extents | ||
741 | */ | ||
742 | spinlock_t ordered_extent_lock; | ||
743 | struct list_head ordered_extents; | ||
744 | struct list_head delalloc_inodes; | ||
745 | |||
746 | /* | ||
747 | * there is a pool of worker threads for checksumming during writes | ||
748 | * and a pool for checksumming after reads. This is because readers | ||
749 | * can run with FS locks held, and the writers may be waiting for | ||
750 | * those locks. We don't want ordering in the pending list to cause | ||
751 | * deadlocks, and so the two are serviced separately. | ||
752 | * | ||
753 | * A third pool does submit_bio to avoid deadlocking with the other | ||
754 | * two | ||
755 | */ | ||
756 | struct btrfs_workers workers; | ||
757 | struct btrfs_workers delalloc_workers; | ||
758 | struct btrfs_workers endio_workers; | ||
759 | struct btrfs_workers endio_meta_workers; | ||
760 | struct btrfs_workers endio_meta_write_workers; | ||
761 | struct btrfs_workers endio_write_workers; | ||
762 | struct btrfs_workers submit_workers; | ||
763 | /* | ||
764 | * fixup workers take dirty pages that didn't properly go through | ||
765 | * the cow mechanism and make them safe to write. It happens | ||
766 | * for the sys_munmap function call path | ||
767 | */ | ||
768 | struct btrfs_workers fixup_workers; | ||
769 | struct task_struct *transaction_kthread; | ||
770 | struct task_struct *cleaner_kthread; | ||
771 | int thread_pool_size; | ||
772 | |||
773 | /* tree relocation relocated fields */ | ||
774 | struct list_head dead_reloc_roots; | ||
775 | struct btrfs_leaf_ref_tree reloc_ref_tree; | ||
776 | struct btrfs_leaf_ref_tree shared_ref_tree; | ||
777 | |||
778 | struct kobject super_kobj; | ||
779 | struct completion kobj_unregister; | ||
780 | int do_barriers; | ||
781 | int closing; | ||
782 | int log_root_recovering; | ||
783 | atomic_t throttles; | ||
784 | atomic_t throttle_gen; | ||
785 | |||
786 | u64 total_pinned; | ||
787 | struct list_head dirty_cowonly_roots; | ||
788 | |||
789 | struct btrfs_fs_devices *fs_devices; | ||
790 | struct list_head space_info; | ||
791 | spinlock_t delalloc_lock; | ||
792 | spinlock_t new_trans_lock; | ||
793 | u64 delalloc_bytes; | ||
794 | u64 last_alloc; | ||
795 | u64 last_data_alloc; | ||
796 | |||
797 | spinlock_t ref_cache_lock; | ||
798 | u64 total_ref_cache_size; | ||
799 | |||
800 | u64 avail_data_alloc_bits; | ||
801 | u64 avail_metadata_alloc_bits; | ||
802 | u64 avail_system_alloc_bits; | ||
803 | u64 data_alloc_profile; | ||
804 | u64 metadata_alloc_profile; | ||
805 | u64 system_alloc_profile; | ||
806 | |||
807 | void *bdev_holder; | ||
808 | }; | ||
809 | |||
810 | /* | ||
811 | * in ram representation of the tree. extent_root is used for all allocations | ||
812 | * and for the extent tree extent_root root. | ||
813 | */ | ||
814 | struct btrfs_dirty_root; | ||
815 | struct btrfs_root { | ||
816 | struct extent_buffer *node; | ||
817 | |||
818 | /* the node lock is held while changing the node pointer */ | ||
819 | spinlock_t node_lock; | ||
820 | |||
821 | struct extent_buffer *commit_root; | ||
822 | struct btrfs_leaf_ref_tree *ref_tree; | ||
823 | struct btrfs_leaf_ref_tree ref_tree_struct; | ||
824 | struct btrfs_dirty_root *dirty_root; | ||
825 | struct btrfs_root *log_root; | ||
826 | struct btrfs_root *reloc_root; | ||
827 | |||
828 | struct btrfs_root_item root_item; | ||
829 | struct btrfs_key root_key; | ||
830 | struct btrfs_fs_info *fs_info; | ||
831 | struct extent_io_tree dirty_log_pages; | ||
832 | |||
833 | struct kobject root_kobj; | ||
834 | struct completion kobj_unregister; | ||
835 | struct mutex objectid_mutex; | ||
836 | struct mutex log_mutex; | ||
837 | |||
838 | u64 objectid; | ||
839 | u64 last_trans; | ||
840 | |||
841 | /* data allocations are done in sectorsize units */ | ||
842 | u32 sectorsize; | ||
843 | |||
844 | /* node allocations are done in nodesize units */ | ||
845 | u32 nodesize; | ||
846 | |||
847 | /* leaf allocations are done in leafsize units */ | ||
848 | u32 leafsize; | ||
849 | |||
850 | u32 stripesize; | ||
851 | |||
852 | u32 type; | ||
853 | u64 highest_inode; | ||
854 | u64 last_inode_alloc; | ||
855 | int ref_cows; | ||
856 | int track_dirty; | ||
857 | u64 defrag_trans_start; | ||
858 | struct btrfs_key defrag_progress; | ||
859 | struct btrfs_key defrag_max; | ||
860 | int defrag_running; | ||
861 | int defrag_level; | ||
862 | char *name; | ||
863 | int in_sysfs; | ||
864 | |||
865 | /* the dirty list is only used by non-reference counted roots */ | ||
866 | struct list_head dirty_list; | ||
867 | |||
868 | spinlock_t list_lock; | ||
869 | struct list_head dead_list; | ||
870 | struct list_head orphan_list; | ||
871 | |||
872 | /* | ||
873 | * right now this just gets used so that a root has its own devid | ||
874 | * for stat. It may be used for more later | ||
875 | */ | ||
876 | struct super_block anon_super; | ||
877 | }; | ||
878 | |||
879 | /* | ||
880 | |||
881 | * inode items have the data typically returned from stat and store other | ||
882 | * info about object characteristics. There is one for every file and dir in | ||
883 | * the FS | ||
884 | */ | ||
885 | #define BTRFS_INODE_ITEM_KEY 1 | ||
886 | #define BTRFS_INODE_REF_KEY 12 | ||
887 | #define BTRFS_XATTR_ITEM_KEY 24 | ||
888 | #define BTRFS_ORPHAN_ITEM_KEY 48 | ||
889 | /* reserve 2-15 close to the inode for later flexibility */ | ||
890 | |||
891 | /* | ||
892 | * dir items are the name -> inode pointers in a directory. There is one | ||
893 | * for every name in a directory. | ||
894 | */ | ||
895 | #define BTRFS_DIR_LOG_ITEM_KEY 60 | ||
896 | #define BTRFS_DIR_LOG_INDEX_KEY 72 | ||
897 | #define BTRFS_DIR_ITEM_KEY 84 | ||
898 | #define BTRFS_DIR_INDEX_KEY 96 | ||
899 | /* | ||
900 | * extent data is for file data | ||
901 | */ | ||
902 | #define BTRFS_EXTENT_DATA_KEY 108 | ||
903 | |||
904 | /* | ||
905 | * extent csums are stored in a separate tree and hold csums for | ||
906 | * an entire extent on disk. | ||
907 | */ | ||
908 | #define BTRFS_EXTENT_CSUM_KEY 128 | ||
909 | |||
910 | /* | ||
911 | * root items point to tree roots. There are typically in the root | ||
912 | * tree used by the super block to find all the other trees | ||
913 | */ | ||
914 | #define BTRFS_ROOT_ITEM_KEY 132 | ||
915 | |||
916 | /* | ||
917 | * root backrefs tie subvols and snapshots to the directory entries that | ||
918 | * reference them | ||
919 | */ | ||
920 | #define BTRFS_ROOT_BACKREF_KEY 144 | ||
921 | |||
922 | /* | ||
923 | * root refs make a fast index for listing all of the snapshots and | ||
924 | * subvolumes referenced by a given root. They point directly to the | ||
925 | * directory item in the root that references the subvol | ||
926 | */ | ||
927 | #define BTRFS_ROOT_REF_KEY 156 | ||
928 | |||
929 | /* | ||
930 | * extent items are in the extent map tree. These record which blocks | ||
931 | * are used, and how many references there are to each block | ||
932 | */ | ||
933 | #define BTRFS_EXTENT_ITEM_KEY 168 | ||
934 | #define BTRFS_EXTENT_REF_KEY 180 | ||
935 | |||
936 | /* | ||
937 | * block groups give us hints into the extent allocation trees. Which | ||
938 | * blocks are free etc etc | ||
939 | */ | ||
940 | #define BTRFS_BLOCK_GROUP_ITEM_KEY 192 | ||
941 | |||
942 | #define BTRFS_DEV_EXTENT_KEY 204 | ||
943 | #define BTRFS_DEV_ITEM_KEY 216 | ||
944 | #define BTRFS_CHUNK_ITEM_KEY 228 | ||
945 | |||
946 | /* | ||
947 | * string items are for debugging. They just store a short string of | ||
948 | * data in the FS | ||
949 | */ | ||
950 | #define BTRFS_STRING_ITEM_KEY 253 | ||
951 | |||
952 | #define BTRFS_MOUNT_NODATASUM (1 << 0) | ||
953 | #define BTRFS_MOUNT_NODATACOW (1 << 1) | ||
954 | #define BTRFS_MOUNT_NOBARRIER (1 << 2) | ||
955 | #define BTRFS_MOUNT_SSD (1 << 3) | ||
956 | #define BTRFS_MOUNT_DEGRADED (1 << 4) | ||
957 | #define BTRFS_MOUNT_COMPRESS (1 << 5) | ||
958 | |||
959 | #define btrfs_clear_opt(o, opt) ((o) &= ~BTRFS_MOUNT_##opt) | ||
960 | #define btrfs_set_opt(o, opt) ((o) |= BTRFS_MOUNT_##opt) | ||
961 | #define btrfs_test_opt(root, opt) ((root)->fs_info->mount_opt & \ | ||
962 | BTRFS_MOUNT_##opt) | ||
963 | /* | ||
964 | * Inode flags | ||
965 | */ | ||
966 | #define BTRFS_INODE_NODATASUM (1 << 0) | ||
967 | #define BTRFS_INODE_NODATACOW (1 << 1) | ||
968 | #define BTRFS_INODE_READONLY (1 << 2) | ||
969 | #define BTRFS_INODE_NOCOMPRESS (1 << 3) | ||
970 | #define BTRFS_INODE_PREALLOC (1 << 4) | ||
971 | #define btrfs_clear_flag(inode, flag) (BTRFS_I(inode)->flags &= \ | ||
972 | ~BTRFS_INODE_##flag) | ||
973 | #define btrfs_set_flag(inode, flag) (BTRFS_I(inode)->flags |= \ | ||
974 | BTRFS_INODE_##flag) | ||
975 | #define btrfs_test_flag(inode, flag) (BTRFS_I(inode)->flags & \ | ||
976 | BTRFS_INODE_##flag) | ||
977 | /* some macros to generate set/get funcs for the struct fields. This | ||
978 | * assumes there is a lefoo_to_cpu for every type, so lets make a simple | ||
979 | * one for u8: | ||
980 | */ | ||
981 | #define le8_to_cpu(v) (v) | ||
982 | #define cpu_to_le8(v) (v) | ||
983 | #define __le8 u8 | ||
984 | |||
985 | #define read_eb_member(eb, ptr, type, member, result) ( \ | ||
986 | read_extent_buffer(eb, (char *)(result), \ | ||
987 | ((unsigned long)(ptr)) + \ | ||
988 | offsetof(type, member), \ | ||
989 | sizeof(((type *)0)->member))) | ||
990 | |||
991 | #define write_eb_member(eb, ptr, type, member, result) ( \ | ||
992 | write_extent_buffer(eb, (char *)(result), \ | ||
993 | ((unsigned long)(ptr)) + \ | ||
994 | offsetof(type, member), \ | ||
995 | sizeof(((type *)0)->member))) | ||
996 | |||
997 | #ifndef BTRFS_SETGET_FUNCS | ||
998 | #define BTRFS_SETGET_FUNCS(name, type, member, bits) \ | ||
999 | u##bits btrfs_##name(struct extent_buffer *eb, type *s); \ | ||
1000 | void btrfs_set_##name(struct extent_buffer *eb, type *s, u##bits val); | ||
1001 | #endif | ||
1002 | |||
1003 | #define BTRFS_SETGET_HEADER_FUNCS(name, type, member, bits) \ | ||
1004 | static inline u##bits btrfs_##name(struct extent_buffer *eb) \ | ||
1005 | { \ | ||
1006 | type *p = kmap_atomic(eb->first_page, KM_USER0); \ | ||
1007 | u##bits res = le##bits##_to_cpu(p->member); \ | ||
1008 | kunmap_atomic(p, KM_USER0); \ | ||
1009 | return res; \ | ||
1010 | } \ | ||
1011 | static inline void btrfs_set_##name(struct extent_buffer *eb, \ | ||
1012 | u##bits val) \ | ||
1013 | { \ | ||
1014 | type *p = kmap_atomic(eb->first_page, KM_USER0); \ | ||
1015 | p->member = cpu_to_le##bits(val); \ | ||
1016 | kunmap_atomic(p, KM_USER0); \ | ||
1017 | } | ||
1018 | |||
1019 | #define BTRFS_SETGET_STACK_FUNCS(name, type, member, bits) \ | ||
1020 | static inline u##bits btrfs_##name(type *s) \ | ||
1021 | { \ | ||
1022 | return le##bits##_to_cpu(s->member); \ | ||
1023 | } \ | ||
1024 | static inline void btrfs_set_##name(type *s, u##bits val) \ | ||
1025 | { \ | ||
1026 | s->member = cpu_to_le##bits(val); \ | ||
1027 | } | ||
1028 | |||
1029 | BTRFS_SETGET_FUNCS(device_type, struct btrfs_dev_item, type, 64); | ||
1030 | BTRFS_SETGET_FUNCS(device_total_bytes, struct btrfs_dev_item, total_bytes, 64); | ||
1031 | BTRFS_SETGET_FUNCS(device_bytes_used, struct btrfs_dev_item, bytes_used, 64); | ||
1032 | BTRFS_SETGET_FUNCS(device_io_align, struct btrfs_dev_item, io_align, 32); | ||
1033 | BTRFS_SETGET_FUNCS(device_io_width, struct btrfs_dev_item, io_width, 32); | ||
1034 | BTRFS_SETGET_FUNCS(device_start_offset, struct btrfs_dev_item, | ||
1035 | start_offset, 64); | ||
1036 | BTRFS_SETGET_FUNCS(device_sector_size, struct btrfs_dev_item, sector_size, 32); | ||
1037 | BTRFS_SETGET_FUNCS(device_id, struct btrfs_dev_item, devid, 64); | ||
1038 | BTRFS_SETGET_FUNCS(device_group, struct btrfs_dev_item, dev_group, 32); | ||
1039 | BTRFS_SETGET_FUNCS(device_seek_speed, struct btrfs_dev_item, seek_speed, 8); | ||
1040 | BTRFS_SETGET_FUNCS(device_bandwidth, struct btrfs_dev_item, bandwidth, 8); | ||
1041 | BTRFS_SETGET_FUNCS(device_generation, struct btrfs_dev_item, generation, 64); | ||
1042 | |||
1043 | BTRFS_SETGET_STACK_FUNCS(stack_device_type, struct btrfs_dev_item, type, 64); | ||
1044 | BTRFS_SETGET_STACK_FUNCS(stack_device_total_bytes, struct btrfs_dev_item, | ||
1045 | total_bytes, 64); | ||
1046 | BTRFS_SETGET_STACK_FUNCS(stack_device_bytes_used, struct btrfs_dev_item, | ||
1047 | bytes_used, 64); | ||
1048 | BTRFS_SETGET_STACK_FUNCS(stack_device_io_align, struct btrfs_dev_item, | ||
1049 | io_align, 32); | ||
1050 | BTRFS_SETGET_STACK_FUNCS(stack_device_io_width, struct btrfs_dev_item, | ||
1051 | io_width, 32); | ||
1052 | BTRFS_SETGET_STACK_FUNCS(stack_device_sector_size, struct btrfs_dev_item, | ||
1053 | sector_size, 32); | ||
1054 | BTRFS_SETGET_STACK_FUNCS(stack_device_id, struct btrfs_dev_item, devid, 64); | ||
1055 | BTRFS_SETGET_STACK_FUNCS(stack_device_group, struct btrfs_dev_item, | ||
1056 | dev_group, 32); | ||
1057 | BTRFS_SETGET_STACK_FUNCS(stack_device_seek_speed, struct btrfs_dev_item, | ||
1058 | seek_speed, 8); | ||
1059 | BTRFS_SETGET_STACK_FUNCS(stack_device_bandwidth, struct btrfs_dev_item, | ||
1060 | bandwidth, 8); | ||
1061 | BTRFS_SETGET_STACK_FUNCS(stack_device_generation, struct btrfs_dev_item, | ||
1062 | generation, 64); | ||
1063 | |||
1064 | static inline char *btrfs_device_uuid(struct btrfs_dev_item *d) | ||
1065 | { | ||
1066 | return (char *)d + offsetof(struct btrfs_dev_item, uuid); | ||
1067 | } | ||
1068 | |||
1069 | static inline char *btrfs_device_fsid(struct btrfs_dev_item *d) | ||
1070 | { | ||
1071 | return (char *)d + offsetof(struct btrfs_dev_item, fsid); | ||
1072 | } | ||
1073 | |||
1074 | BTRFS_SETGET_FUNCS(chunk_length, struct btrfs_chunk, length, 64); | ||
1075 | BTRFS_SETGET_FUNCS(chunk_owner, struct btrfs_chunk, owner, 64); | ||
1076 | BTRFS_SETGET_FUNCS(chunk_stripe_len, struct btrfs_chunk, stripe_len, 64); | ||
1077 | BTRFS_SETGET_FUNCS(chunk_io_align, struct btrfs_chunk, io_align, 32); | ||
1078 | BTRFS_SETGET_FUNCS(chunk_io_width, struct btrfs_chunk, io_width, 32); | ||
1079 | BTRFS_SETGET_FUNCS(chunk_sector_size, struct btrfs_chunk, sector_size, 32); | ||
1080 | BTRFS_SETGET_FUNCS(chunk_type, struct btrfs_chunk, type, 64); | ||
1081 | BTRFS_SETGET_FUNCS(chunk_num_stripes, struct btrfs_chunk, num_stripes, 16); | ||
1082 | BTRFS_SETGET_FUNCS(chunk_sub_stripes, struct btrfs_chunk, sub_stripes, 16); | ||
1083 | BTRFS_SETGET_FUNCS(stripe_devid, struct btrfs_stripe, devid, 64); | ||
1084 | BTRFS_SETGET_FUNCS(stripe_offset, struct btrfs_stripe, offset, 64); | ||
1085 | |||
1086 | static inline char *btrfs_stripe_dev_uuid(struct btrfs_stripe *s) | ||
1087 | { | ||
1088 | return (char *)s + offsetof(struct btrfs_stripe, dev_uuid); | ||
1089 | } | ||
1090 | |||
1091 | BTRFS_SETGET_STACK_FUNCS(stack_chunk_length, struct btrfs_chunk, length, 64); | ||
1092 | BTRFS_SETGET_STACK_FUNCS(stack_chunk_owner, struct btrfs_chunk, owner, 64); | ||
1093 | BTRFS_SETGET_STACK_FUNCS(stack_chunk_stripe_len, struct btrfs_chunk, | ||
1094 | stripe_len, 64); | ||
1095 | BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_align, struct btrfs_chunk, | ||
1096 | io_align, 32); | ||
1097 | BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_width, struct btrfs_chunk, | ||
1098 | io_width, 32); | ||
1099 | BTRFS_SETGET_STACK_FUNCS(stack_chunk_sector_size, struct btrfs_chunk, | ||
1100 | sector_size, 32); | ||
1101 | BTRFS_SETGET_STACK_FUNCS(stack_chunk_type, struct btrfs_chunk, type, 64); | ||
1102 | BTRFS_SETGET_STACK_FUNCS(stack_chunk_num_stripes, struct btrfs_chunk, | ||
1103 | num_stripes, 16); | ||
1104 | BTRFS_SETGET_STACK_FUNCS(stack_chunk_sub_stripes, struct btrfs_chunk, | ||
1105 | sub_stripes, 16); | ||
1106 | BTRFS_SETGET_STACK_FUNCS(stack_stripe_devid, struct btrfs_stripe, devid, 64); | ||
1107 | BTRFS_SETGET_STACK_FUNCS(stack_stripe_offset, struct btrfs_stripe, offset, 64); | ||
1108 | |||
1109 | static inline struct btrfs_stripe *btrfs_stripe_nr(struct btrfs_chunk *c, | ||
1110 | int nr) | ||
1111 | { | ||
1112 | unsigned long offset = (unsigned long)c; | ||
1113 | offset += offsetof(struct btrfs_chunk, stripe); | ||
1114 | offset += nr * sizeof(struct btrfs_stripe); | ||
1115 | return (struct btrfs_stripe *)offset; | ||
1116 | } | ||
1117 | |||
1118 | static inline char *btrfs_stripe_dev_uuid_nr(struct btrfs_chunk *c, int nr) | ||
1119 | { | ||
1120 | return btrfs_stripe_dev_uuid(btrfs_stripe_nr(c, nr)); | ||
1121 | } | ||
1122 | |||
1123 | static inline u64 btrfs_stripe_offset_nr(struct extent_buffer *eb, | ||
1124 | struct btrfs_chunk *c, int nr) | ||
1125 | { | ||
1126 | return btrfs_stripe_offset(eb, btrfs_stripe_nr(c, nr)); | ||
1127 | } | ||
1128 | |||
1129 | static inline void btrfs_set_stripe_offset_nr(struct extent_buffer *eb, | ||
1130 | struct btrfs_chunk *c, int nr, | ||
1131 | u64 val) | ||
1132 | { | ||
1133 | btrfs_set_stripe_offset(eb, btrfs_stripe_nr(c, nr), val); | ||
1134 | } | ||
1135 | |||
1136 | static inline u64 btrfs_stripe_devid_nr(struct extent_buffer *eb, | ||
1137 | struct btrfs_chunk *c, int nr) | ||
1138 | { | ||
1139 | return btrfs_stripe_devid(eb, btrfs_stripe_nr(c, nr)); | ||
1140 | } | ||
1141 | |||
1142 | static inline void btrfs_set_stripe_devid_nr(struct extent_buffer *eb, | ||
1143 | struct btrfs_chunk *c, int nr, | ||
1144 | u64 val) | ||
1145 | { | ||
1146 | btrfs_set_stripe_devid(eb, btrfs_stripe_nr(c, nr), val); | ||
1147 | } | ||
1148 | |||
1149 | /* struct btrfs_block_group_item */ | ||
1150 | BTRFS_SETGET_STACK_FUNCS(block_group_used, struct btrfs_block_group_item, | ||
1151 | used, 64); | ||
1152 | BTRFS_SETGET_FUNCS(disk_block_group_used, struct btrfs_block_group_item, | ||
1153 | used, 64); | ||
1154 | BTRFS_SETGET_STACK_FUNCS(block_group_chunk_objectid, | ||
1155 | struct btrfs_block_group_item, chunk_objectid, 64); | ||
1156 | |||
1157 | BTRFS_SETGET_FUNCS(disk_block_group_chunk_objectid, | ||
1158 | struct btrfs_block_group_item, chunk_objectid, 64); | ||
1159 | BTRFS_SETGET_FUNCS(disk_block_group_flags, | ||
1160 | struct btrfs_block_group_item, flags, 64); | ||
1161 | BTRFS_SETGET_STACK_FUNCS(block_group_flags, | ||
1162 | struct btrfs_block_group_item, flags, 64); | ||
1163 | |||
1164 | /* struct btrfs_inode_ref */ | ||
1165 | BTRFS_SETGET_FUNCS(inode_ref_name_len, struct btrfs_inode_ref, name_len, 16); | ||
1166 | BTRFS_SETGET_FUNCS(inode_ref_index, struct btrfs_inode_ref, index, 64); | ||
1167 | |||
1168 | /* struct btrfs_inode_item */ | ||
1169 | BTRFS_SETGET_FUNCS(inode_generation, struct btrfs_inode_item, generation, 64); | ||
1170 | BTRFS_SETGET_FUNCS(inode_sequence, struct btrfs_inode_item, sequence, 64); | ||
1171 | BTRFS_SETGET_FUNCS(inode_transid, struct btrfs_inode_item, transid, 64); | ||
1172 | BTRFS_SETGET_FUNCS(inode_size, struct btrfs_inode_item, size, 64); | ||
1173 | BTRFS_SETGET_FUNCS(inode_nbytes, struct btrfs_inode_item, nbytes, 64); | ||
1174 | BTRFS_SETGET_FUNCS(inode_block_group, struct btrfs_inode_item, block_group, 64); | ||
1175 | BTRFS_SETGET_FUNCS(inode_nlink, struct btrfs_inode_item, nlink, 32); | ||
1176 | BTRFS_SETGET_FUNCS(inode_uid, struct btrfs_inode_item, uid, 32); | ||
1177 | BTRFS_SETGET_FUNCS(inode_gid, struct btrfs_inode_item, gid, 32); | ||
1178 | BTRFS_SETGET_FUNCS(inode_mode, struct btrfs_inode_item, mode, 32); | ||
1179 | BTRFS_SETGET_FUNCS(inode_rdev, struct btrfs_inode_item, rdev, 64); | ||
1180 | BTRFS_SETGET_FUNCS(inode_flags, struct btrfs_inode_item, flags, 64); | ||
1181 | |||
1182 | static inline struct btrfs_timespec * | ||
1183 | btrfs_inode_atime(struct btrfs_inode_item *inode_item) | ||
1184 | { | ||
1185 | unsigned long ptr = (unsigned long)inode_item; | ||
1186 | ptr += offsetof(struct btrfs_inode_item, atime); | ||
1187 | return (struct btrfs_timespec *)ptr; | ||
1188 | } | ||
1189 | |||
1190 | static inline struct btrfs_timespec * | ||
1191 | btrfs_inode_mtime(struct btrfs_inode_item *inode_item) | ||
1192 | { | ||
1193 | unsigned long ptr = (unsigned long)inode_item; | ||
1194 | ptr += offsetof(struct btrfs_inode_item, mtime); | ||
1195 | return (struct btrfs_timespec *)ptr; | ||
1196 | } | ||
1197 | |||
1198 | static inline struct btrfs_timespec * | ||
1199 | btrfs_inode_ctime(struct btrfs_inode_item *inode_item) | ||
1200 | { | ||
1201 | unsigned long ptr = (unsigned long)inode_item; | ||
1202 | ptr += offsetof(struct btrfs_inode_item, ctime); | ||
1203 | return (struct btrfs_timespec *)ptr; | ||
1204 | } | ||
1205 | |||
1206 | static inline struct btrfs_timespec * | ||
1207 | btrfs_inode_otime(struct btrfs_inode_item *inode_item) | ||
1208 | { | ||
1209 | unsigned long ptr = (unsigned long)inode_item; | ||
1210 | ptr += offsetof(struct btrfs_inode_item, otime); | ||
1211 | return (struct btrfs_timespec *)ptr; | ||
1212 | } | ||
1213 | |||
1214 | BTRFS_SETGET_FUNCS(timespec_sec, struct btrfs_timespec, sec, 64); | ||
1215 | BTRFS_SETGET_FUNCS(timespec_nsec, struct btrfs_timespec, nsec, 32); | ||
1216 | |||
1217 | /* struct btrfs_dev_extent */ | ||
1218 | BTRFS_SETGET_FUNCS(dev_extent_chunk_tree, struct btrfs_dev_extent, | ||
1219 | chunk_tree, 64); | ||
1220 | BTRFS_SETGET_FUNCS(dev_extent_chunk_objectid, struct btrfs_dev_extent, | ||
1221 | chunk_objectid, 64); | ||
1222 | BTRFS_SETGET_FUNCS(dev_extent_chunk_offset, struct btrfs_dev_extent, | ||
1223 | chunk_offset, 64); | ||
1224 | BTRFS_SETGET_FUNCS(dev_extent_length, struct btrfs_dev_extent, length, 64); | ||
1225 | |||
1226 | static inline u8 *btrfs_dev_extent_chunk_tree_uuid(struct btrfs_dev_extent *dev) | ||
1227 | { | ||
1228 | unsigned long ptr = offsetof(struct btrfs_dev_extent, chunk_tree_uuid); | ||
1229 | return (u8 *)((unsigned long)dev + ptr); | ||
1230 | } | ||
1231 | |||
1232 | /* struct btrfs_extent_ref */ | ||
1233 | BTRFS_SETGET_FUNCS(ref_root, struct btrfs_extent_ref, root, 64); | ||
1234 | BTRFS_SETGET_FUNCS(ref_generation, struct btrfs_extent_ref, generation, 64); | ||
1235 | BTRFS_SETGET_FUNCS(ref_objectid, struct btrfs_extent_ref, objectid, 64); | ||
1236 | BTRFS_SETGET_FUNCS(ref_num_refs, struct btrfs_extent_ref, num_refs, 32); | ||
1237 | |||
1238 | BTRFS_SETGET_STACK_FUNCS(stack_ref_root, struct btrfs_extent_ref, root, 64); | ||
1239 | BTRFS_SETGET_STACK_FUNCS(stack_ref_generation, struct btrfs_extent_ref, | ||
1240 | generation, 64); | ||
1241 | BTRFS_SETGET_STACK_FUNCS(stack_ref_objectid, struct btrfs_extent_ref, | ||
1242 | objectid, 64); | ||
1243 | BTRFS_SETGET_STACK_FUNCS(stack_ref_num_refs, struct btrfs_extent_ref, | ||
1244 | num_refs, 32); | ||
1245 | |||
1246 | /* struct btrfs_extent_item */ | ||
1247 | BTRFS_SETGET_FUNCS(extent_refs, struct btrfs_extent_item, refs, 32); | ||
1248 | BTRFS_SETGET_STACK_FUNCS(stack_extent_refs, struct btrfs_extent_item, | ||
1249 | refs, 32); | ||
1250 | |||
1251 | /* struct btrfs_node */ | ||
1252 | BTRFS_SETGET_FUNCS(key_blockptr, struct btrfs_key_ptr, blockptr, 64); | ||
1253 | BTRFS_SETGET_FUNCS(key_generation, struct btrfs_key_ptr, generation, 64); | ||
1254 | |||
1255 | static inline u64 btrfs_node_blockptr(struct extent_buffer *eb, int nr) | ||
1256 | { | ||
1257 | unsigned long ptr; | ||
1258 | ptr = offsetof(struct btrfs_node, ptrs) + | ||
1259 | sizeof(struct btrfs_key_ptr) * nr; | ||
1260 | return btrfs_key_blockptr(eb, (struct btrfs_key_ptr *)ptr); | ||
1261 | } | ||
1262 | |||
1263 | static inline void btrfs_set_node_blockptr(struct extent_buffer *eb, | ||
1264 | int nr, u64 val) | ||
1265 | { | ||
1266 | unsigned long ptr; | ||
1267 | ptr = offsetof(struct btrfs_node, ptrs) + | ||
1268 | sizeof(struct btrfs_key_ptr) * nr; | ||
1269 | btrfs_set_key_blockptr(eb, (struct btrfs_key_ptr *)ptr, val); | ||
1270 | } | ||
1271 | |||
1272 | static inline u64 btrfs_node_ptr_generation(struct extent_buffer *eb, int nr) | ||
1273 | { | ||
1274 | unsigned long ptr; | ||
1275 | ptr = offsetof(struct btrfs_node, ptrs) + | ||
1276 | sizeof(struct btrfs_key_ptr) * nr; | ||
1277 | return btrfs_key_generation(eb, (struct btrfs_key_ptr *)ptr); | ||
1278 | } | ||
1279 | |||
1280 | static inline void btrfs_set_node_ptr_generation(struct extent_buffer *eb, | ||
1281 | int nr, u64 val) | ||
1282 | { | ||
1283 | unsigned long ptr; | ||
1284 | ptr = offsetof(struct btrfs_node, ptrs) + | ||
1285 | sizeof(struct btrfs_key_ptr) * nr; | ||
1286 | btrfs_set_key_generation(eb, (struct btrfs_key_ptr *)ptr, val); | ||
1287 | } | ||
1288 | |||
1289 | static inline unsigned long btrfs_node_key_ptr_offset(int nr) | ||
1290 | { | ||
1291 | return offsetof(struct btrfs_node, ptrs) + | ||
1292 | sizeof(struct btrfs_key_ptr) * nr; | ||
1293 | } | ||
1294 | |||
1295 | void btrfs_node_key(struct extent_buffer *eb, | ||
1296 | struct btrfs_disk_key *disk_key, int nr); | ||
1297 | |||
1298 | static inline void btrfs_set_node_key(struct extent_buffer *eb, | ||
1299 | struct btrfs_disk_key *disk_key, int nr) | ||
1300 | { | ||
1301 | unsigned long ptr; | ||
1302 | ptr = btrfs_node_key_ptr_offset(nr); | ||
1303 | write_eb_member(eb, (struct btrfs_key_ptr *)ptr, | ||
1304 | struct btrfs_key_ptr, key, disk_key); | ||
1305 | } | ||
1306 | |||
1307 | /* struct btrfs_item */ | ||
1308 | BTRFS_SETGET_FUNCS(item_offset, struct btrfs_item, offset, 32); | ||
1309 | BTRFS_SETGET_FUNCS(item_size, struct btrfs_item, size, 32); | ||
1310 | |||
1311 | static inline unsigned long btrfs_item_nr_offset(int nr) | ||
1312 | { | ||
1313 | return offsetof(struct btrfs_leaf, items) + | ||
1314 | sizeof(struct btrfs_item) * nr; | ||
1315 | } | ||
1316 | |||
1317 | static inline struct btrfs_item *btrfs_item_nr(struct extent_buffer *eb, | ||
1318 | int nr) | ||
1319 | { | ||
1320 | return (struct btrfs_item *)btrfs_item_nr_offset(nr); | ||
1321 | } | ||
1322 | |||
1323 | static inline u32 btrfs_item_end(struct extent_buffer *eb, | ||
1324 | struct btrfs_item *item) | ||
1325 | { | ||
1326 | return btrfs_item_offset(eb, item) + btrfs_item_size(eb, item); | ||
1327 | } | ||
1328 | |||
1329 | static inline u32 btrfs_item_end_nr(struct extent_buffer *eb, int nr) | ||
1330 | { | ||
1331 | return btrfs_item_end(eb, btrfs_item_nr(eb, nr)); | ||
1332 | } | ||
1333 | |||
1334 | static inline u32 btrfs_item_offset_nr(struct extent_buffer *eb, int nr) | ||
1335 | { | ||
1336 | return btrfs_item_offset(eb, btrfs_item_nr(eb, nr)); | ||
1337 | } | ||
1338 | |||
1339 | static inline u32 btrfs_item_size_nr(struct extent_buffer *eb, int nr) | ||
1340 | { | ||
1341 | return btrfs_item_size(eb, btrfs_item_nr(eb, nr)); | ||
1342 | } | ||
1343 | |||
1344 | static inline void btrfs_item_key(struct extent_buffer *eb, | ||
1345 | struct btrfs_disk_key *disk_key, int nr) | ||
1346 | { | ||
1347 | struct btrfs_item *item = btrfs_item_nr(eb, nr); | ||
1348 | read_eb_member(eb, item, struct btrfs_item, key, disk_key); | ||
1349 | } | ||
1350 | |||
1351 | static inline void btrfs_set_item_key(struct extent_buffer *eb, | ||
1352 | struct btrfs_disk_key *disk_key, int nr) | ||
1353 | { | ||
1354 | struct btrfs_item *item = btrfs_item_nr(eb, nr); | ||
1355 | write_eb_member(eb, item, struct btrfs_item, key, disk_key); | ||
1356 | } | ||
1357 | |||
1358 | BTRFS_SETGET_FUNCS(dir_log_end, struct btrfs_dir_log_item, end, 64); | ||
1359 | |||
1360 | /* | ||
1361 | * struct btrfs_root_ref | ||
1362 | */ | ||
1363 | BTRFS_SETGET_FUNCS(root_ref_dirid, struct btrfs_root_ref, dirid, 64); | ||
1364 | BTRFS_SETGET_FUNCS(root_ref_sequence, struct btrfs_root_ref, sequence, 64); | ||
1365 | BTRFS_SETGET_FUNCS(root_ref_name_len, struct btrfs_root_ref, name_len, 16); | ||
1366 | |||
1367 | /* struct btrfs_dir_item */ | ||
1368 | BTRFS_SETGET_FUNCS(dir_data_len, struct btrfs_dir_item, data_len, 16); | ||
1369 | BTRFS_SETGET_FUNCS(dir_type, struct btrfs_dir_item, type, 8); | ||
1370 | BTRFS_SETGET_FUNCS(dir_name_len, struct btrfs_dir_item, name_len, 16); | ||
1371 | BTRFS_SETGET_FUNCS(dir_transid, struct btrfs_dir_item, transid, 64); | ||
1372 | |||
1373 | static inline void btrfs_dir_item_key(struct extent_buffer *eb, | ||
1374 | struct btrfs_dir_item *item, | ||
1375 | struct btrfs_disk_key *key) | ||
1376 | { | ||
1377 | read_eb_member(eb, item, struct btrfs_dir_item, location, key); | ||
1378 | } | ||
1379 | |||
1380 | static inline void btrfs_set_dir_item_key(struct extent_buffer *eb, | ||
1381 | struct btrfs_dir_item *item, | ||
1382 | struct btrfs_disk_key *key) | ||
1383 | { | ||
1384 | write_eb_member(eb, item, struct btrfs_dir_item, location, key); | ||
1385 | } | ||
1386 | |||
1387 | /* struct btrfs_disk_key */ | ||
1388 | BTRFS_SETGET_STACK_FUNCS(disk_key_objectid, struct btrfs_disk_key, | ||
1389 | objectid, 64); | ||
1390 | BTRFS_SETGET_STACK_FUNCS(disk_key_offset, struct btrfs_disk_key, offset, 64); | ||
1391 | BTRFS_SETGET_STACK_FUNCS(disk_key_type, struct btrfs_disk_key, type, 8); | ||
1392 | |||
1393 | static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu, | ||
1394 | struct btrfs_disk_key *disk) | ||
1395 | { | ||
1396 | cpu->offset = le64_to_cpu(disk->offset); | ||
1397 | cpu->type = disk->type; | ||
1398 | cpu->objectid = le64_to_cpu(disk->objectid); | ||
1399 | } | ||
1400 | |||
1401 | static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk, | ||
1402 | struct btrfs_key *cpu) | ||
1403 | { | ||
1404 | disk->offset = cpu_to_le64(cpu->offset); | ||
1405 | disk->type = cpu->type; | ||
1406 | disk->objectid = cpu_to_le64(cpu->objectid); | ||
1407 | } | ||
1408 | |||
1409 | static inline void btrfs_node_key_to_cpu(struct extent_buffer *eb, | ||
1410 | struct btrfs_key *key, int nr) | ||
1411 | { | ||
1412 | struct btrfs_disk_key disk_key; | ||
1413 | btrfs_node_key(eb, &disk_key, nr); | ||
1414 | btrfs_disk_key_to_cpu(key, &disk_key); | ||
1415 | } | ||
1416 | |||
1417 | static inline void btrfs_item_key_to_cpu(struct extent_buffer *eb, | ||
1418 | struct btrfs_key *key, int nr) | ||
1419 | { | ||
1420 | struct btrfs_disk_key disk_key; | ||
1421 | btrfs_item_key(eb, &disk_key, nr); | ||
1422 | btrfs_disk_key_to_cpu(key, &disk_key); | ||
1423 | } | ||
1424 | |||
1425 | static inline void btrfs_dir_item_key_to_cpu(struct extent_buffer *eb, | ||
1426 | struct btrfs_dir_item *item, | ||
1427 | struct btrfs_key *key) | ||
1428 | { | ||
1429 | struct btrfs_disk_key disk_key; | ||
1430 | btrfs_dir_item_key(eb, item, &disk_key); | ||
1431 | btrfs_disk_key_to_cpu(key, &disk_key); | ||
1432 | } | ||
1433 | |||
1434 | |||
1435 | static inline u8 btrfs_key_type(struct btrfs_key *key) | ||
1436 | { | ||
1437 | return key->type; | ||
1438 | } | ||
1439 | |||
1440 | static inline void btrfs_set_key_type(struct btrfs_key *key, u8 val) | ||
1441 | { | ||
1442 | key->type = val; | ||
1443 | } | ||
1444 | |||
1445 | /* struct btrfs_header */ | ||
1446 | BTRFS_SETGET_HEADER_FUNCS(header_bytenr, struct btrfs_header, bytenr, 64); | ||
1447 | BTRFS_SETGET_HEADER_FUNCS(header_generation, struct btrfs_header, | ||
1448 | generation, 64); | ||
1449 | BTRFS_SETGET_HEADER_FUNCS(header_owner, struct btrfs_header, owner, 64); | ||
1450 | BTRFS_SETGET_HEADER_FUNCS(header_nritems, struct btrfs_header, nritems, 32); | ||
1451 | BTRFS_SETGET_HEADER_FUNCS(header_flags, struct btrfs_header, flags, 64); | ||
1452 | BTRFS_SETGET_HEADER_FUNCS(header_level, struct btrfs_header, level, 8); | ||
1453 | |||
1454 | static inline int btrfs_header_flag(struct extent_buffer *eb, u64 flag) | ||
1455 | { | ||
1456 | return (btrfs_header_flags(eb) & flag) == flag; | ||
1457 | } | ||
1458 | |||
1459 | static inline int btrfs_set_header_flag(struct extent_buffer *eb, u64 flag) | ||
1460 | { | ||
1461 | u64 flags = btrfs_header_flags(eb); | ||
1462 | btrfs_set_header_flags(eb, flags | flag); | ||
1463 | return (flags & flag) == flag; | ||
1464 | } | ||
1465 | |||
1466 | static inline int btrfs_clear_header_flag(struct extent_buffer *eb, u64 flag) | ||
1467 | { | ||
1468 | u64 flags = btrfs_header_flags(eb); | ||
1469 | btrfs_set_header_flags(eb, flags & ~flag); | ||
1470 | return (flags & flag) == flag; | ||
1471 | } | ||
1472 | |||
1473 | static inline u8 *btrfs_header_fsid(struct extent_buffer *eb) | ||
1474 | { | ||
1475 | unsigned long ptr = offsetof(struct btrfs_header, fsid); | ||
1476 | return (u8 *)ptr; | ||
1477 | } | ||
1478 | |||
1479 | static inline u8 *btrfs_header_chunk_tree_uuid(struct extent_buffer *eb) | ||
1480 | { | ||
1481 | unsigned long ptr = offsetof(struct btrfs_header, chunk_tree_uuid); | ||
1482 | return (u8 *)ptr; | ||
1483 | } | ||
1484 | |||
1485 | static inline u8 *btrfs_super_fsid(struct extent_buffer *eb) | ||
1486 | { | ||
1487 | unsigned long ptr = offsetof(struct btrfs_super_block, fsid); | ||
1488 | return (u8 *)ptr; | ||
1489 | } | ||
1490 | |||
1491 | static inline u8 *btrfs_header_csum(struct extent_buffer *eb) | ||
1492 | { | ||
1493 | unsigned long ptr = offsetof(struct btrfs_header, csum); | ||
1494 | return (u8 *)ptr; | ||
1495 | } | ||
1496 | |||
1497 | static inline struct btrfs_node *btrfs_buffer_node(struct extent_buffer *eb) | ||
1498 | { | ||
1499 | return NULL; | ||
1500 | } | ||
1501 | |||
1502 | static inline struct btrfs_leaf *btrfs_buffer_leaf(struct extent_buffer *eb) | ||
1503 | { | ||
1504 | return NULL; | ||
1505 | } | ||
1506 | |||
1507 | static inline struct btrfs_header *btrfs_buffer_header(struct extent_buffer *eb) | ||
1508 | { | ||
1509 | return NULL; | ||
1510 | } | ||
1511 | |||
1512 | static inline int btrfs_is_leaf(struct extent_buffer *eb) | ||
1513 | { | ||
1514 | return btrfs_header_level(eb) == 0; | ||
1515 | } | ||
1516 | |||
1517 | /* struct btrfs_root_item */ | ||
1518 | BTRFS_SETGET_FUNCS(disk_root_generation, struct btrfs_root_item, | ||
1519 | generation, 64); | ||
1520 | BTRFS_SETGET_FUNCS(disk_root_refs, struct btrfs_root_item, refs, 32); | ||
1521 | BTRFS_SETGET_FUNCS(disk_root_bytenr, struct btrfs_root_item, bytenr, 64); | ||
1522 | BTRFS_SETGET_FUNCS(disk_root_level, struct btrfs_root_item, level, 8); | ||
1523 | |||
1524 | BTRFS_SETGET_STACK_FUNCS(root_generation, struct btrfs_root_item, | ||
1525 | generation, 64); | ||
1526 | BTRFS_SETGET_STACK_FUNCS(root_bytenr, struct btrfs_root_item, bytenr, 64); | ||
1527 | BTRFS_SETGET_STACK_FUNCS(root_level, struct btrfs_root_item, level, 8); | ||
1528 | BTRFS_SETGET_STACK_FUNCS(root_dirid, struct btrfs_root_item, root_dirid, 64); | ||
1529 | BTRFS_SETGET_STACK_FUNCS(root_refs, struct btrfs_root_item, refs, 32); | ||
1530 | BTRFS_SETGET_STACK_FUNCS(root_flags, struct btrfs_root_item, flags, 64); | ||
1531 | BTRFS_SETGET_STACK_FUNCS(root_used, struct btrfs_root_item, bytes_used, 64); | ||
1532 | BTRFS_SETGET_STACK_FUNCS(root_limit, struct btrfs_root_item, byte_limit, 64); | ||
1533 | BTRFS_SETGET_STACK_FUNCS(root_last_snapshot, struct btrfs_root_item, | ||
1534 | last_snapshot, 64); | ||
1535 | |||
1536 | /* struct btrfs_super_block */ | ||
1537 | |||
1538 | BTRFS_SETGET_STACK_FUNCS(super_bytenr, struct btrfs_super_block, bytenr, 64); | ||
1539 | BTRFS_SETGET_STACK_FUNCS(super_flags, struct btrfs_super_block, flags, 64); | ||
1540 | BTRFS_SETGET_STACK_FUNCS(super_generation, struct btrfs_super_block, | ||
1541 | generation, 64); | ||
1542 | BTRFS_SETGET_STACK_FUNCS(super_root, struct btrfs_super_block, root, 64); | ||
1543 | BTRFS_SETGET_STACK_FUNCS(super_sys_array_size, | ||
1544 | struct btrfs_super_block, sys_chunk_array_size, 32); | ||
1545 | BTRFS_SETGET_STACK_FUNCS(super_chunk_root_generation, | ||
1546 | struct btrfs_super_block, chunk_root_generation, 64); | ||
1547 | BTRFS_SETGET_STACK_FUNCS(super_root_level, struct btrfs_super_block, | ||
1548 | root_level, 8); | ||
1549 | BTRFS_SETGET_STACK_FUNCS(super_chunk_root, struct btrfs_super_block, | ||
1550 | chunk_root, 64); | ||
1551 | BTRFS_SETGET_STACK_FUNCS(super_chunk_root_level, struct btrfs_super_block, | ||
1552 | chunk_root_level, 8); | ||
1553 | BTRFS_SETGET_STACK_FUNCS(super_log_root, struct btrfs_super_block, | ||
1554 | log_root, 64); | ||
1555 | BTRFS_SETGET_STACK_FUNCS(super_log_root_transid, struct btrfs_super_block, | ||
1556 | log_root_transid, 64); | ||
1557 | BTRFS_SETGET_STACK_FUNCS(super_log_root_level, struct btrfs_super_block, | ||
1558 | log_root_level, 8); | ||
1559 | BTRFS_SETGET_STACK_FUNCS(super_total_bytes, struct btrfs_super_block, | ||
1560 | total_bytes, 64); | ||
1561 | BTRFS_SETGET_STACK_FUNCS(super_bytes_used, struct btrfs_super_block, | ||
1562 | bytes_used, 64); | ||
1563 | BTRFS_SETGET_STACK_FUNCS(super_sectorsize, struct btrfs_super_block, | ||
1564 | sectorsize, 32); | ||
1565 | BTRFS_SETGET_STACK_FUNCS(super_nodesize, struct btrfs_super_block, | ||
1566 | nodesize, 32); | ||
1567 | BTRFS_SETGET_STACK_FUNCS(super_leafsize, struct btrfs_super_block, | ||
1568 | leafsize, 32); | ||
1569 | BTRFS_SETGET_STACK_FUNCS(super_stripesize, struct btrfs_super_block, | ||
1570 | stripesize, 32); | ||
1571 | BTRFS_SETGET_STACK_FUNCS(super_root_dir, struct btrfs_super_block, | ||
1572 | root_dir_objectid, 64); | ||
1573 | BTRFS_SETGET_STACK_FUNCS(super_num_devices, struct btrfs_super_block, | ||
1574 | num_devices, 64); | ||
1575 | BTRFS_SETGET_STACK_FUNCS(super_compat_flags, struct btrfs_super_block, | ||
1576 | compat_flags, 64); | ||
1577 | BTRFS_SETGET_STACK_FUNCS(super_compat_ro_flags, struct btrfs_super_block, | ||
1578 | compat_flags, 64); | ||
1579 | BTRFS_SETGET_STACK_FUNCS(super_incompat_flags, struct btrfs_super_block, | ||
1580 | incompat_flags, 64); | ||
1581 | BTRFS_SETGET_STACK_FUNCS(super_csum_type, struct btrfs_super_block, | ||
1582 | csum_type, 16); | ||
1583 | |||
1584 | static inline int btrfs_super_csum_size(struct btrfs_super_block *s) | ||
1585 | { | ||
1586 | int t = btrfs_super_csum_type(s); | ||
1587 | BUG_ON(t >= ARRAY_SIZE(btrfs_csum_sizes)); | ||
1588 | return btrfs_csum_sizes[t]; | ||
1589 | } | ||
1590 | |||
1591 | static inline unsigned long btrfs_leaf_data(struct extent_buffer *l) | ||
1592 | { | ||
1593 | return offsetof(struct btrfs_leaf, items); | ||
1594 | } | ||
1595 | |||
1596 | /* struct btrfs_file_extent_item */ | ||
1597 | BTRFS_SETGET_FUNCS(file_extent_type, struct btrfs_file_extent_item, type, 8); | ||
1598 | |||
1599 | static inline unsigned long | ||
1600 | btrfs_file_extent_inline_start(struct btrfs_file_extent_item *e) | ||
1601 | { | ||
1602 | unsigned long offset = (unsigned long)e; | ||
1603 | offset += offsetof(struct btrfs_file_extent_item, disk_bytenr); | ||
1604 | return offset; | ||
1605 | } | ||
1606 | |||
1607 | static inline u32 btrfs_file_extent_calc_inline_size(u32 datasize) | ||
1608 | { | ||
1609 | return offsetof(struct btrfs_file_extent_item, disk_bytenr) + datasize; | ||
1610 | } | ||
1611 | |||
1612 | BTRFS_SETGET_FUNCS(file_extent_disk_bytenr, struct btrfs_file_extent_item, | ||
1613 | disk_bytenr, 64); | ||
1614 | BTRFS_SETGET_FUNCS(file_extent_generation, struct btrfs_file_extent_item, | ||
1615 | generation, 64); | ||
1616 | BTRFS_SETGET_FUNCS(file_extent_disk_num_bytes, struct btrfs_file_extent_item, | ||
1617 | disk_num_bytes, 64); | ||
1618 | BTRFS_SETGET_FUNCS(file_extent_offset, struct btrfs_file_extent_item, | ||
1619 | offset, 64); | ||
1620 | BTRFS_SETGET_FUNCS(file_extent_num_bytes, struct btrfs_file_extent_item, | ||
1621 | num_bytes, 64); | ||
1622 | BTRFS_SETGET_FUNCS(file_extent_ram_bytes, struct btrfs_file_extent_item, | ||
1623 | ram_bytes, 64); | ||
1624 | BTRFS_SETGET_FUNCS(file_extent_compression, struct btrfs_file_extent_item, | ||
1625 | compression, 8); | ||
1626 | BTRFS_SETGET_FUNCS(file_extent_encryption, struct btrfs_file_extent_item, | ||
1627 | encryption, 8); | ||
1628 | BTRFS_SETGET_FUNCS(file_extent_other_encoding, struct btrfs_file_extent_item, | ||
1629 | other_encoding, 16); | ||
1630 | |||
1631 | /* this returns the number of file bytes represented by the inline item. | ||
1632 | * If an item is compressed, this is the uncompressed size | ||
1633 | */ | ||
1634 | static inline u32 btrfs_file_extent_inline_len(struct extent_buffer *eb, | ||
1635 | struct btrfs_file_extent_item *e) | ||
1636 | { | ||
1637 | return btrfs_file_extent_ram_bytes(eb, e); | ||
1638 | } | ||
1639 | |||
1640 | /* | ||
1641 | * this returns the number of bytes used by the item on disk, minus the | ||
1642 | * size of any extent headers. If a file is compressed on disk, this is | ||
1643 | * the compressed size | ||
1644 | */ | ||
1645 | static inline u32 btrfs_file_extent_inline_item_len(struct extent_buffer *eb, | ||
1646 | struct btrfs_item *e) | ||
1647 | { | ||
1648 | unsigned long offset; | ||
1649 | offset = offsetof(struct btrfs_file_extent_item, disk_bytenr); | ||
1650 | return btrfs_item_size(eb, e) - offset; | ||
1651 | } | ||
1652 | |||
1653 | static inline struct btrfs_root *btrfs_sb(struct super_block *sb) | ||
1654 | { | ||
1655 | return sb->s_fs_info; | ||
1656 | } | ||
1657 | |||
1658 | static inline int btrfs_set_root_name(struct btrfs_root *root, | ||
1659 | const char *name, int len) | ||
1660 | { | ||
1661 | /* if we already have a name just free it */ | ||
1662 | kfree(root->name); | ||
1663 | |||
1664 | root->name = kmalloc(len+1, GFP_KERNEL); | ||
1665 | if (!root->name) | ||
1666 | return -ENOMEM; | ||
1667 | |||
1668 | memcpy(root->name, name, len); | ||
1669 | root->name[len] = '\0'; | ||
1670 | |||
1671 | return 0; | ||
1672 | } | ||
1673 | |||
1674 | static inline u32 btrfs_level_size(struct btrfs_root *root, int level) | ||
1675 | { | ||
1676 | if (level == 0) | ||
1677 | return root->leafsize; | ||
1678 | return root->nodesize; | ||
1679 | } | ||
1680 | |||
1681 | /* helper function to cast into the data area of the leaf. */ | ||
1682 | #define btrfs_item_ptr(leaf, slot, type) \ | ||
1683 | ((type *)(btrfs_leaf_data(leaf) + \ | ||
1684 | btrfs_item_offset_nr(leaf, slot))) | ||
1685 | |||
1686 | #define btrfs_item_ptr_offset(leaf, slot) \ | ||
1687 | ((unsigned long)(btrfs_leaf_data(leaf) + \ | ||
1688 | btrfs_item_offset_nr(leaf, slot))) | ||
1689 | |||
1690 | static inline struct dentry *fdentry(struct file *file) | ||
1691 | { | ||
1692 | return file->f_path.dentry; | ||
1693 | } | ||
1694 | |||
1695 | /* extent-tree.c */ | ||
1696 | int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len); | ||
1697 | int btrfs_lookup_extent_ref(struct btrfs_trans_handle *trans, | ||
1698 | struct btrfs_root *root, u64 bytenr, | ||
1699 | u64 num_bytes, u32 *refs); | ||
1700 | int btrfs_update_pinned_extents(struct btrfs_root *root, | ||
1701 | u64 bytenr, u64 num, int pin); | ||
1702 | int btrfs_drop_leaf_ref(struct btrfs_trans_handle *trans, | ||
1703 | struct btrfs_root *root, struct extent_buffer *leaf); | ||
1704 | int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans, | ||
1705 | struct btrfs_root *root, u64 objectid, u64 bytenr); | ||
1706 | int btrfs_extent_post_op(struct btrfs_trans_handle *trans, | ||
1707 | struct btrfs_root *root); | ||
1708 | int btrfs_copy_pinned(struct btrfs_root *root, struct extent_io_tree *copy); | ||
1709 | struct btrfs_block_group_cache *btrfs_lookup_block_group( | ||
1710 | struct btrfs_fs_info *info, | ||
1711 | u64 bytenr); | ||
1712 | u64 btrfs_find_block_group(struct btrfs_root *root, | ||
1713 | u64 search_start, u64 search_hint, int owner); | ||
1714 | struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans, | ||
1715 | struct btrfs_root *root, | ||
1716 | u32 blocksize, u64 parent, | ||
1717 | u64 root_objectid, | ||
1718 | u64 ref_generation, | ||
1719 | int level, | ||
1720 | u64 hint, | ||
1721 | u64 empty_size); | ||
1722 | struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans, | ||
1723 | struct btrfs_root *root, | ||
1724 | u64 bytenr, u32 blocksize); | ||
1725 | int btrfs_alloc_extent(struct btrfs_trans_handle *trans, | ||
1726 | struct btrfs_root *root, | ||
1727 | u64 num_bytes, u64 parent, u64 min_bytes, | ||
1728 | u64 root_objectid, u64 ref_generation, | ||
1729 | u64 owner, u64 empty_size, u64 hint_byte, | ||
1730 | u64 search_end, struct btrfs_key *ins, u64 data); | ||
1731 | int btrfs_alloc_reserved_extent(struct btrfs_trans_handle *trans, | ||
1732 | struct btrfs_root *root, u64 parent, | ||
1733 | u64 root_objectid, u64 ref_generation, | ||
1734 | u64 owner, struct btrfs_key *ins); | ||
1735 | int btrfs_alloc_logged_extent(struct btrfs_trans_handle *trans, | ||
1736 | struct btrfs_root *root, u64 parent, | ||
1737 | u64 root_objectid, u64 ref_generation, | ||
1738 | u64 owner, struct btrfs_key *ins); | ||
1739 | int btrfs_reserve_extent(struct btrfs_trans_handle *trans, | ||
1740 | struct btrfs_root *root, | ||
1741 | u64 num_bytes, u64 min_alloc_size, | ||
1742 | u64 empty_size, u64 hint_byte, | ||
1743 | u64 search_end, struct btrfs_key *ins, | ||
1744 | u64 data); | ||
1745 | int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, | ||
1746 | struct extent_buffer *orig_buf, struct extent_buffer *buf, | ||
1747 | u32 *nr_extents); | ||
1748 | int btrfs_cache_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, | ||
1749 | struct extent_buffer *buf, u32 nr_extents); | ||
1750 | int btrfs_update_ref(struct btrfs_trans_handle *trans, | ||
1751 | struct btrfs_root *root, struct extent_buffer *orig_buf, | ||
1752 | struct extent_buffer *buf, int start_slot, int nr); | ||
1753 | int btrfs_free_extent(struct btrfs_trans_handle *trans, | ||
1754 | struct btrfs_root *root, | ||
1755 | u64 bytenr, u64 num_bytes, u64 parent, | ||
1756 | u64 root_objectid, u64 ref_generation, | ||
1757 | u64 owner_objectid, int pin); | ||
1758 | int btrfs_free_reserved_extent(struct btrfs_root *root, u64 start, u64 len); | ||
1759 | int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, | ||
1760 | struct btrfs_root *root, | ||
1761 | struct extent_io_tree *unpin); | ||
1762 | int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, | ||
1763 | struct btrfs_root *root, | ||
1764 | u64 bytenr, u64 num_bytes, u64 parent, | ||
1765 | u64 root_objectid, u64 ref_generation, | ||
1766 | u64 owner_objectid); | ||
1767 | int btrfs_update_extent_ref(struct btrfs_trans_handle *trans, | ||
1768 | struct btrfs_root *root, u64 bytenr, | ||
1769 | u64 orig_parent, u64 parent, | ||
1770 | u64 root_objectid, u64 ref_generation, | ||
1771 | u64 owner_objectid); | ||
1772 | int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans, | ||
1773 | struct btrfs_root *root); | ||
1774 | int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr); | ||
1775 | int btrfs_free_block_groups(struct btrfs_fs_info *info); | ||
1776 | int btrfs_read_block_groups(struct btrfs_root *root); | ||
1777 | int btrfs_make_block_group(struct btrfs_trans_handle *trans, | ||
1778 | struct btrfs_root *root, u64 bytes_used, | ||
1779 | u64 type, u64 chunk_objectid, u64 chunk_offset, | ||
1780 | u64 size); | ||
1781 | int btrfs_remove_block_group(struct btrfs_trans_handle *trans, | ||
1782 | struct btrfs_root *root, u64 group_start); | ||
1783 | int btrfs_relocate_block_group(struct btrfs_root *root, u64 group_start); | ||
1784 | int btrfs_free_reloc_root(struct btrfs_trans_handle *trans, | ||
1785 | struct btrfs_root *root); | ||
1786 | int btrfs_drop_dead_reloc_roots(struct btrfs_root *root); | ||
1787 | int btrfs_reloc_tree_cache_ref(struct btrfs_trans_handle *trans, | ||
1788 | struct btrfs_root *root, | ||
1789 | struct extent_buffer *buf, u64 orig_start); | ||
1790 | int btrfs_add_dead_reloc_root(struct btrfs_root *root); | ||
1791 | int btrfs_cleanup_reloc_trees(struct btrfs_root *root); | ||
1792 | int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len); | ||
1793 | u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags); | ||
1794 | /* ctree.c */ | ||
1795 | int btrfs_previous_item(struct btrfs_root *root, | ||
1796 | struct btrfs_path *path, u64 min_objectid, | ||
1797 | int type); | ||
1798 | int btrfs_merge_path(struct btrfs_trans_handle *trans, | ||
1799 | struct btrfs_root *root, | ||
1800 | struct btrfs_key *node_keys, | ||
1801 | u64 *nodes, int lowest_level); | ||
1802 | int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans, | ||
1803 | struct btrfs_root *root, struct btrfs_path *path, | ||
1804 | struct btrfs_key *new_key); | ||
1805 | struct extent_buffer *btrfs_root_node(struct btrfs_root *root); | ||
1806 | struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root); | ||
1807 | int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, | ||
1808 | struct btrfs_key *key, int lowest_level, | ||
1809 | int cache_only, u64 min_trans); | ||
1810 | int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, | ||
1811 | struct btrfs_key *max_key, | ||
1812 | struct btrfs_path *path, int cache_only, | ||
1813 | u64 min_trans); | ||
1814 | int btrfs_cow_block(struct btrfs_trans_handle *trans, | ||
1815 | struct btrfs_root *root, struct extent_buffer *buf, | ||
1816 | struct extent_buffer *parent, int parent_slot, | ||
1817 | struct extent_buffer **cow_ret, u64 prealloc_dest); | ||
1818 | int btrfs_copy_root(struct btrfs_trans_handle *trans, | ||
1819 | struct btrfs_root *root, | ||
1820 | struct extent_buffer *buf, | ||
1821 | struct extent_buffer **cow_ret, u64 new_root_objectid); | ||
1822 | int btrfs_extend_item(struct btrfs_trans_handle *trans, struct btrfs_root | ||
1823 | *root, struct btrfs_path *path, u32 data_size); | ||
1824 | int btrfs_truncate_item(struct btrfs_trans_handle *trans, | ||
1825 | struct btrfs_root *root, | ||
1826 | struct btrfs_path *path, | ||
1827 | u32 new_size, int from_end); | ||
1828 | int btrfs_split_item(struct btrfs_trans_handle *trans, | ||
1829 | struct btrfs_root *root, | ||
1830 | struct btrfs_path *path, | ||
1831 | struct btrfs_key *new_key, | ||
1832 | unsigned long split_offset); | ||
1833 | int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root | ||
1834 | *root, struct btrfs_key *key, struct btrfs_path *p, int | ||
1835 | ins_len, int cow); | ||
1836 | int btrfs_realloc_node(struct btrfs_trans_handle *trans, | ||
1837 | struct btrfs_root *root, struct extent_buffer *parent, | ||
1838 | int start_slot, int cache_only, u64 *last_ret, | ||
1839 | struct btrfs_key *progress); | ||
1840 | void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p); | ||
1841 | struct btrfs_path *btrfs_alloc_path(void); | ||
1842 | void btrfs_free_path(struct btrfs_path *p); | ||
1843 | void btrfs_init_path(struct btrfs_path *p); | ||
1844 | int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, | ||
1845 | struct btrfs_path *path, int slot, int nr); | ||
1846 | int btrfs_del_leaf(struct btrfs_trans_handle *trans, | ||
1847 | struct btrfs_root *root, | ||
1848 | struct btrfs_path *path, u64 bytenr); | ||
1849 | static inline int btrfs_del_item(struct btrfs_trans_handle *trans, | ||
1850 | struct btrfs_root *root, | ||
1851 | struct btrfs_path *path) | ||
1852 | { | ||
1853 | return btrfs_del_items(trans, root, path, path->slots[0], 1); | ||
1854 | } | ||
1855 | |||
1856 | int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root | ||
1857 | *root, struct btrfs_key *key, void *data, u32 data_size); | ||
1858 | int btrfs_insert_some_items(struct btrfs_trans_handle *trans, | ||
1859 | struct btrfs_root *root, | ||
1860 | struct btrfs_path *path, | ||
1861 | struct btrfs_key *cpu_key, u32 *data_size, | ||
1862 | int nr); | ||
1863 | int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, | ||
1864 | struct btrfs_root *root, | ||
1865 | struct btrfs_path *path, | ||
1866 | struct btrfs_key *cpu_key, u32 *data_size, int nr); | ||
1867 | |||
1868 | static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans, | ||
1869 | struct btrfs_root *root, | ||
1870 | struct btrfs_path *path, | ||
1871 | struct btrfs_key *key, | ||
1872 | u32 data_size) | ||
1873 | { | ||
1874 | return btrfs_insert_empty_items(trans, root, path, key, &data_size, 1); | ||
1875 | } | ||
1876 | |||
1877 | int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path); | ||
1878 | int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path); | ||
1879 | int btrfs_leaf_free_space(struct btrfs_root *root, struct extent_buffer *leaf); | ||
1880 | int btrfs_drop_snapshot(struct btrfs_trans_handle *trans, struct btrfs_root | ||
1881 | *root); | ||
1882 | int btrfs_drop_subtree(struct btrfs_trans_handle *trans, | ||
1883 | struct btrfs_root *root, | ||
1884 | struct extent_buffer *node, | ||
1885 | struct extent_buffer *parent); | ||
1886 | /* root-item.c */ | ||
1887 | int btrfs_find_root_ref(struct btrfs_root *tree_root, | ||
1888 | struct btrfs_path *path, | ||
1889 | u64 root_id, u64 ref_id); | ||
1890 | int btrfs_add_root_ref(struct btrfs_trans_handle *trans, | ||
1891 | struct btrfs_root *tree_root, | ||
1892 | u64 root_id, u8 type, u64 ref_id, | ||
1893 | u64 dirid, u64 sequence, | ||
1894 | const char *name, int name_len); | ||
1895 | int btrfs_del_root(struct btrfs_trans_handle *trans, struct btrfs_root *root, | ||
1896 | struct btrfs_key *key); | ||
1897 | int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root | ||
1898 | *root, struct btrfs_key *key, struct btrfs_root_item | ||
1899 | *item); | ||
1900 | int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root | ||
1901 | *root, struct btrfs_key *key, struct btrfs_root_item | ||
1902 | *item); | ||
1903 | int btrfs_find_last_root(struct btrfs_root *root, u64 objectid, struct | ||
1904 | btrfs_root_item *item, struct btrfs_key *key); | ||
1905 | int btrfs_search_root(struct btrfs_root *root, u64 search_start, | ||
1906 | u64 *found_objectid); | ||
1907 | int btrfs_find_dead_roots(struct btrfs_root *root, u64 objectid, | ||
1908 | struct btrfs_root *latest_root); | ||
1909 | /* dir-item.c */ | ||
1910 | int btrfs_insert_dir_item(struct btrfs_trans_handle *trans, | ||
1911 | struct btrfs_root *root, const char *name, | ||
1912 | int name_len, u64 dir, | ||
1913 | struct btrfs_key *location, u8 type, u64 index); | ||
1914 | struct btrfs_dir_item *btrfs_lookup_dir_item(struct btrfs_trans_handle *trans, | ||
1915 | struct btrfs_root *root, | ||
1916 | struct btrfs_path *path, u64 dir, | ||
1917 | const char *name, int name_len, | ||
1918 | int mod); | ||
1919 | struct btrfs_dir_item * | ||
1920 | btrfs_lookup_dir_index_item(struct btrfs_trans_handle *trans, | ||
1921 | struct btrfs_root *root, | ||
1922 | struct btrfs_path *path, u64 dir, | ||
1923 | u64 objectid, const char *name, int name_len, | ||
1924 | int mod); | ||
1925 | struct btrfs_dir_item *btrfs_match_dir_item_name(struct btrfs_root *root, | ||
1926 | struct btrfs_path *path, | ||
1927 | const char *name, int name_len); | ||
1928 | int btrfs_delete_one_dir_name(struct btrfs_trans_handle *trans, | ||
1929 | struct btrfs_root *root, | ||
1930 | struct btrfs_path *path, | ||
1931 | struct btrfs_dir_item *di); | ||
1932 | int btrfs_insert_xattr_item(struct btrfs_trans_handle *trans, | ||
1933 | struct btrfs_root *root, const char *name, | ||
1934 | u16 name_len, const void *data, u16 data_len, | ||
1935 | u64 dir); | ||
1936 | struct btrfs_dir_item *btrfs_lookup_xattr(struct btrfs_trans_handle *trans, | ||
1937 | struct btrfs_root *root, | ||
1938 | struct btrfs_path *path, u64 dir, | ||
1939 | const char *name, u16 name_len, | ||
1940 | int mod); | ||
1941 | |||
1942 | /* orphan.c */ | ||
1943 | int btrfs_insert_orphan_item(struct btrfs_trans_handle *trans, | ||
1944 | struct btrfs_root *root, u64 offset); | ||
1945 | int btrfs_del_orphan_item(struct btrfs_trans_handle *trans, | ||
1946 | struct btrfs_root *root, u64 offset); | ||
1947 | |||
1948 | /* inode-map.c */ | ||
1949 | int btrfs_find_free_objectid(struct btrfs_trans_handle *trans, | ||
1950 | struct btrfs_root *fs_root, | ||
1951 | u64 dirid, u64 *objectid); | ||
1952 | int btrfs_find_highest_inode(struct btrfs_root *fs_root, u64 *objectid); | ||
1953 | |||
1954 | /* inode-item.c */ | ||
1955 | int btrfs_insert_inode_ref(struct btrfs_trans_handle *trans, | ||
1956 | struct btrfs_root *root, | ||
1957 | const char *name, int name_len, | ||
1958 | u64 inode_objectid, u64 ref_objectid, u64 index); | ||
1959 | int btrfs_del_inode_ref(struct btrfs_trans_handle *trans, | ||
1960 | struct btrfs_root *root, | ||
1961 | const char *name, int name_len, | ||
1962 | u64 inode_objectid, u64 ref_objectid, u64 *index); | ||
1963 | int btrfs_insert_empty_inode(struct btrfs_trans_handle *trans, | ||
1964 | struct btrfs_root *root, | ||
1965 | struct btrfs_path *path, u64 objectid); | ||
1966 | int btrfs_lookup_inode(struct btrfs_trans_handle *trans, struct btrfs_root | ||
1967 | *root, struct btrfs_path *path, | ||
1968 | struct btrfs_key *location, int mod); | ||
1969 | |||
1970 | /* file-item.c */ | ||
1971 | int btrfs_del_csums(struct btrfs_trans_handle *trans, | ||
1972 | struct btrfs_root *root, u64 bytenr, u64 len); | ||
1973 | int btrfs_lookup_bio_sums(struct btrfs_root *root, struct inode *inode, | ||
1974 | struct bio *bio, u32 *dst); | ||
1975 | int btrfs_insert_file_extent(struct btrfs_trans_handle *trans, | ||
1976 | struct btrfs_root *root, | ||
1977 | u64 objectid, u64 pos, | ||
1978 | u64 disk_offset, u64 disk_num_bytes, | ||
1979 | u64 num_bytes, u64 offset, u64 ram_bytes, | ||
1980 | u8 compression, u8 encryption, u16 other_encoding); | ||
1981 | int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans, | ||
1982 | struct btrfs_root *root, | ||
1983 | struct btrfs_path *path, u64 objectid, | ||
1984 | u64 bytenr, int mod); | ||
1985 | int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans, | ||
1986 | struct btrfs_root *root, | ||
1987 | struct btrfs_ordered_sum *sums); | ||
1988 | int btrfs_csum_one_bio(struct btrfs_root *root, struct inode *inode, | ||
1989 | struct bio *bio, u64 file_start, int contig); | ||
1990 | int btrfs_csum_file_bytes(struct btrfs_root *root, struct inode *inode, | ||
1991 | u64 start, unsigned long len); | ||
1992 | struct btrfs_csum_item *btrfs_lookup_csum(struct btrfs_trans_handle *trans, | ||
1993 | struct btrfs_root *root, | ||
1994 | struct btrfs_path *path, | ||
1995 | u64 bytenr, int cow); | ||
1996 | int btrfs_csum_truncate(struct btrfs_trans_handle *trans, | ||
1997 | struct btrfs_root *root, struct btrfs_path *path, | ||
1998 | u64 isize); | ||
1999 | int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, | ||
2000 | u64 end, struct list_head *list); | ||
2001 | /* inode.c */ | ||
2002 | |||
2003 | /* RHEL and EL kernels have a patch that renames PG_checked to FsMisc */ | ||
2004 | #if defined(ClearPageFsMisc) && !defined(ClearPageChecked) | ||
2005 | #define ClearPageChecked ClearPageFsMisc | ||
2006 | #define SetPageChecked SetPageFsMisc | ||
2007 | #define PageChecked PageFsMisc | ||
2008 | #endif | ||
2009 | |||
2010 | struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry); | ||
2011 | int btrfs_set_inode_index(struct inode *dir, u64 *index); | ||
2012 | int btrfs_unlink_inode(struct btrfs_trans_handle *trans, | ||
2013 | struct btrfs_root *root, | ||
2014 | struct inode *dir, struct inode *inode, | ||
2015 | const char *name, int name_len); | ||
2016 | int btrfs_add_link(struct btrfs_trans_handle *trans, | ||
2017 | struct inode *parent_inode, struct inode *inode, | ||
2018 | const char *name, int name_len, int add_backref, u64 index); | ||
2019 | int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, | ||
2020 | struct btrfs_root *root, | ||
2021 | struct inode *inode, u64 new_size, | ||
2022 | u32 min_type); | ||
2023 | |||
2024 | int btrfs_start_delalloc_inodes(struct btrfs_root *root); | ||
2025 | int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end); | ||
2026 | int btrfs_writepages(struct address_space *mapping, | ||
2027 | struct writeback_control *wbc); | ||
2028 | int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, | ||
2029 | struct btrfs_root *new_root, struct dentry *dentry, | ||
2030 | u64 new_dirid, u64 alloc_hint); | ||
2031 | int btrfs_merge_bio_hook(struct page *page, unsigned long offset, | ||
2032 | size_t size, struct bio *bio, unsigned long bio_flags); | ||
2033 | |||
2034 | unsigned long btrfs_force_ra(struct address_space *mapping, | ||
2035 | struct file_ra_state *ra, struct file *file, | ||
2036 | pgoff_t offset, pgoff_t last_index); | ||
2037 | int btrfs_check_free_space(struct btrfs_root *root, u64 num_required, | ||
2038 | int for_del); | ||
2039 | int btrfs_page_mkwrite(struct vm_area_struct *vma, struct page *page); | ||
2040 | int btrfs_readpage(struct file *file, struct page *page); | ||
2041 | void btrfs_delete_inode(struct inode *inode); | ||
2042 | void btrfs_put_inode(struct inode *inode); | ||
2043 | void btrfs_read_locked_inode(struct inode *inode); | ||
2044 | int btrfs_write_inode(struct inode *inode, int wait); | ||
2045 | void btrfs_dirty_inode(struct inode *inode); | ||
2046 | struct inode *btrfs_alloc_inode(struct super_block *sb); | ||
2047 | void btrfs_destroy_inode(struct inode *inode); | ||
2048 | int btrfs_init_cachep(void); | ||
2049 | void btrfs_destroy_cachep(void); | ||
2050 | long btrfs_ioctl_trans_end(struct file *file); | ||
2051 | struct inode *btrfs_ilookup(struct super_block *s, u64 objectid, | ||
2052 | struct btrfs_root *root, int wait); | ||
2053 | struct inode *btrfs_iget_locked(struct super_block *s, u64 objectid, | ||
2054 | struct btrfs_root *root); | ||
2055 | struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, | ||
2056 | struct btrfs_root *root, int *is_new); | ||
2057 | int btrfs_commit_write(struct file *file, struct page *page, | ||
2058 | unsigned from, unsigned to); | ||
2059 | struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page, | ||
2060 | size_t page_offset, u64 start, u64 end, | ||
2061 | int create); | ||
2062 | int btrfs_update_inode(struct btrfs_trans_handle *trans, | ||
2063 | struct btrfs_root *root, | ||
2064 | struct inode *inode); | ||
2065 | int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode); | ||
2066 | int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode); | ||
2067 | void btrfs_orphan_cleanup(struct btrfs_root *root); | ||
2068 | int btrfs_cont_expand(struct inode *inode, loff_t size); | ||
2069 | |||
2070 | /* ioctl.c */ | ||
2071 | long btrfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg); | ||
2072 | |||
2073 | /* file.c */ | ||
2074 | int btrfs_sync_file(struct file *file, struct dentry *dentry, int datasync); | ||
2075 | int btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end, | ||
2076 | int skip_pinned); | ||
2077 | int btrfs_check_file(struct btrfs_root *root, struct inode *inode); | ||
2078 | extern struct file_operations btrfs_file_operations; | ||
2079 | int btrfs_drop_extents(struct btrfs_trans_handle *trans, | ||
2080 | struct btrfs_root *root, struct inode *inode, | ||
2081 | u64 start, u64 end, u64 inline_limit, u64 *hint_block); | ||
2082 | int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, | ||
2083 | struct btrfs_root *root, | ||
2084 | struct inode *inode, u64 start, u64 end); | ||
2085 | int btrfs_release_file(struct inode *inode, struct file *file); | ||
2086 | |||
2087 | /* tree-defrag.c */ | ||
2088 | int btrfs_defrag_leaves(struct btrfs_trans_handle *trans, | ||
2089 | struct btrfs_root *root, int cache_only); | ||
2090 | |||
2091 | /* sysfs.c */ | ||
2092 | int btrfs_init_sysfs(void); | ||
2093 | void btrfs_exit_sysfs(void); | ||
2094 | int btrfs_sysfs_add_super(struct btrfs_fs_info *fs); | ||
2095 | int btrfs_sysfs_add_root(struct btrfs_root *root); | ||
2096 | void btrfs_sysfs_del_root(struct btrfs_root *root); | ||
2097 | void btrfs_sysfs_del_super(struct btrfs_fs_info *root); | ||
2098 | |||
2099 | /* xattr.c */ | ||
2100 | ssize_t btrfs_listxattr(struct dentry *dentry, char *buffer, size_t size); | ||
2101 | |||
2102 | /* super.c */ | ||
2103 | u64 btrfs_parse_size(char *str); | ||
2104 | int btrfs_parse_options(struct btrfs_root *root, char *options); | ||
2105 | int btrfs_sync_fs(struct super_block *sb, int wait); | ||
2106 | |||
2107 | /* acl.c */ | ||
2108 | int btrfs_check_acl(struct inode *inode, int mask); | ||
2109 | int btrfs_init_acl(struct inode *inode, struct inode *dir); | ||
2110 | int btrfs_acl_chmod(struct inode *inode); | ||
2111 | |||
2112 | /* free-space-cache.c */ | ||
2113 | int btrfs_add_free_space(struct btrfs_block_group_cache *block_group, | ||
2114 | u64 bytenr, u64 size); | ||
2115 | int btrfs_add_free_space_lock(struct btrfs_block_group_cache *block_group, | ||
2116 | u64 offset, u64 bytes); | ||
2117 | int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group, | ||
2118 | u64 bytenr, u64 size); | ||
2119 | int btrfs_remove_free_space_lock(struct btrfs_block_group_cache *block_group, | ||
2120 | u64 offset, u64 bytes); | ||
2121 | void btrfs_remove_free_space_cache(struct btrfs_block_group_cache | ||
2122 | *block_group); | ||
2123 | struct btrfs_free_space *btrfs_find_free_space(struct btrfs_block_group_cache | ||
2124 | *block_group, u64 offset, | ||
2125 | u64 bytes); | ||
2126 | void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group, | ||
2127 | u64 bytes); | ||
2128 | u64 btrfs_block_group_free_space(struct btrfs_block_group_cache *block_group); | ||
2129 | #endif | ||
diff --git a/fs/btrfs/dir-item.c b/fs/btrfs/dir-item.c new file mode 100644 index 000000000000..926a0b287a7d --- /dev/null +++ b/fs/btrfs/dir-item.c | |||
@@ -0,0 +1,386 @@ | |||
1 | /* | ||
2 | * Copyright (C) 2007 Oracle. All rights reserved. | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or | ||
5 | * modify it under the terms of the GNU General Public | ||
6 | * License v2 as published by the Free Software Foundation. | ||
7 | * | ||
8 | * This program is distributed in the hope that it will be useful, | ||
9 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | ||
11 | * General Public License for more details. | ||
12 | * | ||
13 | * You should have received a copy of the GNU General Public | ||
14 | * License along with this program; if not, write to the | ||
15 | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | ||
16 | * Boston, MA 021110-1307, USA. | ||
17 | */ | ||
18 | |||
19 | #include "ctree.h" | ||
20 | #include "disk-io.h" | ||
21 | #include "hash.h" | ||
22 | #include "transaction.h" | ||
23 | |||
24 | /* | ||
25 | * insert a name into a directory, doing overflow properly if there is a hash | ||
26 | * collision. data_size indicates how big the item inserted should be. On | ||
27 | * success a struct btrfs_dir_item pointer is returned, otherwise it is | ||
28 | * an ERR_PTR. | ||
29 | * | ||
30 | * The name is not copied into the dir item, you have to do that yourself. | ||
31 | */ | ||
32 | static struct btrfs_dir_item *insert_with_overflow(struct btrfs_trans_handle | ||
33 | *trans, | ||
34 | struct btrfs_root *root, | ||
35 | struct btrfs_path *path, | ||
36 | struct btrfs_key *cpu_key, | ||
37 | u32 data_size, | ||
38 | const char *name, | ||
39 | int name_len) | ||
40 | { | ||
41 | int ret; | ||
42 | char *ptr; | ||
43 | struct btrfs_item *item; | ||
44 | struct extent_buffer *leaf; | ||
45 | |||
46 | ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size); | ||
47 | if (ret == -EEXIST) { | ||
48 | struct btrfs_dir_item *di; | ||
49 | di = btrfs_match_dir_item_name(root, path, name, name_len); | ||
50 | if (di) | ||
51 | return ERR_PTR(-EEXIST); | ||
52 | ret = btrfs_extend_item(trans, root, path, data_size); | ||
53 | WARN_ON(ret > 0); | ||
54 | } | ||
55 | if (ret < 0) | ||
56 | return ERR_PTR(ret); | ||
57 | WARN_ON(ret > 0); | ||
58 | leaf = path->nodes[0]; | ||
59 | item = btrfs_item_nr(leaf, path->slots[0]); | ||
60 | ptr = btrfs_item_ptr(leaf, path->slots[0], char); | ||
61 | BUG_ON(data_size > btrfs_item_size(leaf, item)); | ||
62 | ptr += btrfs_item_size(leaf, item) - data_size; | ||
63 | return (struct btrfs_dir_item *)ptr; | ||
64 | } | ||
65 | |||
66 | /* | ||
67 | * xattrs work a lot like directories, this inserts an xattr item | ||
68 | * into the tree | ||
69 | */ | ||
70 | int btrfs_insert_xattr_item(struct btrfs_trans_handle *trans, | ||
71 | struct btrfs_root *root, const char *name, | ||
72 | u16 name_len, const void *data, u16 data_len, | ||
73 | u64 dir) | ||
74 | { | ||
75 | int ret = 0; | ||
76 | struct btrfs_path *path; | ||
77 | struct btrfs_dir_item *dir_item; | ||
78 | unsigned long name_ptr, data_ptr; | ||
79 | struct btrfs_key key, location; | ||
80 | struct btrfs_disk_key disk_key; | ||
81 | struct extent_buffer *leaf; | ||
82 | u32 data_size; | ||
83 | |||
84 | key.objectid = dir; | ||
85 | btrfs_set_key_type(&key, BTRFS_XATTR_ITEM_KEY); | ||
86 | key.offset = btrfs_name_hash(name, name_len); | ||
87 | path = btrfs_alloc_path(); | ||
88 | if (!path) | ||
89 | return -ENOMEM; | ||
90 | if (name_len + data_len + sizeof(struct btrfs_dir_item) > | ||
91 | BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item)) | ||
92 | return -ENOSPC; | ||
93 | |||
94 | data_size = sizeof(*dir_item) + name_len + data_len; | ||
95 | dir_item = insert_with_overflow(trans, root, path, &key, data_size, | ||
96 | name, name_len); | ||
97 | /* | ||
98 | * FIXME: at some point we should handle xattr's that are larger than | ||
99 | * what we can fit in our leaf. We set location to NULL b/c we arent | ||
100 | * pointing at anything else, that will change if we store the xattr | ||
101 | * data in a separate inode. | ||
102 | */ | ||
103 | BUG_ON(IS_ERR(dir_item)); | ||
104 | memset(&location, 0, sizeof(location)); | ||
105 | |||
106 | leaf = path->nodes[0]; | ||
107 | btrfs_cpu_key_to_disk(&disk_key, &location); | ||
108 | btrfs_set_dir_item_key(leaf, dir_item, &disk_key); | ||
109 | btrfs_set_dir_type(leaf, dir_item, BTRFS_FT_XATTR); | ||
110 | btrfs_set_dir_name_len(leaf, dir_item, name_len); | ||
111 | btrfs_set_dir_transid(leaf, dir_item, trans->transid); | ||
112 | btrfs_set_dir_data_len(leaf, dir_item, data_len); | ||
113 | name_ptr = (unsigned long)(dir_item + 1); | ||
114 | data_ptr = (unsigned long)((char *)name_ptr + name_len); | ||
115 | |||
116 | write_extent_buffer(leaf, name, name_ptr, name_len); | ||
117 | write_extent_buffer(leaf, data, data_ptr, data_len); | ||
118 | btrfs_mark_buffer_dirty(path->nodes[0]); | ||
119 | |||
120 | btrfs_free_path(path); | ||
121 | return ret; | ||
122 | } | ||
123 | |||
124 | /* | ||
125 | * insert a directory item in the tree, doing all the magic for | ||
126 | * both indexes. 'dir' indicates which objectid to insert it into, | ||
127 | * 'location' is the key to stuff into the directory item, 'type' is the | ||
128 | * type of the inode we're pointing to, and 'index' is the sequence number | ||
129 | * to use for the second index (if one is created). | ||
130 | */ | ||
131 | int btrfs_insert_dir_item(struct btrfs_trans_handle *trans, struct btrfs_root | ||
132 | *root, const char *name, int name_len, u64 dir, | ||
133 | struct btrfs_key *location, u8 type, u64 index) | ||
134 | { | ||
135 | int ret = 0; | ||
136 | int ret2 = 0; | ||
137 | struct btrfs_path *path; | ||
138 | struct btrfs_dir_item *dir_item; | ||
139 | struct extent_buffer *leaf; | ||
140 | unsigned long name_ptr; | ||
141 | struct btrfs_key key; | ||
142 | struct btrfs_disk_key disk_key; | ||
143 | u32 data_size; | ||
144 | |||
145 | key.objectid = dir; | ||
146 | btrfs_set_key_type(&key, BTRFS_DIR_ITEM_KEY); | ||
147 | key.offset = btrfs_name_hash(name, name_len); | ||
148 | path = btrfs_alloc_path(); | ||
149 | data_size = sizeof(*dir_item) + name_len; | ||
150 | dir_item = insert_with_overflow(trans, root, path, &key, data_size, | ||
151 | name, name_len); | ||
152 | if (IS_ERR(dir_item)) { | ||
153 | ret = PTR_ERR(dir_item); | ||
154 | if (ret == -EEXIST) | ||
155 | goto second_insert; | ||
156 | goto out; | ||
157 | } | ||
158 | |||
159 | leaf = path->nodes[0]; | ||
160 | btrfs_cpu_key_to_disk(&disk_key, location); | ||
161 | btrfs_set_dir_item_key(leaf, dir_item, &disk_key); | ||
162 | btrfs_set_dir_type(leaf, dir_item, type); | ||
163 | btrfs_set_dir_data_len(leaf, dir_item, 0); | ||
164 | btrfs_set_dir_name_len(leaf, dir_item, name_len); | ||
165 | btrfs_set_dir_transid(leaf, dir_item, trans->transid); | ||
166 | name_ptr = (unsigned long)(dir_item + 1); | ||
167 | |||
168 | write_extent_buffer(leaf, name, name_ptr, name_len); | ||
169 | btrfs_mark_buffer_dirty(leaf); | ||
170 | |||
171 | second_insert: | ||
172 | /* FIXME, use some real flag for selecting the extra index */ | ||
173 | if (root == root->fs_info->tree_root) { | ||
174 | ret = 0; | ||
175 | goto out; | ||
176 | } | ||
177 | btrfs_release_path(root, path); | ||
178 | |||
179 | btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY); | ||
180 | key.offset = index; | ||
181 | dir_item = insert_with_overflow(trans, root, path, &key, data_size, | ||
182 | name, name_len); | ||
183 | if (IS_ERR(dir_item)) { | ||
184 | ret2 = PTR_ERR(dir_item); | ||
185 | goto out; | ||
186 | } | ||
187 | leaf = path->nodes[0]; | ||
188 | btrfs_cpu_key_to_disk(&disk_key, location); | ||
189 | btrfs_set_dir_item_key(leaf, dir_item, &disk_key); | ||
190 | btrfs_set_dir_type(leaf, dir_item, type); | ||
191 | btrfs_set_dir_data_len(leaf, dir_item, 0); | ||
192 | btrfs_set_dir_name_len(leaf, dir_item, name_len); | ||
193 | btrfs_set_dir_transid(leaf, dir_item, trans->transid); | ||
194 | name_ptr = (unsigned long)(dir_item + 1); | ||
195 | write_extent_buffer(leaf, name, name_ptr, name_len); | ||
196 | btrfs_mark_buffer_dirty(leaf); | ||
197 | out: | ||
198 | btrfs_free_path(path); | ||
199 | if (ret) | ||
200 | return ret; | ||
201 | if (ret2) | ||
202 | return ret2; | ||
203 | return 0; | ||
204 | } | ||
205 | |||
206 | /* | ||
207 | * lookup a directory item based on name. 'dir' is the objectid | ||
208 | * we're searching in, and 'mod' tells us if you plan on deleting the | ||
209 | * item (use mod < 0) or changing the options (use mod > 0) | ||
210 | */ | ||
211 | struct btrfs_dir_item *btrfs_lookup_dir_item(struct btrfs_trans_handle *trans, | ||
212 | struct btrfs_root *root, | ||
213 | struct btrfs_path *path, u64 dir, | ||
214 | const char *name, int name_len, | ||
215 | int mod) | ||
216 | { | ||
217 | int ret; | ||
218 | struct btrfs_key key; | ||
219 | int ins_len = mod < 0 ? -1 : 0; | ||
220 | int cow = mod != 0; | ||
221 | struct btrfs_key found_key; | ||
222 | struct extent_buffer *leaf; | ||
223 | |||
224 | key.objectid = dir; | ||
225 | btrfs_set_key_type(&key, BTRFS_DIR_ITEM_KEY); | ||
226 | |||
227 | key.offset = btrfs_name_hash(name, name_len); | ||
228 | |||
229 | ret = btrfs_search_slot(trans, root, &key, path, ins_len, cow); | ||
230 | if (ret < 0) | ||
231 | return ERR_PTR(ret); | ||
232 | if (ret > 0) { | ||
233 | if (path->slots[0] == 0) | ||
234 | return NULL; | ||
235 | path->slots[0]--; | ||
236 | } | ||
237 | |||
238 | leaf = path->nodes[0]; | ||
239 | btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); | ||
240 | |||
241 | if (found_key.objectid != dir || | ||
242 | btrfs_key_type(&found_key) != BTRFS_DIR_ITEM_KEY || | ||
243 | found_key.offset != key.offset) | ||
244 | return NULL; | ||
245 | |||
246 | return btrfs_match_dir_item_name(root, path, name, name_len); | ||
247 | } | ||
248 | |||
249 | /* | ||
250 | * lookup a directory item based on index. 'dir' is the objectid | ||
251 | * we're searching in, and 'mod' tells us if you plan on deleting the | ||
252 | * item (use mod < 0) or changing the options (use mod > 0) | ||
253 | * | ||
254 | * The name is used to make sure the index really points to the name you were | ||
255 | * looking for. | ||
256 | */ | ||
257 | struct btrfs_dir_item * | ||
258 | btrfs_lookup_dir_index_item(struct btrfs_trans_handle *trans, | ||
259 | struct btrfs_root *root, | ||
260 | struct btrfs_path *path, u64 dir, | ||
261 | u64 objectid, const char *name, int name_len, | ||
262 | int mod) | ||
263 | { | ||
264 | int ret; | ||
265 | struct btrfs_key key; | ||
266 | int ins_len = mod < 0 ? -1 : 0; | ||
267 | int cow = mod != 0; | ||
268 | |||
269 | key.objectid = dir; | ||
270 | btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY); | ||
271 | key.offset = objectid; | ||
272 | |||
273 | ret = btrfs_search_slot(trans, root, &key, path, ins_len, cow); | ||
274 | if (ret < 0) | ||
275 | return ERR_PTR(ret); | ||
276 | if (ret > 0) | ||
277 | return ERR_PTR(-ENOENT); | ||
278 | return btrfs_match_dir_item_name(root, path, name, name_len); | ||
279 | } | ||
280 | |||
281 | struct btrfs_dir_item *btrfs_lookup_xattr(struct btrfs_trans_handle *trans, | ||
282 | struct btrfs_root *root, | ||
283 | struct btrfs_path *path, u64 dir, | ||
284 | const char *name, u16 name_len, | ||
285 | int mod) | ||
286 | { | ||
287 | int ret; | ||
288 | struct btrfs_key key; | ||
289 | int ins_len = mod < 0 ? -1 : 0; | ||
290 | int cow = mod != 0; | ||
291 | struct btrfs_key found_key; | ||
292 | struct extent_buffer *leaf; | ||
293 | |||
294 | key.objectid = dir; | ||
295 | btrfs_set_key_type(&key, BTRFS_XATTR_ITEM_KEY); | ||
296 | key.offset = btrfs_name_hash(name, name_len); | ||
297 | ret = btrfs_search_slot(trans, root, &key, path, ins_len, cow); | ||
298 | if (ret < 0) | ||
299 | return ERR_PTR(ret); | ||
300 | if (ret > 0) { | ||
301 | if (path->slots[0] == 0) | ||
302 | return NULL; | ||
303 | path->slots[0]--; | ||
304 | } | ||
305 | |||
306 | leaf = path->nodes[0]; | ||
307 | btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); | ||
308 | |||
309 | if (found_key.objectid != dir || | ||
310 | btrfs_key_type(&found_key) != BTRFS_XATTR_ITEM_KEY || | ||
311 | found_key.offset != key.offset) | ||
312 | return NULL; | ||
313 | |||
314 | return btrfs_match_dir_item_name(root, path, name, name_len); | ||
315 | } | ||
316 | |||
317 | /* | ||
318 | * helper function to look at the directory item pointed to by 'path' | ||
319 | * this walks through all the entries in a dir item and finds one | ||
320 | * for a specific name. | ||
321 | */ | ||
322 | struct btrfs_dir_item *btrfs_match_dir_item_name(struct btrfs_root *root, | ||
323 | struct btrfs_path *path, | ||
324 | const char *name, int name_len) | ||
325 | { | ||
326 | struct btrfs_dir_item *dir_item; | ||
327 | unsigned long name_ptr; | ||
328 | u32 total_len; | ||
329 | u32 cur = 0; | ||
330 | u32 this_len; | ||
331 | struct extent_buffer *leaf; | ||
332 | |||
333 | leaf = path->nodes[0]; | ||
334 | dir_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item); | ||
335 | total_len = btrfs_item_size_nr(leaf, path->slots[0]); | ||
336 | while (cur < total_len) { | ||
337 | this_len = sizeof(*dir_item) + | ||
338 | btrfs_dir_name_len(leaf, dir_item) + | ||
339 | btrfs_dir_data_len(leaf, dir_item); | ||
340 | name_ptr = (unsigned long)(dir_item + 1); | ||
341 | |||
342 | if (btrfs_dir_name_len(leaf, dir_item) == name_len && | ||
343 | memcmp_extent_buffer(leaf, name, name_ptr, name_len) == 0) | ||
344 | return dir_item; | ||
345 | |||
346 | cur += this_len; | ||
347 | dir_item = (struct btrfs_dir_item *)((char *)dir_item + | ||
348 | this_len); | ||
349 | } | ||
350 | return NULL; | ||
351 | } | ||
352 | |||
353 | /* | ||
354 | * given a pointer into a directory item, delete it. This | ||
355 | * handles items that have more than one entry in them. | ||
356 | */ | ||
357 | int btrfs_delete_one_dir_name(struct btrfs_trans_handle *trans, | ||
358 | struct btrfs_root *root, | ||
359 | struct btrfs_path *path, | ||
360 | struct btrfs_dir_item *di) | ||
361 | { | ||
362 | |||
363 | struct extent_buffer *leaf; | ||
364 | u32 sub_item_len; | ||
365 | u32 item_len; | ||
366 | int ret = 0; | ||
367 | |||
368 | leaf = path->nodes[0]; | ||
369 | sub_item_len = sizeof(*di) + btrfs_dir_name_len(leaf, di) + | ||
370 | btrfs_dir_data_len(leaf, di); | ||
371 | item_len = btrfs_item_size_nr(leaf, path->slots[0]); | ||
372 | if (sub_item_len == item_len) { | ||
373 | ret = btrfs_del_item(trans, root, path); | ||
374 | } else { | ||
375 | /* MARKER */ | ||
376 | unsigned long ptr = (unsigned long)di; | ||
377 | unsigned long start; | ||
378 | |||
379 | start = btrfs_item_ptr_offset(leaf, path->slots[0]); | ||
380 | memmove_extent_buffer(leaf, ptr, ptr + sub_item_len, | ||
381 | item_len - (ptr + sub_item_len - start)); | ||
382 | ret = btrfs_truncate_item(trans, root, path, | ||
383 | item_len - sub_item_len, 1); | ||
384 | } | ||
385 | return 0; | ||
386 | } | ||
diff --git a/fs/btrfs/disk-io.c b/fs/btrfs/disk-io.c new file mode 100644 index 000000000000..81a313874ae5 --- /dev/null +++ b/fs/btrfs/disk-io.c | |||
@@ -0,0 +1,2343 @@ | |||
1 | /* | ||
2 | * Copyright (C) 2007 Oracle. All rights reserved. | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or | ||
5 | * modify it under the terms of the GNU General Public | ||
6 | * License v2 as published by the Free Software Foundation. | ||
7 | * | ||
8 | * This program is distributed in the hope that it will be useful, | ||
9 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | ||
11 | * General Public License for more details. | ||
12 | * | ||
13 | * You should have received a copy of the GNU General Public | ||
14 | * License along with this program; if not, write to the | ||
15 | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | ||
16 | * Boston, MA 021110-1307, USA. | ||
17 | */ | ||
18 | |||
19 | #include <linux/version.h> | ||
20 | #include <linux/fs.h> | ||
21 | #include <linux/blkdev.h> | ||
22 | #include <linux/scatterlist.h> | ||
23 | #include <linux/swap.h> | ||
24 | #include <linux/radix-tree.h> | ||
25 | #include <linux/writeback.h> | ||
26 | #include <linux/buffer_head.h> | ||
27 | #include <linux/workqueue.h> | ||
28 | #include <linux/kthread.h> | ||
29 | #include <linux/freezer.h> | ||
30 | #include "compat.h" | ||
31 | #include "crc32c.h" | ||
32 | #include "ctree.h" | ||
33 | #include "disk-io.h" | ||
34 | #include "transaction.h" | ||
35 | #include "btrfs_inode.h" | ||
36 | #include "volumes.h" | ||
37 | #include "print-tree.h" | ||
38 | #include "async-thread.h" | ||
39 | #include "locking.h" | ||
40 | #include "ref-cache.h" | ||
41 | #include "tree-log.h" | ||
42 | |||
43 | static struct extent_io_ops btree_extent_io_ops; | ||
44 | static void end_workqueue_fn(struct btrfs_work *work); | ||
45 | |||
46 | /* | ||
47 | * end_io_wq structs are used to do processing in task context when an IO is | ||
48 | * complete. This is used during reads to verify checksums, and it is used | ||
49 | * by writes to insert metadata for new file extents after IO is complete. | ||
50 | */ | ||
51 | struct end_io_wq { | ||
52 | struct bio *bio; | ||
53 | bio_end_io_t *end_io; | ||
54 | void *private; | ||
55 | struct btrfs_fs_info *info; | ||
56 | int error; | ||
57 | int metadata; | ||
58 | struct list_head list; | ||
59 | struct btrfs_work work; | ||
60 | }; | ||
61 | |||
62 | /* | ||
63 | * async submit bios are used to offload expensive checksumming | ||
64 | * onto the worker threads. They checksum file and metadata bios | ||
65 | * just before they are sent down the IO stack. | ||
66 | */ | ||
67 | struct async_submit_bio { | ||
68 | struct inode *inode; | ||
69 | struct bio *bio; | ||
70 | struct list_head list; | ||
71 | extent_submit_bio_hook_t *submit_bio_start; | ||
72 | extent_submit_bio_hook_t *submit_bio_done; | ||
73 | int rw; | ||
74 | int mirror_num; | ||
75 | unsigned long bio_flags; | ||
76 | struct btrfs_work work; | ||
77 | }; | ||
78 | |||
79 | /* | ||
80 | * extents on the btree inode are pretty simple, there's one extent | ||
81 | * that covers the entire device | ||
82 | */ | ||
83 | static struct extent_map *btree_get_extent(struct inode *inode, | ||
84 | struct page *page, size_t page_offset, u64 start, u64 len, | ||
85 | int create) | ||
86 | { | ||
87 | struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; | ||
88 | struct extent_map *em; | ||
89 | int ret; | ||
90 | |||
91 | spin_lock(&em_tree->lock); | ||
92 | em = lookup_extent_mapping(em_tree, start, len); | ||
93 | if (em) { | ||
94 | em->bdev = | ||
95 | BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; | ||
96 | spin_unlock(&em_tree->lock); | ||
97 | goto out; | ||
98 | } | ||
99 | spin_unlock(&em_tree->lock); | ||
100 | |||
101 | em = alloc_extent_map(GFP_NOFS); | ||
102 | if (!em) { | ||
103 | em = ERR_PTR(-ENOMEM); | ||
104 | goto out; | ||
105 | } | ||
106 | em->start = 0; | ||
107 | em->len = (u64)-1; | ||
108 | em->block_len = (u64)-1; | ||
109 | em->block_start = 0; | ||
110 | em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; | ||
111 | |||
112 | spin_lock(&em_tree->lock); | ||
113 | ret = add_extent_mapping(em_tree, em); | ||
114 | if (ret == -EEXIST) { | ||
115 | u64 failed_start = em->start; | ||
116 | u64 failed_len = em->len; | ||
117 | |||
118 | free_extent_map(em); | ||
119 | em = lookup_extent_mapping(em_tree, start, len); | ||
120 | if (em) { | ||
121 | ret = 0; | ||
122 | } else { | ||
123 | em = lookup_extent_mapping(em_tree, failed_start, | ||
124 | failed_len); | ||
125 | ret = -EIO; | ||
126 | } | ||
127 | } else if (ret) { | ||
128 | free_extent_map(em); | ||
129 | em = NULL; | ||
130 | } | ||
131 | spin_unlock(&em_tree->lock); | ||
132 | |||
133 | if (ret) | ||
134 | em = ERR_PTR(ret); | ||
135 | out: | ||
136 | return em; | ||
137 | } | ||
138 | |||
139 | u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len) | ||
140 | { | ||
141 | return btrfs_crc32c(seed, data, len); | ||
142 | } | ||
143 | |||
144 | void btrfs_csum_final(u32 crc, char *result) | ||
145 | { | ||
146 | *(__le32 *)result = ~cpu_to_le32(crc); | ||
147 | } | ||
148 | |||
149 | /* | ||
150 | * compute the csum for a btree block, and either verify it or write it | ||
151 | * into the csum field of the block. | ||
152 | */ | ||
153 | static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf, | ||
154 | int verify) | ||
155 | { | ||
156 | u16 csum_size = | ||
157 | btrfs_super_csum_size(&root->fs_info->super_copy); | ||
158 | char *result = NULL; | ||
159 | unsigned long len; | ||
160 | unsigned long cur_len; | ||
161 | unsigned long offset = BTRFS_CSUM_SIZE; | ||
162 | char *map_token = NULL; | ||
163 | char *kaddr; | ||
164 | unsigned long map_start; | ||
165 | unsigned long map_len; | ||
166 | int err; | ||
167 | u32 crc = ~(u32)0; | ||
168 | unsigned long inline_result; | ||
169 | |||
170 | len = buf->len - offset; | ||
171 | while (len > 0) { | ||
172 | err = map_private_extent_buffer(buf, offset, 32, | ||
173 | &map_token, &kaddr, | ||
174 | &map_start, &map_len, KM_USER0); | ||
175 | if (err) | ||
176 | return 1; | ||
177 | cur_len = min(len, map_len - (offset - map_start)); | ||
178 | crc = btrfs_csum_data(root, kaddr + offset - map_start, | ||
179 | crc, cur_len); | ||
180 | len -= cur_len; | ||
181 | offset += cur_len; | ||
182 | unmap_extent_buffer(buf, map_token, KM_USER0); | ||
183 | } | ||
184 | if (csum_size > sizeof(inline_result)) { | ||
185 | result = kzalloc(csum_size * sizeof(char), GFP_NOFS); | ||
186 | if (!result) | ||
187 | return 1; | ||
188 | } else { | ||
189 | result = (char *)&inline_result; | ||
190 | } | ||
191 | |||
192 | btrfs_csum_final(crc, result); | ||
193 | |||
194 | if (verify) { | ||
195 | if (memcmp_extent_buffer(buf, result, 0, csum_size)) { | ||
196 | u32 val; | ||
197 | u32 found = 0; | ||
198 | memcpy(&found, result, csum_size); | ||
199 | |||
200 | read_extent_buffer(buf, &val, 0, csum_size); | ||
201 | printk(KERN_INFO "btrfs: %s checksum verify failed " | ||
202 | "on %llu wanted %X found %X level %d\n", | ||
203 | root->fs_info->sb->s_id, | ||
204 | buf->start, val, found, btrfs_header_level(buf)); | ||
205 | if (result != (char *)&inline_result) | ||
206 | kfree(result); | ||
207 | return 1; | ||
208 | } | ||
209 | } else { | ||
210 | write_extent_buffer(buf, result, 0, csum_size); | ||
211 | } | ||
212 | if (result != (char *)&inline_result) | ||
213 | kfree(result); | ||
214 | return 0; | ||
215 | } | ||
216 | |||
217 | /* | ||
218 | * we can't consider a given block up to date unless the transid of the | ||
219 | * block matches the transid in the parent node's pointer. This is how we | ||
220 | * detect blocks that either didn't get written at all or got written | ||
221 | * in the wrong place. | ||
222 | */ | ||
223 | static int verify_parent_transid(struct extent_io_tree *io_tree, | ||
224 | struct extent_buffer *eb, u64 parent_transid) | ||
225 | { | ||
226 | int ret; | ||
227 | |||
228 | if (!parent_transid || btrfs_header_generation(eb) == parent_transid) | ||
229 | return 0; | ||
230 | |||
231 | lock_extent(io_tree, eb->start, eb->start + eb->len - 1, GFP_NOFS); | ||
232 | if (extent_buffer_uptodate(io_tree, eb) && | ||
233 | btrfs_header_generation(eb) == parent_transid) { | ||
234 | ret = 0; | ||
235 | goto out; | ||
236 | } | ||
237 | printk("parent transid verify failed on %llu wanted %llu found %llu\n", | ||
238 | (unsigned long long)eb->start, | ||
239 | (unsigned long long)parent_transid, | ||
240 | (unsigned long long)btrfs_header_generation(eb)); | ||
241 | ret = 1; | ||
242 | clear_extent_buffer_uptodate(io_tree, eb); | ||
243 | out: | ||
244 | unlock_extent(io_tree, eb->start, eb->start + eb->len - 1, | ||
245 | GFP_NOFS); | ||
246 | return ret; | ||
247 | } | ||
248 | |||
249 | /* | ||
250 | * helper to read a given tree block, doing retries as required when | ||
251 | * the checksums don't match and we have alternate mirrors to try. | ||
252 | */ | ||
253 | static int btree_read_extent_buffer_pages(struct btrfs_root *root, | ||
254 | struct extent_buffer *eb, | ||
255 | u64 start, u64 parent_transid) | ||
256 | { | ||
257 | struct extent_io_tree *io_tree; | ||
258 | int ret; | ||
259 | int num_copies = 0; | ||
260 | int mirror_num = 0; | ||
261 | |||
262 | io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree; | ||
263 | while (1) { | ||
264 | ret = read_extent_buffer_pages(io_tree, eb, start, 1, | ||
265 | btree_get_extent, mirror_num); | ||
266 | if (!ret && | ||
267 | !verify_parent_transid(io_tree, eb, parent_transid)) | ||
268 | return ret; | ||
269 | |||
270 | num_copies = btrfs_num_copies(&root->fs_info->mapping_tree, | ||
271 | eb->start, eb->len); | ||
272 | if (num_copies == 1) | ||
273 | return ret; | ||
274 | |||
275 | mirror_num++; | ||
276 | if (mirror_num > num_copies) | ||
277 | return ret; | ||
278 | } | ||
279 | return -EIO; | ||
280 | } | ||
281 | |||
282 | /* | ||
283 | * checksum a dirty tree block before IO. This has extra checks to make sure | ||
284 | * we only fill in the checksum field in the first page of a multi-page block | ||
285 | */ | ||
286 | |||
287 | static int csum_dirty_buffer(struct btrfs_root *root, struct page *page) | ||
288 | { | ||
289 | struct extent_io_tree *tree; | ||
290 | u64 start = (u64)page->index << PAGE_CACHE_SHIFT; | ||
291 | u64 found_start; | ||
292 | int found_level; | ||
293 | unsigned long len; | ||
294 | struct extent_buffer *eb; | ||
295 | int ret; | ||
296 | |||
297 | tree = &BTRFS_I(page->mapping->host)->io_tree; | ||
298 | |||
299 | if (page->private == EXTENT_PAGE_PRIVATE) | ||
300 | goto out; | ||
301 | if (!page->private) | ||
302 | goto out; | ||
303 | len = page->private >> 2; | ||
304 | WARN_ON(len == 0); | ||
305 | |||
306 | eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS); | ||
307 | ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE, | ||
308 | btrfs_header_generation(eb)); | ||
309 | BUG_ON(ret); | ||
310 | found_start = btrfs_header_bytenr(eb); | ||
311 | if (found_start != start) { | ||
312 | WARN_ON(1); | ||
313 | goto err; | ||
314 | } | ||
315 | if (eb->first_page != page) { | ||
316 | WARN_ON(1); | ||
317 | goto err; | ||
318 | } | ||
319 | if (!PageUptodate(page)) { | ||
320 | WARN_ON(1); | ||
321 | goto err; | ||
322 | } | ||
323 | found_level = btrfs_header_level(eb); | ||
324 | |||
325 | csum_tree_block(root, eb, 0); | ||
326 | err: | ||
327 | free_extent_buffer(eb); | ||
328 | out: | ||
329 | return 0; | ||
330 | } | ||
331 | |||
332 | static int check_tree_block_fsid(struct btrfs_root *root, | ||
333 | struct extent_buffer *eb) | ||
334 | { | ||
335 | struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; | ||
336 | u8 fsid[BTRFS_UUID_SIZE]; | ||
337 | int ret = 1; | ||
338 | |||
339 | read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb), | ||
340 | BTRFS_FSID_SIZE); | ||
341 | while (fs_devices) { | ||
342 | if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) { | ||
343 | ret = 0; | ||
344 | break; | ||
345 | } | ||
346 | fs_devices = fs_devices->seed; | ||
347 | } | ||
348 | return ret; | ||
349 | } | ||
350 | |||
351 | static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end, | ||
352 | struct extent_state *state) | ||
353 | { | ||
354 | struct extent_io_tree *tree; | ||
355 | u64 found_start; | ||
356 | int found_level; | ||
357 | unsigned long len; | ||
358 | struct extent_buffer *eb; | ||
359 | struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; | ||
360 | int ret = 0; | ||
361 | |||
362 | tree = &BTRFS_I(page->mapping->host)->io_tree; | ||
363 | if (page->private == EXTENT_PAGE_PRIVATE) | ||
364 | goto out; | ||
365 | if (!page->private) | ||
366 | goto out; | ||
367 | |||
368 | len = page->private >> 2; | ||
369 | WARN_ON(len == 0); | ||
370 | |||
371 | eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS); | ||
372 | |||
373 | found_start = btrfs_header_bytenr(eb); | ||
374 | if (found_start != start) { | ||
375 | printk(KERN_INFO "btrfs bad tree block start %llu %llu\n", | ||
376 | (unsigned long long)found_start, | ||
377 | (unsigned long long)eb->start); | ||
378 | ret = -EIO; | ||
379 | goto err; | ||
380 | } | ||
381 | if (eb->first_page != page) { | ||
382 | printk(KERN_INFO "btrfs bad first page %lu %lu\n", | ||
383 | eb->first_page->index, page->index); | ||
384 | WARN_ON(1); | ||
385 | ret = -EIO; | ||
386 | goto err; | ||
387 | } | ||
388 | if (check_tree_block_fsid(root, eb)) { | ||
389 | printk(KERN_INFO "btrfs bad fsid on block %llu\n", | ||
390 | (unsigned long long)eb->start); | ||
391 | ret = -EIO; | ||
392 | goto err; | ||
393 | } | ||
394 | found_level = btrfs_header_level(eb); | ||
395 | |||
396 | ret = csum_tree_block(root, eb, 1); | ||
397 | if (ret) | ||
398 | ret = -EIO; | ||
399 | |||
400 | end = min_t(u64, eb->len, PAGE_CACHE_SIZE); | ||
401 | end = eb->start + end - 1; | ||
402 | err: | ||
403 | free_extent_buffer(eb); | ||
404 | out: | ||
405 | return ret; | ||
406 | } | ||
407 | |||
408 | static void end_workqueue_bio(struct bio *bio, int err) | ||
409 | { | ||
410 | struct end_io_wq *end_io_wq = bio->bi_private; | ||
411 | struct btrfs_fs_info *fs_info; | ||
412 | |||
413 | fs_info = end_io_wq->info; | ||
414 | end_io_wq->error = err; | ||
415 | end_io_wq->work.func = end_workqueue_fn; | ||
416 | end_io_wq->work.flags = 0; | ||
417 | |||
418 | if (bio->bi_rw & (1 << BIO_RW)) { | ||
419 | if (end_io_wq->metadata) | ||
420 | btrfs_queue_worker(&fs_info->endio_meta_write_workers, | ||
421 | &end_io_wq->work); | ||
422 | else | ||
423 | btrfs_queue_worker(&fs_info->endio_write_workers, | ||
424 | &end_io_wq->work); | ||
425 | } else { | ||
426 | if (end_io_wq->metadata) | ||
427 | btrfs_queue_worker(&fs_info->endio_meta_workers, | ||
428 | &end_io_wq->work); | ||
429 | else | ||
430 | btrfs_queue_worker(&fs_info->endio_workers, | ||
431 | &end_io_wq->work); | ||
432 | } | ||
433 | } | ||
434 | |||
435 | int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, | ||
436 | int metadata) | ||
437 | { | ||
438 | struct end_io_wq *end_io_wq; | ||
439 | end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS); | ||
440 | if (!end_io_wq) | ||
441 | return -ENOMEM; | ||
442 | |||
443 | end_io_wq->private = bio->bi_private; | ||
444 | end_io_wq->end_io = bio->bi_end_io; | ||
445 | end_io_wq->info = info; | ||
446 | end_io_wq->error = 0; | ||
447 | end_io_wq->bio = bio; | ||
448 | end_io_wq->metadata = metadata; | ||
449 | |||
450 | bio->bi_private = end_io_wq; | ||
451 | bio->bi_end_io = end_workqueue_bio; | ||
452 | return 0; | ||
453 | } | ||
454 | |||
455 | unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info) | ||
456 | { | ||
457 | unsigned long limit = min_t(unsigned long, | ||
458 | info->workers.max_workers, | ||
459 | info->fs_devices->open_devices); | ||
460 | return 256 * limit; | ||
461 | } | ||
462 | |||
463 | int btrfs_congested_async(struct btrfs_fs_info *info, int iodone) | ||
464 | { | ||
465 | return atomic_read(&info->nr_async_bios) > | ||
466 | btrfs_async_submit_limit(info); | ||
467 | } | ||
468 | |||
469 | static void run_one_async_start(struct btrfs_work *work) | ||
470 | { | ||
471 | struct btrfs_fs_info *fs_info; | ||
472 | struct async_submit_bio *async; | ||
473 | |||
474 | async = container_of(work, struct async_submit_bio, work); | ||
475 | fs_info = BTRFS_I(async->inode)->root->fs_info; | ||
476 | async->submit_bio_start(async->inode, async->rw, async->bio, | ||
477 | async->mirror_num, async->bio_flags); | ||
478 | } | ||
479 | |||
480 | static void run_one_async_done(struct btrfs_work *work) | ||
481 | { | ||
482 | struct btrfs_fs_info *fs_info; | ||
483 | struct async_submit_bio *async; | ||
484 | int limit; | ||
485 | |||
486 | async = container_of(work, struct async_submit_bio, work); | ||
487 | fs_info = BTRFS_I(async->inode)->root->fs_info; | ||
488 | |||
489 | limit = btrfs_async_submit_limit(fs_info); | ||
490 | limit = limit * 2 / 3; | ||
491 | |||
492 | atomic_dec(&fs_info->nr_async_submits); | ||
493 | |||
494 | if (atomic_read(&fs_info->nr_async_submits) < limit && | ||
495 | waitqueue_active(&fs_info->async_submit_wait)) | ||
496 | wake_up(&fs_info->async_submit_wait); | ||
497 | |||
498 | async->submit_bio_done(async->inode, async->rw, async->bio, | ||
499 | async->mirror_num, async->bio_flags); | ||
500 | } | ||
501 | |||
502 | static void run_one_async_free(struct btrfs_work *work) | ||
503 | { | ||
504 | struct async_submit_bio *async; | ||
505 | |||
506 | async = container_of(work, struct async_submit_bio, work); | ||
507 | kfree(async); | ||
508 | } | ||
509 | |||
510 | int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode, | ||
511 | int rw, struct bio *bio, int mirror_num, | ||
512 | unsigned long bio_flags, | ||
513 | extent_submit_bio_hook_t *submit_bio_start, | ||
514 | extent_submit_bio_hook_t *submit_bio_done) | ||
515 | { | ||
516 | struct async_submit_bio *async; | ||
517 | |||
518 | async = kmalloc(sizeof(*async), GFP_NOFS); | ||
519 | if (!async) | ||
520 | return -ENOMEM; | ||
521 | |||
522 | async->inode = inode; | ||
523 | async->rw = rw; | ||
524 | async->bio = bio; | ||
525 | async->mirror_num = mirror_num; | ||
526 | async->submit_bio_start = submit_bio_start; | ||
527 | async->submit_bio_done = submit_bio_done; | ||
528 | |||
529 | async->work.func = run_one_async_start; | ||
530 | async->work.ordered_func = run_one_async_done; | ||
531 | async->work.ordered_free = run_one_async_free; | ||
532 | |||
533 | async->work.flags = 0; | ||
534 | async->bio_flags = bio_flags; | ||
535 | |||
536 | atomic_inc(&fs_info->nr_async_submits); | ||
537 | btrfs_queue_worker(&fs_info->workers, &async->work); | ||
538 | #if 0 | ||
539 | int limit = btrfs_async_submit_limit(fs_info); | ||
540 | if (atomic_read(&fs_info->nr_async_submits) > limit) { | ||
541 | wait_event_timeout(fs_info->async_submit_wait, | ||
542 | (atomic_read(&fs_info->nr_async_submits) < limit), | ||
543 | HZ/10); | ||
544 | |||
545 | wait_event_timeout(fs_info->async_submit_wait, | ||
546 | (atomic_read(&fs_info->nr_async_bios) < limit), | ||
547 | HZ/10); | ||
548 | } | ||
549 | #endif | ||
550 | while (atomic_read(&fs_info->async_submit_draining) && | ||
551 | atomic_read(&fs_info->nr_async_submits)) { | ||
552 | wait_event(fs_info->async_submit_wait, | ||
553 | (atomic_read(&fs_info->nr_async_submits) == 0)); | ||
554 | } | ||
555 | |||
556 | return 0; | ||
557 | } | ||
558 | |||
559 | static int btree_csum_one_bio(struct bio *bio) | ||
560 | { | ||
561 | struct bio_vec *bvec = bio->bi_io_vec; | ||
562 | int bio_index = 0; | ||
563 | struct btrfs_root *root; | ||
564 | |||
565 | WARN_ON(bio->bi_vcnt <= 0); | ||
566 | while (bio_index < bio->bi_vcnt) { | ||
567 | root = BTRFS_I(bvec->bv_page->mapping->host)->root; | ||
568 | csum_dirty_buffer(root, bvec->bv_page); | ||
569 | bio_index++; | ||
570 | bvec++; | ||
571 | } | ||
572 | return 0; | ||
573 | } | ||
574 | |||
575 | static int __btree_submit_bio_start(struct inode *inode, int rw, | ||
576 | struct bio *bio, int mirror_num, | ||
577 | unsigned long bio_flags) | ||
578 | { | ||
579 | /* | ||
580 | * when we're called for a write, we're already in the async | ||
581 | * submission context. Just jump into btrfs_map_bio | ||
582 | */ | ||
583 | btree_csum_one_bio(bio); | ||
584 | return 0; | ||
585 | } | ||
586 | |||
587 | static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio, | ||
588 | int mirror_num, unsigned long bio_flags) | ||
589 | { | ||
590 | /* | ||
591 | * when we're called for a write, we're already in the async | ||
592 | * submission context. Just jump into btrfs_map_bio | ||
593 | */ | ||
594 | return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1); | ||
595 | } | ||
596 | |||
597 | static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, | ||
598 | int mirror_num, unsigned long bio_flags) | ||
599 | { | ||
600 | int ret; | ||
601 | |||
602 | ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info, | ||
603 | bio, 1); | ||
604 | BUG_ON(ret); | ||
605 | |||
606 | if (!(rw & (1 << BIO_RW))) { | ||
607 | /* | ||
608 | * called for a read, do the setup so that checksum validation | ||
609 | * can happen in the async kernel threads | ||
610 | */ | ||
611 | return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, | ||
612 | mirror_num, 0); | ||
613 | } | ||
614 | /* | ||
615 | * kthread helpers are used to submit writes so that checksumming | ||
616 | * can happen in parallel across all CPUs | ||
617 | */ | ||
618 | return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, | ||
619 | inode, rw, bio, mirror_num, 0, | ||
620 | __btree_submit_bio_start, | ||
621 | __btree_submit_bio_done); | ||
622 | } | ||
623 | |||
624 | static int btree_writepage(struct page *page, struct writeback_control *wbc) | ||
625 | { | ||
626 | struct extent_io_tree *tree; | ||
627 | tree = &BTRFS_I(page->mapping->host)->io_tree; | ||
628 | |||
629 | if (current->flags & PF_MEMALLOC) { | ||
630 | redirty_page_for_writepage(wbc, page); | ||
631 | unlock_page(page); | ||
632 | return 0; | ||
633 | } | ||
634 | return extent_write_full_page(tree, page, btree_get_extent, wbc); | ||
635 | } | ||
636 | |||
637 | static int btree_writepages(struct address_space *mapping, | ||
638 | struct writeback_control *wbc) | ||
639 | { | ||
640 | struct extent_io_tree *tree; | ||
641 | tree = &BTRFS_I(mapping->host)->io_tree; | ||
642 | if (wbc->sync_mode == WB_SYNC_NONE) { | ||
643 | u64 num_dirty; | ||
644 | u64 start = 0; | ||
645 | unsigned long thresh = 32 * 1024 * 1024; | ||
646 | |||
647 | if (wbc->for_kupdate) | ||
648 | return 0; | ||
649 | |||
650 | num_dirty = count_range_bits(tree, &start, (u64)-1, | ||
651 | thresh, EXTENT_DIRTY); | ||
652 | if (num_dirty < thresh) | ||
653 | return 0; | ||
654 | } | ||
655 | return extent_writepages(tree, mapping, btree_get_extent, wbc); | ||
656 | } | ||
657 | |||
658 | static int btree_readpage(struct file *file, struct page *page) | ||
659 | { | ||
660 | struct extent_io_tree *tree; | ||
661 | tree = &BTRFS_I(page->mapping->host)->io_tree; | ||
662 | return extent_read_full_page(tree, page, btree_get_extent); | ||
663 | } | ||
664 | |||
665 | static int btree_releasepage(struct page *page, gfp_t gfp_flags) | ||
666 | { | ||
667 | struct extent_io_tree *tree; | ||
668 | struct extent_map_tree *map; | ||
669 | int ret; | ||
670 | |||
671 | if (PageWriteback(page) || PageDirty(page)) | ||
672 | return 0; | ||
673 | |||
674 | tree = &BTRFS_I(page->mapping->host)->io_tree; | ||
675 | map = &BTRFS_I(page->mapping->host)->extent_tree; | ||
676 | |||
677 | ret = try_release_extent_state(map, tree, page, gfp_flags); | ||
678 | if (!ret) | ||
679 | return 0; | ||
680 | |||
681 | ret = try_release_extent_buffer(tree, page); | ||
682 | if (ret == 1) { | ||
683 | ClearPagePrivate(page); | ||
684 | set_page_private(page, 0); | ||
685 | page_cache_release(page); | ||
686 | } | ||
687 | |||
688 | return ret; | ||
689 | } | ||
690 | |||
691 | static void btree_invalidatepage(struct page *page, unsigned long offset) | ||
692 | { | ||
693 | struct extent_io_tree *tree; | ||
694 | tree = &BTRFS_I(page->mapping->host)->io_tree; | ||
695 | extent_invalidatepage(tree, page, offset); | ||
696 | btree_releasepage(page, GFP_NOFS); | ||
697 | if (PagePrivate(page)) { | ||
698 | printk(KERN_WARNING "btrfs warning page private not zero " | ||
699 | "on page %llu\n", (unsigned long long)page_offset(page)); | ||
700 | ClearPagePrivate(page); | ||
701 | set_page_private(page, 0); | ||
702 | page_cache_release(page); | ||
703 | } | ||
704 | } | ||
705 | |||
706 | #if 0 | ||
707 | static int btree_writepage(struct page *page, struct writeback_control *wbc) | ||
708 | { | ||
709 | struct buffer_head *bh; | ||
710 | struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; | ||
711 | struct buffer_head *head; | ||
712 | if (!page_has_buffers(page)) { | ||
713 | create_empty_buffers(page, root->fs_info->sb->s_blocksize, | ||
714 | (1 << BH_Dirty)|(1 << BH_Uptodate)); | ||
715 | } | ||
716 | head = page_buffers(page); | ||
717 | bh = head; | ||
718 | do { | ||
719 | if (buffer_dirty(bh)) | ||
720 | csum_tree_block(root, bh, 0); | ||
721 | bh = bh->b_this_page; | ||
722 | } while (bh != head); | ||
723 | return block_write_full_page(page, btree_get_block, wbc); | ||
724 | } | ||
725 | #endif | ||
726 | |||
727 | static struct address_space_operations btree_aops = { | ||
728 | .readpage = btree_readpage, | ||
729 | .writepage = btree_writepage, | ||
730 | .writepages = btree_writepages, | ||
731 | .releasepage = btree_releasepage, | ||
732 | .invalidatepage = btree_invalidatepage, | ||
733 | .sync_page = block_sync_page, | ||
734 | }; | ||
735 | |||
736 | int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize, | ||
737 | u64 parent_transid) | ||
738 | { | ||
739 | struct extent_buffer *buf = NULL; | ||
740 | struct inode *btree_inode = root->fs_info->btree_inode; | ||
741 | int ret = 0; | ||
742 | |||
743 | buf = btrfs_find_create_tree_block(root, bytenr, blocksize); | ||
744 | if (!buf) | ||
745 | return 0; | ||
746 | read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, | ||
747 | buf, 0, 0, btree_get_extent, 0); | ||
748 | free_extent_buffer(buf); | ||
749 | return ret; | ||
750 | } | ||
751 | |||
752 | struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root, | ||
753 | u64 bytenr, u32 blocksize) | ||
754 | { | ||
755 | struct inode *btree_inode = root->fs_info->btree_inode; | ||
756 | struct extent_buffer *eb; | ||
757 | eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree, | ||
758 | bytenr, blocksize, GFP_NOFS); | ||
759 | return eb; | ||
760 | } | ||
761 | |||
762 | struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root, | ||
763 | u64 bytenr, u32 blocksize) | ||
764 | { | ||
765 | struct inode *btree_inode = root->fs_info->btree_inode; | ||
766 | struct extent_buffer *eb; | ||
767 | |||
768 | eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree, | ||
769 | bytenr, blocksize, NULL, GFP_NOFS); | ||
770 | return eb; | ||
771 | } | ||
772 | |||
773 | |||
774 | int btrfs_write_tree_block(struct extent_buffer *buf) | ||
775 | { | ||
776 | return btrfs_fdatawrite_range(buf->first_page->mapping, buf->start, | ||
777 | buf->start + buf->len - 1, WB_SYNC_ALL); | ||
778 | } | ||
779 | |||
780 | int btrfs_wait_tree_block_writeback(struct extent_buffer *buf) | ||
781 | { | ||
782 | return btrfs_wait_on_page_writeback_range(buf->first_page->mapping, | ||
783 | buf->start, buf->start + buf->len - 1); | ||
784 | } | ||
785 | |||
786 | struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr, | ||
787 | u32 blocksize, u64 parent_transid) | ||
788 | { | ||
789 | struct extent_buffer *buf = NULL; | ||
790 | struct inode *btree_inode = root->fs_info->btree_inode; | ||
791 | struct extent_io_tree *io_tree; | ||
792 | int ret; | ||
793 | |||
794 | io_tree = &BTRFS_I(btree_inode)->io_tree; | ||
795 | |||
796 | buf = btrfs_find_create_tree_block(root, bytenr, blocksize); | ||
797 | if (!buf) | ||
798 | return NULL; | ||
799 | |||
800 | ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid); | ||
801 | |||
802 | if (ret == 0) | ||
803 | buf->flags |= EXTENT_UPTODATE; | ||
804 | else | ||
805 | WARN_ON(1); | ||
806 | return buf; | ||
807 | |||
808 | } | ||
809 | |||
810 | int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root, | ||
811 | struct extent_buffer *buf) | ||
812 | { | ||
813 | struct inode *btree_inode = root->fs_info->btree_inode; | ||
814 | if (btrfs_header_generation(buf) == | ||
815 | root->fs_info->running_transaction->transid) { | ||
816 | WARN_ON(!btrfs_tree_locked(buf)); | ||
817 | clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, | ||
818 | buf); | ||
819 | } | ||
820 | return 0; | ||
821 | } | ||
822 | |||
823 | static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize, | ||
824 | u32 stripesize, struct btrfs_root *root, | ||
825 | struct btrfs_fs_info *fs_info, | ||
826 | u64 objectid) | ||
827 | { | ||
828 | root->node = NULL; | ||
829 | root->commit_root = NULL; | ||
830 | root->ref_tree = NULL; | ||
831 | root->sectorsize = sectorsize; | ||
832 | root->nodesize = nodesize; | ||
833 | root->leafsize = leafsize; | ||
834 | root->stripesize = stripesize; | ||
835 | root->ref_cows = 0; | ||
836 | root->track_dirty = 0; | ||
837 | |||
838 | root->fs_info = fs_info; | ||
839 | root->objectid = objectid; | ||
840 | root->last_trans = 0; | ||
841 | root->highest_inode = 0; | ||
842 | root->last_inode_alloc = 0; | ||
843 | root->name = NULL; | ||
844 | root->in_sysfs = 0; | ||
845 | |||
846 | INIT_LIST_HEAD(&root->dirty_list); | ||
847 | INIT_LIST_HEAD(&root->orphan_list); | ||
848 | INIT_LIST_HEAD(&root->dead_list); | ||
849 | spin_lock_init(&root->node_lock); | ||
850 | spin_lock_init(&root->list_lock); | ||
851 | mutex_init(&root->objectid_mutex); | ||
852 | mutex_init(&root->log_mutex); | ||
853 | extent_io_tree_init(&root->dirty_log_pages, | ||
854 | fs_info->btree_inode->i_mapping, GFP_NOFS); | ||
855 | |||
856 | btrfs_leaf_ref_tree_init(&root->ref_tree_struct); | ||
857 | root->ref_tree = &root->ref_tree_struct; | ||
858 | |||
859 | memset(&root->root_key, 0, sizeof(root->root_key)); | ||
860 | memset(&root->root_item, 0, sizeof(root->root_item)); | ||
861 | memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); | ||
862 | memset(&root->root_kobj, 0, sizeof(root->root_kobj)); | ||
863 | root->defrag_trans_start = fs_info->generation; | ||
864 | init_completion(&root->kobj_unregister); | ||
865 | root->defrag_running = 0; | ||
866 | root->defrag_level = 0; | ||
867 | root->root_key.objectid = objectid; | ||
868 | root->anon_super.s_root = NULL; | ||
869 | root->anon_super.s_dev = 0; | ||
870 | INIT_LIST_HEAD(&root->anon_super.s_list); | ||
871 | INIT_LIST_HEAD(&root->anon_super.s_instances); | ||
872 | init_rwsem(&root->anon_super.s_umount); | ||
873 | |||
874 | return 0; | ||
875 | } | ||
876 | |||
877 | static int find_and_setup_root(struct btrfs_root *tree_root, | ||
878 | struct btrfs_fs_info *fs_info, | ||
879 | u64 objectid, | ||
880 | struct btrfs_root *root) | ||
881 | { | ||
882 | int ret; | ||
883 | u32 blocksize; | ||
884 | u64 generation; | ||
885 | |||
886 | __setup_root(tree_root->nodesize, tree_root->leafsize, | ||
887 | tree_root->sectorsize, tree_root->stripesize, | ||
888 | root, fs_info, objectid); | ||
889 | ret = btrfs_find_last_root(tree_root, objectid, | ||
890 | &root->root_item, &root->root_key); | ||
891 | BUG_ON(ret); | ||
892 | |||
893 | generation = btrfs_root_generation(&root->root_item); | ||
894 | blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item)); | ||
895 | root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), | ||
896 | blocksize, generation); | ||
897 | BUG_ON(!root->node); | ||
898 | return 0; | ||
899 | } | ||
900 | |||
901 | int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans, | ||
902 | struct btrfs_fs_info *fs_info) | ||
903 | { | ||
904 | struct extent_buffer *eb; | ||
905 | struct btrfs_root *log_root_tree = fs_info->log_root_tree; | ||
906 | u64 start = 0; | ||
907 | u64 end = 0; | ||
908 | int ret; | ||
909 | |||
910 | if (!log_root_tree) | ||
911 | return 0; | ||
912 | |||
913 | while (1) { | ||
914 | ret = find_first_extent_bit(&log_root_tree->dirty_log_pages, | ||
915 | 0, &start, &end, EXTENT_DIRTY); | ||
916 | if (ret) | ||
917 | break; | ||
918 | |||
919 | clear_extent_dirty(&log_root_tree->dirty_log_pages, | ||
920 | start, end, GFP_NOFS); | ||
921 | } | ||
922 | eb = fs_info->log_root_tree->node; | ||
923 | |||
924 | WARN_ON(btrfs_header_level(eb) != 0); | ||
925 | WARN_ON(btrfs_header_nritems(eb) != 0); | ||
926 | |||
927 | ret = btrfs_free_reserved_extent(fs_info->tree_root, | ||
928 | eb->start, eb->len); | ||
929 | BUG_ON(ret); | ||
930 | |||
931 | free_extent_buffer(eb); | ||
932 | kfree(fs_info->log_root_tree); | ||
933 | fs_info->log_root_tree = NULL; | ||
934 | return 0; | ||
935 | } | ||
936 | |||
937 | int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, | ||
938 | struct btrfs_fs_info *fs_info) | ||
939 | { | ||
940 | struct btrfs_root *root; | ||
941 | struct btrfs_root *tree_root = fs_info->tree_root; | ||
942 | |||
943 | root = kzalloc(sizeof(*root), GFP_NOFS); | ||
944 | if (!root) | ||
945 | return -ENOMEM; | ||
946 | |||
947 | __setup_root(tree_root->nodesize, tree_root->leafsize, | ||
948 | tree_root->sectorsize, tree_root->stripesize, | ||
949 | root, fs_info, BTRFS_TREE_LOG_OBJECTID); | ||
950 | |||
951 | root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; | ||
952 | root->root_key.type = BTRFS_ROOT_ITEM_KEY; | ||
953 | root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; | ||
954 | root->ref_cows = 0; | ||
955 | |||
956 | root->node = btrfs_alloc_free_block(trans, root, root->leafsize, | ||
957 | 0, BTRFS_TREE_LOG_OBJECTID, | ||
958 | trans->transid, 0, 0, 0); | ||
959 | |||
960 | btrfs_set_header_nritems(root->node, 0); | ||
961 | btrfs_set_header_level(root->node, 0); | ||
962 | btrfs_set_header_bytenr(root->node, root->node->start); | ||
963 | btrfs_set_header_generation(root->node, trans->transid); | ||
964 | btrfs_set_header_owner(root->node, BTRFS_TREE_LOG_OBJECTID); | ||
965 | |||
966 | write_extent_buffer(root->node, root->fs_info->fsid, | ||
967 | (unsigned long)btrfs_header_fsid(root->node), | ||
968 | BTRFS_FSID_SIZE); | ||
969 | btrfs_mark_buffer_dirty(root->node); | ||
970 | btrfs_tree_unlock(root->node); | ||
971 | fs_info->log_root_tree = root; | ||
972 | return 0; | ||
973 | } | ||
974 | |||
975 | struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root, | ||
976 | struct btrfs_key *location) | ||
977 | { | ||
978 | struct btrfs_root *root; | ||
979 | struct btrfs_fs_info *fs_info = tree_root->fs_info; | ||
980 | struct btrfs_path *path; | ||
981 | struct extent_buffer *l; | ||
982 | u64 highest_inode; | ||
983 | u64 generation; | ||
984 | u32 blocksize; | ||
985 | int ret = 0; | ||
986 | |||
987 | root = kzalloc(sizeof(*root), GFP_NOFS); | ||
988 | if (!root) | ||
989 | return ERR_PTR(-ENOMEM); | ||
990 | if (location->offset == (u64)-1) { | ||
991 | ret = find_and_setup_root(tree_root, fs_info, | ||
992 | location->objectid, root); | ||
993 | if (ret) { | ||
994 | kfree(root); | ||
995 | return ERR_PTR(ret); | ||
996 | } | ||
997 | goto insert; | ||
998 | } | ||
999 | |||
1000 | __setup_root(tree_root->nodesize, tree_root->leafsize, | ||
1001 | tree_root->sectorsize, tree_root->stripesize, | ||
1002 | root, fs_info, location->objectid); | ||
1003 | |||
1004 | path = btrfs_alloc_path(); | ||
1005 | BUG_ON(!path); | ||
1006 | ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0); | ||
1007 | if (ret != 0) { | ||
1008 | if (ret > 0) | ||
1009 | ret = -ENOENT; | ||
1010 | goto out; | ||
1011 | } | ||
1012 | l = path->nodes[0]; | ||
1013 | read_extent_buffer(l, &root->root_item, | ||
1014 | btrfs_item_ptr_offset(l, path->slots[0]), | ||
1015 | sizeof(root->root_item)); | ||
1016 | memcpy(&root->root_key, location, sizeof(*location)); | ||
1017 | ret = 0; | ||
1018 | out: | ||
1019 | btrfs_release_path(root, path); | ||
1020 | btrfs_free_path(path); | ||
1021 | if (ret) { | ||
1022 | kfree(root); | ||
1023 | return ERR_PTR(ret); | ||
1024 | } | ||
1025 | generation = btrfs_root_generation(&root->root_item); | ||
1026 | blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item)); | ||
1027 | root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), | ||
1028 | blocksize, generation); | ||
1029 | BUG_ON(!root->node); | ||
1030 | insert: | ||
1031 | if (location->objectid != BTRFS_TREE_LOG_OBJECTID) { | ||
1032 | root->ref_cows = 1; | ||
1033 | ret = btrfs_find_highest_inode(root, &highest_inode); | ||
1034 | if (ret == 0) { | ||
1035 | root->highest_inode = highest_inode; | ||
1036 | root->last_inode_alloc = highest_inode; | ||
1037 | } | ||
1038 | } | ||
1039 | return root; | ||
1040 | } | ||
1041 | |||
1042 | struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, | ||
1043 | u64 root_objectid) | ||
1044 | { | ||
1045 | struct btrfs_root *root; | ||
1046 | |||
1047 | if (root_objectid == BTRFS_ROOT_TREE_OBJECTID) | ||
1048 | return fs_info->tree_root; | ||
1049 | if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID) | ||
1050 | return fs_info->extent_root; | ||
1051 | |||
1052 | root = radix_tree_lookup(&fs_info->fs_roots_radix, | ||
1053 | (unsigned long)root_objectid); | ||
1054 | return root; | ||
1055 | } | ||
1056 | |||
1057 | struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info, | ||
1058 | struct btrfs_key *location) | ||
1059 | { | ||
1060 | struct btrfs_root *root; | ||
1061 | int ret; | ||
1062 | |||
1063 | if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) | ||
1064 | return fs_info->tree_root; | ||
1065 | if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) | ||
1066 | return fs_info->extent_root; | ||
1067 | if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) | ||
1068 | return fs_info->chunk_root; | ||
1069 | if (location->objectid == BTRFS_DEV_TREE_OBJECTID) | ||
1070 | return fs_info->dev_root; | ||
1071 | if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) | ||
1072 | return fs_info->csum_root; | ||
1073 | |||
1074 | root = radix_tree_lookup(&fs_info->fs_roots_radix, | ||
1075 | (unsigned long)location->objectid); | ||
1076 | if (root) | ||
1077 | return root; | ||
1078 | |||
1079 | root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location); | ||
1080 | if (IS_ERR(root)) | ||
1081 | return root; | ||
1082 | |||
1083 | set_anon_super(&root->anon_super, NULL); | ||
1084 | |||
1085 | ret = radix_tree_insert(&fs_info->fs_roots_radix, | ||
1086 | (unsigned long)root->root_key.objectid, | ||
1087 | root); | ||
1088 | if (ret) { | ||
1089 | free_extent_buffer(root->node); | ||
1090 | kfree(root); | ||
1091 | return ERR_PTR(ret); | ||
1092 | } | ||
1093 | if (!(fs_info->sb->s_flags & MS_RDONLY)) { | ||
1094 | ret = btrfs_find_dead_roots(fs_info->tree_root, | ||
1095 | root->root_key.objectid, root); | ||
1096 | BUG_ON(ret); | ||
1097 | btrfs_orphan_cleanup(root); | ||
1098 | } | ||
1099 | return root; | ||
1100 | } | ||
1101 | |||
1102 | struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info, | ||
1103 | struct btrfs_key *location, | ||
1104 | const char *name, int namelen) | ||
1105 | { | ||
1106 | struct btrfs_root *root; | ||
1107 | int ret; | ||
1108 | |||
1109 | root = btrfs_read_fs_root_no_name(fs_info, location); | ||
1110 | if (!root) | ||
1111 | return NULL; | ||
1112 | |||
1113 | if (root->in_sysfs) | ||
1114 | return root; | ||
1115 | |||
1116 | ret = btrfs_set_root_name(root, name, namelen); | ||
1117 | if (ret) { | ||
1118 | free_extent_buffer(root->node); | ||
1119 | kfree(root); | ||
1120 | return ERR_PTR(ret); | ||
1121 | } | ||
1122 | #if 0 | ||
1123 | ret = btrfs_sysfs_add_root(root); | ||
1124 | if (ret) { | ||
1125 | free_extent_buffer(root->node); | ||
1126 | kfree(root->name); | ||
1127 | kfree(root); | ||
1128 | return ERR_PTR(ret); | ||
1129 | } | ||
1130 | #endif | ||
1131 | root->in_sysfs = 1; | ||
1132 | return root; | ||
1133 | } | ||
1134 | |||
1135 | static int btrfs_congested_fn(void *congested_data, int bdi_bits) | ||
1136 | { | ||
1137 | struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; | ||
1138 | int ret = 0; | ||
1139 | struct list_head *cur; | ||
1140 | struct btrfs_device *device; | ||
1141 | struct backing_dev_info *bdi; | ||
1142 | #if 0 | ||
1143 | if ((bdi_bits & (1 << BDI_write_congested)) && | ||
1144 | btrfs_congested_async(info, 0)) | ||
1145 | return 1; | ||
1146 | #endif | ||
1147 | list_for_each(cur, &info->fs_devices->devices) { | ||
1148 | device = list_entry(cur, struct btrfs_device, dev_list); | ||
1149 | if (!device->bdev) | ||
1150 | continue; | ||
1151 | bdi = blk_get_backing_dev_info(device->bdev); | ||
1152 | if (bdi && bdi_congested(bdi, bdi_bits)) { | ||
1153 | ret = 1; | ||
1154 | break; | ||
1155 | } | ||
1156 | } | ||
1157 | return ret; | ||
1158 | } | ||
1159 | |||
1160 | /* | ||
1161 | * this unplugs every device on the box, and it is only used when page | ||
1162 | * is null | ||
1163 | */ | ||
1164 | static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page) | ||
1165 | { | ||
1166 | struct list_head *cur; | ||
1167 | struct btrfs_device *device; | ||
1168 | struct btrfs_fs_info *info; | ||
1169 | |||
1170 | info = (struct btrfs_fs_info *)bdi->unplug_io_data; | ||
1171 | list_for_each(cur, &info->fs_devices->devices) { | ||
1172 | device = list_entry(cur, struct btrfs_device, dev_list); | ||
1173 | if (!device->bdev) | ||
1174 | continue; | ||
1175 | |||
1176 | bdi = blk_get_backing_dev_info(device->bdev); | ||
1177 | if (bdi->unplug_io_fn) | ||
1178 | bdi->unplug_io_fn(bdi, page); | ||
1179 | } | ||
1180 | } | ||
1181 | |||
1182 | static void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page) | ||
1183 | { | ||
1184 | struct inode *inode; | ||
1185 | struct extent_map_tree *em_tree; | ||
1186 | struct extent_map *em; | ||
1187 | struct address_space *mapping; | ||
1188 | u64 offset; | ||
1189 | |||
1190 | /* the generic O_DIRECT read code does this */ | ||
1191 | if (1 || !page) { | ||
1192 | __unplug_io_fn(bdi, page); | ||
1193 | return; | ||
1194 | } | ||
1195 | |||
1196 | /* | ||
1197 | * page->mapping may change at any time. Get a consistent copy | ||
1198 | * and use that for everything below | ||
1199 | */ | ||
1200 | smp_mb(); | ||
1201 | mapping = page->mapping; | ||
1202 | if (!mapping) | ||
1203 | return; | ||
1204 | |||
1205 | inode = mapping->host; | ||
1206 | |||
1207 | /* | ||
1208 | * don't do the expensive searching for a small number of | ||
1209 | * devices | ||
1210 | */ | ||
1211 | if (BTRFS_I(inode)->root->fs_info->fs_devices->open_devices <= 2) { | ||
1212 | __unplug_io_fn(bdi, page); | ||
1213 | return; | ||
1214 | } | ||
1215 | |||
1216 | offset = page_offset(page); | ||
1217 | |||
1218 | em_tree = &BTRFS_I(inode)->extent_tree; | ||
1219 | spin_lock(&em_tree->lock); | ||
1220 | em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE); | ||
1221 | spin_unlock(&em_tree->lock); | ||
1222 | if (!em) { | ||
1223 | __unplug_io_fn(bdi, page); | ||
1224 | return; | ||
1225 | } | ||
1226 | |||
1227 | if (em->block_start >= EXTENT_MAP_LAST_BYTE) { | ||
1228 | free_extent_map(em); | ||
1229 | __unplug_io_fn(bdi, page); | ||
1230 | return; | ||
1231 | } | ||
1232 | offset = offset - em->start; | ||
1233 | btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree, | ||
1234 | em->block_start + offset, page); | ||
1235 | free_extent_map(em); | ||
1236 | } | ||
1237 | |||
1238 | static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi) | ||
1239 | { | ||
1240 | bdi_init(bdi); | ||
1241 | bdi->ra_pages = default_backing_dev_info.ra_pages; | ||
1242 | bdi->state = 0; | ||
1243 | bdi->capabilities = default_backing_dev_info.capabilities; | ||
1244 | bdi->unplug_io_fn = btrfs_unplug_io_fn; | ||
1245 | bdi->unplug_io_data = info; | ||
1246 | bdi->congested_fn = btrfs_congested_fn; | ||
1247 | bdi->congested_data = info; | ||
1248 | return 0; | ||
1249 | } | ||
1250 | |||
1251 | static int bio_ready_for_csum(struct bio *bio) | ||
1252 | { | ||
1253 | u64 length = 0; | ||
1254 | u64 buf_len = 0; | ||
1255 | u64 start = 0; | ||
1256 | struct page *page; | ||
1257 | struct extent_io_tree *io_tree = NULL; | ||
1258 | struct btrfs_fs_info *info = NULL; | ||
1259 | struct bio_vec *bvec; | ||
1260 | int i; | ||
1261 | int ret; | ||
1262 | |||
1263 | bio_for_each_segment(bvec, bio, i) { | ||
1264 | page = bvec->bv_page; | ||
1265 | if (page->private == EXTENT_PAGE_PRIVATE) { | ||
1266 | length += bvec->bv_len; | ||
1267 | continue; | ||
1268 | } | ||
1269 | if (!page->private) { | ||
1270 | length += bvec->bv_len; | ||
1271 | continue; | ||
1272 | } | ||
1273 | length = bvec->bv_len; | ||
1274 | buf_len = page->private >> 2; | ||
1275 | start = page_offset(page) + bvec->bv_offset; | ||
1276 | io_tree = &BTRFS_I(page->mapping->host)->io_tree; | ||
1277 | info = BTRFS_I(page->mapping->host)->root->fs_info; | ||
1278 | } | ||
1279 | /* are we fully contained in this bio? */ | ||
1280 | if (buf_len <= length) | ||
1281 | return 1; | ||
1282 | |||
1283 | ret = extent_range_uptodate(io_tree, start + length, | ||
1284 | start + buf_len - 1); | ||
1285 | if (ret == 1) | ||
1286 | return ret; | ||
1287 | return ret; | ||
1288 | } | ||
1289 | |||
1290 | /* | ||
1291 | * called by the kthread helper functions to finally call the bio end_io | ||
1292 | * functions. This is where read checksum verification actually happens | ||
1293 | */ | ||
1294 | static void end_workqueue_fn(struct btrfs_work *work) | ||
1295 | { | ||
1296 | struct bio *bio; | ||
1297 | struct end_io_wq *end_io_wq; | ||
1298 | struct btrfs_fs_info *fs_info; | ||
1299 | int error; | ||
1300 | |||
1301 | end_io_wq = container_of(work, struct end_io_wq, work); | ||
1302 | bio = end_io_wq->bio; | ||
1303 | fs_info = end_io_wq->info; | ||
1304 | |||
1305 | /* metadata bio reads are special because the whole tree block must | ||
1306 | * be checksummed at once. This makes sure the entire block is in | ||
1307 | * ram and up to date before trying to verify things. For | ||
1308 | * blocksize <= pagesize, it is basically a noop | ||
1309 | */ | ||
1310 | if (!(bio->bi_rw & (1 << BIO_RW)) && end_io_wq->metadata && | ||
1311 | !bio_ready_for_csum(bio)) { | ||
1312 | btrfs_queue_worker(&fs_info->endio_meta_workers, | ||
1313 | &end_io_wq->work); | ||
1314 | return; | ||
1315 | } | ||
1316 | error = end_io_wq->error; | ||
1317 | bio->bi_private = end_io_wq->private; | ||
1318 | bio->bi_end_io = end_io_wq->end_io; | ||
1319 | kfree(end_io_wq); | ||
1320 | bio_endio(bio, error); | ||
1321 | } | ||
1322 | |||
1323 | static int cleaner_kthread(void *arg) | ||
1324 | { | ||
1325 | struct btrfs_root *root = arg; | ||
1326 | |||
1327 | do { | ||
1328 | smp_mb(); | ||
1329 | if (root->fs_info->closing) | ||
1330 | break; | ||
1331 | |||
1332 | vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE); | ||
1333 | mutex_lock(&root->fs_info->cleaner_mutex); | ||
1334 | btrfs_clean_old_snapshots(root); | ||
1335 | mutex_unlock(&root->fs_info->cleaner_mutex); | ||
1336 | |||
1337 | if (freezing(current)) { | ||
1338 | refrigerator(); | ||
1339 | } else { | ||
1340 | smp_mb(); | ||
1341 | if (root->fs_info->closing) | ||
1342 | break; | ||
1343 | set_current_state(TASK_INTERRUPTIBLE); | ||
1344 | schedule(); | ||
1345 | __set_current_state(TASK_RUNNING); | ||
1346 | } | ||
1347 | } while (!kthread_should_stop()); | ||
1348 | return 0; | ||
1349 | } | ||
1350 | |||
1351 | static int transaction_kthread(void *arg) | ||
1352 | { | ||
1353 | struct btrfs_root *root = arg; | ||
1354 | struct btrfs_trans_handle *trans; | ||
1355 | struct btrfs_transaction *cur; | ||
1356 | unsigned long now; | ||
1357 | unsigned long delay; | ||
1358 | int ret; | ||
1359 | |||
1360 | do { | ||
1361 | smp_mb(); | ||
1362 | if (root->fs_info->closing) | ||
1363 | break; | ||
1364 | |||
1365 | delay = HZ * 30; | ||
1366 | vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE); | ||
1367 | mutex_lock(&root->fs_info->transaction_kthread_mutex); | ||
1368 | |||
1369 | if (root->fs_info->total_ref_cache_size > 20 * 1024 * 1024) { | ||
1370 | printk(KERN_INFO "btrfs: total reference cache " | ||
1371 | "size %llu\n", | ||
1372 | root->fs_info->total_ref_cache_size); | ||
1373 | } | ||
1374 | |||
1375 | mutex_lock(&root->fs_info->trans_mutex); | ||
1376 | cur = root->fs_info->running_transaction; | ||
1377 | if (!cur) { | ||
1378 | mutex_unlock(&root->fs_info->trans_mutex); | ||
1379 | goto sleep; | ||
1380 | } | ||
1381 | |||
1382 | now = get_seconds(); | ||
1383 | if (now < cur->start_time || now - cur->start_time < 30) { | ||
1384 | mutex_unlock(&root->fs_info->trans_mutex); | ||
1385 | delay = HZ * 5; | ||
1386 | goto sleep; | ||
1387 | } | ||
1388 | mutex_unlock(&root->fs_info->trans_mutex); | ||
1389 | trans = btrfs_start_transaction(root, 1); | ||
1390 | ret = btrfs_commit_transaction(trans, root); | ||
1391 | sleep: | ||
1392 | wake_up_process(root->fs_info->cleaner_kthread); | ||
1393 | mutex_unlock(&root->fs_info->transaction_kthread_mutex); | ||
1394 | |||
1395 | if (freezing(current)) { | ||
1396 | refrigerator(); | ||
1397 | } else { | ||
1398 | if (root->fs_info->closing) | ||
1399 | break; | ||
1400 | set_current_state(TASK_INTERRUPTIBLE); | ||
1401 | schedule_timeout(delay); | ||
1402 | __set_current_state(TASK_RUNNING); | ||
1403 | } | ||
1404 | } while (!kthread_should_stop()); | ||
1405 | return 0; | ||
1406 | } | ||
1407 | |||
1408 | struct btrfs_root *open_ctree(struct super_block *sb, | ||
1409 | struct btrfs_fs_devices *fs_devices, | ||
1410 | char *options) | ||
1411 | { | ||
1412 | u32 sectorsize; | ||
1413 | u32 nodesize; | ||
1414 | u32 leafsize; | ||
1415 | u32 blocksize; | ||
1416 | u32 stripesize; | ||
1417 | u64 generation; | ||
1418 | u64 features; | ||
1419 | struct btrfs_key location; | ||
1420 | struct buffer_head *bh; | ||
1421 | struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root), | ||
1422 | GFP_NOFS); | ||
1423 | struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root), | ||
1424 | GFP_NOFS); | ||
1425 | struct btrfs_root *tree_root = kzalloc(sizeof(struct btrfs_root), | ||
1426 | GFP_NOFS); | ||
1427 | struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info), | ||
1428 | GFP_NOFS); | ||
1429 | struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root), | ||
1430 | GFP_NOFS); | ||
1431 | struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root), | ||
1432 | GFP_NOFS); | ||
1433 | struct btrfs_root *log_tree_root; | ||
1434 | |||
1435 | int ret; | ||
1436 | int err = -EINVAL; | ||
1437 | |||
1438 | struct btrfs_super_block *disk_super; | ||
1439 | |||
1440 | if (!extent_root || !tree_root || !fs_info || | ||
1441 | !chunk_root || !dev_root || !csum_root) { | ||
1442 | err = -ENOMEM; | ||
1443 | goto fail; | ||
1444 | } | ||
1445 | INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_NOFS); | ||
1446 | INIT_LIST_HEAD(&fs_info->trans_list); | ||
1447 | INIT_LIST_HEAD(&fs_info->dead_roots); | ||
1448 | INIT_LIST_HEAD(&fs_info->hashers); | ||
1449 | INIT_LIST_HEAD(&fs_info->delalloc_inodes); | ||
1450 | spin_lock_init(&fs_info->hash_lock); | ||
1451 | spin_lock_init(&fs_info->delalloc_lock); | ||
1452 | spin_lock_init(&fs_info->new_trans_lock); | ||
1453 | spin_lock_init(&fs_info->ref_cache_lock); | ||
1454 | |||
1455 | init_completion(&fs_info->kobj_unregister); | ||
1456 | fs_info->tree_root = tree_root; | ||
1457 | fs_info->extent_root = extent_root; | ||
1458 | fs_info->csum_root = csum_root; | ||
1459 | fs_info->chunk_root = chunk_root; | ||
1460 | fs_info->dev_root = dev_root; | ||
1461 | fs_info->fs_devices = fs_devices; | ||
1462 | INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); | ||
1463 | INIT_LIST_HEAD(&fs_info->space_info); | ||
1464 | btrfs_mapping_init(&fs_info->mapping_tree); | ||
1465 | atomic_set(&fs_info->nr_async_submits, 0); | ||
1466 | atomic_set(&fs_info->async_delalloc_pages, 0); | ||
1467 | atomic_set(&fs_info->async_submit_draining, 0); | ||
1468 | atomic_set(&fs_info->nr_async_bios, 0); | ||
1469 | atomic_set(&fs_info->throttles, 0); | ||
1470 | atomic_set(&fs_info->throttle_gen, 0); | ||
1471 | fs_info->sb = sb; | ||
1472 | fs_info->max_extent = (u64)-1; | ||
1473 | fs_info->max_inline = 8192 * 1024; | ||
1474 | setup_bdi(fs_info, &fs_info->bdi); | ||
1475 | fs_info->btree_inode = new_inode(sb); | ||
1476 | fs_info->btree_inode->i_ino = 1; | ||
1477 | fs_info->btree_inode->i_nlink = 1; | ||
1478 | |||
1479 | fs_info->thread_pool_size = min_t(unsigned long, | ||
1480 | num_online_cpus() + 2, 8); | ||
1481 | |||
1482 | INIT_LIST_HEAD(&fs_info->ordered_extents); | ||
1483 | spin_lock_init(&fs_info->ordered_extent_lock); | ||
1484 | |||
1485 | sb->s_blocksize = 4096; | ||
1486 | sb->s_blocksize_bits = blksize_bits(4096); | ||
1487 | |||
1488 | /* | ||
1489 | * we set the i_size on the btree inode to the max possible int. | ||
1490 | * the real end of the address space is determined by all of | ||
1491 | * the devices in the system | ||
1492 | */ | ||
1493 | fs_info->btree_inode->i_size = OFFSET_MAX; | ||
1494 | fs_info->btree_inode->i_mapping->a_ops = &btree_aops; | ||
1495 | fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi; | ||
1496 | |||
1497 | extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree, | ||
1498 | fs_info->btree_inode->i_mapping, | ||
1499 | GFP_NOFS); | ||
1500 | extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree, | ||
1501 | GFP_NOFS); | ||
1502 | |||
1503 | BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops; | ||
1504 | |||
1505 | spin_lock_init(&fs_info->block_group_cache_lock); | ||
1506 | fs_info->block_group_cache_tree.rb_node = NULL; | ||
1507 | |||
1508 | extent_io_tree_init(&fs_info->pinned_extents, | ||
1509 | fs_info->btree_inode->i_mapping, GFP_NOFS); | ||
1510 | extent_io_tree_init(&fs_info->pending_del, | ||
1511 | fs_info->btree_inode->i_mapping, GFP_NOFS); | ||
1512 | extent_io_tree_init(&fs_info->extent_ins, | ||
1513 | fs_info->btree_inode->i_mapping, GFP_NOFS); | ||
1514 | fs_info->do_barriers = 1; | ||
1515 | |||
1516 | INIT_LIST_HEAD(&fs_info->dead_reloc_roots); | ||
1517 | btrfs_leaf_ref_tree_init(&fs_info->reloc_ref_tree); | ||
1518 | btrfs_leaf_ref_tree_init(&fs_info->shared_ref_tree); | ||
1519 | |||
1520 | BTRFS_I(fs_info->btree_inode)->root = tree_root; | ||
1521 | memset(&BTRFS_I(fs_info->btree_inode)->location, 0, | ||
1522 | sizeof(struct btrfs_key)); | ||
1523 | insert_inode_hash(fs_info->btree_inode); | ||
1524 | |||
1525 | mutex_init(&fs_info->trans_mutex); | ||
1526 | mutex_init(&fs_info->tree_log_mutex); | ||
1527 | mutex_init(&fs_info->drop_mutex); | ||
1528 | mutex_init(&fs_info->extent_ins_mutex); | ||
1529 | mutex_init(&fs_info->pinned_mutex); | ||
1530 | mutex_init(&fs_info->chunk_mutex); | ||
1531 | mutex_init(&fs_info->transaction_kthread_mutex); | ||
1532 | mutex_init(&fs_info->cleaner_mutex); | ||
1533 | mutex_init(&fs_info->volume_mutex); | ||
1534 | mutex_init(&fs_info->tree_reloc_mutex); | ||
1535 | init_waitqueue_head(&fs_info->transaction_throttle); | ||
1536 | init_waitqueue_head(&fs_info->transaction_wait); | ||
1537 | init_waitqueue_head(&fs_info->async_submit_wait); | ||
1538 | init_waitqueue_head(&fs_info->tree_log_wait); | ||
1539 | atomic_set(&fs_info->tree_log_commit, 0); | ||
1540 | atomic_set(&fs_info->tree_log_writers, 0); | ||
1541 | fs_info->tree_log_transid = 0; | ||
1542 | |||
1543 | __setup_root(4096, 4096, 4096, 4096, tree_root, | ||
1544 | fs_info, BTRFS_ROOT_TREE_OBJECTID); | ||
1545 | |||
1546 | |||
1547 | bh = btrfs_read_dev_super(fs_devices->latest_bdev); | ||
1548 | if (!bh) | ||
1549 | goto fail_iput; | ||
1550 | |||
1551 | memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy)); | ||
1552 | memcpy(&fs_info->super_for_commit, &fs_info->super_copy, | ||
1553 | sizeof(fs_info->super_for_commit)); | ||
1554 | brelse(bh); | ||
1555 | |||
1556 | memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE); | ||
1557 | |||
1558 | disk_super = &fs_info->super_copy; | ||
1559 | if (!btrfs_super_root(disk_super)) | ||
1560 | goto fail_iput; | ||
1561 | |||
1562 | ret = btrfs_parse_options(tree_root, options); | ||
1563 | if (ret) { | ||
1564 | err = ret; | ||
1565 | goto fail_iput; | ||
1566 | } | ||
1567 | |||
1568 | features = btrfs_super_incompat_flags(disk_super) & | ||
1569 | ~BTRFS_FEATURE_INCOMPAT_SUPP; | ||
1570 | if (features) { | ||
1571 | printk(KERN_ERR "BTRFS: couldn't mount because of " | ||
1572 | "unsupported optional features (%Lx).\n", | ||
1573 | features); | ||
1574 | err = -EINVAL; | ||
1575 | goto fail_iput; | ||
1576 | } | ||
1577 | |||
1578 | features = btrfs_super_compat_ro_flags(disk_super) & | ||
1579 | ~BTRFS_FEATURE_COMPAT_RO_SUPP; | ||
1580 | if (!(sb->s_flags & MS_RDONLY) && features) { | ||
1581 | printk(KERN_ERR "BTRFS: couldn't mount RDWR because of " | ||
1582 | "unsupported option features (%Lx).\n", | ||
1583 | features); | ||
1584 | err = -EINVAL; | ||
1585 | goto fail_iput; | ||
1586 | } | ||
1587 | |||
1588 | /* | ||
1589 | * we need to start all the end_io workers up front because the | ||
1590 | * queue work function gets called at interrupt time, and so it | ||
1591 | * cannot dynamically grow. | ||
1592 | */ | ||
1593 | btrfs_init_workers(&fs_info->workers, "worker", | ||
1594 | fs_info->thread_pool_size); | ||
1595 | |||
1596 | btrfs_init_workers(&fs_info->delalloc_workers, "delalloc", | ||
1597 | fs_info->thread_pool_size); | ||
1598 | |||
1599 | btrfs_init_workers(&fs_info->submit_workers, "submit", | ||
1600 | min_t(u64, fs_devices->num_devices, | ||
1601 | fs_info->thread_pool_size)); | ||
1602 | |||
1603 | /* a higher idle thresh on the submit workers makes it much more | ||
1604 | * likely that bios will be send down in a sane order to the | ||
1605 | * devices | ||
1606 | */ | ||
1607 | fs_info->submit_workers.idle_thresh = 64; | ||
1608 | |||
1609 | fs_info->workers.idle_thresh = 16; | ||
1610 | fs_info->workers.ordered = 1; | ||
1611 | |||
1612 | fs_info->delalloc_workers.idle_thresh = 2; | ||
1613 | fs_info->delalloc_workers.ordered = 1; | ||
1614 | |||
1615 | btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1); | ||
1616 | btrfs_init_workers(&fs_info->endio_workers, "endio", | ||
1617 | fs_info->thread_pool_size); | ||
1618 | btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta", | ||
1619 | fs_info->thread_pool_size); | ||
1620 | btrfs_init_workers(&fs_info->endio_meta_write_workers, | ||
1621 | "endio-meta-write", fs_info->thread_pool_size); | ||
1622 | btrfs_init_workers(&fs_info->endio_write_workers, "endio-write", | ||
1623 | fs_info->thread_pool_size); | ||
1624 | |||
1625 | /* | ||
1626 | * endios are largely parallel and should have a very | ||
1627 | * low idle thresh | ||
1628 | */ | ||
1629 | fs_info->endio_workers.idle_thresh = 4; | ||
1630 | fs_info->endio_write_workers.idle_thresh = 64; | ||
1631 | fs_info->endio_meta_write_workers.idle_thresh = 64; | ||
1632 | |||
1633 | btrfs_start_workers(&fs_info->workers, 1); | ||
1634 | btrfs_start_workers(&fs_info->submit_workers, 1); | ||
1635 | btrfs_start_workers(&fs_info->delalloc_workers, 1); | ||
1636 | btrfs_start_workers(&fs_info->fixup_workers, 1); | ||
1637 | btrfs_start_workers(&fs_info->endio_workers, fs_info->thread_pool_size); | ||
1638 | btrfs_start_workers(&fs_info->endio_meta_workers, | ||
1639 | fs_info->thread_pool_size); | ||
1640 | btrfs_start_workers(&fs_info->endio_meta_write_workers, | ||
1641 | fs_info->thread_pool_size); | ||
1642 | btrfs_start_workers(&fs_info->endio_write_workers, | ||
1643 | fs_info->thread_pool_size); | ||
1644 | |||
1645 | fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super); | ||
1646 | fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages, | ||
1647 | 4 * 1024 * 1024 / PAGE_CACHE_SIZE); | ||
1648 | |||
1649 | nodesize = btrfs_super_nodesize(disk_super); | ||
1650 | leafsize = btrfs_super_leafsize(disk_super); | ||
1651 | sectorsize = btrfs_super_sectorsize(disk_super); | ||
1652 | stripesize = btrfs_super_stripesize(disk_super); | ||
1653 | tree_root->nodesize = nodesize; | ||
1654 | tree_root->leafsize = leafsize; | ||
1655 | tree_root->sectorsize = sectorsize; | ||
1656 | tree_root->stripesize = stripesize; | ||
1657 | |||
1658 | sb->s_blocksize = sectorsize; | ||
1659 | sb->s_blocksize_bits = blksize_bits(sectorsize); | ||
1660 | |||
1661 | if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC, | ||
1662 | sizeof(disk_super->magic))) { | ||
1663 | printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id); | ||
1664 | goto fail_sb_buffer; | ||
1665 | } | ||
1666 | |||
1667 | mutex_lock(&fs_info->chunk_mutex); | ||
1668 | ret = btrfs_read_sys_array(tree_root); | ||
1669 | mutex_unlock(&fs_info->chunk_mutex); | ||
1670 | if (ret) { | ||
1671 | printk(KERN_WARNING "btrfs: failed to read the system " | ||
1672 | "array on %s\n", sb->s_id); | ||
1673 | goto fail_sys_array; | ||
1674 | } | ||
1675 | |||
1676 | blocksize = btrfs_level_size(tree_root, | ||
1677 | btrfs_super_chunk_root_level(disk_super)); | ||
1678 | generation = btrfs_super_chunk_root_generation(disk_super); | ||
1679 | |||
1680 | __setup_root(nodesize, leafsize, sectorsize, stripesize, | ||
1681 | chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID); | ||
1682 | |||
1683 | chunk_root->node = read_tree_block(chunk_root, | ||
1684 | btrfs_super_chunk_root(disk_super), | ||
1685 | blocksize, generation); | ||
1686 | BUG_ON(!chunk_root->node); | ||
1687 | |||
1688 | read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, | ||
1689 | (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node), | ||
1690 | BTRFS_UUID_SIZE); | ||
1691 | |||
1692 | mutex_lock(&fs_info->chunk_mutex); | ||
1693 | ret = btrfs_read_chunk_tree(chunk_root); | ||
1694 | mutex_unlock(&fs_info->chunk_mutex); | ||
1695 | if (ret) { | ||
1696 | printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n", | ||
1697 | sb->s_id); | ||
1698 | goto fail_chunk_root; | ||
1699 | } | ||
1700 | |||
1701 | btrfs_close_extra_devices(fs_devices); | ||
1702 | |||
1703 | blocksize = btrfs_level_size(tree_root, | ||
1704 | btrfs_super_root_level(disk_super)); | ||
1705 | generation = btrfs_super_generation(disk_super); | ||
1706 | |||
1707 | tree_root->node = read_tree_block(tree_root, | ||
1708 | btrfs_super_root(disk_super), | ||
1709 | blocksize, generation); | ||
1710 | if (!tree_root->node) | ||
1711 | goto fail_chunk_root; | ||
1712 | |||
1713 | |||
1714 | ret = find_and_setup_root(tree_root, fs_info, | ||
1715 | BTRFS_EXTENT_TREE_OBJECTID, extent_root); | ||
1716 | if (ret) | ||
1717 | goto fail_tree_root; | ||
1718 | extent_root->track_dirty = 1; | ||
1719 | |||
1720 | ret = find_and_setup_root(tree_root, fs_info, | ||
1721 | BTRFS_DEV_TREE_OBJECTID, dev_root); | ||
1722 | dev_root->track_dirty = 1; | ||
1723 | |||
1724 | if (ret) | ||
1725 | goto fail_extent_root; | ||
1726 | |||
1727 | ret = find_and_setup_root(tree_root, fs_info, | ||
1728 | BTRFS_CSUM_TREE_OBJECTID, csum_root); | ||
1729 | if (ret) | ||
1730 | goto fail_extent_root; | ||
1731 | |||
1732 | csum_root->track_dirty = 1; | ||
1733 | |||
1734 | btrfs_read_block_groups(extent_root); | ||
1735 | |||
1736 | fs_info->generation = generation; | ||
1737 | fs_info->last_trans_committed = generation; | ||
1738 | fs_info->data_alloc_profile = (u64)-1; | ||
1739 | fs_info->metadata_alloc_profile = (u64)-1; | ||
1740 | fs_info->system_alloc_profile = fs_info->metadata_alloc_profile; | ||
1741 | fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, | ||
1742 | "btrfs-cleaner"); | ||
1743 | if (!fs_info->cleaner_kthread) | ||
1744 | goto fail_csum_root; | ||
1745 | |||
1746 | fs_info->transaction_kthread = kthread_run(transaction_kthread, | ||
1747 | tree_root, | ||
1748 | "btrfs-transaction"); | ||
1749 | if (!fs_info->transaction_kthread) | ||
1750 | goto fail_cleaner; | ||
1751 | |||
1752 | if (btrfs_super_log_root(disk_super) != 0) { | ||
1753 | u64 bytenr = btrfs_super_log_root(disk_super); | ||
1754 | |||
1755 | if (fs_devices->rw_devices == 0) { | ||
1756 | printk(KERN_WARNING "Btrfs log replay required " | ||
1757 | "on RO media\n"); | ||
1758 | err = -EIO; | ||
1759 | goto fail_trans_kthread; | ||
1760 | } | ||
1761 | blocksize = | ||
1762 | btrfs_level_size(tree_root, | ||
1763 | btrfs_super_log_root_level(disk_super)); | ||
1764 | |||
1765 | log_tree_root = kzalloc(sizeof(struct btrfs_root), | ||
1766 | GFP_NOFS); | ||
1767 | |||
1768 | __setup_root(nodesize, leafsize, sectorsize, stripesize, | ||
1769 | log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID); | ||
1770 | |||
1771 | log_tree_root->node = read_tree_block(tree_root, bytenr, | ||
1772 | blocksize, | ||
1773 | generation + 1); | ||
1774 | ret = btrfs_recover_log_trees(log_tree_root); | ||
1775 | BUG_ON(ret); | ||
1776 | |||
1777 | if (sb->s_flags & MS_RDONLY) { | ||
1778 | ret = btrfs_commit_super(tree_root); | ||
1779 | BUG_ON(ret); | ||
1780 | } | ||
1781 | } | ||
1782 | |||
1783 | if (!(sb->s_flags & MS_RDONLY)) { | ||
1784 | ret = btrfs_cleanup_reloc_trees(tree_root); | ||
1785 | BUG_ON(ret); | ||
1786 | } | ||
1787 | |||
1788 | location.objectid = BTRFS_FS_TREE_OBJECTID; | ||
1789 | location.type = BTRFS_ROOT_ITEM_KEY; | ||
1790 | location.offset = (u64)-1; | ||
1791 | |||
1792 | fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location); | ||
1793 | if (!fs_info->fs_root) | ||
1794 | goto fail_trans_kthread; | ||
1795 | return tree_root; | ||
1796 | |||
1797 | fail_trans_kthread: | ||
1798 | kthread_stop(fs_info->transaction_kthread); | ||
1799 | fail_cleaner: | ||
1800 | kthread_stop(fs_info->cleaner_kthread); | ||
1801 | |||
1802 | /* | ||
1803 | * make sure we're done with the btree inode before we stop our | ||
1804 | * kthreads | ||
1805 | */ | ||
1806 | filemap_write_and_wait(fs_info->btree_inode->i_mapping); | ||
1807 | invalidate_inode_pages2(fs_info->btree_inode->i_mapping); | ||
1808 | |||
1809 | fail_csum_root: | ||
1810 | free_extent_buffer(csum_root->node); | ||
1811 | fail_extent_root: | ||
1812 | free_extent_buffer(extent_root->node); | ||
1813 | fail_tree_root: | ||
1814 | free_extent_buffer(tree_root->node); | ||
1815 | fail_chunk_root: | ||
1816 | free_extent_buffer(chunk_root->node); | ||
1817 | fail_sys_array: | ||
1818 | free_extent_buffer(dev_root->node); | ||
1819 | fail_sb_buffer: | ||
1820 | btrfs_stop_workers(&fs_info->fixup_workers); | ||
1821 | btrfs_stop_workers(&fs_info->delalloc_workers); | ||
1822 | btrfs_stop_workers(&fs_info->workers); | ||
1823 | btrfs_stop_workers(&fs_info->endio_workers); | ||
1824 | btrfs_stop_workers(&fs_info->endio_meta_workers); | ||
1825 | btrfs_stop_workers(&fs_info->endio_meta_write_workers); | ||
1826 | btrfs_stop_workers(&fs_info->endio_write_workers); | ||
1827 | btrfs_stop_workers(&fs_info->submit_workers); | ||
1828 | fail_iput: | ||
1829 | invalidate_inode_pages2(fs_info->btree_inode->i_mapping); | ||
1830 | iput(fs_info->btree_inode); | ||
1831 | fail: | ||
1832 | btrfs_close_devices(fs_info->fs_devices); | ||
1833 | btrfs_mapping_tree_free(&fs_info->mapping_tree); | ||
1834 | |||
1835 | kfree(extent_root); | ||
1836 | kfree(tree_root); | ||
1837 | bdi_destroy(&fs_info->bdi); | ||
1838 | kfree(fs_info); | ||
1839 | kfree(chunk_root); | ||
1840 | kfree(dev_root); | ||
1841 | kfree(csum_root); | ||
1842 | return ERR_PTR(err); | ||
1843 | } | ||
1844 | |||
1845 | static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate) | ||
1846 | { | ||
1847 | char b[BDEVNAME_SIZE]; | ||
1848 | |||
1849 | if (uptodate) { | ||
1850 | set_buffer_uptodate(bh); | ||
1851 | } else { | ||
1852 | if (!buffer_eopnotsupp(bh) && printk_ratelimit()) { | ||
1853 | printk(KERN_WARNING "lost page write due to " | ||
1854 | "I/O error on %s\n", | ||
1855 | bdevname(bh->b_bdev, b)); | ||
1856 | } | ||
1857 | /* note, we dont' set_buffer_write_io_error because we have | ||
1858 | * our own ways of dealing with the IO errors | ||
1859 | */ | ||
1860 | clear_buffer_uptodate(bh); | ||
1861 | } | ||
1862 | unlock_buffer(bh); | ||
1863 | put_bh(bh); | ||
1864 | } | ||
1865 | |||
1866 | struct buffer_head *btrfs_read_dev_super(struct block_device *bdev) | ||
1867 | { | ||
1868 | struct buffer_head *bh; | ||
1869 | struct buffer_head *latest = NULL; | ||
1870 | struct btrfs_super_block *super; | ||
1871 | int i; | ||
1872 | u64 transid = 0; | ||
1873 | u64 bytenr; | ||
1874 | |||
1875 | /* we would like to check all the supers, but that would make | ||
1876 | * a btrfs mount succeed after a mkfs from a different FS. | ||
1877 | * So, we need to add a special mount option to scan for | ||
1878 | * later supers, using BTRFS_SUPER_MIRROR_MAX instead | ||
1879 | */ | ||
1880 | for (i = 0; i < 1; i++) { | ||
1881 | bytenr = btrfs_sb_offset(i); | ||
1882 | if (bytenr + 4096 >= i_size_read(bdev->bd_inode)) | ||
1883 | break; | ||
1884 | bh = __bread(bdev, bytenr / 4096, 4096); | ||
1885 | if (!bh) | ||
1886 | continue; | ||
1887 | |||
1888 | super = (struct btrfs_super_block *)bh->b_data; | ||
1889 | if (btrfs_super_bytenr(super) != bytenr || | ||
1890 | strncmp((char *)(&super->magic), BTRFS_MAGIC, | ||
1891 | sizeof(super->magic))) { | ||
1892 | brelse(bh); | ||
1893 | continue; | ||
1894 | } | ||
1895 | |||
1896 | if (!latest || btrfs_super_generation(super) > transid) { | ||
1897 | brelse(latest); | ||
1898 | latest = bh; | ||
1899 | transid = btrfs_super_generation(super); | ||
1900 | } else { | ||
1901 | brelse(bh); | ||
1902 | } | ||
1903 | } | ||
1904 | return latest; | ||
1905 | } | ||
1906 | |||
1907 | static int write_dev_supers(struct btrfs_device *device, | ||
1908 | struct btrfs_super_block *sb, | ||
1909 | int do_barriers, int wait, int max_mirrors) | ||
1910 | { | ||
1911 | struct buffer_head *bh; | ||
1912 | int i; | ||
1913 | int ret; | ||
1914 | int errors = 0; | ||
1915 | u32 crc; | ||
1916 | u64 bytenr; | ||
1917 | int last_barrier = 0; | ||
1918 | |||
1919 | if (max_mirrors == 0) | ||
1920 | max_mirrors = BTRFS_SUPER_MIRROR_MAX; | ||
1921 | |||
1922 | /* make sure only the last submit_bh does a barrier */ | ||
1923 | if (do_barriers) { | ||
1924 | for (i = 0; i < max_mirrors; i++) { | ||
1925 | bytenr = btrfs_sb_offset(i); | ||
1926 | if (bytenr + BTRFS_SUPER_INFO_SIZE >= | ||
1927 | device->total_bytes) | ||
1928 | break; | ||
1929 | last_barrier = i; | ||
1930 | } | ||
1931 | } | ||
1932 | |||
1933 | for (i = 0; i < max_mirrors; i++) { | ||
1934 | bytenr = btrfs_sb_offset(i); | ||
1935 | if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes) | ||
1936 | break; | ||
1937 | |||
1938 | if (wait) { | ||
1939 | bh = __find_get_block(device->bdev, bytenr / 4096, | ||
1940 | BTRFS_SUPER_INFO_SIZE); | ||
1941 | BUG_ON(!bh); | ||
1942 | brelse(bh); | ||
1943 | wait_on_buffer(bh); | ||
1944 | if (buffer_uptodate(bh)) { | ||
1945 | brelse(bh); | ||
1946 | continue; | ||
1947 | } | ||
1948 | } else { | ||
1949 | btrfs_set_super_bytenr(sb, bytenr); | ||
1950 | |||
1951 | crc = ~(u32)0; | ||
1952 | crc = btrfs_csum_data(NULL, (char *)sb + | ||
1953 | BTRFS_CSUM_SIZE, crc, | ||
1954 | BTRFS_SUPER_INFO_SIZE - | ||
1955 | BTRFS_CSUM_SIZE); | ||
1956 | btrfs_csum_final(crc, sb->csum); | ||
1957 | |||
1958 | bh = __getblk(device->bdev, bytenr / 4096, | ||
1959 | BTRFS_SUPER_INFO_SIZE); | ||
1960 | memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE); | ||
1961 | |||
1962 | set_buffer_uptodate(bh); | ||
1963 | get_bh(bh); | ||
1964 | lock_buffer(bh); | ||
1965 | bh->b_end_io = btrfs_end_buffer_write_sync; | ||
1966 | } | ||
1967 | |||
1968 | if (i == last_barrier && do_barriers && device->barriers) { | ||
1969 | ret = submit_bh(WRITE_BARRIER, bh); | ||
1970 | if (ret == -EOPNOTSUPP) { | ||
1971 | printk("btrfs: disabling barriers on dev %s\n", | ||
1972 | device->name); | ||
1973 | set_buffer_uptodate(bh); | ||
1974 | device->barriers = 0; | ||
1975 | get_bh(bh); | ||
1976 | lock_buffer(bh); | ||
1977 | ret = submit_bh(WRITE, bh); | ||
1978 | } | ||
1979 | } else { | ||
1980 | ret = submit_bh(WRITE, bh); | ||
1981 | } | ||
1982 | |||
1983 | if (!ret && wait) { | ||
1984 | wait_on_buffer(bh); | ||
1985 | if (!buffer_uptodate(bh)) | ||
1986 | errors++; | ||
1987 | } else if (ret) { | ||
1988 | errors++; | ||
1989 | } | ||
1990 | if (wait) | ||
1991 | brelse(bh); | ||
1992 | } | ||
1993 | return errors < i ? 0 : -1; | ||
1994 | } | ||
1995 | |||
1996 | int write_all_supers(struct btrfs_root *root, int max_mirrors) | ||
1997 | { | ||
1998 | struct list_head *cur; | ||
1999 | struct list_head *head = &root->fs_info->fs_devices->devices; | ||
2000 | struct btrfs_device *dev; | ||
2001 | struct btrfs_super_block *sb; | ||
2002 | struct btrfs_dev_item *dev_item; | ||
2003 | int ret; | ||
2004 | int do_barriers; | ||
2005 | int max_errors; | ||
2006 | int total_errors = 0; | ||
2007 | u64 flags; | ||
2008 | |||
2009 | max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1; | ||
2010 | do_barriers = !btrfs_test_opt(root, NOBARRIER); | ||
2011 | |||
2012 | sb = &root->fs_info->super_for_commit; | ||
2013 | dev_item = &sb->dev_item; | ||
2014 | list_for_each(cur, head) { | ||
2015 | dev = list_entry(cur, struct btrfs_device, dev_list); | ||
2016 | if (!dev->bdev) { | ||
2017 | total_errors++; | ||
2018 | continue; | ||
2019 | } | ||
2020 | if (!dev->in_fs_metadata || !dev->writeable) | ||
2021 | continue; | ||
2022 | |||
2023 | btrfs_set_stack_device_generation(dev_item, 0); | ||
2024 | btrfs_set_stack_device_type(dev_item, dev->type); | ||
2025 | btrfs_set_stack_device_id(dev_item, dev->devid); | ||
2026 | btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes); | ||
2027 | btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used); | ||
2028 | btrfs_set_stack_device_io_align(dev_item, dev->io_align); | ||
2029 | btrfs_set_stack_device_io_width(dev_item, dev->io_width); | ||
2030 | btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); | ||
2031 | memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); | ||
2032 | memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE); | ||
2033 | |||
2034 | flags = btrfs_super_flags(sb); | ||
2035 | btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); | ||
2036 | |||
2037 | ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors); | ||
2038 | if (ret) | ||
2039 | total_errors++; | ||
2040 | } | ||
2041 | if (total_errors > max_errors) { | ||
2042 | printk(KERN_ERR "btrfs: %d errors while writing supers\n", | ||
2043 | total_errors); | ||
2044 | BUG(); | ||
2045 | } | ||
2046 | |||
2047 | total_errors = 0; | ||
2048 | list_for_each(cur, head) { | ||
2049 | dev = list_entry(cur, struct btrfs_device, dev_list); | ||
2050 | if (!dev->bdev) | ||
2051 | continue; | ||
2052 | if (!dev->in_fs_metadata || !dev->writeable) | ||
2053 | continue; | ||
2054 | |||
2055 | ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors); | ||
2056 | if (ret) | ||
2057 | total_errors++; | ||
2058 | } | ||
2059 | if (total_errors > max_errors) { | ||
2060 | printk(KERN_ERR "btrfs: %d errors while writing supers\n", | ||
2061 | total_errors); | ||
2062 | BUG(); | ||
2063 | } | ||
2064 | return 0; | ||
2065 | } | ||
2066 | |||
2067 | int write_ctree_super(struct btrfs_trans_handle *trans, | ||
2068 | struct btrfs_root *root, int max_mirrors) | ||
2069 | { | ||
2070 | int ret; | ||
2071 | |||
2072 | ret = write_all_supers(root, max_mirrors); | ||
2073 | return ret; | ||
2074 | } | ||
2075 | |||
2076 | int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root) | ||
2077 | { | ||
2078 | radix_tree_delete(&fs_info->fs_roots_radix, | ||
2079 | (unsigned long)root->root_key.objectid); | ||
2080 | if (root->anon_super.s_dev) { | ||
2081 | down_write(&root->anon_super.s_umount); | ||
2082 | kill_anon_super(&root->anon_super); | ||
2083 | } | ||
2084 | if (root->node) | ||
2085 | free_extent_buffer(root->node); | ||
2086 | if (root->commit_root) | ||
2087 | free_extent_buffer(root->commit_root); | ||
2088 | kfree(root->name); | ||
2089 | kfree(root); | ||
2090 | return 0; | ||
2091 | } | ||
2092 | |||
2093 | static int del_fs_roots(struct btrfs_fs_info *fs_info) | ||
2094 | { | ||
2095 | int ret; | ||
2096 | struct btrfs_root *gang[8]; | ||
2097 | int i; | ||
2098 | |||
2099 | while (1) { | ||
2100 | ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, | ||
2101 | (void **)gang, 0, | ||
2102 | ARRAY_SIZE(gang)); | ||
2103 | if (!ret) | ||
2104 | break; | ||
2105 | for (i = 0; i < ret; i++) | ||
2106 | btrfs_free_fs_root(fs_info, gang[i]); | ||
2107 | } | ||
2108 | return 0; | ||
2109 | } | ||
2110 | |||
2111 | int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) | ||
2112 | { | ||
2113 | u64 root_objectid = 0; | ||
2114 | struct btrfs_root *gang[8]; | ||
2115 | int i; | ||
2116 | int ret; | ||
2117 | |||
2118 | while (1) { | ||
2119 | ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, | ||
2120 | (void **)gang, root_objectid, | ||
2121 | ARRAY_SIZE(gang)); | ||
2122 | if (!ret) | ||
2123 | break; | ||
2124 | for (i = 0; i < ret; i++) { | ||
2125 | root_objectid = gang[i]->root_key.objectid; | ||
2126 | ret = btrfs_find_dead_roots(fs_info->tree_root, | ||
2127 | root_objectid, gang[i]); | ||
2128 | BUG_ON(ret); | ||
2129 | btrfs_orphan_cleanup(gang[i]); | ||
2130 | } | ||
2131 | root_objectid++; | ||
2132 | } | ||
2133 | return 0; | ||
2134 | } | ||
2135 | |||
2136 | int btrfs_commit_super(struct btrfs_root *root) | ||
2137 | { | ||
2138 | struct btrfs_trans_handle *trans; | ||
2139 | int ret; | ||
2140 | |||
2141 | mutex_lock(&root->fs_info->cleaner_mutex); | ||
2142 | btrfs_clean_old_snapshots(root); | ||
2143 | mutex_unlock(&root->fs_info->cleaner_mutex); | ||
2144 | trans = btrfs_start_transaction(root, 1); | ||
2145 | ret = btrfs_commit_transaction(trans, root); | ||
2146 | BUG_ON(ret); | ||
2147 | /* run commit again to drop the original snapshot */ | ||
2148 | trans = btrfs_start_transaction(root, 1); | ||
2149 | btrfs_commit_transaction(trans, root); | ||
2150 | ret = btrfs_write_and_wait_transaction(NULL, root); | ||
2151 | BUG_ON(ret); | ||
2152 | |||
2153 | ret = write_ctree_super(NULL, root, 0); | ||
2154 | return ret; | ||
2155 | } | ||
2156 | |||
2157 | int close_ctree(struct btrfs_root *root) | ||
2158 | { | ||
2159 | struct btrfs_fs_info *fs_info = root->fs_info; | ||
2160 | int ret; | ||
2161 | |||
2162 | fs_info->closing = 1; | ||
2163 | smp_mb(); | ||
2164 | |||
2165 | kthread_stop(root->fs_info->transaction_kthread); | ||
2166 | kthread_stop(root->fs_info->cleaner_kthread); | ||
2167 | |||
2168 | if (!(fs_info->sb->s_flags & MS_RDONLY)) { | ||
2169 | ret = btrfs_commit_super(root); | ||
2170 | if (ret) | ||
2171 | printk(KERN_ERR "btrfs: commit super ret %d\n", ret); | ||
2172 | } | ||
2173 | |||
2174 | if (fs_info->delalloc_bytes) { | ||
2175 | printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n", | ||
2176 | fs_info->delalloc_bytes); | ||
2177 | } | ||
2178 | if (fs_info->total_ref_cache_size) { | ||
2179 | printk(KERN_INFO "btrfs: at umount reference cache size %llu\n", | ||
2180 | (unsigned long long)fs_info->total_ref_cache_size); | ||
2181 | } | ||
2182 | |||
2183 | if (fs_info->extent_root->node) | ||
2184 | free_extent_buffer(fs_info->extent_root->node); | ||
2185 | |||
2186 | if (fs_info->tree_root->node) | ||
2187 | free_extent_buffer(fs_info->tree_root->node); | ||
2188 | |||
2189 | if (root->fs_info->chunk_root->node) | ||
2190 | free_extent_buffer(root->fs_info->chunk_root->node); | ||
2191 | |||
2192 | if (root->fs_info->dev_root->node) | ||
2193 | free_extent_buffer(root->fs_info->dev_root->node); | ||
2194 | |||
2195 | if (root->fs_info->csum_root->node) | ||
2196 | free_extent_buffer(root->fs_info->csum_root->node); | ||
2197 | |||
2198 | btrfs_free_block_groups(root->fs_info); | ||
2199 | |||
2200 | del_fs_roots(fs_info); | ||
2201 | |||
2202 | iput(fs_info->btree_inode); | ||
2203 | |||
2204 | btrfs_stop_workers(&fs_info->fixup_workers); | ||
2205 | btrfs_stop_workers(&fs_info->delalloc_workers); | ||
2206 | btrfs_stop_workers(&fs_info->workers); | ||
2207 | btrfs_stop_workers(&fs_info->endio_workers); | ||
2208 | btrfs_stop_workers(&fs_info->endio_meta_workers); | ||
2209 | btrfs_stop_workers(&fs_info->endio_meta_write_workers); | ||
2210 | btrfs_stop_workers(&fs_info->endio_write_workers); | ||
2211 | btrfs_stop_workers(&fs_info->submit_workers); | ||
2212 | |||
2213 | #if 0 | ||
2214 | while (!list_empty(&fs_info->hashers)) { | ||
2215 | struct btrfs_hasher *hasher; | ||
2216 | hasher = list_entry(fs_info->hashers.next, struct btrfs_hasher, | ||
2217 | hashers); | ||
2218 | list_del(&hasher->hashers); | ||
2219 | crypto_free_hash(&fs_info->hash_tfm); | ||
2220 | kfree(hasher); | ||
2221 | } | ||
2222 | #endif | ||
2223 | btrfs_close_devices(fs_info->fs_devices); | ||
2224 | btrfs_mapping_tree_free(&fs_info->mapping_tree); | ||
2225 | |||
2226 | bdi_destroy(&fs_info->bdi); | ||
2227 | |||
2228 | kfree(fs_info->extent_root); | ||
2229 | kfree(fs_info->tree_root); | ||
2230 | kfree(fs_info->chunk_root); | ||
2231 | kfree(fs_info->dev_root); | ||
2232 | kfree(fs_info->csum_root); | ||
2233 | return 0; | ||
2234 | } | ||
2235 | |||
2236 | int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid) | ||
2237 | { | ||
2238 | int ret; | ||
2239 | struct inode *btree_inode = buf->first_page->mapping->host; | ||
2240 | |||
2241 | ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf); | ||
2242 | if (!ret) | ||
2243 | return ret; | ||
2244 | |||
2245 | ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, | ||
2246 | parent_transid); | ||
2247 | return !ret; | ||
2248 | } | ||
2249 | |||
2250 | int btrfs_set_buffer_uptodate(struct extent_buffer *buf) | ||
2251 | { | ||
2252 | struct inode *btree_inode = buf->first_page->mapping->host; | ||
2253 | return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, | ||
2254 | buf); | ||
2255 | } | ||
2256 | |||
2257 | void btrfs_mark_buffer_dirty(struct extent_buffer *buf) | ||
2258 | { | ||
2259 | struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root; | ||
2260 | u64 transid = btrfs_header_generation(buf); | ||
2261 | struct inode *btree_inode = root->fs_info->btree_inode; | ||
2262 | |||
2263 | WARN_ON(!btrfs_tree_locked(buf)); | ||
2264 | if (transid != root->fs_info->generation) { | ||
2265 | printk(KERN_CRIT "btrfs transid mismatch buffer %llu, " | ||
2266 | "found %llu running %llu\n", | ||
2267 | (unsigned long long)buf->start, | ||
2268 | (unsigned long long)transid, | ||
2269 | (unsigned long long)root->fs_info->generation); | ||
2270 | WARN_ON(1); | ||
2271 | } | ||
2272 | set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, buf); | ||
2273 | } | ||
2274 | |||
2275 | void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr) | ||
2276 | { | ||
2277 | /* | ||
2278 | * looks as though older kernels can get into trouble with | ||
2279 | * this code, they end up stuck in balance_dirty_pages forever | ||
2280 | */ | ||
2281 | struct extent_io_tree *tree; | ||
2282 | u64 num_dirty; | ||
2283 | u64 start = 0; | ||
2284 | unsigned long thresh = 32 * 1024 * 1024; | ||
2285 | tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree; | ||
2286 | |||
2287 | if (current_is_pdflush() || current->flags & PF_MEMALLOC) | ||
2288 | return; | ||
2289 | |||
2290 | num_dirty = count_range_bits(tree, &start, (u64)-1, | ||
2291 | thresh, EXTENT_DIRTY); | ||
2292 | if (num_dirty > thresh) { | ||
2293 | balance_dirty_pages_ratelimited_nr( | ||
2294 | root->fs_info->btree_inode->i_mapping, 1); | ||
2295 | } | ||
2296 | return; | ||
2297 | } | ||
2298 | |||
2299 | int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid) | ||
2300 | { | ||
2301 | struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root; | ||
2302 | int ret; | ||
2303 | ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid); | ||
2304 | if (ret == 0) | ||
2305 | buf->flags |= EXTENT_UPTODATE; | ||
2306 | return ret; | ||
2307 | } | ||
2308 | |||
2309 | int btree_lock_page_hook(struct page *page) | ||
2310 | { | ||
2311 | struct inode *inode = page->mapping->host; | ||
2312 | struct btrfs_root *root = BTRFS_I(inode)->root; | ||
2313 | struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; | ||
2314 | struct extent_buffer *eb; | ||
2315 | unsigned long len; | ||
2316 | u64 bytenr = page_offset(page); | ||
2317 | |||
2318 | if (page->private == EXTENT_PAGE_PRIVATE) | ||
2319 | goto out; | ||
2320 | |||
2321 | len = page->private >> 2; | ||
2322 | eb = find_extent_buffer(io_tree, bytenr, len, GFP_NOFS); | ||
2323 | if (!eb) | ||
2324 | goto out; | ||
2325 | |||
2326 | btrfs_tree_lock(eb); | ||
2327 | spin_lock(&root->fs_info->hash_lock); | ||
2328 | btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); | ||
2329 | spin_unlock(&root->fs_info->hash_lock); | ||
2330 | btrfs_tree_unlock(eb); | ||
2331 | free_extent_buffer(eb); | ||
2332 | out: | ||
2333 | lock_page(page); | ||
2334 | return 0; | ||
2335 | } | ||
2336 | |||
2337 | static struct extent_io_ops btree_extent_io_ops = { | ||
2338 | .write_cache_pages_lock_hook = btree_lock_page_hook, | ||
2339 | .readpage_end_io_hook = btree_readpage_end_io_hook, | ||
2340 | .submit_bio_hook = btree_submit_bio_hook, | ||
2341 | /* note we're sharing with inode.c for the merge bio hook */ | ||
2342 | .merge_bio_hook = btrfs_merge_bio_hook, | ||
2343 | }; | ||
diff --git a/fs/btrfs/disk-io.h b/fs/btrfs/disk-io.h new file mode 100644 index 000000000000..c0ff404c31b7 --- /dev/null +++ b/fs/btrfs/disk-io.h | |||
@@ -0,0 +1,102 @@ | |||
1 | /* | ||
2 | * Copyright (C) 2007 Oracle. All rights reserved. | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or | ||
5 | * modify it under the terms of the GNU General Public | ||
6 | * License v2 as published by the Free Software Foundation. | ||
7 | * | ||
8 | * This program is distributed in the hope that it will be useful, | ||
9 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | ||
11 | * General Public License for more details. | ||
12 | * | ||
13 | * You should have received a copy of the GNU General Public | ||
14 | * License along with this program; if not, write to the | ||
15 | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | ||
16 | * Boston, MA 021110-1307, USA. | ||
17 | */ | ||
18 | |||
19 | #ifndef __DISKIO__ | ||
20 | #define __DISKIO__ | ||
21 | |||
22 | #define BTRFS_SUPER_INFO_OFFSET (64 * 1024) | ||
23 | #define BTRFS_SUPER_INFO_SIZE 4096 | ||
24 | |||
25 | #define BTRFS_SUPER_MIRROR_MAX 3 | ||
26 | #define BTRFS_SUPER_MIRROR_SHIFT 12 | ||
27 | |||
28 | static inline u64 btrfs_sb_offset(int mirror) | ||
29 | { | ||
30 | u64 start = 16 * 1024; | ||
31 | if (mirror) | ||
32 | return start << (BTRFS_SUPER_MIRROR_SHIFT * mirror); | ||
33 | return BTRFS_SUPER_INFO_OFFSET; | ||
34 | } | ||
35 | |||
36 | struct btrfs_device; | ||
37 | struct btrfs_fs_devices; | ||
38 | |||
39 | struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr, | ||
40 | u32 blocksize, u64 parent_transid); | ||
41 | int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize, | ||
42 | u64 parent_transid); | ||
43 | struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root, | ||
44 | u64 bytenr, u32 blocksize); | ||
45 | int clean_tree_block(struct btrfs_trans_handle *trans, | ||
46 | struct btrfs_root *root, struct extent_buffer *buf); | ||
47 | struct btrfs_root *open_ctree(struct super_block *sb, | ||
48 | struct btrfs_fs_devices *fs_devices, | ||
49 | char *options); | ||
50 | int close_ctree(struct btrfs_root *root); | ||
51 | int write_ctree_super(struct btrfs_trans_handle *trans, | ||
52 | struct btrfs_root *root, int max_mirrors); | ||
53 | struct buffer_head *btrfs_read_dev_super(struct block_device *bdev); | ||
54 | int btrfs_commit_super(struct btrfs_root *root); | ||
55 | struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root, | ||
56 | u64 bytenr, u32 blocksize); | ||
57 | struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, | ||
58 | u64 root_objectid); | ||
59 | struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info, | ||
60 | struct btrfs_key *location, | ||
61 | const char *name, int namelen); | ||
62 | struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root, | ||
63 | struct btrfs_key *location); | ||
64 | struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info, | ||
65 | struct btrfs_key *location); | ||
66 | int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info); | ||
67 | int btrfs_insert_dev_radix(struct btrfs_root *root, | ||
68 | struct block_device *bdev, | ||
69 | u64 device_id, | ||
70 | u64 block_start, | ||
71 | u64 num_blocks); | ||
72 | void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr); | ||
73 | int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root); | ||
74 | void btrfs_mark_buffer_dirty(struct extent_buffer *buf); | ||
75 | int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid); | ||
76 | int btrfs_set_buffer_uptodate(struct extent_buffer *buf); | ||
77 | int wait_on_tree_block_writeback(struct btrfs_root *root, | ||
78 | struct extent_buffer *buf); | ||
79 | int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid); | ||
80 | u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len); | ||
81 | void btrfs_csum_final(u32 crc, char *result); | ||
82 | int btrfs_open_device(struct btrfs_device *dev); | ||
83 | int btrfs_verify_block_csum(struct btrfs_root *root, | ||
84 | struct extent_buffer *buf); | ||
85 | int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, | ||
86 | int metadata); | ||
87 | int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode, | ||
88 | int rw, struct bio *bio, int mirror_num, | ||
89 | unsigned long bio_flags, | ||
90 | extent_submit_bio_hook_t *submit_bio_start, | ||
91 | extent_submit_bio_hook_t *submit_bio_done); | ||
92 | |||
93 | int btrfs_congested_async(struct btrfs_fs_info *info, int iodone); | ||
94 | unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info); | ||
95 | int btrfs_write_tree_block(struct extent_buffer *buf); | ||
96 | int btrfs_wait_tree_block_writeback(struct extent_buffer *buf); | ||
97 | int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans, | ||
98 | struct btrfs_fs_info *fs_info); | ||
99 | int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, | ||
100 | struct btrfs_fs_info *fs_info); | ||
101 | int btree_lock_page_hook(struct page *page); | ||
102 | #endif | ||
diff --git a/fs/btrfs/export.c b/fs/btrfs/export.c new file mode 100644 index 000000000000..85315d2c90de --- /dev/null +++ b/fs/btrfs/export.c | |||
@@ -0,0 +1,203 @@ | |||
1 | #include <linux/fs.h> | ||
2 | #include <linux/types.h> | ||
3 | #include "ctree.h" | ||
4 | #include "disk-io.h" | ||
5 | #include "btrfs_inode.h" | ||
6 | #include "print-tree.h" | ||
7 | #include "export.h" | ||
8 | #include "compat.h" | ||
9 | |||
10 | #define BTRFS_FID_SIZE_NON_CONNECTABLE (offsetof(struct btrfs_fid, \ | ||
11 | parent_objectid) / 4) | ||
12 | #define BTRFS_FID_SIZE_CONNECTABLE (offsetof(struct btrfs_fid, \ | ||
13 | parent_root_objectid) / 4) | ||
14 | #define BTRFS_FID_SIZE_CONNECTABLE_ROOT (sizeof(struct btrfs_fid) / 4) | ||
15 | |||
16 | static int btrfs_encode_fh(struct dentry *dentry, u32 *fh, int *max_len, | ||
17 | int connectable) | ||
18 | { | ||
19 | struct btrfs_fid *fid = (struct btrfs_fid *)fh; | ||
20 | struct inode *inode = dentry->d_inode; | ||
21 | int len = *max_len; | ||
22 | int type; | ||
23 | |||
24 | if ((len < BTRFS_FID_SIZE_NON_CONNECTABLE) || | ||
25 | (connectable && len < BTRFS_FID_SIZE_CONNECTABLE)) | ||
26 | return 255; | ||
27 | |||
28 | len = BTRFS_FID_SIZE_NON_CONNECTABLE; | ||
29 | type = FILEID_BTRFS_WITHOUT_PARENT; | ||
30 | |||
31 | fid->objectid = BTRFS_I(inode)->location.objectid; | ||
32 | fid->root_objectid = BTRFS_I(inode)->root->objectid; | ||
33 | fid->gen = inode->i_generation; | ||
34 | |||
35 | if (connectable && !S_ISDIR(inode->i_mode)) { | ||
36 | struct inode *parent; | ||
37 | u64 parent_root_id; | ||
38 | |||
39 | spin_lock(&dentry->d_lock); | ||
40 | |||
41 | parent = dentry->d_parent->d_inode; | ||
42 | fid->parent_objectid = BTRFS_I(parent)->location.objectid; | ||
43 | fid->parent_gen = parent->i_generation; | ||
44 | parent_root_id = BTRFS_I(parent)->root->objectid; | ||
45 | |||
46 | spin_unlock(&dentry->d_lock); | ||
47 | |||
48 | if (parent_root_id != fid->root_objectid) { | ||
49 | fid->parent_root_objectid = parent_root_id; | ||
50 | len = BTRFS_FID_SIZE_CONNECTABLE_ROOT; | ||
51 | type = FILEID_BTRFS_WITH_PARENT_ROOT; | ||
52 | } else { | ||
53 | len = BTRFS_FID_SIZE_CONNECTABLE; | ||
54 | type = FILEID_BTRFS_WITH_PARENT; | ||
55 | } | ||
56 | } | ||
57 | |||
58 | *max_len = len; | ||
59 | return type; | ||
60 | } | ||
61 | |||
62 | static struct dentry *btrfs_get_dentry(struct super_block *sb, u64 objectid, | ||
63 | u64 root_objectid, u32 generation) | ||
64 | { | ||
65 | struct btrfs_root *root; | ||
66 | struct inode *inode; | ||
67 | struct btrfs_key key; | ||
68 | |||
69 | key.objectid = root_objectid; | ||
70 | btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY); | ||
71 | key.offset = (u64)-1; | ||
72 | |||
73 | root = btrfs_read_fs_root_no_name(btrfs_sb(sb)->fs_info, &key); | ||
74 | if (IS_ERR(root)) | ||
75 | return ERR_CAST(root); | ||
76 | |||
77 | key.objectid = objectid; | ||
78 | btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY); | ||
79 | key.offset = 0; | ||
80 | |||
81 | inode = btrfs_iget(sb, &key, root, NULL); | ||
82 | if (IS_ERR(inode)) | ||
83 | return (void *)inode; | ||
84 | |||
85 | if (generation != inode->i_generation) { | ||
86 | iput(inode); | ||
87 | return ERR_PTR(-ESTALE); | ||
88 | } | ||
89 | |||
90 | return d_obtain_alias(inode); | ||
91 | } | ||
92 | |||
93 | static struct dentry *btrfs_fh_to_parent(struct super_block *sb, struct fid *fh, | ||
94 | int fh_len, int fh_type) | ||
95 | { | ||
96 | struct btrfs_fid *fid = (struct btrfs_fid *) fh; | ||
97 | u64 objectid, root_objectid; | ||
98 | u32 generation; | ||
99 | |||
100 | if (fh_type == FILEID_BTRFS_WITH_PARENT) { | ||
101 | if (fh_len != BTRFS_FID_SIZE_CONNECTABLE) | ||
102 | return NULL; | ||
103 | root_objectid = fid->root_objectid; | ||
104 | } else if (fh_type == FILEID_BTRFS_WITH_PARENT_ROOT) { | ||
105 | if (fh_len != BTRFS_FID_SIZE_CONNECTABLE_ROOT) | ||
106 | return NULL; | ||
107 | root_objectid = fid->parent_root_objectid; | ||
108 | } else | ||
109 | return NULL; | ||
110 | |||
111 | objectid = fid->parent_objectid; | ||
112 | generation = fid->parent_gen; | ||
113 | |||
114 | return btrfs_get_dentry(sb, objectid, root_objectid, generation); | ||
115 | } | ||
116 | |||
117 | static struct dentry *btrfs_fh_to_dentry(struct super_block *sb, struct fid *fh, | ||
118 | int fh_len, int fh_type) | ||
119 | { | ||
120 | struct btrfs_fid *fid = (struct btrfs_fid *) fh; | ||
121 | u64 objectid, root_objectid; | ||
122 | u32 generation; | ||
123 | |||
124 | if ((fh_type != FILEID_BTRFS_WITH_PARENT || | ||
125 | fh_len != BTRFS_FID_SIZE_CONNECTABLE) && | ||
126 | (fh_type != FILEID_BTRFS_WITH_PARENT_ROOT || | ||
127 | fh_len != BTRFS_FID_SIZE_CONNECTABLE_ROOT) && | ||
128 | (fh_type != FILEID_BTRFS_WITHOUT_PARENT || | ||
129 | fh_len != BTRFS_FID_SIZE_NON_CONNECTABLE)) | ||
130 | return NULL; | ||
131 | |||
132 | objectid = fid->objectid; | ||
133 | root_objectid = fid->root_objectid; | ||
134 | generation = fid->gen; | ||
135 | |||
136 | return btrfs_get_dentry(sb, objectid, root_objectid, generation); | ||
137 | } | ||
138 | |||
139 | static struct dentry *btrfs_get_parent(struct dentry *child) | ||
140 | { | ||
141 | struct inode *dir = child->d_inode; | ||
142 | struct btrfs_root *root = BTRFS_I(dir)->root; | ||
143 | struct btrfs_key key; | ||
144 | struct btrfs_path *path; | ||
145 | struct extent_buffer *leaf; | ||
146 | int slot; | ||
147 | u64 objectid; | ||
148 | int ret; | ||
149 | |||
150 | path = btrfs_alloc_path(); | ||
151 | |||
152 | key.objectid = dir->i_ino; | ||
153 | btrfs_set_key_type(&key, BTRFS_INODE_REF_KEY); | ||
154 | key.offset = (u64)-1; | ||
155 | |||
156 | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | ||
157 | if (ret < 0) { | ||
158 | /* Error */ | ||
159 | btrfs_free_path(path); | ||
160 | return ERR_PTR(ret); | ||
161 | } | ||
162 | leaf = path->nodes[0]; | ||
163 | slot = path->slots[0]; | ||
164 | if (ret) { | ||
165 | /* btrfs_search_slot() returns the slot where we'd want to | ||
166 | insert a backref for parent inode #0xFFFFFFFFFFFFFFFF. | ||
167 | The _real_ backref, telling us what the parent inode | ||
168 | _actually_ is, will be in the slot _before_ the one | ||
169 | that btrfs_search_slot() returns. */ | ||
170 | if (!slot) { | ||
171 | /* Unless there is _no_ key in the tree before... */ | ||
172 | btrfs_free_path(path); | ||
173 | return ERR_PTR(-EIO); | ||
174 | } | ||
175 | slot--; | ||
176 | } | ||
177 | |||
178 | btrfs_item_key_to_cpu(leaf, &key, slot); | ||
179 | btrfs_free_path(path); | ||
180 | |||
181 | if (key.objectid != dir->i_ino || key.type != BTRFS_INODE_REF_KEY) | ||
182 | return ERR_PTR(-EINVAL); | ||
183 | |||
184 | objectid = key.offset; | ||
185 | |||
186 | /* If we are already at the root of a subvol, return the real root */ | ||
187 | if (objectid == dir->i_ino) | ||
188 | return dget(dir->i_sb->s_root); | ||
189 | |||
190 | /* Build a new key for the inode item */ | ||
191 | key.objectid = objectid; | ||
192 | btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY); | ||
193 | key.offset = 0; | ||
194 | |||
195 | return d_obtain_alias(btrfs_iget(root->fs_info->sb, &key, root, NULL)); | ||
196 | } | ||
197 | |||
198 | const struct export_operations btrfs_export_ops = { | ||
199 | .encode_fh = btrfs_encode_fh, | ||
200 | .fh_to_dentry = btrfs_fh_to_dentry, | ||
201 | .fh_to_parent = btrfs_fh_to_parent, | ||
202 | .get_parent = btrfs_get_parent, | ||
203 | }; | ||
diff --git a/fs/btrfs/export.h b/fs/btrfs/export.h new file mode 100644 index 000000000000..074348a95841 --- /dev/null +++ b/fs/btrfs/export.h | |||
@@ -0,0 +1,19 @@ | |||
1 | #ifndef BTRFS_EXPORT_H | ||
2 | #define BTRFS_EXPORT_H | ||
3 | |||
4 | #include <linux/exportfs.h> | ||
5 | |||
6 | extern const struct export_operations btrfs_export_ops; | ||
7 | |||
8 | struct btrfs_fid { | ||
9 | u64 objectid; | ||
10 | u64 root_objectid; | ||
11 | u32 gen; | ||
12 | |||
13 | u64 parent_objectid; | ||
14 | u32 parent_gen; | ||
15 | |||
16 | u64 parent_root_objectid; | ||
17 | } __attribute__ ((packed)); | ||
18 | |||
19 | #endif | ||
diff --git a/fs/btrfs/extent-tree.c b/fs/btrfs/extent-tree.c new file mode 100644 index 000000000000..ec43fa526d77 --- /dev/null +++ b/fs/btrfs/extent-tree.c | |||
@@ -0,0 +1,5990 @@ | |||
1 | /* | ||
2 | * Copyright (C) 2007 Oracle. All rights reserved. | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or | ||
5 | * modify it under the terms of the GNU General Public | ||
6 | * License v2 as published by the Free Software Foundation. | ||
7 | * | ||
8 | * This program is distributed in the hope that it will be useful, | ||
9 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | ||
11 | * General Public License for more details. | ||
12 | * | ||
13 | * You should have received a copy of the GNU General Public | ||
14 | * License along with this program; if not, write to the | ||
15 | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | ||
16 | * Boston, MA 021110-1307, USA. | ||
17 | */ | ||
18 | #include <linux/sched.h> | ||
19 | #include <linux/pagemap.h> | ||
20 | #include <linux/writeback.h> | ||
21 | #include <linux/blkdev.h> | ||
22 | #include <linux/version.h> | ||
23 | #include "compat.h" | ||
24 | #include "hash.h" | ||
25 | #include "crc32c.h" | ||
26 | #include "ctree.h" | ||
27 | #include "disk-io.h" | ||
28 | #include "print-tree.h" | ||
29 | #include "transaction.h" | ||
30 | #include "volumes.h" | ||
31 | #include "locking.h" | ||
32 | #include "ref-cache.h" | ||
33 | #include "compat.h" | ||
34 | |||
35 | #define PENDING_EXTENT_INSERT 0 | ||
36 | #define PENDING_EXTENT_DELETE 1 | ||
37 | #define PENDING_BACKREF_UPDATE 2 | ||
38 | |||
39 | struct pending_extent_op { | ||
40 | int type; | ||
41 | u64 bytenr; | ||
42 | u64 num_bytes; | ||
43 | u64 parent; | ||
44 | u64 orig_parent; | ||
45 | u64 generation; | ||
46 | u64 orig_generation; | ||
47 | int level; | ||
48 | struct list_head list; | ||
49 | int del; | ||
50 | }; | ||
51 | |||
52 | static int finish_current_insert(struct btrfs_trans_handle *trans, | ||
53 | struct btrfs_root *extent_root, int all); | ||
54 | static int del_pending_extents(struct btrfs_trans_handle *trans, | ||
55 | struct btrfs_root *extent_root, int all); | ||
56 | static int pin_down_bytes(struct btrfs_trans_handle *trans, | ||
57 | struct btrfs_root *root, | ||
58 | u64 bytenr, u64 num_bytes, int is_data); | ||
59 | static int update_block_group(struct btrfs_trans_handle *trans, | ||
60 | struct btrfs_root *root, | ||
61 | u64 bytenr, u64 num_bytes, int alloc, | ||
62 | int mark_free); | ||
63 | |||
64 | static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits) | ||
65 | { | ||
66 | return (cache->flags & bits) == bits; | ||
67 | } | ||
68 | |||
69 | /* | ||
70 | * this adds the block group to the fs_info rb tree for the block group | ||
71 | * cache | ||
72 | */ | ||
73 | static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, | ||
74 | struct btrfs_block_group_cache *block_group) | ||
75 | { | ||
76 | struct rb_node **p; | ||
77 | struct rb_node *parent = NULL; | ||
78 | struct btrfs_block_group_cache *cache; | ||
79 | |||
80 | spin_lock(&info->block_group_cache_lock); | ||
81 | p = &info->block_group_cache_tree.rb_node; | ||
82 | |||
83 | while (*p) { | ||
84 | parent = *p; | ||
85 | cache = rb_entry(parent, struct btrfs_block_group_cache, | ||
86 | cache_node); | ||
87 | if (block_group->key.objectid < cache->key.objectid) { | ||
88 | p = &(*p)->rb_left; | ||
89 | } else if (block_group->key.objectid > cache->key.objectid) { | ||
90 | p = &(*p)->rb_right; | ||
91 | } else { | ||
92 | spin_unlock(&info->block_group_cache_lock); | ||
93 | return -EEXIST; | ||
94 | } | ||
95 | } | ||
96 | |||
97 | rb_link_node(&block_group->cache_node, parent, p); | ||
98 | rb_insert_color(&block_group->cache_node, | ||
99 | &info->block_group_cache_tree); | ||
100 | spin_unlock(&info->block_group_cache_lock); | ||
101 | |||
102 | return 0; | ||
103 | } | ||
104 | |||
105 | /* | ||
106 | * This will return the block group at or after bytenr if contains is 0, else | ||
107 | * it will return the block group that contains the bytenr | ||
108 | */ | ||
109 | static struct btrfs_block_group_cache * | ||
110 | block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr, | ||
111 | int contains) | ||
112 | { | ||
113 | struct btrfs_block_group_cache *cache, *ret = NULL; | ||
114 | struct rb_node *n; | ||
115 | u64 end, start; | ||
116 | |||
117 | spin_lock(&info->block_group_cache_lock); | ||
118 | n = info->block_group_cache_tree.rb_node; | ||
119 | |||
120 | while (n) { | ||
121 | cache = rb_entry(n, struct btrfs_block_group_cache, | ||
122 | cache_node); | ||
123 | end = cache->key.objectid + cache->key.offset - 1; | ||
124 | start = cache->key.objectid; | ||
125 | |||
126 | if (bytenr < start) { | ||
127 | if (!contains && (!ret || start < ret->key.objectid)) | ||
128 | ret = cache; | ||
129 | n = n->rb_left; | ||
130 | } else if (bytenr > start) { | ||
131 | if (contains && bytenr <= end) { | ||
132 | ret = cache; | ||
133 | break; | ||
134 | } | ||
135 | n = n->rb_right; | ||
136 | } else { | ||
137 | ret = cache; | ||
138 | break; | ||
139 | } | ||
140 | } | ||
141 | if (ret) | ||
142 | atomic_inc(&ret->count); | ||
143 | spin_unlock(&info->block_group_cache_lock); | ||
144 | |||
145 | return ret; | ||
146 | } | ||
147 | |||
148 | /* | ||
149 | * this is only called by cache_block_group, since we could have freed extents | ||
150 | * we need to check the pinned_extents for any extents that can't be used yet | ||
151 | * since their free space will be released as soon as the transaction commits. | ||
152 | */ | ||
153 | static int add_new_free_space(struct btrfs_block_group_cache *block_group, | ||
154 | struct btrfs_fs_info *info, u64 start, u64 end) | ||
155 | { | ||
156 | u64 extent_start, extent_end, size; | ||
157 | int ret; | ||
158 | |||
159 | mutex_lock(&info->pinned_mutex); | ||
160 | while (start < end) { | ||
161 | ret = find_first_extent_bit(&info->pinned_extents, start, | ||
162 | &extent_start, &extent_end, | ||
163 | EXTENT_DIRTY); | ||
164 | if (ret) | ||
165 | break; | ||
166 | |||
167 | if (extent_start == start) { | ||
168 | start = extent_end + 1; | ||
169 | } else if (extent_start > start && extent_start < end) { | ||
170 | size = extent_start - start; | ||
171 | ret = btrfs_add_free_space(block_group, start, | ||
172 | size); | ||
173 | BUG_ON(ret); | ||
174 | start = extent_end + 1; | ||
175 | } else { | ||
176 | break; | ||
177 | } | ||
178 | } | ||
179 | |||
180 | if (start < end) { | ||
181 | size = end - start; | ||
182 | ret = btrfs_add_free_space(block_group, start, size); | ||
183 | BUG_ON(ret); | ||
184 | } | ||
185 | mutex_unlock(&info->pinned_mutex); | ||
186 | |||
187 | return 0; | ||
188 | } | ||
189 | |||
190 | static int remove_sb_from_cache(struct btrfs_root *root, | ||
191 | struct btrfs_block_group_cache *cache) | ||
192 | { | ||
193 | u64 bytenr; | ||
194 | u64 *logical; | ||
195 | int stripe_len; | ||
196 | int i, nr, ret; | ||
197 | |||
198 | for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { | ||
199 | bytenr = btrfs_sb_offset(i); | ||
200 | ret = btrfs_rmap_block(&root->fs_info->mapping_tree, | ||
201 | cache->key.objectid, bytenr, 0, | ||
202 | &logical, &nr, &stripe_len); | ||
203 | BUG_ON(ret); | ||
204 | while (nr--) { | ||
205 | btrfs_remove_free_space(cache, logical[nr], | ||
206 | stripe_len); | ||
207 | } | ||
208 | kfree(logical); | ||
209 | } | ||
210 | return 0; | ||
211 | } | ||
212 | |||
213 | static int cache_block_group(struct btrfs_root *root, | ||
214 | struct btrfs_block_group_cache *block_group) | ||
215 | { | ||
216 | struct btrfs_path *path; | ||
217 | int ret = 0; | ||
218 | struct btrfs_key key; | ||
219 | struct extent_buffer *leaf; | ||
220 | int slot; | ||
221 | u64 last; | ||
222 | |||
223 | if (!block_group) | ||
224 | return 0; | ||
225 | |||
226 | root = root->fs_info->extent_root; | ||
227 | |||
228 | if (block_group->cached) | ||
229 | return 0; | ||
230 | |||
231 | path = btrfs_alloc_path(); | ||
232 | if (!path) | ||
233 | return -ENOMEM; | ||
234 | |||
235 | path->reada = 2; | ||
236 | /* | ||
237 | * we get into deadlocks with paths held by callers of this function. | ||
238 | * since the alloc_mutex is protecting things right now, just | ||
239 | * skip the locking here | ||
240 | */ | ||
241 | path->skip_locking = 1; | ||
242 | last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET); | ||
243 | key.objectid = last; | ||
244 | key.offset = 0; | ||
245 | btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY); | ||
246 | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | ||
247 | if (ret < 0) | ||
248 | goto err; | ||
249 | |||
250 | while (1) { | ||
251 | leaf = path->nodes[0]; | ||
252 | slot = path->slots[0]; | ||
253 | if (slot >= btrfs_header_nritems(leaf)) { | ||
254 | ret = btrfs_next_leaf(root, path); | ||
255 | if (ret < 0) | ||
256 | goto err; | ||
257 | if (ret == 0) | ||
258 | continue; | ||
259 | else | ||
260 | break; | ||
261 | } | ||
262 | btrfs_item_key_to_cpu(leaf, &key, slot); | ||
263 | if (key.objectid < block_group->key.objectid) | ||
264 | goto next; | ||
265 | |||
266 | if (key.objectid >= block_group->key.objectid + | ||
267 | block_group->key.offset) | ||
268 | break; | ||
269 | |||
270 | if (btrfs_key_type(&key) == BTRFS_EXTENT_ITEM_KEY) { | ||
271 | add_new_free_space(block_group, root->fs_info, last, | ||
272 | key.objectid); | ||
273 | |||
274 | last = key.objectid + key.offset; | ||
275 | } | ||
276 | next: | ||
277 | path->slots[0]++; | ||
278 | } | ||
279 | |||
280 | add_new_free_space(block_group, root->fs_info, last, | ||
281 | block_group->key.objectid + | ||
282 | block_group->key.offset); | ||
283 | |||
284 | remove_sb_from_cache(root, block_group); | ||
285 | block_group->cached = 1; | ||
286 | ret = 0; | ||
287 | err: | ||
288 | btrfs_free_path(path); | ||
289 | return ret; | ||
290 | } | ||
291 | |||
292 | /* | ||
293 | * return the block group that starts at or after bytenr | ||
294 | */ | ||
295 | static struct btrfs_block_group_cache * | ||
296 | btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr) | ||
297 | { | ||
298 | struct btrfs_block_group_cache *cache; | ||
299 | |||
300 | cache = block_group_cache_tree_search(info, bytenr, 0); | ||
301 | |||
302 | return cache; | ||
303 | } | ||
304 | |||
305 | /* | ||
306 | * return the block group that contains teh given bytenr | ||
307 | */ | ||
308 | struct btrfs_block_group_cache *btrfs_lookup_block_group( | ||
309 | struct btrfs_fs_info *info, | ||
310 | u64 bytenr) | ||
311 | { | ||
312 | struct btrfs_block_group_cache *cache; | ||
313 | |||
314 | cache = block_group_cache_tree_search(info, bytenr, 1); | ||
315 | |||
316 | return cache; | ||
317 | } | ||
318 | |||
319 | static inline void put_block_group(struct btrfs_block_group_cache *cache) | ||
320 | { | ||
321 | if (atomic_dec_and_test(&cache->count)) | ||
322 | kfree(cache); | ||
323 | } | ||
324 | |||
325 | static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info, | ||
326 | u64 flags) | ||
327 | { | ||
328 | struct list_head *head = &info->space_info; | ||
329 | struct list_head *cur; | ||
330 | struct btrfs_space_info *found; | ||
331 | list_for_each(cur, head) { | ||
332 | found = list_entry(cur, struct btrfs_space_info, list); | ||
333 | if (found->flags == flags) | ||
334 | return found; | ||
335 | } | ||
336 | return NULL; | ||
337 | } | ||
338 | |||
339 | static u64 div_factor(u64 num, int factor) | ||
340 | { | ||
341 | if (factor == 10) | ||
342 | return num; | ||
343 | num *= factor; | ||
344 | do_div(num, 10); | ||
345 | return num; | ||
346 | } | ||
347 | |||
348 | u64 btrfs_find_block_group(struct btrfs_root *root, | ||
349 | u64 search_start, u64 search_hint, int owner) | ||
350 | { | ||
351 | struct btrfs_block_group_cache *cache; | ||
352 | u64 used; | ||
353 | u64 last = max(search_hint, search_start); | ||
354 | u64 group_start = 0; | ||
355 | int full_search = 0; | ||
356 | int factor = 9; | ||
357 | int wrapped = 0; | ||
358 | again: | ||
359 | while (1) { | ||
360 | cache = btrfs_lookup_first_block_group(root->fs_info, last); | ||
361 | if (!cache) | ||
362 | break; | ||
363 | |||
364 | spin_lock(&cache->lock); | ||
365 | last = cache->key.objectid + cache->key.offset; | ||
366 | used = btrfs_block_group_used(&cache->item); | ||
367 | |||
368 | if ((full_search || !cache->ro) && | ||
369 | block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) { | ||
370 | if (used + cache->pinned + cache->reserved < | ||
371 | div_factor(cache->key.offset, factor)) { | ||
372 | group_start = cache->key.objectid; | ||
373 | spin_unlock(&cache->lock); | ||
374 | put_block_group(cache); | ||
375 | goto found; | ||
376 | } | ||
377 | } | ||
378 | spin_unlock(&cache->lock); | ||
379 | put_block_group(cache); | ||
380 | cond_resched(); | ||
381 | } | ||
382 | if (!wrapped) { | ||
383 | last = search_start; | ||
384 | wrapped = 1; | ||
385 | goto again; | ||
386 | } | ||
387 | if (!full_search && factor < 10) { | ||
388 | last = search_start; | ||
389 | full_search = 1; | ||
390 | factor = 10; | ||
391 | goto again; | ||
392 | } | ||
393 | found: | ||
394 | return group_start; | ||
395 | } | ||
396 | |||
397 | /* simple helper to search for an existing extent at a given offset */ | ||
398 | int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len) | ||
399 | { | ||
400 | int ret; | ||
401 | struct btrfs_key key; | ||
402 | struct btrfs_path *path; | ||
403 | |||
404 | path = btrfs_alloc_path(); | ||
405 | BUG_ON(!path); | ||
406 | key.objectid = start; | ||
407 | key.offset = len; | ||
408 | btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY); | ||
409 | ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path, | ||
410 | 0, 0); | ||
411 | btrfs_free_path(path); | ||
412 | return ret; | ||
413 | } | ||
414 | |||
415 | /* | ||
416 | * Back reference rules. Back refs have three main goals: | ||
417 | * | ||
418 | * 1) differentiate between all holders of references to an extent so that | ||
419 | * when a reference is dropped we can make sure it was a valid reference | ||
420 | * before freeing the extent. | ||
421 | * | ||
422 | * 2) Provide enough information to quickly find the holders of an extent | ||
423 | * if we notice a given block is corrupted or bad. | ||
424 | * | ||
425 | * 3) Make it easy to migrate blocks for FS shrinking or storage pool | ||
426 | * maintenance. This is actually the same as #2, but with a slightly | ||
427 | * different use case. | ||
428 | * | ||
429 | * File extents can be referenced by: | ||
430 | * | ||
431 | * - multiple snapshots, subvolumes, or different generations in one subvol | ||
432 | * - different files inside a single subvolume | ||
433 | * - different offsets inside a file (bookend extents in file.c) | ||
434 | * | ||
435 | * The extent ref structure has fields for: | ||
436 | * | ||
437 | * - Objectid of the subvolume root | ||
438 | * - Generation number of the tree holding the reference | ||
439 | * - objectid of the file holding the reference | ||
440 | * - number of references holding by parent node (alway 1 for tree blocks) | ||
441 | * | ||
442 | * Btree leaf may hold multiple references to a file extent. In most cases, | ||
443 | * these references are from same file and the corresponding offsets inside | ||
444 | * the file are close together. | ||
445 | * | ||
446 | * When a file extent is allocated the fields are filled in: | ||
447 | * (root_key.objectid, trans->transid, inode objectid, 1) | ||
448 | * | ||
449 | * When a leaf is cow'd new references are added for every file extent found | ||
450 | * in the leaf. It looks similar to the create case, but trans->transid will | ||
451 | * be different when the block is cow'd. | ||
452 | * | ||
453 | * (root_key.objectid, trans->transid, inode objectid, | ||
454 | * number of references in the leaf) | ||
455 | * | ||
456 | * When a file extent is removed either during snapshot deletion or | ||
457 | * file truncation, we find the corresponding back reference and check | ||
458 | * the following fields: | ||
459 | * | ||
460 | * (btrfs_header_owner(leaf), btrfs_header_generation(leaf), | ||
461 | * inode objectid) | ||
462 | * | ||
463 | * Btree extents can be referenced by: | ||
464 | * | ||
465 | * - Different subvolumes | ||
466 | * - Different generations of the same subvolume | ||
467 | * | ||
468 | * When a tree block is created, back references are inserted: | ||
469 | * | ||
470 | * (root->root_key.objectid, trans->transid, level, 1) | ||
471 | * | ||
472 | * When a tree block is cow'd, new back references are added for all the | ||
473 | * blocks it points to. If the tree block isn't in reference counted root, | ||
474 | * the old back references are removed. These new back references are of | ||
475 | * the form (trans->transid will have increased since creation): | ||
476 | * | ||
477 | * (root->root_key.objectid, trans->transid, level, 1) | ||
478 | * | ||
479 | * When a backref is in deleting, the following fields are checked: | ||
480 | * | ||
481 | * if backref was for a tree root: | ||
482 | * (btrfs_header_owner(itself), btrfs_header_generation(itself), level) | ||
483 | * else | ||
484 | * (btrfs_header_owner(parent), btrfs_header_generation(parent), level) | ||
485 | * | ||
486 | * Back Reference Key composing: | ||
487 | * | ||
488 | * The key objectid corresponds to the first byte in the extent, the key | ||
489 | * type is set to BTRFS_EXTENT_REF_KEY, and the key offset is the first | ||
490 | * byte of parent extent. If a extent is tree root, the key offset is set | ||
491 | * to the key objectid. | ||
492 | */ | ||
493 | |||
494 | static noinline int lookup_extent_backref(struct btrfs_trans_handle *trans, | ||
495 | struct btrfs_root *root, | ||
496 | struct btrfs_path *path, | ||
497 | u64 bytenr, u64 parent, | ||
498 | u64 ref_root, u64 ref_generation, | ||
499 | u64 owner_objectid, int del) | ||
500 | { | ||
501 | struct btrfs_key key; | ||
502 | struct btrfs_extent_ref *ref; | ||
503 | struct extent_buffer *leaf; | ||
504 | u64 ref_objectid; | ||
505 | int ret; | ||
506 | |||
507 | key.objectid = bytenr; | ||
508 | key.type = BTRFS_EXTENT_REF_KEY; | ||
509 | key.offset = parent; | ||
510 | |||
511 | ret = btrfs_search_slot(trans, root, &key, path, del ? -1 : 0, 1); | ||
512 | if (ret < 0) | ||
513 | goto out; | ||
514 | if (ret > 0) { | ||
515 | ret = -ENOENT; | ||
516 | goto out; | ||
517 | } | ||
518 | |||
519 | leaf = path->nodes[0]; | ||
520 | ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_ref); | ||
521 | ref_objectid = btrfs_ref_objectid(leaf, ref); | ||
522 | if (btrfs_ref_root(leaf, ref) != ref_root || | ||
523 | btrfs_ref_generation(leaf, ref) != ref_generation || | ||
524 | (ref_objectid != owner_objectid && | ||
525 | ref_objectid != BTRFS_MULTIPLE_OBJECTIDS)) { | ||
526 | ret = -EIO; | ||
527 | WARN_ON(1); | ||
528 | goto out; | ||
529 | } | ||
530 | ret = 0; | ||
531 | out: | ||
532 | return ret; | ||
533 | } | ||
534 | |||
535 | /* | ||
536 | * updates all the backrefs that are pending on update_list for the | ||
537 | * extent_root | ||
538 | */ | ||
539 | static noinline int update_backrefs(struct btrfs_trans_handle *trans, | ||
540 | struct btrfs_root *extent_root, | ||
541 | struct btrfs_path *path, | ||
542 | struct list_head *update_list) | ||
543 | { | ||
544 | struct btrfs_key key; | ||
545 | struct btrfs_extent_ref *ref; | ||
546 | struct btrfs_fs_info *info = extent_root->fs_info; | ||
547 | struct pending_extent_op *op; | ||
548 | struct extent_buffer *leaf; | ||
549 | int ret = 0; | ||
550 | struct list_head *cur = update_list->next; | ||
551 | u64 ref_objectid; | ||
552 | u64 ref_root = extent_root->root_key.objectid; | ||
553 | |||
554 | op = list_entry(cur, struct pending_extent_op, list); | ||
555 | |||
556 | search: | ||
557 | key.objectid = op->bytenr; | ||
558 | key.type = BTRFS_EXTENT_REF_KEY; | ||
559 | key.offset = op->orig_parent; | ||
560 | |||
561 | ret = btrfs_search_slot(trans, extent_root, &key, path, 0, 1); | ||
562 | BUG_ON(ret); | ||
563 | |||
564 | leaf = path->nodes[0]; | ||
565 | |||
566 | loop: | ||
567 | ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_ref); | ||
568 | |||
569 | ref_objectid = btrfs_ref_objectid(leaf, ref); | ||
570 | |||
571 | if (btrfs_ref_root(leaf, ref) != ref_root || | ||
572 | btrfs_ref_generation(leaf, ref) != op->orig_generation || | ||
573 | (ref_objectid != op->level && | ||
574 | ref_objectid != BTRFS_MULTIPLE_OBJECTIDS)) { | ||
575 | printk(KERN_ERR "btrfs couldn't find %llu, parent %llu, " | ||
576 | "root %llu, owner %u\n", | ||
577 | (unsigned long long)op->bytenr, | ||
578 | (unsigned long long)op->orig_parent, | ||
579 | (unsigned long long)ref_root, op->level); | ||
580 | btrfs_print_leaf(extent_root, leaf); | ||
581 | BUG(); | ||
582 | } | ||
583 | |||
584 | key.objectid = op->bytenr; | ||
585 | key.offset = op->parent; | ||
586 | key.type = BTRFS_EXTENT_REF_KEY; | ||
587 | ret = btrfs_set_item_key_safe(trans, extent_root, path, &key); | ||
588 | BUG_ON(ret); | ||
589 | ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_ref); | ||
590 | btrfs_set_ref_generation(leaf, ref, op->generation); | ||
591 | |||
592 | cur = cur->next; | ||
593 | |||
594 | list_del_init(&op->list); | ||
595 | unlock_extent(&info->extent_ins, op->bytenr, | ||
596 | op->bytenr + op->num_bytes - 1, GFP_NOFS); | ||
597 | kfree(op); | ||
598 | |||
599 | if (cur == update_list) { | ||
600 | btrfs_mark_buffer_dirty(path->nodes[0]); | ||
601 | btrfs_release_path(extent_root, path); | ||
602 | goto out; | ||
603 | } | ||
604 | |||
605 | op = list_entry(cur, struct pending_extent_op, list); | ||
606 | |||
607 | path->slots[0]++; | ||
608 | while (path->slots[0] < btrfs_header_nritems(leaf)) { | ||
609 | btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); | ||
610 | if (key.objectid == op->bytenr && | ||
611 | key.type == BTRFS_EXTENT_REF_KEY) | ||
612 | goto loop; | ||
613 | path->slots[0]++; | ||
614 | } | ||
615 | |||
616 | btrfs_mark_buffer_dirty(path->nodes[0]); | ||
617 | btrfs_release_path(extent_root, path); | ||
618 | goto search; | ||
619 | |||
620 | out: | ||
621 | return 0; | ||
622 | } | ||
623 | |||
624 | static noinline int insert_extents(struct btrfs_trans_handle *trans, | ||
625 | struct btrfs_root *extent_root, | ||
626 | struct btrfs_path *path, | ||
627 | struct list_head *insert_list, int nr) | ||
628 | { | ||
629 | struct btrfs_key *keys; | ||
630 | u32 *data_size; | ||
631 | struct pending_extent_op *op; | ||
632 | struct extent_buffer *leaf; | ||
633 | struct list_head *cur = insert_list->next; | ||
634 | struct btrfs_fs_info *info = extent_root->fs_info; | ||
635 | u64 ref_root = extent_root->root_key.objectid; | ||
636 | int i = 0, last = 0, ret; | ||
637 | int total = nr * 2; | ||
638 | |||
639 | if (!nr) | ||
640 | return 0; | ||
641 | |||
642 | keys = kzalloc(total * sizeof(struct btrfs_key), GFP_NOFS); | ||
643 | if (!keys) | ||
644 | return -ENOMEM; | ||
645 | |||
646 | data_size = kzalloc(total * sizeof(u32), GFP_NOFS); | ||
647 | if (!data_size) { | ||
648 | kfree(keys); | ||
649 | return -ENOMEM; | ||
650 | } | ||
651 | |||
652 | list_for_each_entry(op, insert_list, list) { | ||
653 | keys[i].objectid = op->bytenr; | ||
654 | keys[i].offset = op->num_bytes; | ||
655 | keys[i].type = BTRFS_EXTENT_ITEM_KEY; | ||
656 | data_size[i] = sizeof(struct btrfs_extent_item); | ||
657 | i++; | ||
658 | |||
659 | keys[i].objectid = op->bytenr; | ||
660 | keys[i].offset = op->parent; | ||
661 | keys[i].type = BTRFS_EXTENT_REF_KEY; | ||
662 | data_size[i] = sizeof(struct btrfs_extent_ref); | ||
663 | i++; | ||
664 | } | ||
665 | |||
666 | op = list_entry(cur, struct pending_extent_op, list); | ||
667 | i = 0; | ||
668 | while (i < total) { | ||
669 | int c; | ||
670 | ret = btrfs_insert_some_items(trans, extent_root, path, | ||
671 | keys+i, data_size+i, total-i); | ||
672 | BUG_ON(ret < 0); | ||
673 | |||
674 | if (last && ret > 1) | ||
675 | BUG(); | ||
676 | |||
677 | leaf = path->nodes[0]; | ||
678 | for (c = 0; c < ret; c++) { | ||
679 | int ref_first = keys[i].type == BTRFS_EXTENT_REF_KEY; | ||
680 | |||
681 | /* | ||
682 | * if the first item we inserted was a backref, then | ||
683 | * the EXTENT_ITEM will be the odd c's, else it will | ||
684 | * be the even c's | ||
685 | */ | ||
686 | if ((ref_first && (c % 2)) || | ||
687 | (!ref_first && !(c % 2))) { | ||
688 | struct btrfs_extent_item *itm; | ||
689 | |||
690 | itm = btrfs_item_ptr(leaf, path->slots[0] + c, | ||
691 | struct btrfs_extent_item); | ||
692 | btrfs_set_extent_refs(path->nodes[0], itm, 1); | ||
693 | op->del++; | ||
694 | } else { | ||
695 | struct btrfs_extent_ref *ref; | ||
696 | |||
697 | ref = btrfs_item_ptr(leaf, path->slots[0] + c, | ||
698 | struct btrfs_extent_ref); | ||
699 | btrfs_set_ref_root(leaf, ref, ref_root); | ||
700 | btrfs_set_ref_generation(leaf, ref, | ||
701 | op->generation); | ||
702 | btrfs_set_ref_objectid(leaf, ref, op->level); | ||
703 | btrfs_set_ref_num_refs(leaf, ref, 1); | ||
704 | op->del++; | ||
705 | } | ||
706 | |||
707 | /* | ||
708 | * using del to see when its ok to free up the | ||
709 | * pending_extent_op. In the case where we insert the | ||
710 | * last item on the list in order to help do batching | ||
711 | * we need to not free the extent op until we actually | ||
712 | * insert the extent_item | ||
713 | */ | ||
714 | if (op->del == 2) { | ||
715 | unlock_extent(&info->extent_ins, op->bytenr, | ||
716 | op->bytenr + op->num_bytes - 1, | ||
717 | GFP_NOFS); | ||
718 | cur = cur->next; | ||
719 | list_del_init(&op->list); | ||
720 | kfree(op); | ||
721 | if (cur != insert_list) | ||
722 | op = list_entry(cur, | ||
723 | struct pending_extent_op, | ||
724 | list); | ||
725 | } | ||
726 | } | ||
727 | btrfs_mark_buffer_dirty(leaf); | ||
728 | btrfs_release_path(extent_root, path); | ||
729 | |||
730 | /* | ||
731 | * Ok backref's and items usually go right next to eachother, | ||
732 | * but if we could only insert 1 item that means that we | ||
733 | * inserted on the end of a leaf, and we have no idea what may | ||
734 | * be on the next leaf so we just play it safe. In order to | ||
735 | * try and help this case we insert the last thing on our | ||
736 | * insert list so hopefully it will end up being the last | ||
737 | * thing on the leaf and everything else will be before it, | ||
738 | * which will let us insert a whole bunch of items at the same | ||
739 | * time. | ||
740 | */ | ||
741 | if (ret == 1 && !last && (i + ret < total)) { | ||
742 | /* | ||
743 | * last: where we will pick up the next time around | ||
744 | * i: our current key to insert, will be total - 1 | ||
745 | * cur: the current op we are screwing with | ||
746 | * op: duh | ||
747 | */ | ||
748 | last = i + ret; | ||
749 | i = total - 1; | ||
750 | cur = insert_list->prev; | ||
751 | op = list_entry(cur, struct pending_extent_op, list); | ||
752 | } else if (last) { | ||
753 | /* | ||
754 | * ok we successfully inserted the last item on the | ||
755 | * list, lets reset everything | ||
756 | * | ||
757 | * i: our current key to insert, so where we left off | ||
758 | * last time | ||
759 | * last: done with this | ||
760 | * cur: the op we are messing with | ||
761 | * op: duh | ||
762 | * total: since we inserted the last key, we need to | ||
763 | * decrement total so we dont overflow | ||
764 | */ | ||
765 | i = last; | ||
766 | last = 0; | ||
767 | total--; | ||
768 | if (i < total) { | ||
769 | cur = insert_list->next; | ||
770 | op = list_entry(cur, struct pending_extent_op, | ||
771 | list); | ||
772 | } | ||
773 | } else { | ||
774 | i += ret; | ||
775 | } | ||
776 | |||
777 | cond_resched(); | ||
778 | } | ||
779 | ret = 0; | ||
780 | kfree(keys); | ||
781 | kfree(data_size); | ||
782 | return ret; | ||
783 | } | ||
784 | |||
785 | static noinline int insert_extent_backref(struct btrfs_trans_handle *trans, | ||
786 | struct btrfs_root *root, | ||
787 | struct btrfs_path *path, | ||
788 | u64 bytenr, u64 parent, | ||
789 | u64 ref_root, u64 ref_generation, | ||
790 | u64 owner_objectid) | ||
791 | { | ||
792 | struct btrfs_key key; | ||
793 | struct extent_buffer *leaf; | ||
794 | struct btrfs_extent_ref *ref; | ||
795 | u32 num_refs; | ||
796 | int ret; | ||
797 | |||
798 | key.objectid = bytenr; | ||
799 | key.type = BTRFS_EXTENT_REF_KEY; | ||
800 | key.offset = parent; | ||
801 | |||
802 | ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*ref)); | ||
803 | if (ret == 0) { | ||
804 | leaf = path->nodes[0]; | ||
805 | ref = btrfs_item_ptr(leaf, path->slots[0], | ||
806 | struct btrfs_extent_ref); | ||
807 | btrfs_set_ref_root(leaf, ref, ref_root); | ||
808 | btrfs_set_ref_generation(leaf, ref, ref_generation); | ||
809 | btrfs_set_ref_objectid(leaf, ref, owner_objectid); | ||
810 | btrfs_set_ref_num_refs(leaf, ref, 1); | ||
811 | } else if (ret == -EEXIST) { | ||
812 | u64 existing_owner; | ||
813 | BUG_ON(owner_objectid < BTRFS_FIRST_FREE_OBJECTID); | ||
814 | leaf = path->nodes[0]; | ||
815 | ref = btrfs_item_ptr(leaf, path->slots[0], | ||
816 | struct btrfs_extent_ref); | ||
817 | if (btrfs_ref_root(leaf, ref) != ref_root || | ||
818 | btrfs_ref_generation(leaf, ref) != ref_generation) { | ||
819 | ret = -EIO; | ||
820 | WARN_ON(1); | ||
821 | goto out; | ||
822 | } | ||
823 | |||
824 | num_refs = btrfs_ref_num_refs(leaf, ref); | ||
825 | BUG_ON(num_refs == 0); | ||
826 | btrfs_set_ref_num_refs(leaf, ref, num_refs + 1); | ||
827 | |||
828 | existing_owner = btrfs_ref_objectid(leaf, ref); | ||
829 | if (existing_owner != owner_objectid && | ||
830 | existing_owner != BTRFS_MULTIPLE_OBJECTIDS) { | ||
831 | btrfs_set_ref_objectid(leaf, ref, | ||
832 | BTRFS_MULTIPLE_OBJECTIDS); | ||
833 | } | ||
834 | ret = 0; | ||
835 | } else { | ||
836 | goto out; | ||
837 | } | ||
838 | btrfs_mark_buffer_dirty(path->nodes[0]); | ||
839 | out: | ||
840 | btrfs_release_path(root, path); | ||
841 | return ret; | ||
842 | } | ||
843 | |||
844 | static noinline int remove_extent_backref(struct btrfs_trans_handle *trans, | ||
845 | struct btrfs_root *root, | ||
846 | struct btrfs_path *path) | ||
847 | { | ||
848 | struct extent_buffer *leaf; | ||
849 | struct btrfs_extent_ref *ref; | ||
850 | u32 num_refs; | ||
851 | int ret = 0; | ||
852 | |||
853 | leaf = path->nodes[0]; | ||
854 | ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_ref); | ||
855 | num_refs = btrfs_ref_num_refs(leaf, ref); | ||
856 | BUG_ON(num_refs == 0); | ||
857 | num_refs -= 1; | ||
858 | if (num_refs == 0) { | ||
859 | ret = btrfs_del_item(trans, root, path); | ||
860 | } else { | ||
861 | btrfs_set_ref_num_refs(leaf, ref, num_refs); | ||
862 | btrfs_mark_buffer_dirty(leaf); | ||
863 | } | ||
864 | btrfs_release_path(root, path); | ||
865 | return ret; | ||
866 | } | ||
867 | |||
868 | #ifdef BIO_RW_DISCARD | ||
869 | static void btrfs_issue_discard(struct block_device *bdev, | ||
870 | u64 start, u64 len) | ||
871 | { | ||
872 | #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 28) | ||
873 | blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_KERNEL); | ||
874 | #else | ||
875 | blkdev_issue_discard(bdev, start >> 9, len >> 9); | ||
876 | #endif | ||
877 | } | ||
878 | #endif | ||
879 | |||
880 | static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr, | ||
881 | u64 num_bytes) | ||
882 | { | ||
883 | #ifdef BIO_RW_DISCARD | ||
884 | int ret; | ||
885 | u64 map_length = num_bytes; | ||
886 | struct btrfs_multi_bio *multi = NULL; | ||
887 | |||
888 | /* Tell the block device(s) that the sectors can be discarded */ | ||
889 | ret = btrfs_map_block(&root->fs_info->mapping_tree, READ, | ||
890 | bytenr, &map_length, &multi, 0); | ||
891 | if (!ret) { | ||
892 | struct btrfs_bio_stripe *stripe = multi->stripes; | ||
893 | int i; | ||
894 | |||
895 | if (map_length > num_bytes) | ||
896 | map_length = num_bytes; | ||
897 | |||
898 | for (i = 0; i < multi->num_stripes; i++, stripe++) { | ||
899 | btrfs_issue_discard(stripe->dev->bdev, | ||
900 | stripe->physical, | ||
901 | map_length); | ||
902 | } | ||
903 | kfree(multi); | ||
904 | } | ||
905 | |||
906 | return ret; | ||
907 | #else | ||
908 | return 0; | ||
909 | #endif | ||
910 | } | ||
911 | |||
912 | static noinline int free_extents(struct btrfs_trans_handle *trans, | ||
913 | struct btrfs_root *extent_root, | ||
914 | struct list_head *del_list) | ||
915 | { | ||
916 | struct btrfs_fs_info *info = extent_root->fs_info; | ||
917 | struct btrfs_path *path; | ||
918 | struct btrfs_key key, found_key; | ||
919 | struct extent_buffer *leaf; | ||
920 | struct list_head *cur; | ||
921 | struct pending_extent_op *op; | ||
922 | struct btrfs_extent_item *ei; | ||
923 | int ret, num_to_del, extent_slot = 0, found_extent = 0; | ||
924 | u32 refs; | ||
925 | u64 bytes_freed = 0; | ||
926 | |||
927 | path = btrfs_alloc_path(); | ||
928 | if (!path) | ||
929 | return -ENOMEM; | ||
930 | path->reada = 1; | ||
931 | |||
932 | search: | ||
933 | /* search for the backref for the current ref we want to delete */ | ||
934 | cur = del_list->next; | ||
935 | op = list_entry(cur, struct pending_extent_op, list); | ||
936 | ret = lookup_extent_backref(trans, extent_root, path, op->bytenr, | ||
937 | op->orig_parent, | ||
938 | extent_root->root_key.objectid, | ||
939 | op->orig_generation, op->level, 1); | ||
940 | if (ret) { | ||
941 | printk(KERN_ERR "btrfs unable to find backref byte nr %llu " | ||
942 | "root %llu gen %llu owner %u\n", | ||
943 | (unsigned long long)op->bytenr, | ||
944 | (unsigned long long)extent_root->root_key.objectid, | ||
945 | (unsigned long long)op->orig_generation, op->level); | ||
946 | btrfs_print_leaf(extent_root, path->nodes[0]); | ||
947 | WARN_ON(1); | ||
948 | goto out; | ||
949 | } | ||
950 | |||
951 | extent_slot = path->slots[0]; | ||
952 | num_to_del = 1; | ||
953 | found_extent = 0; | ||
954 | |||
955 | /* | ||
956 | * if we aren't the first item on the leaf we can move back one and see | ||
957 | * if our ref is right next to our extent item | ||
958 | */ | ||
959 | if (likely(extent_slot)) { | ||
960 | extent_slot--; | ||
961 | btrfs_item_key_to_cpu(path->nodes[0], &found_key, | ||
962 | extent_slot); | ||
963 | if (found_key.objectid == op->bytenr && | ||
964 | found_key.type == BTRFS_EXTENT_ITEM_KEY && | ||
965 | found_key.offset == op->num_bytes) { | ||
966 | num_to_del++; | ||
967 | found_extent = 1; | ||
968 | } | ||
969 | } | ||
970 | |||
971 | /* | ||
972 | * if we didn't find the extent we need to delete the backref and then | ||
973 | * search for the extent item key so we can update its ref count | ||
974 | */ | ||
975 | if (!found_extent) { | ||
976 | key.objectid = op->bytenr; | ||
977 | key.type = BTRFS_EXTENT_ITEM_KEY; | ||
978 | key.offset = op->num_bytes; | ||
979 | |||
980 | ret = remove_extent_backref(trans, extent_root, path); | ||
981 | BUG_ON(ret); | ||
982 | btrfs_release_path(extent_root, path); | ||
983 | ret = btrfs_search_slot(trans, extent_root, &key, path, -1, 1); | ||
984 | BUG_ON(ret); | ||
985 | extent_slot = path->slots[0]; | ||
986 | } | ||
987 | |||
988 | /* this is where we update the ref count for the extent */ | ||
989 | leaf = path->nodes[0]; | ||
990 | ei = btrfs_item_ptr(leaf, extent_slot, struct btrfs_extent_item); | ||
991 | refs = btrfs_extent_refs(leaf, ei); | ||
992 | BUG_ON(refs == 0); | ||
993 | refs--; | ||
994 | btrfs_set_extent_refs(leaf, ei, refs); | ||
995 | |||
996 | btrfs_mark_buffer_dirty(leaf); | ||
997 | |||
998 | /* | ||
999 | * This extent needs deleting. The reason cur_slot is extent_slot + | ||
1000 | * num_to_del is because extent_slot points to the slot where the extent | ||
1001 | * is, and if the backref was not right next to the extent we will be | ||
1002 | * deleting at least 1 item, and will want to start searching at the | ||
1003 | * slot directly next to extent_slot. However if we did find the | ||
1004 | * backref next to the extent item them we will be deleting at least 2 | ||
1005 | * items and will want to start searching directly after the ref slot | ||
1006 | */ | ||
1007 | if (!refs) { | ||
1008 | struct list_head *pos, *n, *end; | ||
1009 | int cur_slot = extent_slot+num_to_del; | ||
1010 | u64 super_used; | ||
1011 | u64 root_used; | ||
1012 | |||
1013 | path->slots[0] = extent_slot; | ||
1014 | bytes_freed = op->num_bytes; | ||
1015 | |||
1016 | mutex_lock(&info->pinned_mutex); | ||
1017 | ret = pin_down_bytes(trans, extent_root, op->bytenr, | ||
1018 | op->num_bytes, op->level >= | ||
1019 | BTRFS_FIRST_FREE_OBJECTID); | ||
1020 | mutex_unlock(&info->pinned_mutex); | ||
1021 | BUG_ON(ret < 0); | ||
1022 | op->del = ret; | ||
1023 | |||
1024 | /* | ||
1025 | * we need to see if we can delete multiple things at once, so | ||
1026 | * start looping through the list of extents we are wanting to | ||
1027 | * delete and see if their extent/backref's are right next to | ||
1028 | * eachother and the extents only have 1 ref | ||
1029 | */ | ||
1030 | for (pos = cur->next; pos != del_list; pos = pos->next) { | ||
1031 | struct pending_extent_op *tmp; | ||
1032 | |||
1033 | tmp = list_entry(pos, struct pending_extent_op, list); | ||
1034 | |||
1035 | /* we only want to delete extent+ref at this stage */ | ||
1036 | if (cur_slot >= btrfs_header_nritems(leaf) - 1) | ||
1037 | break; | ||
1038 | |||
1039 | btrfs_item_key_to_cpu(leaf, &found_key, cur_slot); | ||
1040 | if (found_key.objectid != tmp->bytenr || | ||
1041 | found_key.type != BTRFS_EXTENT_ITEM_KEY || | ||
1042 | found_key.offset != tmp->num_bytes) | ||
1043 | break; | ||
1044 | |||
1045 | /* check to make sure this extent only has one ref */ | ||
1046 | ei = btrfs_item_ptr(leaf, cur_slot, | ||
1047 | struct btrfs_extent_item); | ||
1048 | if (btrfs_extent_refs(leaf, ei) != 1) | ||
1049 | break; | ||
1050 | |||
1051 | btrfs_item_key_to_cpu(leaf, &found_key, cur_slot+1); | ||
1052 | if (found_key.objectid != tmp->bytenr || | ||
1053 | found_key.type != BTRFS_EXTENT_REF_KEY || | ||
1054 | found_key.offset != tmp->orig_parent) | ||
1055 | break; | ||
1056 | |||
1057 | /* | ||
1058 | * the ref is right next to the extent, we can set the | ||
1059 | * ref count to 0 since we will delete them both now | ||
1060 | */ | ||
1061 | btrfs_set_extent_refs(leaf, ei, 0); | ||
1062 | |||
1063 | /* pin down the bytes for this extent */ | ||
1064 | mutex_lock(&info->pinned_mutex); | ||
1065 | ret = pin_down_bytes(trans, extent_root, tmp->bytenr, | ||
1066 | tmp->num_bytes, tmp->level >= | ||
1067 | BTRFS_FIRST_FREE_OBJECTID); | ||
1068 | mutex_unlock(&info->pinned_mutex); | ||
1069 | BUG_ON(ret < 0); | ||
1070 | |||
1071 | /* | ||
1072 | * use the del field to tell if we need to go ahead and | ||
1073 | * free up the extent when we delete the item or not. | ||
1074 | */ | ||
1075 | tmp->del = ret; | ||
1076 | bytes_freed += tmp->num_bytes; | ||
1077 | |||
1078 | num_to_del += 2; | ||
1079 | cur_slot += 2; | ||
1080 | } | ||
1081 | end = pos; | ||
1082 | |||
1083 | /* update the free space counters */ | ||
1084 | spin_lock(&info->delalloc_lock); | ||
1085 | super_used = btrfs_super_bytes_used(&info->super_copy); | ||
1086 | btrfs_set_super_bytes_used(&info->super_copy, | ||
1087 | super_used - bytes_freed); | ||
1088 | |||
1089 | root_used = btrfs_root_used(&extent_root->root_item); | ||
1090 | btrfs_set_root_used(&extent_root->root_item, | ||
1091 | root_used - bytes_freed); | ||
1092 | spin_unlock(&info->delalloc_lock); | ||
1093 | |||
1094 | /* delete the items */ | ||
1095 | ret = btrfs_del_items(trans, extent_root, path, | ||
1096 | path->slots[0], num_to_del); | ||
1097 | BUG_ON(ret); | ||
1098 | |||
1099 | /* | ||
1100 | * loop through the extents we deleted and do the cleanup work | ||
1101 | * on them | ||
1102 | */ | ||
1103 | for (pos = cur, n = pos->next; pos != end; | ||
1104 | pos = n, n = pos->next) { | ||
1105 | struct pending_extent_op *tmp; | ||
1106 | tmp = list_entry(pos, struct pending_extent_op, list); | ||
1107 | |||
1108 | /* | ||
1109 | * remember tmp->del tells us wether or not we pinned | ||
1110 | * down the extent | ||
1111 | */ | ||
1112 | ret = update_block_group(trans, extent_root, | ||
1113 | tmp->bytenr, tmp->num_bytes, 0, | ||
1114 | tmp->del); | ||
1115 | BUG_ON(ret); | ||
1116 | |||
1117 | list_del_init(&tmp->list); | ||
1118 | unlock_extent(&info->extent_ins, tmp->bytenr, | ||
1119 | tmp->bytenr + tmp->num_bytes - 1, | ||
1120 | GFP_NOFS); | ||
1121 | kfree(tmp); | ||
1122 | } | ||
1123 | } else if (refs && found_extent) { | ||
1124 | /* | ||
1125 | * the ref and extent were right next to eachother, but the | ||
1126 | * extent still has a ref, so just free the backref and keep | ||
1127 | * going | ||
1128 | */ | ||
1129 | ret = remove_extent_backref(trans, extent_root, path); | ||
1130 | BUG_ON(ret); | ||
1131 | |||
1132 | list_del_init(&op->list); | ||
1133 | unlock_extent(&info->extent_ins, op->bytenr, | ||
1134 | op->bytenr + op->num_bytes - 1, GFP_NOFS); | ||
1135 | kfree(op); | ||
1136 | } else { | ||
1137 | /* | ||
1138 | * the extent has multiple refs and the backref we were looking | ||
1139 | * for was not right next to it, so just unlock and go next, | ||
1140 | * we're good to go | ||
1141 | */ | ||
1142 | list_del_init(&op->list); | ||
1143 | unlock_extent(&info->extent_ins, op->bytenr, | ||
1144 | op->bytenr + op->num_bytes - 1, GFP_NOFS); | ||
1145 | kfree(op); | ||
1146 | } | ||
1147 | |||
1148 | btrfs_release_path(extent_root, path); | ||
1149 | if (!list_empty(del_list)) | ||
1150 | goto search; | ||
1151 | |||
1152 | out: | ||
1153 | btrfs_free_path(path); | ||
1154 | return ret; | ||
1155 | } | ||
1156 | |||
1157 | static int __btrfs_update_extent_ref(struct btrfs_trans_handle *trans, | ||
1158 | struct btrfs_root *root, u64 bytenr, | ||
1159 | u64 orig_parent, u64 parent, | ||
1160 | u64 orig_root, u64 ref_root, | ||
1161 | u64 orig_generation, u64 ref_generation, | ||
1162 | u64 owner_objectid) | ||
1163 | { | ||
1164 | int ret; | ||
1165 | struct btrfs_root *extent_root = root->fs_info->extent_root; | ||
1166 | struct btrfs_path *path; | ||
1167 | |||
1168 | if (root == root->fs_info->extent_root) { | ||
1169 | struct pending_extent_op *extent_op; | ||
1170 | u64 num_bytes; | ||
1171 | |||
1172 | BUG_ON(owner_objectid >= BTRFS_MAX_LEVEL); | ||
1173 | num_bytes = btrfs_level_size(root, (int)owner_objectid); | ||
1174 | mutex_lock(&root->fs_info->extent_ins_mutex); | ||
1175 | if (test_range_bit(&root->fs_info->extent_ins, bytenr, | ||
1176 | bytenr + num_bytes - 1, EXTENT_WRITEBACK, 0)) { | ||
1177 | u64 priv; | ||
1178 | ret = get_state_private(&root->fs_info->extent_ins, | ||
1179 | bytenr, &priv); | ||
1180 | BUG_ON(ret); | ||
1181 | extent_op = (struct pending_extent_op *) | ||
1182 | (unsigned long)priv; | ||
1183 | BUG_ON(extent_op->parent != orig_parent); | ||
1184 | BUG_ON(extent_op->generation != orig_generation); | ||
1185 | |||
1186 | extent_op->parent = parent; | ||
1187 | extent_op->generation = ref_generation; | ||
1188 | } else { | ||
1189 | extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS); | ||
1190 | BUG_ON(!extent_op); | ||
1191 | |||
1192 | extent_op->type = PENDING_BACKREF_UPDATE; | ||
1193 | extent_op->bytenr = bytenr; | ||
1194 | extent_op->num_bytes = num_bytes; | ||
1195 | extent_op->parent = parent; | ||
1196 | extent_op->orig_parent = orig_parent; | ||
1197 | extent_op->generation = ref_generation; | ||
1198 | extent_op->orig_generation = orig_generation; | ||
1199 | extent_op->level = (int)owner_objectid; | ||
1200 | INIT_LIST_HEAD(&extent_op->list); | ||
1201 | extent_op->del = 0; | ||
1202 | |||
1203 | set_extent_bits(&root->fs_info->extent_ins, | ||
1204 | bytenr, bytenr + num_bytes - 1, | ||
1205 | EXTENT_WRITEBACK, GFP_NOFS); | ||
1206 | set_state_private(&root->fs_info->extent_ins, | ||
1207 | bytenr, (unsigned long)extent_op); | ||
1208 | } | ||
1209 | mutex_unlock(&root->fs_info->extent_ins_mutex); | ||
1210 | return 0; | ||
1211 | } | ||
1212 | |||
1213 | path = btrfs_alloc_path(); | ||
1214 | if (!path) | ||
1215 | return -ENOMEM; | ||
1216 | ret = lookup_extent_backref(trans, extent_root, path, | ||
1217 | bytenr, orig_parent, orig_root, | ||
1218 | orig_generation, owner_objectid, 1); | ||
1219 | if (ret) | ||
1220 | goto out; | ||
1221 | ret = remove_extent_backref(trans, extent_root, path); | ||
1222 | if (ret) | ||
1223 | goto out; | ||
1224 | ret = insert_extent_backref(trans, extent_root, path, bytenr, | ||
1225 | parent, ref_root, ref_generation, | ||
1226 | owner_objectid); | ||
1227 | BUG_ON(ret); | ||
1228 | finish_current_insert(trans, extent_root, 0); | ||
1229 | del_pending_extents(trans, extent_root, 0); | ||
1230 | out: | ||
1231 | btrfs_free_path(path); | ||
1232 | return ret; | ||
1233 | } | ||
1234 | |||
1235 | int btrfs_update_extent_ref(struct btrfs_trans_handle *trans, | ||
1236 | struct btrfs_root *root, u64 bytenr, | ||
1237 | u64 orig_parent, u64 parent, | ||
1238 | u64 ref_root, u64 ref_generation, | ||
1239 | u64 owner_objectid) | ||
1240 | { | ||
1241 | int ret; | ||
1242 | if (ref_root == BTRFS_TREE_LOG_OBJECTID && | ||
1243 | owner_objectid < BTRFS_FIRST_FREE_OBJECTID) | ||
1244 | return 0; | ||
1245 | ret = __btrfs_update_extent_ref(trans, root, bytenr, orig_parent, | ||
1246 | parent, ref_root, ref_root, | ||
1247 | ref_generation, ref_generation, | ||
1248 | owner_objectid); | ||
1249 | return ret; | ||
1250 | } | ||
1251 | |||
1252 | static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, | ||
1253 | struct btrfs_root *root, u64 bytenr, | ||
1254 | u64 orig_parent, u64 parent, | ||
1255 | u64 orig_root, u64 ref_root, | ||
1256 | u64 orig_generation, u64 ref_generation, | ||
1257 | u64 owner_objectid) | ||
1258 | { | ||
1259 | struct btrfs_path *path; | ||
1260 | int ret; | ||
1261 | struct btrfs_key key; | ||
1262 | struct extent_buffer *l; | ||
1263 | struct btrfs_extent_item *item; | ||
1264 | u32 refs; | ||
1265 | |||
1266 | path = btrfs_alloc_path(); | ||
1267 | if (!path) | ||
1268 | return -ENOMEM; | ||
1269 | |||
1270 | path->reada = 1; | ||
1271 | key.objectid = bytenr; | ||
1272 | key.type = BTRFS_EXTENT_ITEM_KEY; | ||
1273 | key.offset = (u64)-1; | ||
1274 | |||
1275 | ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key, path, | ||
1276 | 0, 1); | ||
1277 | if (ret < 0) | ||
1278 | return ret; | ||
1279 | BUG_ON(ret == 0 || path->slots[0] == 0); | ||
1280 | |||
1281 | path->slots[0]--; | ||
1282 | l = path->nodes[0]; | ||
1283 | |||
1284 | btrfs_item_key_to_cpu(l, &key, path->slots[0]); | ||
1285 | if (key.objectid != bytenr) { | ||
1286 | btrfs_print_leaf(root->fs_info->extent_root, path->nodes[0]); | ||
1287 | printk(KERN_ERR "btrfs wanted %llu found %llu\n", | ||
1288 | (unsigned long long)bytenr, | ||
1289 | (unsigned long long)key.objectid); | ||
1290 | BUG(); | ||
1291 | } | ||
1292 | BUG_ON(key.type != BTRFS_EXTENT_ITEM_KEY); | ||
1293 | |||
1294 | item = btrfs_item_ptr(l, path->slots[0], struct btrfs_extent_item); | ||
1295 | refs = btrfs_extent_refs(l, item); | ||
1296 | btrfs_set_extent_refs(l, item, refs + 1); | ||
1297 | btrfs_mark_buffer_dirty(path->nodes[0]); | ||
1298 | |||
1299 | btrfs_release_path(root->fs_info->extent_root, path); | ||
1300 | |||
1301 | path->reada = 1; | ||
1302 | ret = insert_extent_backref(trans, root->fs_info->extent_root, | ||
1303 | path, bytenr, parent, | ||
1304 | ref_root, ref_generation, | ||
1305 | owner_objectid); | ||
1306 | BUG_ON(ret); | ||
1307 | finish_current_insert(trans, root->fs_info->extent_root, 0); | ||
1308 | del_pending_extents(trans, root->fs_info->extent_root, 0); | ||
1309 | |||
1310 | btrfs_free_path(path); | ||
1311 | return 0; | ||
1312 | } | ||
1313 | |||
1314 | int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, | ||
1315 | struct btrfs_root *root, | ||
1316 | u64 bytenr, u64 num_bytes, u64 parent, | ||
1317 | u64 ref_root, u64 ref_generation, | ||
1318 | u64 owner_objectid) | ||
1319 | { | ||
1320 | int ret; | ||
1321 | if (ref_root == BTRFS_TREE_LOG_OBJECTID && | ||
1322 | owner_objectid < BTRFS_FIRST_FREE_OBJECTID) | ||
1323 | return 0; | ||
1324 | ret = __btrfs_inc_extent_ref(trans, root, bytenr, 0, parent, | ||
1325 | 0, ref_root, 0, ref_generation, | ||
1326 | owner_objectid); | ||
1327 | return ret; | ||
1328 | } | ||
1329 | |||
1330 | int btrfs_extent_post_op(struct btrfs_trans_handle *trans, | ||
1331 | struct btrfs_root *root) | ||
1332 | { | ||
1333 | finish_current_insert(trans, root->fs_info->extent_root, 1); | ||
1334 | del_pending_extents(trans, root->fs_info->extent_root, 1); | ||
1335 | return 0; | ||
1336 | } | ||
1337 | |||
1338 | int btrfs_lookup_extent_ref(struct btrfs_trans_handle *trans, | ||
1339 | struct btrfs_root *root, u64 bytenr, | ||
1340 | u64 num_bytes, u32 *refs) | ||
1341 | { | ||
1342 | struct btrfs_path *path; | ||
1343 | int ret; | ||
1344 | struct btrfs_key key; | ||
1345 | struct extent_buffer *l; | ||
1346 | struct btrfs_extent_item *item; | ||
1347 | |||
1348 | WARN_ON(num_bytes < root->sectorsize); | ||
1349 | path = btrfs_alloc_path(); | ||
1350 | path->reada = 1; | ||
1351 | key.objectid = bytenr; | ||
1352 | key.offset = num_bytes; | ||
1353 | btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY); | ||
1354 | ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key, path, | ||
1355 | 0, 0); | ||
1356 | if (ret < 0) | ||
1357 | goto out; | ||
1358 | if (ret != 0) { | ||
1359 | btrfs_print_leaf(root, path->nodes[0]); | ||
1360 | printk(KERN_INFO "btrfs failed to find block number %llu\n", | ||
1361 | (unsigned long long)bytenr); | ||
1362 | BUG(); | ||
1363 | } | ||
1364 | l = path->nodes[0]; | ||
1365 | item = btrfs_item_ptr(l, path->slots[0], struct btrfs_extent_item); | ||
1366 | *refs = btrfs_extent_refs(l, item); | ||
1367 | out: | ||
1368 | btrfs_free_path(path); | ||
1369 | return 0; | ||
1370 | } | ||
1371 | |||
1372 | int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans, | ||
1373 | struct btrfs_root *root, u64 objectid, u64 bytenr) | ||
1374 | { | ||
1375 | struct btrfs_root *extent_root = root->fs_info->extent_root; | ||
1376 | struct btrfs_path *path; | ||
1377 | struct extent_buffer *leaf; | ||
1378 | struct btrfs_extent_ref *ref_item; | ||
1379 | struct btrfs_key key; | ||
1380 | struct btrfs_key found_key; | ||
1381 | u64 ref_root; | ||
1382 | u64 last_snapshot; | ||
1383 | u32 nritems; | ||
1384 | int ret; | ||
1385 | |||
1386 | key.objectid = bytenr; | ||
1387 | key.offset = (u64)-1; | ||
1388 | key.type = BTRFS_EXTENT_ITEM_KEY; | ||
1389 | |||
1390 | path = btrfs_alloc_path(); | ||
1391 | ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); | ||
1392 | if (ret < 0) | ||
1393 | goto out; | ||
1394 | BUG_ON(ret == 0); | ||
1395 | |||
1396 | ret = -ENOENT; | ||
1397 | if (path->slots[0] == 0) | ||
1398 | goto out; | ||
1399 | |||
1400 | path->slots[0]--; | ||
1401 | leaf = path->nodes[0]; | ||
1402 | btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); | ||
1403 | |||
1404 | if (found_key.objectid != bytenr || | ||
1405 | found_key.type != BTRFS_EXTENT_ITEM_KEY) | ||
1406 | goto out; | ||
1407 | |||
1408 | last_snapshot = btrfs_root_last_snapshot(&root->root_item); | ||
1409 | while (1) { | ||
1410 | leaf = path->nodes[0]; | ||
1411 | nritems = btrfs_header_nritems(leaf); | ||
1412 | if (path->slots[0] >= nritems) { | ||
1413 | ret = btrfs_next_leaf(extent_root, path); | ||
1414 | if (ret < 0) | ||
1415 | goto out; | ||
1416 | if (ret == 0) | ||
1417 | continue; | ||
1418 | break; | ||
1419 | } | ||
1420 | btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); | ||
1421 | if (found_key.objectid != bytenr) | ||
1422 | break; | ||
1423 | |||
1424 | if (found_key.type != BTRFS_EXTENT_REF_KEY) { | ||
1425 | path->slots[0]++; | ||
1426 | continue; | ||
1427 | } | ||
1428 | |||
1429 | ref_item = btrfs_item_ptr(leaf, path->slots[0], | ||
1430 | struct btrfs_extent_ref); | ||
1431 | ref_root = btrfs_ref_root(leaf, ref_item); | ||
1432 | if ((ref_root != root->root_key.objectid && | ||
1433 | ref_root != BTRFS_TREE_LOG_OBJECTID) || | ||
1434 | objectid != btrfs_ref_objectid(leaf, ref_item)) { | ||
1435 | ret = 1; | ||
1436 | goto out; | ||
1437 | } | ||
1438 | if (btrfs_ref_generation(leaf, ref_item) <= last_snapshot) { | ||
1439 | ret = 1; | ||
1440 | goto out; | ||
1441 | } | ||
1442 | |||
1443 | path->slots[0]++; | ||
1444 | } | ||
1445 | ret = 0; | ||
1446 | out: | ||
1447 | btrfs_free_path(path); | ||
1448 | return ret; | ||
1449 | } | ||
1450 | |||
1451 | int btrfs_cache_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, | ||
1452 | struct extent_buffer *buf, u32 nr_extents) | ||
1453 | { | ||
1454 | struct btrfs_key key; | ||
1455 | struct btrfs_file_extent_item *fi; | ||
1456 | u64 root_gen; | ||
1457 | u32 nritems; | ||
1458 | int i; | ||
1459 | int level; | ||
1460 | int ret = 0; | ||
1461 | int shared = 0; | ||
1462 | |||
1463 | if (!root->ref_cows) | ||
1464 | return 0; | ||
1465 | |||
1466 | if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { | ||
1467 | shared = 0; | ||
1468 | root_gen = root->root_key.offset; | ||
1469 | } else { | ||
1470 | shared = 1; | ||
1471 | root_gen = trans->transid - 1; | ||
1472 | } | ||
1473 | |||
1474 | level = btrfs_header_level(buf); | ||
1475 | nritems = btrfs_header_nritems(buf); | ||
1476 | |||
1477 | if (level == 0) { | ||
1478 | struct btrfs_leaf_ref *ref; | ||
1479 | struct btrfs_extent_info *info; | ||
1480 | |||
1481 | ref = btrfs_alloc_leaf_ref(root, nr_extents); | ||
1482 | if (!ref) { | ||
1483 | ret = -ENOMEM; | ||
1484 | goto out; | ||
1485 | } | ||
1486 | |||
1487 | ref->root_gen = root_gen; | ||
1488 | ref->bytenr = buf->start; | ||
1489 | ref->owner = btrfs_header_owner(buf); | ||
1490 | ref->generation = btrfs_header_generation(buf); | ||
1491 | ref->nritems = nr_extents; | ||
1492 | info = ref->extents; | ||
1493 | |||
1494 | for (i = 0; nr_extents > 0 && i < nritems; i++) { | ||
1495 | u64 disk_bytenr; | ||
1496 | btrfs_item_key_to_cpu(buf, &key, i); | ||
1497 | if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY) | ||
1498 | continue; | ||
1499 | fi = btrfs_item_ptr(buf, i, | ||
1500 | struct btrfs_file_extent_item); | ||
1501 | if (btrfs_file_extent_type(buf, fi) == | ||
1502 | BTRFS_FILE_EXTENT_INLINE) | ||
1503 | continue; | ||
1504 | disk_bytenr = btrfs_file_extent_disk_bytenr(buf, fi); | ||
1505 | if (disk_bytenr == 0) | ||
1506 | continue; | ||
1507 | |||
1508 | info->bytenr = disk_bytenr; | ||
1509 | info->num_bytes = | ||
1510 | btrfs_file_extent_disk_num_bytes(buf, fi); | ||
1511 | info->objectid = key.objectid; | ||
1512 | info->offset = key.offset; | ||
1513 | info++; | ||
1514 | } | ||
1515 | |||
1516 | ret = btrfs_add_leaf_ref(root, ref, shared); | ||
1517 | if (ret == -EEXIST && shared) { | ||
1518 | struct btrfs_leaf_ref *old; | ||
1519 | old = btrfs_lookup_leaf_ref(root, ref->bytenr); | ||
1520 | BUG_ON(!old); | ||
1521 | btrfs_remove_leaf_ref(root, old); | ||
1522 | btrfs_free_leaf_ref(root, old); | ||
1523 | ret = btrfs_add_leaf_ref(root, ref, shared); | ||
1524 | } | ||
1525 | WARN_ON(ret); | ||
1526 | btrfs_free_leaf_ref(root, ref); | ||
1527 | } | ||
1528 | out: | ||
1529 | return ret; | ||
1530 | } | ||
1531 | |||
1532 | int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, | ||
1533 | struct extent_buffer *orig_buf, struct extent_buffer *buf, | ||
1534 | u32 *nr_extents) | ||
1535 | { | ||
1536 | u64 bytenr; | ||
1537 | u64 ref_root; | ||
1538 | u64 orig_root; | ||
1539 | u64 ref_generation; | ||
1540 | u64 orig_generation; | ||
1541 | u32 nritems; | ||
1542 | u32 nr_file_extents = 0; | ||
1543 | struct btrfs_key key; | ||
1544 | struct btrfs_file_extent_item *fi; | ||
1545 | int i; | ||
1546 | int level; | ||
1547 | int ret = 0; | ||
1548 | int faili = 0; | ||
1549 | int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *, | ||
1550 | u64, u64, u64, u64, u64, u64, u64, u64); | ||
1551 | |||
1552 | ref_root = btrfs_header_owner(buf); | ||
1553 | ref_generation = btrfs_header_generation(buf); | ||
1554 | orig_root = btrfs_header_owner(orig_buf); | ||
1555 | orig_generation = btrfs_header_generation(orig_buf); | ||
1556 | |||
1557 | nritems = btrfs_header_nritems(buf); | ||
1558 | level = btrfs_header_level(buf); | ||
1559 | |||
1560 | if (root->ref_cows) { | ||
1561 | process_func = __btrfs_inc_extent_ref; | ||
1562 | } else { | ||
1563 | if (level == 0 && | ||
1564 | root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) | ||
1565 | goto out; | ||
1566 | if (level != 0 && | ||
1567 | root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) | ||
1568 | goto out; | ||
1569 | process_func = __btrfs_update_extent_ref; | ||
1570 | } | ||
1571 | |||
1572 | for (i = 0; i < nritems; i++) { | ||
1573 | cond_resched(); | ||
1574 | if (level == 0) { | ||
1575 | btrfs_item_key_to_cpu(buf, &key, i); | ||
1576 | if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY) | ||
1577 | continue; | ||
1578 | fi = btrfs_item_ptr(buf, i, | ||
1579 | struct btrfs_file_extent_item); | ||
1580 | if (btrfs_file_extent_type(buf, fi) == | ||
1581 | BTRFS_FILE_EXTENT_INLINE) | ||
1582 | continue; | ||
1583 | bytenr = btrfs_file_extent_disk_bytenr(buf, fi); | ||
1584 | if (bytenr == 0) | ||
1585 | continue; | ||
1586 | |||
1587 | nr_file_extents++; | ||
1588 | |||
1589 | ret = process_func(trans, root, bytenr, | ||
1590 | orig_buf->start, buf->start, | ||
1591 | orig_root, ref_root, | ||
1592 | orig_generation, ref_generation, | ||
1593 | key.objectid); | ||
1594 | |||
1595 | if (ret) { | ||
1596 | faili = i; | ||
1597 | WARN_ON(1); | ||
1598 | goto fail; | ||
1599 | } | ||
1600 | } else { | ||
1601 | bytenr = btrfs_node_blockptr(buf, i); | ||
1602 | ret = process_func(trans, root, bytenr, | ||
1603 | orig_buf->start, buf->start, | ||
1604 | orig_root, ref_root, | ||
1605 | orig_generation, ref_generation, | ||
1606 | level - 1); | ||
1607 | if (ret) { | ||
1608 | faili = i; | ||
1609 | WARN_ON(1); | ||
1610 | goto fail; | ||
1611 | } | ||
1612 | } | ||
1613 | } | ||
1614 | out: | ||
1615 | if (nr_extents) { | ||
1616 | if (level == 0) | ||
1617 | *nr_extents = nr_file_extents; | ||
1618 | else | ||
1619 | *nr_extents = nritems; | ||
1620 | } | ||
1621 | return 0; | ||
1622 | fail: | ||
1623 | WARN_ON(1); | ||
1624 | return ret; | ||
1625 | } | ||
1626 | |||
1627 | int btrfs_update_ref(struct btrfs_trans_handle *trans, | ||
1628 | struct btrfs_root *root, struct extent_buffer *orig_buf, | ||
1629 | struct extent_buffer *buf, int start_slot, int nr) | ||
1630 | |||
1631 | { | ||
1632 | u64 bytenr; | ||
1633 | u64 ref_root; | ||
1634 | u64 orig_root; | ||
1635 | u64 ref_generation; | ||
1636 | u64 orig_generation; | ||
1637 | struct btrfs_key key; | ||
1638 | struct btrfs_file_extent_item *fi; | ||
1639 | int i; | ||
1640 | int ret; | ||
1641 | int slot; | ||
1642 | int level; | ||
1643 | |||
1644 | BUG_ON(start_slot < 0); | ||
1645 | BUG_ON(start_slot + nr > btrfs_header_nritems(buf)); | ||
1646 | |||
1647 | ref_root = btrfs_header_owner(buf); | ||
1648 | ref_generation = btrfs_header_generation(buf); | ||
1649 | orig_root = btrfs_header_owner(orig_buf); | ||
1650 | orig_generation = btrfs_header_generation(orig_buf); | ||
1651 | level = btrfs_header_level(buf); | ||
1652 | |||
1653 | if (!root->ref_cows) { | ||
1654 | if (level == 0 && | ||
1655 | root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) | ||
1656 | return 0; | ||
1657 | if (level != 0 && | ||
1658 | root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) | ||
1659 | return 0; | ||
1660 | } | ||
1661 | |||
1662 | for (i = 0, slot = start_slot; i < nr; i++, slot++) { | ||
1663 | cond_resched(); | ||
1664 | if (level == 0) { | ||
1665 | btrfs_item_key_to_cpu(buf, &key, slot); | ||
1666 | if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY) | ||
1667 | continue; | ||
1668 | fi = btrfs_item_ptr(buf, slot, | ||
1669 | struct btrfs_file_extent_item); | ||
1670 | if (btrfs_file_extent_type(buf, fi) == | ||
1671 | BTRFS_FILE_EXTENT_INLINE) | ||
1672 | continue; | ||
1673 | bytenr = btrfs_file_extent_disk_bytenr(buf, fi); | ||
1674 | if (bytenr == 0) | ||
1675 | continue; | ||
1676 | ret = __btrfs_update_extent_ref(trans, root, bytenr, | ||
1677 | orig_buf->start, buf->start, | ||
1678 | orig_root, ref_root, | ||
1679 | orig_generation, ref_generation, | ||
1680 | key.objectid); | ||
1681 | if (ret) | ||
1682 | goto fail; | ||
1683 | } else { | ||
1684 | bytenr = btrfs_node_blockptr(buf, slot); | ||
1685 | ret = __btrfs_update_extent_ref(trans, root, bytenr, | ||
1686 | orig_buf->start, buf->start, | ||
1687 | orig_root, ref_root, | ||
1688 | orig_generation, ref_generation, | ||
1689 | level - 1); | ||
1690 | if (ret) | ||
1691 | goto fail; | ||
1692 | } | ||
1693 | } | ||
1694 | return 0; | ||
1695 | fail: | ||
1696 | WARN_ON(1); | ||
1697 | return -1; | ||
1698 | } | ||
1699 | |||
1700 | static int write_one_cache_group(struct btrfs_trans_handle *trans, | ||
1701 | struct btrfs_root *root, | ||
1702 | struct btrfs_path *path, | ||
1703 | struct btrfs_block_group_cache *cache) | ||
1704 | { | ||
1705 | int ret; | ||
1706 | int pending_ret; | ||
1707 | struct btrfs_root *extent_root = root->fs_info->extent_root; | ||
1708 | unsigned long bi; | ||
1709 | struct extent_buffer *leaf; | ||
1710 | |||
1711 | ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1); | ||
1712 | if (ret < 0) | ||
1713 | goto fail; | ||
1714 | BUG_ON(ret); | ||
1715 | |||
1716 | leaf = path->nodes[0]; | ||
1717 | bi = btrfs_item_ptr_offset(leaf, path->slots[0]); | ||
1718 | write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item)); | ||
1719 | btrfs_mark_buffer_dirty(leaf); | ||
1720 | btrfs_release_path(extent_root, path); | ||
1721 | fail: | ||
1722 | finish_current_insert(trans, extent_root, 0); | ||
1723 | pending_ret = del_pending_extents(trans, extent_root, 0); | ||
1724 | if (ret) | ||
1725 | return ret; | ||
1726 | if (pending_ret) | ||
1727 | return pending_ret; | ||
1728 | return 0; | ||
1729 | |||
1730 | } | ||
1731 | |||
1732 | int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans, | ||
1733 | struct btrfs_root *root) | ||
1734 | { | ||
1735 | struct btrfs_block_group_cache *cache, *entry; | ||
1736 | struct rb_node *n; | ||
1737 | int err = 0; | ||
1738 | int werr = 0; | ||
1739 | struct btrfs_path *path; | ||
1740 | u64 last = 0; | ||
1741 | |||
1742 | path = btrfs_alloc_path(); | ||
1743 | if (!path) | ||
1744 | return -ENOMEM; | ||
1745 | |||
1746 | while (1) { | ||
1747 | cache = NULL; | ||
1748 | spin_lock(&root->fs_info->block_group_cache_lock); | ||
1749 | for (n = rb_first(&root->fs_info->block_group_cache_tree); | ||
1750 | n; n = rb_next(n)) { | ||
1751 | entry = rb_entry(n, struct btrfs_block_group_cache, | ||
1752 | cache_node); | ||
1753 | if (entry->dirty) { | ||
1754 | cache = entry; | ||
1755 | break; | ||
1756 | } | ||
1757 | } | ||
1758 | spin_unlock(&root->fs_info->block_group_cache_lock); | ||
1759 | |||
1760 | if (!cache) | ||
1761 | break; | ||
1762 | |||
1763 | cache->dirty = 0; | ||
1764 | last += cache->key.offset; | ||
1765 | |||
1766 | err = write_one_cache_group(trans, root, | ||
1767 | path, cache); | ||
1768 | /* | ||
1769 | * if we fail to write the cache group, we want | ||
1770 | * to keep it marked dirty in hopes that a later | ||
1771 | * write will work | ||
1772 | */ | ||
1773 | if (err) { | ||
1774 | werr = err; | ||
1775 | continue; | ||
1776 | } | ||
1777 | } | ||
1778 | btrfs_free_path(path); | ||
1779 | return werr; | ||
1780 | } | ||
1781 | |||
1782 | int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr) | ||
1783 | { | ||
1784 | struct btrfs_block_group_cache *block_group; | ||
1785 | int readonly = 0; | ||
1786 | |||
1787 | block_group = btrfs_lookup_block_group(root->fs_info, bytenr); | ||
1788 | if (!block_group || block_group->ro) | ||
1789 | readonly = 1; | ||
1790 | if (block_group) | ||
1791 | put_block_group(block_group); | ||
1792 | return readonly; | ||
1793 | } | ||
1794 | |||
1795 | static int update_space_info(struct btrfs_fs_info *info, u64 flags, | ||
1796 | u64 total_bytes, u64 bytes_used, | ||
1797 | struct btrfs_space_info **space_info) | ||
1798 | { | ||
1799 | struct btrfs_space_info *found; | ||
1800 | |||
1801 | found = __find_space_info(info, flags); | ||
1802 | if (found) { | ||
1803 | spin_lock(&found->lock); | ||
1804 | found->total_bytes += total_bytes; | ||
1805 | found->bytes_used += bytes_used; | ||
1806 | found->full = 0; | ||
1807 | spin_unlock(&found->lock); | ||
1808 | *space_info = found; | ||
1809 | return 0; | ||
1810 | } | ||
1811 | found = kzalloc(sizeof(*found), GFP_NOFS); | ||
1812 | if (!found) | ||
1813 | return -ENOMEM; | ||
1814 | |||
1815 | list_add(&found->list, &info->space_info); | ||
1816 | INIT_LIST_HEAD(&found->block_groups); | ||
1817 | init_rwsem(&found->groups_sem); | ||
1818 | spin_lock_init(&found->lock); | ||
1819 | found->flags = flags; | ||
1820 | found->total_bytes = total_bytes; | ||
1821 | found->bytes_used = bytes_used; | ||
1822 | found->bytes_pinned = 0; | ||
1823 | found->bytes_reserved = 0; | ||
1824 | found->bytes_readonly = 0; | ||
1825 | found->full = 0; | ||
1826 | found->force_alloc = 0; | ||
1827 | *space_info = found; | ||
1828 | return 0; | ||
1829 | } | ||
1830 | |||
1831 | static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) | ||
1832 | { | ||
1833 | u64 extra_flags = flags & (BTRFS_BLOCK_GROUP_RAID0 | | ||
1834 | BTRFS_BLOCK_GROUP_RAID1 | | ||
1835 | BTRFS_BLOCK_GROUP_RAID10 | | ||
1836 | BTRFS_BLOCK_GROUP_DUP); | ||
1837 | if (extra_flags) { | ||
1838 | if (flags & BTRFS_BLOCK_GROUP_DATA) | ||
1839 | fs_info->avail_data_alloc_bits |= extra_flags; | ||
1840 | if (flags & BTRFS_BLOCK_GROUP_METADATA) | ||
1841 | fs_info->avail_metadata_alloc_bits |= extra_flags; | ||
1842 | if (flags & BTRFS_BLOCK_GROUP_SYSTEM) | ||
1843 | fs_info->avail_system_alloc_bits |= extra_flags; | ||
1844 | } | ||
1845 | } | ||
1846 | |||
1847 | static void set_block_group_readonly(struct btrfs_block_group_cache *cache) | ||
1848 | { | ||
1849 | spin_lock(&cache->space_info->lock); | ||
1850 | spin_lock(&cache->lock); | ||
1851 | if (!cache->ro) { | ||
1852 | cache->space_info->bytes_readonly += cache->key.offset - | ||
1853 | btrfs_block_group_used(&cache->item); | ||
1854 | cache->ro = 1; | ||
1855 | } | ||
1856 | spin_unlock(&cache->lock); | ||
1857 | spin_unlock(&cache->space_info->lock); | ||
1858 | } | ||
1859 | |||
1860 | u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags) | ||
1861 | { | ||
1862 | u64 num_devices = root->fs_info->fs_devices->rw_devices; | ||
1863 | |||
1864 | if (num_devices == 1) | ||
1865 | flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0); | ||
1866 | if (num_devices < 4) | ||
1867 | flags &= ~BTRFS_BLOCK_GROUP_RAID10; | ||
1868 | |||
1869 | if ((flags & BTRFS_BLOCK_GROUP_DUP) && | ||
1870 | (flags & (BTRFS_BLOCK_GROUP_RAID1 | | ||
1871 | BTRFS_BLOCK_GROUP_RAID10))) { | ||
1872 | flags &= ~BTRFS_BLOCK_GROUP_DUP; | ||
1873 | } | ||
1874 | |||
1875 | if ((flags & BTRFS_BLOCK_GROUP_RAID1) && | ||
1876 | (flags & BTRFS_BLOCK_GROUP_RAID10)) { | ||
1877 | flags &= ~BTRFS_BLOCK_GROUP_RAID1; | ||
1878 | } | ||
1879 | |||
1880 | if ((flags & BTRFS_BLOCK_GROUP_RAID0) && | ||
1881 | ((flags & BTRFS_BLOCK_GROUP_RAID1) | | ||
1882 | (flags & BTRFS_BLOCK_GROUP_RAID10) | | ||
1883 | (flags & BTRFS_BLOCK_GROUP_DUP))) | ||
1884 | flags &= ~BTRFS_BLOCK_GROUP_RAID0; | ||
1885 | return flags; | ||
1886 | } | ||
1887 | |||
1888 | static int do_chunk_alloc(struct btrfs_trans_handle *trans, | ||
1889 | struct btrfs_root *extent_root, u64 alloc_bytes, | ||
1890 | u64 flags, int force) | ||
1891 | { | ||
1892 | struct btrfs_space_info *space_info; | ||
1893 | u64 thresh; | ||
1894 | int ret = 0; | ||
1895 | |||
1896 | mutex_lock(&extent_root->fs_info->chunk_mutex); | ||
1897 | |||
1898 | flags = btrfs_reduce_alloc_profile(extent_root, flags); | ||
1899 | |||
1900 | space_info = __find_space_info(extent_root->fs_info, flags); | ||
1901 | if (!space_info) { | ||
1902 | ret = update_space_info(extent_root->fs_info, flags, | ||
1903 | 0, 0, &space_info); | ||
1904 | BUG_ON(ret); | ||
1905 | } | ||
1906 | BUG_ON(!space_info); | ||
1907 | |||
1908 | spin_lock(&space_info->lock); | ||
1909 | if (space_info->force_alloc) { | ||
1910 | force = 1; | ||
1911 | space_info->force_alloc = 0; | ||
1912 | } | ||
1913 | if (space_info->full) { | ||
1914 | spin_unlock(&space_info->lock); | ||
1915 | goto out; | ||
1916 | } | ||
1917 | |||
1918 | thresh = space_info->total_bytes - space_info->bytes_readonly; | ||
1919 | thresh = div_factor(thresh, 6); | ||
1920 | if (!force && | ||
1921 | (space_info->bytes_used + space_info->bytes_pinned + | ||
1922 | space_info->bytes_reserved + alloc_bytes) < thresh) { | ||
1923 | spin_unlock(&space_info->lock); | ||
1924 | goto out; | ||
1925 | } | ||
1926 | spin_unlock(&space_info->lock); | ||
1927 | |||
1928 | ret = btrfs_alloc_chunk(trans, extent_root, flags); | ||
1929 | if (ret) | ||
1930 | space_info->full = 1; | ||
1931 | out: | ||
1932 | mutex_unlock(&extent_root->fs_info->chunk_mutex); | ||
1933 | return ret; | ||
1934 | } | ||
1935 | |||
1936 | static int update_block_group(struct btrfs_trans_handle *trans, | ||
1937 | struct btrfs_root *root, | ||
1938 | u64 bytenr, u64 num_bytes, int alloc, | ||
1939 | int mark_free) | ||
1940 | { | ||
1941 | struct btrfs_block_group_cache *cache; | ||
1942 | struct btrfs_fs_info *info = root->fs_info; | ||
1943 | u64 total = num_bytes; | ||
1944 | u64 old_val; | ||
1945 | u64 byte_in_group; | ||
1946 | |||
1947 | while (total) { | ||
1948 | cache = btrfs_lookup_block_group(info, bytenr); | ||
1949 | if (!cache) | ||
1950 | return -1; | ||
1951 | byte_in_group = bytenr - cache->key.objectid; | ||
1952 | WARN_ON(byte_in_group > cache->key.offset); | ||
1953 | |||
1954 | spin_lock(&cache->space_info->lock); | ||
1955 | spin_lock(&cache->lock); | ||
1956 | cache->dirty = 1; | ||
1957 | old_val = btrfs_block_group_used(&cache->item); | ||
1958 | num_bytes = min(total, cache->key.offset - byte_in_group); | ||
1959 | if (alloc) { | ||
1960 | old_val += num_bytes; | ||
1961 | cache->space_info->bytes_used += num_bytes; | ||
1962 | if (cache->ro) | ||
1963 | cache->space_info->bytes_readonly -= num_bytes; | ||
1964 | btrfs_set_block_group_used(&cache->item, old_val); | ||
1965 | spin_unlock(&cache->lock); | ||
1966 | spin_unlock(&cache->space_info->lock); | ||
1967 | } else { | ||
1968 | old_val -= num_bytes; | ||
1969 | cache->space_info->bytes_used -= num_bytes; | ||
1970 | if (cache->ro) | ||
1971 | cache->space_info->bytes_readonly += num_bytes; | ||
1972 | btrfs_set_block_group_used(&cache->item, old_val); | ||
1973 | spin_unlock(&cache->lock); | ||
1974 | spin_unlock(&cache->space_info->lock); | ||
1975 | if (mark_free) { | ||
1976 | int ret; | ||
1977 | |||
1978 | ret = btrfs_discard_extent(root, bytenr, | ||
1979 | num_bytes); | ||
1980 | WARN_ON(ret); | ||
1981 | |||
1982 | ret = btrfs_add_free_space(cache, bytenr, | ||
1983 | num_bytes); | ||
1984 | WARN_ON(ret); | ||
1985 | } | ||
1986 | } | ||
1987 | put_block_group(cache); | ||
1988 | total -= num_bytes; | ||
1989 | bytenr += num_bytes; | ||
1990 | } | ||
1991 | return 0; | ||
1992 | } | ||
1993 | |||
1994 | static u64 first_logical_byte(struct btrfs_root *root, u64 search_start) | ||
1995 | { | ||
1996 | struct btrfs_block_group_cache *cache; | ||
1997 | u64 bytenr; | ||
1998 | |||
1999 | cache = btrfs_lookup_first_block_group(root->fs_info, search_start); | ||
2000 | if (!cache) | ||
2001 | return 0; | ||
2002 | |||
2003 | bytenr = cache->key.objectid; | ||
2004 | put_block_group(cache); | ||
2005 | |||
2006 | return bytenr; | ||
2007 | } | ||
2008 | |||
2009 | int btrfs_update_pinned_extents(struct btrfs_root *root, | ||
2010 | u64 bytenr, u64 num, int pin) | ||
2011 | { | ||
2012 | u64 len; | ||
2013 | struct btrfs_block_group_cache *cache; | ||
2014 | struct btrfs_fs_info *fs_info = root->fs_info; | ||
2015 | |||
2016 | WARN_ON(!mutex_is_locked(&root->fs_info->pinned_mutex)); | ||
2017 | if (pin) { | ||
2018 | set_extent_dirty(&fs_info->pinned_extents, | ||
2019 | bytenr, bytenr + num - 1, GFP_NOFS); | ||
2020 | } else { | ||
2021 | clear_extent_dirty(&fs_info->pinned_extents, | ||
2022 | bytenr, bytenr + num - 1, GFP_NOFS); | ||
2023 | } | ||
2024 | while (num > 0) { | ||
2025 | cache = btrfs_lookup_block_group(fs_info, bytenr); | ||
2026 | BUG_ON(!cache); | ||
2027 | len = min(num, cache->key.offset - | ||
2028 | (bytenr - cache->key.objectid)); | ||
2029 | if (pin) { | ||
2030 | spin_lock(&cache->space_info->lock); | ||
2031 | spin_lock(&cache->lock); | ||
2032 | cache->pinned += len; | ||
2033 | cache->space_info->bytes_pinned += len; | ||
2034 | spin_unlock(&cache->lock); | ||
2035 | spin_unlock(&cache->space_info->lock); | ||
2036 | fs_info->total_pinned += len; | ||
2037 | } else { | ||
2038 | spin_lock(&cache->space_info->lock); | ||
2039 | spin_lock(&cache->lock); | ||
2040 | cache->pinned -= len; | ||
2041 | cache->space_info->bytes_pinned -= len; | ||
2042 | spin_unlock(&cache->lock); | ||
2043 | spin_unlock(&cache->space_info->lock); | ||
2044 | fs_info->total_pinned -= len; | ||
2045 | if (cache->cached) | ||
2046 | btrfs_add_free_space(cache, bytenr, len); | ||
2047 | } | ||
2048 | put_block_group(cache); | ||
2049 | bytenr += len; | ||
2050 | num -= len; | ||
2051 | } | ||
2052 | return 0; | ||
2053 | } | ||
2054 | |||
2055 | static int update_reserved_extents(struct btrfs_root *root, | ||
2056 | u64 bytenr, u64 num, int reserve) | ||
2057 | { | ||
2058 | u64 len; | ||
2059 | struct btrfs_block_group_cache *cache; | ||
2060 | struct btrfs_fs_info *fs_info = root->fs_info; | ||
2061 | |||
2062 | while (num > 0) { | ||
2063 | cache = btrfs_lookup_block_group(fs_info, bytenr); | ||
2064 | BUG_ON(!cache); | ||
2065 | len = min(num, cache->key.offset - | ||
2066 | (bytenr - cache->key.objectid)); | ||
2067 | |||
2068 | spin_lock(&cache->space_info->lock); | ||
2069 | spin_lock(&cache->lock); | ||
2070 | if (reserve) { | ||
2071 | cache->reserved += len; | ||
2072 | cache->space_info->bytes_reserved += len; | ||
2073 | } else { | ||
2074 | cache->reserved -= len; | ||
2075 | cache->space_info->bytes_reserved -= len; | ||
2076 | } | ||
2077 | spin_unlock(&cache->lock); | ||
2078 | spin_unlock(&cache->space_info->lock); | ||
2079 | put_block_group(cache); | ||
2080 | bytenr += len; | ||
2081 | num -= len; | ||
2082 | } | ||
2083 | return 0; | ||
2084 | } | ||
2085 | |||
2086 | int btrfs_copy_pinned(struct btrfs_root *root, struct extent_io_tree *copy) | ||
2087 | { | ||
2088 | u64 last = 0; | ||
2089 | u64 start; | ||
2090 | u64 end; | ||
2091 | struct extent_io_tree *pinned_extents = &root->fs_info->pinned_extents; | ||
2092 | int ret; | ||
2093 | |||
2094 | mutex_lock(&root->fs_info->pinned_mutex); | ||
2095 | while (1) { | ||
2096 | ret = find_first_extent_bit(pinned_extents, last, | ||
2097 | &start, &end, EXTENT_DIRTY); | ||
2098 | if (ret) | ||
2099 | break; | ||
2100 | set_extent_dirty(copy, start, end, GFP_NOFS); | ||
2101 | last = end + 1; | ||
2102 | } | ||
2103 | mutex_unlock(&root->fs_info->pinned_mutex); | ||
2104 | return 0; | ||
2105 | } | ||
2106 | |||
2107 | int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, | ||
2108 | struct btrfs_root *root, | ||
2109 | struct extent_io_tree *unpin) | ||
2110 | { | ||
2111 | u64 start; | ||
2112 | u64 end; | ||
2113 | int ret; | ||
2114 | |||
2115 | mutex_lock(&root->fs_info->pinned_mutex); | ||
2116 | while (1) { | ||
2117 | ret = find_first_extent_bit(unpin, 0, &start, &end, | ||
2118 | EXTENT_DIRTY); | ||
2119 | if (ret) | ||
2120 | break; | ||
2121 | |||
2122 | ret = btrfs_discard_extent(root, start, end + 1 - start); | ||
2123 | |||
2124 | btrfs_update_pinned_extents(root, start, end + 1 - start, 0); | ||
2125 | clear_extent_dirty(unpin, start, end, GFP_NOFS); | ||
2126 | |||
2127 | if (need_resched()) { | ||
2128 | mutex_unlock(&root->fs_info->pinned_mutex); | ||
2129 | cond_resched(); | ||
2130 | mutex_lock(&root->fs_info->pinned_mutex); | ||
2131 | } | ||
2132 | } | ||
2133 | mutex_unlock(&root->fs_info->pinned_mutex); | ||
2134 | return ret; | ||
2135 | } | ||
2136 | |||
2137 | static int finish_current_insert(struct btrfs_trans_handle *trans, | ||
2138 | struct btrfs_root *extent_root, int all) | ||
2139 | { | ||
2140 | u64 start; | ||
2141 | u64 end; | ||
2142 | u64 priv; | ||
2143 | u64 search = 0; | ||
2144 | u64 skipped = 0; | ||
2145 | struct btrfs_fs_info *info = extent_root->fs_info; | ||
2146 | struct btrfs_path *path; | ||
2147 | struct pending_extent_op *extent_op, *tmp; | ||
2148 | struct list_head insert_list, update_list; | ||
2149 | int ret; | ||
2150 | int num_inserts = 0, max_inserts; | ||
2151 | |||
2152 | path = btrfs_alloc_path(); | ||
2153 | INIT_LIST_HEAD(&insert_list); | ||
2154 | INIT_LIST_HEAD(&update_list); | ||
2155 | |||
2156 | max_inserts = extent_root->leafsize / | ||
2157 | (2 * sizeof(struct btrfs_key) + 2 * sizeof(struct btrfs_item) + | ||
2158 | sizeof(struct btrfs_extent_ref) + | ||
2159 | sizeof(struct btrfs_extent_item)); | ||
2160 | again: | ||
2161 | mutex_lock(&info->extent_ins_mutex); | ||
2162 | while (1) { | ||
2163 | ret = find_first_extent_bit(&info->extent_ins, search, &start, | ||
2164 | &end, EXTENT_WRITEBACK); | ||
2165 | if (ret) { | ||
2166 | if (skipped && all && !num_inserts) { | ||
2167 | skipped = 0; | ||
2168 | search = 0; | ||
2169 | continue; | ||
2170 | } | ||
2171 | mutex_unlock(&info->extent_ins_mutex); | ||
2172 | break; | ||
2173 | } | ||
2174 | |||
2175 | ret = try_lock_extent(&info->extent_ins, start, end, GFP_NOFS); | ||
2176 | if (!ret) { | ||
2177 | skipped = 1; | ||
2178 | search = end + 1; | ||
2179 | if (need_resched()) { | ||
2180 | mutex_unlock(&info->extent_ins_mutex); | ||
2181 | cond_resched(); | ||
2182 | mutex_lock(&info->extent_ins_mutex); | ||
2183 | } | ||
2184 | continue; | ||
2185 | } | ||
2186 | |||
2187 | ret = get_state_private(&info->extent_ins, start, &priv); | ||
2188 | BUG_ON(ret); | ||
2189 | extent_op = (struct pending_extent_op *)(unsigned long) priv; | ||
2190 | |||
2191 | if (extent_op->type == PENDING_EXTENT_INSERT) { | ||
2192 | num_inserts++; | ||
2193 | list_add_tail(&extent_op->list, &insert_list); | ||
2194 | search = end + 1; | ||
2195 | if (num_inserts == max_inserts) { | ||
2196 | mutex_unlock(&info->extent_ins_mutex); | ||
2197 | break; | ||
2198 | } | ||
2199 | } else if (extent_op->type == PENDING_BACKREF_UPDATE) { | ||
2200 | list_add_tail(&extent_op->list, &update_list); | ||
2201 | search = end + 1; | ||
2202 | } else { | ||
2203 | BUG(); | ||
2204 | } | ||
2205 | } | ||
2206 | |||
2207 | /* | ||
2208 | * process the update list, clear the writeback bit for it, and if | ||
2209 | * somebody marked this thing for deletion then just unlock it and be | ||
2210 | * done, the free_extents will handle it | ||
2211 | */ | ||
2212 | mutex_lock(&info->extent_ins_mutex); | ||
2213 | list_for_each_entry_safe(extent_op, tmp, &update_list, list) { | ||
2214 | clear_extent_bits(&info->extent_ins, extent_op->bytenr, | ||
2215 | extent_op->bytenr + extent_op->num_bytes - 1, | ||
2216 | EXTENT_WRITEBACK, GFP_NOFS); | ||
2217 | if (extent_op->del) { | ||
2218 | list_del_init(&extent_op->list); | ||
2219 | unlock_extent(&info->extent_ins, extent_op->bytenr, | ||
2220 | extent_op->bytenr + extent_op->num_bytes | ||
2221 | - 1, GFP_NOFS); | ||
2222 | kfree(extent_op); | ||
2223 | } | ||
2224 | } | ||
2225 | mutex_unlock(&info->extent_ins_mutex); | ||
2226 | |||
2227 | /* | ||
2228 | * still have things left on the update list, go ahead an update | ||
2229 | * everything | ||
2230 | */ | ||
2231 | if (!list_empty(&update_list)) { | ||
2232 | ret = update_backrefs(trans, extent_root, path, &update_list); | ||
2233 | BUG_ON(ret); | ||
2234 | } | ||
2235 | |||
2236 | /* | ||
2237 | * if no inserts need to be done, but we skipped some extents and we | ||
2238 | * need to make sure everything is cleaned then reset everything and | ||
2239 | * go back to the beginning | ||
2240 | */ | ||
2241 | if (!num_inserts && all && skipped) { | ||
2242 | search = 0; | ||
2243 | skipped = 0; | ||
2244 | INIT_LIST_HEAD(&update_list); | ||
2245 | INIT_LIST_HEAD(&insert_list); | ||
2246 | goto again; | ||
2247 | } else if (!num_inserts) { | ||
2248 | goto out; | ||
2249 | } | ||
2250 | |||
2251 | /* | ||
2252 | * process the insert extents list. Again if we are deleting this | ||
2253 | * extent, then just unlock it, pin down the bytes if need be, and be | ||
2254 | * done with it. Saves us from having to actually insert the extent | ||
2255 | * into the tree and then subsequently come along and delete it | ||
2256 | */ | ||
2257 | mutex_lock(&info->extent_ins_mutex); | ||
2258 | list_for_each_entry_safe(extent_op, tmp, &insert_list, list) { | ||
2259 | clear_extent_bits(&info->extent_ins, extent_op->bytenr, | ||
2260 | extent_op->bytenr + extent_op->num_bytes - 1, | ||
2261 | EXTENT_WRITEBACK, GFP_NOFS); | ||
2262 | if (extent_op->del) { | ||
2263 | u64 used; | ||
2264 | list_del_init(&extent_op->list); | ||
2265 | unlock_extent(&info->extent_ins, extent_op->bytenr, | ||
2266 | extent_op->bytenr + extent_op->num_bytes | ||
2267 | - 1, GFP_NOFS); | ||
2268 | |||
2269 | mutex_lock(&extent_root->fs_info->pinned_mutex); | ||
2270 | ret = pin_down_bytes(trans, extent_root, | ||
2271 | extent_op->bytenr, | ||
2272 | extent_op->num_bytes, 0); | ||
2273 | mutex_unlock(&extent_root->fs_info->pinned_mutex); | ||
2274 | |||
2275 | spin_lock(&info->delalloc_lock); | ||
2276 | used = btrfs_super_bytes_used(&info->super_copy); | ||
2277 | btrfs_set_super_bytes_used(&info->super_copy, | ||
2278 | used - extent_op->num_bytes); | ||
2279 | used = btrfs_root_used(&extent_root->root_item); | ||
2280 | btrfs_set_root_used(&extent_root->root_item, | ||
2281 | used - extent_op->num_bytes); | ||
2282 | spin_unlock(&info->delalloc_lock); | ||
2283 | |||
2284 | ret = update_block_group(trans, extent_root, | ||
2285 | extent_op->bytenr, | ||
2286 | extent_op->num_bytes, | ||
2287 | 0, ret > 0); | ||
2288 | BUG_ON(ret); | ||
2289 | kfree(extent_op); | ||
2290 | num_inserts--; | ||
2291 | } | ||
2292 | } | ||
2293 | mutex_unlock(&info->extent_ins_mutex); | ||
2294 | |||
2295 | ret = insert_extents(trans, extent_root, path, &insert_list, | ||
2296 | num_inserts); | ||
2297 | BUG_ON(ret); | ||
2298 | |||
2299 | /* | ||
2300 | * if we broke out of the loop in order to insert stuff because we hit | ||
2301 | * the maximum number of inserts at a time we can handle, then loop | ||
2302 | * back and pick up where we left off | ||
2303 | */ | ||
2304 | if (num_inserts == max_inserts) { | ||
2305 | INIT_LIST_HEAD(&insert_list); | ||
2306 | INIT_LIST_HEAD(&update_list); | ||
2307 | num_inserts = 0; | ||
2308 | goto again; | ||
2309 | } | ||
2310 | |||
2311 | /* | ||
2312 | * again, if we need to make absolutely sure there are no more pending | ||
2313 | * extent operations left and we know that we skipped some, go back to | ||
2314 | * the beginning and do it all again | ||
2315 | */ | ||
2316 | if (all && skipped) { | ||
2317 | INIT_LIST_HEAD(&insert_list); | ||
2318 | INIT_LIST_HEAD(&update_list); | ||
2319 | search = 0; | ||
2320 | skipped = 0; | ||
2321 | num_inserts = 0; | ||
2322 | goto again; | ||
2323 | } | ||
2324 | out: | ||
2325 | btrfs_free_path(path); | ||
2326 | return 0; | ||
2327 | } | ||
2328 | |||
2329 | static int pin_down_bytes(struct btrfs_trans_handle *trans, | ||
2330 | struct btrfs_root *root, | ||
2331 | u64 bytenr, u64 num_bytes, int is_data) | ||
2332 | { | ||
2333 | int err = 0; | ||
2334 | struct extent_buffer *buf; | ||
2335 | |||
2336 | if (is_data) | ||
2337 | goto pinit; | ||
2338 | |||
2339 | buf = btrfs_find_tree_block(root, bytenr, num_bytes); | ||
2340 | if (!buf) | ||
2341 | goto pinit; | ||
2342 | |||
2343 | /* we can reuse a block if it hasn't been written | ||
2344 | * and it is from this transaction. We can't | ||
2345 | * reuse anything from the tree log root because | ||
2346 | * it has tiny sub-transactions. | ||
2347 | */ | ||
2348 | if (btrfs_buffer_uptodate(buf, 0) && | ||
2349 | btrfs_try_tree_lock(buf)) { | ||
2350 | u64 header_owner = btrfs_header_owner(buf); | ||
2351 | u64 header_transid = btrfs_header_generation(buf); | ||
2352 | if (header_owner != BTRFS_TREE_LOG_OBJECTID && | ||
2353 | header_owner != BTRFS_TREE_RELOC_OBJECTID && | ||
2354 | header_transid == trans->transid && | ||
2355 | !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { | ||
2356 | clean_tree_block(NULL, root, buf); | ||
2357 | btrfs_tree_unlock(buf); | ||
2358 | free_extent_buffer(buf); | ||
2359 | return 1; | ||
2360 | } | ||
2361 | btrfs_tree_unlock(buf); | ||
2362 | } | ||
2363 | free_extent_buffer(buf); | ||
2364 | pinit: | ||
2365 | btrfs_update_pinned_extents(root, bytenr, num_bytes, 1); | ||
2366 | |||
2367 | BUG_ON(err < 0); | ||
2368 | return 0; | ||
2369 | } | ||
2370 | |||
2371 | /* | ||
2372 | * remove an extent from the root, returns 0 on success | ||
2373 | */ | ||
2374 | static int __free_extent(struct btrfs_trans_handle *trans, | ||
2375 | struct btrfs_root *root, | ||
2376 | u64 bytenr, u64 num_bytes, u64 parent, | ||
2377 | u64 root_objectid, u64 ref_generation, | ||
2378 | u64 owner_objectid, int pin, int mark_free) | ||
2379 | { | ||
2380 | struct btrfs_path *path; | ||
2381 | struct btrfs_key key; | ||
2382 | struct btrfs_fs_info *info = root->fs_info; | ||
2383 | struct btrfs_root *extent_root = info->extent_root; | ||
2384 | struct extent_buffer *leaf; | ||
2385 | int ret; | ||
2386 | int extent_slot = 0; | ||
2387 | int found_extent = 0; | ||
2388 | int num_to_del = 1; | ||
2389 | struct btrfs_extent_item *ei; | ||
2390 | u32 refs; | ||
2391 | |||
2392 | key.objectid = bytenr; | ||
2393 | btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY); | ||
2394 | key.offset = num_bytes; | ||
2395 | path = btrfs_alloc_path(); | ||
2396 | if (!path) | ||
2397 | return -ENOMEM; | ||
2398 | |||
2399 | path->reada = 1; | ||
2400 | ret = lookup_extent_backref(trans, extent_root, path, | ||
2401 | bytenr, parent, root_objectid, | ||
2402 | ref_generation, owner_objectid, 1); | ||
2403 | if (ret == 0) { | ||
2404 | struct btrfs_key found_key; | ||
2405 | extent_slot = path->slots[0]; | ||
2406 | while (extent_slot > 0) { | ||
2407 | extent_slot--; | ||
2408 | btrfs_item_key_to_cpu(path->nodes[0], &found_key, | ||
2409 | extent_slot); | ||
2410 | if (found_key.objectid != bytenr) | ||
2411 | break; | ||
2412 | if (found_key.type == BTRFS_EXTENT_ITEM_KEY && | ||
2413 | found_key.offset == num_bytes) { | ||
2414 | found_extent = 1; | ||
2415 | break; | ||
2416 | } | ||
2417 | if (path->slots[0] - extent_slot > 5) | ||
2418 | break; | ||
2419 | } | ||
2420 | if (!found_extent) { | ||
2421 | ret = remove_extent_backref(trans, extent_root, path); | ||
2422 | BUG_ON(ret); | ||
2423 | btrfs_release_path(extent_root, path); | ||
2424 | ret = btrfs_search_slot(trans, extent_root, | ||
2425 | &key, path, -1, 1); | ||
2426 | if (ret) { | ||
2427 | printk(KERN_ERR "umm, got %d back from search" | ||
2428 | ", was looking for %llu\n", ret, | ||
2429 | (unsigned long long)bytenr); | ||
2430 | btrfs_print_leaf(extent_root, path->nodes[0]); | ||
2431 | } | ||
2432 | BUG_ON(ret); | ||
2433 | extent_slot = path->slots[0]; | ||
2434 | } | ||
2435 | } else { | ||
2436 | btrfs_print_leaf(extent_root, path->nodes[0]); | ||
2437 | WARN_ON(1); | ||
2438 | printk(KERN_ERR "btrfs unable to find ref byte nr %llu " | ||
2439 | "root %llu gen %llu owner %llu\n", | ||
2440 | (unsigned long long)bytenr, | ||
2441 | (unsigned long long)root_objectid, | ||
2442 | (unsigned long long)ref_generation, | ||
2443 | (unsigned long long)owner_objectid); | ||
2444 | } | ||
2445 | |||
2446 | leaf = path->nodes[0]; | ||
2447 | ei = btrfs_item_ptr(leaf, extent_slot, | ||
2448 | struct btrfs_extent_item); | ||
2449 | refs = btrfs_extent_refs(leaf, ei); | ||
2450 | BUG_ON(refs == 0); | ||
2451 | refs -= 1; | ||
2452 | btrfs_set_extent_refs(leaf, ei, refs); | ||
2453 | |||
2454 | btrfs_mark_buffer_dirty(leaf); | ||
2455 | |||
2456 | if (refs == 0 && found_extent && path->slots[0] == extent_slot + 1) { | ||
2457 | struct btrfs_extent_ref *ref; | ||
2458 | ref = btrfs_item_ptr(leaf, path->slots[0], | ||
2459 | struct btrfs_extent_ref); | ||
2460 | BUG_ON(btrfs_ref_num_refs(leaf, ref) != 1); | ||
2461 | /* if the back ref and the extent are next to each other | ||
2462 | * they get deleted below in one shot | ||
2463 | */ | ||
2464 | path->slots[0] = extent_slot; | ||
2465 | num_to_del = 2; | ||
2466 | } else if (found_extent) { | ||
2467 | /* otherwise delete the extent back ref */ | ||
2468 | ret = remove_extent_backref(trans, extent_root, path); | ||
2469 | BUG_ON(ret); | ||
2470 | /* if refs are 0, we need to setup the path for deletion */ | ||
2471 | if (refs == 0) { | ||
2472 | btrfs_release_path(extent_root, path); | ||
2473 | ret = btrfs_search_slot(trans, extent_root, &key, path, | ||
2474 | -1, 1); | ||
2475 | BUG_ON(ret); | ||
2476 | } | ||
2477 | } | ||
2478 | |||
2479 | if (refs == 0) { | ||
2480 | u64 super_used; | ||
2481 | u64 root_used; | ||
2482 | |||
2483 | if (pin) { | ||
2484 | mutex_lock(&root->fs_info->pinned_mutex); | ||
2485 | ret = pin_down_bytes(trans, root, bytenr, num_bytes, | ||
2486 | owner_objectid >= BTRFS_FIRST_FREE_OBJECTID); | ||
2487 | mutex_unlock(&root->fs_info->pinned_mutex); | ||
2488 | if (ret > 0) | ||
2489 | mark_free = 1; | ||
2490 | BUG_ON(ret < 0); | ||
2491 | } | ||
2492 | /* block accounting for super block */ | ||
2493 | spin_lock(&info->delalloc_lock); | ||
2494 | super_used = btrfs_super_bytes_used(&info->super_copy); | ||
2495 | btrfs_set_super_bytes_used(&info->super_copy, | ||
2496 | super_used - num_bytes); | ||
2497 | |||
2498 | /* block accounting for root item */ | ||
2499 | root_used = btrfs_root_used(&root->root_item); | ||
2500 | btrfs_set_root_used(&root->root_item, | ||
2501 | root_used - num_bytes); | ||
2502 | spin_unlock(&info->delalloc_lock); | ||
2503 | ret = btrfs_del_items(trans, extent_root, path, path->slots[0], | ||
2504 | num_to_del); | ||
2505 | BUG_ON(ret); | ||
2506 | btrfs_release_path(extent_root, path); | ||
2507 | |||
2508 | if (owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) { | ||
2509 | ret = btrfs_del_csums(trans, root, bytenr, num_bytes); | ||
2510 | BUG_ON(ret); | ||
2511 | } | ||
2512 | |||
2513 | ret = update_block_group(trans, root, bytenr, num_bytes, 0, | ||
2514 | mark_free); | ||
2515 | BUG_ON(ret); | ||
2516 | } | ||
2517 | btrfs_free_path(path); | ||
2518 | finish_current_insert(trans, extent_root, 0); | ||
2519 | return ret; | ||
2520 | } | ||
2521 | |||
2522 | /* | ||
2523 | * find all the blocks marked as pending in the radix tree and remove | ||
2524 | * them from the extent map | ||
2525 | */ | ||
2526 | static int del_pending_extents(struct btrfs_trans_handle *trans, | ||
2527 | struct btrfs_root *extent_root, int all) | ||
2528 | { | ||
2529 | int ret; | ||
2530 | int err = 0; | ||
2531 | u64 start; | ||
2532 | u64 end; | ||
2533 | u64 priv; | ||
2534 | u64 search = 0; | ||
2535 | int nr = 0, skipped = 0; | ||
2536 | struct extent_io_tree *pending_del; | ||
2537 | struct extent_io_tree *extent_ins; | ||
2538 | struct pending_extent_op *extent_op; | ||
2539 | struct btrfs_fs_info *info = extent_root->fs_info; | ||
2540 | struct list_head delete_list; | ||
2541 | |||
2542 | INIT_LIST_HEAD(&delete_list); | ||
2543 | extent_ins = &extent_root->fs_info->extent_ins; | ||
2544 | pending_del = &extent_root->fs_info->pending_del; | ||
2545 | |||
2546 | again: | ||
2547 | mutex_lock(&info->extent_ins_mutex); | ||
2548 | while (1) { | ||
2549 | ret = find_first_extent_bit(pending_del, search, &start, &end, | ||
2550 | EXTENT_WRITEBACK); | ||
2551 | if (ret) { | ||
2552 | if (all && skipped && !nr) { | ||
2553 | search = 0; | ||
2554 | continue; | ||
2555 | } | ||
2556 | mutex_unlock(&info->extent_ins_mutex); | ||
2557 | break; | ||
2558 | } | ||
2559 | |||
2560 | ret = try_lock_extent(extent_ins, start, end, GFP_NOFS); | ||
2561 | if (!ret) { | ||
2562 | search = end+1; | ||
2563 | skipped = 1; | ||
2564 | |||
2565 | if (need_resched()) { | ||
2566 | mutex_unlock(&info->extent_ins_mutex); | ||
2567 | cond_resched(); | ||
2568 | mutex_lock(&info->extent_ins_mutex); | ||
2569 | } | ||
2570 | |||
2571 | continue; | ||
2572 | } | ||
2573 | BUG_ON(ret < 0); | ||
2574 | |||
2575 | ret = get_state_private(pending_del, start, &priv); | ||
2576 | BUG_ON(ret); | ||
2577 | extent_op = (struct pending_extent_op *)(unsigned long)priv; | ||
2578 | |||
2579 | clear_extent_bits(pending_del, start, end, EXTENT_WRITEBACK, | ||
2580 | GFP_NOFS); | ||
2581 | if (!test_range_bit(extent_ins, start, end, | ||
2582 | EXTENT_WRITEBACK, 0)) { | ||
2583 | list_add_tail(&extent_op->list, &delete_list); | ||
2584 | nr++; | ||
2585 | } else { | ||
2586 | kfree(extent_op); | ||
2587 | |||
2588 | ret = get_state_private(&info->extent_ins, start, | ||
2589 | &priv); | ||
2590 | BUG_ON(ret); | ||
2591 | extent_op = (struct pending_extent_op *) | ||
2592 | (unsigned long)priv; | ||
2593 | |||
2594 | clear_extent_bits(&info->extent_ins, start, end, | ||
2595 | EXTENT_WRITEBACK, GFP_NOFS); | ||
2596 | |||
2597 | if (extent_op->type == PENDING_BACKREF_UPDATE) { | ||
2598 | list_add_tail(&extent_op->list, &delete_list); | ||
2599 | search = end + 1; | ||
2600 | nr++; | ||
2601 | continue; | ||
2602 | } | ||
2603 | |||
2604 | mutex_lock(&extent_root->fs_info->pinned_mutex); | ||
2605 | ret = pin_down_bytes(trans, extent_root, start, | ||
2606 | end + 1 - start, 0); | ||
2607 | mutex_unlock(&extent_root->fs_info->pinned_mutex); | ||
2608 | |||
2609 | ret = update_block_group(trans, extent_root, start, | ||
2610 | end + 1 - start, 0, ret > 0); | ||
2611 | |||
2612 | unlock_extent(extent_ins, start, end, GFP_NOFS); | ||
2613 | BUG_ON(ret); | ||
2614 | kfree(extent_op); | ||
2615 | } | ||
2616 | if (ret) | ||
2617 | err = ret; | ||
2618 | |||
2619 | search = end + 1; | ||
2620 | |||
2621 | if (need_resched()) { | ||
2622 | mutex_unlock(&info->extent_ins_mutex); | ||
2623 | cond_resched(); | ||
2624 | mutex_lock(&info->extent_ins_mutex); | ||
2625 | } | ||
2626 | } | ||
2627 | |||
2628 | if (nr) { | ||
2629 | ret = free_extents(trans, extent_root, &delete_list); | ||
2630 | BUG_ON(ret); | ||
2631 | } | ||
2632 | |||
2633 | if (all && skipped) { | ||
2634 | INIT_LIST_HEAD(&delete_list); | ||
2635 | search = 0; | ||
2636 | nr = 0; | ||
2637 | goto again; | ||
2638 | } | ||
2639 | |||
2640 | return err; | ||
2641 | } | ||
2642 | |||
2643 | /* | ||
2644 | * remove an extent from the root, returns 0 on success | ||
2645 | */ | ||
2646 | static int __btrfs_free_extent(struct btrfs_trans_handle *trans, | ||
2647 | struct btrfs_root *root, | ||
2648 | u64 bytenr, u64 num_bytes, u64 parent, | ||
2649 | u64 root_objectid, u64 ref_generation, | ||
2650 | u64 owner_objectid, int pin) | ||
2651 | { | ||
2652 | struct btrfs_root *extent_root = root->fs_info->extent_root; | ||
2653 | int pending_ret; | ||
2654 | int ret; | ||
2655 | |||
2656 | WARN_ON(num_bytes < root->sectorsize); | ||
2657 | if (root == extent_root) { | ||
2658 | struct pending_extent_op *extent_op = NULL; | ||
2659 | |||
2660 | mutex_lock(&root->fs_info->extent_ins_mutex); | ||
2661 | if (test_range_bit(&root->fs_info->extent_ins, bytenr, | ||
2662 | bytenr + num_bytes - 1, EXTENT_WRITEBACK, 0)) { | ||
2663 | u64 priv; | ||
2664 | ret = get_state_private(&root->fs_info->extent_ins, | ||
2665 | bytenr, &priv); | ||
2666 | BUG_ON(ret); | ||
2667 | extent_op = (struct pending_extent_op *) | ||
2668 | (unsigned long)priv; | ||
2669 | |||
2670 | extent_op->del = 1; | ||
2671 | if (extent_op->type == PENDING_EXTENT_INSERT) { | ||
2672 | mutex_unlock(&root->fs_info->extent_ins_mutex); | ||
2673 | return 0; | ||
2674 | } | ||
2675 | } | ||
2676 | |||
2677 | if (extent_op) { | ||
2678 | ref_generation = extent_op->orig_generation; | ||
2679 | parent = extent_op->orig_parent; | ||
2680 | } | ||
2681 | |||
2682 | extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS); | ||
2683 | BUG_ON(!extent_op); | ||
2684 | |||
2685 | extent_op->type = PENDING_EXTENT_DELETE; | ||
2686 | extent_op->bytenr = bytenr; | ||
2687 | extent_op->num_bytes = num_bytes; | ||
2688 | extent_op->parent = parent; | ||
2689 | extent_op->orig_parent = parent; | ||
2690 | extent_op->generation = ref_generation; | ||
2691 | extent_op->orig_generation = ref_generation; | ||
2692 | extent_op->level = (int)owner_objectid; | ||
2693 | INIT_LIST_HEAD(&extent_op->list); | ||
2694 | extent_op->del = 0; | ||
2695 | |||
2696 | set_extent_bits(&root->fs_info->pending_del, | ||
2697 | bytenr, bytenr + num_bytes - 1, | ||
2698 | EXTENT_WRITEBACK, GFP_NOFS); | ||
2699 | set_state_private(&root->fs_info->pending_del, | ||
2700 | bytenr, (unsigned long)extent_op); | ||
2701 | mutex_unlock(&root->fs_info->extent_ins_mutex); | ||
2702 | return 0; | ||
2703 | } | ||
2704 | /* if metadata always pin */ | ||
2705 | if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) { | ||
2706 | if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { | ||
2707 | struct btrfs_block_group_cache *cache; | ||
2708 | |||
2709 | /* btrfs_free_reserved_extent */ | ||
2710 | cache = btrfs_lookup_block_group(root->fs_info, bytenr); | ||
2711 | BUG_ON(!cache); | ||
2712 | btrfs_add_free_space(cache, bytenr, num_bytes); | ||
2713 | put_block_group(cache); | ||
2714 | update_reserved_extents(root, bytenr, num_bytes, 0); | ||
2715 | return 0; | ||
2716 | } | ||
2717 | pin = 1; | ||
2718 | } | ||
2719 | |||
2720 | /* if data pin when any transaction has committed this */ | ||
2721 | if (ref_generation != trans->transid) | ||
2722 | pin = 1; | ||
2723 | |||
2724 | ret = __free_extent(trans, root, bytenr, num_bytes, parent, | ||
2725 | root_objectid, ref_generation, | ||
2726 | owner_objectid, pin, pin == 0); | ||
2727 | |||
2728 | finish_current_insert(trans, root->fs_info->extent_root, 0); | ||
2729 | pending_ret = del_pending_extents(trans, root->fs_info->extent_root, 0); | ||
2730 | return ret ? ret : pending_ret; | ||
2731 | } | ||
2732 | |||
2733 | int btrfs_free_extent(struct btrfs_trans_handle *trans, | ||
2734 | struct btrfs_root *root, | ||
2735 | u64 bytenr, u64 num_bytes, u64 parent, | ||
2736 | u64 root_objectid, u64 ref_generation, | ||
2737 | u64 owner_objectid, int pin) | ||
2738 | { | ||
2739 | int ret; | ||
2740 | |||
2741 | ret = __btrfs_free_extent(trans, root, bytenr, num_bytes, parent, | ||
2742 | root_objectid, ref_generation, | ||
2743 | owner_objectid, pin); | ||
2744 | return ret; | ||
2745 | } | ||
2746 | |||
2747 | static u64 stripe_align(struct btrfs_root *root, u64 val) | ||
2748 | { | ||
2749 | u64 mask = ((u64)root->stripesize - 1); | ||
2750 | u64 ret = (val + mask) & ~mask; | ||
2751 | return ret; | ||
2752 | } | ||
2753 | |||
2754 | /* | ||
2755 | * walks the btree of allocated extents and find a hole of a given size. | ||
2756 | * The key ins is changed to record the hole: | ||
2757 | * ins->objectid == block start | ||
2758 | * ins->flags = BTRFS_EXTENT_ITEM_KEY | ||
2759 | * ins->offset == number of blocks | ||
2760 | * Any available blocks before search_start are skipped. | ||
2761 | */ | ||
2762 | static noinline int find_free_extent(struct btrfs_trans_handle *trans, | ||
2763 | struct btrfs_root *orig_root, | ||
2764 | u64 num_bytes, u64 empty_size, | ||
2765 | u64 search_start, u64 search_end, | ||
2766 | u64 hint_byte, struct btrfs_key *ins, | ||
2767 | u64 exclude_start, u64 exclude_nr, | ||
2768 | int data) | ||
2769 | { | ||
2770 | int ret = 0; | ||
2771 | struct btrfs_root *root = orig_root->fs_info->extent_root; | ||
2772 | u64 total_needed = num_bytes; | ||
2773 | u64 *last_ptr = NULL; | ||
2774 | u64 last_wanted = 0; | ||
2775 | struct btrfs_block_group_cache *block_group = NULL; | ||
2776 | int chunk_alloc_done = 0; | ||
2777 | int empty_cluster = 2 * 1024 * 1024; | ||
2778 | int allowed_chunk_alloc = 0; | ||
2779 | struct list_head *head = NULL, *cur = NULL; | ||
2780 | int loop = 0; | ||
2781 | int extra_loop = 0; | ||
2782 | struct btrfs_space_info *space_info; | ||
2783 | |||
2784 | WARN_ON(num_bytes < root->sectorsize); | ||
2785 | btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY); | ||
2786 | ins->objectid = 0; | ||
2787 | ins->offset = 0; | ||
2788 | |||
2789 | if (orig_root->ref_cows || empty_size) | ||
2790 | allowed_chunk_alloc = 1; | ||
2791 | |||
2792 | if (data & BTRFS_BLOCK_GROUP_METADATA) { | ||
2793 | last_ptr = &root->fs_info->last_alloc; | ||
2794 | empty_cluster = 64 * 1024; | ||
2795 | } | ||
2796 | |||
2797 | if ((data & BTRFS_BLOCK_GROUP_DATA) && btrfs_test_opt(root, SSD)) | ||
2798 | last_ptr = &root->fs_info->last_data_alloc; | ||
2799 | |||
2800 | if (last_ptr) { | ||
2801 | if (*last_ptr) { | ||
2802 | hint_byte = *last_ptr; | ||
2803 | last_wanted = *last_ptr; | ||
2804 | } else | ||
2805 | empty_size += empty_cluster; | ||
2806 | } else { | ||
2807 | empty_cluster = 0; | ||
2808 | } | ||
2809 | search_start = max(search_start, first_logical_byte(root, 0)); | ||
2810 | search_start = max(search_start, hint_byte); | ||
2811 | |||
2812 | if (last_wanted && search_start != last_wanted) { | ||
2813 | last_wanted = 0; | ||
2814 | empty_size += empty_cluster; | ||
2815 | } | ||
2816 | |||
2817 | total_needed += empty_size; | ||
2818 | block_group = btrfs_lookup_block_group(root->fs_info, search_start); | ||
2819 | if (!block_group) | ||
2820 | block_group = btrfs_lookup_first_block_group(root->fs_info, | ||
2821 | search_start); | ||
2822 | space_info = __find_space_info(root->fs_info, data); | ||
2823 | |||
2824 | down_read(&space_info->groups_sem); | ||
2825 | while (1) { | ||
2826 | struct btrfs_free_space *free_space; | ||
2827 | /* | ||
2828 | * the only way this happens if our hint points to a block | ||
2829 | * group thats not of the proper type, while looping this | ||
2830 | * should never happen | ||
2831 | */ | ||
2832 | if (empty_size) | ||
2833 | extra_loop = 1; | ||
2834 | |||
2835 | if (!block_group) | ||
2836 | goto new_group_no_lock; | ||
2837 | |||
2838 | if (unlikely(!block_group->cached)) { | ||
2839 | mutex_lock(&block_group->cache_mutex); | ||
2840 | ret = cache_block_group(root, block_group); | ||
2841 | mutex_unlock(&block_group->cache_mutex); | ||
2842 | if (ret) | ||
2843 | break; | ||
2844 | } | ||
2845 | |||
2846 | mutex_lock(&block_group->alloc_mutex); | ||
2847 | if (unlikely(!block_group_bits(block_group, data))) | ||
2848 | goto new_group; | ||
2849 | |||
2850 | if (unlikely(block_group->ro)) | ||
2851 | goto new_group; | ||
2852 | |||
2853 | free_space = btrfs_find_free_space(block_group, search_start, | ||
2854 | total_needed); | ||
2855 | if (free_space) { | ||
2856 | u64 start = block_group->key.objectid; | ||
2857 | u64 end = block_group->key.objectid + | ||
2858 | block_group->key.offset; | ||
2859 | |||
2860 | search_start = stripe_align(root, free_space->offset); | ||
2861 | |||
2862 | /* move on to the next group */ | ||
2863 | if (search_start + num_bytes >= search_end) | ||
2864 | goto new_group; | ||
2865 | |||
2866 | /* move on to the next group */ | ||
2867 | if (search_start + num_bytes > end) | ||
2868 | goto new_group; | ||
2869 | |||
2870 | if (last_wanted && search_start != last_wanted) { | ||
2871 | total_needed += empty_cluster; | ||
2872 | empty_size += empty_cluster; | ||
2873 | last_wanted = 0; | ||
2874 | /* | ||
2875 | * if search_start is still in this block group | ||
2876 | * then we just re-search this block group | ||
2877 | */ | ||
2878 | if (search_start >= start && | ||
2879 | search_start < end) { | ||
2880 | mutex_unlock(&block_group->alloc_mutex); | ||
2881 | continue; | ||
2882 | } | ||
2883 | |||
2884 | /* else we go to the next block group */ | ||
2885 | goto new_group; | ||
2886 | } | ||
2887 | |||
2888 | if (exclude_nr > 0 && | ||
2889 | (search_start + num_bytes > exclude_start && | ||
2890 | search_start < exclude_start + exclude_nr)) { | ||
2891 | search_start = exclude_start + exclude_nr; | ||
2892 | /* | ||
2893 | * if search_start is still in this block group | ||
2894 | * then we just re-search this block group | ||
2895 | */ | ||
2896 | if (search_start >= start && | ||
2897 | search_start < end) { | ||
2898 | mutex_unlock(&block_group->alloc_mutex); | ||
2899 | last_wanted = 0; | ||
2900 | continue; | ||
2901 | } | ||
2902 | |||
2903 | /* else we go to the next block group */ | ||
2904 | goto new_group; | ||
2905 | } | ||
2906 | |||
2907 | ins->objectid = search_start; | ||
2908 | ins->offset = num_bytes; | ||
2909 | |||
2910 | btrfs_remove_free_space_lock(block_group, search_start, | ||
2911 | num_bytes); | ||
2912 | /* we are all good, lets return */ | ||
2913 | mutex_unlock(&block_group->alloc_mutex); | ||
2914 | break; | ||
2915 | } | ||
2916 | new_group: | ||
2917 | mutex_unlock(&block_group->alloc_mutex); | ||
2918 | put_block_group(block_group); | ||
2919 | block_group = NULL; | ||
2920 | new_group_no_lock: | ||
2921 | /* don't try to compare new allocations against the | ||
2922 | * last allocation any more | ||
2923 | */ | ||
2924 | last_wanted = 0; | ||
2925 | |||
2926 | /* | ||
2927 | * Here's how this works. | ||
2928 | * loop == 0: we were searching a block group via a hint | ||
2929 | * and didn't find anything, so we start at | ||
2930 | * the head of the block groups and keep searching | ||
2931 | * loop == 1: we're searching through all of the block groups | ||
2932 | * if we hit the head again we have searched | ||
2933 | * all of the block groups for this space and we | ||
2934 | * need to try and allocate, if we cant error out. | ||
2935 | * loop == 2: we allocated more space and are looping through | ||
2936 | * all of the block groups again. | ||
2937 | */ | ||
2938 | if (loop == 0) { | ||
2939 | head = &space_info->block_groups; | ||
2940 | cur = head->next; | ||
2941 | loop++; | ||
2942 | } else if (loop == 1 && cur == head) { | ||
2943 | int keep_going; | ||
2944 | |||
2945 | /* at this point we give up on the empty_size | ||
2946 | * allocations and just try to allocate the min | ||
2947 | * space. | ||
2948 | * | ||
2949 | * The extra_loop field was set if an empty_size | ||
2950 | * allocation was attempted above, and if this | ||
2951 | * is try we need to try the loop again without | ||
2952 | * the additional empty_size. | ||
2953 | */ | ||
2954 | total_needed -= empty_size; | ||
2955 | empty_size = 0; | ||
2956 | keep_going = extra_loop; | ||
2957 | loop++; | ||
2958 | |||
2959 | if (allowed_chunk_alloc && !chunk_alloc_done) { | ||
2960 | up_read(&space_info->groups_sem); | ||
2961 | ret = do_chunk_alloc(trans, root, num_bytes + | ||
2962 | 2 * 1024 * 1024, data, 1); | ||
2963 | down_read(&space_info->groups_sem); | ||
2964 | if (ret < 0) | ||
2965 | goto loop_check; | ||
2966 | head = &space_info->block_groups; | ||
2967 | /* | ||
2968 | * we've allocated a new chunk, keep | ||
2969 | * trying | ||
2970 | */ | ||
2971 | keep_going = 1; | ||
2972 | chunk_alloc_done = 1; | ||
2973 | } else if (!allowed_chunk_alloc) { | ||
2974 | space_info->force_alloc = 1; | ||
2975 | } | ||
2976 | loop_check: | ||
2977 | if (keep_going) { | ||
2978 | cur = head->next; | ||
2979 | extra_loop = 0; | ||
2980 | } else { | ||
2981 | break; | ||
2982 | } | ||
2983 | } else if (cur == head) { | ||
2984 | break; | ||
2985 | } | ||
2986 | |||
2987 | block_group = list_entry(cur, struct btrfs_block_group_cache, | ||
2988 | list); | ||
2989 | atomic_inc(&block_group->count); | ||
2990 | |||
2991 | search_start = block_group->key.objectid; | ||
2992 | cur = cur->next; | ||
2993 | } | ||
2994 | |||
2995 | /* we found what we needed */ | ||
2996 | if (ins->objectid) { | ||
2997 | if (!(data & BTRFS_BLOCK_GROUP_DATA)) | ||
2998 | trans->block_group = block_group->key.objectid; | ||
2999 | |||
3000 | if (last_ptr) | ||
3001 | *last_ptr = ins->objectid + ins->offset; | ||
3002 | ret = 0; | ||
3003 | } else if (!ret) { | ||
3004 | printk(KERN_ERR "btrfs searching for %llu bytes, " | ||
3005 | "num_bytes %llu, loop %d, allowed_alloc %d\n", | ||
3006 | (unsigned long long)total_needed, | ||
3007 | (unsigned long long)num_bytes, | ||
3008 | loop, allowed_chunk_alloc); | ||
3009 | ret = -ENOSPC; | ||
3010 | } | ||
3011 | if (block_group) | ||
3012 | put_block_group(block_group); | ||
3013 | |||
3014 | up_read(&space_info->groups_sem); | ||
3015 | return ret; | ||
3016 | } | ||
3017 | |||
3018 | static void dump_space_info(struct btrfs_space_info *info, u64 bytes) | ||
3019 | { | ||
3020 | struct btrfs_block_group_cache *cache; | ||
3021 | struct list_head *l; | ||
3022 | |||
3023 | printk(KERN_INFO "space_info has %llu free, is %sfull\n", | ||
3024 | (unsigned long long)(info->total_bytes - info->bytes_used - | ||
3025 | info->bytes_pinned - info->bytes_reserved), | ||
3026 | (info->full) ? "" : "not "); | ||
3027 | |||
3028 | down_read(&info->groups_sem); | ||
3029 | list_for_each(l, &info->block_groups) { | ||
3030 | cache = list_entry(l, struct btrfs_block_group_cache, list); | ||
3031 | spin_lock(&cache->lock); | ||
3032 | printk(KERN_INFO "block group %llu has %llu bytes, %llu used " | ||
3033 | "%llu pinned %llu reserved\n", | ||
3034 | (unsigned long long)cache->key.objectid, | ||
3035 | (unsigned long long)cache->key.offset, | ||
3036 | (unsigned long long)btrfs_block_group_used(&cache->item), | ||
3037 | (unsigned long long)cache->pinned, | ||
3038 | (unsigned long long)cache->reserved); | ||
3039 | btrfs_dump_free_space(cache, bytes); | ||
3040 | spin_unlock(&cache->lock); | ||
3041 | } | ||
3042 | up_read(&info->groups_sem); | ||
3043 | } | ||
3044 | |||
3045 | static int __btrfs_reserve_extent(struct btrfs_trans_handle *trans, | ||
3046 | struct btrfs_root *root, | ||
3047 | u64 num_bytes, u64 min_alloc_size, | ||
3048 | u64 empty_size, u64 hint_byte, | ||
3049 | u64 search_end, struct btrfs_key *ins, | ||
3050 | u64 data) | ||
3051 | { | ||
3052 | int ret; | ||
3053 | u64 search_start = 0; | ||
3054 | u64 alloc_profile; | ||
3055 | struct btrfs_fs_info *info = root->fs_info; | ||
3056 | |||
3057 | if (data) { | ||
3058 | alloc_profile = info->avail_data_alloc_bits & | ||
3059 | info->data_alloc_profile; | ||
3060 | data = BTRFS_BLOCK_GROUP_DATA | alloc_profile; | ||
3061 | } else if (root == root->fs_info->chunk_root) { | ||
3062 | alloc_profile = info->avail_system_alloc_bits & | ||
3063 | info->system_alloc_profile; | ||
3064 | data = BTRFS_BLOCK_GROUP_SYSTEM | alloc_profile; | ||
3065 | } else { | ||
3066 | alloc_profile = info->avail_metadata_alloc_bits & | ||
3067 | info->metadata_alloc_profile; | ||
3068 | data = BTRFS_BLOCK_GROUP_METADATA | alloc_profile; | ||
3069 | } | ||
3070 | again: | ||
3071 | data = btrfs_reduce_alloc_profile(root, data); | ||
3072 | /* | ||
3073 | * the only place that sets empty_size is btrfs_realloc_node, which | ||
3074 | * is not called recursively on allocations | ||
3075 | */ | ||
3076 | if (empty_size || root->ref_cows) { | ||
3077 | if (!(data & BTRFS_BLOCK_GROUP_METADATA)) { | ||
3078 | ret = do_chunk_alloc(trans, root->fs_info->extent_root, | ||
3079 | 2 * 1024 * 1024, | ||
3080 | BTRFS_BLOCK_GROUP_METADATA | | ||
3081 | (info->metadata_alloc_profile & | ||
3082 | info->avail_metadata_alloc_bits), 0); | ||
3083 | } | ||
3084 | ret = do_chunk_alloc(trans, root->fs_info->extent_root, | ||
3085 | num_bytes + 2 * 1024 * 1024, data, 0); | ||
3086 | } | ||
3087 | |||
3088 | WARN_ON(num_bytes < root->sectorsize); | ||
3089 | ret = find_free_extent(trans, root, num_bytes, empty_size, | ||
3090 | search_start, search_end, hint_byte, ins, | ||
3091 | trans->alloc_exclude_start, | ||
3092 | trans->alloc_exclude_nr, data); | ||
3093 | |||
3094 | if (ret == -ENOSPC && num_bytes > min_alloc_size) { | ||
3095 | num_bytes = num_bytes >> 1; | ||
3096 | num_bytes = num_bytes & ~(root->sectorsize - 1); | ||
3097 | num_bytes = max(num_bytes, min_alloc_size); | ||
3098 | do_chunk_alloc(trans, root->fs_info->extent_root, | ||
3099 | num_bytes, data, 1); | ||
3100 | goto again; | ||
3101 | } | ||
3102 | if (ret) { | ||
3103 | struct btrfs_space_info *sinfo; | ||
3104 | |||
3105 | sinfo = __find_space_info(root->fs_info, data); | ||
3106 | printk(KERN_ERR "btrfs allocation failed flags %llu, " | ||
3107 | "wanted %llu\n", (unsigned long long)data, | ||
3108 | (unsigned long long)num_bytes); | ||
3109 | dump_space_info(sinfo, num_bytes); | ||
3110 | BUG(); | ||
3111 | } | ||
3112 | |||
3113 | return ret; | ||
3114 | } | ||
3115 | |||
3116 | int btrfs_free_reserved_extent(struct btrfs_root *root, u64 start, u64 len) | ||
3117 | { | ||
3118 | struct btrfs_block_group_cache *cache; | ||
3119 | int ret = 0; | ||
3120 | |||
3121 | cache = btrfs_lookup_block_group(root->fs_info, start); | ||
3122 | if (!cache) { | ||
3123 | printk(KERN_ERR "Unable to find block group for %llu\n", | ||
3124 | (unsigned long long)start); | ||
3125 | return -ENOSPC; | ||
3126 | } | ||
3127 | |||
3128 | ret = btrfs_discard_extent(root, start, len); | ||
3129 | |||
3130 | btrfs_add_free_space(cache, start, len); | ||
3131 | put_block_group(cache); | ||
3132 | update_reserved_extents(root, start, len, 0); | ||
3133 | |||
3134 | return ret; | ||
3135 | } | ||
3136 | |||
3137 | int btrfs_reserve_extent(struct btrfs_trans_handle *trans, | ||
3138 | struct btrfs_root *root, | ||
3139 | u64 num_bytes, u64 min_alloc_size, | ||
3140 | u64 empty_size, u64 hint_byte, | ||
3141 | u64 search_end, struct btrfs_key *ins, | ||
3142 | u64 data) | ||
3143 | { | ||
3144 | int ret; | ||
3145 | ret = __btrfs_reserve_extent(trans, root, num_bytes, min_alloc_size, | ||
3146 | empty_size, hint_byte, search_end, ins, | ||
3147 | data); | ||
3148 | update_reserved_extents(root, ins->objectid, ins->offset, 1); | ||
3149 | return ret; | ||
3150 | } | ||
3151 | |||
3152 | static int __btrfs_alloc_reserved_extent(struct btrfs_trans_handle *trans, | ||
3153 | struct btrfs_root *root, u64 parent, | ||
3154 | u64 root_objectid, u64 ref_generation, | ||
3155 | u64 owner, struct btrfs_key *ins) | ||
3156 | { | ||
3157 | int ret; | ||
3158 | int pending_ret; | ||
3159 | u64 super_used; | ||
3160 | u64 root_used; | ||
3161 | u64 num_bytes = ins->offset; | ||
3162 | u32 sizes[2]; | ||
3163 | struct btrfs_fs_info *info = root->fs_info; | ||
3164 | struct btrfs_root *extent_root = info->extent_root; | ||
3165 | struct btrfs_extent_item *extent_item; | ||
3166 | struct btrfs_extent_ref *ref; | ||
3167 | struct btrfs_path *path; | ||
3168 | struct btrfs_key keys[2]; | ||
3169 | |||
3170 | if (parent == 0) | ||
3171 | parent = ins->objectid; | ||
3172 | |||
3173 | /* block accounting for super block */ | ||
3174 | spin_lock(&info->delalloc_lock); | ||
3175 | super_used = btrfs_super_bytes_used(&info->super_copy); | ||
3176 | btrfs_set_super_bytes_used(&info->super_copy, super_used + num_bytes); | ||
3177 | |||
3178 | /* block accounting for root item */ | ||
3179 | root_used = btrfs_root_used(&root->root_item); | ||
3180 | btrfs_set_root_used(&root->root_item, root_used + num_bytes); | ||
3181 | spin_unlock(&info->delalloc_lock); | ||
3182 | |||
3183 | if (root == extent_root) { | ||
3184 | struct pending_extent_op *extent_op; | ||
3185 | |||
3186 | extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS); | ||
3187 | BUG_ON(!extent_op); | ||
3188 | |||
3189 | extent_op->type = PENDING_EXTENT_INSERT; | ||
3190 | extent_op->bytenr = ins->objectid; | ||
3191 | extent_op->num_bytes = ins->offset; | ||
3192 | extent_op->parent = parent; | ||
3193 | extent_op->orig_parent = 0; | ||
3194 | extent_op->generation = ref_generation; | ||
3195 | extent_op->orig_generation = 0; | ||
3196 | extent_op->level = (int)owner; | ||
3197 | INIT_LIST_HEAD(&extent_op->list); | ||
3198 | extent_op->del = 0; | ||
3199 | |||
3200 | mutex_lock(&root->fs_info->extent_ins_mutex); | ||
3201 | set_extent_bits(&root->fs_info->extent_ins, ins->objectid, | ||
3202 | ins->objectid + ins->offset - 1, | ||
3203 | EXTENT_WRITEBACK, GFP_NOFS); | ||
3204 | set_state_private(&root->fs_info->extent_ins, | ||
3205 | ins->objectid, (unsigned long)extent_op); | ||
3206 | mutex_unlock(&root->fs_info->extent_ins_mutex); | ||
3207 | goto update_block; | ||
3208 | } | ||
3209 | |||
3210 | memcpy(&keys[0], ins, sizeof(*ins)); | ||
3211 | keys[1].objectid = ins->objectid; | ||
3212 | keys[1].type = BTRFS_EXTENT_REF_KEY; | ||
3213 | keys[1].offset = parent; | ||
3214 | sizes[0] = sizeof(*extent_item); | ||
3215 | sizes[1] = sizeof(*ref); | ||
3216 | |||
3217 | path = btrfs_alloc_path(); | ||
3218 | BUG_ON(!path); | ||
3219 | |||
3220 | ret = btrfs_insert_empty_items(trans, extent_root, path, keys, | ||
3221 | sizes, 2); | ||
3222 | BUG_ON(ret); | ||
3223 | |||
3224 | extent_item = btrfs_item_ptr(path->nodes[0], path->slots[0], | ||
3225 | struct btrfs_extent_item); | ||
3226 | btrfs_set_extent_refs(path->nodes[0], extent_item, 1); | ||
3227 | ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, | ||
3228 | struct btrfs_extent_ref); | ||
3229 | |||
3230 | btrfs_set_ref_root(path->nodes[0], ref, root_objectid); | ||
3231 | btrfs_set_ref_generation(path->nodes[0], ref, ref_generation); | ||
3232 | btrfs_set_ref_objectid(path->nodes[0], ref, owner); | ||
3233 | btrfs_set_ref_num_refs(path->nodes[0], ref, 1); | ||
3234 | |||
3235 | btrfs_mark_buffer_dirty(path->nodes[0]); | ||
3236 | |||
3237 | trans->alloc_exclude_start = 0; | ||
3238 | trans->alloc_exclude_nr = 0; | ||
3239 | btrfs_free_path(path); | ||
3240 | finish_current_insert(trans, extent_root, 0); | ||
3241 | pending_ret = del_pending_extents(trans, extent_root, 0); | ||
3242 | |||
3243 | if (ret) | ||
3244 | goto out; | ||
3245 | if (pending_ret) { | ||
3246 | ret = pending_ret; | ||
3247 | goto out; | ||
3248 | } | ||
3249 | |||
3250 | update_block: | ||
3251 | ret = update_block_group(trans, root, ins->objectid, | ||
3252 | ins->offset, 1, 0); | ||
3253 | if (ret) { | ||
3254 | printk(KERN_ERR "btrfs update block group failed for %llu " | ||
3255 | "%llu\n", (unsigned long long)ins->objectid, | ||
3256 | (unsigned long long)ins->offset); | ||
3257 | BUG(); | ||
3258 | } | ||
3259 | out: | ||
3260 | return ret; | ||
3261 | } | ||
3262 | |||
3263 | int btrfs_alloc_reserved_extent(struct btrfs_trans_handle *trans, | ||
3264 | struct btrfs_root *root, u64 parent, | ||
3265 | u64 root_objectid, u64 ref_generation, | ||
3266 | u64 owner, struct btrfs_key *ins) | ||
3267 | { | ||
3268 | int ret; | ||
3269 | |||
3270 | if (root_objectid == BTRFS_TREE_LOG_OBJECTID) | ||
3271 | return 0; | ||
3272 | ret = __btrfs_alloc_reserved_extent(trans, root, parent, root_objectid, | ||
3273 | ref_generation, owner, ins); | ||
3274 | update_reserved_extents(root, ins->objectid, ins->offset, 0); | ||
3275 | return ret; | ||
3276 | } | ||
3277 | |||
3278 | /* | ||
3279 | * this is used by the tree logging recovery code. It records that | ||
3280 | * an extent has been allocated and makes sure to clear the free | ||
3281 | * space cache bits as well | ||
3282 | */ | ||
3283 | int btrfs_alloc_logged_extent(struct btrfs_trans_handle *trans, | ||
3284 | struct btrfs_root *root, u64 parent, | ||
3285 | u64 root_objectid, u64 ref_generation, | ||
3286 | u64 owner, struct btrfs_key *ins) | ||
3287 | { | ||
3288 | int ret; | ||
3289 | struct btrfs_block_group_cache *block_group; | ||
3290 | |||
3291 | block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid); | ||
3292 | mutex_lock(&block_group->cache_mutex); | ||
3293 | cache_block_group(root, block_group); | ||
3294 | mutex_unlock(&block_group->cache_mutex); | ||
3295 | |||
3296 | ret = btrfs_remove_free_space(block_group, ins->objectid, | ||
3297 | ins->offset); | ||
3298 | BUG_ON(ret); | ||
3299 | put_block_group(block_group); | ||
3300 | ret = __btrfs_alloc_reserved_extent(trans, root, parent, root_objectid, | ||
3301 | ref_generation, owner, ins); | ||
3302 | return ret; | ||
3303 | } | ||
3304 | |||
3305 | /* | ||
3306 | * finds a free extent and does all the dirty work required for allocation | ||
3307 | * returns the key for the extent through ins, and a tree buffer for | ||
3308 | * the first block of the extent through buf. | ||
3309 | * | ||
3310 | * returns 0 if everything worked, non-zero otherwise. | ||
3311 | */ | ||
3312 | int btrfs_alloc_extent(struct btrfs_trans_handle *trans, | ||
3313 | struct btrfs_root *root, | ||
3314 | u64 num_bytes, u64 parent, u64 min_alloc_size, | ||
3315 | u64 root_objectid, u64 ref_generation, | ||
3316 | u64 owner_objectid, u64 empty_size, u64 hint_byte, | ||
3317 | u64 search_end, struct btrfs_key *ins, u64 data) | ||
3318 | { | ||
3319 | int ret; | ||
3320 | |||
3321 | ret = __btrfs_reserve_extent(trans, root, num_bytes, | ||
3322 | min_alloc_size, empty_size, hint_byte, | ||
3323 | search_end, ins, data); | ||
3324 | BUG_ON(ret); | ||
3325 | if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { | ||
3326 | ret = __btrfs_alloc_reserved_extent(trans, root, parent, | ||
3327 | root_objectid, ref_generation, | ||
3328 | owner_objectid, ins); | ||
3329 | BUG_ON(ret); | ||
3330 | |||
3331 | } else { | ||
3332 | update_reserved_extents(root, ins->objectid, ins->offset, 1); | ||
3333 | } | ||
3334 | return ret; | ||
3335 | } | ||
3336 | |||
3337 | struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans, | ||
3338 | struct btrfs_root *root, | ||
3339 | u64 bytenr, u32 blocksize) | ||
3340 | { | ||
3341 | struct extent_buffer *buf; | ||
3342 | |||
3343 | buf = btrfs_find_create_tree_block(root, bytenr, blocksize); | ||
3344 | if (!buf) | ||
3345 | return ERR_PTR(-ENOMEM); | ||
3346 | btrfs_set_header_generation(buf, trans->transid); | ||
3347 | btrfs_tree_lock(buf); | ||
3348 | clean_tree_block(trans, root, buf); | ||
3349 | btrfs_set_buffer_uptodate(buf); | ||
3350 | if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { | ||
3351 | set_extent_dirty(&root->dirty_log_pages, buf->start, | ||
3352 | buf->start + buf->len - 1, GFP_NOFS); | ||
3353 | } else { | ||
3354 | set_extent_dirty(&trans->transaction->dirty_pages, buf->start, | ||
3355 | buf->start + buf->len - 1, GFP_NOFS); | ||
3356 | } | ||
3357 | trans->blocks_used++; | ||
3358 | return buf; | ||
3359 | } | ||
3360 | |||
3361 | /* | ||
3362 | * helper function to allocate a block for a given tree | ||
3363 | * returns the tree buffer or NULL. | ||
3364 | */ | ||
3365 | struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans, | ||
3366 | struct btrfs_root *root, | ||
3367 | u32 blocksize, u64 parent, | ||
3368 | u64 root_objectid, | ||
3369 | u64 ref_generation, | ||
3370 | int level, | ||
3371 | u64 hint, | ||
3372 | u64 empty_size) | ||
3373 | { | ||
3374 | struct btrfs_key ins; | ||
3375 | int ret; | ||
3376 | struct extent_buffer *buf; | ||
3377 | |||
3378 | ret = btrfs_alloc_extent(trans, root, blocksize, parent, blocksize, | ||
3379 | root_objectid, ref_generation, level, | ||
3380 | empty_size, hint, (u64)-1, &ins, 0); | ||
3381 | if (ret) { | ||
3382 | BUG_ON(ret > 0); | ||
3383 | return ERR_PTR(ret); | ||
3384 | } | ||
3385 | |||
3386 | buf = btrfs_init_new_buffer(trans, root, ins.objectid, blocksize); | ||
3387 | return buf; | ||
3388 | } | ||
3389 | |||
3390 | int btrfs_drop_leaf_ref(struct btrfs_trans_handle *trans, | ||
3391 | struct btrfs_root *root, struct extent_buffer *leaf) | ||
3392 | { | ||
3393 | u64 leaf_owner; | ||
3394 | u64 leaf_generation; | ||
3395 | struct btrfs_key key; | ||
3396 | struct btrfs_file_extent_item *fi; | ||
3397 | int i; | ||
3398 | int nritems; | ||
3399 | int ret; | ||
3400 | |||
3401 | BUG_ON(!btrfs_is_leaf(leaf)); | ||
3402 | nritems = btrfs_header_nritems(leaf); | ||
3403 | leaf_owner = btrfs_header_owner(leaf); | ||
3404 | leaf_generation = btrfs_header_generation(leaf); | ||
3405 | |||
3406 | for (i = 0; i < nritems; i++) { | ||
3407 | u64 disk_bytenr; | ||
3408 | cond_resched(); | ||
3409 | |||
3410 | btrfs_item_key_to_cpu(leaf, &key, i); | ||
3411 | if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY) | ||
3412 | continue; | ||
3413 | fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); | ||
3414 | if (btrfs_file_extent_type(leaf, fi) == | ||
3415 | BTRFS_FILE_EXTENT_INLINE) | ||
3416 | continue; | ||
3417 | /* | ||
3418 | * FIXME make sure to insert a trans record that | ||
3419 | * repeats the snapshot del on crash | ||
3420 | */ | ||
3421 | disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); | ||
3422 | if (disk_bytenr == 0) | ||
3423 | continue; | ||
3424 | |||
3425 | ret = __btrfs_free_extent(trans, root, disk_bytenr, | ||
3426 | btrfs_file_extent_disk_num_bytes(leaf, fi), | ||
3427 | leaf->start, leaf_owner, leaf_generation, | ||
3428 | key.objectid, 0); | ||
3429 | BUG_ON(ret); | ||
3430 | |||
3431 | atomic_inc(&root->fs_info->throttle_gen); | ||
3432 | wake_up(&root->fs_info->transaction_throttle); | ||
3433 | cond_resched(); | ||
3434 | } | ||
3435 | return 0; | ||
3436 | } | ||
3437 | |||
3438 | static noinline int cache_drop_leaf_ref(struct btrfs_trans_handle *trans, | ||
3439 | struct btrfs_root *root, | ||
3440 | struct btrfs_leaf_ref *ref) | ||
3441 | { | ||
3442 | int i; | ||
3443 | int ret; | ||
3444 | struct btrfs_extent_info *info = ref->extents; | ||
3445 | |||
3446 | for (i = 0; i < ref->nritems; i++) { | ||
3447 | ret = __btrfs_free_extent(trans, root, info->bytenr, | ||
3448 | info->num_bytes, ref->bytenr, | ||
3449 | ref->owner, ref->generation, | ||
3450 | info->objectid, 0); | ||
3451 | |||
3452 | atomic_inc(&root->fs_info->throttle_gen); | ||
3453 | wake_up(&root->fs_info->transaction_throttle); | ||
3454 | cond_resched(); | ||
3455 | |||
3456 | BUG_ON(ret); | ||
3457 | info++; | ||
3458 | } | ||
3459 | |||
3460 | return 0; | ||
3461 | } | ||
3462 | |||
3463 | static int drop_snap_lookup_refcount(struct btrfs_root *root, u64 start, | ||
3464 | u64 len, u32 *refs) | ||
3465 | { | ||
3466 | int ret; | ||
3467 | |||
3468 | ret = btrfs_lookup_extent_ref(NULL, root, start, len, refs); | ||
3469 | BUG_ON(ret); | ||
3470 | |||
3471 | #if 0 /* some debugging code in case we see problems here */ | ||
3472 | /* if the refs count is one, it won't get increased again. But | ||
3473 | * if the ref count is > 1, someone may be decreasing it at | ||
3474 | * the same time we are. | ||
3475 | */ | ||
3476 | if (*refs != 1) { | ||
3477 | struct extent_buffer *eb = NULL; | ||
3478 | eb = btrfs_find_create_tree_block(root, start, len); | ||
3479 | if (eb) | ||
3480 | btrfs_tree_lock(eb); | ||
3481 | |||
3482 | mutex_lock(&root->fs_info->alloc_mutex); | ||
3483 | ret = lookup_extent_ref(NULL, root, start, len, refs); | ||
3484 | BUG_ON(ret); | ||
3485 | mutex_unlock(&root->fs_info->alloc_mutex); | ||
3486 | |||
3487 | if (eb) { | ||
3488 | btrfs_tree_unlock(eb); | ||
3489 | free_extent_buffer(eb); | ||
3490 | } | ||
3491 | if (*refs == 1) { | ||
3492 | printk(KERN_ERR "btrfs block %llu went down to one " | ||
3493 | "during drop_snap\n", (unsigned long long)start); | ||
3494 | } | ||
3495 | |||
3496 | } | ||
3497 | #endif | ||
3498 | |||
3499 | cond_resched(); | ||
3500 | return ret; | ||
3501 | } | ||
3502 | |||
3503 | /* | ||
3504 | * helper function for drop_snapshot, this walks down the tree dropping ref | ||
3505 | * counts as it goes. | ||
3506 | */ | ||
3507 | static noinline int walk_down_tree(struct btrfs_trans_handle *trans, | ||
3508 | struct btrfs_root *root, | ||
3509 | struct btrfs_path *path, int *level) | ||
3510 | { | ||
3511 | u64 root_owner; | ||
3512 | u64 root_gen; | ||
3513 | u64 bytenr; | ||
3514 | u64 ptr_gen; | ||
3515 | struct extent_buffer *next; | ||
3516 | struct extent_buffer *cur; | ||
3517 | struct extent_buffer *parent; | ||
3518 | struct btrfs_leaf_ref *ref; | ||
3519 | u32 blocksize; | ||
3520 | int ret; | ||
3521 | u32 refs; | ||
3522 | |||
3523 | WARN_ON(*level < 0); | ||
3524 | WARN_ON(*level >= BTRFS_MAX_LEVEL); | ||
3525 | ret = drop_snap_lookup_refcount(root, path->nodes[*level]->start, | ||
3526 | path->nodes[*level]->len, &refs); | ||
3527 | BUG_ON(ret); | ||
3528 | if (refs > 1) | ||
3529 | goto out; | ||
3530 | |||
3531 | /* | ||
3532 | * walk down to the last node level and free all the leaves | ||
3533 | */ | ||
3534 | while (*level >= 0) { | ||
3535 | WARN_ON(*level < 0); | ||
3536 | WARN_ON(*level >= BTRFS_MAX_LEVEL); | ||
3537 | cur = path->nodes[*level]; | ||
3538 | |||
3539 | if (btrfs_header_level(cur) != *level) | ||
3540 | WARN_ON(1); | ||
3541 | |||
3542 | if (path->slots[*level] >= | ||
3543 | btrfs_header_nritems(cur)) | ||
3544 | break; | ||
3545 | if (*level == 0) { | ||
3546 | ret = btrfs_drop_leaf_ref(trans, root, cur); | ||
3547 | BUG_ON(ret); | ||
3548 | break; | ||
3549 | } | ||
3550 | bytenr = btrfs_node_blockptr(cur, path->slots[*level]); | ||
3551 | ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]); | ||
3552 | blocksize = btrfs_level_size(root, *level - 1); | ||
3553 | |||
3554 | ret = drop_snap_lookup_refcount(root, bytenr, blocksize, &refs); | ||
3555 | BUG_ON(ret); | ||
3556 | if (refs != 1) { | ||
3557 | parent = path->nodes[*level]; | ||
3558 | root_owner = btrfs_header_owner(parent); | ||
3559 | root_gen = btrfs_header_generation(parent); | ||
3560 | path->slots[*level]++; | ||
3561 | |||
3562 | ret = __btrfs_free_extent(trans, root, bytenr, | ||
3563 | blocksize, parent->start, | ||
3564 | root_owner, root_gen, | ||
3565 | *level - 1, 1); | ||
3566 | BUG_ON(ret); | ||
3567 | |||
3568 | atomic_inc(&root->fs_info->throttle_gen); | ||
3569 | wake_up(&root->fs_info->transaction_throttle); | ||
3570 | cond_resched(); | ||
3571 | |||
3572 | continue; | ||
3573 | } | ||
3574 | /* | ||
3575 | * at this point, we have a single ref, and since the | ||
3576 | * only place referencing this extent is a dead root | ||
3577 | * the reference count should never go higher. | ||
3578 | * So, we don't need to check it again | ||
3579 | */ | ||
3580 | if (*level == 1) { | ||
3581 | ref = btrfs_lookup_leaf_ref(root, bytenr); | ||
3582 | if (ref && ref->generation != ptr_gen) { | ||
3583 | btrfs_free_leaf_ref(root, ref); | ||
3584 | ref = NULL; | ||
3585 | } | ||
3586 | if (ref) { | ||
3587 | ret = cache_drop_leaf_ref(trans, root, ref); | ||
3588 | BUG_ON(ret); | ||
3589 | btrfs_remove_leaf_ref(root, ref); | ||
3590 | btrfs_free_leaf_ref(root, ref); | ||
3591 | *level = 0; | ||
3592 | break; | ||
3593 | } | ||
3594 | } | ||
3595 | next = btrfs_find_tree_block(root, bytenr, blocksize); | ||
3596 | if (!next || !btrfs_buffer_uptodate(next, ptr_gen)) { | ||
3597 | free_extent_buffer(next); | ||
3598 | |||
3599 | next = read_tree_block(root, bytenr, blocksize, | ||
3600 | ptr_gen); | ||
3601 | cond_resched(); | ||
3602 | #if 0 | ||
3603 | /* | ||
3604 | * this is a debugging check and can go away | ||
3605 | * the ref should never go all the way down to 1 | ||
3606 | * at this point | ||
3607 | */ | ||
3608 | ret = lookup_extent_ref(NULL, root, bytenr, blocksize, | ||
3609 | &refs); | ||
3610 | BUG_ON(ret); | ||
3611 | WARN_ON(refs != 1); | ||
3612 | #endif | ||
3613 | } | ||
3614 | WARN_ON(*level <= 0); | ||
3615 | if (path->nodes[*level-1]) | ||
3616 | free_extent_buffer(path->nodes[*level-1]); | ||
3617 | path->nodes[*level-1] = next; | ||
3618 | *level = btrfs_header_level(next); | ||
3619 | path->slots[*level] = 0; | ||
3620 | cond_resched(); | ||
3621 | } | ||
3622 | out: | ||
3623 | WARN_ON(*level < 0); | ||
3624 | WARN_ON(*level >= BTRFS_MAX_LEVEL); | ||
3625 | |||
3626 | if (path->nodes[*level] == root->node) { | ||
3627 | parent = path->nodes[*level]; | ||
3628 | bytenr = path->nodes[*level]->start; | ||
3629 | } else { | ||
3630 | parent = path->nodes[*level + 1]; | ||
3631 | bytenr = btrfs_node_blockptr(parent, path->slots[*level + 1]); | ||
3632 | } | ||
3633 | |||
3634 | blocksize = btrfs_level_size(root, *level); | ||
3635 | root_owner = btrfs_header_owner(parent); | ||
3636 | root_gen = btrfs_header_generation(parent); | ||
3637 | |||
3638 | ret = __btrfs_free_extent(trans, root, bytenr, blocksize, | ||
3639 | parent->start, root_owner, root_gen, | ||
3640 | *level, 1); | ||
3641 | free_extent_buffer(path->nodes[*level]); | ||
3642 | path->nodes[*level] = NULL; | ||
3643 | *level += 1; | ||
3644 | BUG_ON(ret); | ||
3645 | |||
3646 | cond_resched(); | ||
3647 | return 0; | ||
3648 | } | ||
3649 | |||
3650 | /* | ||
3651 | * helper function for drop_subtree, this function is similar to | ||
3652 | * walk_down_tree. The main difference is that it checks reference | ||
3653 | * counts while tree blocks are locked. | ||
3654 | */ | ||
3655 | static noinline int walk_down_subtree(struct btrfs_trans_handle *trans, | ||
3656 | struct btrfs_root *root, | ||
3657 | struct btrfs_path *path, int *level) | ||
3658 | { | ||
3659 | struct extent_buffer *next; | ||
3660 | struct extent_buffer *cur; | ||
3661 | struct extent_buffer *parent; | ||
3662 | u64 bytenr; | ||
3663 | u64 ptr_gen; | ||
3664 | u32 blocksize; | ||
3665 | u32 refs; | ||
3666 | int ret; | ||
3667 | |||
3668 | cur = path->nodes[*level]; | ||
3669 | ret = btrfs_lookup_extent_ref(trans, root, cur->start, cur->len, | ||
3670 | &refs); | ||
3671 | BUG_ON(ret); | ||
3672 | if (refs > 1) | ||
3673 | goto out; | ||
3674 | |||
3675 | while (*level >= 0) { | ||
3676 | cur = path->nodes[*level]; | ||
3677 | if (*level == 0) { | ||
3678 | ret = btrfs_drop_leaf_ref(trans, root, cur); | ||
3679 | BUG_ON(ret); | ||
3680 | clean_tree_block(trans, root, cur); | ||
3681 | break; | ||
3682 | } | ||
3683 | if (path->slots[*level] >= btrfs_header_nritems(cur)) { | ||
3684 | clean_tree_block(trans, root, cur); | ||
3685 | break; | ||
3686 | } | ||
3687 | |||
3688 | bytenr = btrfs_node_blockptr(cur, path->slots[*level]); | ||
3689 | blocksize = btrfs_level_size(root, *level - 1); | ||
3690 | ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]); | ||
3691 | |||
3692 | next = read_tree_block(root, bytenr, blocksize, ptr_gen); | ||
3693 | btrfs_tree_lock(next); | ||
3694 | |||
3695 | ret = btrfs_lookup_extent_ref(trans, root, bytenr, blocksize, | ||
3696 | &refs); | ||
3697 | BUG_ON(ret); | ||
3698 | if (refs > 1) { | ||
3699 | parent = path->nodes[*level]; | ||
3700 | ret = btrfs_free_extent(trans, root, bytenr, | ||
3701 | blocksize, parent->start, | ||
3702 | btrfs_header_owner(parent), | ||
3703 | btrfs_header_generation(parent), | ||
3704 | *level - 1, 1); | ||
3705 | BUG_ON(ret); | ||
3706 | path->slots[*level]++; | ||
3707 | btrfs_tree_unlock(next); | ||
3708 | free_extent_buffer(next); | ||
3709 | continue; | ||
3710 | } | ||
3711 | |||
3712 | *level = btrfs_header_level(next); | ||
3713 | path->nodes[*level] = next; | ||
3714 | path->slots[*level] = 0; | ||
3715 | path->locks[*level] = 1; | ||
3716 | cond_resched(); | ||
3717 | } | ||
3718 | out: | ||
3719 | parent = path->nodes[*level + 1]; | ||
3720 | bytenr = path->nodes[*level]->start; | ||
3721 | blocksize = path->nodes[*level]->len; | ||
3722 | |||
3723 | ret = btrfs_free_extent(trans, root, bytenr, blocksize, | ||
3724 | parent->start, btrfs_header_owner(parent), | ||
3725 | btrfs_header_generation(parent), *level, 1); | ||
3726 | BUG_ON(ret); | ||
3727 | |||
3728 | if (path->locks[*level]) { | ||
3729 | btrfs_tree_unlock(path->nodes[*level]); | ||
3730 | path->locks[*level] = 0; | ||
3731 | } | ||
3732 | free_extent_buffer(path->nodes[*level]); | ||
3733 | path->nodes[*level] = NULL; | ||
3734 | *level += 1; | ||
3735 | cond_resched(); | ||
3736 | return 0; | ||
3737 | } | ||
3738 | |||
3739 | /* | ||
3740 | * helper for dropping snapshots. This walks back up the tree in the path | ||
3741 | * to find the first node higher up where we haven't yet gone through | ||
3742 | * all the slots | ||
3743 | */ | ||
3744 | static noinline int walk_up_tree(struct btrfs_trans_handle *trans, | ||
3745 | struct btrfs_root *root, | ||
3746 | struct btrfs_path *path, | ||
3747 | int *level, int max_level) | ||
3748 | { | ||
3749 | u64 root_owner; | ||
3750 | u64 root_gen; | ||
3751 | struct btrfs_root_item *root_item = &root->root_item; | ||
3752 | int i; | ||
3753 | int slot; | ||
3754 | int ret; | ||
3755 | |||
3756 | for (i = *level; i < max_level && path->nodes[i]; i++) { | ||
3757 | slot = path->slots[i]; | ||
3758 | if (slot < btrfs_header_nritems(path->nodes[i]) - 1) { | ||
3759 | struct extent_buffer *node; | ||
3760 | struct btrfs_disk_key disk_key; | ||
3761 | node = path->nodes[i]; | ||
3762 | path->slots[i]++; | ||
3763 | *level = i; | ||
3764 | WARN_ON(*level == 0); | ||
3765 | btrfs_node_key(node, &disk_key, path->slots[i]); | ||
3766 | memcpy(&root_item->drop_progress, | ||
3767 | &disk_key, sizeof(disk_key)); | ||
3768 | root_item->drop_level = i; | ||
3769 | return 0; | ||
3770 | } else { | ||
3771 | struct extent_buffer *parent; | ||
3772 | if (path->nodes[*level] == root->node) | ||
3773 | parent = path->nodes[*level]; | ||
3774 | else | ||
3775 | parent = path->nodes[*level + 1]; | ||
3776 | |||
3777 | root_owner = btrfs_header_owner(parent); | ||
3778 | root_gen = btrfs_header_generation(parent); | ||
3779 | |||
3780 | clean_tree_block(trans, root, path->nodes[*level]); | ||
3781 | ret = btrfs_free_extent(trans, root, | ||
3782 | path->nodes[*level]->start, | ||
3783 | path->nodes[*level]->len, | ||
3784 | parent->start, root_owner, | ||
3785 | root_gen, *level, 1); | ||
3786 | BUG_ON(ret); | ||
3787 | if (path->locks[*level]) { | ||
3788 | btrfs_tree_unlock(path->nodes[*level]); | ||
3789 | path->locks[*level] = 0; | ||
3790 | } | ||
3791 | free_extent_buffer(path->nodes[*level]); | ||
3792 | path->nodes[*level] = NULL; | ||
3793 | *level = i + 1; | ||
3794 | } | ||
3795 | } | ||
3796 | return 1; | ||
3797 | } | ||
3798 | |||
3799 | /* | ||
3800 | * drop the reference count on the tree rooted at 'snap'. This traverses | ||
3801 | * the tree freeing any blocks that have a ref count of zero after being | ||
3802 | * decremented. | ||
3803 | */ | ||
3804 | int btrfs_drop_snapshot(struct btrfs_trans_handle *trans, struct btrfs_root | ||
3805 | *root) | ||
3806 | { | ||
3807 | int ret = 0; | ||
3808 | int wret; | ||
3809 | int level; | ||
3810 | struct btrfs_path *path; | ||
3811 | int i; | ||
3812 | int orig_level; | ||
3813 | struct btrfs_root_item *root_item = &root->root_item; | ||
3814 | |||
3815 | WARN_ON(!mutex_is_locked(&root->fs_info->drop_mutex)); | ||
3816 | path = btrfs_alloc_path(); | ||
3817 | BUG_ON(!path); | ||
3818 | |||
3819 | level = btrfs_header_level(root->node); | ||
3820 | orig_level = level; | ||
3821 | if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { | ||
3822 | path->nodes[level] = root->node; | ||
3823 | extent_buffer_get(root->node); | ||
3824 | path->slots[level] = 0; | ||
3825 | } else { | ||
3826 | struct btrfs_key key; | ||
3827 | struct btrfs_disk_key found_key; | ||
3828 | struct extent_buffer *node; | ||
3829 | |||
3830 | btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); | ||
3831 | level = root_item->drop_level; | ||
3832 | path->lowest_level = level; | ||
3833 | wret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | ||
3834 | if (wret < 0) { | ||
3835 | ret = wret; | ||
3836 | goto out; | ||
3837 | } | ||
3838 | node = path->nodes[level]; | ||
3839 | btrfs_node_key(node, &found_key, path->slots[level]); | ||
3840 | WARN_ON(memcmp(&found_key, &root_item->drop_progress, | ||
3841 | sizeof(found_key))); | ||
3842 | /* | ||
3843 | * unlock our path, this is safe because only this | ||
3844 | * function is allowed to delete this snapshot | ||
3845 | */ | ||
3846 | for (i = 0; i < BTRFS_MAX_LEVEL; i++) { | ||
3847 | if (path->nodes[i] && path->locks[i]) { | ||
3848 | path->locks[i] = 0; | ||
3849 | btrfs_tree_unlock(path->nodes[i]); | ||
3850 | } | ||
3851 | } | ||
3852 | } | ||
3853 | while (1) { | ||
3854 | wret = walk_down_tree(trans, root, path, &level); | ||
3855 | if (wret > 0) | ||
3856 | break; | ||
3857 | if (wret < 0) | ||
3858 | ret = wret; | ||
3859 | |||
3860 | wret = walk_up_tree(trans, root, path, &level, | ||
3861 | BTRFS_MAX_LEVEL); | ||
3862 | if (wret > 0) | ||
3863 | break; | ||
3864 | if (wret < 0) | ||
3865 | ret = wret; | ||
3866 | if (trans->transaction->in_commit) { | ||
3867 | ret = -EAGAIN; | ||
3868 | break; | ||
3869 | } | ||
3870 | atomic_inc(&root->fs_info->throttle_gen); | ||
3871 | wake_up(&root->fs_info->transaction_throttle); | ||
3872 | } | ||
3873 | for (i = 0; i <= orig_level; i++) { | ||
3874 | if (path->nodes[i]) { | ||
3875 | free_extent_buffer(path->nodes[i]); | ||
3876 | path->nodes[i] = NULL; | ||
3877 | } | ||
3878 | } | ||
3879 | out: | ||
3880 | btrfs_free_path(path); | ||
3881 | return ret; | ||
3882 | } | ||
3883 | |||
3884 | int btrfs_drop_subtree(struct btrfs_trans_handle *trans, | ||
3885 | struct btrfs_root *root, | ||
3886 | struct extent_buffer *node, | ||
3887 | struct extent_buffer *parent) | ||
3888 | { | ||
3889 | struct btrfs_path *path; | ||
3890 | int level; | ||
3891 | int parent_level; | ||
3892 | int ret = 0; | ||
3893 | int wret; | ||
3894 | |||
3895 | path = btrfs_alloc_path(); | ||
3896 | BUG_ON(!path); | ||
3897 | |||
3898 | BUG_ON(!btrfs_tree_locked(parent)); | ||
3899 | parent_level = btrfs_header_level(parent); | ||
3900 | extent_buffer_get(parent); | ||
3901 | path->nodes[parent_level] = parent; | ||
3902 | path->slots[parent_level] = btrfs_header_nritems(parent); | ||
3903 | |||
3904 | BUG_ON(!btrfs_tree_locked(node)); | ||
3905 | level = btrfs_header_level(node); | ||
3906 | extent_buffer_get(node); | ||
3907 | path->nodes[level] = node; | ||
3908 | path->slots[level] = 0; | ||
3909 | |||
3910 | while (1) { | ||
3911 | wret = walk_down_subtree(trans, root, path, &level); | ||
3912 | if (wret < 0) | ||
3913 | ret = wret; | ||
3914 | if (wret != 0) | ||
3915 | break; | ||
3916 | |||
3917 | wret = walk_up_tree(trans, root, path, &level, parent_level); | ||
3918 | if (wret < 0) | ||
3919 | ret = wret; | ||
3920 | if (wret != 0) | ||
3921 | break; | ||
3922 | } | ||
3923 | |||
3924 | btrfs_free_path(path); | ||
3925 | return ret; | ||
3926 | } | ||
3927 | |||
3928 | static unsigned long calc_ra(unsigned long start, unsigned long last, | ||
3929 | unsigned long nr) | ||
3930 | { | ||
3931 | return min(last, start + nr - 1); | ||
3932 | } | ||
3933 | |||
3934 | static noinline int relocate_inode_pages(struct inode *inode, u64 start, | ||
3935 | u64 len) | ||
3936 | { | ||
3937 | u64 page_start; | ||
3938 | u64 page_end; | ||
3939 | unsigned long first_index; | ||
3940 | unsigned long last_index; | ||
3941 | unsigned long i; | ||
3942 | struct page *page; | ||
3943 | struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; | ||
3944 | struct file_ra_state *ra; | ||
3945 | struct btrfs_ordered_extent *ordered; | ||
3946 | unsigned int total_read = 0; | ||
3947 | unsigned int total_dirty = 0; | ||
3948 | int ret = 0; | ||
3949 | |||
3950 | ra = kzalloc(sizeof(*ra), GFP_NOFS); | ||
3951 | |||
3952 | mutex_lock(&inode->i_mutex); | ||
3953 | first_index = start >> PAGE_CACHE_SHIFT; | ||
3954 | last_index = (start + len - 1) >> PAGE_CACHE_SHIFT; | ||
3955 | |||
3956 | /* make sure the dirty trick played by the caller work */ | ||
3957 | ret = invalidate_inode_pages2_range(inode->i_mapping, | ||
3958 | first_index, last_index); | ||
3959 | if (ret) | ||
3960 | goto out_unlock; | ||
3961 | |||
3962 | file_ra_state_init(ra, inode->i_mapping); | ||
3963 | |||
3964 | for (i = first_index ; i <= last_index; i++) { | ||
3965 | if (total_read % ra->ra_pages == 0) { | ||
3966 | btrfs_force_ra(inode->i_mapping, ra, NULL, i, | ||
3967 | calc_ra(i, last_index, ra->ra_pages)); | ||
3968 | } | ||
3969 | total_read++; | ||
3970 | again: | ||
3971 | if (((u64)i << PAGE_CACHE_SHIFT) > i_size_read(inode)) | ||
3972 | BUG_ON(1); | ||
3973 | page = grab_cache_page(inode->i_mapping, i); | ||
3974 | if (!page) { | ||
3975 | ret = -ENOMEM; | ||
3976 | goto out_unlock; | ||
3977 | } | ||
3978 | if (!PageUptodate(page)) { | ||
3979 | btrfs_readpage(NULL, page); | ||
3980 | lock_page(page); | ||
3981 | if (!PageUptodate(page)) { | ||
3982 | unlock_page(page); | ||
3983 | page_cache_release(page); | ||
3984 | ret = -EIO; | ||
3985 | goto out_unlock; | ||
3986 | } | ||
3987 | } | ||
3988 | wait_on_page_writeback(page); | ||
3989 | |||
3990 | page_start = (u64)page->index << PAGE_CACHE_SHIFT; | ||
3991 | page_end = page_start + PAGE_CACHE_SIZE - 1; | ||
3992 | lock_extent(io_tree, page_start, page_end, GFP_NOFS); | ||
3993 | |||
3994 | ordered = btrfs_lookup_ordered_extent(inode, page_start); | ||
3995 | if (ordered) { | ||
3996 | unlock_extent(io_tree, page_start, page_end, GFP_NOFS); | ||
3997 | unlock_page(page); | ||
3998 | page_cache_release(page); | ||
3999 | btrfs_start_ordered_extent(inode, ordered, 1); | ||
4000 | btrfs_put_ordered_extent(ordered); | ||
4001 | goto again; | ||
4002 | } | ||
4003 | set_page_extent_mapped(page); | ||
4004 | |||
4005 | if (i == first_index) | ||
4006 | set_extent_bits(io_tree, page_start, page_end, | ||
4007 | EXTENT_BOUNDARY, GFP_NOFS); | ||
4008 | btrfs_set_extent_delalloc(inode, page_start, page_end); | ||
4009 | |||
4010 | set_page_dirty(page); | ||
4011 | total_dirty++; | ||
4012 | |||
4013 | unlock_extent(io_tree, page_start, page_end, GFP_NOFS); | ||
4014 | unlock_page(page); | ||
4015 | page_cache_release(page); | ||
4016 | } | ||
4017 | |||
4018 | out_unlock: | ||
4019 | kfree(ra); | ||
4020 | mutex_unlock(&inode->i_mutex); | ||
4021 | balance_dirty_pages_ratelimited_nr(inode->i_mapping, total_dirty); | ||
4022 | return ret; | ||
4023 | } | ||
4024 | |||
4025 | static noinline int relocate_data_extent(struct inode *reloc_inode, | ||
4026 | struct btrfs_key *extent_key, | ||
4027 | u64 offset) | ||
4028 | { | ||
4029 | struct btrfs_root *root = BTRFS_I(reloc_inode)->root; | ||
4030 | struct extent_map_tree *em_tree = &BTRFS_I(reloc_inode)->extent_tree; | ||
4031 | struct extent_map *em; | ||
4032 | u64 start = extent_key->objectid - offset; | ||
4033 | u64 end = start + extent_key->offset - 1; | ||
4034 | |||
4035 | em = alloc_extent_map(GFP_NOFS); | ||
4036 | BUG_ON(!em || IS_ERR(em)); | ||
4037 | |||
4038 | em->start = start; | ||
4039 | em->len = extent_key->offset; | ||
4040 | em->block_len = extent_key->offset; | ||
4041 | em->block_start = extent_key->objectid; | ||
4042 | em->bdev = root->fs_info->fs_devices->latest_bdev; | ||
4043 | set_bit(EXTENT_FLAG_PINNED, &em->flags); | ||
4044 | |||
4045 | /* setup extent map to cheat btrfs_readpage */ | ||
4046 | lock_extent(&BTRFS_I(reloc_inode)->io_tree, start, end, GFP_NOFS); | ||
4047 | while (1) { | ||
4048 | int ret; | ||
4049 | spin_lock(&em_tree->lock); | ||
4050 | ret = add_extent_mapping(em_tree, em); | ||
4051 | spin_unlock(&em_tree->lock); | ||
4052 | if (ret != -EEXIST) { | ||
4053 | free_extent_map(em); | ||
4054 | break; | ||
4055 | } | ||
4056 | btrfs_drop_extent_cache(reloc_inode, start, end, 0); | ||
4057 | } | ||
4058 | unlock_extent(&BTRFS_I(reloc_inode)->io_tree, start, end, GFP_NOFS); | ||
4059 | |||
4060 | return relocate_inode_pages(reloc_inode, start, extent_key->offset); | ||
4061 | } | ||
4062 | |||
4063 | struct btrfs_ref_path { | ||
4064 | u64 extent_start; | ||
4065 | u64 nodes[BTRFS_MAX_LEVEL]; | ||
4066 | u64 root_objectid; | ||
4067 | u64 root_generation; | ||
4068 | u64 owner_objectid; | ||
4069 | u32 num_refs; | ||
4070 | int lowest_level; | ||
4071 | int current_level; | ||
4072 | int shared_level; | ||
4073 | |||
4074 | struct btrfs_key node_keys[BTRFS_MAX_LEVEL]; | ||
4075 | u64 new_nodes[BTRFS_MAX_LEVEL]; | ||
4076 | }; | ||
4077 | |||
4078 | struct disk_extent { | ||
4079 | u64 ram_bytes; | ||
4080 | u64 disk_bytenr; | ||
4081 | u64 disk_num_bytes; | ||
4082 | u64 offset; | ||
4083 | u64 num_bytes; | ||
4084 | u8 compression; | ||
4085 | u8 encryption; | ||
4086 | u16 other_encoding; | ||
4087 | }; | ||
4088 | |||
4089 | static int is_cowonly_root(u64 root_objectid) | ||
4090 | { | ||
4091 | if (root_objectid == BTRFS_ROOT_TREE_OBJECTID || | ||
4092 | root_objectid == BTRFS_EXTENT_TREE_OBJECTID || | ||
4093 | root_objectid == BTRFS_CHUNK_TREE_OBJECTID || | ||
4094 | root_objectid == BTRFS_DEV_TREE_OBJECTID || | ||
4095 | root_objectid == BTRFS_TREE_LOG_OBJECTID || | ||
4096 | root_objectid == BTRFS_CSUM_TREE_OBJECTID) | ||
4097 | return 1; | ||
4098 | return 0; | ||
4099 | } | ||
4100 | |||
4101 | static noinline int __next_ref_path(struct btrfs_trans_handle *trans, | ||
4102 | struct btrfs_root *extent_root, | ||
4103 | struct btrfs_ref_path *ref_path, | ||
4104 | int first_time) | ||
4105 | { | ||
4106 | struct extent_buffer *leaf; | ||
4107 | struct btrfs_path *path; | ||
4108 | struct btrfs_extent_ref *ref; | ||
4109 | struct btrfs_key key; | ||
4110 | struct btrfs_key found_key; | ||
4111 | u64 bytenr; | ||
4112 | u32 nritems; | ||
4113 | int level; | ||
4114 | int ret = 1; | ||
4115 | |||
4116 | path = btrfs_alloc_path(); | ||
4117 | if (!path) | ||
4118 | return -ENOMEM; | ||
4119 | |||
4120 | if (first_time) { | ||
4121 | ref_path->lowest_level = -1; | ||
4122 | ref_path->current_level = -1; | ||
4123 | ref_path->shared_level = -1; | ||
4124 | goto walk_up; | ||
4125 | } | ||
4126 | walk_down: | ||
4127 | level = ref_path->current_level - 1; | ||
4128 | while (level >= -1) { | ||
4129 | u64 parent; | ||
4130 | if (level < ref_path->lowest_level) | ||
4131 | break; | ||
4132 | |||
4133 | if (level >= 0) | ||
4134 | bytenr = ref_path->nodes[level]; | ||
4135 | else | ||
4136 | bytenr = ref_path->extent_start; | ||
4137 | BUG_ON(bytenr == 0); | ||
4138 | |||
4139 | parent = ref_path->nodes[level + 1]; | ||
4140 | ref_path->nodes[level + 1] = 0; | ||
4141 | ref_path->current_level = level; | ||
4142 | BUG_ON(parent == 0); | ||
4143 | |||
4144 | key.objectid = bytenr; | ||
4145 | key.offset = parent + 1; | ||
4146 | key.type = BTRFS_EXTENT_REF_KEY; | ||
4147 | |||
4148 | ret = btrfs_search_slot(trans, extent_root, &key, path, 0, 0); | ||
4149 | if (ret < 0) | ||
4150 | goto out; | ||
4151 | BUG_ON(ret == 0); | ||
4152 | |||
4153 | leaf = path->nodes[0]; | ||
4154 | nritems = btrfs_header_nritems(leaf); | ||
4155 | if (path->slots[0] >= nritems) { | ||
4156 | ret = btrfs_next_leaf(extent_root, path); | ||
4157 | if (ret < 0) | ||
4158 | goto out; | ||
4159 | if (ret > 0) | ||
4160 | goto next; | ||
4161 | leaf = path->nodes[0]; | ||
4162 | } | ||
4163 | |||
4164 | btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); | ||
4165 | if (found_key.objectid == bytenr && | ||
4166 | found_key.type == BTRFS_EXTENT_REF_KEY) { | ||
4167 | if (level < ref_path->shared_level) | ||
4168 | ref_path->shared_level = level; | ||
4169 | goto found; | ||
4170 | } | ||
4171 | next: | ||
4172 | level--; | ||
4173 | btrfs_release_path(extent_root, path); | ||
4174 | cond_resched(); | ||
4175 | } | ||
4176 | /* reached lowest level */ | ||
4177 | ret = 1; | ||
4178 | goto out; | ||
4179 | walk_up: | ||
4180 | level = ref_path->current_level; | ||
4181 | while (level < BTRFS_MAX_LEVEL - 1) { | ||
4182 | u64 ref_objectid; | ||
4183 | |||
4184 | if (level >= 0) | ||
4185 | bytenr = ref_path->nodes[level]; | ||
4186 | else | ||
4187 | bytenr = ref_path->extent_start; | ||
4188 | |||
4189 | BUG_ON(bytenr == 0); | ||
4190 | |||
4191 | key.objectid = bytenr; | ||
4192 | key.offset = 0; | ||
4193 | key.type = BTRFS_EXTENT_REF_KEY; | ||
4194 | |||
4195 | ret = btrfs_search_slot(trans, extent_root, &key, path, 0, 0); | ||
4196 | if (ret < 0) | ||
4197 | goto out; | ||
4198 | |||
4199 | leaf = path->nodes[0]; | ||
4200 | nritems = btrfs_header_nritems(leaf); | ||
4201 | if (path->slots[0] >= nritems) { | ||
4202 | ret = btrfs_next_leaf(extent_root, path); | ||
4203 | if (ret < 0) | ||
4204 | goto out; | ||
4205 | if (ret > 0) { | ||
4206 | /* the extent was freed by someone */ | ||
4207 | if (ref_path->lowest_level == level) | ||
4208 | goto out; | ||
4209 | btrfs_release_path(extent_root, path); | ||
4210 | goto walk_down; | ||
4211 | } | ||
4212 | leaf = path->nodes[0]; | ||
4213 | } | ||
4214 | |||
4215 | btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); | ||
4216 | if (found_key.objectid != bytenr || | ||
4217 | found_key.type != BTRFS_EXTENT_REF_KEY) { | ||
4218 | /* the extent was freed by someone */ | ||
4219 | if (ref_path->lowest_level == level) { | ||
4220 | ret = 1; | ||
4221 | goto out; | ||
4222 | } | ||
4223 | btrfs_release_path(extent_root, path); | ||
4224 | goto walk_down; | ||
4225 | } | ||
4226 | found: | ||
4227 | ref = btrfs_item_ptr(leaf, path->slots[0], | ||
4228 | struct btrfs_extent_ref); | ||
4229 | ref_objectid = btrfs_ref_objectid(leaf, ref); | ||
4230 | if (ref_objectid < BTRFS_FIRST_FREE_OBJECTID) { | ||
4231 | if (first_time) { | ||
4232 | level = (int)ref_objectid; | ||
4233 | BUG_ON(level >= BTRFS_MAX_LEVEL); | ||
4234 | ref_path->lowest_level = level; | ||
4235 | ref_path->current_level = level; | ||
4236 | ref_path->nodes[level] = bytenr; | ||
4237 | } else { | ||
4238 | WARN_ON(ref_objectid != level); | ||
4239 | } | ||
4240 | } else { | ||
4241 | WARN_ON(level != -1); | ||
4242 | } | ||
4243 | first_time = 0; | ||
4244 | |||
4245 | if (ref_path->lowest_level == level) { | ||
4246 | ref_path->owner_objectid = ref_objectid; | ||
4247 | ref_path->num_refs = btrfs_ref_num_refs(leaf, ref); | ||
4248 | } | ||
4249 | |||
4250 | /* | ||
4251 | * the block is tree root or the block isn't in reference | ||
4252 | * counted tree. | ||
4253 | */ | ||
4254 | if (found_key.objectid == found_key.offset || | ||
4255 | is_cowonly_root(btrfs_ref_root(leaf, ref))) { | ||
4256 | ref_path->root_objectid = btrfs_ref_root(leaf, ref); | ||
4257 | ref_path->root_generation = | ||
4258 | btrfs_ref_generation(leaf, ref); | ||
4259 | if (level < 0) { | ||
4260 | /* special reference from the tree log */ | ||
4261 | ref_path->nodes[0] = found_key.offset; | ||
4262 | ref_path->current_level = 0; | ||
4263 | } | ||
4264 | ret = 0; | ||
4265 | goto out; | ||
4266 | } | ||
4267 | |||
4268 | level++; | ||
4269 | BUG_ON(ref_path->nodes[level] != 0); | ||
4270 | ref_path->nodes[level] = found_key.offset; | ||
4271 | ref_path->current_level = level; | ||
4272 | |||
4273 | /* | ||
4274 | * the reference was created in the running transaction, | ||
4275 | * no need to continue walking up. | ||
4276 | */ | ||
4277 | if (btrfs_ref_generation(leaf, ref) == trans->transid) { | ||
4278 | ref_path->root_objectid = btrfs_ref_root(leaf, ref); | ||
4279 | ref_path->root_generation = | ||
4280 | btrfs_ref_generation(leaf, ref); | ||
4281 | ret = 0; | ||
4282 | goto out; | ||
4283 | } | ||
4284 | |||
4285 | btrfs_release_path(extent_root, path); | ||
4286 | cond_resched(); | ||
4287 | } | ||
4288 | /* reached max tree level, but no tree root found. */ | ||
4289 | BUG(); | ||
4290 | out: | ||
4291 | btrfs_free_path(path); | ||
4292 | return ret; | ||
4293 | } | ||
4294 | |||
4295 | static int btrfs_first_ref_path(struct btrfs_trans_handle *trans, | ||
4296 | struct btrfs_root *extent_root, | ||
4297 | struct btrfs_ref_path *ref_path, | ||
4298 | u64 extent_start) | ||
4299 | { | ||
4300 | memset(ref_path, 0, sizeof(*ref_path)); | ||
4301 | ref_path->extent_start = extent_start; | ||
4302 | |||
4303 | return __next_ref_path(trans, extent_root, ref_path, 1); | ||
4304 | } | ||
4305 | |||
4306 | static int btrfs_next_ref_path(struct btrfs_trans_handle *trans, | ||
4307 | struct btrfs_root *extent_root, | ||
4308 | struct btrfs_ref_path *ref_path) | ||
4309 | { | ||
4310 | return __next_ref_path(trans, extent_root, ref_path, 0); | ||
4311 | } | ||
4312 | |||
4313 | static noinline int get_new_locations(struct inode *reloc_inode, | ||
4314 | struct btrfs_key *extent_key, | ||
4315 | u64 offset, int no_fragment, | ||
4316 | struct disk_extent **extents, | ||
4317 | int *nr_extents) | ||
4318 | { | ||
4319 | struct btrfs_root *root = BTRFS_I(reloc_inode)->root; | ||
4320 | struct btrfs_path *path; | ||
4321 | struct btrfs_file_extent_item *fi; | ||
4322 | struct extent_buffer *leaf; | ||
4323 | struct disk_extent *exts = *extents; | ||
4324 | struct btrfs_key found_key; | ||
4325 | u64 cur_pos; | ||
4326 | u64 last_byte; | ||
4327 | u32 nritems; | ||
4328 | int nr = 0; | ||
4329 | int max = *nr_extents; | ||
4330 | int ret; | ||
4331 | |||
4332 | WARN_ON(!no_fragment && *extents); | ||
4333 | if (!exts) { | ||
4334 | max = 1; | ||
4335 | exts = kmalloc(sizeof(*exts) * max, GFP_NOFS); | ||
4336 | if (!exts) | ||
4337 | return -ENOMEM; | ||
4338 | } | ||
4339 | |||
4340 | path = btrfs_alloc_path(); | ||
4341 | BUG_ON(!path); | ||
4342 | |||
4343 | cur_pos = extent_key->objectid - offset; | ||
4344 | last_byte = extent_key->objectid + extent_key->offset; | ||
4345 | ret = btrfs_lookup_file_extent(NULL, root, path, reloc_inode->i_ino, | ||
4346 | cur_pos, 0); | ||
4347 | if (ret < 0) | ||
4348 | goto out; | ||
4349 | if (ret > 0) { | ||
4350 | ret = -ENOENT; | ||
4351 | goto out; | ||
4352 | } | ||
4353 | |||
4354 | while (1) { | ||
4355 | leaf = path->nodes[0]; | ||
4356 | nritems = btrfs_header_nritems(leaf); | ||
4357 | if (path->slots[0] >= nritems) { | ||
4358 | ret = btrfs_next_leaf(root, path); | ||
4359 | if (ret < 0) | ||
4360 | goto out; | ||
4361 | if (ret > 0) | ||
4362 | break; | ||
4363 | leaf = path->nodes[0]; | ||
4364 | } | ||
4365 | |||
4366 | btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); | ||
4367 | if (found_key.offset != cur_pos || | ||
4368 | found_key.type != BTRFS_EXTENT_DATA_KEY || | ||
4369 | found_key.objectid != reloc_inode->i_ino) | ||
4370 | break; | ||
4371 | |||
4372 | fi = btrfs_item_ptr(leaf, path->slots[0], | ||
4373 | struct btrfs_file_extent_item); | ||
4374 | if (btrfs_file_extent_type(leaf, fi) != | ||
4375 | BTRFS_FILE_EXTENT_REG || | ||
4376 | btrfs_file_extent_disk_bytenr(leaf, fi) == 0) | ||
4377 | break; | ||
4378 | |||
4379 | if (nr == max) { | ||
4380 | struct disk_extent *old = exts; | ||
4381 | max *= 2; | ||
4382 | exts = kzalloc(sizeof(*exts) * max, GFP_NOFS); | ||
4383 | memcpy(exts, old, sizeof(*exts) * nr); | ||
4384 | if (old != *extents) | ||
4385 | kfree(old); | ||
4386 | } | ||
4387 | |||
4388 | exts[nr].disk_bytenr = | ||
4389 | btrfs_file_extent_disk_bytenr(leaf, fi); | ||
4390 | exts[nr].disk_num_bytes = | ||
4391 | btrfs_file_extent_disk_num_bytes(leaf, fi); | ||
4392 | exts[nr].offset = btrfs_file_extent_offset(leaf, fi); | ||
4393 | exts[nr].num_bytes = btrfs_file_extent_num_bytes(leaf, fi); | ||
4394 | exts[nr].ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); | ||
4395 | exts[nr].compression = btrfs_file_extent_compression(leaf, fi); | ||
4396 | exts[nr].encryption = btrfs_file_extent_encryption(leaf, fi); | ||
4397 | exts[nr].other_encoding = btrfs_file_extent_other_encoding(leaf, | ||
4398 | fi); | ||
4399 | BUG_ON(exts[nr].offset > 0); | ||
4400 | BUG_ON(exts[nr].compression || exts[nr].encryption); | ||
4401 | BUG_ON(exts[nr].num_bytes != exts[nr].disk_num_bytes); | ||
4402 | |||
4403 | cur_pos += exts[nr].num_bytes; | ||
4404 | nr++; | ||
4405 | |||
4406 | if (cur_pos + offset >= last_byte) | ||
4407 | break; | ||
4408 | |||
4409 | if (no_fragment) { | ||
4410 | ret = 1; | ||
4411 | goto out; | ||
4412 | } | ||
4413 | path->slots[0]++; | ||
4414 | } | ||
4415 | |||
4416 | BUG_ON(cur_pos + offset > last_byte); | ||
4417 | if (cur_pos + offset < last_byte) { | ||
4418 | ret = -ENOENT; | ||
4419 | goto out; | ||
4420 | } | ||
4421 | ret = 0; | ||
4422 | out: | ||
4423 | btrfs_free_path(path); | ||
4424 | if (ret) { | ||
4425 | if (exts != *extents) | ||
4426 | kfree(exts); | ||
4427 | } else { | ||
4428 | *extents = exts; | ||
4429 | *nr_extents = nr; | ||
4430 | } | ||
4431 | return ret; | ||
4432 | } | ||
4433 | |||
4434 | static noinline int replace_one_extent(struct btrfs_trans_handle *trans, | ||
4435 | struct btrfs_root *root, | ||
4436 | struct btrfs_path *path, | ||
4437 | struct btrfs_key *extent_key, | ||
4438 | struct btrfs_key *leaf_key, | ||
4439 | struct btrfs_ref_path *ref_path, | ||
4440 | struct disk_extent *new_extents, | ||
4441 | int nr_extents) | ||
4442 | { | ||
4443 | struct extent_buffer *leaf; | ||
4444 | struct btrfs_file_extent_item *fi; | ||
4445 | struct inode *inode = NULL; | ||
4446 | struct btrfs_key key; | ||
4447 | u64 lock_start = 0; | ||
4448 | u64 lock_end = 0; | ||
4449 | u64 num_bytes; | ||
4450 | u64 ext_offset; | ||
4451 | u64 first_pos; | ||
4452 | u32 nritems; | ||
4453 | int nr_scaned = 0; | ||
4454 | int extent_locked = 0; | ||
4455 | int extent_type; | ||
4456 | int ret; | ||
4457 | |||
4458 | memcpy(&key, leaf_key, sizeof(key)); | ||
4459 | first_pos = INT_LIMIT(loff_t) - extent_key->offset; | ||
4460 | if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS) { | ||
4461 | if (key.objectid < ref_path->owner_objectid || | ||
4462 | (key.objectid == ref_path->owner_objectid && | ||
4463 | key.type < BTRFS_EXTENT_DATA_KEY)) { | ||
4464 | key.objectid = ref_path->owner_objectid; | ||
4465 | key.type = BTRFS_EXTENT_DATA_KEY; | ||
4466 | key.offset = 0; | ||
4467 | } | ||
4468 | } | ||
4469 | |||
4470 | while (1) { | ||
4471 | ret = btrfs_search_slot(trans, root, &key, path, 0, 1); | ||
4472 | if (ret < 0) | ||
4473 | goto out; | ||
4474 | |||
4475 | leaf = path->nodes[0]; | ||
4476 | nritems = btrfs_header_nritems(leaf); | ||
4477 | next: | ||
4478 | if (extent_locked && ret > 0) { | ||
4479 | /* | ||
4480 | * the file extent item was modified by someone | ||
4481 | * before the extent got locked. | ||
4482 | */ | ||
4483 | unlock_extent(&BTRFS_I(inode)->io_tree, lock_start, | ||
4484 | lock_end, GFP_NOFS); | ||
4485 | extent_locked = 0; | ||
4486 | } | ||
4487 | |||
4488 | if (path->slots[0] >= nritems) { | ||
4489 | if (++nr_scaned > 2) | ||
4490 | break; | ||
4491 | |||
4492 | BUG_ON(extent_locked); | ||
4493 | ret = btrfs_next_leaf(root, path); | ||
4494 | if (ret < 0) | ||
4495 | goto out; | ||
4496 | if (ret > 0) | ||
4497 | break; | ||
4498 | leaf = path->nodes[0]; | ||
4499 | nritems = btrfs_header_nritems(leaf); | ||
4500 | } | ||
4501 | |||
4502 | btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); | ||
4503 | |||
4504 | if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS) { | ||
4505 | if ((key.objectid > ref_path->owner_objectid) || | ||
4506 | (key.objectid == ref_path->owner_objectid && | ||
4507 | key.type > BTRFS_EXTENT_DATA_KEY) || | ||
4508 | (key.offset >= first_pos + extent_key->offset)) | ||
4509 | break; | ||
4510 | } | ||
4511 | |||
4512 | if (inode && key.objectid != inode->i_ino) { | ||
4513 | BUG_ON(extent_locked); | ||
4514 | btrfs_release_path(root, path); | ||
4515 | mutex_unlock(&inode->i_mutex); | ||
4516 | iput(inode); | ||
4517 | inode = NULL; | ||
4518 | continue; | ||
4519 | } | ||
4520 | |||
4521 | if (key.type != BTRFS_EXTENT_DATA_KEY) { | ||
4522 | path->slots[0]++; | ||
4523 | ret = 1; | ||
4524 | goto next; | ||
4525 | } | ||
4526 | fi = btrfs_item_ptr(leaf, path->slots[0], | ||
4527 | struct btrfs_file_extent_item); | ||
4528 | extent_type = btrfs_file_extent_type(leaf, fi); | ||
4529 | if ((extent_type != BTRFS_FILE_EXTENT_REG && | ||
4530 | extent_type != BTRFS_FILE_EXTENT_PREALLOC) || | ||
4531 | (btrfs_file_extent_disk_bytenr(leaf, fi) != | ||
4532 | extent_key->objectid)) { | ||
4533 | path->slots[0]++; | ||
4534 | ret = 1; | ||
4535 | goto next; | ||
4536 | } | ||
4537 | |||
4538 | num_bytes = btrfs_file_extent_num_bytes(leaf, fi); | ||
4539 | ext_offset = btrfs_file_extent_offset(leaf, fi); | ||
4540 | |||
4541 | if (first_pos > key.offset - ext_offset) | ||
4542 | first_pos = key.offset - ext_offset; | ||
4543 | |||
4544 | if (!extent_locked) { | ||
4545 | lock_start = key.offset; | ||
4546 | lock_end = lock_start + num_bytes - 1; | ||
4547 | } else { | ||
4548 | if (lock_start > key.offset || | ||
4549 | lock_end + 1 < key.offset + num_bytes) { | ||
4550 | unlock_extent(&BTRFS_I(inode)->io_tree, | ||
4551 | lock_start, lock_end, GFP_NOFS); | ||
4552 | extent_locked = 0; | ||
4553 | } | ||
4554 | } | ||
4555 | |||
4556 | if (!inode) { | ||
4557 | btrfs_release_path(root, path); | ||
4558 | |||
4559 | inode = btrfs_iget_locked(root->fs_info->sb, | ||
4560 | key.objectid, root); | ||
4561 | if (inode->i_state & I_NEW) { | ||
4562 | BTRFS_I(inode)->root = root; | ||
4563 | BTRFS_I(inode)->location.objectid = | ||
4564 | key.objectid; | ||
4565 | BTRFS_I(inode)->location.type = | ||
4566 | BTRFS_INODE_ITEM_KEY; | ||
4567 | BTRFS_I(inode)->location.offset = 0; | ||
4568 | btrfs_read_locked_inode(inode); | ||
4569 | unlock_new_inode(inode); | ||
4570 | } | ||
4571 | /* | ||
4572 | * some code call btrfs_commit_transaction while | ||
4573 | * holding the i_mutex, so we can't use mutex_lock | ||
4574 | * here. | ||
4575 | */ | ||
4576 | if (is_bad_inode(inode) || | ||
4577 | !mutex_trylock(&inode->i_mutex)) { | ||
4578 | iput(inode); | ||
4579 | inode = NULL; | ||
4580 | key.offset = (u64)-1; | ||
4581 | goto skip; | ||
4582 | } | ||
4583 | } | ||
4584 | |||
4585 | if (!extent_locked) { | ||
4586 | struct btrfs_ordered_extent *ordered; | ||
4587 | |||
4588 | btrfs_release_path(root, path); | ||
4589 | |||
4590 | lock_extent(&BTRFS_I(inode)->io_tree, lock_start, | ||
4591 | lock_end, GFP_NOFS); | ||
4592 | ordered = btrfs_lookup_first_ordered_extent(inode, | ||
4593 | lock_end); | ||
4594 | if (ordered && | ||
4595 | ordered->file_offset <= lock_end && | ||
4596 | ordered->file_offset + ordered->len > lock_start) { | ||
4597 | unlock_extent(&BTRFS_I(inode)->io_tree, | ||
4598 | lock_start, lock_end, GFP_NOFS); | ||
4599 | btrfs_start_ordered_extent(inode, ordered, 1); | ||
4600 | btrfs_put_ordered_extent(ordered); | ||
4601 | key.offset += num_bytes; | ||
4602 | goto skip; | ||
4603 | } | ||
4604 | if (ordered) | ||
4605 | btrfs_put_ordered_extent(ordered); | ||
4606 | |||
4607 | extent_locked = 1; | ||
4608 | continue; | ||
4609 | } | ||
4610 | |||
4611 | if (nr_extents == 1) { | ||
4612 | /* update extent pointer in place */ | ||
4613 | btrfs_set_file_extent_disk_bytenr(leaf, fi, | ||
4614 | new_extents[0].disk_bytenr); | ||
4615 | btrfs_set_file_extent_disk_num_bytes(leaf, fi, | ||
4616 | new_extents[0].disk_num_bytes); | ||
4617 | btrfs_mark_buffer_dirty(leaf); | ||
4618 | |||
4619 | btrfs_drop_extent_cache(inode, key.offset, | ||
4620 | key.offset + num_bytes - 1, 0); | ||
4621 | |||
4622 | ret = btrfs_inc_extent_ref(trans, root, | ||
4623 | new_extents[0].disk_bytenr, | ||
4624 | new_extents[0].disk_num_bytes, | ||
4625 | leaf->start, | ||
4626 | root->root_key.objectid, | ||
4627 | trans->transid, | ||
4628 | key.objectid); | ||
4629 | BUG_ON(ret); | ||
4630 | |||
4631 | ret = btrfs_free_extent(trans, root, | ||
4632 | extent_key->objectid, | ||
4633 | extent_key->offset, | ||
4634 | leaf->start, | ||
4635 | btrfs_header_owner(leaf), | ||
4636 | btrfs_header_generation(leaf), | ||
4637 | key.objectid, 0); | ||
4638 | BUG_ON(ret); | ||
4639 | |||
4640 | btrfs_release_path(root, path); | ||
4641 | key.offset += num_bytes; | ||
4642 | } else { | ||
4643 | BUG_ON(1); | ||
4644 | #if 0 | ||
4645 | u64 alloc_hint; | ||
4646 | u64 extent_len; | ||
4647 | int i; | ||
4648 | /* | ||
4649 | * drop old extent pointer at first, then insert the | ||
4650 | * new pointers one bye one | ||
4651 | */ | ||
4652 | btrfs_release_path(root, path); | ||
4653 | ret = btrfs_drop_extents(trans, root, inode, key.offset, | ||
4654 | key.offset + num_bytes, | ||
4655 | key.offset, &alloc_hint); | ||
4656 | BUG_ON(ret); | ||
4657 | |||
4658 | for (i = 0; i < nr_extents; i++) { | ||
4659 | if (ext_offset >= new_extents[i].num_bytes) { | ||
4660 | ext_offset -= new_extents[i].num_bytes; | ||
4661 | continue; | ||
4662 | } | ||
4663 | extent_len = min(new_extents[i].num_bytes - | ||
4664 | ext_offset, num_bytes); | ||
4665 | |||
4666 | ret = btrfs_insert_empty_item(trans, root, | ||
4667 | path, &key, | ||
4668 | sizeof(*fi)); | ||
4669 | BUG_ON(ret); | ||
4670 | |||
4671 | leaf = path->nodes[0]; | ||
4672 | fi = btrfs_item_ptr(leaf, path->slots[0], | ||
4673 | struct btrfs_file_extent_item); | ||
4674 | btrfs_set_file_extent_generation(leaf, fi, | ||
4675 | trans->transid); | ||
4676 | btrfs_set_file_extent_type(leaf, fi, | ||
4677 | BTRFS_FILE_EXTENT_REG); | ||
4678 | btrfs_set_file_extent_disk_bytenr(leaf, fi, | ||
4679 | new_extents[i].disk_bytenr); | ||
4680 | btrfs_set_file_extent_disk_num_bytes(leaf, fi, | ||
4681 | new_extents[i].disk_num_bytes); | ||
4682 | btrfs_set_file_extent_ram_bytes(leaf, fi, | ||
4683 | new_extents[i].ram_bytes); | ||
4684 | |||
4685 | btrfs_set_file_extent_compression(leaf, fi, | ||
4686 | new_extents[i].compression); | ||
4687 | btrfs_set_file_extent_encryption(leaf, fi, | ||
4688 | new_extents[i].encryption); | ||
4689 | btrfs_set_file_extent_other_encoding(leaf, fi, | ||
4690 | new_extents[i].other_encoding); | ||
4691 | |||
4692 | btrfs_set_file_extent_num_bytes(leaf, fi, | ||
4693 | extent_len); | ||
4694 | ext_offset += new_extents[i].offset; | ||
4695 | btrfs_set_file_extent_offset(leaf, fi, | ||
4696 | ext_offset); | ||
4697 | btrfs_mark_buffer_dirty(leaf); | ||
4698 | |||
4699 | btrfs_drop_extent_cache(inode, key.offset, | ||
4700 | key.offset + extent_len - 1, 0); | ||
4701 | |||
4702 | ret = btrfs_inc_extent_ref(trans, root, | ||
4703 | new_extents[i].disk_bytenr, | ||
4704 | new_extents[i].disk_num_bytes, | ||
4705 | leaf->start, | ||
4706 | root->root_key.objectid, | ||
4707 | trans->transid, key.objectid); | ||
4708 | BUG_ON(ret); | ||
4709 | btrfs_release_path(root, path); | ||
4710 | |||
4711 | inode_add_bytes(inode, extent_len); | ||
4712 | |||
4713 | ext_offset = 0; | ||
4714 | num_bytes -= extent_len; | ||
4715 | key.offset += extent_len; | ||
4716 | |||
4717 | if (num_bytes == 0) | ||
4718 | break; | ||
4719 | } | ||
4720 | BUG_ON(i >= nr_extents); | ||
4721 | #endif | ||
4722 | } | ||
4723 | |||
4724 | if (extent_locked) { | ||
4725 | unlock_extent(&BTRFS_I(inode)->io_tree, lock_start, | ||
4726 | lock_end, GFP_NOFS); | ||
4727 | extent_locked = 0; | ||
4728 | } | ||
4729 | skip: | ||
4730 | if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS && | ||
4731 | key.offset >= first_pos + extent_key->offset) | ||
4732 | break; | ||
4733 | |||
4734 | cond_resched(); | ||
4735 | } | ||
4736 | ret = 0; | ||
4737 | out: | ||
4738 | btrfs_release_path(root, path); | ||
4739 | if (inode) { | ||
4740 | mutex_unlock(&inode->i_mutex); | ||
4741 | if (extent_locked) { | ||
4742 | unlock_extent(&BTRFS_I(inode)->io_tree, lock_start, | ||
4743 | lock_end, GFP_NOFS); | ||
4744 | } | ||
4745 | iput(inode); | ||
4746 | } | ||
4747 | return ret; | ||
4748 | } | ||
4749 | |||
4750 | int btrfs_reloc_tree_cache_ref(struct btrfs_trans_handle *trans, | ||
4751 | struct btrfs_root *root, | ||
4752 | struct extent_buffer *buf, u64 orig_start) | ||
4753 | { | ||
4754 | int level; | ||
4755 | int ret; | ||
4756 | |||
4757 | BUG_ON(btrfs_header_generation(buf) != trans->transid); | ||
4758 | BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); | ||
4759 | |||
4760 | level = btrfs_header_level(buf); | ||
4761 | if (level == 0) { | ||
4762 | struct btrfs_leaf_ref *ref; | ||
4763 | struct btrfs_leaf_ref *orig_ref; | ||
4764 | |||
4765 | orig_ref = btrfs_lookup_leaf_ref(root, orig_start); | ||
4766 | if (!orig_ref) | ||
4767 | return -ENOENT; | ||
4768 | |||
4769 | ref = btrfs_alloc_leaf_ref(root, orig_ref->nritems); | ||
4770 | if (!ref) { | ||
4771 | btrfs_free_leaf_ref(root, orig_ref); | ||
4772 | return -ENOMEM; | ||
4773 | } | ||
4774 | |||
4775 | ref->nritems = orig_ref->nritems; | ||
4776 | memcpy(ref->extents, orig_ref->extents, | ||
4777 | sizeof(ref->extents[0]) * ref->nritems); | ||
4778 | |||
4779 | btrfs_free_leaf_ref(root, orig_ref); | ||
4780 | |||
4781 | ref->root_gen = trans->transid; | ||
4782 | ref->bytenr = buf->start; | ||
4783 | ref->owner = btrfs_header_owner(buf); | ||
4784 | ref->generation = btrfs_header_generation(buf); | ||
4785 | ret = btrfs_add_leaf_ref(root, ref, 0); | ||
4786 | WARN_ON(ret); | ||
4787 | btrfs_free_leaf_ref(root, ref); | ||
4788 | } | ||
4789 | return 0; | ||
4790 | } | ||
4791 | |||
4792 | static noinline int invalidate_extent_cache(struct btrfs_root *root, | ||
4793 | struct extent_buffer *leaf, | ||
4794 | struct btrfs_block_group_cache *group, | ||
4795 | struct btrfs_root *target_root) | ||
4796 | { | ||
4797 | struct btrfs_key key; | ||
4798 | struct inode *inode = NULL; | ||
4799 | struct btrfs_file_extent_item *fi; | ||
4800 | u64 num_bytes; | ||
4801 | u64 skip_objectid = 0; | ||
4802 | u32 nritems; | ||
4803 | u32 i; | ||
4804 | |||
4805 | nritems = btrfs_header_nritems(leaf); | ||
4806 | for (i = 0; i < nritems; i++) { | ||
4807 | btrfs_item_key_to_cpu(leaf, &key, i); | ||
4808 | if (key.objectid == skip_objectid || | ||
4809 | key.type != BTRFS_EXTENT_DATA_KEY) | ||
4810 | continue; | ||
4811 | fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); | ||
4812 | if (btrfs_file_extent_type(leaf, fi) == | ||
4813 | BTRFS_FILE_EXTENT_INLINE) | ||
4814 | continue; | ||
4815 | if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) | ||
4816 | continue; | ||
4817 | if (!inode || inode->i_ino != key.objectid) { | ||
4818 | iput(inode); | ||
4819 | inode = btrfs_ilookup(target_root->fs_info->sb, | ||
4820 | key.objectid, target_root, 1); | ||
4821 | } | ||
4822 | if (!inode) { | ||
4823 | skip_objectid = key.objectid; | ||
4824 | continue; | ||
4825 | } | ||
4826 | num_bytes = btrfs_file_extent_num_bytes(leaf, fi); | ||
4827 | |||
4828 | lock_extent(&BTRFS_I(inode)->io_tree, key.offset, | ||
4829 | key.offset + num_bytes - 1, GFP_NOFS); | ||
4830 | btrfs_drop_extent_cache(inode, key.offset, | ||
4831 | key.offset + num_bytes - 1, 1); | ||
4832 | unlock_extent(&BTRFS_I(inode)->io_tree, key.offset, | ||
4833 | key.offset + num_bytes - 1, GFP_NOFS); | ||
4834 | cond_resched(); | ||
4835 | } | ||
4836 | iput(inode); | ||
4837 | return 0; | ||
4838 | } | ||
4839 | |||
4840 | static noinline int replace_extents_in_leaf(struct btrfs_trans_handle *trans, | ||
4841 | struct btrfs_root *root, | ||
4842 | struct extent_buffer *leaf, | ||
4843 | struct btrfs_block_group_cache *group, | ||
4844 | struct inode *reloc_inode) | ||
4845 | { | ||
4846 | struct btrfs_key key; | ||
4847 | struct btrfs_key extent_key; | ||
4848 | struct btrfs_file_extent_item *fi; | ||
4849 | struct btrfs_leaf_ref *ref; | ||
4850 | struct disk_extent *new_extent; | ||
4851 | u64 bytenr; | ||
4852 | u64 num_bytes; | ||
4853 | u32 nritems; | ||
4854 | u32 i; | ||
4855 | int ext_index; | ||
4856 | int nr_extent; | ||
4857 | int ret; | ||
4858 | |||
4859 | new_extent = kmalloc(sizeof(*new_extent), GFP_NOFS); | ||
4860 | BUG_ON(!new_extent); | ||
4861 | |||
4862 | ref = btrfs_lookup_leaf_ref(root, leaf->start); | ||
4863 | BUG_ON(!ref); | ||
4864 | |||
4865 | ext_index = -1; | ||
4866 | nritems = btrfs_header_nritems(leaf); | ||
4867 | for (i = 0; i < nritems; i++) { | ||
4868 | btrfs_item_key_to_cpu(leaf, &key, i); | ||
4869 | if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY) | ||
4870 | continue; | ||
4871 | fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); | ||
4872 | if (btrfs_file_extent_type(leaf, fi) == | ||
4873 | BTRFS_FILE_EXTENT_INLINE) | ||
4874 | continue; | ||
4875 | bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); | ||
4876 | num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); | ||
4877 | if (bytenr == 0) | ||
4878 | continue; | ||
4879 | |||
4880 | ext_index++; | ||
4881 | if (bytenr >= group->key.objectid + group->key.offset || | ||
4882 | bytenr + num_bytes <= group->key.objectid) | ||
4883 | continue; | ||
4884 | |||
4885 | extent_key.objectid = bytenr; | ||
4886 | extent_key.offset = num_bytes; | ||
4887 | extent_key.type = BTRFS_EXTENT_ITEM_KEY; | ||
4888 | nr_extent = 1; | ||
4889 | ret = get_new_locations(reloc_inode, &extent_key, | ||
4890 | group->key.objectid, 1, | ||
4891 | &new_extent, &nr_extent); | ||
4892 | if (ret > 0) | ||
4893 | continue; | ||
4894 | BUG_ON(ret < 0); | ||
4895 | |||
4896 | BUG_ON(ref->extents[ext_index].bytenr != bytenr); | ||
4897 | BUG_ON(ref->extents[ext_index].num_bytes != num_bytes); | ||
4898 | ref->extents[ext_index].bytenr = new_extent->disk_bytenr; | ||
4899 | ref->extents[ext_index].num_bytes = new_extent->disk_num_bytes; | ||
4900 | |||
4901 | btrfs_set_file_extent_disk_bytenr(leaf, fi, | ||
4902 | new_extent->disk_bytenr); | ||
4903 | btrfs_set_file_extent_disk_num_bytes(leaf, fi, | ||
4904 | new_extent->disk_num_bytes); | ||
4905 | btrfs_mark_buffer_dirty(leaf); | ||
4906 | |||
4907 | ret = btrfs_inc_extent_ref(trans, root, | ||
4908 | new_extent->disk_bytenr, | ||
4909 | new_extent->disk_num_bytes, | ||
4910 | leaf->start, | ||
4911 | root->root_key.objectid, | ||
4912 | trans->transid, key.objectid); | ||
4913 | BUG_ON(ret); | ||
4914 | ret = btrfs_free_extent(trans, root, | ||
4915 | bytenr, num_bytes, leaf->start, | ||
4916 | btrfs_header_owner(leaf), | ||
4917 | btrfs_header_generation(leaf), | ||
4918 | key.objectid, 0); | ||
4919 | BUG_ON(ret); | ||
4920 | cond_resched(); | ||
4921 | } | ||
4922 | kfree(new_extent); | ||
4923 | BUG_ON(ext_index + 1 != ref->nritems); | ||
4924 | btrfs_free_leaf_ref(root, ref); | ||
4925 | return 0; | ||
4926 | } | ||
4927 | |||
4928 | int btrfs_free_reloc_root(struct btrfs_trans_handle *trans, | ||
4929 | struct btrfs_root *root) | ||
4930 | { | ||
4931 | struct btrfs_root *reloc_root; | ||
4932 | int ret; | ||
4933 | |||
4934 | if (root->reloc_root) { | ||
4935 | reloc_root = root->reloc_root; | ||
4936 | root->reloc_root = NULL; | ||
4937 | list_add(&reloc_root->dead_list, | ||
4938 | &root->fs_info->dead_reloc_roots); | ||
4939 | |||
4940 | btrfs_set_root_bytenr(&reloc_root->root_item, | ||
4941 | reloc_root->node->start); | ||
4942 | btrfs_set_root_level(&root->root_item, | ||
4943 | btrfs_header_level(reloc_root->node)); | ||
4944 | memset(&reloc_root->root_item.drop_progress, 0, | ||
4945 | sizeof(struct btrfs_disk_key)); | ||
4946 | reloc_root->root_item.drop_level = 0; | ||
4947 | |||
4948 | ret = btrfs_update_root(trans, root->fs_info->tree_root, | ||
4949 | &reloc_root->root_key, | ||
4950 | &reloc_root->root_item); | ||
4951 | BUG_ON(ret); | ||
4952 | } | ||
4953 | return 0; | ||
4954 | } | ||
4955 | |||
4956 | int btrfs_drop_dead_reloc_roots(struct btrfs_root *root) | ||
4957 | { | ||
4958 | struct btrfs_trans_handle *trans; | ||
4959 | struct btrfs_root *reloc_root; | ||
4960 | struct btrfs_root *prev_root = NULL; | ||
4961 | struct list_head dead_roots; | ||
4962 | int ret; | ||
4963 | unsigned long nr; | ||
4964 | |||
4965 | INIT_LIST_HEAD(&dead_roots); | ||
4966 | list_splice_init(&root->fs_info->dead_reloc_roots, &dead_roots); | ||
4967 | |||
4968 | while (!list_empty(&dead_roots)) { | ||
4969 | reloc_root = list_entry(dead_roots.prev, | ||
4970 | struct btrfs_root, dead_list); | ||
4971 | list_del_init(&reloc_root->dead_list); | ||
4972 | |||
4973 | BUG_ON(reloc_root->commit_root != NULL); | ||
4974 | while (1) { | ||
4975 | trans = btrfs_join_transaction(root, 1); | ||
4976 | BUG_ON(!trans); | ||
4977 | |||
4978 | mutex_lock(&root->fs_info->drop_mutex); | ||
4979 | ret = btrfs_drop_snapshot(trans, reloc_root); | ||
4980 | if (ret != -EAGAIN) | ||
4981 | break; | ||
4982 | mutex_unlock(&root->fs_info->drop_mutex); | ||
4983 | |||
4984 | nr = trans->blocks_used; | ||
4985 | ret = btrfs_end_transaction(trans, root); | ||
4986 | BUG_ON(ret); | ||
4987 | btrfs_btree_balance_dirty(root, nr); | ||
4988 | } | ||
4989 | |||
4990 | free_extent_buffer(reloc_root->node); | ||
4991 | |||
4992 | ret = btrfs_del_root(trans, root->fs_info->tree_root, | ||
4993 | &reloc_root->root_key); | ||
4994 | BUG_ON(ret); | ||
4995 | mutex_unlock(&root->fs_info->drop_mutex); | ||
4996 | |||
4997 | nr = trans->blocks_used; | ||
4998 | ret = btrfs_end_transaction(trans, root); | ||
4999 | BUG_ON(ret); | ||
5000 | btrfs_btree_balance_dirty(root, nr); | ||
5001 | |||
5002 | kfree(prev_root); | ||
5003 | prev_root = reloc_root; | ||
5004 | } | ||
5005 | if (prev_root) { | ||
5006 | btrfs_remove_leaf_refs(prev_root, (u64)-1, 0); | ||
5007 | kfree(prev_root); | ||
5008 | } | ||
5009 | return 0; | ||
5010 | } | ||
5011 | |||
5012 | int btrfs_add_dead_reloc_root(struct btrfs_root *root) | ||
5013 | { | ||
5014 | list_add(&root->dead_list, &root->fs_info->dead_reloc_roots); | ||
5015 | return 0; | ||
5016 | } | ||
5017 | |||
5018 | int btrfs_cleanup_reloc_trees(struct btrfs_root *root) | ||
5019 | { | ||
5020 | struct btrfs_root *reloc_root; | ||
5021 | struct btrfs_trans_handle *trans; | ||
5022 | struct btrfs_key location; | ||
5023 | int found; | ||
5024 | int ret; | ||
5025 | |||
5026 | mutex_lock(&root->fs_info->tree_reloc_mutex); | ||
5027 | ret = btrfs_find_dead_roots(root, BTRFS_TREE_RELOC_OBJECTID, NULL); | ||
5028 | BUG_ON(ret); | ||
5029 | found = !list_empty(&root->fs_info->dead_reloc_roots); | ||
5030 | mutex_unlock(&root->fs_info->tree_reloc_mutex); | ||
5031 | |||
5032 | if (found) { | ||
5033 | trans = btrfs_start_transaction(root, 1); | ||
5034 | BUG_ON(!trans); | ||
5035 | ret = btrfs_commit_transaction(trans, root); | ||
5036 | BUG_ON(ret); | ||
5037 | } | ||
5038 | |||
5039 | location.objectid = BTRFS_DATA_RELOC_TREE_OBJECTID; | ||
5040 | location.offset = (u64)-1; | ||
5041 | location.type = BTRFS_ROOT_ITEM_KEY; | ||
5042 | |||
5043 | reloc_root = btrfs_read_fs_root_no_name(root->fs_info, &location); | ||
5044 | BUG_ON(!reloc_root); | ||
5045 | btrfs_orphan_cleanup(reloc_root); | ||
5046 | return 0; | ||
5047 | } | ||
5048 | |||
5049 | static noinline int init_reloc_tree(struct btrfs_trans_handle *trans, | ||
5050 | struct btrfs_root *root) | ||
5051 | { | ||
5052 | struct btrfs_root *reloc_root; | ||
5053 | struct extent_buffer *eb; | ||
5054 | struct btrfs_root_item *root_item; | ||
5055 | struct btrfs_key root_key; | ||
5056 | int ret; | ||
5057 | |||
5058 | BUG_ON(!root->ref_cows); | ||
5059 | if (root->reloc_root) | ||
5060 | return 0; | ||
5061 | |||
5062 | root_item = kmalloc(sizeof(*root_item), GFP_NOFS); | ||
5063 | BUG_ON(!root_item); | ||
5064 | |||
5065 | ret = btrfs_copy_root(trans, root, root->commit_root, | ||
5066 | &eb, BTRFS_TREE_RELOC_OBJECTID); | ||
5067 | BUG_ON(ret); | ||
5068 | |||
5069 | root_key.objectid = BTRFS_TREE_RELOC_OBJECTID; | ||
5070 | root_key.offset = root->root_key.objectid; | ||
5071 | root_key.type = BTRFS_ROOT_ITEM_KEY; | ||
5072 | |||
5073 | memcpy(root_item, &root->root_item, sizeof(root_item)); | ||
5074 | btrfs_set_root_refs(root_item, 0); | ||
5075 | btrfs_set_root_bytenr(root_item, eb->start); | ||
5076 | btrfs_set_root_level(root_item, btrfs_header_level(eb)); | ||
5077 | btrfs_set_root_generation(root_item, trans->transid); | ||
5078 | |||
5079 | btrfs_tree_unlock(eb); | ||
5080 | free_extent_buffer(eb); | ||
5081 | |||
5082 | ret = btrfs_insert_root(trans, root->fs_info->tree_root, | ||
5083 | &root_key, root_item); | ||
5084 | BUG_ON(ret); | ||
5085 | kfree(root_item); | ||
5086 | |||
5087 | reloc_root = btrfs_read_fs_root_no_radix(root->fs_info->tree_root, | ||
5088 | &root_key); | ||
5089 | BUG_ON(!reloc_root); | ||
5090 | reloc_root->last_trans = trans->transid; | ||
5091 | reloc_root->commit_root = NULL; | ||
5092 | reloc_root->ref_tree = &root->fs_info->reloc_ref_tree; | ||
5093 | |||
5094 | root->reloc_root = reloc_root; | ||
5095 | return 0; | ||
5096 | } | ||
5097 | |||
5098 | /* | ||
5099 | * Core function of space balance. | ||
5100 | * | ||
5101 | * The idea is using reloc trees to relocate tree blocks in reference | ||
5102 | * counted roots. There is one reloc tree for each subvol, and all | ||
5103 | * reloc trees share same root key objectid. Reloc trees are snapshots | ||
5104 | * of the latest committed roots of subvols (root->commit_root). | ||
5105 | * | ||
5106 | * To relocate a tree block referenced by a subvol, there are two steps. | ||
5107 | * COW the block through subvol's reloc tree, then update block pointer | ||
5108 | * in the subvol to point to the new block. Since all reloc trees share | ||
5109 | * same root key objectid, doing special handing for tree blocks owned | ||
5110 | * by them is easy. Once a tree block has been COWed in one reloc tree, | ||
5111 | * we can use the resulting new block directly when the same block is | ||
5112 | * required to COW again through other reloc trees. By this way, relocated | ||
5113 | * tree blocks are shared between reloc trees, so they are also shared | ||
5114 | * between subvols. | ||
5115 | */ | ||
5116 | static noinline int relocate_one_path(struct btrfs_trans_handle *trans, | ||
5117 | struct btrfs_root *root, | ||
5118 | struct btrfs_path *path, | ||
5119 | struct btrfs_key *first_key, | ||
5120 | struct btrfs_ref_path *ref_path, | ||
5121 | struct btrfs_block_group_cache *group, | ||
5122 | struct inode *reloc_inode) | ||
5123 | { | ||
5124 | struct btrfs_root *reloc_root; | ||
5125 | struct extent_buffer *eb = NULL; | ||
5126 | struct btrfs_key *keys; | ||
5127 | u64 *nodes; | ||
5128 | int level; | ||
5129 | int shared_level; | ||
5130 | int lowest_level = 0; | ||
5131 | int ret; | ||
5132 | |||
5133 | if (ref_path->owner_objectid < BTRFS_FIRST_FREE_OBJECTID) | ||
5134 | lowest_level = ref_path->owner_objectid; | ||
5135 | |||
5136 | if (!root->ref_cows) { | ||
5137 | path->lowest_level = lowest_level; | ||
5138 | ret = btrfs_search_slot(trans, root, first_key, path, 0, 1); | ||
5139 | BUG_ON(ret < 0); | ||
5140 | path->lowest_level = 0; | ||
5141 | btrfs_release_path(root, path); | ||
5142 | return 0; | ||
5143 | } | ||
5144 | |||
5145 | mutex_lock(&root->fs_info->tree_reloc_mutex); | ||
5146 | ret = init_reloc_tree(trans, root); | ||
5147 | BUG_ON(ret); | ||
5148 | reloc_root = root->reloc_root; | ||
5149 | |||
5150 | shared_level = ref_path->shared_level; | ||
5151 | ref_path->shared_level = BTRFS_MAX_LEVEL - 1; | ||
5152 | |||
5153 | keys = ref_path->node_keys; | ||
5154 | nodes = ref_path->new_nodes; | ||
5155 | memset(&keys[shared_level + 1], 0, | ||
5156 | sizeof(*keys) * (BTRFS_MAX_LEVEL - shared_level - 1)); | ||
5157 | memset(&nodes[shared_level + 1], 0, | ||
5158 | sizeof(*nodes) * (BTRFS_MAX_LEVEL - shared_level - 1)); | ||
5159 | |||
5160 | if (nodes[lowest_level] == 0) { | ||
5161 | path->lowest_level = lowest_level; | ||
5162 | ret = btrfs_search_slot(trans, reloc_root, first_key, path, | ||
5163 | 0, 1); | ||
5164 | BUG_ON(ret); | ||
5165 | for (level = lowest_level; level < BTRFS_MAX_LEVEL; level++) { | ||
5166 | eb = path->nodes[level]; | ||
5167 | if (!eb || eb == reloc_root->node) | ||
5168 | break; | ||
5169 | nodes[level] = eb->start; | ||
5170 | if (level == 0) | ||
5171 | btrfs_item_key_to_cpu(eb, &keys[level], 0); | ||
5172 | else | ||
5173 | btrfs_node_key_to_cpu(eb, &keys[level], 0); | ||
5174 | } | ||
5175 | if (nodes[0] && | ||
5176 | ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) { | ||
5177 | eb = path->nodes[0]; | ||
5178 | ret = replace_extents_in_leaf(trans, reloc_root, eb, | ||
5179 | group, reloc_inode); | ||
5180 | BUG_ON(ret); | ||
5181 | } | ||
5182 | btrfs_release_path(reloc_root, path); | ||
5183 | } else { | ||
5184 | ret = btrfs_merge_path(trans, reloc_root, keys, nodes, | ||
5185 | lowest_level); | ||
5186 | BUG_ON(ret); | ||
5187 | } | ||
5188 | |||
5189 | /* | ||
5190 | * replace tree blocks in the fs tree with tree blocks in | ||
5191 | * the reloc tree. | ||
5192 | */ | ||
5193 | ret = btrfs_merge_path(trans, root, keys, nodes, lowest_level); | ||
5194 | BUG_ON(ret < 0); | ||
5195 | |||
5196 | if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) { | ||
5197 | ret = btrfs_search_slot(trans, reloc_root, first_key, path, | ||
5198 | 0, 0); | ||
5199 | BUG_ON(ret); | ||
5200 | extent_buffer_get(path->nodes[0]); | ||
5201 | eb = path->nodes[0]; | ||
5202 | btrfs_release_path(reloc_root, path); | ||
5203 | ret = invalidate_extent_cache(reloc_root, eb, group, root); | ||
5204 | BUG_ON(ret); | ||
5205 | free_extent_buffer(eb); | ||
5206 | } | ||
5207 | |||
5208 | mutex_unlock(&root->fs_info->tree_reloc_mutex); | ||
5209 | path->lowest_level = 0; | ||
5210 | return 0; | ||
5211 | } | ||
5212 | |||
5213 | static noinline int relocate_tree_block(struct btrfs_trans_handle *trans, | ||
5214 | struct btrfs_root *root, | ||
5215 | struct btrfs_path *path, | ||
5216 | struct btrfs_key *first_key, | ||
5217 | struct btrfs_ref_path *ref_path) | ||
5218 | { | ||
5219 | int ret; | ||
5220 | |||
5221 | ret = relocate_one_path(trans, root, path, first_key, | ||
5222 | ref_path, NULL, NULL); | ||
5223 | BUG_ON(ret); | ||
5224 | |||
5225 | if (root == root->fs_info->extent_root) | ||
5226 | btrfs_extent_post_op(trans, root); | ||
5227 | |||
5228 | return 0; | ||
5229 | } | ||
5230 | |||
5231 | static noinline int del_extent_zero(struct btrfs_trans_handle *trans, | ||
5232 | struct btrfs_root *extent_root, | ||
5233 | struct btrfs_path *path, | ||
5234 | struct btrfs_key *extent_key) | ||
5235 | { | ||
5236 | int ret; | ||
5237 | |||
5238 | ret = btrfs_search_slot(trans, extent_root, extent_key, path, -1, 1); | ||
5239 | if (ret) | ||
5240 | goto out; | ||
5241 | ret = btrfs_del_item(trans, extent_root, path); | ||
5242 | out: | ||
5243 | btrfs_release_path(extent_root, path); | ||
5244 | return ret; | ||
5245 | } | ||
5246 | |||
5247 | static noinline struct btrfs_root *read_ref_root(struct btrfs_fs_info *fs_info, | ||
5248 | struct btrfs_ref_path *ref_path) | ||
5249 | { | ||
5250 | struct btrfs_key root_key; | ||
5251 | |||
5252 | root_key.objectid = ref_path->root_objectid; | ||
5253 | root_key.type = BTRFS_ROOT_ITEM_KEY; | ||
5254 | if (is_cowonly_root(ref_path->root_objectid)) | ||
5255 | root_key.offset = 0; | ||
5256 | else | ||
5257 | root_key.offset = (u64)-1; | ||
5258 | |||
5259 | return btrfs_read_fs_root_no_name(fs_info, &root_key); | ||
5260 | } | ||
5261 | |||
5262 | static noinline int relocate_one_extent(struct btrfs_root *extent_root, | ||
5263 | struct btrfs_path *path, | ||
5264 | struct btrfs_key *extent_key, | ||
5265 | struct btrfs_block_group_cache *group, | ||
5266 | struct inode *reloc_inode, int pass) | ||
5267 | { | ||
5268 | struct btrfs_trans_handle *trans; | ||
5269 | struct btrfs_root *found_root; | ||
5270 | struct btrfs_ref_path *ref_path = NULL; | ||
5271 | struct disk_extent *new_extents = NULL; | ||
5272 | int nr_extents = 0; | ||
5273 | int loops; | ||
5274 | int ret; | ||
5275 | int level; | ||
5276 | struct btrfs_key first_key; | ||
5277 | u64 prev_block = 0; | ||
5278 | |||
5279 | |||
5280 | trans = btrfs_start_transaction(extent_root, 1); | ||
5281 | BUG_ON(!trans); | ||
5282 | |||
5283 | if (extent_key->objectid == 0) { | ||
5284 | ret = del_extent_zero(trans, extent_root, path, extent_key); | ||
5285 | goto out; | ||
5286 | } | ||
5287 | |||
5288 | ref_path = kmalloc(sizeof(*ref_path), GFP_NOFS); | ||
5289 | if (!ref_path) { | ||
5290 | ret = -ENOMEM; | ||
5291 | goto out; | ||
5292 | } | ||
5293 | |||
5294 | for (loops = 0; ; loops++) { | ||
5295 | if (loops == 0) { | ||
5296 | ret = btrfs_first_ref_path(trans, extent_root, ref_path, | ||
5297 | extent_key->objectid); | ||
5298 | } else { | ||
5299 | ret = btrfs_next_ref_path(trans, extent_root, ref_path); | ||
5300 | } | ||
5301 | if (ret < 0) | ||
5302 | goto out; | ||
5303 | if (ret > 0) | ||
5304 | break; | ||
5305 | |||
5306 | if (ref_path->root_objectid == BTRFS_TREE_LOG_OBJECTID || | ||
5307 | ref_path->root_objectid == BTRFS_TREE_RELOC_OBJECTID) | ||
5308 | continue; | ||
5309 | |||
5310 | found_root = read_ref_root(extent_root->fs_info, ref_path); | ||
5311 | BUG_ON(!found_root); | ||
5312 | /* | ||
5313 | * for reference counted tree, only process reference paths | ||
5314 | * rooted at the latest committed root. | ||
5315 | */ | ||
5316 | if (found_root->ref_cows && | ||
5317 | ref_path->root_generation != found_root->root_key.offset) | ||
5318 | continue; | ||
5319 | |||
5320 | if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) { | ||
5321 | if (pass == 0) { | ||
5322 | /* | ||
5323 | * copy data extents to new locations | ||
5324 | */ | ||
5325 | u64 group_start = group->key.objectid; | ||
5326 | ret = relocate_data_extent(reloc_inode, | ||
5327 | extent_key, | ||
5328 | group_start); | ||
5329 | if (ret < 0) | ||
5330 | goto out; | ||
5331 | break; | ||
5332 | } | ||
5333 | level = 0; | ||
5334 | } else { | ||
5335 | level = ref_path->owner_objectid; | ||
5336 | } | ||
5337 | |||
5338 | if (prev_block != ref_path->nodes[level]) { | ||
5339 | struct extent_buffer *eb; | ||
5340 | u64 block_start = ref_path->nodes[level]; | ||
5341 | u64 block_size = btrfs_level_size(found_root, level); | ||
5342 | |||
5343 | eb = read_tree_block(found_root, block_start, | ||
5344 | block_size, 0); | ||
5345 | btrfs_tree_lock(eb); | ||
5346 | BUG_ON(level != btrfs_header_level(eb)); | ||
5347 | |||
5348 | if (level == 0) | ||
5349 | btrfs_item_key_to_cpu(eb, &first_key, 0); | ||
5350 | else | ||
5351 | btrfs_node_key_to_cpu(eb, &first_key, 0); | ||
5352 | |||
5353 | btrfs_tree_unlock(eb); | ||
5354 | free_extent_buffer(eb); | ||
5355 | prev_block = block_start; | ||
5356 | } | ||
5357 | |||
5358 | btrfs_record_root_in_trans(found_root); | ||
5359 | if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) { | ||
5360 | /* | ||
5361 | * try to update data extent references while | ||
5362 | * keeping metadata shared between snapshots. | ||
5363 | */ | ||
5364 | if (pass == 1) { | ||
5365 | ret = relocate_one_path(trans, found_root, | ||
5366 | path, &first_key, ref_path, | ||
5367 | group, reloc_inode); | ||
5368 | if (ret < 0) | ||
5369 | goto out; | ||
5370 | continue; | ||
5371 | } | ||
5372 | /* | ||
5373 | * use fallback method to process the remaining | ||
5374 | * references. | ||
5375 | */ | ||
5376 | if (!new_extents) { | ||
5377 | u64 group_start = group->key.objectid; | ||
5378 | new_extents = kmalloc(sizeof(*new_extents), | ||
5379 | GFP_NOFS); | ||
5380 | nr_extents = 1; | ||
5381 | ret = get_new_locations(reloc_inode, | ||
5382 | extent_key, | ||
5383 | group_start, 1, | ||
5384 | &new_extents, | ||
5385 | &nr_extents); | ||
5386 | if (ret) | ||
5387 | goto out; | ||
5388 | } | ||
5389 | ret = replace_one_extent(trans, found_root, | ||
5390 | path, extent_key, | ||
5391 | &first_key, ref_path, | ||
5392 | new_extents, nr_extents); | ||
5393 | } else { | ||
5394 | ret = relocate_tree_block(trans, found_root, path, | ||
5395 | &first_key, ref_path); | ||
5396 | } | ||
5397 | if (ret < 0) | ||
5398 | goto out; | ||
5399 | } | ||
5400 | ret = 0; | ||
5401 | out: | ||
5402 | btrfs_end_transaction(trans, extent_root); | ||
5403 | kfree(new_extents); | ||
5404 | kfree(ref_path); | ||
5405 | return ret; | ||
5406 | } | ||
5407 | |||
5408 | static u64 update_block_group_flags(struct btrfs_root *root, u64 flags) | ||
5409 | { | ||
5410 | u64 num_devices; | ||
5411 | u64 stripped = BTRFS_BLOCK_GROUP_RAID0 | | ||
5412 | BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10; | ||
5413 | |||
5414 | num_devices = root->fs_info->fs_devices->rw_devices; | ||
5415 | if (num_devices == 1) { | ||
5416 | stripped |= BTRFS_BLOCK_GROUP_DUP; | ||
5417 | stripped = flags & ~stripped; | ||
5418 | |||
5419 | /* turn raid0 into single device chunks */ | ||
5420 | if (flags & BTRFS_BLOCK_GROUP_RAID0) | ||
5421 | return stripped; | ||
5422 | |||
5423 | /* turn mirroring into duplication */ | ||
5424 | if (flags & (BTRFS_BLOCK_GROUP_RAID1 | | ||
5425 | BTRFS_BLOCK_GROUP_RAID10)) | ||
5426 | return stripped | BTRFS_BLOCK_GROUP_DUP; | ||
5427 | return flags; | ||
5428 | } else { | ||
5429 | /* they already had raid on here, just return */ | ||
5430 | if (flags & stripped) | ||
5431 | return flags; | ||
5432 | |||
5433 | stripped |= BTRFS_BLOCK_GROUP_DUP; | ||
5434 | stripped = flags & ~stripped; | ||
5435 | |||
5436 | /* switch duplicated blocks with raid1 */ | ||
5437 | if (flags & BTRFS_BLOCK_GROUP_DUP) | ||
5438 | return stripped | BTRFS_BLOCK_GROUP_RAID1; | ||
5439 | |||
5440 | /* turn single device chunks into raid0 */ | ||
5441 | return stripped | BTRFS_BLOCK_GROUP_RAID0; | ||
5442 | } | ||
5443 | return flags; | ||
5444 | } | ||
5445 | |||
5446 | static int __alloc_chunk_for_shrink(struct btrfs_root *root, | ||
5447 | struct btrfs_block_group_cache *shrink_block_group, | ||
5448 | int force) | ||
5449 | { | ||
5450 | struct btrfs_trans_handle *trans; | ||
5451 | u64 new_alloc_flags; | ||
5452 | u64 calc; | ||
5453 | |||
5454 | spin_lock(&shrink_block_group->lock); | ||
5455 | if (btrfs_block_group_used(&shrink_block_group->item) > 0) { | ||
5456 | spin_unlock(&shrink_block_group->lock); | ||
5457 | |||
5458 | trans = btrfs_start_transaction(root, 1); | ||
5459 | spin_lock(&shrink_block_group->lock); | ||
5460 | |||
5461 | new_alloc_flags = update_block_group_flags(root, | ||
5462 | shrink_block_group->flags); | ||
5463 | if (new_alloc_flags != shrink_block_group->flags) { | ||
5464 | calc = | ||
5465 | btrfs_block_group_used(&shrink_block_group->item); | ||
5466 | } else { | ||
5467 | calc = shrink_block_group->key.offset; | ||
5468 | } | ||
5469 | spin_unlock(&shrink_block_group->lock); | ||
5470 | |||
5471 | do_chunk_alloc(trans, root->fs_info->extent_root, | ||
5472 | calc + 2 * 1024 * 1024, new_alloc_flags, force); | ||
5473 | |||
5474 | btrfs_end_transaction(trans, root); | ||
5475 | } else | ||
5476 | spin_unlock(&shrink_block_group->lock); | ||
5477 | return 0; | ||
5478 | } | ||
5479 | |||
5480 | static int __insert_orphan_inode(struct btrfs_trans_handle *trans, | ||
5481 | struct btrfs_root *root, | ||
5482 | u64 objectid, u64 size) | ||
5483 | { | ||
5484 | struct btrfs_path *path; | ||
5485 | struct btrfs_inode_item *item; | ||
5486 | struct extent_buffer *leaf; | ||
5487 | int ret; | ||
5488 | |||
5489 | path = btrfs_alloc_path(); | ||
5490 | if (!path) | ||
5491 | return -ENOMEM; | ||
5492 | |||
5493 | ret = btrfs_insert_empty_inode(trans, root, path, objectid); | ||
5494 | if (ret) | ||
5495 | goto out; | ||
5496 | |||
5497 | leaf = path->nodes[0]; | ||
5498 | item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item); | ||
5499 | memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item)); | ||
5500 | btrfs_set_inode_generation(leaf, item, 1); | ||
5501 | btrfs_set_inode_size(leaf, item, size); | ||
5502 | btrfs_set_inode_mode(leaf, item, S_IFREG | 0600); | ||
5503 | btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS); | ||
5504 | btrfs_mark_buffer_dirty(leaf); | ||
5505 | btrfs_release_path(root, path); | ||
5506 | out: | ||
5507 | btrfs_free_path(path); | ||
5508 | return ret; | ||
5509 | } | ||
5510 | |||
5511 | static noinline struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info, | ||
5512 | struct btrfs_block_group_cache *group) | ||
5513 | { | ||
5514 | struct inode *inode = NULL; | ||
5515 | struct btrfs_trans_handle *trans; | ||
5516 | struct btrfs_root *root; | ||
5517 | struct btrfs_key root_key; | ||
5518 | u64 objectid = BTRFS_FIRST_FREE_OBJECTID; | ||
5519 | int err = 0; | ||
5520 | |||
5521 | root_key.objectid = BTRFS_DATA_RELOC_TREE_OBJECTID; | ||
5522 | root_key.type = BTRFS_ROOT_ITEM_KEY; | ||
5523 | root_key.offset = (u64)-1; | ||
5524 | root = btrfs_read_fs_root_no_name(fs_info, &root_key); | ||
5525 | if (IS_ERR(root)) | ||
5526 | return ERR_CAST(root); | ||
5527 | |||
5528 | trans = btrfs_start_transaction(root, 1); | ||
5529 | BUG_ON(!trans); | ||
5530 | |||
5531 | err = btrfs_find_free_objectid(trans, root, objectid, &objectid); | ||
5532 | if (err) | ||
5533 | goto out; | ||
5534 | |||
5535 | err = __insert_orphan_inode(trans, root, objectid, group->key.offset); | ||
5536 | BUG_ON(err); | ||
5537 | |||
5538 | err = btrfs_insert_file_extent(trans, root, objectid, 0, 0, 0, | ||
5539 | group->key.offset, 0, group->key.offset, | ||
5540 | 0, 0, 0); | ||
5541 | BUG_ON(err); | ||
5542 | |||
5543 | inode = btrfs_iget_locked(root->fs_info->sb, objectid, root); | ||
5544 | if (inode->i_state & I_NEW) { | ||
5545 | BTRFS_I(inode)->root = root; | ||
5546 | BTRFS_I(inode)->location.objectid = objectid; | ||
5547 | BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY; | ||
5548 | BTRFS_I(inode)->location.offset = 0; | ||
5549 | btrfs_read_locked_inode(inode); | ||
5550 | unlock_new_inode(inode); | ||
5551 | BUG_ON(is_bad_inode(inode)); | ||
5552 | } else { | ||
5553 | BUG_ON(1); | ||
5554 | } | ||
5555 | BTRFS_I(inode)->index_cnt = group->key.objectid; | ||
5556 | |||
5557 | err = btrfs_orphan_add(trans, inode); | ||
5558 | out: | ||
5559 | btrfs_end_transaction(trans, root); | ||
5560 | if (err) { | ||
5561 | if (inode) | ||
5562 | iput(inode); | ||
5563 | inode = ERR_PTR(err); | ||
5564 | } | ||
5565 | return inode; | ||
5566 | } | ||
5567 | |||
5568 | int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len) | ||
5569 | { | ||
5570 | |||
5571 | struct btrfs_ordered_sum *sums; | ||
5572 | struct btrfs_sector_sum *sector_sum; | ||
5573 | struct btrfs_ordered_extent *ordered; | ||
5574 | struct btrfs_root *root = BTRFS_I(inode)->root; | ||
5575 | struct list_head list; | ||
5576 | size_t offset; | ||
5577 | int ret; | ||
5578 | u64 disk_bytenr; | ||
5579 | |||
5580 | INIT_LIST_HEAD(&list); | ||
5581 | |||
5582 | ordered = btrfs_lookup_ordered_extent(inode, file_pos); | ||
5583 | BUG_ON(ordered->file_offset != file_pos || ordered->len != len); | ||
5584 | |||
5585 | disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt; | ||
5586 | ret = btrfs_lookup_csums_range(root, disk_bytenr, | ||
5587 | disk_bytenr + len - 1, &list); | ||
5588 | |||
5589 | while (!list_empty(&list)) { | ||
5590 | sums = list_entry(list.next, struct btrfs_ordered_sum, list); | ||
5591 | list_del_init(&sums->list); | ||
5592 | |||
5593 | sector_sum = sums->sums; | ||
5594 | sums->bytenr = ordered->start; | ||
5595 | |||
5596 | offset = 0; | ||
5597 | while (offset < sums->len) { | ||
5598 | sector_sum->bytenr += ordered->start - disk_bytenr; | ||
5599 | sector_sum++; | ||
5600 | offset += root->sectorsize; | ||
5601 | } | ||
5602 | |||
5603 | btrfs_add_ordered_sum(inode, ordered, sums); | ||
5604 | } | ||
5605 | btrfs_put_ordered_extent(ordered); | ||
5606 | return 0; | ||
5607 | } | ||
5608 | |||
5609 | int btrfs_relocate_block_group(struct btrfs_root *root, u64 group_start) | ||
5610 | { | ||
5611 | struct btrfs_trans_handle *trans; | ||
5612 | struct btrfs_path *path; | ||
5613 | struct btrfs_fs_info *info = root->fs_info; | ||
5614 | struct extent_buffer *leaf; | ||
5615 | struct inode *reloc_inode; | ||
5616 | struct btrfs_block_group_cache *block_group; | ||
5617 | struct btrfs_key key; | ||
5618 | u64 skipped; | ||
5619 | u64 cur_byte; | ||
5620 | u64 total_found; | ||
5621 | u32 nritems; | ||
5622 | int ret; | ||
5623 | int progress; | ||
5624 | int pass = 0; | ||
5625 | |||
5626 | root = root->fs_info->extent_root; | ||
5627 | |||
5628 | block_group = btrfs_lookup_block_group(info, group_start); | ||
5629 | BUG_ON(!block_group); | ||
5630 | |||
5631 | printk(KERN_INFO "btrfs relocating block group %llu flags %llu\n", | ||
5632 | (unsigned long long)block_group->key.objectid, | ||
5633 | (unsigned long long)block_group->flags); | ||
5634 | |||
5635 | path = btrfs_alloc_path(); | ||
5636 | BUG_ON(!path); | ||
5637 | |||
5638 | reloc_inode = create_reloc_inode(info, block_group); | ||
5639 | BUG_ON(IS_ERR(reloc_inode)); | ||
5640 | |||
5641 | __alloc_chunk_for_shrink(root, block_group, 1); | ||
5642 | set_block_group_readonly(block_group); | ||
5643 | |||
5644 | btrfs_start_delalloc_inodes(info->tree_root); | ||
5645 | btrfs_wait_ordered_extents(info->tree_root, 0); | ||
5646 | again: | ||
5647 | skipped = 0; | ||
5648 | total_found = 0; | ||
5649 | progress = 0; | ||
5650 | key.objectid = block_group->key.objectid; | ||
5651 | key.offset = 0; | ||
5652 | key.type = 0; | ||
5653 | cur_byte = key.objectid; | ||
5654 | |||
5655 | trans = btrfs_start_transaction(info->tree_root, 1); | ||
5656 | btrfs_commit_transaction(trans, info->tree_root); | ||
5657 | |||
5658 | mutex_lock(&root->fs_info->cleaner_mutex); | ||
5659 | btrfs_clean_old_snapshots(info->tree_root); | ||
5660 | btrfs_remove_leaf_refs(info->tree_root, (u64)-1, 1); | ||
5661 | mutex_unlock(&root->fs_info->cleaner_mutex); | ||
5662 | |||
5663 | while (1) { | ||
5664 | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | ||
5665 | if (ret < 0) | ||
5666 | goto out; | ||
5667 | next: | ||
5668 | leaf = path->nodes[0]; | ||
5669 | nritems = btrfs_header_nritems(leaf); | ||
5670 | if (path->slots[0] >= nritems) { | ||
5671 | ret = btrfs_next_leaf(root, path); | ||
5672 | if (ret < 0) | ||
5673 | goto out; | ||
5674 | if (ret == 1) { | ||
5675 | ret = 0; | ||
5676 | break; | ||
5677 | } | ||
5678 | leaf = path->nodes[0]; | ||
5679 | nritems = btrfs_header_nritems(leaf); | ||
5680 | } | ||
5681 | |||
5682 | btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); | ||
5683 | |||
5684 | if (key.objectid >= block_group->key.objectid + | ||
5685 | block_group->key.offset) | ||
5686 | break; | ||
5687 | |||
5688 | if (progress && need_resched()) { | ||
5689 | btrfs_release_path(root, path); | ||
5690 | cond_resched(); | ||
5691 | progress = 0; | ||
5692 | continue; | ||
5693 | } | ||
5694 | progress = 1; | ||
5695 | |||
5696 | if (btrfs_key_type(&key) != BTRFS_EXTENT_ITEM_KEY || | ||
5697 | key.objectid + key.offset <= cur_byte) { | ||
5698 | path->slots[0]++; | ||
5699 | goto next; | ||
5700 | } | ||
5701 | |||
5702 | total_found++; | ||
5703 | cur_byte = key.objectid + key.offset; | ||
5704 | btrfs_release_path(root, path); | ||
5705 | |||
5706 | __alloc_chunk_for_shrink(root, block_group, 0); | ||
5707 | ret = relocate_one_extent(root, path, &key, block_group, | ||
5708 | reloc_inode, pass); | ||
5709 | BUG_ON(ret < 0); | ||
5710 | if (ret > 0) | ||
5711 | skipped++; | ||
5712 | |||
5713 | key.objectid = cur_byte; | ||
5714 | key.type = 0; | ||
5715 | key.offset = 0; | ||
5716 | } | ||
5717 | |||
5718 | btrfs_release_path(root, path); | ||
5719 | |||
5720 | if (pass == 0) { | ||
5721 | btrfs_wait_ordered_range(reloc_inode, 0, (u64)-1); | ||
5722 | invalidate_mapping_pages(reloc_inode->i_mapping, 0, -1); | ||
5723 | } | ||
5724 | |||
5725 | if (total_found > 0) { | ||
5726 | printk(KERN_INFO "btrfs found %llu extents in pass %d\n", | ||
5727 | (unsigned long long)total_found, pass); | ||
5728 | pass++; | ||
5729 | if (total_found == skipped && pass > 2) { | ||
5730 | iput(reloc_inode); | ||
5731 | reloc_inode = create_reloc_inode(info, block_group); | ||
5732 | pass = 0; | ||
5733 | } | ||
5734 | goto again; | ||
5735 | } | ||
5736 | |||
5737 | /* delete reloc_inode */ | ||
5738 | iput(reloc_inode); | ||
5739 | |||
5740 | /* unpin extents in this range */ | ||
5741 | trans = btrfs_start_transaction(info->tree_root, 1); | ||
5742 | btrfs_commit_transaction(trans, info->tree_root); | ||
5743 | |||
5744 | spin_lock(&block_group->lock); | ||
5745 | WARN_ON(block_group->pinned > 0); | ||
5746 | WARN_ON(block_group->reserved > 0); | ||
5747 | WARN_ON(btrfs_block_group_used(&block_group->item) > 0); | ||
5748 | spin_unlock(&block_group->lock); | ||
5749 | put_block_group(block_group); | ||
5750 | ret = 0; | ||
5751 | out: | ||
5752 | btrfs_free_path(path); | ||
5753 | return ret; | ||
5754 | } | ||
5755 | |||
5756 | static int find_first_block_group(struct btrfs_root *root, | ||
5757 | struct btrfs_path *path, struct btrfs_key *key) | ||
5758 | { | ||
5759 | int ret = 0; | ||
5760 | struct btrfs_key found_key; | ||
5761 | struct extent_buffer *leaf; | ||
5762 | int slot; | ||
5763 | |||
5764 | ret = btrfs_search_slot(NULL, root, key, path, 0, 0); | ||
5765 | if (ret < 0) | ||
5766 | goto out; | ||
5767 | |||
5768 | while (1) { | ||
5769 | slot = path->slots[0]; | ||
5770 | leaf = path->nodes[0]; | ||
5771 | if (slot >= btrfs_header_nritems(leaf)) { | ||
5772 | ret = btrfs_next_leaf(root, path); | ||
5773 | if (ret == 0) | ||
5774 | continue; | ||
5775 | if (ret < 0) | ||
5776 | goto out; | ||
5777 | break; | ||
5778 | } | ||
5779 | btrfs_item_key_to_cpu(leaf, &found_key, slot); | ||
5780 | |||
5781 | if (found_key.objectid >= key->objectid && | ||
5782 | found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { | ||
5783 | ret = 0; | ||
5784 | goto out; | ||
5785 | } | ||
5786 | path->slots[0]++; | ||
5787 | } | ||
5788 | ret = -ENOENT; | ||
5789 | out: | ||
5790 | return ret; | ||
5791 | } | ||
5792 | |||
5793 | int btrfs_free_block_groups(struct btrfs_fs_info *info) | ||
5794 | { | ||
5795 | struct btrfs_block_group_cache *block_group; | ||
5796 | struct rb_node *n; | ||
5797 | |||
5798 | spin_lock(&info->block_group_cache_lock); | ||
5799 | while ((n = rb_last(&info->block_group_cache_tree)) != NULL) { | ||
5800 | block_group = rb_entry(n, struct btrfs_block_group_cache, | ||
5801 | cache_node); | ||
5802 | rb_erase(&block_group->cache_node, | ||
5803 | &info->block_group_cache_tree); | ||
5804 | spin_unlock(&info->block_group_cache_lock); | ||
5805 | |||
5806 | btrfs_remove_free_space_cache(block_group); | ||
5807 | down_write(&block_group->space_info->groups_sem); | ||
5808 | list_del(&block_group->list); | ||
5809 | up_write(&block_group->space_info->groups_sem); | ||
5810 | |||
5811 | WARN_ON(atomic_read(&block_group->count) != 1); | ||
5812 | kfree(block_group); | ||
5813 | |||
5814 | spin_lock(&info->block_group_cache_lock); | ||
5815 | } | ||
5816 | spin_unlock(&info->block_group_cache_lock); | ||
5817 | return 0; | ||
5818 | } | ||
5819 | |||
5820 | int btrfs_read_block_groups(struct btrfs_root *root) | ||
5821 | { | ||
5822 | struct btrfs_path *path; | ||
5823 | int ret; | ||
5824 | struct btrfs_block_group_cache *cache; | ||
5825 | struct btrfs_fs_info *info = root->fs_info; | ||
5826 | struct btrfs_space_info *space_info; | ||
5827 | struct btrfs_key key; | ||
5828 | struct btrfs_key found_key; | ||
5829 | struct extent_buffer *leaf; | ||
5830 | |||
5831 | root = info->extent_root; | ||
5832 | key.objectid = 0; | ||
5833 | key.offset = 0; | ||
5834 | btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY); | ||
5835 | path = btrfs_alloc_path(); | ||
5836 | if (!path) | ||
5837 | return -ENOMEM; | ||
5838 | |||
5839 | while (1) { | ||
5840 | ret = find_first_block_group(root, path, &key); | ||
5841 | if (ret > 0) { | ||
5842 | ret = 0; | ||
5843 | goto error; | ||
5844 | } | ||
5845 | if (ret != 0) | ||
5846 | goto error; | ||
5847 | |||
5848 | leaf = path->nodes[0]; | ||
5849 | btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); | ||
5850 | cache = kzalloc(sizeof(*cache), GFP_NOFS); | ||
5851 | if (!cache) { | ||
5852 | ret = -ENOMEM; | ||
5853 | break; | ||
5854 | } | ||
5855 | |||
5856 | atomic_set(&cache->count, 1); | ||
5857 | spin_lock_init(&cache->lock); | ||
5858 | mutex_init(&cache->alloc_mutex); | ||
5859 | mutex_init(&cache->cache_mutex); | ||
5860 | INIT_LIST_HEAD(&cache->list); | ||
5861 | read_extent_buffer(leaf, &cache->item, | ||
5862 | btrfs_item_ptr_offset(leaf, path->slots[0]), | ||
5863 | sizeof(cache->item)); | ||
5864 | memcpy(&cache->key, &found_key, sizeof(found_key)); | ||
5865 | |||
5866 | key.objectid = found_key.objectid + found_key.offset; | ||
5867 | btrfs_release_path(root, path); | ||
5868 | cache->flags = btrfs_block_group_flags(&cache->item); | ||
5869 | |||
5870 | ret = update_space_info(info, cache->flags, found_key.offset, | ||
5871 | btrfs_block_group_used(&cache->item), | ||
5872 | &space_info); | ||
5873 | BUG_ON(ret); | ||
5874 | cache->space_info = space_info; | ||
5875 | down_write(&space_info->groups_sem); | ||
5876 | list_add_tail(&cache->list, &space_info->block_groups); | ||
5877 | up_write(&space_info->groups_sem); | ||
5878 | |||
5879 | ret = btrfs_add_block_group_cache(root->fs_info, cache); | ||
5880 | BUG_ON(ret); | ||
5881 | |||
5882 | set_avail_alloc_bits(root->fs_info, cache->flags); | ||
5883 | if (btrfs_chunk_readonly(root, cache->key.objectid)) | ||
5884 | set_block_group_readonly(cache); | ||
5885 | } | ||
5886 | ret = 0; | ||
5887 | error: | ||
5888 | btrfs_free_path(path); | ||
5889 | return ret; | ||
5890 | } | ||
5891 | |||
5892 | int btrfs_make_block_group(struct btrfs_trans_handle *trans, | ||
5893 | struct btrfs_root *root, u64 bytes_used, | ||
5894 | u64 type, u64 chunk_objectid, u64 chunk_offset, | ||
5895 | u64 size) | ||
5896 | { | ||
5897 | int ret; | ||
5898 | struct btrfs_root *extent_root; | ||
5899 | struct btrfs_block_group_cache *cache; | ||
5900 | |||
5901 | extent_root = root->fs_info->extent_root; | ||
5902 | |||
5903 | root->fs_info->last_trans_new_blockgroup = trans->transid; | ||
5904 | |||
5905 | cache = kzalloc(sizeof(*cache), GFP_NOFS); | ||
5906 | if (!cache) | ||
5907 | return -ENOMEM; | ||
5908 | |||
5909 | cache->key.objectid = chunk_offset; | ||
5910 | cache->key.offset = size; | ||
5911 | cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; | ||
5912 | atomic_set(&cache->count, 1); | ||
5913 | spin_lock_init(&cache->lock); | ||
5914 | mutex_init(&cache->alloc_mutex); | ||
5915 | mutex_init(&cache->cache_mutex); | ||
5916 | INIT_LIST_HEAD(&cache->list); | ||
5917 | |||
5918 | btrfs_set_block_group_used(&cache->item, bytes_used); | ||
5919 | btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid); | ||
5920 | cache->flags = type; | ||
5921 | btrfs_set_block_group_flags(&cache->item, type); | ||
5922 | |||
5923 | ret = update_space_info(root->fs_info, cache->flags, size, bytes_used, | ||
5924 | &cache->space_info); | ||
5925 | BUG_ON(ret); | ||
5926 | down_write(&cache->space_info->groups_sem); | ||
5927 | list_add_tail(&cache->list, &cache->space_info->block_groups); | ||
5928 | up_write(&cache->space_info->groups_sem); | ||
5929 | |||
5930 | ret = btrfs_add_block_group_cache(root->fs_info, cache); | ||
5931 | BUG_ON(ret); | ||
5932 | |||
5933 | ret = btrfs_insert_item(trans, extent_root, &cache->key, &cache->item, | ||
5934 | sizeof(cache->item)); | ||
5935 | BUG_ON(ret); | ||
5936 | |||
5937 | finish_current_insert(trans, extent_root, 0); | ||
5938 | ret = del_pending_extents(trans, extent_root, 0); | ||
5939 | BUG_ON(ret); | ||
5940 | set_avail_alloc_bits(extent_root->fs_info, type); | ||
5941 | |||
5942 | return 0; | ||
5943 | } | ||
5944 | |||
5945 | int btrfs_remove_block_group(struct btrfs_trans_handle *trans, | ||
5946 | struct btrfs_root *root, u64 group_start) | ||
5947 | { | ||
5948 | struct btrfs_path *path; | ||
5949 | struct btrfs_block_group_cache *block_group; | ||
5950 | struct btrfs_key key; | ||
5951 | int ret; | ||
5952 | |||
5953 | root = root->fs_info->extent_root; | ||
5954 | |||
5955 | block_group = btrfs_lookup_block_group(root->fs_info, group_start); | ||
5956 | BUG_ON(!block_group); | ||
5957 | BUG_ON(!block_group->ro); | ||
5958 | |||
5959 | memcpy(&key, &block_group->key, sizeof(key)); | ||
5960 | |||
5961 | path = btrfs_alloc_path(); | ||
5962 | BUG_ON(!path); | ||
5963 | |||
5964 | btrfs_remove_free_space_cache(block_group); | ||
5965 | rb_erase(&block_group->cache_node, | ||
5966 | &root->fs_info->block_group_cache_tree); | ||
5967 | down_write(&block_group->space_info->groups_sem); | ||
5968 | list_del(&block_group->list); | ||
5969 | up_write(&block_group->space_info->groups_sem); | ||
5970 | |||
5971 | spin_lock(&block_group->space_info->lock); | ||
5972 | block_group->space_info->total_bytes -= block_group->key.offset; | ||
5973 | block_group->space_info->bytes_readonly -= block_group->key.offset; | ||
5974 | spin_unlock(&block_group->space_info->lock); | ||
5975 | block_group->space_info->full = 0; | ||
5976 | |||
5977 | put_block_group(block_group); | ||
5978 | put_block_group(block_group); | ||
5979 | |||
5980 | ret = btrfs_search_slot(trans, root, &key, path, -1, 1); | ||
5981 | if (ret > 0) | ||
5982 | ret = -EIO; | ||
5983 | if (ret < 0) | ||
5984 | goto out; | ||
5985 | |||
5986 | ret = btrfs_del_item(trans, root, path); | ||
5987 | out: | ||
5988 | btrfs_free_path(path); | ||
5989 | return ret; | ||
5990 | } | ||
diff --git a/fs/btrfs/extent_io.c b/fs/btrfs/extent_io.c new file mode 100644 index 000000000000..e086d407f1fa --- /dev/null +++ b/fs/btrfs/extent_io.c | |||
@@ -0,0 +1,3717 @@ | |||
1 | #include <linux/bitops.h> | ||
2 | #include <linux/slab.h> | ||
3 | #include <linux/bio.h> | ||
4 | #include <linux/mm.h> | ||
5 | #include <linux/gfp.h> | ||
6 | #include <linux/pagemap.h> | ||
7 | #include <linux/page-flags.h> | ||
8 | #include <linux/module.h> | ||
9 | #include <linux/spinlock.h> | ||
10 | #include <linux/blkdev.h> | ||
11 | #include <linux/swap.h> | ||
12 | #include <linux/version.h> | ||
13 | #include <linux/writeback.h> | ||
14 | #include <linux/pagevec.h> | ||
15 | #include "extent_io.h" | ||
16 | #include "extent_map.h" | ||
17 | #include "compat.h" | ||
18 | #include "ctree.h" | ||
19 | #include "btrfs_inode.h" | ||
20 | |||
21 | /* temporary define until extent_map moves out of btrfs */ | ||
22 | struct kmem_cache *btrfs_cache_create(const char *name, size_t size, | ||
23 | unsigned long extra_flags, | ||
24 | void (*ctor)(void *, struct kmem_cache *, | ||
25 | unsigned long)); | ||
26 | |||
27 | static struct kmem_cache *extent_state_cache; | ||
28 | static struct kmem_cache *extent_buffer_cache; | ||
29 | |||
30 | static LIST_HEAD(buffers); | ||
31 | static LIST_HEAD(states); | ||
32 | |||
33 | #define LEAK_DEBUG 0 | ||
34 | #ifdef LEAK_DEBUG | ||
35 | static DEFINE_SPINLOCK(leak_lock); | ||
36 | #endif | ||
37 | |||
38 | #define BUFFER_LRU_MAX 64 | ||
39 | |||
40 | struct tree_entry { | ||
41 | u64 start; | ||
42 | u64 end; | ||
43 | struct rb_node rb_node; | ||
44 | }; | ||
45 | |||
46 | struct extent_page_data { | ||
47 | struct bio *bio; | ||
48 | struct extent_io_tree *tree; | ||
49 | get_extent_t *get_extent; | ||
50 | |||
51 | /* tells writepage not to lock the state bits for this range | ||
52 | * it still does the unlocking | ||
53 | */ | ||
54 | int extent_locked; | ||
55 | }; | ||
56 | |||
57 | int __init extent_io_init(void) | ||
58 | { | ||
59 | extent_state_cache = btrfs_cache_create("extent_state", | ||
60 | sizeof(struct extent_state), 0, | ||
61 | NULL); | ||
62 | if (!extent_state_cache) | ||
63 | return -ENOMEM; | ||
64 | |||
65 | extent_buffer_cache = btrfs_cache_create("extent_buffers", | ||
66 | sizeof(struct extent_buffer), 0, | ||
67 | NULL); | ||
68 | if (!extent_buffer_cache) | ||
69 | goto free_state_cache; | ||
70 | return 0; | ||
71 | |||
72 | free_state_cache: | ||
73 | kmem_cache_destroy(extent_state_cache); | ||
74 | return -ENOMEM; | ||
75 | } | ||
76 | |||
77 | void extent_io_exit(void) | ||
78 | { | ||
79 | struct extent_state *state; | ||
80 | struct extent_buffer *eb; | ||
81 | |||
82 | while (!list_empty(&states)) { | ||
83 | state = list_entry(states.next, struct extent_state, leak_list); | ||
84 | printk(KERN_ERR "btrfs state leak: start %llu end %llu " | ||
85 | "state %lu in tree %p refs %d\n", | ||
86 | (unsigned long long)state->start, | ||
87 | (unsigned long long)state->end, | ||
88 | state->state, state->tree, atomic_read(&state->refs)); | ||
89 | list_del(&state->leak_list); | ||
90 | kmem_cache_free(extent_state_cache, state); | ||
91 | |||
92 | } | ||
93 | |||
94 | while (!list_empty(&buffers)) { | ||
95 | eb = list_entry(buffers.next, struct extent_buffer, leak_list); | ||
96 | printk(KERN_ERR "btrfs buffer leak start %llu len %lu " | ||
97 | "refs %d\n", (unsigned long long)eb->start, | ||
98 | eb->len, atomic_read(&eb->refs)); | ||
99 | list_del(&eb->leak_list); | ||
100 | kmem_cache_free(extent_buffer_cache, eb); | ||
101 | } | ||
102 | if (extent_state_cache) | ||
103 | kmem_cache_destroy(extent_state_cache); | ||
104 | if (extent_buffer_cache) | ||
105 | kmem_cache_destroy(extent_buffer_cache); | ||
106 | } | ||
107 | |||
108 | void extent_io_tree_init(struct extent_io_tree *tree, | ||
109 | struct address_space *mapping, gfp_t mask) | ||
110 | { | ||
111 | tree->state.rb_node = NULL; | ||
112 | tree->buffer.rb_node = NULL; | ||
113 | tree->ops = NULL; | ||
114 | tree->dirty_bytes = 0; | ||
115 | spin_lock_init(&tree->lock); | ||
116 | spin_lock_init(&tree->buffer_lock); | ||
117 | tree->mapping = mapping; | ||
118 | } | ||
119 | |||
120 | static struct extent_state *alloc_extent_state(gfp_t mask) | ||
121 | { | ||
122 | struct extent_state *state; | ||
123 | #ifdef LEAK_DEBUG | ||
124 | unsigned long flags; | ||
125 | #endif | ||
126 | |||
127 | state = kmem_cache_alloc(extent_state_cache, mask); | ||
128 | if (!state) | ||
129 | return state; | ||
130 | state->state = 0; | ||
131 | state->private = 0; | ||
132 | state->tree = NULL; | ||
133 | #ifdef LEAK_DEBUG | ||
134 | spin_lock_irqsave(&leak_lock, flags); | ||
135 | list_add(&state->leak_list, &states); | ||
136 | spin_unlock_irqrestore(&leak_lock, flags); | ||
137 | #endif | ||
138 | atomic_set(&state->refs, 1); | ||
139 | init_waitqueue_head(&state->wq); | ||
140 | return state; | ||
141 | } | ||
142 | |||
143 | static void free_extent_state(struct extent_state *state) | ||
144 | { | ||
145 | if (!state) | ||
146 | return; | ||
147 | if (atomic_dec_and_test(&state->refs)) { | ||
148 | #ifdef LEAK_DEBUG | ||
149 | unsigned long flags; | ||
150 | #endif | ||
151 | WARN_ON(state->tree); | ||
152 | #ifdef LEAK_DEBUG | ||
153 | spin_lock_irqsave(&leak_lock, flags); | ||
154 | list_del(&state->leak_list); | ||
155 | spin_unlock_irqrestore(&leak_lock, flags); | ||
156 | #endif | ||
157 | kmem_cache_free(extent_state_cache, state); | ||
158 | } | ||
159 | } | ||
160 | |||
161 | static struct rb_node *tree_insert(struct rb_root *root, u64 offset, | ||
162 | struct rb_node *node) | ||
163 | { | ||
164 | struct rb_node **p = &root->rb_node; | ||
165 | struct rb_node *parent = NULL; | ||
166 | struct tree_entry *entry; | ||
167 | |||
168 | while (*p) { | ||
169 | parent = *p; | ||
170 | entry = rb_entry(parent, struct tree_entry, rb_node); | ||
171 | |||
172 | if (offset < entry->start) | ||
173 | p = &(*p)->rb_left; | ||
174 | else if (offset > entry->end) | ||
175 | p = &(*p)->rb_right; | ||
176 | else | ||
177 | return parent; | ||
178 | } | ||
179 | |||
180 | entry = rb_entry(node, struct tree_entry, rb_node); | ||
181 | rb_link_node(node, parent, p); | ||
182 | rb_insert_color(node, root); | ||
183 | return NULL; | ||
184 | } | ||
185 | |||
186 | static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset, | ||
187 | struct rb_node **prev_ret, | ||
188 | struct rb_node **next_ret) | ||
189 | { | ||
190 | struct rb_root *root = &tree->state; | ||
191 | struct rb_node *n = root->rb_node; | ||
192 | struct rb_node *prev = NULL; | ||
193 | struct rb_node *orig_prev = NULL; | ||
194 | struct tree_entry *entry; | ||
195 | struct tree_entry *prev_entry = NULL; | ||
196 | |||
197 | while (n) { | ||
198 | entry = rb_entry(n, struct tree_entry, rb_node); | ||
199 | prev = n; | ||
200 | prev_entry = entry; | ||
201 | |||
202 | if (offset < entry->start) | ||
203 | n = n->rb_left; | ||
204 | else if (offset > entry->end) | ||
205 | n = n->rb_right; | ||
206 | else | ||
207 | return n; | ||
208 | } | ||
209 | |||
210 | if (prev_ret) { | ||
211 | orig_prev = prev; | ||
212 | while (prev && offset > prev_entry->end) { | ||
213 | prev = rb_next(prev); | ||
214 | prev_entry = rb_entry(prev, struct tree_entry, rb_node); | ||
215 | } | ||
216 | *prev_ret = prev; | ||
217 | prev = orig_prev; | ||
218 | } | ||
219 | |||
220 | if (next_ret) { | ||
221 | prev_entry = rb_entry(prev, struct tree_entry, rb_node); | ||
222 | while (prev && offset < prev_entry->start) { | ||
223 | prev = rb_prev(prev); | ||
224 | prev_entry = rb_entry(prev, struct tree_entry, rb_node); | ||
225 | } | ||
226 | *next_ret = prev; | ||
227 | } | ||
228 | return NULL; | ||
229 | } | ||
230 | |||
231 | static inline struct rb_node *tree_search(struct extent_io_tree *tree, | ||
232 | u64 offset) | ||
233 | { | ||
234 | struct rb_node *prev = NULL; | ||
235 | struct rb_node *ret; | ||
236 | |||
237 | ret = __etree_search(tree, offset, &prev, NULL); | ||
238 | if (!ret) | ||
239 | return prev; | ||
240 | return ret; | ||
241 | } | ||
242 | |||
243 | static struct extent_buffer *buffer_tree_insert(struct extent_io_tree *tree, | ||
244 | u64 offset, struct rb_node *node) | ||
245 | { | ||
246 | struct rb_root *root = &tree->buffer; | ||
247 | struct rb_node **p = &root->rb_node; | ||
248 | struct rb_node *parent = NULL; | ||
249 | struct extent_buffer *eb; | ||
250 | |||
251 | while (*p) { | ||
252 | parent = *p; | ||
253 | eb = rb_entry(parent, struct extent_buffer, rb_node); | ||
254 | |||
255 | if (offset < eb->start) | ||
256 | p = &(*p)->rb_left; | ||
257 | else if (offset > eb->start) | ||
258 | p = &(*p)->rb_right; | ||
259 | else | ||
260 | return eb; | ||
261 | } | ||
262 | |||
263 | rb_link_node(node, parent, p); | ||
264 | rb_insert_color(node, root); | ||
265 | return NULL; | ||
266 | } | ||
267 | |||
268 | static struct extent_buffer *buffer_search(struct extent_io_tree *tree, | ||
269 | u64 offset) | ||
270 | { | ||
271 | struct rb_root *root = &tree->buffer; | ||
272 | struct rb_node *n = root->rb_node; | ||
273 | struct extent_buffer *eb; | ||
274 | |||
275 | while (n) { | ||
276 | eb = rb_entry(n, struct extent_buffer, rb_node); | ||
277 | if (offset < eb->start) | ||
278 | n = n->rb_left; | ||
279 | else if (offset > eb->start) | ||
280 | n = n->rb_right; | ||
281 | else | ||
282 | return eb; | ||
283 | } | ||
284 | return NULL; | ||
285 | } | ||
286 | |||
287 | /* | ||
288 | * utility function to look for merge candidates inside a given range. | ||
289 | * Any extents with matching state are merged together into a single | ||
290 | * extent in the tree. Extents with EXTENT_IO in their state field | ||
291 | * are not merged because the end_io handlers need to be able to do | ||
292 | * operations on them without sleeping (or doing allocations/splits). | ||
293 | * | ||
294 | * This should be called with the tree lock held. | ||
295 | */ | ||
296 | static int merge_state(struct extent_io_tree *tree, | ||
297 | struct extent_state *state) | ||
298 | { | ||
299 | struct extent_state *other; | ||
300 | struct rb_node *other_node; | ||
301 | |||
302 | if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) | ||
303 | return 0; | ||
304 | |||
305 | other_node = rb_prev(&state->rb_node); | ||
306 | if (other_node) { | ||
307 | other = rb_entry(other_node, struct extent_state, rb_node); | ||
308 | if (other->end == state->start - 1 && | ||
309 | other->state == state->state) { | ||
310 | state->start = other->start; | ||
311 | other->tree = NULL; | ||
312 | rb_erase(&other->rb_node, &tree->state); | ||
313 | free_extent_state(other); | ||
314 | } | ||
315 | } | ||
316 | other_node = rb_next(&state->rb_node); | ||
317 | if (other_node) { | ||
318 | other = rb_entry(other_node, struct extent_state, rb_node); | ||
319 | if (other->start == state->end + 1 && | ||
320 | other->state == state->state) { | ||
321 | other->start = state->start; | ||
322 | state->tree = NULL; | ||
323 | rb_erase(&state->rb_node, &tree->state); | ||
324 | free_extent_state(state); | ||
325 | } | ||
326 | } | ||
327 | return 0; | ||
328 | } | ||
329 | |||
330 | static void set_state_cb(struct extent_io_tree *tree, | ||
331 | struct extent_state *state, | ||
332 | unsigned long bits) | ||
333 | { | ||
334 | if (tree->ops && tree->ops->set_bit_hook) { | ||
335 | tree->ops->set_bit_hook(tree->mapping->host, state->start, | ||
336 | state->end, state->state, bits); | ||
337 | } | ||
338 | } | ||
339 | |||
340 | static void clear_state_cb(struct extent_io_tree *tree, | ||
341 | struct extent_state *state, | ||
342 | unsigned long bits) | ||
343 | { | ||
344 | if (tree->ops && tree->ops->clear_bit_hook) { | ||
345 | tree->ops->clear_bit_hook(tree->mapping->host, state->start, | ||
346 | state->end, state->state, bits); | ||
347 | } | ||
348 | } | ||
349 | |||
350 | /* | ||
351 | * insert an extent_state struct into the tree. 'bits' are set on the | ||
352 | * struct before it is inserted. | ||
353 | * | ||
354 | * This may return -EEXIST if the extent is already there, in which case the | ||
355 | * state struct is freed. | ||
356 | * | ||
357 | * The tree lock is not taken internally. This is a utility function and | ||
358 | * probably isn't what you want to call (see set/clear_extent_bit). | ||
359 | */ | ||
360 | static int insert_state(struct extent_io_tree *tree, | ||
361 | struct extent_state *state, u64 start, u64 end, | ||
362 | int bits) | ||
363 | { | ||
364 | struct rb_node *node; | ||
365 | |||
366 | if (end < start) { | ||
367 | printk(KERN_ERR "btrfs end < start %llu %llu\n", | ||
368 | (unsigned long long)end, | ||
369 | (unsigned long long)start); | ||
370 | WARN_ON(1); | ||
371 | } | ||
372 | if (bits & EXTENT_DIRTY) | ||
373 | tree->dirty_bytes += end - start + 1; | ||
374 | set_state_cb(tree, state, bits); | ||
375 | state->state |= bits; | ||
376 | state->start = start; | ||
377 | state->end = end; | ||
378 | node = tree_insert(&tree->state, end, &state->rb_node); | ||
379 | if (node) { | ||
380 | struct extent_state *found; | ||
381 | found = rb_entry(node, struct extent_state, rb_node); | ||
382 | printk(KERN_ERR "btrfs found node %llu %llu on insert of " | ||
383 | "%llu %llu\n", (unsigned long long)found->start, | ||
384 | (unsigned long long)found->end, | ||
385 | (unsigned long long)start, (unsigned long long)end); | ||
386 | free_extent_state(state); | ||
387 | return -EEXIST; | ||
388 | } | ||
389 | state->tree = tree; | ||
390 | merge_state(tree, state); | ||
391 | return 0; | ||
392 | } | ||
393 | |||
394 | /* | ||
395 | * split a given extent state struct in two, inserting the preallocated | ||
396 | * struct 'prealloc' as the newly created second half. 'split' indicates an | ||
397 | * offset inside 'orig' where it should be split. | ||
398 | * | ||
399 | * Before calling, | ||
400 | * the tree has 'orig' at [orig->start, orig->end]. After calling, there | ||
401 | * are two extent state structs in the tree: | ||
402 | * prealloc: [orig->start, split - 1] | ||
403 | * orig: [ split, orig->end ] | ||
404 | * | ||
405 | * The tree locks are not taken by this function. They need to be held | ||
406 | * by the caller. | ||
407 | */ | ||
408 | static int split_state(struct extent_io_tree *tree, struct extent_state *orig, | ||
409 | struct extent_state *prealloc, u64 split) | ||
410 | { | ||
411 | struct rb_node *node; | ||
412 | prealloc->start = orig->start; | ||
413 | prealloc->end = split - 1; | ||
414 | prealloc->state = orig->state; | ||
415 | orig->start = split; | ||
416 | |||
417 | node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node); | ||
418 | if (node) { | ||
419 | struct extent_state *found; | ||
420 | found = rb_entry(node, struct extent_state, rb_node); | ||
421 | free_extent_state(prealloc); | ||
422 | return -EEXIST; | ||
423 | } | ||
424 | prealloc->tree = tree; | ||
425 | return 0; | ||
426 | } | ||
427 | |||
428 | /* | ||
429 | * utility function to clear some bits in an extent state struct. | ||
430 | * it will optionally wake up any one waiting on this state (wake == 1), or | ||
431 | * forcibly remove the state from the tree (delete == 1). | ||
432 | * | ||
433 | * If no bits are set on the state struct after clearing things, the | ||
434 | * struct is freed and removed from the tree | ||
435 | */ | ||
436 | static int clear_state_bit(struct extent_io_tree *tree, | ||
437 | struct extent_state *state, int bits, int wake, | ||
438 | int delete) | ||
439 | { | ||
440 | int ret = state->state & bits; | ||
441 | |||
442 | if ((bits & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) { | ||
443 | u64 range = state->end - state->start + 1; | ||
444 | WARN_ON(range > tree->dirty_bytes); | ||
445 | tree->dirty_bytes -= range; | ||
446 | } | ||
447 | clear_state_cb(tree, state, bits); | ||
448 | state->state &= ~bits; | ||
449 | if (wake) | ||
450 | wake_up(&state->wq); | ||
451 | if (delete || state->state == 0) { | ||
452 | if (state->tree) { | ||
453 | clear_state_cb(tree, state, state->state); | ||
454 | rb_erase(&state->rb_node, &tree->state); | ||
455 | state->tree = NULL; | ||
456 | free_extent_state(state); | ||
457 | } else { | ||
458 | WARN_ON(1); | ||
459 | } | ||
460 | } else { | ||
461 | merge_state(tree, state); | ||
462 | } | ||
463 | return ret; | ||
464 | } | ||
465 | |||
466 | /* | ||
467 | * clear some bits on a range in the tree. This may require splitting | ||
468 | * or inserting elements in the tree, so the gfp mask is used to | ||
469 | * indicate which allocations or sleeping are allowed. | ||
470 | * | ||
471 | * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove | ||
472 | * the given range from the tree regardless of state (ie for truncate). | ||
473 | * | ||
474 | * the range [start, end] is inclusive. | ||
475 | * | ||
476 | * This takes the tree lock, and returns < 0 on error, > 0 if any of the | ||
477 | * bits were already set, or zero if none of the bits were already set. | ||
478 | */ | ||
479 | int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, | ||
480 | int bits, int wake, int delete, gfp_t mask) | ||
481 | { | ||
482 | struct extent_state *state; | ||
483 | struct extent_state *prealloc = NULL; | ||
484 | struct rb_node *node; | ||
485 | int err; | ||
486 | int set = 0; | ||
487 | |||
488 | again: | ||
489 | if (!prealloc && (mask & __GFP_WAIT)) { | ||
490 | prealloc = alloc_extent_state(mask); | ||
491 | if (!prealloc) | ||
492 | return -ENOMEM; | ||
493 | } | ||
494 | |||
495 | spin_lock(&tree->lock); | ||
496 | /* | ||
497 | * this search will find the extents that end after | ||
498 | * our range starts | ||
499 | */ | ||
500 | node = tree_search(tree, start); | ||
501 | if (!node) | ||
502 | goto out; | ||
503 | state = rb_entry(node, struct extent_state, rb_node); | ||
504 | if (state->start > end) | ||
505 | goto out; | ||
506 | WARN_ON(state->end < start); | ||
507 | |||
508 | /* | ||
509 | * | ---- desired range ---- | | ||
510 | * | state | or | ||
511 | * | ------------- state -------------- | | ||
512 | * | ||
513 | * We need to split the extent we found, and may flip | ||
514 | * bits on second half. | ||
515 | * | ||
516 | * If the extent we found extends past our range, we | ||
517 | * just split and search again. It'll get split again | ||
518 | * the next time though. | ||
519 | * | ||
520 | * If the extent we found is inside our range, we clear | ||
521 | * the desired bit on it. | ||
522 | */ | ||
523 | |||
524 | if (state->start < start) { | ||
525 | if (!prealloc) | ||
526 | prealloc = alloc_extent_state(GFP_ATOMIC); | ||
527 | err = split_state(tree, state, prealloc, start); | ||
528 | BUG_ON(err == -EEXIST); | ||
529 | prealloc = NULL; | ||
530 | if (err) | ||
531 | goto out; | ||
532 | if (state->end <= end) { | ||
533 | start = state->end + 1; | ||
534 | set |= clear_state_bit(tree, state, bits, | ||
535 | wake, delete); | ||
536 | } else { | ||
537 | start = state->start; | ||
538 | } | ||
539 | goto search_again; | ||
540 | } | ||
541 | /* | ||
542 | * | ---- desired range ---- | | ||
543 | * | state | | ||
544 | * We need to split the extent, and clear the bit | ||
545 | * on the first half | ||
546 | */ | ||
547 | if (state->start <= end && state->end > end) { | ||
548 | if (!prealloc) | ||
549 | prealloc = alloc_extent_state(GFP_ATOMIC); | ||
550 | err = split_state(tree, state, prealloc, end + 1); | ||
551 | BUG_ON(err == -EEXIST); | ||
552 | |||
553 | if (wake) | ||
554 | wake_up(&state->wq); | ||
555 | set |= clear_state_bit(tree, prealloc, bits, | ||
556 | wake, delete); | ||
557 | prealloc = NULL; | ||
558 | goto out; | ||
559 | } | ||
560 | |||
561 | start = state->end + 1; | ||
562 | set |= clear_state_bit(tree, state, bits, wake, delete); | ||
563 | goto search_again; | ||
564 | |||
565 | out: | ||
566 | spin_unlock(&tree->lock); | ||
567 | if (prealloc) | ||
568 | free_extent_state(prealloc); | ||
569 | |||
570 | return set; | ||
571 | |||
572 | search_again: | ||
573 | if (start > end) | ||
574 | goto out; | ||
575 | spin_unlock(&tree->lock); | ||
576 | if (mask & __GFP_WAIT) | ||
577 | cond_resched(); | ||
578 | goto again; | ||
579 | } | ||
580 | |||
581 | static int wait_on_state(struct extent_io_tree *tree, | ||
582 | struct extent_state *state) | ||
583 | __releases(tree->lock) | ||
584 | __acquires(tree->lock) | ||
585 | { | ||
586 | DEFINE_WAIT(wait); | ||
587 | prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE); | ||
588 | spin_unlock(&tree->lock); | ||
589 | schedule(); | ||
590 | spin_lock(&tree->lock); | ||
591 | finish_wait(&state->wq, &wait); | ||
592 | return 0; | ||
593 | } | ||
594 | |||
595 | /* | ||
596 | * waits for one or more bits to clear on a range in the state tree. | ||
597 | * The range [start, end] is inclusive. | ||
598 | * The tree lock is taken by this function | ||
599 | */ | ||
600 | int wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits) | ||
601 | { | ||
602 | struct extent_state *state; | ||
603 | struct rb_node *node; | ||
604 | |||
605 | spin_lock(&tree->lock); | ||
606 | again: | ||
607 | while (1) { | ||
608 | /* | ||
609 | * this search will find all the extents that end after | ||
610 | * our range starts | ||
611 | */ | ||
612 | node = tree_search(tree, start); | ||
613 | if (!node) | ||
614 | break; | ||
615 | |||
616 | state = rb_entry(node, struct extent_state, rb_node); | ||
617 | |||
618 | if (state->start > end) | ||
619 | goto out; | ||
620 | |||
621 | if (state->state & bits) { | ||
622 | start = state->start; | ||
623 | atomic_inc(&state->refs); | ||
624 | wait_on_state(tree, state); | ||
625 | free_extent_state(state); | ||
626 | goto again; | ||
627 | } | ||
628 | start = state->end + 1; | ||
629 | |||
630 | if (start > end) | ||
631 | break; | ||
632 | |||
633 | if (need_resched()) { | ||
634 | spin_unlock(&tree->lock); | ||
635 | cond_resched(); | ||
636 | spin_lock(&tree->lock); | ||
637 | } | ||
638 | } | ||
639 | out: | ||
640 | spin_unlock(&tree->lock); | ||
641 | return 0; | ||
642 | } | ||
643 | |||
644 | static void set_state_bits(struct extent_io_tree *tree, | ||
645 | struct extent_state *state, | ||
646 | int bits) | ||
647 | { | ||
648 | if ((bits & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) { | ||
649 | u64 range = state->end - state->start + 1; | ||
650 | tree->dirty_bytes += range; | ||
651 | } | ||
652 | set_state_cb(tree, state, bits); | ||
653 | state->state |= bits; | ||
654 | } | ||
655 | |||
656 | /* | ||
657 | * set some bits on a range in the tree. This may require allocations | ||
658 | * or sleeping, so the gfp mask is used to indicate what is allowed. | ||
659 | * | ||
660 | * If 'exclusive' == 1, this will fail with -EEXIST if some part of the | ||
661 | * range already has the desired bits set. The start of the existing | ||
662 | * range is returned in failed_start in this case. | ||
663 | * | ||
664 | * [start, end] is inclusive | ||
665 | * This takes the tree lock. | ||
666 | */ | ||
667 | static int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, | ||
668 | int bits, int exclusive, u64 *failed_start, | ||
669 | gfp_t mask) | ||
670 | { | ||
671 | struct extent_state *state; | ||
672 | struct extent_state *prealloc = NULL; | ||
673 | struct rb_node *node; | ||
674 | int err = 0; | ||
675 | int set; | ||
676 | u64 last_start; | ||
677 | u64 last_end; | ||
678 | again: | ||
679 | if (!prealloc && (mask & __GFP_WAIT)) { | ||
680 | prealloc = alloc_extent_state(mask); | ||
681 | if (!prealloc) | ||
682 | return -ENOMEM; | ||
683 | } | ||
684 | |||
685 | spin_lock(&tree->lock); | ||
686 | /* | ||
687 | * this search will find all the extents that end after | ||
688 | * our range starts. | ||
689 | */ | ||
690 | node = tree_search(tree, start); | ||
691 | if (!node) { | ||
692 | err = insert_state(tree, prealloc, start, end, bits); | ||
693 | prealloc = NULL; | ||
694 | BUG_ON(err == -EEXIST); | ||
695 | goto out; | ||
696 | } | ||
697 | |||
698 | state = rb_entry(node, struct extent_state, rb_node); | ||
699 | last_start = state->start; | ||
700 | last_end = state->end; | ||
701 | |||
702 | /* | ||
703 | * | ---- desired range ---- | | ||
704 | * | state | | ||
705 | * | ||
706 | * Just lock what we found and keep going | ||
707 | */ | ||
708 | if (state->start == start && state->end <= end) { | ||
709 | set = state->state & bits; | ||
710 | if (set && exclusive) { | ||
711 | *failed_start = state->start; | ||
712 | err = -EEXIST; | ||
713 | goto out; | ||
714 | } | ||
715 | set_state_bits(tree, state, bits); | ||
716 | start = state->end + 1; | ||
717 | merge_state(tree, state); | ||
718 | goto search_again; | ||
719 | } | ||
720 | |||
721 | /* | ||
722 | * | ---- desired range ---- | | ||
723 | * | state | | ||
724 | * or | ||
725 | * | ------------- state -------------- | | ||
726 | * | ||
727 | * We need to split the extent we found, and may flip bits on | ||
728 | * second half. | ||
729 | * | ||
730 | * If the extent we found extends past our | ||
731 | * range, we just split and search again. It'll get split | ||
732 | * again the next time though. | ||
733 | * | ||
734 | * If the extent we found is inside our range, we set the | ||
735 | * desired bit on it. | ||
736 | */ | ||
737 | if (state->start < start) { | ||
738 | set = state->state & bits; | ||
739 | if (exclusive && set) { | ||
740 | *failed_start = start; | ||
741 | err = -EEXIST; | ||
742 | goto out; | ||
743 | } | ||
744 | err = split_state(tree, state, prealloc, start); | ||
745 | BUG_ON(err == -EEXIST); | ||
746 | prealloc = NULL; | ||
747 | if (err) | ||
748 | goto out; | ||
749 | if (state->end <= end) { | ||
750 | set_state_bits(tree, state, bits); | ||
751 | start = state->end + 1; | ||
752 | merge_state(tree, state); | ||
753 | } else { | ||
754 | start = state->start; | ||
755 | } | ||
756 | goto search_again; | ||
757 | } | ||
758 | /* | ||
759 | * | ---- desired range ---- | | ||
760 | * | state | or | state | | ||
761 | * | ||
762 | * There's a hole, we need to insert something in it and | ||
763 | * ignore the extent we found. | ||
764 | */ | ||
765 | if (state->start > start) { | ||
766 | u64 this_end; | ||
767 | if (end < last_start) | ||
768 | this_end = end; | ||
769 | else | ||
770 | this_end = last_start - 1; | ||
771 | err = insert_state(tree, prealloc, start, this_end, | ||
772 | bits); | ||
773 | prealloc = NULL; | ||
774 | BUG_ON(err == -EEXIST); | ||
775 | if (err) | ||
776 | goto out; | ||
777 | start = this_end + 1; | ||
778 | goto search_again; | ||
779 | } | ||
780 | /* | ||
781 | * | ---- desired range ---- | | ||
782 | * | state | | ||
783 | * We need to split the extent, and set the bit | ||
784 | * on the first half | ||
785 | */ | ||
786 | if (state->start <= end && state->end > end) { | ||
787 | set = state->state & bits; | ||
788 | if (exclusive && set) { | ||
789 | *failed_start = start; | ||
790 | err = -EEXIST; | ||
791 | goto out; | ||
792 | } | ||
793 | err = split_state(tree, state, prealloc, end + 1); | ||
794 | BUG_ON(err == -EEXIST); | ||
795 | |||
796 | set_state_bits(tree, prealloc, bits); | ||
797 | merge_state(tree, prealloc); | ||
798 | prealloc = NULL; | ||
799 | goto out; | ||
800 | } | ||
801 | |||
802 | goto search_again; | ||
803 | |||
804 | out: | ||
805 | spin_unlock(&tree->lock); | ||
806 | if (prealloc) | ||
807 | free_extent_state(prealloc); | ||
808 | |||
809 | return err; | ||
810 | |||
811 | search_again: | ||
812 | if (start > end) | ||
813 | goto out; | ||
814 | spin_unlock(&tree->lock); | ||
815 | if (mask & __GFP_WAIT) | ||
816 | cond_resched(); | ||
817 | goto again; | ||
818 | } | ||
819 | |||
820 | /* wrappers around set/clear extent bit */ | ||
821 | int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end, | ||
822 | gfp_t mask) | ||
823 | { | ||
824 | return set_extent_bit(tree, start, end, EXTENT_DIRTY, 0, NULL, | ||
825 | mask); | ||
826 | } | ||
827 | |||
828 | int set_extent_ordered(struct extent_io_tree *tree, u64 start, u64 end, | ||
829 | gfp_t mask) | ||
830 | { | ||
831 | return set_extent_bit(tree, start, end, EXTENT_ORDERED, 0, NULL, mask); | ||
832 | } | ||
833 | |||
834 | int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, | ||
835 | int bits, gfp_t mask) | ||
836 | { | ||
837 | return set_extent_bit(tree, start, end, bits, 0, NULL, | ||
838 | mask); | ||
839 | } | ||
840 | |||
841 | int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, | ||
842 | int bits, gfp_t mask) | ||
843 | { | ||
844 | return clear_extent_bit(tree, start, end, bits, 0, 0, mask); | ||
845 | } | ||
846 | |||
847 | int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end, | ||
848 | gfp_t mask) | ||
849 | { | ||
850 | return set_extent_bit(tree, start, end, | ||
851 | EXTENT_DELALLOC | EXTENT_DIRTY, | ||
852 | 0, NULL, mask); | ||
853 | } | ||
854 | |||
855 | int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end, | ||
856 | gfp_t mask) | ||
857 | { | ||
858 | return clear_extent_bit(tree, start, end, | ||
859 | EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, mask); | ||
860 | } | ||
861 | |||
862 | int clear_extent_ordered(struct extent_io_tree *tree, u64 start, u64 end, | ||
863 | gfp_t mask) | ||
864 | { | ||
865 | return clear_extent_bit(tree, start, end, EXTENT_ORDERED, 1, 0, mask); | ||
866 | } | ||
867 | |||
868 | int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end, | ||
869 | gfp_t mask) | ||
870 | { | ||
871 | return set_extent_bit(tree, start, end, EXTENT_NEW, 0, NULL, | ||
872 | mask); | ||
873 | } | ||
874 | |||
875 | static int clear_extent_new(struct extent_io_tree *tree, u64 start, u64 end, | ||
876 | gfp_t mask) | ||
877 | { | ||
878 | return clear_extent_bit(tree, start, end, EXTENT_NEW, 0, 0, mask); | ||
879 | } | ||
880 | |||
881 | int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end, | ||
882 | gfp_t mask) | ||
883 | { | ||
884 | return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, NULL, | ||
885 | mask); | ||
886 | } | ||
887 | |||
888 | static int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, | ||
889 | u64 end, gfp_t mask) | ||
890 | { | ||
891 | return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0, mask); | ||
892 | } | ||
893 | |||
894 | static int set_extent_writeback(struct extent_io_tree *tree, u64 start, u64 end, | ||
895 | gfp_t mask) | ||
896 | { | ||
897 | return set_extent_bit(tree, start, end, EXTENT_WRITEBACK, | ||
898 | 0, NULL, mask); | ||
899 | } | ||
900 | |||
901 | static int clear_extent_writeback(struct extent_io_tree *tree, u64 start, | ||
902 | u64 end, gfp_t mask) | ||
903 | { | ||
904 | return clear_extent_bit(tree, start, end, EXTENT_WRITEBACK, 1, 0, mask); | ||
905 | } | ||
906 | |||
907 | int wait_on_extent_writeback(struct extent_io_tree *tree, u64 start, u64 end) | ||
908 | { | ||
909 | return wait_extent_bit(tree, start, end, EXTENT_WRITEBACK); | ||
910 | } | ||
911 | |||
912 | /* | ||
913 | * either insert or lock state struct between start and end use mask to tell | ||
914 | * us if waiting is desired. | ||
915 | */ | ||
916 | int lock_extent(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask) | ||
917 | { | ||
918 | int err; | ||
919 | u64 failed_start; | ||
920 | while (1) { | ||
921 | err = set_extent_bit(tree, start, end, EXTENT_LOCKED, 1, | ||
922 | &failed_start, mask); | ||
923 | if (err == -EEXIST && (mask & __GFP_WAIT)) { | ||
924 | wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED); | ||
925 | start = failed_start; | ||
926 | } else { | ||
927 | break; | ||
928 | } | ||
929 | WARN_ON(start > end); | ||
930 | } | ||
931 | return err; | ||
932 | } | ||
933 | |||
934 | int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end, | ||
935 | gfp_t mask) | ||
936 | { | ||
937 | int err; | ||
938 | u64 failed_start; | ||
939 | |||
940 | err = set_extent_bit(tree, start, end, EXTENT_LOCKED, 1, | ||
941 | &failed_start, mask); | ||
942 | if (err == -EEXIST) { | ||
943 | if (failed_start > start) | ||
944 | clear_extent_bit(tree, start, failed_start - 1, | ||
945 | EXTENT_LOCKED, 1, 0, mask); | ||
946 | return 0; | ||
947 | } | ||
948 | return 1; | ||
949 | } | ||
950 | |||
951 | int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end, | ||
952 | gfp_t mask) | ||
953 | { | ||
954 | return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, mask); | ||
955 | } | ||
956 | |||
957 | /* | ||
958 | * helper function to set pages and extents in the tree dirty | ||
959 | */ | ||
960 | int set_range_dirty(struct extent_io_tree *tree, u64 start, u64 end) | ||
961 | { | ||
962 | unsigned long index = start >> PAGE_CACHE_SHIFT; | ||
963 | unsigned long end_index = end >> PAGE_CACHE_SHIFT; | ||
964 | struct page *page; | ||
965 | |||
966 | while (index <= end_index) { | ||
967 | page = find_get_page(tree->mapping, index); | ||
968 | BUG_ON(!page); | ||
969 | __set_page_dirty_nobuffers(page); | ||
970 | page_cache_release(page); | ||
971 | index++; | ||
972 | } | ||
973 | set_extent_dirty(tree, start, end, GFP_NOFS); | ||
974 | return 0; | ||
975 | } | ||
976 | |||
977 | /* | ||
978 | * helper function to set both pages and extents in the tree writeback | ||
979 | */ | ||
980 | static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end) | ||
981 | { | ||
982 | unsigned long index = start >> PAGE_CACHE_SHIFT; | ||
983 | unsigned long end_index = end >> PAGE_CACHE_SHIFT; | ||
984 | struct page *page; | ||
985 | |||
986 | while (index <= end_index) { | ||
987 | page = find_get_page(tree->mapping, index); | ||
988 | BUG_ON(!page); | ||
989 | set_page_writeback(page); | ||
990 | page_cache_release(page); | ||
991 | index++; | ||
992 | } | ||
993 | set_extent_writeback(tree, start, end, GFP_NOFS); | ||
994 | return 0; | ||
995 | } | ||
996 | |||
997 | /* | ||
998 | * find the first offset in the io tree with 'bits' set. zero is | ||
999 | * returned if we find something, and *start_ret and *end_ret are | ||
1000 | * set to reflect the state struct that was found. | ||
1001 | * | ||
1002 | * If nothing was found, 1 is returned, < 0 on error | ||
1003 | */ | ||
1004 | int find_first_extent_bit(struct extent_io_tree *tree, u64 start, | ||
1005 | u64 *start_ret, u64 *end_ret, int bits) | ||
1006 | { | ||
1007 | struct rb_node *node; | ||
1008 | struct extent_state *state; | ||
1009 | int ret = 1; | ||
1010 | |||
1011 | spin_lock(&tree->lock); | ||
1012 | /* | ||
1013 | * this search will find all the extents that end after | ||
1014 | * our range starts. | ||
1015 | */ | ||
1016 | node = tree_search(tree, start); | ||
1017 | if (!node) | ||
1018 | goto out; | ||
1019 | |||
1020 | while (1) { | ||
1021 | state = rb_entry(node, struct extent_state, rb_node); | ||
1022 | if (state->end >= start && (state->state & bits)) { | ||
1023 | *start_ret = state->start; | ||
1024 | *end_ret = state->end; | ||
1025 | ret = 0; | ||
1026 | break; | ||
1027 | } | ||
1028 | node = rb_next(node); | ||
1029 | if (!node) | ||
1030 | break; | ||
1031 | } | ||
1032 | out: | ||
1033 | spin_unlock(&tree->lock); | ||
1034 | return ret; | ||
1035 | } | ||
1036 | |||
1037 | /* find the first state struct with 'bits' set after 'start', and | ||
1038 | * return it. tree->lock must be held. NULL will returned if | ||
1039 | * nothing was found after 'start' | ||
1040 | */ | ||
1041 | struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree, | ||
1042 | u64 start, int bits) | ||
1043 | { | ||
1044 | struct rb_node *node; | ||
1045 | struct extent_state *state; | ||
1046 | |||
1047 | /* | ||
1048 | * this search will find all the extents that end after | ||
1049 | * our range starts. | ||
1050 | */ | ||
1051 | node = tree_search(tree, start); | ||
1052 | if (!node) | ||
1053 | goto out; | ||
1054 | |||
1055 | while (1) { | ||
1056 | state = rb_entry(node, struct extent_state, rb_node); | ||
1057 | if (state->end >= start && (state->state & bits)) | ||
1058 | return state; | ||
1059 | |||
1060 | node = rb_next(node); | ||
1061 | if (!node) | ||
1062 | break; | ||
1063 | } | ||
1064 | out: | ||
1065 | return NULL; | ||
1066 | } | ||
1067 | |||
1068 | /* | ||
1069 | * find a contiguous range of bytes in the file marked as delalloc, not | ||
1070 | * more than 'max_bytes'. start and end are used to return the range, | ||
1071 | * | ||
1072 | * 1 is returned if we find something, 0 if nothing was in the tree | ||
1073 | */ | ||
1074 | static noinline u64 find_delalloc_range(struct extent_io_tree *tree, | ||
1075 | u64 *start, u64 *end, u64 max_bytes) | ||
1076 | { | ||
1077 | struct rb_node *node; | ||
1078 | struct extent_state *state; | ||
1079 | u64 cur_start = *start; | ||
1080 | u64 found = 0; | ||
1081 | u64 total_bytes = 0; | ||
1082 | |||
1083 | spin_lock(&tree->lock); | ||
1084 | |||
1085 | /* | ||
1086 | * this search will find all the extents that end after | ||
1087 | * our range starts. | ||
1088 | */ | ||
1089 | node = tree_search(tree, cur_start); | ||
1090 | if (!node) { | ||
1091 | if (!found) | ||
1092 | *end = (u64)-1; | ||
1093 | goto out; | ||
1094 | } | ||
1095 | |||
1096 | while (1) { | ||
1097 | state = rb_entry(node, struct extent_state, rb_node); | ||
1098 | if (found && (state->start != cur_start || | ||
1099 | (state->state & EXTENT_BOUNDARY))) { | ||
1100 | goto out; | ||
1101 | } | ||
1102 | if (!(state->state & EXTENT_DELALLOC)) { | ||
1103 | if (!found) | ||
1104 | *end = state->end; | ||
1105 | goto out; | ||
1106 | } | ||
1107 | if (!found) | ||
1108 | *start = state->start; | ||
1109 | found++; | ||
1110 | *end = state->end; | ||
1111 | cur_start = state->end + 1; | ||
1112 | node = rb_next(node); | ||
1113 | if (!node) | ||
1114 | break; | ||
1115 | total_bytes += state->end - state->start + 1; | ||
1116 | if (total_bytes >= max_bytes) | ||
1117 | break; | ||
1118 | } | ||
1119 | out: | ||
1120 | spin_unlock(&tree->lock); | ||
1121 | return found; | ||
1122 | } | ||
1123 | |||
1124 | static noinline int __unlock_for_delalloc(struct inode *inode, | ||
1125 | struct page *locked_page, | ||
1126 | u64 start, u64 end) | ||
1127 | { | ||
1128 | int ret; | ||
1129 | struct page *pages[16]; | ||
1130 | unsigned long index = start >> PAGE_CACHE_SHIFT; | ||
1131 | unsigned long end_index = end >> PAGE_CACHE_SHIFT; | ||
1132 | unsigned long nr_pages = end_index - index + 1; | ||
1133 | int i; | ||
1134 | |||
1135 | if (index == locked_page->index && end_index == index) | ||
1136 | return 0; | ||
1137 | |||
1138 | while (nr_pages > 0) { | ||
1139 | ret = find_get_pages_contig(inode->i_mapping, index, | ||
1140 | min_t(unsigned long, nr_pages, | ||
1141 | ARRAY_SIZE(pages)), pages); | ||
1142 | for (i = 0; i < ret; i++) { | ||
1143 | if (pages[i] != locked_page) | ||
1144 | unlock_page(pages[i]); | ||
1145 | page_cache_release(pages[i]); | ||
1146 | } | ||
1147 | nr_pages -= ret; | ||
1148 | index += ret; | ||
1149 | cond_resched(); | ||
1150 | } | ||
1151 | return 0; | ||
1152 | } | ||
1153 | |||
1154 | static noinline int lock_delalloc_pages(struct inode *inode, | ||
1155 | struct page *locked_page, | ||
1156 | u64 delalloc_start, | ||
1157 | u64 delalloc_end) | ||
1158 | { | ||
1159 | unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT; | ||
1160 | unsigned long start_index = index; | ||
1161 | unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT; | ||
1162 | unsigned long pages_locked = 0; | ||
1163 | struct page *pages[16]; | ||
1164 | unsigned long nrpages; | ||
1165 | int ret; | ||
1166 | int i; | ||
1167 | |||
1168 | /* the caller is responsible for locking the start index */ | ||
1169 | if (index == locked_page->index && index == end_index) | ||
1170 | return 0; | ||
1171 | |||
1172 | /* skip the page at the start index */ | ||
1173 | nrpages = end_index - index + 1; | ||
1174 | while (nrpages > 0) { | ||
1175 | ret = find_get_pages_contig(inode->i_mapping, index, | ||
1176 | min_t(unsigned long, | ||
1177 | nrpages, ARRAY_SIZE(pages)), pages); | ||
1178 | if (ret == 0) { | ||
1179 | ret = -EAGAIN; | ||
1180 | goto done; | ||
1181 | } | ||
1182 | /* now we have an array of pages, lock them all */ | ||
1183 | for (i = 0; i < ret; i++) { | ||
1184 | /* | ||
1185 | * the caller is taking responsibility for | ||
1186 | * locked_page | ||
1187 | */ | ||
1188 | if (pages[i] != locked_page) { | ||
1189 | lock_page(pages[i]); | ||
1190 | if (!PageDirty(pages[i]) || | ||
1191 | pages[i]->mapping != inode->i_mapping) { | ||
1192 | ret = -EAGAIN; | ||
1193 | unlock_page(pages[i]); | ||
1194 | page_cache_release(pages[i]); | ||
1195 | goto done; | ||
1196 | } | ||
1197 | } | ||
1198 | page_cache_release(pages[i]); | ||
1199 | pages_locked++; | ||
1200 | } | ||
1201 | nrpages -= ret; | ||
1202 | index += ret; | ||
1203 | cond_resched(); | ||
1204 | } | ||
1205 | ret = 0; | ||
1206 | done: | ||
1207 | if (ret && pages_locked) { | ||
1208 | __unlock_for_delalloc(inode, locked_page, | ||
1209 | delalloc_start, | ||
1210 | ((u64)(start_index + pages_locked - 1)) << | ||
1211 | PAGE_CACHE_SHIFT); | ||
1212 | } | ||
1213 | return ret; | ||
1214 | } | ||
1215 | |||
1216 | /* | ||
1217 | * find a contiguous range of bytes in the file marked as delalloc, not | ||
1218 | * more than 'max_bytes'. start and end are used to return the range, | ||
1219 | * | ||
1220 | * 1 is returned if we find something, 0 if nothing was in the tree | ||
1221 | */ | ||
1222 | static noinline u64 find_lock_delalloc_range(struct inode *inode, | ||
1223 | struct extent_io_tree *tree, | ||
1224 | struct page *locked_page, | ||
1225 | u64 *start, u64 *end, | ||
1226 | u64 max_bytes) | ||
1227 | { | ||
1228 | u64 delalloc_start; | ||
1229 | u64 delalloc_end; | ||
1230 | u64 found; | ||
1231 | int ret; | ||
1232 | int loops = 0; | ||
1233 | |||
1234 | again: | ||
1235 | /* step one, find a bunch of delalloc bytes starting at start */ | ||
1236 | delalloc_start = *start; | ||
1237 | delalloc_end = 0; | ||
1238 | found = find_delalloc_range(tree, &delalloc_start, &delalloc_end, | ||
1239 | max_bytes); | ||
1240 | if (!found || delalloc_end <= *start) { | ||
1241 | *start = delalloc_start; | ||
1242 | *end = delalloc_end; | ||
1243 | return found; | ||
1244 | } | ||
1245 | |||
1246 | /* | ||
1247 | * start comes from the offset of locked_page. We have to lock | ||
1248 | * pages in order, so we can't process delalloc bytes before | ||
1249 | * locked_page | ||
1250 | */ | ||
1251 | if (delalloc_start < *start) | ||
1252 | delalloc_start = *start; | ||
1253 | |||
1254 | /* | ||
1255 | * make sure to limit the number of pages we try to lock down | ||
1256 | * if we're looping. | ||
1257 | */ | ||
1258 | if (delalloc_end + 1 - delalloc_start > max_bytes && loops) | ||
1259 | delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1; | ||
1260 | |||
1261 | /* step two, lock all the pages after the page that has start */ | ||
1262 | ret = lock_delalloc_pages(inode, locked_page, | ||
1263 | delalloc_start, delalloc_end); | ||
1264 | if (ret == -EAGAIN) { | ||
1265 | /* some of the pages are gone, lets avoid looping by | ||
1266 | * shortening the size of the delalloc range we're searching | ||
1267 | */ | ||
1268 | if (!loops) { | ||
1269 | unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1); | ||
1270 | max_bytes = PAGE_CACHE_SIZE - offset; | ||
1271 | loops = 1; | ||
1272 | goto again; | ||
1273 | } else { | ||
1274 | found = 0; | ||
1275 | goto out_failed; | ||
1276 | } | ||
1277 | } | ||
1278 | BUG_ON(ret); | ||
1279 | |||
1280 | /* step three, lock the state bits for the whole range */ | ||
1281 | lock_extent(tree, delalloc_start, delalloc_end, GFP_NOFS); | ||
1282 | |||
1283 | /* then test to make sure it is all still delalloc */ | ||
1284 | ret = test_range_bit(tree, delalloc_start, delalloc_end, | ||
1285 | EXTENT_DELALLOC, 1); | ||
1286 | if (!ret) { | ||
1287 | unlock_extent(tree, delalloc_start, delalloc_end, GFP_NOFS); | ||
1288 | __unlock_for_delalloc(inode, locked_page, | ||
1289 | delalloc_start, delalloc_end); | ||
1290 | cond_resched(); | ||
1291 | goto again; | ||
1292 | } | ||
1293 | *start = delalloc_start; | ||
1294 | *end = delalloc_end; | ||
1295 | out_failed: | ||
1296 | return found; | ||
1297 | } | ||
1298 | |||
1299 | int extent_clear_unlock_delalloc(struct inode *inode, | ||
1300 | struct extent_io_tree *tree, | ||
1301 | u64 start, u64 end, struct page *locked_page, | ||
1302 | int unlock_pages, | ||
1303 | int clear_unlock, | ||
1304 | int clear_delalloc, int clear_dirty, | ||
1305 | int set_writeback, | ||
1306 | int end_writeback) | ||
1307 | { | ||
1308 | int ret; | ||
1309 | struct page *pages[16]; | ||
1310 | unsigned long index = start >> PAGE_CACHE_SHIFT; | ||
1311 | unsigned long end_index = end >> PAGE_CACHE_SHIFT; | ||
1312 | unsigned long nr_pages = end_index - index + 1; | ||
1313 | int i; | ||
1314 | int clear_bits = 0; | ||
1315 | |||
1316 | if (clear_unlock) | ||
1317 | clear_bits |= EXTENT_LOCKED; | ||
1318 | if (clear_dirty) | ||
1319 | clear_bits |= EXTENT_DIRTY; | ||
1320 | |||
1321 | if (clear_delalloc) | ||
1322 | clear_bits |= EXTENT_DELALLOC; | ||
1323 | |||
1324 | clear_extent_bit(tree, start, end, clear_bits, 1, 0, GFP_NOFS); | ||
1325 | if (!(unlock_pages || clear_dirty || set_writeback || end_writeback)) | ||
1326 | return 0; | ||
1327 | |||
1328 | while (nr_pages > 0) { | ||
1329 | ret = find_get_pages_contig(inode->i_mapping, index, | ||
1330 | min_t(unsigned long, | ||
1331 | nr_pages, ARRAY_SIZE(pages)), pages); | ||
1332 | for (i = 0; i < ret; i++) { | ||
1333 | if (pages[i] == locked_page) { | ||
1334 | page_cache_release(pages[i]); | ||
1335 | continue; | ||
1336 | } | ||
1337 | if (clear_dirty) | ||
1338 | clear_page_dirty_for_io(pages[i]); | ||
1339 | if (set_writeback) | ||
1340 | set_page_writeback(pages[i]); | ||
1341 | if (end_writeback) | ||
1342 | end_page_writeback(pages[i]); | ||
1343 | if (unlock_pages) | ||
1344 | unlock_page(pages[i]); | ||
1345 | page_cache_release(pages[i]); | ||
1346 | } | ||
1347 | nr_pages -= ret; | ||
1348 | index += ret; | ||
1349 | cond_resched(); | ||
1350 | } | ||
1351 | return 0; | ||
1352 | } | ||
1353 | |||
1354 | /* | ||
1355 | * count the number of bytes in the tree that have a given bit(s) | ||
1356 | * set. This can be fairly slow, except for EXTENT_DIRTY which is | ||
1357 | * cached. The total number found is returned. | ||
1358 | */ | ||
1359 | u64 count_range_bits(struct extent_io_tree *tree, | ||
1360 | u64 *start, u64 search_end, u64 max_bytes, | ||
1361 | unsigned long bits) | ||
1362 | { | ||
1363 | struct rb_node *node; | ||
1364 | struct extent_state *state; | ||
1365 | u64 cur_start = *start; | ||
1366 | u64 total_bytes = 0; | ||
1367 | int found = 0; | ||
1368 | |||
1369 | if (search_end <= cur_start) { | ||
1370 | WARN_ON(1); | ||
1371 | return 0; | ||
1372 | } | ||
1373 | |||
1374 | spin_lock(&tree->lock); | ||
1375 | if (cur_start == 0 && bits == EXTENT_DIRTY) { | ||
1376 | total_bytes = tree->dirty_bytes; | ||
1377 | goto out; | ||
1378 | } | ||
1379 | /* | ||
1380 | * this search will find all the extents that end after | ||
1381 | * our range starts. | ||
1382 | */ | ||
1383 | node = tree_search(tree, cur_start); | ||
1384 | if (!node) | ||
1385 | goto out; | ||
1386 | |||
1387 | while (1) { | ||
1388 | state = rb_entry(node, struct extent_state, rb_node); | ||
1389 | if (state->start > search_end) | ||
1390 | break; | ||
1391 | if (state->end >= cur_start && (state->state & bits)) { | ||
1392 | total_bytes += min(search_end, state->end) + 1 - | ||
1393 | max(cur_start, state->start); | ||
1394 | if (total_bytes >= max_bytes) | ||
1395 | break; | ||
1396 | if (!found) { | ||
1397 | *start = state->start; | ||
1398 | found = 1; | ||
1399 | } | ||
1400 | } | ||
1401 | node = rb_next(node); | ||
1402 | if (!node) | ||
1403 | break; | ||
1404 | } | ||
1405 | out: | ||
1406 | spin_unlock(&tree->lock); | ||
1407 | return total_bytes; | ||
1408 | } | ||
1409 | |||
1410 | #if 0 | ||
1411 | /* | ||
1412 | * helper function to lock both pages and extents in the tree. | ||
1413 | * pages must be locked first. | ||
1414 | */ | ||
1415 | static int lock_range(struct extent_io_tree *tree, u64 start, u64 end) | ||
1416 | { | ||
1417 | unsigned long index = start >> PAGE_CACHE_SHIFT; | ||
1418 | unsigned long end_index = end >> PAGE_CACHE_SHIFT; | ||
1419 | struct page *page; | ||
1420 | int err; | ||
1421 | |||
1422 | while (index <= end_index) { | ||
1423 | page = grab_cache_page(tree->mapping, index); | ||
1424 | if (!page) { | ||
1425 | err = -ENOMEM; | ||
1426 | goto failed; | ||
1427 | } | ||
1428 | if (IS_ERR(page)) { | ||
1429 | err = PTR_ERR(page); | ||
1430 | goto failed; | ||
1431 | } | ||
1432 | index++; | ||
1433 | } | ||
1434 | lock_extent(tree, start, end, GFP_NOFS); | ||
1435 | return 0; | ||
1436 | |||
1437 | failed: | ||
1438 | /* | ||
1439 | * we failed above in getting the page at 'index', so we undo here | ||
1440 | * up to but not including the page at 'index' | ||
1441 | */ | ||
1442 | end_index = index; | ||
1443 | index = start >> PAGE_CACHE_SHIFT; | ||
1444 | while (index < end_index) { | ||
1445 | page = find_get_page(tree->mapping, index); | ||
1446 | unlock_page(page); | ||
1447 | page_cache_release(page); | ||
1448 | index++; | ||
1449 | } | ||
1450 | return err; | ||
1451 | } | ||
1452 | |||
1453 | /* | ||
1454 | * helper function to unlock both pages and extents in the tree. | ||
1455 | */ | ||
1456 | static int unlock_range(struct extent_io_tree *tree, u64 start, u64 end) | ||
1457 | { | ||
1458 | unsigned long index = start >> PAGE_CACHE_SHIFT; | ||
1459 | unsigned long end_index = end >> PAGE_CACHE_SHIFT; | ||
1460 | struct page *page; | ||
1461 | |||
1462 | while (index <= end_index) { | ||
1463 | page = find_get_page(tree->mapping, index); | ||
1464 | unlock_page(page); | ||
1465 | page_cache_release(page); | ||
1466 | index++; | ||
1467 | } | ||
1468 | unlock_extent(tree, start, end, GFP_NOFS); | ||
1469 | return 0; | ||
1470 | } | ||
1471 | #endif | ||
1472 | |||
1473 | /* | ||
1474 | * set the private field for a given byte offset in the tree. If there isn't | ||
1475 | * an extent_state there already, this does nothing. | ||
1476 | */ | ||
1477 | int set_state_private(struct extent_io_tree *tree, u64 start, u64 private) | ||
1478 | { | ||
1479 | struct rb_node *node; | ||
1480 | struct extent_state *state; | ||
1481 | int ret = 0; | ||
1482 | |||
1483 | spin_lock(&tree->lock); | ||
1484 | /* | ||
1485 | * this search will find all the extents that end after | ||
1486 | * our range starts. | ||
1487 | */ | ||
1488 | node = tree_search(tree, start); | ||
1489 | if (!node) { | ||
1490 | ret = -ENOENT; | ||
1491 | goto out; | ||
1492 | } | ||
1493 | state = rb_entry(node, struct extent_state, rb_node); | ||
1494 | if (state->start != start) { | ||
1495 | ret = -ENOENT; | ||
1496 | goto out; | ||
1497 | } | ||
1498 | state->private = private; | ||
1499 | out: | ||
1500 | spin_unlock(&tree->lock); | ||
1501 | return ret; | ||
1502 | } | ||
1503 | |||
1504 | int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private) | ||
1505 | { | ||
1506 | struct rb_node *node; | ||
1507 | struct extent_state *state; | ||
1508 | int ret = 0; | ||
1509 | |||
1510 | spin_lock(&tree->lock); | ||
1511 | /* | ||
1512 | * this search will find all the extents that end after | ||
1513 | * our range starts. | ||
1514 | */ | ||
1515 | node = tree_search(tree, start); | ||
1516 | if (!node) { | ||
1517 | ret = -ENOENT; | ||
1518 | goto out; | ||
1519 | } | ||
1520 | state = rb_entry(node, struct extent_state, rb_node); | ||
1521 | if (state->start != start) { | ||
1522 | ret = -ENOENT; | ||
1523 | goto out; | ||
1524 | } | ||
1525 | *private = state->private; | ||
1526 | out: | ||
1527 | spin_unlock(&tree->lock); | ||
1528 | return ret; | ||
1529 | } | ||
1530 | |||
1531 | /* | ||
1532 | * searches a range in the state tree for a given mask. | ||
1533 | * If 'filled' == 1, this returns 1 only if every extent in the tree | ||
1534 | * has the bits set. Otherwise, 1 is returned if any bit in the | ||
1535 | * range is found set. | ||
1536 | */ | ||
1537 | int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end, | ||
1538 | int bits, int filled) | ||
1539 | { | ||
1540 | struct extent_state *state = NULL; | ||
1541 | struct rb_node *node; | ||
1542 | int bitset = 0; | ||
1543 | |||
1544 | spin_lock(&tree->lock); | ||
1545 | node = tree_search(tree, start); | ||
1546 | while (node && start <= end) { | ||
1547 | state = rb_entry(node, struct extent_state, rb_node); | ||
1548 | |||
1549 | if (filled && state->start > start) { | ||
1550 | bitset = 0; | ||
1551 | break; | ||
1552 | } | ||
1553 | |||
1554 | if (state->start > end) | ||
1555 | break; | ||
1556 | |||
1557 | if (state->state & bits) { | ||
1558 | bitset = 1; | ||
1559 | if (!filled) | ||
1560 | break; | ||
1561 | } else if (filled) { | ||
1562 | bitset = 0; | ||
1563 | break; | ||
1564 | } | ||
1565 | start = state->end + 1; | ||
1566 | if (start > end) | ||
1567 | break; | ||
1568 | node = rb_next(node); | ||
1569 | if (!node) { | ||
1570 | if (filled) | ||
1571 | bitset = 0; | ||
1572 | break; | ||
1573 | } | ||
1574 | } | ||
1575 | spin_unlock(&tree->lock); | ||
1576 | return bitset; | ||
1577 | } | ||
1578 | |||
1579 | /* | ||
1580 | * helper function to set a given page up to date if all the | ||
1581 | * extents in the tree for that page are up to date | ||
1582 | */ | ||
1583 | static int check_page_uptodate(struct extent_io_tree *tree, | ||
1584 | struct page *page) | ||
1585 | { | ||
1586 | u64 start = (u64)page->index << PAGE_CACHE_SHIFT; | ||
1587 | u64 end = start + PAGE_CACHE_SIZE - 1; | ||
1588 | if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1)) | ||
1589 | SetPageUptodate(page); | ||
1590 | return 0; | ||
1591 | } | ||
1592 | |||
1593 | /* | ||
1594 | * helper function to unlock a page if all the extents in the tree | ||
1595 | * for that page are unlocked | ||
1596 | */ | ||
1597 | static int check_page_locked(struct extent_io_tree *tree, | ||
1598 | struct page *page) | ||
1599 | { | ||
1600 | u64 start = (u64)page->index << PAGE_CACHE_SHIFT; | ||
1601 | u64 end = start + PAGE_CACHE_SIZE - 1; | ||
1602 | if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0)) | ||
1603 | unlock_page(page); | ||
1604 | return 0; | ||
1605 | } | ||
1606 | |||
1607 | /* | ||
1608 | * helper function to end page writeback if all the extents | ||
1609 | * in the tree for that page are done with writeback | ||
1610 | */ | ||
1611 | static int check_page_writeback(struct extent_io_tree *tree, | ||
1612 | struct page *page) | ||
1613 | { | ||
1614 | u64 start = (u64)page->index << PAGE_CACHE_SHIFT; | ||
1615 | u64 end = start + PAGE_CACHE_SIZE - 1; | ||
1616 | if (!test_range_bit(tree, start, end, EXTENT_WRITEBACK, 0)) | ||
1617 | end_page_writeback(page); | ||
1618 | return 0; | ||
1619 | } | ||
1620 | |||
1621 | /* lots and lots of room for performance fixes in the end_bio funcs */ | ||
1622 | |||
1623 | /* | ||
1624 | * after a writepage IO is done, we need to: | ||
1625 | * clear the uptodate bits on error | ||
1626 | * clear the writeback bits in the extent tree for this IO | ||
1627 | * end_page_writeback if the page has no more pending IO | ||
1628 | * | ||
1629 | * Scheduling is not allowed, so the extent state tree is expected | ||
1630 | * to have one and only one object corresponding to this IO. | ||
1631 | */ | ||
1632 | static void end_bio_extent_writepage(struct bio *bio, int err) | ||
1633 | { | ||
1634 | int uptodate = err == 0; | ||
1635 | struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; | ||
1636 | struct extent_io_tree *tree; | ||
1637 | u64 start; | ||
1638 | u64 end; | ||
1639 | int whole_page; | ||
1640 | int ret; | ||
1641 | |||
1642 | do { | ||
1643 | struct page *page = bvec->bv_page; | ||
1644 | tree = &BTRFS_I(page->mapping->host)->io_tree; | ||
1645 | |||
1646 | start = ((u64)page->index << PAGE_CACHE_SHIFT) + | ||
1647 | bvec->bv_offset; | ||
1648 | end = start + bvec->bv_len - 1; | ||
1649 | |||
1650 | if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE) | ||
1651 | whole_page = 1; | ||
1652 | else | ||
1653 | whole_page = 0; | ||
1654 | |||
1655 | if (--bvec >= bio->bi_io_vec) | ||
1656 | prefetchw(&bvec->bv_page->flags); | ||
1657 | if (tree->ops && tree->ops->writepage_end_io_hook) { | ||
1658 | ret = tree->ops->writepage_end_io_hook(page, start, | ||
1659 | end, NULL, uptodate); | ||
1660 | if (ret) | ||
1661 | uptodate = 0; | ||
1662 | } | ||
1663 | |||
1664 | if (!uptodate && tree->ops && | ||
1665 | tree->ops->writepage_io_failed_hook) { | ||
1666 | ret = tree->ops->writepage_io_failed_hook(bio, page, | ||
1667 | start, end, NULL); | ||
1668 | if (ret == 0) { | ||
1669 | uptodate = (err == 0); | ||
1670 | continue; | ||
1671 | } | ||
1672 | } | ||
1673 | |||
1674 | if (!uptodate) { | ||
1675 | clear_extent_uptodate(tree, start, end, GFP_ATOMIC); | ||
1676 | ClearPageUptodate(page); | ||
1677 | SetPageError(page); | ||
1678 | } | ||
1679 | |||
1680 | clear_extent_writeback(tree, start, end, GFP_ATOMIC); | ||
1681 | |||
1682 | if (whole_page) | ||
1683 | end_page_writeback(page); | ||
1684 | else | ||
1685 | check_page_writeback(tree, page); | ||
1686 | } while (bvec >= bio->bi_io_vec); | ||
1687 | |||
1688 | bio_put(bio); | ||
1689 | } | ||
1690 | |||
1691 | /* | ||
1692 | * after a readpage IO is done, we need to: | ||
1693 | * clear the uptodate bits on error | ||
1694 | * set the uptodate bits if things worked | ||
1695 | * set the page up to date if all extents in the tree are uptodate | ||
1696 | * clear the lock bit in the extent tree | ||
1697 | * unlock the page if there are no other extents locked for it | ||
1698 | * | ||
1699 | * Scheduling is not allowed, so the extent state tree is expected | ||
1700 | * to have one and only one object corresponding to this IO. | ||
1701 | */ | ||
1702 | static void end_bio_extent_readpage(struct bio *bio, int err) | ||
1703 | { | ||
1704 | int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); | ||
1705 | struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; | ||
1706 | struct extent_io_tree *tree; | ||
1707 | u64 start; | ||
1708 | u64 end; | ||
1709 | int whole_page; | ||
1710 | int ret; | ||
1711 | |||
1712 | if (err) | ||
1713 | uptodate = 0; | ||
1714 | |||
1715 | do { | ||
1716 | struct page *page = bvec->bv_page; | ||
1717 | tree = &BTRFS_I(page->mapping->host)->io_tree; | ||
1718 | |||
1719 | start = ((u64)page->index << PAGE_CACHE_SHIFT) + | ||
1720 | bvec->bv_offset; | ||
1721 | end = start + bvec->bv_len - 1; | ||
1722 | |||
1723 | if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE) | ||
1724 | whole_page = 1; | ||
1725 | else | ||
1726 | whole_page = 0; | ||
1727 | |||
1728 | if (--bvec >= bio->bi_io_vec) | ||
1729 | prefetchw(&bvec->bv_page->flags); | ||
1730 | |||
1731 | if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) { | ||
1732 | ret = tree->ops->readpage_end_io_hook(page, start, end, | ||
1733 | NULL); | ||
1734 | if (ret) | ||
1735 | uptodate = 0; | ||
1736 | } | ||
1737 | if (!uptodate && tree->ops && | ||
1738 | tree->ops->readpage_io_failed_hook) { | ||
1739 | ret = tree->ops->readpage_io_failed_hook(bio, page, | ||
1740 | start, end, NULL); | ||
1741 | if (ret == 0) { | ||
1742 | uptodate = | ||
1743 | test_bit(BIO_UPTODATE, &bio->bi_flags); | ||
1744 | if (err) | ||
1745 | uptodate = 0; | ||
1746 | continue; | ||
1747 | } | ||
1748 | } | ||
1749 | |||
1750 | if (uptodate) { | ||
1751 | set_extent_uptodate(tree, start, end, | ||
1752 | GFP_ATOMIC); | ||
1753 | } | ||
1754 | unlock_extent(tree, start, end, GFP_ATOMIC); | ||
1755 | |||
1756 | if (whole_page) { | ||
1757 | if (uptodate) { | ||
1758 | SetPageUptodate(page); | ||
1759 | } else { | ||
1760 | ClearPageUptodate(page); | ||
1761 | SetPageError(page); | ||
1762 | } | ||
1763 | unlock_page(page); | ||
1764 | } else { | ||
1765 | if (uptodate) { | ||
1766 | check_page_uptodate(tree, page); | ||
1767 | } else { | ||
1768 | ClearPageUptodate(page); | ||
1769 | SetPageError(page); | ||
1770 | } | ||
1771 | check_page_locked(tree, page); | ||
1772 | } | ||
1773 | } while (bvec >= bio->bi_io_vec); | ||
1774 | |||
1775 | bio_put(bio); | ||
1776 | } | ||
1777 | |||
1778 | /* | ||
1779 | * IO done from prepare_write is pretty simple, we just unlock | ||
1780 | * the structs in the extent tree when done, and set the uptodate bits | ||
1781 | * as appropriate. | ||
1782 | */ | ||
1783 | static void end_bio_extent_preparewrite(struct bio *bio, int err) | ||
1784 | { | ||
1785 | const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); | ||
1786 | struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; | ||
1787 | struct extent_io_tree *tree; | ||
1788 | u64 start; | ||
1789 | u64 end; | ||
1790 | |||
1791 | do { | ||
1792 | struct page *page = bvec->bv_page; | ||
1793 | tree = &BTRFS_I(page->mapping->host)->io_tree; | ||
1794 | |||
1795 | start = ((u64)page->index << PAGE_CACHE_SHIFT) + | ||
1796 | bvec->bv_offset; | ||
1797 | end = start + bvec->bv_len - 1; | ||
1798 | |||
1799 | if (--bvec >= bio->bi_io_vec) | ||
1800 | prefetchw(&bvec->bv_page->flags); | ||
1801 | |||
1802 | if (uptodate) { | ||
1803 | set_extent_uptodate(tree, start, end, GFP_ATOMIC); | ||
1804 | } else { | ||
1805 | ClearPageUptodate(page); | ||
1806 | SetPageError(page); | ||
1807 | } | ||
1808 | |||
1809 | unlock_extent(tree, start, end, GFP_ATOMIC); | ||
1810 | |||
1811 | } while (bvec >= bio->bi_io_vec); | ||
1812 | |||
1813 | bio_put(bio); | ||
1814 | } | ||
1815 | |||
1816 | static struct bio * | ||
1817 | extent_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs, | ||
1818 | gfp_t gfp_flags) | ||
1819 | { | ||
1820 | struct bio *bio; | ||
1821 | |||
1822 | bio = bio_alloc(gfp_flags, nr_vecs); | ||
1823 | |||
1824 | if (bio == NULL && (current->flags & PF_MEMALLOC)) { | ||
1825 | while (!bio && (nr_vecs /= 2)) | ||
1826 | bio = bio_alloc(gfp_flags, nr_vecs); | ||
1827 | } | ||
1828 | |||
1829 | if (bio) { | ||
1830 | bio->bi_size = 0; | ||
1831 | bio->bi_bdev = bdev; | ||
1832 | bio->bi_sector = first_sector; | ||
1833 | } | ||
1834 | return bio; | ||
1835 | } | ||
1836 | |||
1837 | static int submit_one_bio(int rw, struct bio *bio, int mirror_num, | ||
1838 | unsigned long bio_flags) | ||
1839 | { | ||
1840 | int ret = 0; | ||
1841 | struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; | ||
1842 | struct page *page = bvec->bv_page; | ||
1843 | struct extent_io_tree *tree = bio->bi_private; | ||
1844 | u64 start; | ||
1845 | u64 end; | ||
1846 | |||
1847 | start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset; | ||
1848 | end = start + bvec->bv_len - 1; | ||
1849 | |||
1850 | bio->bi_private = NULL; | ||
1851 | |||
1852 | bio_get(bio); | ||
1853 | |||
1854 | if (tree->ops && tree->ops->submit_bio_hook) | ||
1855 | tree->ops->submit_bio_hook(page->mapping->host, rw, bio, | ||
1856 | mirror_num, bio_flags); | ||
1857 | else | ||
1858 | submit_bio(rw, bio); | ||
1859 | if (bio_flagged(bio, BIO_EOPNOTSUPP)) | ||
1860 | ret = -EOPNOTSUPP; | ||
1861 | bio_put(bio); | ||
1862 | return ret; | ||
1863 | } | ||
1864 | |||
1865 | static int submit_extent_page(int rw, struct extent_io_tree *tree, | ||
1866 | struct page *page, sector_t sector, | ||
1867 | size_t size, unsigned long offset, | ||
1868 | struct block_device *bdev, | ||
1869 | struct bio **bio_ret, | ||
1870 | unsigned long max_pages, | ||
1871 | bio_end_io_t end_io_func, | ||
1872 | int mirror_num, | ||
1873 | unsigned long prev_bio_flags, | ||
1874 | unsigned long bio_flags) | ||
1875 | { | ||
1876 | int ret = 0; | ||
1877 | struct bio *bio; | ||
1878 | int nr; | ||
1879 | int contig = 0; | ||
1880 | int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED; | ||
1881 | int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED; | ||
1882 | size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE); | ||
1883 | |||
1884 | if (bio_ret && *bio_ret) { | ||
1885 | bio = *bio_ret; | ||
1886 | if (old_compressed) | ||
1887 | contig = bio->bi_sector == sector; | ||
1888 | else | ||
1889 | contig = bio->bi_sector + (bio->bi_size >> 9) == | ||
1890 | sector; | ||
1891 | |||
1892 | if (prev_bio_flags != bio_flags || !contig || | ||
1893 | (tree->ops && tree->ops->merge_bio_hook && | ||
1894 | tree->ops->merge_bio_hook(page, offset, page_size, bio, | ||
1895 | bio_flags)) || | ||
1896 | bio_add_page(bio, page, page_size, offset) < page_size) { | ||
1897 | ret = submit_one_bio(rw, bio, mirror_num, | ||
1898 | prev_bio_flags); | ||
1899 | bio = NULL; | ||
1900 | } else { | ||
1901 | return 0; | ||
1902 | } | ||
1903 | } | ||
1904 | if (this_compressed) | ||
1905 | nr = BIO_MAX_PAGES; | ||
1906 | else | ||
1907 | nr = bio_get_nr_vecs(bdev); | ||
1908 | |||
1909 | bio = extent_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH); | ||
1910 | |||
1911 | bio_add_page(bio, page, page_size, offset); | ||
1912 | bio->bi_end_io = end_io_func; | ||
1913 | bio->bi_private = tree; | ||
1914 | |||
1915 | if (bio_ret) | ||
1916 | *bio_ret = bio; | ||
1917 | else | ||
1918 | ret = submit_one_bio(rw, bio, mirror_num, bio_flags); | ||
1919 | |||
1920 | return ret; | ||
1921 | } | ||
1922 | |||
1923 | void set_page_extent_mapped(struct page *page) | ||
1924 | { | ||
1925 | if (!PagePrivate(page)) { | ||
1926 | SetPagePrivate(page); | ||
1927 | page_cache_get(page); | ||
1928 | set_page_private(page, EXTENT_PAGE_PRIVATE); | ||
1929 | } | ||
1930 | } | ||
1931 | |||
1932 | static void set_page_extent_head(struct page *page, unsigned long len) | ||
1933 | { | ||
1934 | set_page_private(page, EXTENT_PAGE_PRIVATE_FIRST_PAGE | len << 2); | ||
1935 | } | ||
1936 | |||
1937 | /* | ||
1938 | * basic readpage implementation. Locked extent state structs are inserted | ||
1939 | * into the tree that are removed when the IO is done (by the end_io | ||
1940 | * handlers) | ||
1941 | */ | ||
1942 | static int __extent_read_full_page(struct extent_io_tree *tree, | ||
1943 | struct page *page, | ||
1944 | get_extent_t *get_extent, | ||
1945 | struct bio **bio, int mirror_num, | ||
1946 | unsigned long *bio_flags) | ||
1947 | { | ||
1948 | struct inode *inode = page->mapping->host; | ||
1949 | u64 start = (u64)page->index << PAGE_CACHE_SHIFT; | ||
1950 | u64 page_end = start + PAGE_CACHE_SIZE - 1; | ||
1951 | u64 end; | ||
1952 | u64 cur = start; | ||
1953 | u64 extent_offset; | ||
1954 | u64 last_byte = i_size_read(inode); | ||
1955 | u64 block_start; | ||
1956 | u64 cur_end; | ||
1957 | sector_t sector; | ||
1958 | struct extent_map *em; | ||
1959 | struct block_device *bdev; | ||
1960 | int ret; | ||
1961 | int nr = 0; | ||
1962 | size_t page_offset = 0; | ||
1963 | size_t iosize; | ||
1964 | size_t disk_io_size; | ||
1965 | size_t blocksize = inode->i_sb->s_blocksize; | ||
1966 | unsigned long this_bio_flag = 0; | ||
1967 | |||
1968 | set_page_extent_mapped(page); | ||
1969 | |||
1970 | end = page_end; | ||
1971 | lock_extent(tree, start, end, GFP_NOFS); | ||
1972 | |||
1973 | if (page->index == last_byte >> PAGE_CACHE_SHIFT) { | ||
1974 | char *userpage; | ||
1975 | size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1); | ||
1976 | |||
1977 | if (zero_offset) { | ||
1978 | iosize = PAGE_CACHE_SIZE - zero_offset; | ||
1979 | userpage = kmap_atomic(page, KM_USER0); | ||
1980 | memset(userpage + zero_offset, 0, iosize); | ||
1981 | flush_dcache_page(page); | ||
1982 | kunmap_atomic(userpage, KM_USER0); | ||
1983 | } | ||
1984 | } | ||
1985 | while (cur <= end) { | ||
1986 | if (cur >= last_byte) { | ||
1987 | char *userpage; | ||
1988 | iosize = PAGE_CACHE_SIZE - page_offset; | ||
1989 | userpage = kmap_atomic(page, KM_USER0); | ||
1990 | memset(userpage + page_offset, 0, iosize); | ||
1991 | flush_dcache_page(page); | ||
1992 | kunmap_atomic(userpage, KM_USER0); | ||
1993 | set_extent_uptodate(tree, cur, cur + iosize - 1, | ||
1994 | GFP_NOFS); | ||
1995 | unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS); | ||
1996 | break; | ||
1997 | } | ||
1998 | em = get_extent(inode, page, page_offset, cur, | ||
1999 | end - cur + 1, 0); | ||
2000 | if (IS_ERR(em) || !em) { | ||
2001 | SetPageError(page); | ||
2002 | unlock_extent(tree, cur, end, GFP_NOFS); | ||
2003 | break; | ||
2004 | } | ||
2005 | extent_offset = cur - em->start; | ||
2006 | BUG_ON(extent_map_end(em) <= cur); | ||
2007 | BUG_ON(end < cur); | ||
2008 | |||
2009 | if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) | ||
2010 | this_bio_flag = EXTENT_BIO_COMPRESSED; | ||
2011 | |||
2012 | iosize = min(extent_map_end(em) - cur, end - cur + 1); | ||
2013 | cur_end = min(extent_map_end(em) - 1, end); | ||
2014 | iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1); | ||
2015 | if (this_bio_flag & EXTENT_BIO_COMPRESSED) { | ||
2016 | disk_io_size = em->block_len; | ||
2017 | sector = em->block_start >> 9; | ||
2018 | } else { | ||
2019 | sector = (em->block_start + extent_offset) >> 9; | ||
2020 | disk_io_size = iosize; | ||
2021 | } | ||
2022 | bdev = em->bdev; | ||
2023 | block_start = em->block_start; | ||
2024 | if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) | ||
2025 | block_start = EXTENT_MAP_HOLE; | ||
2026 | free_extent_map(em); | ||
2027 | em = NULL; | ||
2028 | |||
2029 | /* we've found a hole, just zero and go on */ | ||
2030 | if (block_start == EXTENT_MAP_HOLE) { | ||
2031 | char *userpage; | ||
2032 | userpage = kmap_atomic(page, KM_USER0); | ||
2033 | memset(userpage + page_offset, 0, iosize); | ||
2034 | flush_dcache_page(page); | ||
2035 | kunmap_atomic(userpage, KM_USER0); | ||
2036 | |||
2037 | set_extent_uptodate(tree, cur, cur + iosize - 1, | ||
2038 | GFP_NOFS); | ||
2039 | unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS); | ||
2040 | cur = cur + iosize; | ||
2041 | page_offset += iosize; | ||
2042 | continue; | ||
2043 | } | ||
2044 | /* the get_extent function already copied into the page */ | ||
2045 | if (test_range_bit(tree, cur, cur_end, EXTENT_UPTODATE, 1)) { | ||
2046 | check_page_uptodate(tree, page); | ||
2047 | unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS); | ||
2048 | cur = cur + iosize; | ||
2049 | page_offset += iosize; | ||
2050 | continue; | ||
2051 | } | ||
2052 | /* we have an inline extent but it didn't get marked up | ||
2053 | * to date. Error out | ||
2054 | */ | ||
2055 | if (block_start == EXTENT_MAP_INLINE) { | ||
2056 | SetPageError(page); | ||
2057 | unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS); | ||
2058 | cur = cur + iosize; | ||
2059 | page_offset += iosize; | ||
2060 | continue; | ||
2061 | } | ||
2062 | |||
2063 | ret = 0; | ||
2064 | if (tree->ops && tree->ops->readpage_io_hook) { | ||
2065 | ret = tree->ops->readpage_io_hook(page, cur, | ||
2066 | cur + iosize - 1); | ||
2067 | } | ||
2068 | if (!ret) { | ||
2069 | unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1; | ||
2070 | pnr -= page->index; | ||
2071 | ret = submit_extent_page(READ, tree, page, | ||
2072 | sector, disk_io_size, page_offset, | ||
2073 | bdev, bio, pnr, | ||
2074 | end_bio_extent_readpage, mirror_num, | ||
2075 | *bio_flags, | ||
2076 | this_bio_flag); | ||
2077 | nr++; | ||
2078 | *bio_flags = this_bio_flag; | ||
2079 | } | ||
2080 | if (ret) | ||
2081 | SetPageError(page); | ||
2082 | cur = cur + iosize; | ||
2083 | page_offset += iosize; | ||
2084 | } | ||
2085 | if (!nr) { | ||
2086 | if (!PageError(page)) | ||
2087 | SetPageUptodate(page); | ||
2088 | unlock_page(page); | ||
2089 | } | ||
2090 | return 0; | ||
2091 | } | ||
2092 | |||
2093 | int extent_read_full_page(struct extent_io_tree *tree, struct page *page, | ||
2094 | get_extent_t *get_extent) | ||
2095 | { | ||
2096 | struct bio *bio = NULL; | ||
2097 | unsigned long bio_flags = 0; | ||
2098 | int ret; | ||
2099 | |||
2100 | ret = __extent_read_full_page(tree, page, get_extent, &bio, 0, | ||
2101 | &bio_flags); | ||
2102 | if (bio) | ||
2103 | submit_one_bio(READ, bio, 0, bio_flags); | ||
2104 | return ret; | ||
2105 | } | ||
2106 | |||
2107 | /* | ||
2108 | * the writepage semantics are similar to regular writepage. extent | ||
2109 | * records are inserted to lock ranges in the tree, and as dirty areas | ||
2110 | * are found, they are marked writeback. Then the lock bits are removed | ||
2111 | * and the end_io handler clears the writeback ranges | ||
2112 | */ | ||
2113 | static int __extent_writepage(struct page *page, struct writeback_control *wbc, | ||
2114 | void *data) | ||
2115 | { | ||
2116 | struct inode *inode = page->mapping->host; | ||
2117 | struct extent_page_data *epd = data; | ||
2118 | struct extent_io_tree *tree = epd->tree; | ||
2119 | u64 start = (u64)page->index << PAGE_CACHE_SHIFT; | ||
2120 | u64 delalloc_start; | ||
2121 | u64 page_end = start + PAGE_CACHE_SIZE - 1; | ||
2122 | u64 end; | ||
2123 | u64 cur = start; | ||
2124 | u64 extent_offset; | ||
2125 | u64 last_byte = i_size_read(inode); | ||
2126 | u64 block_start; | ||
2127 | u64 iosize; | ||
2128 | u64 unlock_start; | ||
2129 | sector_t sector; | ||
2130 | struct extent_map *em; | ||
2131 | struct block_device *bdev; | ||
2132 | int ret; | ||
2133 | int nr = 0; | ||
2134 | size_t pg_offset = 0; | ||
2135 | size_t blocksize; | ||
2136 | loff_t i_size = i_size_read(inode); | ||
2137 | unsigned long end_index = i_size >> PAGE_CACHE_SHIFT; | ||
2138 | u64 nr_delalloc; | ||
2139 | u64 delalloc_end; | ||
2140 | int page_started; | ||
2141 | int compressed; | ||
2142 | unsigned long nr_written = 0; | ||
2143 | |||
2144 | WARN_ON(!PageLocked(page)); | ||
2145 | pg_offset = i_size & (PAGE_CACHE_SIZE - 1); | ||
2146 | if (page->index > end_index || | ||
2147 | (page->index == end_index && !pg_offset)) { | ||
2148 | page->mapping->a_ops->invalidatepage(page, 0); | ||
2149 | unlock_page(page); | ||
2150 | return 0; | ||
2151 | } | ||
2152 | |||
2153 | if (page->index == end_index) { | ||
2154 | char *userpage; | ||
2155 | |||
2156 | userpage = kmap_atomic(page, KM_USER0); | ||
2157 | memset(userpage + pg_offset, 0, | ||
2158 | PAGE_CACHE_SIZE - pg_offset); | ||
2159 | kunmap_atomic(userpage, KM_USER0); | ||
2160 | flush_dcache_page(page); | ||
2161 | } | ||
2162 | pg_offset = 0; | ||
2163 | |||
2164 | set_page_extent_mapped(page); | ||
2165 | |||
2166 | delalloc_start = start; | ||
2167 | delalloc_end = 0; | ||
2168 | page_started = 0; | ||
2169 | if (!epd->extent_locked) { | ||
2170 | while (delalloc_end < page_end) { | ||
2171 | nr_delalloc = find_lock_delalloc_range(inode, tree, | ||
2172 | page, | ||
2173 | &delalloc_start, | ||
2174 | &delalloc_end, | ||
2175 | 128 * 1024 * 1024); | ||
2176 | if (nr_delalloc == 0) { | ||
2177 | delalloc_start = delalloc_end + 1; | ||
2178 | continue; | ||
2179 | } | ||
2180 | tree->ops->fill_delalloc(inode, page, delalloc_start, | ||
2181 | delalloc_end, &page_started, | ||
2182 | &nr_written); | ||
2183 | delalloc_start = delalloc_end + 1; | ||
2184 | } | ||
2185 | |||
2186 | /* did the fill delalloc function already unlock and start | ||
2187 | * the IO? | ||
2188 | */ | ||
2189 | if (page_started) { | ||
2190 | ret = 0; | ||
2191 | goto update_nr_written; | ||
2192 | } | ||
2193 | } | ||
2194 | lock_extent(tree, start, page_end, GFP_NOFS); | ||
2195 | |||
2196 | unlock_start = start; | ||
2197 | |||
2198 | if (tree->ops && tree->ops->writepage_start_hook) { | ||
2199 | ret = tree->ops->writepage_start_hook(page, start, | ||
2200 | page_end); | ||
2201 | if (ret == -EAGAIN) { | ||
2202 | unlock_extent(tree, start, page_end, GFP_NOFS); | ||
2203 | redirty_page_for_writepage(wbc, page); | ||
2204 | unlock_page(page); | ||
2205 | ret = 0; | ||
2206 | goto update_nr_written; | ||
2207 | } | ||
2208 | } | ||
2209 | |||
2210 | nr_written++; | ||
2211 | |||
2212 | end = page_end; | ||
2213 | if (test_range_bit(tree, start, page_end, EXTENT_DELALLOC, 0)) | ||
2214 | printk(KERN_ERR "btrfs delalloc bits after lock_extent\n"); | ||
2215 | |||
2216 | if (last_byte <= start) { | ||
2217 | clear_extent_dirty(tree, start, page_end, GFP_NOFS); | ||
2218 | unlock_extent(tree, start, page_end, GFP_NOFS); | ||
2219 | if (tree->ops && tree->ops->writepage_end_io_hook) | ||
2220 | tree->ops->writepage_end_io_hook(page, start, | ||
2221 | page_end, NULL, 1); | ||
2222 | unlock_start = page_end + 1; | ||
2223 | goto done; | ||
2224 | } | ||
2225 | |||
2226 | set_extent_uptodate(tree, start, page_end, GFP_NOFS); | ||
2227 | blocksize = inode->i_sb->s_blocksize; | ||
2228 | |||
2229 | while (cur <= end) { | ||
2230 | if (cur >= last_byte) { | ||
2231 | clear_extent_dirty(tree, cur, page_end, GFP_NOFS); | ||
2232 | unlock_extent(tree, unlock_start, page_end, GFP_NOFS); | ||
2233 | if (tree->ops && tree->ops->writepage_end_io_hook) | ||
2234 | tree->ops->writepage_end_io_hook(page, cur, | ||
2235 | page_end, NULL, 1); | ||
2236 | unlock_start = page_end + 1; | ||
2237 | break; | ||
2238 | } | ||
2239 | em = epd->get_extent(inode, page, pg_offset, cur, | ||
2240 | end - cur + 1, 1); | ||
2241 | if (IS_ERR(em) || !em) { | ||
2242 | SetPageError(page); | ||
2243 | break; | ||
2244 | } | ||
2245 | |||
2246 | extent_offset = cur - em->start; | ||
2247 | BUG_ON(extent_map_end(em) <= cur); | ||
2248 | BUG_ON(end < cur); | ||
2249 | iosize = min(extent_map_end(em) - cur, end - cur + 1); | ||
2250 | iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1); | ||
2251 | sector = (em->block_start + extent_offset) >> 9; | ||
2252 | bdev = em->bdev; | ||
2253 | block_start = em->block_start; | ||
2254 | compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); | ||
2255 | free_extent_map(em); | ||
2256 | em = NULL; | ||
2257 | |||
2258 | /* | ||
2259 | * compressed and inline extents are written through other | ||
2260 | * paths in the FS | ||
2261 | */ | ||
2262 | if (compressed || block_start == EXTENT_MAP_HOLE || | ||
2263 | block_start == EXTENT_MAP_INLINE) { | ||
2264 | clear_extent_dirty(tree, cur, | ||
2265 | cur + iosize - 1, GFP_NOFS); | ||
2266 | |||
2267 | unlock_extent(tree, unlock_start, cur + iosize - 1, | ||
2268 | GFP_NOFS); | ||
2269 | |||
2270 | /* | ||
2271 | * end_io notification does not happen here for | ||
2272 | * compressed extents | ||
2273 | */ | ||
2274 | if (!compressed && tree->ops && | ||
2275 | tree->ops->writepage_end_io_hook) | ||
2276 | tree->ops->writepage_end_io_hook(page, cur, | ||
2277 | cur + iosize - 1, | ||
2278 | NULL, 1); | ||
2279 | else if (compressed) { | ||
2280 | /* we don't want to end_page_writeback on | ||
2281 | * a compressed extent. this happens | ||
2282 | * elsewhere | ||
2283 | */ | ||
2284 | nr++; | ||
2285 | } | ||
2286 | |||
2287 | cur += iosize; | ||
2288 | pg_offset += iosize; | ||
2289 | unlock_start = cur; | ||
2290 | continue; | ||
2291 | } | ||
2292 | /* leave this out until we have a page_mkwrite call */ | ||
2293 | if (0 && !test_range_bit(tree, cur, cur + iosize - 1, | ||
2294 | EXTENT_DIRTY, 0)) { | ||
2295 | cur = cur + iosize; | ||
2296 | pg_offset += iosize; | ||
2297 | continue; | ||
2298 | } | ||
2299 | |||
2300 | clear_extent_dirty(tree, cur, cur + iosize - 1, GFP_NOFS); | ||
2301 | if (tree->ops && tree->ops->writepage_io_hook) { | ||
2302 | ret = tree->ops->writepage_io_hook(page, cur, | ||
2303 | cur + iosize - 1); | ||
2304 | } else { | ||
2305 | ret = 0; | ||
2306 | } | ||
2307 | if (ret) { | ||
2308 | SetPageError(page); | ||
2309 | } else { | ||
2310 | unsigned long max_nr = end_index + 1; | ||
2311 | |||
2312 | set_range_writeback(tree, cur, cur + iosize - 1); | ||
2313 | if (!PageWriteback(page)) { | ||
2314 | printk(KERN_ERR "btrfs warning page %lu not " | ||
2315 | "writeback, cur %llu end %llu\n", | ||
2316 | page->index, (unsigned long long)cur, | ||
2317 | (unsigned long long)end); | ||
2318 | } | ||
2319 | |||
2320 | ret = submit_extent_page(WRITE, tree, page, sector, | ||
2321 | iosize, pg_offset, bdev, | ||
2322 | &epd->bio, max_nr, | ||
2323 | end_bio_extent_writepage, | ||
2324 | 0, 0, 0); | ||
2325 | if (ret) | ||
2326 | SetPageError(page); | ||
2327 | } | ||
2328 | cur = cur + iosize; | ||
2329 | pg_offset += iosize; | ||
2330 | nr++; | ||
2331 | } | ||
2332 | done: | ||
2333 | if (nr == 0) { | ||
2334 | /* make sure the mapping tag for page dirty gets cleared */ | ||
2335 | set_page_writeback(page); | ||
2336 | end_page_writeback(page); | ||
2337 | } | ||
2338 | if (unlock_start <= page_end) | ||
2339 | unlock_extent(tree, unlock_start, page_end, GFP_NOFS); | ||
2340 | unlock_page(page); | ||
2341 | |||
2342 | update_nr_written: | ||
2343 | wbc->nr_to_write -= nr_written; | ||
2344 | if (wbc->range_cyclic || (wbc->nr_to_write > 0 && | ||
2345 | wbc->range_start == 0 && wbc->range_end == LLONG_MAX)) | ||
2346 | page->mapping->writeback_index = page->index + nr_written; | ||
2347 | return 0; | ||
2348 | } | ||
2349 | |||
2350 | /** | ||
2351 | * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. | ||
2352 | * @mapping: address space structure to write | ||
2353 | * @wbc: subtract the number of written pages from *@wbc->nr_to_write | ||
2354 | * @writepage: function called for each page | ||
2355 | * @data: data passed to writepage function | ||
2356 | * | ||
2357 | * If a page is already under I/O, write_cache_pages() skips it, even | ||
2358 | * if it's dirty. This is desirable behaviour for memory-cleaning writeback, | ||
2359 | * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() | ||
2360 | * and msync() need to guarantee that all the data which was dirty at the time | ||
2361 | * the call was made get new I/O started against them. If wbc->sync_mode is | ||
2362 | * WB_SYNC_ALL then we were called for data integrity and we must wait for | ||
2363 | * existing IO to complete. | ||
2364 | */ | ||
2365 | static int extent_write_cache_pages(struct extent_io_tree *tree, | ||
2366 | struct address_space *mapping, | ||
2367 | struct writeback_control *wbc, | ||
2368 | writepage_t writepage, void *data, | ||
2369 | void (*flush_fn)(void *)) | ||
2370 | { | ||
2371 | struct backing_dev_info *bdi = mapping->backing_dev_info; | ||
2372 | int ret = 0; | ||
2373 | int done = 0; | ||
2374 | struct pagevec pvec; | ||
2375 | int nr_pages; | ||
2376 | pgoff_t index; | ||
2377 | pgoff_t end; /* Inclusive */ | ||
2378 | int scanned = 0; | ||
2379 | int range_whole = 0; | ||
2380 | |||
2381 | if (wbc->nonblocking && bdi_write_congested(bdi)) { | ||
2382 | wbc->encountered_congestion = 1; | ||
2383 | return 0; | ||
2384 | } | ||
2385 | |||
2386 | pagevec_init(&pvec, 0); | ||
2387 | if (wbc->range_cyclic) { | ||
2388 | index = mapping->writeback_index; /* Start from prev offset */ | ||
2389 | end = -1; | ||
2390 | } else { | ||
2391 | index = wbc->range_start >> PAGE_CACHE_SHIFT; | ||
2392 | end = wbc->range_end >> PAGE_CACHE_SHIFT; | ||
2393 | if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) | ||
2394 | range_whole = 1; | ||
2395 | scanned = 1; | ||
2396 | } | ||
2397 | retry: | ||
2398 | while (!done && (index <= end) && | ||
2399 | (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, | ||
2400 | PAGECACHE_TAG_DIRTY, min(end - index, | ||
2401 | (pgoff_t)PAGEVEC_SIZE-1) + 1))) { | ||
2402 | unsigned i; | ||
2403 | |||
2404 | scanned = 1; | ||
2405 | for (i = 0; i < nr_pages; i++) { | ||
2406 | struct page *page = pvec.pages[i]; | ||
2407 | |||
2408 | /* | ||
2409 | * At this point we hold neither mapping->tree_lock nor | ||
2410 | * lock on the page itself: the page may be truncated or | ||
2411 | * invalidated (changing page->mapping to NULL), or even | ||
2412 | * swizzled back from swapper_space to tmpfs file | ||
2413 | * mapping | ||
2414 | */ | ||
2415 | if (tree->ops && tree->ops->write_cache_pages_lock_hook) | ||
2416 | tree->ops->write_cache_pages_lock_hook(page); | ||
2417 | else | ||
2418 | lock_page(page); | ||
2419 | |||
2420 | if (unlikely(page->mapping != mapping)) { | ||
2421 | unlock_page(page); | ||
2422 | continue; | ||
2423 | } | ||
2424 | |||
2425 | if (!wbc->range_cyclic && page->index > end) { | ||
2426 | done = 1; | ||
2427 | unlock_page(page); | ||
2428 | continue; | ||
2429 | } | ||
2430 | |||
2431 | if (wbc->sync_mode != WB_SYNC_NONE) { | ||
2432 | if (PageWriteback(page)) | ||
2433 | flush_fn(data); | ||
2434 | wait_on_page_writeback(page); | ||
2435 | } | ||
2436 | |||
2437 | if (PageWriteback(page) || | ||
2438 | !clear_page_dirty_for_io(page)) { | ||
2439 | unlock_page(page); | ||
2440 | continue; | ||
2441 | } | ||
2442 | |||
2443 | ret = (*writepage)(page, wbc, data); | ||
2444 | |||
2445 | if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) { | ||
2446 | unlock_page(page); | ||
2447 | ret = 0; | ||
2448 | } | ||
2449 | if (ret || wbc->nr_to_write <= 0) | ||
2450 | done = 1; | ||
2451 | if (wbc->nonblocking && bdi_write_congested(bdi)) { | ||
2452 | wbc->encountered_congestion = 1; | ||
2453 | done = 1; | ||
2454 | } | ||
2455 | } | ||
2456 | pagevec_release(&pvec); | ||
2457 | cond_resched(); | ||
2458 | } | ||
2459 | if (!scanned && !done) { | ||
2460 | /* | ||
2461 | * We hit the last page and there is more work to be done: wrap | ||
2462 | * back to the start of the file | ||
2463 | */ | ||
2464 | scanned = 1; | ||
2465 | index = 0; | ||
2466 | goto retry; | ||
2467 | } | ||
2468 | return ret; | ||
2469 | } | ||
2470 | |||
2471 | static noinline void flush_write_bio(void *data) | ||
2472 | { | ||
2473 | struct extent_page_data *epd = data; | ||
2474 | if (epd->bio) { | ||
2475 | submit_one_bio(WRITE, epd->bio, 0, 0); | ||
2476 | epd->bio = NULL; | ||
2477 | } | ||
2478 | } | ||
2479 | |||
2480 | int extent_write_full_page(struct extent_io_tree *tree, struct page *page, | ||
2481 | get_extent_t *get_extent, | ||
2482 | struct writeback_control *wbc) | ||
2483 | { | ||
2484 | int ret; | ||
2485 | struct address_space *mapping = page->mapping; | ||
2486 | struct extent_page_data epd = { | ||
2487 | .bio = NULL, | ||
2488 | .tree = tree, | ||
2489 | .get_extent = get_extent, | ||
2490 | .extent_locked = 0, | ||
2491 | }; | ||
2492 | struct writeback_control wbc_writepages = { | ||
2493 | .bdi = wbc->bdi, | ||
2494 | .sync_mode = WB_SYNC_NONE, | ||
2495 | .older_than_this = NULL, | ||
2496 | .nr_to_write = 64, | ||
2497 | .range_start = page_offset(page) + PAGE_CACHE_SIZE, | ||
2498 | .range_end = (loff_t)-1, | ||
2499 | }; | ||
2500 | |||
2501 | |||
2502 | ret = __extent_writepage(page, wbc, &epd); | ||
2503 | |||
2504 | extent_write_cache_pages(tree, mapping, &wbc_writepages, | ||
2505 | __extent_writepage, &epd, flush_write_bio); | ||
2506 | if (epd.bio) | ||
2507 | submit_one_bio(WRITE, epd.bio, 0, 0); | ||
2508 | return ret; | ||
2509 | } | ||
2510 | |||
2511 | int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode, | ||
2512 | u64 start, u64 end, get_extent_t *get_extent, | ||
2513 | int mode) | ||
2514 | { | ||
2515 | int ret = 0; | ||
2516 | struct address_space *mapping = inode->i_mapping; | ||
2517 | struct page *page; | ||
2518 | unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >> | ||
2519 | PAGE_CACHE_SHIFT; | ||
2520 | |||
2521 | struct extent_page_data epd = { | ||
2522 | .bio = NULL, | ||
2523 | .tree = tree, | ||
2524 | .get_extent = get_extent, | ||
2525 | .extent_locked = 1, | ||
2526 | }; | ||
2527 | struct writeback_control wbc_writepages = { | ||
2528 | .bdi = inode->i_mapping->backing_dev_info, | ||
2529 | .sync_mode = mode, | ||
2530 | .older_than_this = NULL, | ||
2531 | .nr_to_write = nr_pages * 2, | ||
2532 | .range_start = start, | ||
2533 | .range_end = end + 1, | ||
2534 | }; | ||
2535 | |||
2536 | while (start <= end) { | ||
2537 | page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT); | ||
2538 | if (clear_page_dirty_for_io(page)) | ||
2539 | ret = __extent_writepage(page, &wbc_writepages, &epd); | ||
2540 | else { | ||
2541 | if (tree->ops && tree->ops->writepage_end_io_hook) | ||
2542 | tree->ops->writepage_end_io_hook(page, start, | ||
2543 | start + PAGE_CACHE_SIZE - 1, | ||
2544 | NULL, 1); | ||
2545 | unlock_page(page); | ||
2546 | } | ||
2547 | page_cache_release(page); | ||
2548 | start += PAGE_CACHE_SIZE; | ||
2549 | } | ||
2550 | |||
2551 | if (epd.bio) | ||
2552 | submit_one_bio(WRITE, epd.bio, 0, 0); | ||
2553 | return ret; | ||
2554 | } | ||
2555 | |||
2556 | int extent_writepages(struct extent_io_tree *tree, | ||
2557 | struct address_space *mapping, | ||
2558 | get_extent_t *get_extent, | ||
2559 | struct writeback_control *wbc) | ||
2560 | { | ||
2561 | int ret = 0; | ||
2562 | struct extent_page_data epd = { | ||
2563 | .bio = NULL, | ||
2564 | .tree = tree, | ||
2565 | .get_extent = get_extent, | ||
2566 | .extent_locked = 0, | ||
2567 | }; | ||
2568 | |||
2569 | ret = extent_write_cache_pages(tree, mapping, wbc, | ||
2570 | __extent_writepage, &epd, | ||
2571 | flush_write_bio); | ||
2572 | if (epd.bio) | ||
2573 | submit_one_bio(WRITE, epd.bio, 0, 0); | ||
2574 | return ret; | ||
2575 | } | ||
2576 | |||
2577 | int extent_readpages(struct extent_io_tree *tree, | ||
2578 | struct address_space *mapping, | ||
2579 | struct list_head *pages, unsigned nr_pages, | ||
2580 | get_extent_t get_extent) | ||
2581 | { | ||
2582 | struct bio *bio = NULL; | ||
2583 | unsigned page_idx; | ||
2584 | struct pagevec pvec; | ||
2585 | unsigned long bio_flags = 0; | ||
2586 | |||
2587 | pagevec_init(&pvec, 0); | ||
2588 | for (page_idx = 0; page_idx < nr_pages; page_idx++) { | ||
2589 | struct page *page = list_entry(pages->prev, struct page, lru); | ||
2590 | |||
2591 | prefetchw(&page->flags); | ||
2592 | list_del(&page->lru); | ||
2593 | /* | ||
2594 | * what we want to do here is call add_to_page_cache_lru, | ||
2595 | * but that isn't exported, so we reproduce it here | ||
2596 | */ | ||
2597 | if (!add_to_page_cache(page, mapping, | ||
2598 | page->index, GFP_KERNEL)) { | ||
2599 | |||
2600 | /* open coding of lru_cache_add, also not exported */ | ||
2601 | page_cache_get(page); | ||
2602 | if (!pagevec_add(&pvec, page)) | ||
2603 | __pagevec_lru_add_file(&pvec); | ||
2604 | __extent_read_full_page(tree, page, get_extent, | ||
2605 | &bio, 0, &bio_flags); | ||
2606 | } | ||
2607 | page_cache_release(page); | ||
2608 | } | ||
2609 | if (pagevec_count(&pvec)) | ||
2610 | __pagevec_lru_add_file(&pvec); | ||
2611 | BUG_ON(!list_empty(pages)); | ||
2612 | if (bio) | ||
2613 | submit_one_bio(READ, bio, 0, bio_flags); | ||
2614 | return 0; | ||
2615 | } | ||
2616 | |||
2617 | /* | ||
2618 | * basic invalidatepage code, this waits on any locked or writeback | ||
2619 | * ranges corresponding to the page, and then deletes any extent state | ||
2620 | * records from the tree | ||
2621 | */ | ||
2622 | int extent_invalidatepage(struct extent_io_tree *tree, | ||
2623 | struct page *page, unsigned long offset) | ||
2624 | { | ||
2625 | u64 start = ((u64)page->index << PAGE_CACHE_SHIFT); | ||
2626 | u64 end = start + PAGE_CACHE_SIZE - 1; | ||
2627 | size_t blocksize = page->mapping->host->i_sb->s_blocksize; | ||
2628 | |||
2629 | start += (offset + blocksize - 1) & ~(blocksize - 1); | ||
2630 | if (start > end) | ||
2631 | return 0; | ||
2632 | |||
2633 | lock_extent(tree, start, end, GFP_NOFS); | ||
2634 | wait_on_extent_writeback(tree, start, end); | ||
2635 | clear_extent_bit(tree, start, end, | ||
2636 | EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC, | ||
2637 | 1, 1, GFP_NOFS); | ||
2638 | return 0; | ||
2639 | } | ||
2640 | |||
2641 | /* | ||
2642 | * simple commit_write call, set_range_dirty is used to mark both | ||
2643 | * the pages and the extent records as dirty | ||
2644 | */ | ||
2645 | int extent_commit_write(struct extent_io_tree *tree, | ||
2646 | struct inode *inode, struct page *page, | ||
2647 | unsigned from, unsigned to) | ||
2648 | { | ||
2649 | loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to; | ||
2650 | |||
2651 | set_page_extent_mapped(page); | ||
2652 | set_page_dirty(page); | ||
2653 | |||
2654 | if (pos > inode->i_size) { | ||
2655 | i_size_write(inode, pos); | ||
2656 | mark_inode_dirty(inode); | ||
2657 | } | ||
2658 | return 0; | ||
2659 | } | ||
2660 | |||
2661 | int extent_prepare_write(struct extent_io_tree *tree, | ||
2662 | struct inode *inode, struct page *page, | ||
2663 | unsigned from, unsigned to, get_extent_t *get_extent) | ||
2664 | { | ||
2665 | u64 page_start = (u64)page->index << PAGE_CACHE_SHIFT; | ||
2666 | u64 page_end = page_start + PAGE_CACHE_SIZE - 1; | ||
2667 | u64 block_start; | ||
2668 | u64 orig_block_start; | ||
2669 | u64 block_end; | ||
2670 | u64 cur_end; | ||
2671 | struct extent_map *em; | ||
2672 | unsigned blocksize = 1 << inode->i_blkbits; | ||
2673 | size_t page_offset = 0; | ||
2674 | size_t block_off_start; | ||
2675 | size_t block_off_end; | ||
2676 | int err = 0; | ||
2677 | int iocount = 0; | ||
2678 | int ret = 0; | ||
2679 | int isnew; | ||
2680 | |||
2681 | set_page_extent_mapped(page); | ||
2682 | |||
2683 | block_start = (page_start + from) & ~((u64)blocksize - 1); | ||
2684 | block_end = (page_start + to - 1) | (blocksize - 1); | ||
2685 | orig_block_start = block_start; | ||
2686 | |||
2687 | lock_extent(tree, page_start, page_end, GFP_NOFS); | ||
2688 | while (block_start <= block_end) { | ||
2689 | em = get_extent(inode, page, page_offset, block_start, | ||
2690 | block_end - block_start + 1, 1); | ||
2691 | if (IS_ERR(em) || !em) | ||
2692 | goto err; | ||
2693 | |||
2694 | cur_end = min(block_end, extent_map_end(em) - 1); | ||
2695 | block_off_start = block_start & (PAGE_CACHE_SIZE - 1); | ||
2696 | block_off_end = block_off_start + blocksize; | ||
2697 | isnew = clear_extent_new(tree, block_start, cur_end, GFP_NOFS); | ||
2698 | |||
2699 | if (!PageUptodate(page) && isnew && | ||
2700 | (block_off_end > to || block_off_start < from)) { | ||
2701 | void *kaddr; | ||
2702 | |||
2703 | kaddr = kmap_atomic(page, KM_USER0); | ||
2704 | if (block_off_end > to) | ||
2705 | memset(kaddr + to, 0, block_off_end - to); | ||
2706 | if (block_off_start < from) | ||
2707 | memset(kaddr + block_off_start, 0, | ||
2708 | from - block_off_start); | ||
2709 | flush_dcache_page(page); | ||
2710 | kunmap_atomic(kaddr, KM_USER0); | ||
2711 | } | ||
2712 | if ((em->block_start != EXTENT_MAP_HOLE && | ||
2713 | em->block_start != EXTENT_MAP_INLINE) && | ||
2714 | !isnew && !PageUptodate(page) && | ||
2715 | (block_off_end > to || block_off_start < from) && | ||
2716 | !test_range_bit(tree, block_start, cur_end, | ||
2717 | EXTENT_UPTODATE, 1)) { | ||
2718 | u64 sector; | ||
2719 | u64 extent_offset = block_start - em->start; | ||
2720 | size_t iosize; | ||
2721 | sector = (em->block_start + extent_offset) >> 9; | ||
2722 | iosize = (cur_end - block_start + blocksize) & | ||
2723 | ~((u64)blocksize - 1); | ||
2724 | /* | ||
2725 | * we've already got the extent locked, but we | ||
2726 | * need to split the state such that our end_bio | ||
2727 | * handler can clear the lock. | ||
2728 | */ | ||
2729 | set_extent_bit(tree, block_start, | ||
2730 | block_start + iosize - 1, | ||
2731 | EXTENT_LOCKED, 0, NULL, GFP_NOFS); | ||
2732 | ret = submit_extent_page(READ, tree, page, | ||
2733 | sector, iosize, page_offset, em->bdev, | ||
2734 | NULL, 1, | ||
2735 | end_bio_extent_preparewrite, 0, | ||
2736 | 0, 0); | ||
2737 | iocount++; | ||
2738 | block_start = block_start + iosize; | ||
2739 | } else { | ||
2740 | set_extent_uptodate(tree, block_start, cur_end, | ||
2741 | GFP_NOFS); | ||
2742 | unlock_extent(tree, block_start, cur_end, GFP_NOFS); | ||
2743 | block_start = cur_end + 1; | ||
2744 | } | ||
2745 | page_offset = block_start & (PAGE_CACHE_SIZE - 1); | ||
2746 | free_extent_map(em); | ||
2747 | } | ||
2748 | if (iocount) { | ||
2749 | wait_extent_bit(tree, orig_block_start, | ||
2750 | block_end, EXTENT_LOCKED); | ||
2751 | } | ||
2752 | check_page_uptodate(tree, page); | ||
2753 | err: | ||
2754 | /* FIXME, zero out newly allocated blocks on error */ | ||
2755 | return err; | ||
2756 | } | ||
2757 | |||
2758 | /* | ||
2759 | * a helper for releasepage, this tests for areas of the page that | ||
2760 | * are locked or under IO and drops the related state bits if it is safe | ||
2761 | * to drop the page. | ||
2762 | */ | ||
2763 | int try_release_extent_state(struct extent_map_tree *map, | ||
2764 | struct extent_io_tree *tree, struct page *page, | ||
2765 | gfp_t mask) | ||
2766 | { | ||
2767 | u64 start = (u64)page->index << PAGE_CACHE_SHIFT; | ||
2768 | u64 end = start + PAGE_CACHE_SIZE - 1; | ||
2769 | int ret = 1; | ||
2770 | |||
2771 | if (test_range_bit(tree, start, end, | ||
2772 | EXTENT_IOBITS | EXTENT_ORDERED, 0)) | ||
2773 | ret = 0; | ||
2774 | else { | ||
2775 | if ((mask & GFP_NOFS) == GFP_NOFS) | ||
2776 | mask = GFP_NOFS; | ||
2777 | clear_extent_bit(tree, start, end, EXTENT_UPTODATE, | ||
2778 | 1, 1, mask); | ||
2779 | } | ||
2780 | return ret; | ||
2781 | } | ||
2782 | |||
2783 | /* | ||
2784 | * a helper for releasepage. As long as there are no locked extents | ||
2785 | * in the range corresponding to the page, both state records and extent | ||
2786 | * map records are removed | ||
2787 | */ | ||
2788 | int try_release_extent_mapping(struct extent_map_tree *map, | ||
2789 | struct extent_io_tree *tree, struct page *page, | ||
2790 | gfp_t mask) | ||
2791 | { | ||
2792 | struct extent_map *em; | ||
2793 | u64 start = (u64)page->index << PAGE_CACHE_SHIFT; | ||
2794 | u64 end = start + PAGE_CACHE_SIZE - 1; | ||
2795 | |||
2796 | if ((mask & __GFP_WAIT) && | ||
2797 | page->mapping->host->i_size > 16 * 1024 * 1024) { | ||
2798 | u64 len; | ||
2799 | while (start <= end) { | ||
2800 | len = end - start + 1; | ||
2801 | spin_lock(&map->lock); | ||
2802 | em = lookup_extent_mapping(map, start, len); | ||
2803 | if (!em || IS_ERR(em)) { | ||
2804 | spin_unlock(&map->lock); | ||
2805 | break; | ||
2806 | } | ||
2807 | if (test_bit(EXTENT_FLAG_PINNED, &em->flags) || | ||
2808 | em->start != start) { | ||
2809 | spin_unlock(&map->lock); | ||
2810 | free_extent_map(em); | ||
2811 | break; | ||
2812 | } | ||
2813 | if (!test_range_bit(tree, em->start, | ||
2814 | extent_map_end(em) - 1, | ||
2815 | EXTENT_LOCKED | EXTENT_WRITEBACK | | ||
2816 | EXTENT_ORDERED, | ||
2817 | 0)) { | ||
2818 | remove_extent_mapping(map, em); | ||
2819 | /* once for the rb tree */ | ||
2820 | free_extent_map(em); | ||
2821 | } | ||
2822 | start = extent_map_end(em); | ||
2823 | spin_unlock(&map->lock); | ||
2824 | |||
2825 | /* once for us */ | ||
2826 | free_extent_map(em); | ||
2827 | } | ||
2828 | } | ||
2829 | return try_release_extent_state(map, tree, page, mask); | ||
2830 | } | ||
2831 | |||
2832 | sector_t extent_bmap(struct address_space *mapping, sector_t iblock, | ||
2833 | get_extent_t *get_extent) | ||
2834 | { | ||
2835 | struct inode *inode = mapping->host; | ||
2836 | u64 start = iblock << inode->i_blkbits; | ||
2837 | sector_t sector = 0; | ||
2838 | size_t blksize = (1 << inode->i_blkbits); | ||
2839 | struct extent_map *em; | ||
2840 | |||
2841 | lock_extent(&BTRFS_I(inode)->io_tree, start, start + blksize - 1, | ||
2842 | GFP_NOFS); | ||
2843 | em = get_extent(inode, NULL, 0, start, blksize, 0); | ||
2844 | unlock_extent(&BTRFS_I(inode)->io_tree, start, start + blksize - 1, | ||
2845 | GFP_NOFS); | ||
2846 | if (!em || IS_ERR(em)) | ||
2847 | return 0; | ||
2848 | |||
2849 | if (em->block_start > EXTENT_MAP_LAST_BYTE) | ||
2850 | goto out; | ||
2851 | |||
2852 | sector = (em->block_start + start - em->start) >> inode->i_blkbits; | ||
2853 | out: | ||
2854 | free_extent_map(em); | ||
2855 | return sector; | ||
2856 | } | ||
2857 | |||
2858 | static inline struct page *extent_buffer_page(struct extent_buffer *eb, | ||
2859 | unsigned long i) | ||
2860 | { | ||
2861 | struct page *p; | ||
2862 | struct address_space *mapping; | ||
2863 | |||
2864 | if (i == 0) | ||
2865 | return eb->first_page; | ||
2866 | i += eb->start >> PAGE_CACHE_SHIFT; | ||
2867 | mapping = eb->first_page->mapping; | ||
2868 | if (!mapping) | ||
2869 | return NULL; | ||
2870 | |||
2871 | /* | ||
2872 | * extent_buffer_page is only called after pinning the page | ||
2873 | * by increasing the reference count. So we know the page must | ||
2874 | * be in the radix tree. | ||
2875 | */ | ||
2876 | rcu_read_lock(); | ||
2877 | p = radix_tree_lookup(&mapping->page_tree, i); | ||
2878 | rcu_read_unlock(); | ||
2879 | |||
2880 | return p; | ||
2881 | } | ||
2882 | |||
2883 | static inline unsigned long num_extent_pages(u64 start, u64 len) | ||
2884 | { | ||
2885 | return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) - | ||
2886 | (start >> PAGE_CACHE_SHIFT); | ||
2887 | } | ||
2888 | |||
2889 | static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree, | ||
2890 | u64 start, | ||
2891 | unsigned long len, | ||
2892 | gfp_t mask) | ||
2893 | { | ||
2894 | struct extent_buffer *eb = NULL; | ||
2895 | #ifdef LEAK_DEBUG | ||
2896 | unsigned long flags; | ||
2897 | #endif | ||
2898 | |||
2899 | eb = kmem_cache_zalloc(extent_buffer_cache, mask); | ||
2900 | eb->start = start; | ||
2901 | eb->len = len; | ||
2902 | mutex_init(&eb->mutex); | ||
2903 | #ifdef LEAK_DEBUG | ||
2904 | spin_lock_irqsave(&leak_lock, flags); | ||
2905 | list_add(&eb->leak_list, &buffers); | ||
2906 | spin_unlock_irqrestore(&leak_lock, flags); | ||
2907 | #endif | ||
2908 | atomic_set(&eb->refs, 1); | ||
2909 | |||
2910 | return eb; | ||
2911 | } | ||
2912 | |||
2913 | static void __free_extent_buffer(struct extent_buffer *eb) | ||
2914 | { | ||
2915 | #ifdef LEAK_DEBUG | ||
2916 | unsigned long flags; | ||
2917 | spin_lock_irqsave(&leak_lock, flags); | ||
2918 | list_del(&eb->leak_list); | ||
2919 | spin_unlock_irqrestore(&leak_lock, flags); | ||
2920 | #endif | ||
2921 | kmem_cache_free(extent_buffer_cache, eb); | ||
2922 | } | ||
2923 | |||
2924 | struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree, | ||
2925 | u64 start, unsigned long len, | ||
2926 | struct page *page0, | ||
2927 | gfp_t mask) | ||
2928 | { | ||
2929 | unsigned long num_pages = num_extent_pages(start, len); | ||
2930 | unsigned long i; | ||
2931 | unsigned long index = start >> PAGE_CACHE_SHIFT; | ||
2932 | struct extent_buffer *eb; | ||
2933 | struct extent_buffer *exists = NULL; | ||
2934 | struct page *p; | ||
2935 | struct address_space *mapping = tree->mapping; | ||
2936 | int uptodate = 1; | ||
2937 | |||
2938 | spin_lock(&tree->buffer_lock); | ||
2939 | eb = buffer_search(tree, start); | ||
2940 | if (eb) { | ||
2941 | atomic_inc(&eb->refs); | ||
2942 | spin_unlock(&tree->buffer_lock); | ||
2943 | mark_page_accessed(eb->first_page); | ||
2944 | return eb; | ||
2945 | } | ||
2946 | spin_unlock(&tree->buffer_lock); | ||
2947 | |||
2948 | eb = __alloc_extent_buffer(tree, start, len, mask); | ||
2949 | if (!eb) | ||
2950 | return NULL; | ||
2951 | |||
2952 | if (page0) { | ||
2953 | eb->first_page = page0; | ||
2954 | i = 1; | ||
2955 | index++; | ||
2956 | page_cache_get(page0); | ||
2957 | mark_page_accessed(page0); | ||
2958 | set_page_extent_mapped(page0); | ||
2959 | set_page_extent_head(page0, len); | ||
2960 | uptodate = PageUptodate(page0); | ||
2961 | } else { | ||
2962 | i = 0; | ||
2963 | } | ||
2964 | for (; i < num_pages; i++, index++) { | ||
2965 | p = find_or_create_page(mapping, index, mask | __GFP_HIGHMEM); | ||
2966 | if (!p) { | ||
2967 | WARN_ON(1); | ||
2968 | goto free_eb; | ||
2969 | } | ||
2970 | set_page_extent_mapped(p); | ||
2971 | mark_page_accessed(p); | ||
2972 | if (i == 0) { | ||
2973 | eb->first_page = p; | ||
2974 | set_page_extent_head(p, len); | ||
2975 | } else { | ||
2976 | set_page_private(p, EXTENT_PAGE_PRIVATE); | ||
2977 | } | ||
2978 | if (!PageUptodate(p)) | ||
2979 | uptodate = 0; | ||
2980 | unlock_page(p); | ||
2981 | } | ||
2982 | if (uptodate) | ||
2983 | eb->flags |= EXTENT_UPTODATE; | ||
2984 | eb->flags |= EXTENT_BUFFER_FILLED; | ||
2985 | |||
2986 | spin_lock(&tree->buffer_lock); | ||
2987 | exists = buffer_tree_insert(tree, start, &eb->rb_node); | ||
2988 | if (exists) { | ||
2989 | /* add one reference for the caller */ | ||
2990 | atomic_inc(&exists->refs); | ||
2991 | spin_unlock(&tree->buffer_lock); | ||
2992 | goto free_eb; | ||
2993 | } | ||
2994 | spin_unlock(&tree->buffer_lock); | ||
2995 | |||
2996 | /* add one reference for the tree */ | ||
2997 | atomic_inc(&eb->refs); | ||
2998 | return eb; | ||
2999 | |||
3000 | free_eb: | ||
3001 | if (!atomic_dec_and_test(&eb->refs)) | ||
3002 | return exists; | ||
3003 | for (index = 1; index < i; index++) | ||
3004 | page_cache_release(extent_buffer_page(eb, index)); | ||
3005 | page_cache_release(extent_buffer_page(eb, 0)); | ||
3006 | __free_extent_buffer(eb); | ||
3007 | return exists; | ||
3008 | } | ||
3009 | |||
3010 | struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree, | ||
3011 | u64 start, unsigned long len, | ||
3012 | gfp_t mask) | ||
3013 | { | ||
3014 | struct extent_buffer *eb; | ||
3015 | |||
3016 | spin_lock(&tree->buffer_lock); | ||
3017 | eb = buffer_search(tree, start); | ||
3018 | if (eb) | ||
3019 | atomic_inc(&eb->refs); | ||
3020 | spin_unlock(&tree->buffer_lock); | ||
3021 | |||
3022 | if (eb) | ||
3023 | mark_page_accessed(eb->first_page); | ||
3024 | |||
3025 | return eb; | ||
3026 | } | ||
3027 | |||
3028 | void free_extent_buffer(struct extent_buffer *eb) | ||
3029 | { | ||
3030 | if (!eb) | ||
3031 | return; | ||
3032 | |||
3033 | if (!atomic_dec_and_test(&eb->refs)) | ||
3034 | return; | ||
3035 | |||
3036 | WARN_ON(1); | ||
3037 | } | ||
3038 | |||
3039 | int clear_extent_buffer_dirty(struct extent_io_tree *tree, | ||
3040 | struct extent_buffer *eb) | ||
3041 | { | ||
3042 | int set; | ||
3043 | unsigned long i; | ||
3044 | unsigned long num_pages; | ||
3045 | struct page *page; | ||
3046 | |||
3047 | u64 start = eb->start; | ||
3048 | u64 end = start + eb->len - 1; | ||
3049 | |||
3050 | set = clear_extent_dirty(tree, start, end, GFP_NOFS); | ||
3051 | num_pages = num_extent_pages(eb->start, eb->len); | ||
3052 | |||
3053 | for (i = 0; i < num_pages; i++) { | ||
3054 | page = extent_buffer_page(eb, i); | ||
3055 | if (!set && !PageDirty(page)) | ||
3056 | continue; | ||
3057 | |||
3058 | lock_page(page); | ||
3059 | if (i == 0) | ||
3060 | set_page_extent_head(page, eb->len); | ||
3061 | else | ||
3062 | set_page_private(page, EXTENT_PAGE_PRIVATE); | ||
3063 | |||
3064 | /* | ||
3065 | * if we're on the last page or the first page and the | ||
3066 | * block isn't aligned on a page boundary, do extra checks | ||
3067 | * to make sure we don't clean page that is partially dirty | ||
3068 | */ | ||
3069 | if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) || | ||
3070 | ((i == num_pages - 1) && | ||
3071 | ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) { | ||
3072 | start = (u64)page->index << PAGE_CACHE_SHIFT; | ||
3073 | end = start + PAGE_CACHE_SIZE - 1; | ||
3074 | if (test_range_bit(tree, start, end, | ||
3075 | EXTENT_DIRTY, 0)) { | ||
3076 | unlock_page(page); | ||
3077 | continue; | ||
3078 | } | ||
3079 | } | ||
3080 | clear_page_dirty_for_io(page); | ||
3081 | spin_lock_irq(&page->mapping->tree_lock); | ||
3082 | if (!PageDirty(page)) { | ||
3083 | radix_tree_tag_clear(&page->mapping->page_tree, | ||
3084 | page_index(page), | ||
3085 | PAGECACHE_TAG_DIRTY); | ||
3086 | } | ||
3087 | spin_unlock_irq(&page->mapping->tree_lock); | ||
3088 | unlock_page(page); | ||
3089 | } | ||
3090 | return 0; | ||
3091 | } | ||
3092 | |||
3093 | int wait_on_extent_buffer_writeback(struct extent_io_tree *tree, | ||
3094 | struct extent_buffer *eb) | ||
3095 | { | ||
3096 | return wait_on_extent_writeback(tree, eb->start, | ||
3097 | eb->start + eb->len - 1); | ||
3098 | } | ||
3099 | |||
3100 | int set_extent_buffer_dirty(struct extent_io_tree *tree, | ||
3101 | struct extent_buffer *eb) | ||
3102 | { | ||
3103 | unsigned long i; | ||
3104 | unsigned long num_pages; | ||
3105 | |||
3106 | num_pages = num_extent_pages(eb->start, eb->len); | ||
3107 | for (i = 0; i < num_pages; i++) { | ||
3108 | struct page *page = extent_buffer_page(eb, i); | ||
3109 | /* writepage may need to do something special for the | ||
3110 | * first page, we have to make sure page->private is | ||
3111 | * properly set. releasepage may drop page->private | ||
3112 | * on us if the page isn't already dirty. | ||
3113 | */ | ||
3114 | lock_page(page); | ||
3115 | if (i == 0) { | ||
3116 | set_page_extent_head(page, eb->len); | ||
3117 | } else if (PagePrivate(page) && | ||
3118 | page->private != EXTENT_PAGE_PRIVATE) { | ||
3119 | set_page_extent_mapped(page); | ||
3120 | } | ||
3121 | __set_page_dirty_nobuffers(extent_buffer_page(eb, i)); | ||
3122 | set_extent_dirty(tree, page_offset(page), | ||
3123 | page_offset(page) + PAGE_CACHE_SIZE - 1, | ||
3124 | GFP_NOFS); | ||
3125 | unlock_page(page); | ||
3126 | } | ||
3127 | return 0; | ||
3128 | } | ||
3129 | |||
3130 | int clear_extent_buffer_uptodate(struct extent_io_tree *tree, | ||
3131 | struct extent_buffer *eb) | ||
3132 | { | ||
3133 | unsigned long i; | ||
3134 | struct page *page; | ||
3135 | unsigned long num_pages; | ||
3136 | |||
3137 | num_pages = num_extent_pages(eb->start, eb->len); | ||
3138 | eb->flags &= ~EXTENT_UPTODATE; | ||
3139 | |||
3140 | clear_extent_uptodate(tree, eb->start, eb->start + eb->len - 1, | ||
3141 | GFP_NOFS); | ||
3142 | for (i = 0; i < num_pages; i++) { | ||
3143 | page = extent_buffer_page(eb, i); | ||
3144 | if (page) | ||
3145 | ClearPageUptodate(page); | ||
3146 | } | ||
3147 | return 0; | ||
3148 | } | ||
3149 | |||
3150 | int set_extent_buffer_uptodate(struct extent_io_tree *tree, | ||
3151 | struct extent_buffer *eb) | ||
3152 | { | ||
3153 | unsigned long i; | ||
3154 | struct page *page; | ||
3155 | unsigned long num_pages; | ||
3156 | |||
3157 | num_pages = num_extent_pages(eb->start, eb->len); | ||
3158 | |||
3159 | set_extent_uptodate(tree, eb->start, eb->start + eb->len - 1, | ||
3160 | GFP_NOFS); | ||
3161 | for (i = 0; i < num_pages; i++) { | ||
3162 | page = extent_buffer_page(eb, i); | ||
3163 | if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) || | ||
3164 | ((i == num_pages - 1) && | ||
3165 | ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) { | ||
3166 | check_page_uptodate(tree, page); | ||
3167 | continue; | ||
3168 | } | ||
3169 | SetPageUptodate(page); | ||
3170 | } | ||
3171 | return 0; | ||
3172 | } | ||
3173 | |||
3174 | int extent_range_uptodate(struct extent_io_tree *tree, | ||
3175 | u64 start, u64 end) | ||
3176 | { | ||
3177 | struct page *page; | ||
3178 | int ret; | ||
3179 | int pg_uptodate = 1; | ||
3180 | int uptodate; | ||
3181 | unsigned long index; | ||
3182 | |||
3183 | ret = test_range_bit(tree, start, end, EXTENT_UPTODATE, 1); | ||
3184 | if (ret) | ||
3185 | return 1; | ||
3186 | while (start <= end) { | ||
3187 | index = start >> PAGE_CACHE_SHIFT; | ||
3188 | page = find_get_page(tree->mapping, index); | ||
3189 | uptodate = PageUptodate(page); | ||
3190 | page_cache_release(page); | ||
3191 | if (!uptodate) { | ||
3192 | pg_uptodate = 0; | ||
3193 | break; | ||
3194 | } | ||
3195 | start += PAGE_CACHE_SIZE; | ||
3196 | } | ||
3197 | return pg_uptodate; | ||
3198 | } | ||
3199 | |||
3200 | int extent_buffer_uptodate(struct extent_io_tree *tree, | ||
3201 | struct extent_buffer *eb) | ||
3202 | { | ||
3203 | int ret = 0; | ||
3204 | unsigned long num_pages; | ||
3205 | unsigned long i; | ||
3206 | struct page *page; | ||
3207 | int pg_uptodate = 1; | ||
3208 | |||
3209 | if (eb->flags & EXTENT_UPTODATE) | ||
3210 | return 1; | ||
3211 | |||
3212 | ret = test_range_bit(tree, eb->start, eb->start + eb->len - 1, | ||
3213 | EXTENT_UPTODATE, 1); | ||
3214 | if (ret) | ||
3215 | return ret; | ||
3216 | |||
3217 | num_pages = num_extent_pages(eb->start, eb->len); | ||
3218 | for (i = 0; i < num_pages; i++) { | ||
3219 | page = extent_buffer_page(eb, i); | ||
3220 | if (!PageUptodate(page)) { | ||
3221 | pg_uptodate = 0; | ||
3222 | break; | ||
3223 | } | ||
3224 | } | ||
3225 | return pg_uptodate; | ||
3226 | } | ||
3227 | |||
3228 | int read_extent_buffer_pages(struct extent_io_tree *tree, | ||
3229 | struct extent_buffer *eb, | ||
3230 | u64 start, int wait, | ||
3231 | get_extent_t *get_extent, int mirror_num) | ||
3232 | { | ||
3233 | unsigned long i; | ||
3234 | unsigned long start_i; | ||
3235 | struct page *page; | ||
3236 | int err; | ||
3237 | int ret = 0; | ||
3238 | int locked_pages = 0; | ||
3239 | int all_uptodate = 1; | ||
3240 | int inc_all_pages = 0; | ||
3241 | unsigned long num_pages; | ||
3242 | struct bio *bio = NULL; | ||
3243 | unsigned long bio_flags = 0; | ||
3244 | |||
3245 | if (eb->flags & EXTENT_UPTODATE) | ||
3246 | return 0; | ||
3247 | |||
3248 | if (test_range_bit(tree, eb->start, eb->start + eb->len - 1, | ||
3249 | EXTENT_UPTODATE, 1)) { | ||
3250 | return 0; | ||
3251 | } | ||
3252 | |||
3253 | if (start) { | ||
3254 | WARN_ON(start < eb->start); | ||
3255 | start_i = (start >> PAGE_CACHE_SHIFT) - | ||
3256 | (eb->start >> PAGE_CACHE_SHIFT); | ||
3257 | } else { | ||
3258 | start_i = 0; | ||
3259 | } | ||
3260 | |||
3261 | num_pages = num_extent_pages(eb->start, eb->len); | ||
3262 | for (i = start_i; i < num_pages; i++) { | ||
3263 | page = extent_buffer_page(eb, i); | ||
3264 | if (!wait) { | ||
3265 | if (!trylock_page(page)) | ||
3266 | goto unlock_exit; | ||
3267 | } else { | ||
3268 | lock_page(page); | ||
3269 | } | ||
3270 | locked_pages++; | ||
3271 | if (!PageUptodate(page)) | ||
3272 | all_uptodate = 0; | ||
3273 | } | ||
3274 | if (all_uptodate) { | ||
3275 | if (start_i == 0) | ||
3276 | eb->flags |= EXTENT_UPTODATE; | ||
3277 | goto unlock_exit; | ||
3278 | } | ||
3279 | |||
3280 | for (i = start_i; i < num_pages; i++) { | ||
3281 | page = extent_buffer_page(eb, i); | ||
3282 | if (inc_all_pages) | ||
3283 | page_cache_get(page); | ||
3284 | if (!PageUptodate(page)) { | ||
3285 | if (start_i == 0) | ||
3286 | inc_all_pages = 1; | ||
3287 | ClearPageError(page); | ||
3288 | err = __extent_read_full_page(tree, page, | ||
3289 | get_extent, &bio, | ||
3290 | mirror_num, &bio_flags); | ||
3291 | if (err) | ||
3292 | ret = err; | ||
3293 | } else { | ||
3294 | unlock_page(page); | ||
3295 | } | ||
3296 | } | ||
3297 | |||
3298 | if (bio) | ||
3299 | submit_one_bio(READ, bio, mirror_num, bio_flags); | ||
3300 | |||
3301 | if (ret || !wait) | ||
3302 | return ret; | ||
3303 | |||
3304 | for (i = start_i; i < num_pages; i++) { | ||
3305 | page = extent_buffer_page(eb, i); | ||
3306 | wait_on_page_locked(page); | ||
3307 | if (!PageUptodate(page)) | ||
3308 | ret = -EIO; | ||
3309 | } | ||
3310 | |||
3311 | if (!ret) | ||
3312 | eb->flags |= EXTENT_UPTODATE; | ||
3313 | return ret; | ||
3314 | |||
3315 | unlock_exit: | ||
3316 | i = start_i; | ||
3317 | while (locked_pages > 0) { | ||
3318 | page = extent_buffer_page(eb, i); | ||
3319 | i++; | ||
3320 | unlock_page(page); | ||
3321 | locked_pages--; | ||
3322 | } | ||
3323 | return ret; | ||
3324 | } | ||
3325 | |||
3326 | void read_extent_buffer(struct extent_buffer *eb, void *dstv, | ||
3327 | unsigned long start, | ||
3328 | unsigned long len) | ||
3329 | { | ||
3330 | size_t cur; | ||
3331 | size_t offset; | ||
3332 | struct page *page; | ||
3333 | char *kaddr; | ||
3334 | char *dst = (char *)dstv; | ||
3335 | size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); | ||
3336 | unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; | ||
3337 | |||
3338 | WARN_ON(start > eb->len); | ||
3339 | WARN_ON(start + len > eb->start + eb->len); | ||
3340 | |||
3341 | offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1); | ||
3342 | |||
3343 | while (len > 0) { | ||
3344 | page = extent_buffer_page(eb, i); | ||
3345 | |||
3346 | cur = min(len, (PAGE_CACHE_SIZE - offset)); | ||
3347 | kaddr = kmap_atomic(page, KM_USER1); | ||
3348 | memcpy(dst, kaddr + offset, cur); | ||
3349 | kunmap_atomic(kaddr, KM_USER1); | ||
3350 | |||
3351 | dst += cur; | ||
3352 | len -= cur; | ||
3353 | offset = 0; | ||
3354 | i++; | ||
3355 | } | ||
3356 | } | ||
3357 | |||
3358 | int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start, | ||
3359 | unsigned long min_len, char **token, char **map, | ||
3360 | unsigned long *map_start, | ||
3361 | unsigned long *map_len, int km) | ||
3362 | { | ||
3363 | size_t offset = start & (PAGE_CACHE_SIZE - 1); | ||
3364 | char *kaddr; | ||
3365 | struct page *p; | ||
3366 | size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); | ||
3367 | unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; | ||
3368 | unsigned long end_i = (start_offset + start + min_len - 1) >> | ||
3369 | PAGE_CACHE_SHIFT; | ||
3370 | |||
3371 | if (i != end_i) | ||
3372 | return -EINVAL; | ||
3373 | |||
3374 | if (i == 0) { | ||
3375 | offset = start_offset; | ||
3376 | *map_start = 0; | ||
3377 | } else { | ||
3378 | offset = 0; | ||
3379 | *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset; | ||
3380 | } | ||
3381 | |||
3382 | if (start + min_len > eb->len) { | ||
3383 | printk(KERN_ERR "btrfs bad mapping eb start %llu len %lu, " | ||
3384 | "wanted %lu %lu\n", (unsigned long long)eb->start, | ||
3385 | eb->len, start, min_len); | ||
3386 | WARN_ON(1); | ||
3387 | } | ||
3388 | |||
3389 | p = extent_buffer_page(eb, i); | ||
3390 | kaddr = kmap_atomic(p, km); | ||
3391 | *token = kaddr; | ||
3392 | *map = kaddr + offset; | ||
3393 | *map_len = PAGE_CACHE_SIZE - offset; | ||
3394 | return 0; | ||
3395 | } | ||
3396 | |||
3397 | int map_extent_buffer(struct extent_buffer *eb, unsigned long start, | ||
3398 | unsigned long min_len, | ||
3399 | char **token, char **map, | ||
3400 | unsigned long *map_start, | ||
3401 | unsigned long *map_len, int km) | ||
3402 | { | ||
3403 | int err; | ||
3404 | int save = 0; | ||
3405 | if (eb->map_token) { | ||
3406 | unmap_extent_buffer(eb, eb->map_token, km); | ||
3407 | eb->map_token = NULL; | ||
3408 | save = 1; | ||
3409 | WARN_ON(!mutex_is_locked(&eb->mutex)); | ||
3410 | } | ||
3411 | err = map_private_extent_buffer(eb, start, min_len, token, map, | ||
3412 | map_start, map_len, km); | ||
3413 | if (!err && save) { | ||
3414 | eb->map_token = *token; | ||
3415 | eb->kaddr = *map; | ||
3416 | eb->map_start = *map_start; | ||
3417 | eb->map_len = *map_len; | ||
3418 | } | ||
3419 | return err; | ||
3420 | } | ||
3421 | |||
3422 | void unmap_extent_buffer(struct extent_buffer *eb, char *token, int km) | ||
3423 | { | ||
3424 | kunmap_atomic(token, km); | ||
3425 | } | ||
3426 | |||
3427 | int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv, | ||
3428 | unsigned long start, | ||
3429 | unsigned long len) | ||
3430 | { | ||
3431 | size_t cur; | ||
3432 | size_t offset; | ||
3433 | struct page *page; | ||
3434 | char *kaddr; | ||
3435 | char *ptr = (char *)ptrv; | ||
3436 | size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); | ||
3437 | unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; | ||
3438 | int ret = 0; | ||
3439 | |||
3440 | WARN_ON(start > eb->len); | ||
3441 | WARN_ON(start + len > eb->start + eb->len); | ||
3442 | |||
3443 | offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1); | ||
3444 | |||
3445 | while (len > 0) { | ||
3446 | page = extent_buffer_page(eb, i); | ||
3447 | |||
3448 | cur = min(len, (PAGE_CACHE_SIZE - offset)); | ||
3449 | |||
3450 | kaddr = kmap_atomic(page, KM_USER0); | ||
3451 | ret = memcmp(ptr, kaddr + offset, cur); | ||
3452 | kunmap_atomic(kaddr, KM_USER0); | ||
3453 | if (ret) | ||
3454 | break; | ||
3455 | |||
3456 | ptr += cur; | ||
3457 | len -= cur; | ||
3458 | offset = 0; | ||
3459 | i++; | ||
3460 | } | ||
3461 | return ret; | ||
3462 | } | ||
3463 | |||
3464 | void write_extent_buffer(struct extent_buffer *eb, const void *srcv, | ||
3465 | unsigned long start, unsigned long len) | ||
3466 | { | ||
3467 | size_t cur; | ||
3468 | size_t offset; | ||
3469 | struct page *page; | ||
3470 | char *kaddr; | ||
3471 | char *src = (char *)srcv; | ||
3472 | size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); | ||
3473 | unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; | ||
3474 | |||
3475 | WARN_ON(start > eb->len); | ||
3476 | WARN_ON(start + len > eb->start + eb->len); | ||
3477 | |||
3478 | offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1); | ||
3479 | |||
3480 | while (len > 0) { | ||
3481 | page = extent_buffer_page(eb, i); | ||
3482 | WARN_ON(!PageUptodate(page)); | ||
3483 | |||
3484 | cur = min(len, PAGE_CACHE_SIZE - offset); | ||
3485 | kaddr = kmap_atomic(page, KM_USER1); | ||
3486 | memcpy(kaddr + offset, src, cur); | ||
3487 | kunmap_atomic(kaddr, KM_USER1); | ||
3488 | |||
3489 | src += cur; | ||
3490 | len -= cur; | ||
3491 | offset = 0; | ||
3492 | i++; | ||
3493 | } | ||
3494 | } | ||
3495 | |||
3496 | void memset_extent_buffer(struct extent_buffer *eb, char c, | ||
3497 | unsigned long start, unsigned long len) | ||
3498 | { | ||
3499 | size_t cur; | ||
3500 | size_t offset; | ||
3501 | struct page *page; | ||
3502 | char *kaddr; | ||
3503 | size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); | ||
3504 | unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; | ||
3505 | |||
3506 | WARN_ON(start > eb->len); | ||
3507 | WARN_ON(start + len > eb->start + eb->len); | ||
3508 | |||
3509 | offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1); | ||
3510 | |||
3511 | while (len > 0) { | ||
3512 | page = extent_buffer_page(eb, i); | ||
3513 | WARN_ON(!PageUptodate(page)); | ||
3514 | |||
3515 | cur = min(len, PAGE_CACHE_SIZE - offset); | ||
3516 | kaddr = kmap_atomic(page, KM_USER0); | ||
3517 | memset(kaddr + offset, c, cur); | ||
3518 | kunmap_atomic(kaddr, KM_USER0); | ||
3519 | |||
3520 | len -= cur; | ||
3521 | offset = 0; | ||
3522 | i++; | ||
3523 | } | ||
3524 | } | ||
3525 | |||
3526 | void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src, | ||
3527 | unsigned long dst_offset, unsigned long src_offset, | ||
3528 | unsigned long len) | ||
3529 | { | ||
3530 | u64 dst_len = dst->len; | ||
3531 | size_t cur; | ||
3532 | size_t offset; | ||
3533 | struct page *page; | ||
3534 | char *kaddr; | ||
3535 | size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); | ||
3536 | unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT; | ||
3537 | |||
3538 | WARN_ON(src->len != dst_len); | ||
3539 | |||
3540 | offset = (start_offset + dst_offset) & | ||
3541 | ((unsigned long)PAGE_CACHE_SIZE - 1); | ||
3542 | |||
3543 | while (len > 0) { | ||
3544 | page = extent_buffer_page(dst, i); | ||
3545 | WARN_ON(!PageUptodate(page)); | ||
3546 | |||
3547 | cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset)); | ||
3548 | |||
3549 | kaddr = kmap_atomic(page, KM_USER0); | ||
3550 | read_extent_buffer(src, kaddr + offset, src_offset, cur); | ||
3551 | kunmap_atomic(kaddr, KM_USER0); | ||
3552 | |||
3553 | src_offset += cur; | ||
3554 | len -= cur; | ||
3555 | offset = 0; | ||
3556 | i++; | ||
3557 | } | ||
3558 | } | ||
3559 | |||
3560 | static void move_pages(struct page *dst_page, struct page *src_page, | ||
3561 | unsigned long dst_off, unsigned long src_off, | ||
3562 | unsigned long len) | ||
3563 | { | ||
3564 | char *dst_kaddr = kmap_atomic(dst_page, KM_USER0); | ||
3565 | if (dst_page == src_page) { | ||
3566 | memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len); | ||
3567 | } else { | ||
3568 | char *src_kaddr = kmap_atomic(src_page, KM_USER1); | ||
3569 | char *p = dst_kaddr + dst_off + len; | ||
3570 | char *s = src_kaddr + src_off + len; | ||
3571 | |||
3572 | while (len--) | ||
3573 | *--p = *--s; | ||
3574 | |||
3575 | kunmap_atomic(src_kaddr, KM_USER1); | ||
3576 | } | ||
3577 | kunmap_atomic(dst_kaddr, KM_USER0); | ||
3578 | } | ||
3579 | |||
3580 | static void copy_pages(struct page *dst_page, struct page *src_page, | ||
3581 | unsigned long dst_off, unsigned long src_off, | ||
3582 | unsigned long len) | ||
3583 | { | ||
3584 | char *dst_kaddr = kmap_atomic(dst_page, KM_USER0); | ||
3585 | char *src_kaddr; | ||
3586 | |||
3587 | if (dst_page != src_page) | ||
3588 | src_kaddr = kmap_atomic(src_page, KM_USER1); | ||
3589 | else | ||
3590 | src_kaddr = dst_kaddr; | ||
3591 | |||
3592 | memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len); | ||
3593 | kunmap_atomic(dst_kaddr, KM_USER0); | ||
3594 | if (dst_page != src_page) | ||
3595 | kunmap_atomic(src_kaddr, KM_USER1); | ||
3596 | } | ||
3597 | |||
3598 | void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, | ||
3599 | unsigned long src_offset, unsigned long len) | ||
3600 | { | ||
3601 | size_t cur; | ||
3602 | size_t dst_off_in_page; | ||
3603 | size_t src_off_in_page; | ||
3604 | size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); | ||
3605 | unsigned long dst_i; | ||
3606 | unsigned long src_i; | ||
3607 | |||
3608 | if (src_offset + len > dst->len) { | ||
3609 | printk(KERN_ERR "btrfs memmove bogus src_offset %lu move " | ||
3610 | "len %lu dst len %lu\n", src_offset, len, dst->len); | ||
3611 | BUG_ON(1); | ||
3612 | } | ||
3613 | if (dst_offset + len > dst->len) { | ||
3614 | printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move " | ||
3615 | "len %lu dst len %lu\n", dst_offset, len, dst->len); | ||
3616 | BUG_ON(1); | ||
3617 | } | ||
3618 | |||
3619 | while (len > 0) { | ||
3620 | dst_off_in_page = (start_offset + dst_offset) & | ||
3621 | ((unsigned long)PAGE_CACHE_SIZE - 1); | ||
3622 | src_off_in_page = (start_offset + src_offset) & | ||
3623 | ((unsigned long)PAGE_CACHE_SIZE - 1); | ||
3624 | |||
3625 | dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT; | ||
3626 | src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT; | ||
3627 | |||
3628 | cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - | ||
3629 | src_off_in_page)); | ||
3630 | cur = min_t(unsigned long, cur, | ||
3631 | (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page)); | ||
3632 | |||
3633 | copy_pages(extent_buffer_page(dst, dst_i), | ||
3634 | extent_buffer_page(dst, src_i), | ||
3635 | dst_off_in_page, src_off_in_page, cur); | ||
3636 | |||
3637 | src_offset += cur; | ||
3638 | dst_offset += cur; | ||
3639 | len -= cur; | ||
3640 | } | ||
3641 | } | ||
3642 | |||
3643 | void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, | ||
3644 | unsigned long src_offset, unsigned long len) | ||
3645 | { | ||
3646 | size_t cur; | ||
3647 | size_t dst_off_in_page; | ||
3648 | size_t src_off_in_page; | ||
3649 | unsigned long dst_end = dst_offset + len - 1; | ||
3650 | unsigned long src_end = src_offset + len - 1; | ||
3651 | size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); | ||
3652 | unsigned long dst_i; | ||
3653 | unsigned long src_i; | ||
3654 | |||
3655 | if (src_offset + len > dst->len) { | ||
3656 | printk(KERN_ERR "btrfs memmove bogus src_offset %lu move " | ||
3657 | "len %lu len %lu\n", src_offset, len, dst->len); | ||
3658 | BUG_ON(1); | ||
3659 | } | ||
3660 | if (dst_offset + len > dst->len) { | ||
3661 | printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move " | ||
3662 | "len %lu len %lu\n", dst_offset, len, dst->len); | ||
3663 | BUG_ON(1); | ||
3664 | } | ||
3665 | if (dst_offset < src_offset) { | ||
3666 | memcpy_extent_buffer(dst, dst_offset, src_offset, len); | ||
3667 | return; | ||
3668 | } | ||
3669 | while (len > 0) { | ||
3670 | dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT; | ||
3671 | src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT; | ||
3672 | |||
3673 | dst_off_in_page = (start_offset + dst_end) & | ||
3674 | ((unsigned long)PAGE_CACHE_SIZE - 1); | ||
3675 | src_off_in_page = (start_offset + src_end) & | ||
3676 | ((unsigned long)PAGE_CACHE_SIZE - 1); | ||
3677 | |||
3678 | cur = min_t(unsigned long, len, src_off_in_page + 1); | ||
3679 | cur = min(cur, dst_off_in_page + 1); | ||
3680 | move_pages(extent_buffer_page(dst, dst_i), | ||
3681 | extent_buffer_page(dst, src_i), | ||
3682 | dst_off_in_page - cur + 1, | ||
3683 | src_off_in_page - cur + 1, cur); | ||
3684 | |||
3685 | dst_end -= cur; | ||
3686 | src_end -= cur; | ||
3687 | len -= cur; | ||
3688 | } | ||
3689 | } | ||
3690 | |||
3691 | int try_release_extent_buffer(struct extent_io_tree *tree, struct page *page) | ||
3692 | { | ||
3693 | u64 start = page_offset(page); | ||
3694 | struct extent_buffer *eb; | ||
3695 | int ret = 1; | ||
3696 | unsigned long i; | ||
3697 | unsigned long num_pages; | ||
3698 | |||
3699 | spin_lock(&tree->buffer_lock); | ||
3700 | eb = buffer_search(tree, start); | ||
3701 | if (!eb) | ||
3702 | goto out; | ||
3703 | |||
3704 | if (atomic_read(&eb->refs) > 1) { | ||
3705 | ret = 0; | ||
3706 | goto out; | ||
3707 | } | ||
3708 | /* at this point we can safely release the extent buffer */ | ||
3709 | num_pages = num_extent_pages(eb->start, eb->len); | ||
3710 | for (i = 0; i < num_pages; i++) | ||
3711 | page_cache_release(extent_buffer_page(eb, i)); | ||
3712 | rb_erase(&eb->rb_node, &tree->buffer); | ||
3713 | __free_extent_buffer(eb); | ||
3714 | out: | ||
3715 | spin_unlock(&tree->buffer_lock); | ||
3716 | return ret; | ||
3717 | } | ||
diff --git a/fs/btrfs/extent_io.h b/fs/btrfs/extent_io.h new file mode 100644 index 000000000000..c5b483a79137 --- /dev/null +++ b/fs/btrfs/extent_io.h | |||
@@ -0,0 +1,269 @@ | |||
1 | #ifndef __EXTENTIO__ | ||
2 | #define __EXTENTIO__ | ||
3 | |||
4 | #include <linux/rbtree.h> | ||
5 | |||
6 | /* bits for the extent state */ | ||
7 | #define EXTENT_DIRTY 1 | ||
8 | #define EXTENT_WRITEBACK (1 << 1) | ||
9 | #define EXTENT_UPTODATE (1 << 2) | ||
10 | #define EXTENT_LOCKED (1 << 3) | ||
11 | #define EXTENT_NEW (1 << 4) | ||
12 | #define EXTENT_DELALLOC (1 << 5) | ||
13 | #define EXTENT_DEFRAG (1 << 6) | ||
14 | #define EXTENT_DEFRAG_DONE (1 << 7) | ||
15 | #define EXTENT_BUFFER_FILLED (1 << 8) | ||
16 | #define EXTENT_ORDERED (1 << 9) | ||
17 | #define EXTENT_ORDERED_METADATA (1 << 10) | ||
18 | #define EXTENT_BOUNDARY (1 << 11) | ||
19 | #define EXTENT_NODATASUM (1 << 12) | ||
20 | #define EXTENT_IOBITS (EXTENT_LOCKED | EXTENT_WRITEBACK) | ||
21 | |||
22 | /* flags for bio submission */ | ||
23 | #define EXTENT_BIO_COMPRESSED 1 | ||
24 | |||
25 | /* | ||
26 | * page->private values. Every page that is controlled by the extent | ||
27 | * map has page->private set to one. | ||
28 | */ | ||
29 | #define EXTENT_PAGE_PRIVATE 1 | ||
30 | #define EXTENT_PAGE_PRIVATE_FIRST_PAGE 3 | ||
31 | |||
32 | struct extent_state; | ||
33 | |||
34 | typedef int (extent_submit_bio_hook_t)(struct inode *inode, int rw, | ||
35 | struct bio *bio, int mirror_num, | ||
36 | unsigned long bio_flags); | ||
37 | struct extent_io_ops { | ||
38 | int (*fill_delalloc)(struct inode *inode, struct page *locked_page, | ||
39 | u64 start, u64 end, int *page_started, | ||
40 | unsigned long *nr_written); | ||
41 | int (*writepage_start_hook)(struct page *page, u64 start, u64 end); | ||
42 | int (*writepage_io_hook)(struct page *page, u64 start, u64 end); | ||
43 | extent_submit_bio_hook_t *submit_bio_hook; | ||
44 | int (*merge_bio_hook)(struct page *page, unsigned long offset, | ||
45 | size_t size, struct bio *bio, | ||
46 | unsigned long bio_flags); | ||
47 | int (*readpage_io_hook)(struct page *page, u64 start, u64 end); | ||
48 | int (*readpage_io_failed_hook)(struct bio *bio, struct page *page, | ||
49 | u64 start, u64 end, | ||
50 | struct extent_state *state); | ||
51 | int (*writepage_io_failed_hook)(struct bio *bio, struct page *page, | ||
52 | u64 start, u64 end, | ||
53 | struct extent_state *state); | ||
54 | int (*readpage_end_io_hook)(struct page *page, u64 start, u64 end, | ||
55 | struct extent_state *state); | ||
56 | int (*writepage_end_io_hook)(struct page *page, u64 start, u64 end, | ||
57 | struct extent_state *state, int uptodate); | ||
58 | int (*set_bit_hook)(struct inode *inode, u64 start, u64 end, | ||
59 | unsigned long old, unsigned long bits); | ||
60 | int (*clear_bit_hook)(struct inode *inode, u64 start, u64 end, | ||
61 | unsigned long old, unsigned long bits); | ||
62 | int (*write_cache_pages_lock_hook)(struct page *page); | ||
63 | }; | ||
64 | |||
65 | struct extent_io_tree { | ||
66 | struct rb_root state; | ||
67 | struct rb_root buffer; | ||
68 | struct address_space *mapping; | ||
69 | u64 dirty_bytes; | ||
70 | spinlock_t lock; | ||
71 | spinlock_t buffer_lock; | ||
72 | struct extent_io_ops *ops; | ||
73 | }; | ||
74 | |||
75 | struct extent_state { | ||
76 | u64 start; | ||
77 | u64 end; /* inclusive */ | ||
78 | struct rb_node rb_node; | ||
79 | struct extent_io_tree *tree; | ||
80 | wait_queue_head_t wq; | ||
81 | atomic_t refs; | ||
82 | unsigned long state; | ||
83 | |||
84 | /* for use by the FS */ | ||
85 | u64 private; | ||
86 | |||
87 | struct list_head leak_list; | ||
88 | }; | ||
89 | |||
90 | struct extent_buffer { | ||
91 | u64 start; | ||
92 | unsigned long len; | ||
93 | char *map_token; | ||
94 | char *kaddr; | ||
95 | unsigned long map_start; | ||
96 | unsigned long map_len; | ||
97 | struct page *first_page; | ||
98 | atomic_t refs; | ||
99 | int flags; | ||
100 | struct list_head leak_list; | ||
101 | struct rb_node rb_node; | ||
102 | struct mutex mutex; | ||
103 | }; | ||
104 | |||
105 | struct extent_map_tree; | ||
106 | |||
107 | static inline struct extent_state *extent_state_next(struct extent_state *state) | ||
108 | { | ||
109 | struct rb_node *node; | ||
110 | node = rb_next(&state->rb_node); | ||
111 | if (!node) | ||
112 | return NULL; | ||
113 | return rb_entry(node, struct extent_state, rb_node); | ||
114 | } | ||
115 | |||
116 | typedef struct extent_map *(get_extent_t)(struct inode *inode, | ||
117 | struct page *page, | ||
118 | size_t page_offset, | ||
119 | u64 start, u64 len, | ||
120 | int create); | ||
121 | |||
122 | void extent_io_tree_init(struct extent_io_tree *tree, | ||
123 | struct address_space *mapping, gfp_t mask); | ||
124 | int try_release_extent_mapping(struct extent_map_tree *map, | ||
125 | struct extent_io_tree *tree, struct page *page, | ||
126 | gfp_t mask); | ||
127 | int try_release_extent_buffer(struct extent_io_tree *tree, struct page *page); | ||
128 | int try_release_extent_state(struct extent_map_tree *map, | ||
129 | struct extent_io_tree *tree, struct page *page, | ||
130 | gfp_t mask); | ||
131 | int lock_extent(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask); | ||
132 | int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask); | ||
133 | int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end, | ||
134 | gfp_t mask); | ||
135 | int extent_read_full_page(struct extent_io_tree *tree, struct page *page, | ||
136 | get_extent_t *get_extent); | ||
137 | int __init extent_io_init(void); | ||
138 | void extent_io_exit(void); | ||
139 | |||
140 | u64 count_range_bits(struct extent_io_tree *tree, | ||
141 | u64 *start, u64 search_end, | ||
142 | u64 max_bytes, unsigned long bits); | ||
143 | |||
144 | int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end, | ||
145 | int bits, int filled); | ||
146 | int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, | ||
147 | int bits, gfp_t mask); | ||
148 | int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, | ||
149 | int bits, int wake, int delete, gfp_t mask); | ||
150 | int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, | ||
151 | int bits, gfp_t mask); | ||
152 | int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end, | ||
153 | gfp_t mask); | ||
154 | int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end, | ||
155 | gfp_t mask); | ||
156 | int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end, | ||
157 | gfp_t mask); | ||
158 | int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end, | ||
159 | gfp_t mask); | ||
160 | int clear_extent_ordered(struct extent_io_tree *tree, u64 start, u64 end, | ||
161 | gfp_t mask); | ||
162 | int clear_extent_ordered_metadata(struct extent_io_tree *tree, u64 start, | ||
163 | u64 end, gfp_t mask); | ||
164 | int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end, | ||
165 | gfp_t mask); | ||
166 | int set_extent_ordered(struct extent_io_tree *tree, u64 start, u64 end, | ||
167 | gfp_t mask); | ||
168 | int find_first_extent_bit(struct extent_io_tree *tree, u64 start, | ||
169 | u64 *start_ret, u64 *end_ret, int bits); | ||
170 | struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree, | ||
171 | u64 start, int bits); | ||
172 | int extent_invalidatepage(struct extent_io_tree *tree, | ||
173 | struct page *page, unsigned long offset); | ||
174 | int extent_write_full_page(struct extent_io_tree *tree, struct page *page, | ||
175 | get_extent_t *get_extent, | ||
176 | struct writeback_control *wbc); | ||
177 | int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode, | ||
178 | u64 start, u64 end, get_extent_t *get_extent, | ||
179 | int mode); | ||
180 | int extent_writepages(struct extent_io_tree *tree, | ||
181 | struct address_space *mapping, | ||
182 | get_extent_t *get_extent, | ||
183 | struct writeback_control *wbc); | ||
184 | int extent_readpages(struct extent_io_tree *tree, | ||
185 | struct address_space *mapping, | ||
186 | struct list_head *pages, unsigned nr_pages, | ||
187 | get_extent_t get_extent); | ||
188 | int extent_prepare_write(struct extent_io_tree *tree, | ||
189 | struct inode *inode, struct page *page, | ||
190 | unsigned from, unsigned to, get_extent_t *get_extent); | ||
191 | int extent_commit_write(struct extent_io_tree *tree, | ||
192 | struct inode *inode, struct page *page, | ||
193 | unsigned from, unsigned to); | ||
194 | sector_t extent_bmap(struct address_space *mapping, sector_t iblock, | ||
195 | get_extent_t *get_extent); | ||
196 | int set_range_dirty(struct extent_io_tree *tree, u64 start, u64 end); | ||
197 | int set_state_private(struct extent_io_tree *tree, u64 start, u64 private); | ||
198 | int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private); | ||
199 | void set_page_extent_mapped(struct page *page); | ||
200 | |||
201 | struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree, | ||
202 | u64 start, unsigned long len, | ||
203 | struct page *page0, | ||
204 | gfp_t mask); | ||
205 | struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree, | ||
206 | u64 start, unsigned long len, | ||
207 | gfp_t mask); | ||
208 | void free_extent_buffer(struct extent_buffer *eb); | ||
209 | int read_extent_buffer_pages(struct extent_io_tree *tree, | ||
210 | struct extent_buffer *eb, u64 start, int wait, | ||
211 | get_extent_t *get_extent, int mirror_num); | ||
212 | |||
213 | static inline void extent_buffer_get(struct extent_buffer *eb) | ||
214 | { | ||
215 | atomic_inc(&eb->refs); | ||
216 | } | ||
217 | |||
218 | int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv, | ||
219 | unsigned long start, | ||
220 | unsigned long len); | ||
221 | void read_extent_buffer(struct extent_buffer *eb, void *dst, | ||
222 | unsigned long start, | ||
223 | unsigned long len); | ||
224 | void write_extent_buffer(struct extent_buffer *eb, const void *src, | ||
225 | unsigned long start, unsigned long len); | ||
226 | void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src, | ||
227 | unsigned long dst_offset, unsigned long src_offset, | ||
228 | unsigned long len); | ||
229 | void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, | ||
230 | unsigned long src_offset, unsigned long len); | ||
231 | void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, | ||
232 | unsigned long src_offset, unsigned long len); | ||
233 | void memset_extent_buffer(struct extent_buffer *eb, char c, | ||
234 | unsigned long start, unsigned long len); | ||
235 | int wait_on_extent_buffer_writeback(struct extent_io_tree *tree, | ||
236 | struct extent_buffer *eb); | ||
237 | int wait_on_extent_writeback(struct extent_io_tree *tree, u64 start, u64 end); | ||
238 | int wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits); | ||
239 | int clear_extent_buffer_dirty(struct extent_io_tree *tree, | ||
240 | struct extent_buffer *eb); | ||
241 | int set_extent_buffer_dirty(struct extent_io_tree *tree, | ||
242 | struct extent_buffer *eb); | ||
243 | int set_extent_buffer_uptodate(struct extent_io_tree *tree, | ||
244 | struct extent_buffer *eb); | ||
245 | int clear_extent_buffer_uptodate(struct extent_io_tree *tree, | ||
246 | struct extent_buffer *eb); | ||
247 | int extent_buffer_uptodate(struct extent_io_tree *tree, | ||
248 | struct extent_buffer *eb); | ||
249 | int map_extent_buffer(struct extent_buffer *eb, unsigned long offset, | ||
250 | unsigned long min_len, char **token, char **map, | ||
251 | unsigned long *map_start, | ||
252 | unsigned long *map_len, int km); | ||
253 | int map_private_extent_buffer(struct extent_buffer *eb, unsigned long offset, | ||
254 | unsigned long min_len, char **token, char **map, | ||
255 | unsigned long *map_start, | ||
256 | unsigned long *map_len, int km); | ||
257 | void unmap_extent_buffer(struct extent_buffer *eb, char *token, int km); | ||
258 | int release_extent_buffer_tail_pages(struct extent_buffer *eb); | ||
259 | int extent_range_uptodate(struct extent_io_tree *tree, | ||
260 | u64 start, u64 end); | ||
261 | int extent_clear_unlock_delalloc(struct inode *inode, | ||
262 | struct extent_io_tree *tree, | ||
263 | u64 start, u64 end, struct page *locked_page, | ||
264 | int unlock_page, | ||
265 | int clear_unlock, | ||
266 | int clear_delalloc, int clear_dirty, | ||
267 | int set_writeback, | ||
268 | int end_writeback); | ||
269 | #endif | ||
diff --git a/fs/btrfs/extent_map.c b/fs/btrfs/extent_map.c new file mode 100644 index 000000000000..4a83e33ada32 --- /dev/null +++ b/fs/btrfs/extent_map.c | |||
@@ -0,0 +1,351 @@ | |||
1 | #include <linux/err.h> | ||
2 | #include <linux/gfp.h> | ||
3 | #include <linux/slab.h> | ||
4 | #include <linux/module.h> | ||
5 | #include <linux/spinlock.h> | ||
6 | #include <linux/version.h> | ||
7 | #include <linux/hardirq.h> | ||
8 | #include "extent_map.h" | ||
9 | |||
10 | /* temporary define until extent_map moves out of btrfs */ | ||
11 | struct kmem_cache *btrfs_cache_create(const char *name, size_t size, | ||
12 | unsigned long extra_flags, | ||
13 | void (*ctor)(void *, struct kmem_cache *, | ||
14 | unsigned long)); | ||
15 | |||
16 | static struct kmem_cache *extent_map_cache; | ||
17 | |||
18 | int __init extent_map_init(void) | ||
19 | { | ||
20 | extent_map_cache = btrfs_cache_create("extent_map", | ||
21 | sizeof(struct extent_map), 0, | ||
22 | NULL); | ||
23 | if (!extent_map_cache) | ||
24 | return -ENOMEM; | ||
25 | return 0; | ||
26 | } | ||
27 | |||
28 | void extent_map_exit(void) | ||
29 | { | ||
30 | if (extent_map_cache) | ||
31 | kmem_cache_destroy(extent_map_cache); | ||
32 | } | ||
33 | |||
34 | /** | ||
35 | * extent_map_tree_init - initialize extent map tree | ||
36 | * @tree: tree to initialize | ||
37 | * @mask: flags for memory allocations during tree operations | ||
38 | * | ||
39 | * Initialize the extent tree @tree. Should be called for each new inode | ||
40 | * or other user of the extent_map interface. | ||
41 | */ | ||
42 | void extent_map_tree_init(struct extent_map_tree *tree, gfp_t mask) | ||
43 | { | ||
44 | tree->map.rb_node = NULL; | ||
45 | spin_lock_init(&tree->lock); | ||
46 | } | ||
47 | EXPORT_SYMBOL(extent_map_tree_init); | ||
48 | |||
49 | /** | ||
50 | * alloc_extent_map - allocate new extent map structure | ||
51 | * @mask: memory allocation flags | ||
52 | * | ||
53 | * Allocate a new extent_map structure. The new structure is | ||
54 | * returned with a reference count of one and needs to be | ||
55 | * freed using free_extent_map() | ||
56 | */ | ||
57 | struct extent_map *alloc_extent_map(gfp_t mask) | ||
58 | { | ||
59 | struct extent_map *em; | ||
60 | em = kmem_cache_alloc(extent_map_cache, mask); | ||
61 | if (!em || IS_ERR(em)) | ||
62 | return em; | ||
63 | em->in_tree = 0; | ||
64 | em->flags = 0; | ||
65 | atomic_set(&em->refs, 1); | ||
66 | return em; | ||
67 | } | ||
68 | EXPORT_SYMBOL(alloc_extent_map); | ||
69 | |||
70 | /** | ||
71 | * free_extent_map - drop reference count of an extent_map | ||
72 | * @em: extent map beeing releasead | ||
73 | * | ||
74 | * Drops the reference out on @em by one and free the structure | ||
75 | * if the reference count hits zero. | ||
76 | */ | ||
77 | void free_extent_map(struct extent_map *em) | ||
78 | { | ||
79 | if (!em) | ||
80 | return; | ||
81 | WARN_ON(atomic_read(&em->refs) == 0); | ||
82 | if (atomic_dec_and_test(&em->refs)) { | ||
83 | WARN_ON(em->in_tree); | ||
84 | kmem_cache_free(extent_map_cache, em); | ||
85 | } | ||
86 | } | ||
87 | EXPORT_SYMBOL(free_extent_map); | ||
88 | |||
89 | static struct rb_node *tree_insert(struct rb_root *root, u64 offset, | ||
90 | struct rb_node *node) | ||
91 | { | ||
92 | struct rb_node **p = &root->rb_node; | ||
93 | struct rb_node *parent = NULL; | ||
94 | struct extent_map *entry; | ||
95 | |||
96 | while (*p) { | ||
97 | parent = *p; | ||
98 | entry = rb_entry(parent, struct extent_map, rb_node); | ||
99 | |||
100 | WARN_ON(!entry->in_tree); | ||
101 | |||
102 | if (offset < entry->start) | ||
103 | p = &(*p)->rb_left; | ||
104 | else if (offset >= extent_map_end(entry)) | ||
105 | p = &(*p)->rb_right; | ||
106 | else | ||
107 | return parent; | ||
108 | } | ||
109 | |||
110 | entry = rb_entry(node, struct extent_map, rb_node); | ||
111 | entry->in_tree = 1; | ||
112 | rb_link_node(node, parent, p); | ||
113 | rb_insert_color(node, root); | ||
114 | return NULL; | ||
115 | } | ||
116 | |||
117 | /* | ||
118 | * search through the tree for an extent_map with a given offset. If | ||
119 | * it can't be found, try to find some neighboring extents | ||
120 | */ | ||
121 | static struct rb_node *__tree_search(struct rb_root *root, u64 offset, | ||
122 | struct rb_node **prev_ret, | ||
123 | struct rb_node **next_ret) | ||
124 | { | ||
125 | struct rb_node *n = root->rb_node; | ||
126 | struct rb_node *prev = NULL; | ||
127 | struct rb_node *orig_prev = NULL; | ||
128 | struct extent_map *entry; | ||
129 | struct extent_map *prev_entry = NULL; | ||
130 | |||
131 | while (n) { | ||
132 | entry = rb_entry(n, struct extent_map, rb_node); | ||
133 | prev = n; | ||
134 | prev_entry = entry; | ||
135 | |||
136 | WARN_ON(!entry->in_tree); | ||
137 | |||
138 | if (offset < entry->start) | ||
139 | n = n->rb_left; | ||
140 | else if (offset >= extent_map_end(entry)) | ||
141 | n = n->rb_right; | ||
142 | else | ||
143 | return n; | ||
144 | } | ||
145 | |||
146 | if (prev_ret) { | ||
147 | orig_prev = prev; | ||
148 | while (prev && offset >= extent_map_end(prev_entry)) { | ||
149 | prev = rb_next(prev); | ||
150 | prev_entry = rb_entry(prev, struct extent_map, rb_node); | ||
151 | } | ||
152 | *prev_ret = prev; | ||
153 | prev = orig_prev; | ||
154 | } | ||
155 | |||
156 | if (next_ret) { | ||
157 | prev_entry = rb_entry(prev, struct extent_map, rb_node); | ||
158 | while (prev && offset < prev_entry->start) { | ||
159 | prev = rb_prev(prev); | ||
160 | prev_entry = rb_entry(prev, struct extent_map, rb_node); | ||
161 | } | ||
162 | *next_ret = prev; | ||
163 | } | ||
164 | return NULL; | ||
165 | } | ||
166 | |||
167 | /* | ||
168 | * look for an offset in the tree, and if it can't be found, return | ||
169 | * the first offset we can find smaller than 'offset'. | ||
170 | */ | ||
171 | static inline struct rb_node *tree_search(struct rb_root *root, u64 offset) | ||
172 | { | ||
173 | struct rb_node *prev; | ||
174 | struct rb_node *ret; | ||
175 | ret = __tree_search(root, offset, &prev, NULL); | ||
176 | if (!ret) | ||
177 | return prev; | ||
178 | return ret; | ||
179 | } | ||
180 | |||
181 | /* check to see if two extent_map structs are adjacent and safe to merge */ | ||
182 | static int mergable_maps(struct extent_map *prev, struct extent_map *next) | ||
183 | { | ||
184 | if (test_bit(EXTENT_FLAG_PINNED, &prev->flags)) | ||
185 | return 0; | ||
186 | |||
187 | /* | ||
188 | * don't merge compressed extents, we need to know their | ||
189 | * actual size | ||
190 | */ | ||
191 | if (test_bit(EXTENT_FLAG_COMPRESSED, &prev->flags)) | ||
192 | return 0; | ||
193 | |||
194 | if (extent_map_end(prev) == next->start && | ||
195 | prev->flags == next->flags && | ||
196 | prev->bdev == next->bdev && | ||
197 | ((next->block_start == EXTENT_MAP_HOLE && | ||
198 | prev->block_start == EXTENT_MAP_HOLE) || | ||
199 | (next->block_start == EXTENT_MAP_INLINE && | ||
200 | prev->block_start == EXTENT_MAP_INLINE) || | ||
201 | (next->block_start == EXTENT_MAP_DELALLOC && | ||
202 | prev->block_start == EXTENT_MAP_DELALLOC) || | ||
203 | (next->block_start < EXTENT_MAP_LAST_BYTE - 1 && | ||
204 | next->block_start == extent_map_block_end(prev)))) { | ||
205 | return 1; | ||
206 | } | ||
207 | return 0; | ||
208 | } | ||
209 | |||
210 | /** | ||
211 | * add_extent_mapping - add new extent map to the extent tree | ||
212 | * @tree: tree to insert new map in | ||
213 | * @em: map to insert | ||
214 | * | ||
215 | * Insert @em into @tree or perform a simple forward/backward merge with | ||
216 | * existing mappings. The extent_map struct passed in will be inserted | ||
217 | * into the tree directly, with an additional reference taken, or a | ||
218 | * reference dropped if the merge attempt was sucessfull. | ||
219 | */ | ||
220 | int add_extent_mapping(struct extent_map_tree *tree, | ||
221 | struct extent_map *em) | ||
222 | { | ||
223 | int ret = 0; | ||
224 | struct extent_map *merge = NULL; | ||
225 | struct rb_node *rb; | ||
226 | struct extent_map *exist; | ||
227 | |||
228 | exist = lookup_extent_mapping(tree, em->start, em->len); | ||
229 | if (exist) { | ||
230 | free_extent_map(exist); | ||
231 | ret = -EEXIST; | ||
232 | goto out; | ||
233 | } | ||
234 | assert_spin_locked(&tree->lock); | ||
235 | rb = tree_insert(&tree->map, em->start, &em->rb_node); | ||
236 | if (rb) { | ||
237 | ret = -EEXIST; | ||
238 | free_extent_map(merge); | ||
239 | goto out; | ||
240 | } | ||
241 | atomic_inc(&em->refs); | ||
242 | if (em->start != 0) { | ||
243 | rb = rb_prev(&em->rb_node); | ||
244 | if (rb) | ||
245 | merge = rb_entry(rb, struct extent_map, rb_node); | ||
246 | if (rb && mergable_maps(merge, em)) { | ||
247 | em->start = merge->start; | ||
248 | em->len += merge->len; | ||
249 | em->block_len += merge->block_len; | ||
250 | em->block_start = merge->block_start; | ||
251 | merge->in_tree = 0; | ||
252 | rb_erase(&merge->rb_node, &tree->map); | ||
253 | free_extent_map(merge); | ||
254 | } | ||
255 | } | ||
256 | rb = rb_next(&em->rb_node); | ||
257 | if (rb) | ||
258 | merge = rb_entry(rb, struct extent_map, rb_node); | ||
259 | if (rb && mergable_maps(em, merge)) { | ||
260 | em->len += merge->len; | ||
261 | em->block_len += merge->len; | ||
262 | rb_erase(&merge->rb_node, &tree->map); | ||
263 | merge->in_tree = 0; | ||
264 | free_extent_map(merge); | ||
265 | } | ||
266 | out: | ||
267 | return ret; | ||
268 | } | ||
269 | EXPORT_SYMBOL(add_extent_mapping); | ||
270 | |||
271 | /* simple helper to do math around the end of an extent, handling wrap */ | ||
272 | static u64 range_end(u64 start, u64 len) | ||
273 | { | ||
274 | if (start + len < start) | ||
275 | return (u64)-1; | ||
276 | return start + len; | ||
277 | } | ||
278 | |||
279 | /** | ||
280 | * lookup_extent_mapping - lookup extent_map | ||
281 | * @tree: tree to lookup in | ||
282 | * @start: byte offset to start the search | ||
283 | * @len: length of the lookup range | ||
284 | * | ||
285 | * Find and return the first extent_map struct in @tree that intersects the | ||
286 | * [start, len] range. There may be additional objects in the tree that | ||
287 | * intersect, so check the object returned carefully to make sure that no | ||
288 | * additional lookups are needed. | ||
289 | */ | ||
290 | struct extent_map *lookup_extent_mapping(struct extent_map_tree *tree, | ||
291 | u64 start, u64 len) | ||
292 | { | ||
293 | struct extent_map *em; | ||
294 | struct rb_node *rb_node; | ||
295 | struct rb_node *prev = NULL; | ||
296 | struct rb_node *next = NULL; | ||
297 | u64 end = range_end(start, len); | ||
298 | |||
299 | assert_spin_locked(&tree->lock); | ||
300 | rb_node = __tree_search(&tree->map, start, &prev, &next); | ||
301 | if (!rb_node && prev) { | ||
302 | em = rb_entry(prev, struct extent_map, rb_node); | ||
303 | if (end > em->start && start < extent_map_end(em)) | ||
304 | goto found; | ||
305 | } | ||
306 | if (!rb_node && next) { | ||
307 | em = rb_entry(next, struct extent_map, rb_node); | ||
308 | if (end > em->start && start < extent_map_end(em)) | ||
309 | goto found; | ||
310 | } | ||
311 | if (!rb_node) { | ||
312 | em = NULL; | ||
313 | goto out; | ||
314 | } | ||
315 | if (IS_ERR(rb_node)) { | ||
316 | em = ERR_PTR(PTR_ERR(rb_node)); | ||
317 | goto out; | ||
318 | } | ||
319 | em = rb_entry(rb_node, struct extent_map, rb_node); | ||
320 | if (end > em->start && start < extent_map_end(em)) | ||
321 | goto found; | ||
322 | |||
323 | em = NULL; | ||
324 | goto out; | ||
325 | |||
326 | found: | ||
327 | atomic_inc(&em->refs); | ||
328 | out: | ||
329 | return em; | ||
330 | } | ||
331 | EXPORT_SYMBOL(lookup_extent_mapping); | ||
332 | |||
333 | /** | ||
334 | * remove_extent_mapping - removes an extent_map from the extent tree | ||
335 | * @tree: extent tree to remove from | ||
336 | * @em: extent map beeing removed | ||
337 | * | ||
338 | * Removes @em from @tree. No reference counts are dropped, and no checks | ||
339 | * are done to see if the range is in use | ||
340 | */ | ||
341 | int remove_extent_mapping(struct extent_map_tree *tree, struct extent_map *em) | ||
342 | { | ||
343 | int ret = 0; | ||
344 | |||
345 | WARN_ON(test_bit(EXTENT_FLAG_PINNED, &em->flags)); | ||
346 | assert_spin_locked(&tree->lock); | ||
347 | rb_erase(&em->rb_node, &tree->map); | ||
348 | em->in_tree = 0; | ||
349 | return ret; | ||
350 | } | ||
351 | EXPORT_SYMBOL(remove_extent_mapping); | ||
diff --git a/fs/btrfs/extent_map.h b/fs/btrfs/extent_map.h new file mode 100644 index 000000000000..fb6eeef06bb0 --- /dev/null +++ b/fs/btrfs/extent_map.h | |||
@@ -0,0 +1,62 @@ | |||
1 | #ifndef __EXTENTMAP__ | ||
2 | #define __EXTENTMAP__ | ||
3 | |||
4 | #include <linux/rbtree.h> | ||
5 | |||
6 | #define EXTENT_MAP_LAST_BYTE (u64)-4 | ||
7 | #define EXTENT_MAP_HOLE (u64)-3 | ||
8 | #define EXTENT_MAP_INLINE (u64)-2 | ||
9 | #define EXTENT_MAP_DELALLOC (u64)-1 | ||
10 | |||
11 | /* bits for the flags field */ | ||
12 | #define EXTENT_FLAG_PINNED 0 /* this entry not yet on disk, don't free it */ | ||
13 | #define EXTENT_FLAG_COMPRESSED 1 | ||
14 | #define EXTENT_FLAG_VACANCY 2 /* no file extent item found */ | ||
15 | #define EXTENT_FLAG_PREALLOC 3 /* pre-allocated extent */ | ||
16 | |||
17 | struct extent_map { | ||
18 | struct rb_node rb_node; | ||
19 | |||
20 | /* all of these are in bytes */ | ||
21 | u64 start; | ||
22 | u64 len; | ||
23 | u64 orig_start; | ||
24 | u64 block_start; | ||
25 | u64 block_len; | ||
26 | unsigned long flags; | ||
27 | struct block_device *bdev; | ||
28 | atomic_t refs; | ||
29 | int in_tree; | ||
30 | }; | ||
31 | |||
32 | struct extent_map_tree { | ||
33 | struct rb_root map; | ||
34 | spinlock_t lock; | ||
35 | }; | ||
36 | |||
37 | static inline u64 extent_map_end(struct extent_map *em) | ||
38 | { | ||
39 | if (em->start + em->len < em->start) | ||
40 | return (u64)-1; | ||
41 | return em->start + em->len; | ||
42 | } | ||
43 | |||
44 | static inline u64 extent_map_block_end(struct extent_map *em) | ||
45 | { | ||
46 | if (em->block_start + em->block_len < em->block_start) | ||
47 | return (u64)-1; | ||
48 | return em->block_start + em->block_len; | ||
49 | } | ||
50 | |||
51 | void extent_map_tree_init(struct extent_map_tree *tree, gfp_t mask); | ||
52 | struct extent_map *lookup_extent_mapping(struct extent_map_tree *tree, | ||
53 | u64 start, u64 len); | ||
54 | int add_extent_mapping(struct extent_map_tree *tree, | ||
55 | struct extent_map *em); | ||
56 | int remove_extent_mapping(struct extent_map_tree *tree, struct extent_map *em); | ||
57 | |||
58 | struct extent_map *alloc_extent_map(gfp_t mask); | ||
59 | void free_extent_map(struct extent_map *em); | ||
60 | int __init extent_map_init(void); | ||
61 | void extent_map_exit(void); | ||
62 | #endif | ||
diff --git a/fs/btrfs/file-item.c b/fs/btrfs/file-item.c new file mode 100644 index 000000000000..b11abfad81a5 --- /dev/null +++ b/fs/btrfs/file-item.c | |||
@@ -0,0 +1,821 @@ | |||
1 | /* | ||
2 | * Copyright (C) 2007 Oracle. All rights reserved. | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or | ||
5 | * modify it under the terms of the GNU General Public | ||
6 | * License v2 as published by the Free Software Foundation. | ||
7 | * | ||
8 | * This program is distributed in the hope that it will be useful, | ||
9 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | ||
11 | * General Public License for more details. | ||
12 | * | ||
13 | * You should have received a copy of the GNU General Public | ||
14 | * License along with this program; if not, write to the | ||
15 | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | ||
16 | * Boston, MA 021110-1307, USA. | ||
17 | */ | ||
18 | |||
19 | #include <linux/bio.h> | ||
20 | #include <linux/pagemap.h> | ||
21 | #include <linux/highmem.h> | ||
22 | #include "ctree.h" | ||
23 | #include "disk-io.h" | ||
24 | #include "transaction.h" | ||
25 | #include "print-tree.h" | ||
26 | |||
27 | #define MAX_CSUM_ITEMS(r, size) ((((BTRFS_LEAF_DATA_SIZE(r) - \ | ||
28 | sizeof(struct btrfs_item) * 2) / \ | ||
29 | size) - 1)) | ||
30 | int btrfs_insert_file_extent(struct btrfs_trans_handle *trans, | ||
31 | struct btrfs_root *root, | ||
32 | u64 objectid, u64 pos, | ||
33 | u64 disk_offset, u64 disk_num_bytes, | ||
34 | u64 num_bytes, u64 offset, u64 ram_bytes, | ||
35 | u8 compression, u8 encryption, u16 other_encoding) | ||
36 | { | ||
37 | int ret = 0; | ||
38 | struct btrfs_file_extent_item *item; | ||
39 | struct btrfs_key file_key; | ||
40 | struct btrfs_path *path; | ||
41 | struct extent_buffer *leaf; | ||
42 | |||
43 | path = btrfs_alloc_path(); | ||
44 | BUG_ON(!path); | ||
45 | file_key.objectid = objectid; | ||
46 | file_key.offset = pos; | ||
47 | btrfs_set_key_type(&file_key, BTRFS_EXTENT_DATA_KEY); | ||
48 | |||
49 | ret = btrfs_insert_empty_item(trans, root, path, &file_key, | ||
50 | sizeof(*item)); | ||
51 | if (ret < 0) | ||
52 | goto out; | ||
53 | BUG_ON(ret); | ||
54 | leaf = path->nodes[0]; | ||
55 | item = btrfs_item_ptr(leaf, path->slots[0], | ||
56 | struct btrfs_file_extent_item); | ||
57 | btrfs_set_file_extent_disk_bytenr(leaf, item, disk_offset); | ||
58 | btrfs_set_file_extent_disk_num_bytes(leaf, item, disk_num_bytes); | ||
59 | btrfs_set_file_extent_offset(leaf, item, offset); | ||
60 | btrfs_set_file_extent_num_bytes(leaf, item, num_bytes); | ||
61 | btrfs_set_file_extent_ram_bytes(leaf, item, ram_bytes); | ||
62 | btrfs_set_file_extent_generation(leaf, item, trans->transid); | ||
63 | btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG); | ||
64 | btrfs_set_file_extent_compression(leaf, item, compression); | ||
65 | btrfs_set_file_extent_encryption(leaf, item, encryption); | ||
66 | btrfs_set_file_extent_other_encoding(leaf, item, other_encoding); | ||
67 | |||
68 | btrfs_mark_buffer_dirty(leaf); | ||
69 | out: | ||
70 | btrfs_free_path(path); | ||
71 | return ret; | ||
72 | } | ||
73 | |||
74 | struct btrfs_csum_item *btrfs_lookup_csum(struct btrfs_trans_handle *trans, | ||
75 | struct btrfs_root *root, | ||
76 | struct btrfs_path *path, | ||
77 | u64 bytenr, int cow) | ||
78 | { | ||
79 | int ret; | ||
80 | struct btrfs_key file_key; | ||
81 | struct btrfs_key found_key; | ||
82 | struct btrfs_csum_item *item; | ||
83 | struct extent_buffer *leaf; | ||
84 | u64 csum_offset = 0; | ||
85 | u16 csum_size = | ||
86 | btrfs_super_csum_size(&root->fs_info->super_copy); | ||
87 | int csums_in_item; | ||
88 | |||
89 | file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; | ||
90 | file_key.offset = bytenr; | ||
91 | btrfs_set_key_type(&file_key, BTRFS_EXTENT_CSUM_KEY); | ||
92 | ret = btrfs_search_slot(trans, root, &file_key, path, 0, cow); | ||
93 | if (ret < 0) | ||
94 | goto fail; | ||
95 | leaf = path->nodes[0]; | ||
96 | if (ret > 0) { | ||
97 | ret = 1; | ||
98 | if (path->slots[0] == 0) | ||
99 | goto fail; | ||
100 | path->slots[0]--; | ||
101 | btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); | ||
102 | if (btrfs_key_type(&found_key) != BTRFS_EXTENT_CSUM_KEY) | ||
103 | goto fail; | ||
104 | |||
105 | csum_offset = (bytenr - found_key.offset) >> | ||
106 | root->fs_info->sb->s_blocksize_bits; | ||
107 | csums_in_item = btrfs_item_size_nr(leaf, path->slots[0]); | ||
108 | csums_in_item /= csum_size; | ||
109 | |||
110 | if (csum_offset >= csums_in_item) { | ||
111 | ret = -EFBIG; | ||
112 | goto fail; | ||
113 | } | ||
114 | } | ||
115 | item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item); | ||
116 | item = (struct btrfs_csum_item *)((unsigned char *)item + | ||
117 | csum_offset * csum_size); | ||
118 | return item; | ||
119 | fail: | ||
120 | if (ret > 0) | ||
121 | ret = -ENOENT; | ||
122 | return ERR_PTR(ret); | ||
123 | } | ||
124 | |||
125 | |||
126 | int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans, | ||
127 | struct btrfs_root *root, | ||
128 | struct btrfs_path *path, u64 objectid, | ||
129 | u64 offset, int mod) | ||
130 | { | ||
131 | int ret; | ||
132 | struct btrfs_key file_key; | ||
133 | int ins_len = mod < 0 ? -1 : 0; | ||
134 | int cow = mod != 0; | ||
135 | |||
136 | file_key.objectid = objectid; | ||
137 | file_key.offset = offset; | ||
138 | btrfs_set_key_type(&file_key, BTRFS_EXTENT_DATA_KEY); | ||
139 | ret = btrfs_search_slot(trans, root, &file_key, path, ins_len, cow); | ||
140 | return ret; | ||
141 | } | ||
142 | |||
143 | |||
144 | int btrfs_lookup_bio_sums(struct btrfs_root *root, struct inode *inode, | ||
145 | struct bio *bio, u32 *dst) | ||
146 | { | ||
147 | u32 sum; | ||
148 | struct bio_vec *bvec = bio->bi_io_vec; | ||
149 | int bio_index = 0; | ||
150 | u64 offset; | ||
151 | u64 item_start_offset = 0; | ||
152 | u64 item_last_offset = 0; | ||
153 | u64 disk_bytenr; | ||
154 | u32 diff; | ||
155 | u16 csum_size = | ||
156 | btrfs_super_csum_size(&root->fs_info->super_copy); | ||
157 | int ret; | ||
158 | struct btrfs_path *path; | ||
159 | struct btrfs_csum_item *item = NULL; | ||
160 | struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; | ||
161 | |||
162 | path = btrfs_alloc_path(); | ||
163 | if (bio->bi_size > PAGE_CACHE_SIZE * 8) | ||
164 | path->reada = 2; | ||
165 | |||
166 | WARN_ON(bio->bi_vcnt <= 0); | ||
167 | |||
168 | disk_bytenr = (u64)bio->bi_sector << 9; | ||
169 | while (bio_index < bio->bi_vcnt) { | ||
170 | offset = page_offset(bvec->bv_page) + bvec->bv_offset; | ||
171 | ret = btrfs_find_ordered_sum(inode, offset, disk_bytenr, &sum); | ||
172 | if (ret == 0) | ||
173 | goto found; | ||
174 | |||
175 | if (!item || disk_bytenr < item_start_offset || | ||
176 | disk_bytenr >= item_last_offset) { | ||
177 | struct btrfs_key found_key; | ||
178 | u32 item_size; | ||
179 | |||
180 | if (item) | ||
181 | btrfs_release_path(root, path); | ||
182 | item = btrfs_lookup_csum(NULL, root->fs_info->csum_root, | ||
183 | path, disk_bytenr, 0); | ||
184 | if (IS_ERR(item)) { | ||
185 | ret = PTR_ERR(item); | ||
186 | if (ret == -ENOENT || ret == -EFBIG) | ||
187 | ret = 0; | ||
188 | sum = 0; | ||
189 | if (BTRFS_I(inode)->root->root_key.objectid == | ||
190 | BTRFS_DATA_RELOC_TREE_OBJECTID) { | ||
191 | set_extent_bits(io_tree, offset, | ||
192 | offset + bvec->bv_len - 1, | ||
193 | EXTENT_NODATASUM, GFP_NOFS); | ||
194 | } else { | ||
195 | printk(KERN_INFO "btrfs no csum found " | ||
196 | "for inode %lu start %llu\n", | ||
197 | inode->i_ino, | ||
198 | (unsigned long long)offset); | ||
199 | } | ||
200 | item = NULL; | ||
201 | btrfs_release_path(root, path); | ||
202 | goto found; | ||
203 | } | ||
204 | btrfs_item_key_to_cpu(path->nodes[0], &found_key, | ||
205 | path->slots[0]); | ||
206 | |||
207 | item_start_offset = found_key.offset; | ||
208 | item_size = btrfs_item_size_nr(path->nodes[0], | ||
209 | path->slots[0]); | ||
210 | item_last_offset = item_start_offset + | ||
211 | (item_size / csum_size) * | ||
212 | root->sectorsize; | ||
213 | item = btrfs_item_ptr(path->nodes[0], path->slots[0], | ||
214 | struct btrfs_csum_item); | ||
215 | } | ||
216 | /* | ||
217 | * this byte range must be able to fit inside | ||
218 | * a single leaf so it will also fit inside a u32 | ||
219 | */ | ||
220 | diff = disk_bytenr - item_start_offset; | ||
221 | diff = diff / root->sectorsize; | ||
222 | diff = diff * csum_size; | ||
223 | |||
224 | read_extent_buffer(path->nodes[0], &sum, | ||
225 | ((unsigned long)item) + diff, | ||
226 | csum_size); | ||
227 | found: | ||
228 | if (dst) | ||
229 | *dst++ = sum; | ||
230 | else | ||
231 | set_state_private(io_tree, offset, sum); | ||
232 | disk_bytenr += bvec->bv_len; | ||
233 | bio_index++; | ||
234 | bvec++; | ||
235 | } | ||
236 | btrfs_free_path(path); | ||
237 | return 0; | ||
238 | } | ||
239 | |||
240 | int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end, | ||
241 | struct list_head *list) | ||
242 | { | ||
243 | struct btrfs_key key; | ||
244 | struct btrfs_path *path; | ||
245 | struct extent_buffer *leaf; | ||
246 | struct btrfs_ordered_sum *sums; | ||
247 | struct btrfs_sector_sum *sector_sum; | ||
248 | struct btrfs_csum_item *item; | ||
249 | unsigned long offset; | ||
250 | int ret; | ||
251 | size_t size; | ||
252 | u64 csum_end; | ||
253 | u16 csum_size = btrfs_super_csum_size(&root->fs_info->super_copy); | ||
254 | |||
255 | path = btrfs_alloc_path(); | ||
256 | BUG_ON(!path); | ||
257 | |||
258 | key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; | ||
259 | key.offset = start; | ||
260 | key.type = BTRFS_EXTENT_CSUM_KEY; | ||
261 | |||
262 | ret = btrfs_search_slot(NULL, root->fs_info->csum_root, | ||
263 | &key, path, 0, 0); | ||
264 | if (ret < 0) | ||
265 | goto fail; | ||
266 | if (ret > 0 && path->slots[0] > 0) { | ||
267 | leaf = path->nodes[0]; | ||
268 | btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); | ||
269 | if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID && | ||
270 | key.type == BTRFS_EXTENT_CSUM_KEY) { | ||
271 | offset = (start - key.offset) >> | ||
272 | root->fs_info->sb->s_blocksize_bits; | ||
273 | if (offset * csum_size < | ||
274 | btrfs_item_size_nr(leaf, path->slots[0] - 1)) | ||
275 | path->slots[0]--; | ||
276 | } | ||
277 | } | ||
278 | |||
279 | while (start <= end) { | ||
280 | leaf = path->nodes[0]; | ||
281 | if (path->slots[0] >= btrfs_header_nritems(leaf)) { | ||
282 | ret = btrfs_next_leaf(root->fs_info->csum_root, path); | ||
283 | if (ret < 0) | ||
284 | goto fail; | ||
285 | if (ret > 0) | ||
286 | break; | ||
287 | leaf = path->nodes[0]; | ||
288 | } | ||
289 | |||
290 | btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); | ||
291 | if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID || | ||
292 | key.type != BTRFS_EXTENT_CSUM_KEY) | ||
293 | break; | ||
294 | |||
295 | btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); | ||
296 | if (key.offset > end) | ||
297 | break; | ||
298 | |||
299 | if (key.offset > start) | ||
300 | start = key.offset; | ||
301 | |||
302 | size = btrfs_item_size_nr(leaf, path->slots[0]); | ||
303 | csum_end = key.offset + (size / csum_size) * root->sectorsize; | ||
304 | if (csum_end <= start) { | ||
305 | path->slots[0]++; | ||
306 | continue; | ||
307 | } | ||
308 | |||
309 | size = min(csum_end, end + 1) - start; | ||
310 | sums = kzalloc(btrfs_ordered_sum_size(root, size), GFP_NOFS); | ||
311 | BUG_ON(!sums); | ||
312 | |||
313 | sector_sum = sums->sums; | ||
314 | sums->bytenr = start; | ||
315 | sums->len = size; | ||
316 | |||
317 | offset = (start - key.offset) >> | ||
318 | root->fs_info->sb->s_blocksize_bits; | ||
319 | offset *= csum_size; | ||
320 | |||
321 | item = btrfs_item_ptr(path->nodes[0], path->slots[0], | ||
322 | struct btrfs_csum_item); | ||
323 | while (size > 0) { | ||
324 | read_extent_buffer(path->nodes[0], §or_sum->sum, | ||
325 | ((unsigned long)item) + offset, | ||
326 | csum_size); | ||
327 | sector_sum->bytenr = start; | ||
328 | |||
329 | size -= root->sectorsize; | ||
330 | start += root->sectorsize; | ||
331 | offset += csum_size; | ||
332 | sector_sum++; | ||
333 | } | ||
334 | list_add_tail(&sums->list, list); | ||
335 | |||
336 | path->slots[0]++; | ||
337 | } | ||
338 | ret = 0; | ||
339 | fail: | ||
340 | btrfs_free_path(path); | ||
341 | return ret; | ||
342 | } | ||
343 | |||
344 | int btrfs_csum_one_bio(struct btrfs_root *root, struct inode *inode, | ||
345 | struct bio *bio, u64 file_start, int contig) | ||
346 | { | ||
347 | struct btrfs_ordered_sum *sums; | ||
348 | struct btrfs_sector_sum *sector_sum; | ||
349 | struct btrfs_ordered_extent *ordered; | ||
350 | char *data; | ||
351 | struct bio_vec *bvec = bio->bi_io_vec; | ||
352 | int bio_index = 0; | ||
353 | unsigned long total_bytes = 0; | ||
354 | unsigned long this_sum_bytes = 0; | ||
355 | u64 offset; | ||
356 | u64 disk_bytenr; | ||
357 | |||
358 | WARN_ON(bio->bi_vcnt <= 0); | ||
359 | sums = kzalloc(btrfs_ordered_sum_size(root, bio->bi_size), GFP_NOFS); | ||
360 | if (!sums) | ||
361 | return -ENOMEM; | ||
362 | |||
363 | sector_sum = sums->sums; | ||
364 | disk_bytenr = (u64)bio->bi_sector << 9; | ||
365 | sums->len = bio->bi_size; | ||
366 | INIT_LIST_HEAD(&sums->list); | ||
367 | |||
368 | if (contig) | ||
369 | offset = file_start; | ||
370 | else | ||
371 | offset = page_offset(bvec->bv_page) + bvec->bv_offset; | ||
372 | |||
373 | ordered = btrfs_lookup_ordered_extent(inode, offset); | ||
374 | BUG_ON(!ordered); | ||
375 | sums->bytenr = ordered->start; | ||
376 | |||
377 | while (bio_index < bio->bi_vcnt) { | ||
378 | if (!contig) | ||
379 | offset = page_offset(bvec->bv_page) + bvec->bv_offset; | ||
380 | |||
381 | if (!contig && (offset >= ordered->file_offset + ordered->len || | ||
382 | offset < ordered->file_offset)) { | ||
383 | unsigned long bytes_left; | ||
384 | sums->len = this_sum_bytes; | ||
385 | this_sum_bytes = 0; | ||
386 | btrfs_add_ordered_sum(inode, ordered, sums); | ||
387 | btrfs_put_ordered_extent(ordered); | ||
388 | |||
389 | bytes_left = bio->bi_size - total_bytes; | ||
390 | |||
391 | sums = kzalloc(btrfs_ordered_sum_size(root, bytes_left), | ||
392 | GFP_NOFS); | ||
393 | BUG_ON(!sums); | ||
394 | sector_sum = sums->sums; | ||
395 | sums->len = bytes_left; | ||
396 | ordered = btrfs_lookup_ordered_extent(inode, offset); | ||
397 | BUG_ON(!ordered); | ||
398 | sums->bytenr = ordered->start; | ||
399 | } | ||
400 | |||
401 | data = kmap_atomic(bvec->bv_page, KM_USER0); | ||
402 | sector_sum->sum = ~(u32)0; | ||
403 | sector_sum->sum = btrfs_csum_data(root, | ||
404 | data + bvec->bv_offset, | ||
405 | sector_sum->sum, | ||
406 | bvec->bv_len); | ||
407 | kunmap_atomic(data, KM_USER0); | ||
408 | btrfs_csum_final(sector_sum->sum, | ||
409 | (char *)§or_sum->sum); | ||
410 | sector_sum->bytenr = disk_bytenr; | ||
411 | |||
412 | sector_sum++; | ||
413 | bio_index++; | ||
414 | total_bytes += bvec->bv_len; | ||
415 | this_sum_bytes += bvec->bv_len; | ||
416 | disk_bytenr += bvec->bv_len; | ||
417 | offset += bvec->bv_len; | ||
418 | bvec++; | ||
419 | } | ||
420 | this_sum_bytes = 0; | ||
421 | btrfs_add_ordered_sum(inode, ordered, sums); | ||
422 | btrfs_put_ordered_extent(ordered); | ||
423 | return 0; | ||
424 | } | ||
425 | |||
426 | /* | ||
427 | * helper function for csum removal, this expects the | ||
428 | * key to describe the csum pointed to by the path, and it expects | ||
429 | * the csum to overlap the range [bytenr, len] | ||
430 | * | ||
431 | * The csum should not be entirely contained in the range and the | ||
432 | * range should not be entirely contained in the csum. | ||
433 | * | ||
434 | * This calls btrfs_truncate_item with the correct args based on the | ||
435 | * overlap, and fixes up the key as required. | ||
436 | */ | ||
437 | static noinline int truncate_one_csum(struct btrfs_trans_handle *trans, | ||
438 | struct btrfs_root *root, | ||
439 | struct btrfs_path *path, | ||
440 | struct btrfs_key *key, | ||
441 | u64 bytenr, u64 len) | ||
442 | { | ||
443 | struct extent_buffer *leaf; | ||
444 | u16 csum_size = | ||
445 | btrfs_super_csum_size(&root->fs_info->super_copy); | ||
446 | u64 csum_end; | ||
447 | u64 end_byte = bytenr + len; | ||
448 | u32 blocksize_bits = root->fs_info->sb->s_blocksize_bits; | ||
449 | int ret; | ||
450 | |||
451 | leaf = path->nodes[0]; | ||
452 | csum_end = btrfs_item_size_nr(leaf, path->slots[0]) / csum_size; | ||
453 | csum_end <<= root->fs_info->sb->s_blocksize_bits; | ||
454 | csum_end += key->offset; | ||
455 | |||
456 | if (key->offset < bytenr && csum_end <= end_byte) { | ||
457 | /* | ||
458 | * [ bytenr - len ] | ||
459 | * [ ] | ||
460 | * [csum ] | ||
461 | * A simple truncate off the end of the item | ||
462 | */ | ||
463 | u32 new_size = (bytenr - key->offset) >> blocksize_bits; | ||
464 | new_size *= csum_size; | ||
465 | ret = btrfs_truncate_item(trans, root, path, new_size, 1); | ||
466 | BUG_ON(ret); | ||
467 | } else if (key->offset >= bytenr && csum_end > end_byte && | ||
468 | end_byte > key->offset) { | ||
469 | /* | ||
470 | * [ bytenr - len ] | ||
471 | * [ ] | ||
472 | * [csum ] | ||
473 | * we need to truncate from the beginning of the csum | ||
474 | */ | ||
475 | u32 new_size = (csum_end - end_byte) >> blocksize_bits; | ||
476 | new_size *= csum_size; | ||
477 | |||
478 | ret = btrfs_truncate_item(trans, root, path, new_size, 0); | ||
479 | BUG_ON(ret); | ||
480 | |||
481 | key->offset = end_byte; | ||
482 | ret = btrfs_set_item_key_safe(trans, root, path, key); | ||
483 | BUG_ON(ret); | ||
484 | } else { | ||
485 | BUG(); | ||
486 | } | ||
487 | return 0; | ||
488 | } | ||
489 | |||
490 | /* | ||
491 | * deletes the csum items from the csum tree for a given | ||
492 | * range of bytes. | ||
493 | */ | ||
494 | int btrfs_del_csums(struct btrfs_trans_handle *trans, | ||
495 | struct btrfs_root *root, u64 bytenr, u64 len) | ||
496 | { | ||
497 | struct btrfs_path *path; | ||
498 | struct btrfs_key key; | ||
499 | u64 end_byte = bytenr + len; | ||
500 | u64 csum_end; | ||
501 | struct extent_buffer *leaf; | ||
502 | int ret; | ||
503 | u16 csum_size = | ||
504 | btrfs_super_csum_size(&root->fs_info->super_copy); | ||
505 | int blocksize_bits = root->fs_info->sb->s_blocksize_bits; | ||
506 | |||
507 | root = root->fs_info->csum_root; | ||
508 | |||
509 | path = btrfs_alloc_path(); | ||
510 | |||
511 | while (1) { | ||
512 | key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; | ||
513 | key.offset = end_byte - 1; | ||
514 | key.type = BTRFS_EXTENT_CSUM_KEY; | ||
515 | |||
516 | ret = btrfs_search_slot(trans, root, &key, path, -1, 1); | ||
517 | if (ret > 0) { | ||
518 | if (path->slots[0] == 0) | ||
519 | goto out; | ||
520 | path->slots[0]--; | ||
521 | } | ||
522 | leaf = path->nodes[0]; | ||
523 | btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); | ||
524 | |||
525 | if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID || | ||
526 | key.type != BTRFS_EXTENT_CSUM_KEY) { | ||
527 | break; | ||
528 | } | ||
529 | |||
530 | if (key.offset >= end_byte) | ||
531 | break; | ||
532 | |||
533 | csum_end = btrfs_item_size_nr(leaf, path->slots[0]) / csum_size; | ||
534 | csum_end <<= blocksize_bits; | ||
535 | csum_end += key.offset; | ||
536 | |||
537 | /* this csum ends before we start, we're done */ | ||
538 | if (csum_end <= bytenr) | ||
539 | break; | ||
540 | |||
541 | /* delete the entire item, it is inside our range */ | ||
542 | if (key.offset >= bytenr && csum_end <= end_byte) { | ||
543 | ret = btrfs_del_item(trans, root, path); | ||
544 | BUG_ON(ret); | ||
545 | if (key.offset == bytenr) | ||
546 | break; | ||
547 | } else if (key.offset < bytenr && csum_end > end_byte) { | ||
548 | unsigned long offset; | ||
549 | unsigned long shift_len; | ||
550 | unsigned long item_offset; | ||
551 | /* | ||
552 | * [ bytenr - len ] | ||
553 | * [csum ] | ||
554 | * | ||
555 | * Our bytes are in the middle of the csum, | ||
556 | * we need to split this item and insert a new one. | ||
557 | * | ||
558 | * But we can't drop the path because the | ||
559 | * csum could change, get removed, extended etc. | ||
560 | * | ||
561 | * The trick here is the max size of a csum item leaves | ||
562 | * enough room in the tree block for a single | ||
563 | * item header. So, we split the item in place, | ||
564 | * adding a new header pointing to the existing | ||
565 | * bytes. Then we loop around again and we have | ||
566 | * a nicely formed csum item that we can neatly | ||
567 | * truncate. | ||
568 | */ | ||
569 | offset = (bytenr - key.offset) >> blocksize_bits; | ||
570 | offset *= csum_size; | ||
571 | |||
572 | shift_len = (len >> blocksize_bits) * csum_size; | ||
573 | |||
574 | item_offset = btrfs_item_ptr_offset(leaf, | ||
575 | path->slots[0]); | ||
576 | |||
577 | memset_extent_buffer(leaf, 0, item_offset + offset, | ||
578 | shift_len); | ||
579 | key.offset = bytenr; | ||
580 | |||
581 | /* | ||
582 | * btrfs_split_item returns -EAGAIN when the | ||
583 | * item changed size or key | ||
584 | */ | ||
585 | ret = btrfs_split_item(trans, root, path, &key, offset); | ||
586 | BUG_ON(ret && ret != -EAGAIN); | ||
587 | |||
588 | key.offset = end_byte - 1; | ||
589 | } else { | ||
590 | ret = truncate_one_csum(trans, root, path, | ||
591 | &key, bytenr, len); | ||
592 | BUG_ON(ret); | ||
593 | if (key.offset < bytenr) | ||
594 | break; | ||
595 | } | ||
596 | btrfs_release_path(root, path); | ||
597 | } | ||
598 | out: | ||
599 | btrfs_free_path(path); | ||
600 | return 0; | ||
601 | } | ||
602 | |||
603 | int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans, | ||
604 | struct btrfs_root *root, | ||
605 | struct btrfs_ordered_sum *sums) | ||
606 | { | ||
607 | u64 bytenr; | ||
608 | int ret; | ||
609 | struct btrfs_key file_key; | ||
610 | struct btrfs_key found_key; | ||
611 | u64 next_offset; | ||
612 | u64 total_bytes = 0; | ||
613 | int found_next; | ||
614 | struct btrfs_path *path; | ||
615 | struct btrfs_csum_item *item; | ||
616 | struct btrfs_csum_item *item_end; | ||
617 | struct extent_buffer *leaf = NULL; | ||
618 | u64 csum_offset; | ||
619 | struct btrfs_sector_sum *sector_sum; | ||
620 | u32 nritems; | ||
621 | u32 ins_size; | ||
622 | char *eb_map; | ||
623 | char *eb_token; | ||
624 | unsigned long map_len; | ||
625 | unsigned long map_start; | ||
626 | u16 csum_size = | ||
627 | btrfs_super_csum_size(&root->fs_info->super_copy); | ||
628 | |||
629 | path = btrfs_alloc_path(); | ||
630 | BUG_ON(!path); | ||
631 | sector_sum = sums->sums; | ||
632 | again: | ||
633 | next_offset = (u64)-1; | ||
634 | found_next = 0; | ||
635 | file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; | ||
636 | file_key.offset = sector_sum->bytenr; | ||
637 | bytenr = sector_sum->bytenr; | ||
638 | btrfs_set_key_type(&file_key, BTRFS_EXTENT_CSUM_KEY); | ||
639 | |||
640 | item = btrfs_lookup_csum(trans, root, path, sector_sum->bytenr, 1); | ||
641 | if (!IS_ERR(item)) { | ||
642 | leaf = path->nodes[0]; | ||
643 | ret = 0; | ||
644 | goto found; | ||
645 | } | ||
646 | ret = PTR_ERR(item); | ||
647 | if (ret == -EFBIG) { | ||
648 | u32 item_size; | ||
649 | /* we found one, but it isn't big enough yet */ | ||
650 | leaf = path->nodes[0]; | ||
651 | item_size = btrfs_item_size_nr(leaf, path->slots[0]); | ||
652 | if ((item_size / csum_size) >= | ||
653 | MAX_CSUM_ITEMS(root, csum_size)) { | ||
654 | /* already at max size, make a new one */ | ||
655 | goto insert; | ||
656 | } | ||
657 | } else { | ||
658 | int slot = path->slots[0] + 1; | ||
659 | /* we didn't find a csum item, insert one */ | ||
660 | nritems = btrfs_header_nritems(path->nodes[0]); | ||
661 | if (path->slots[0] >= nritems - 1) { | ||
662 | ret = btrfs_next_leaf(root, path); | ||
663 | if (ret == 1) | ||
664 | found_next = 1; | ||
665 | if (ret != 0) | ||
666 | goto insert; | ||
667 | slot = 0; | ||
668 | } | ||
669 | btrfs_item_key_to_cpu(path->nodes[0], &found_key, slot); | ||
670 | if (found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID || | ||
671 | found_key.type != BTRFS_EXTENT_CSUM_KEY) { | ||
672 | found_next = 1; | ||
673 | goto insert; | ||
674 | } | ||
675 | next_offset = found_key.offset; | ||
676 | found_next = 1; | ||
677 | goto insert; | ||
678 | } | ||
679 | |||
680 | /* | ||
681 | * at this point, we know the tree has an item, but it isn't big | ||
682 | * enough yet to put our csum in. Grow it | ||
683 | */ | ||
684 | btrfs_release_path(root, path); | ||
685 | ret = btrfs_search_slot(trans, root, &file_key, path, | ||
686 | csum_size, 1); | ||
687 | if (ret < 0) | ||
688 | goto fail_unlock; | ||
689 | |||
690 | if (ret > 0) { | ||
691 | if (path->slots[0] == 0) | ||
692 | goto insert; | ||
693 | path->slots[0]--; | ||
694 | } | ||
695 | |||
696 | leaf = path->nodes[0]; | ||
697 | btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); | ||
698 | csum_offset = (bytenr - found_key.offset) >> | ||
699 | root->fs_info->sb->s_blocksize_bits; | ||
700 | |||
701 | if (btrfs_key_type(&found_key) != BTRFS_EXTENT_CSUM_KEY || | ||
702 | found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID || | ||
703 | csum_offset >= MAX_CSUM_ITEMS(root, csum_size)) { | ||
704 | goto insert; | ||
705 | } | ||
706 | |||
707 | if (csum_offset >= btrfs_item_size_nr(leaf, path->slots[0]) / | ||
708 | csum_size) { | ||
709 | u32 diff = (csum_offset + 1) * csum_size; | ||
710 | |||
711 | /* | ||
712 | * is the item big enough already? we dropped our lock | ||
713 | * before and need to recheck | ||
714 | */ | ||
715 | if (diff < btrfs_item_size_nr(leaf, path->slots[0])) | ||
716 | goto csum; | ||
717 | |||
718 | diff = diff - btrfs_item_size_nr(leaf, path->slots[0]); | ||
719 | if (diff != csum_size) | ||
720 | goto insert; | ||
721 | |||
722 | ret = btrfs_extend_item(trans, root, path, diff); | ||
723 | BUG_ON(ret); | ||
724 | goto csum; | ||
725 | } | ||
726 | |||
727 | insert: | ||
728 | btrfs_release_path(root, path); | ||
729 | csum_offset = 0; | ||
730 | if (found_next) { | ||
731 | u64 tmp = total_bytes + root->sectorsize; | ||
732 | u64 next_sector = sector_sum->bytenr; | ||
733 | struct btrfs_sector_sum *next = sector_sum + 1; | ||
734 | |||
735 | while (tmp < sums->len) { | ||
736 | if (next_sector + root->sectorsize != next->bytenr) | ||
737 | break; | ||
738 | tmp += root->sectorsize; | ||
739 | next_sector = next->bytenr; | ||
740 | next++; | ||
741 | } | ||
742 | tmp = min(tmp, next_offset - file_key.offset); | ||
743 | tmp >>= root->fs_info->sb->s_blocksize_bits; | ||
744 | tmp = max((u64)1, tmp); | ||
745 | tmp = min(tmp, (u64)MAX_CSUM_ITEMS(root, csum_size)); | ||
746 | ins_size = csum_size * tmp; | ||
747 | } else { | ||
748 | ins_size = csum_size; | ||
749 | } | ||
750 | ret = btrfs_insert_empty_item(trans, root, path, &file_key, | ||
751 | ins_size); | ||
752 | if (ret < 0) | ||
753 | goto fail_unlock; | ||
754 | if (ret != 0) { | ||
755 | WARN_ON(1); | ||
756 | goto fail_unlock; | ||
757 | } | ||
758 | csum: | ||
759 | leaf = path->nodes[0]; | ||
760 | item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item); | ||
761 | ret = 0; | ||
762 | item = (struct btrfs_csum_item *)((unsigned char *)item + | ||
763 | csum_offset * csum_size); | ||
764 | found: | ||
765 | item_end = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item); | ||
766 | item_end = (struct btrfs_csum_item *)((unsigned char *)item_end + | ||
767 | btrfs_item_size_nr(leaf, path->slots[0])); | ||
768 | eb_token = NULL; | ||
769 | cond_resched(); | ||
770 | next_sector: | ||
771 | |||
772 | if (!eb_token || | ||
773 | (unsigned long)item + csum_size >= map_start + map_len) { | ||
774 | int err; | ||
775 | |||
776 | if (eb_token) | ||
777 | unmap_extent_buffer(leaf, eb_token, KM_USER1); | ||
778 | eb_token = NULL; | ||
779 | err = map_private_extent_buffer(leaf, (unsigned long)item, | ||
780 | csum_size, | ||
781 | &eb_token, &eb_map, | ||
782 | &map_start, &map_len, KM_USER1); | ||
783 | if (err) | ||
784 | eb_token = NULL; | ||
785 | } | ||
786 | if (eb_token) { | ||
787 | memcpy(eb_token + ((unsigned long)item & (PAGE_CACHE_SIZE - 1)), | ||
788 | §or_sum->sum, csum_size); | ||
789 | } else { | ||
790 | write_extent_buffer(leaf, §or_sum->sum, | ||
791 | (unsigned long)item, csum_size); | ||
792 | } | ||
793 | |||
794 | total_bytes += root->sectorsize; | ||
795 | sector_sum++; | ||
796 | if (total_bytes < sums->len) { | ||
797 | item = (struct btrfs_csum_item *)((char *)item + | ||
798 | csum_size); | ||
799 | if (item < item_end && bytenr + PAGE_CACHE_SIZE == | ||
800 | sector_sum->bytenr) { | ||
801 | bytenr = sector_sum->bytenr; | ||
802 | goto next_sector; | ||
803 | } | ||
804 | } | ||
805 | if (eb_token) { | ||
806 | unmap_extent_buffer(leaf, eb_token, KM_USER1); | ||
807 | eb_token = NULL; | ||
808 | } | ||
809 | btrfs_mark_buffer_dirty(path->nodes[0]); | ||
810 | cond_resched(); | ||
811 | if (total_bytes < sums->len) { | ||
812 | btrfs_release_path(root, path); | ||
813 | goto again; | ||
814 | } | ||
815 | out: | ||
816 | btrfs_free_path(path); | ||
817 | return ret; | ||
818 | |||
819 | fail_unlock: | ||
820 | goto out; | ||
821 | } | ||
diff --git a/fs/btrfs/file.c b/fs/btrfs/file.c new file mode 100644 index 000000000000..0e3a13a45653 --- /dev/null +++ b/fs/btrfs/file.c | |||
@@ -0,0 +1,1292 @@ | |||
1 | /* | ||
2 | * Copyright (C) 2007 Oracle. All rights reserved. | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or | ||
5 | * modify it under the terms of the GNU General Public | ||
6 | * License v2 as published by the Free Software Foundation. | ||
7 | * | ||
8 | * This program is distributed in the hope that it will be useful, | ||
9 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | ||
11 | * General Public License for more details. | ||
12 | * | ||
13 | * You should have received a copy of the GNU General Public | ||
14 | * License along with this program; if not, write to the | ||
15 | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | ||
16 | * Boston, MA 021110-1307, USA. | ||
17 | */ | ||
18 | |||
19 | #include <linux/fs.h> | ||
20 | #include <linux/pagemap.h> | ||
21 | #include <linux/highmem.h> | ||
22 | #include <linux/time.h> | ||
23 | #include <linux/init.h> | ||
24 | #include <linux/string.h> | ||
25 | #include <linux/smp_lock.h> | ||
26 | #include <linux/backing-dev.h> | ||
27 | #include <linux/mpage.h> | ||
28 | #include <linux/swap.h> | ||
29 | #include <linux/writeback.h> | ||
30 | #include <linux/statfs.h> | ||
31 | #include <linux/compat.h> | ||
32 | #include <linux/version.h> | ||
33 | #include "ctree.h" | ||
34 | #include "disk-io.h" | ||
35 | #include "transaction.h" | ||
36 | #include "btrfs_inode.h" | ||
37 | #include "ioctl.h" | ||
38 | #include "print-tree.h" | ||
39 | #include "tree-log.h" | ||
40 | #include "locking.h" | ||
41 | #include "compat.h" | ||
42 | |||
43 | |||
44 | /* simple helper to fault in pages and copy. This should go away | ||
45 | * and be replaced with calls into generic code. | ||
46 | */ | ||
47 | static noinline int btrfs_copy_from_user(loff_t pos, int num_pages, | ||
48 | int write_bytes, | ||
49 | struct page **prepared_pages, | ||
50 | const char __user *buf) | ||
51 | { | ||
52 | long page_fault = 0; | ||
53 | int i; | ||
54 | int offset = pos & (PAGE_CACHE_SIZE - 1); | ||
55 | |||
56 | for (i = 0; i < num_pages && write_bytes > 0; i++, offset = 0) { | ||
57 | size_t count = min_t(size_t, | ||
58 | PAGE_CACHE_SIZE - offset, write_bytes); | ||
59 | struct page *page = prepared_pages[i]; | ||
60 | fault_in_pages_readable(buf, count); | ||
61 | |||
62 | /* Copy data from userspace to the current page */ | ||
63 | kmap(page); | ||
64 | page_fault = __copy_from_user(page_address(page) + offset, | ||
65 | buf, count); | ||
66 | /* Flush processor's dcache for this page */ | ||
67 | flush_dcache_page(page); | ||
68 | kunmap(page); | ||
69 | buf += count; | ||
70 | write_bytes -= count; | ||
71 | |||
72 | if (page_fault) | ||
73 | break; | ||
74 | } | ||
75 | return page_fault ? -EFAULT : 0; | ||
76 | } | ||
77 | |||
78 | /* | ||
79 | * unlocks pages after btrfs_file_write is done with them | ||
80 | */ | ||
81 | static noinline void btrfs_drop_pages(struct page **pages, size_t num_pages) | ||
82 | { | ||
83 | size_t i; | ||
84 | for (i = 0; i < num_pages; i++) { | ||
85 | if (!pages[i]) | ||
86 | break; | ||
87 | /* page checked is some magic around finding pages that | ||
88 | * have been modified without going through btrfs_set_page_dirty | ||
89 | * clear it here | ||
90 | */ | ||
91 | ClearPageChecked(pages[i]); | ||
92 | unlock_page(pages[i]); | ||
93 | mark_page_accessed(pages[i]); | ||
94 | page_cache_release(pages[i]); | ||
95 | } | ||
96 | } | ||
97 | |||
98 | /* | ||
99 | * after copy_from_user, pages need to be dirtied and we need to make | ||
100 | * sure holes are created between the current EOF and the start of | ||
101 | * any next extents (if required). | ||
102 | * | ||
103 | * this also makes the decision about creating an inline extent vs | ||
104 | * doing real data extents, marking pages dirty and delalloc as required. | ||
105 | */ | ||
106 | static noinline int dirty_and_release_pages(struct btrfs_trans_handle *trans, | ||
107 | struct btrfs_root *root, | ||
108 | struct file *file, | ||
109 | struct page **pages, | ||
110 | size_t num_pages, | ||
111 | loff_t pos, | ||
112 | size_t write_bytes) | ||
113 | { | ||
114 | int err = 0; | ||
115 | int i; | ||
116 | struct inode *inode = fdentry(file)->d_inode; | ||
117 | struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; | ||
118 | u64 hint_byte; | ||
119 | u64 num_bytes; | ||
120 | u64 start_pos; | ||
121 | u64 end_of_last_block; | ||
122 | u64 end_pos = pos + write_bytes; | ||
123 | loff_t isize = i_size_read(inode); | ||
124 | |||
125 | start_pos = pos & ~((u64)root->sectorsize - 1); | ||
126 | num_bytes = (write_bytes + pos - start_pos + | ||
127 | root->sectorsize - 1) & ~((u64)root->sectorsize - 1); | ||
128 | |||
129 | end_of_last_block = start_pos + num_bytes - 1; | ||
130 | |||
131 | lock_extent(io_tree, start_pos, end_of_last_block, GFP_NOFS); | ||
132 | trans = btrfs_join_transaction(root, 1); | ||
133 | if (!trans) { | ||
134 | err = -ENOMEM; | ||
135 | goto out_unlock; | ||
136 | } | ||
137 | btrfs_set_trans_block_group(trans, inode); | ||
138 | hint_byte = 0; | ||
139 | |||
140 | set_extent_uptodate(io_tree, start_pos, end_of_last_block, GFP_NOFS); | ||
141 | |||
142 | /* check for reserved extents on each page, we don't want | ||
143 | * to reset the delalloc bit on things that already have | ||
144 | * extents reserved. | ||
145 | */ | ||
146 | btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block); | ||
147 | for (i = 0; i < num_pages; i++) { | ||
148 | struct page *p = pages[i]; | ||
149 | SetPageUptodate(p); | ||
150 | ClearPageChecked(p); | ||
151 | set_page_dirty(p); | ||
152 | } | ||
153 | if (end_pos > isize) { | ||
154 | i_size_write(inode, end_pos); | ||
155 | btrfs_update_inode(trans, root, inode); | ||
156 | } | ||
157 | err = btrfs_end_transaction(trans, root); | ||
158 | out_unlock: | ||
159 | unlock_extent(io_tree, start_pos, end_of_last_block, GFP_NOFS); | ||
160 | return err; | ||
161 | } | ||
162 | |||
163 | /* | ||
164 | * this drops all the extents in the cache that intersect the range | ||
165 | * [start, end]. Existing extents are split as required. | ||
166 | */ | ||
167 | int btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end, | ||
168 | int skip_pinned) | ||
169 | { | ||
170 | struct extent_map *em; | ||
171 | struct extent_map *split = NULL; | ||
172 | struct extent_map *split2 = NULL; | ||
173 | struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; | ||
174 | u64 len = end - start + 1; | ||
175 | int ret; | ||
176 | int testend = 1; | ||
177 | unsigned long flags; | ||
178 | int compressed = 0; | ||
179 | |||
180 | WARN_ON(end < start); | ||
181 | if (end == (u64)-1) { | ||
182 | len = (u64)-1; | ||
183 | testend = 0; | ||
184 | } | ||
185 | while (1) { | ||
186 | if (!split) | ||
187 | split = alloc_extent_map(GFP_NOFS); | ||
188 | if (!split2) | ||
189 | split2 = alloc_extent_map(GFP_NOFS); | ||
190 | |||
191 | spin_lock(&em_tree->lock); | ||
192 | em = lookup_extent_mapping(em_tree, start, len); | ||
193 | if (!em) { | ||
194 | spin_unlock(&em_tree->lock); | ||
195 | break; | ||
196 | } | ||
197 | flags = em->flags; | ||
198 | if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) { | ||
199 | spin_unlock(&em_tree->lock); | ||
200 | if (em->start <= start && | ||
201 | (!testend || em->start + em->len >= start + len)) { | ||
202 | free_extent_map(em); | ||
203 | break; | ||
204 | } | ||
205 | if (start < em->start) { | ||
206 | len = em->start - start; | ||
207 | } else { | ||
208 | len = start + len - (em->start + em->len); | ||
209 | start = em->start + em->len; | ||
210 | } | ||
211 | free_extent_map(em); | ||
212 | continue; | ||
213 | } | ||
214 | compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); | ||
215 | clear_bit(EXTENT_FLAG_PINNED, &em->flags); | ||
216 | remove_extent_mapping(em_tree, em); | ||
217 | |||
218 | if (em->block_start < EXTENT_MAP_LAST_BYTE && | ||
219 | em->start < start) { | ||
220 | split->start = em->start; | ||
221 | split->len = start - em->start; | ||
222 | split->orig_start = em->orig_start; | ||
223 | split->block_start = em->block_start; | ||
224 | |||
225 | if (compressed) | ||
226 | split->block_len = em->block_len; | ||
227 | else | ||
228 | split->block_len = split->len; | ||
229 | |||
230 | split->bdev = em->bdev; | ||
231 | split->flags = flags; | ||
232 | ret = add_extent_mapping(em_tree, split); | ||
233 | BUG_ON(ret); | ||
234 | free_extent_map(split); | ||
235 | split = split2; | ||
236 | split2 = NULL; | ||
237 | } | ||
238 | if (em->block_start < EXTENT_MAP_LAST_BYTE && | ||
239 | testend && em->start + em->len > start + len) { | ||
240 | u64 diff = start + len - em->start; | ||
241 | |||
242 | split->start = start + len; | ||
243 | split->len = em->start + em->len - (start + len); | ||
244 | split->bdev = em->bdev; | ||
245 | split->flags = flags; | ||
246 | |||
247 | if (compressed) { | ||
248 | split->block_len = em->block_len; | ||
249 | split->block_start = em->block_start; | ||
250 | split->orig_start = em->orig_start; | ||
251 | } else { | ||
252 | split->block_len = split->len; | ||
253 | split->block_start = em->block_start + diff; | ||
254 | split->orig_start = split->start; | ||
255 | } | ||
256 | |||
257 | ret = add_extent_mapping(em_tree, split); | ||
258 | BUG_ON(ret); | ||
259 | free_extent_map(split); | ||
260 | split = NULL; | ||
261 | } | ||
262 | spin_unlock(&em_tree->lock); | ||
263 | |||
264 | /* once for us */ | ||
265 | free_extent_map(em); | ||
266 | /* once for the tree*/ | ||
267 | free_extent_map(em); | ||
268 | } | ||
269 | if (split) | ||
270 | free_extent_map(split); | ||
271 | if (split2) | ||
272 | free_extent_map(split2); | ||
273 | return 0; | ||
274 | } | ||
275 | |||
276 | int btrfs_check_file(struct btrfs_root *root, struct inode *inode) | ||
277 | { | ||
278 | return 0; | ||
279 | #if 0 | ||
280 | struct btrfs_path *path; | ||
281 | struct btrfs_key found_key; | ||
282 | struct extent_buffer *leaf; | ||
283 | struct btrfs_file_extent_item *extent; | ||
284 | u64 last_offset = 0; | ||
285 | int nritems; | ||
286 | int slot; | ||
287 | int found_type; | ||
288 | int ret; | ||
289 | int err = 0; | ||
290 | u64 extent_end = 0; | ||
291 | |||
292 | path = btrfs_alloc_path(); | ||
293 | ret = btrfs_lookup_file_extent(NULL, root, path, inode->i_ino, | ||
294 | last_offset, 0); | ||
295 | while (1) { | ||
296 | nritems = btrfs_header_nritems(path->nodes[0]); | ||
297 | if (path->slots[0] >= nritems) { | ||
298 | ret = btrfs_next_leaf(root, path); | ||
299 | if (ret) | ||
300 | goto out; | ||
301 | nritems = btrfs_header_nritems(path->nodes[0]); | ||
302 | } | ||
303 | slot = path->slots[0]; | ||
304 | leaf = path->nodes[0]; | ||
305 | btrfs_item_key_to_cpu(leaf, &found_key, slot); | ||
306 | if (found_key.objectid != inode->i_ino) | ||
307 | break; | ||
308 | if (found_key.type != BTRFS_EXTENT_DATA_KEY) | ||
309 | goto out; | ||
310 | |||
311 | if (found_key.offset < last_offset) { | ||
312 | WARN_ON(1); | ||
313 | btrfs_print_leaf(root, leaf); | ||
314 | printk(KERN_ERR "inode %lu found offset %llu " | ||
315 | "expected %llu\n", inode->i_ino, | ||
316 | (unsigned long long)found_key.offset, | ||
317 | (unsigned long long)last_offset); | ||
318 | err = 1; | ||
319 | goto out; | ||
320 | } | ||
321 | extent = btrfs_item_ptr(leaf, slot, | ||
322 | struct btrfs_file_extent_item); | ||
323 | found_type = btrfs_file_extent_type(leaf, extent); | ||
324 | if (found_type == BTRFS_FILE_EXTENT_REG) { | ||
325 | extent_end = found_key.offset + | ||
326 | btrfs_file_extent_num_bytes(leaf, extent); | ||
327 | } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { | ||
328 | struct btrfs_item *item; | ||
329 | item = btrfs_item_nr(leaf, slot); | ||
330 | extent_end = found_key.offset + | ||
331 | btrfs_file_extent_inline_len(leaf, extent); | ||
332 | extent_end = (extent_end + root->sectorsize - 1) & | ||
333 | ~((u64)root->sectorsize - 1); | ||
334 | } | ||
335 | last_offset = extent_end; | ||
336 | path->slots[0]++; | ||
337 | } | ||
338 | if (0 && last_offset < inode->i_size) { | ||
339 | WARN_ON(1); | ||
340 | btrfs_print_leaf(root, leaf); | ||
341 | printk(KERN_ERR "inode %lu found offset %llu size %llu\n", | ||
342 | inode->i_ino, (unsigned long long)last_offset, | ||
343 | (unsigned long long)inode->i_size); | ||
344 | err = 1; | ||
345 | |||
346 | } | ||
347 | out: | ||
348 | btrfs_free_path(path); | ||
349 | return err; | ||
350 | #endif | ||
351 | } | ||
352 | |||
353 | /* | ||
354 | * this is very complex, but the basic idea is to drop all extents | ||
355 | * in the range start - end. hint_block is filled in with a block number | ||
356 | * that would be a good hint to the block allocator for this file. | ||
357 | * | ||
358 | * If an extent intersects the range but is not entirely inside the range | ||
359 | * it is either truncated or split. Anything entirely inside the range | ||
360 | * is deleted from the tree. | ||
361 | * | ||
362 | * inline_limit is used to tell this code which offsets in the file to keep | ||
363 | * if they contain inline extents. | ||
364 | */ | ||
365 | noinline int btrfs_drop_extents(struct btrfs_trans_handle *trans, | ||
366 | struct btrfs_root *root, struct inode *inode, | ||
367 | u64 start, u64 end, u64 inline_limit, u64 *hint_byte) | ||
368 | { | ||
369 | u64 extent_end = 0; | ||
370 | u64 locked_end = end; | ||
371 | u64 search_start = start; | ||
372 | u64 leaf_start; | ||
373 | u64 ram_bytes = 0; | ||
374 | u64 orig_parent = 0; | ||
375 | u64 disk_bytenr = 0; | ||
376 | u8 compression; | ||
377 | u8 encryption; | ||
378 | u16 other_encoding = 0; | ||
379 | u64 root_gen; | ||
380 | u64 root_owner; | ||
381 | struct extent_buffer *leaf; | ||
382 | struct btrfs_file_extent_item *extent; | ||
383 | struct btrfs_path *path; | ||
384 | struct btrfs_key key; | ||
385 | struct btrfs_file_extent_item old; | ||
386 | int keep; | ||
387 | int slot; | ||
388 | int bookend; | ||
389 | int found_type = 0; | ||
390 | int found_extent; | ||
391 | int found_inline; | ||
392 | int recow; | ||
393 | int ret; | ||
394 | |||
395 | inline_limit = 0; | ||
396 | btrfs_drop_extent_cache(inode, start, end - 1, 0); | ||
397 | |||
398 | path = btrfs_alloc_path(); | ||
399 | if (!path) | ||
400 | return -ENOMEM; | ||
401 | while (1) { | ||
402 | recow = 0; | ||
403 | btrfs_release_path(root, path); | ||
404 | ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino, | ||
405 | search_start, -1); | ||
406 | if (ret < 0) | ||
407 | goto out; | ||
408 | if (ret > 0) { | ||
409 | if (path->slots[0] == 0) { | ||
410 | ret = 0; | ||
411 | goto out; | ||
412 | } | ||
413 | path->slots[0]--; | ||
414 | } | ||
415 | next_slot: | ||
416 | keep = 0; | ||
417 | bookend = 0; | ||
418 | found_extent = 0; | ||
419 | found_inline = 0; | ||
420 | leaf_start = 0; | ||
421 | root_gen = 0; | ||
422 | root_owner = 0; | ||
423 | compression = 0; | ||
424 | encryption = 0; | ||
425 | extent = NULL; | ||
426 | leaf = path->nodes[0]; | ||
427 | slot = path->slots[0]; | ||
428 | ret = 0; | ||
429 | btrfs_item_key_to_cpu(leaf, &key, slot); | ||
430 | if (btrfs_key_type(&key) == BTRFS_EXTENT_DATA_KEY && | ||
431 | key.offset >= end) { | ||
432 | goto out; | ||
433 | } | ||
434 | if (btrfs_key_type(&key) > BTRFS_EXTENT_DATA_KEY || | ||
435 | key.objectid != inode->i_ino) { | ||
436 | goto out; | ||
437 | } | ||
438 | if (recow) { | ||
439 | search_start = max(key.offset, start); | ||
440 | continue; | ||
441 | } | ||
442 | if (btrfs_key_type(&key) == BTRFS_EXTENT_DATA_KEY) { | ||
443 | extent = btrfs_item_ptr(leaf, slot, | ||
444 | struct btrfs_file_extent_item); | ||
445 | found_type = btrfs_file_extent_type(leaf, extent); | ||
446 | compression = btrfs_file_extent_compression(leaf, | ||
447 | extent); | ||
448 | encryption = btrfs_file_extent_encryption(leaf, | ||
449 | extent); | ||
450 | other_encoding = btrfs_file_extent_other_encoding(leaf, | ||
451 | extent); | ||
452 | if (found_type == BTRFS_FILE_EXTENT_REG || | ||
453 | found_type == BTRFS_FILE_EXTENT_PREALLOC) { | ||
454 | extent_end = | ||
455 | btrfs_file_extent_disk_bytenr(leaf, | ||
456 | extent); | ||
457 | if (extent_end) | ||
458 | *hint_byte = extent_end; | ||
459 | |||
460 | extent_end = key.offset + | ||
461 | btrfs_file_extent_num_bytes(leaf, extent); | ||
462 | ram_bytes = btrfs_file_extent_ram_bytes(leaf, | ||
463 | extent); | ||
464 | found_extent = 1; | ||
465 | } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { | ||
466 | found_inline = 1; | ||
467 | extent_end = key.offset + | ||
468 | btrfs_file_extent_inline_len(leaf, extent); | ||
469 | } | ||
470 | } else { | ||
471 | extent_end = search_start; | ||
472 | } | ||
473 | |||
474 | /* we found nothing we can drop */ | ||
475 | if ((!found_extent && !found_inline) || | ||
476 | search_start >= extent_end) { | ||
477 | int nextret; | ||
478 | u32 nritems; | ||
479 | nritems = btrfs_header_nritems(leaf); | ||
480 | if (slot >= nritems - 1) { | ||
481 | nextret = btrfs_next_leaf(root, path); | ||
482 | if (nextret) | ||
483 | goto out; | ||
484 | recow = 1; | ||
485 | } else { | ||
486 | path->slots[0]++; | ||
487 | } | ||
488 | goto next_slot; | ||
489 | } | ||
490 | |||
491 | if (end <= extent_end && start >= key.offset && found_inline) | ||
492 | *hint_byte = EXTENT_MAP_INLINE; | ||
493 | |||
494 | if (found_extent) { | ||
495 | read_extent_buffer(leaf, &old, (unsigned long)extent, | ||
496 | sizeof(old)); | ||
497 | root_gen = btrfs_header_generation(leaf); | ||
498 | root_owner = btrfs_header_owner(leaf); | ||
499 | leaf_start = leaf->start; | ||
500 | } | ||
501 | |||
502 | if (end < extent_end && end >= key.offset) { | ||
503 | bookend = 1; | ||
504 | if (found_inline && start <= key.offset) | ||
505 | keep = 1; | ||
506 | } | ||
507 | |||
508 | if (bookend && found_extent) { | ||
509 | if (locked_end < extent_end) { | ||
510 | ret = try_lock_extent(&BTRFS_I(inode)->io_tree, | ||
511 | locked_end, extent_end - 1, | ||
512 | GFP_NOFS); | ||
513 | if (!ret) { | ||
514 | btrfs_release_path(root, path); | ||
515 | lock_extent(&BTRFS_I(inode)->io_tree, | ||
516 | locked_end, extent_end - 1, | ||
517 | GFP_NOFS); | ||
518 | locked_end = extent_end; | ||
519 | continue; | ||
520 | } | ||
521 | locked_end = extent_end; | ||
522 | } | ||
523 | orig_parent = path->nodes[0]->start; | ||
524 | disk_bytenr = le64_to_cpu(old.disk_bytenr); | ||
525 | if (disk_bytenr != 0) { | ||
526 | ret = btrfs_inc_extent_ref(trans, root, | ||
527 | disk_bytenr, | ||
528 | le64_to_cpu(old.disk_num_bytes), | ||
529 | orig_parent, root->root_key.objectid, | ||
530 | trans->transid, inode->i_ino); | ||
531 | BUG_ON(ret); | ||
532 | } | ||
533 | } | ||
534 | |||
535 | if (found_inline) { | ||
536 | u64 mask = root->sectorsize - 1; | ||
537 | search_start = (extent_end + mask) & ~mask; | ||
538 | } else | ||
539 | search_start = extent_end; | ||
540 | |||
541 | /* truncate existing extent */ | ||
542 | if (start > key.offset) { | ||
543 | u64 new_num; | ||
544 | u64 old_num; | ||
545 | keep = 1; | ||
546 | WARN_ON(start & (root->sectorsize - 1)); | ||
547 | if (found_extent) { | ||
548 | new_num = start - key.offset; | ||
549 | old_num = btrfs_file_extent_num_bytes(leaf, | ||
550 | extent); | ||
551 | *hint_byte = | ||
552 | btrfs_file_extent_disk_bytenr(leaf, | ||
553 | extent); | ||
554 | if (btrfs_file_extent_disk_bytenr(leaf, | ||
555 | extent)) { | ||
556 | inode_sub_bytes(inode, old_num - | ||
557 | new_num); | ||
558 | } | ||
559 | if (!compression && !encryption) { | ||
560 | btrfs_set_file_extent_ram_bytes(leaf, | ||
561 | extent, new_num); | ||
562 | } | ||
563 | btrfs_set_file_extent_num_bytes(leaf, | ||
564 | extent, new_num); | ||
565 | btrfs_mark_buffer_dirty(leaf); | ||
566 | } else if (key.offset < inline_limit && | ||
567 | (end > extent_end) && | ||
568 | (inline_limit < extent_end)) { | ||
569 | u32 new_size; | ||
570 | new_size = btrfs_file_extent_calc_inline_size( | ||
571 | inline_limit - key.offset); | ||
572 | inode_sub_bytes(inode, extent_end - | ||
573 | inline_limit); | ||
574 | btrfs_set_file_extent_ram_bytes(leaf, extent, | ||
575 | new_size); | ||
576 | if (!compression && !encryption) { | ||
577 | btrfs_truncate_item(trans, root, path, | ||
578 | new_size, 1); | ||
579 | } | ||
580 | } | ||
581 | } | ||
582 | /* delete the entire extent */ | ||
583 | if (!keep) { | ||
584 | if (found_inline) | ||
585 | inode_sub_bytes(inode, extent_end - | ||
586 | key.offset); | ||
587 | ret = btrfs_del_item(trans, root, path); | ||
588 | /* TODO update progress marker and return */ | ||
589 | BUG_ON(ret); | ||
590 | extent = NULL; | ||
591 | btrfs_release_path(root, path); | ||
592 | /* the extent will be freed later */ | ||
593 | } | ||
594 | if (bookend && found_inline && start <= key.offset) { | ||
595 | u32 new_size; | ||
596 | new_size = btrfs_file_extent_calc_inline_size( | ||
597 | extent_end - end); | ||
598 | inode_sub_bytes(inode, end - key.offset); | ||
599 | btrfs_set_file_extent_ram_bytes(leaf, extent, | ||
600 | new_size); | ||
601 | if (!compression && !encryption) | ||
602 | ret = btrfs_truncate_item(trans, root, path, | ||
603 | new_size, 0); | ||
604 | BUG_ON(ret); | ||
605 | } | ||
606 | /* create bookend, splitting the extent in two */ | ||
607 | if (bookend && found_extent) { | ||
608 | struct btrfs_key ins; | ||
609 | ins.objectid = inode->i_ino; | ||
610 | ins.offset = end; | ||
611 | btrfs_set_key_type(&ins, BTRFS_EXTENT_DATA_KEY); | ||
612 | |||
613 | btrfs_release_path(root, path); | ||
614 | ret = btrfs_insert_empty_item(trans, root, path, &ins, | ||
615 | sizeof(*extent)); | ||
616 | BUG_ON(ret); | ||
617 | |||
618 | leaf = path->nodes[0]; | ||
619 | extent = btrfs_item_ptr(leaf, path->slots[0], | ||
620 | struct btrfs_file_extent_item); | ||
621 | write_extent_buffer(leaf, &old, | ||
622 | (unsigned long)extent, sizeof(old)); | ||
623 | |||
624 | btrfs_set_file_extent_compression(leaf, extent, | ||
625 | compression); | ||
626 | btrfs_set_file_extent_encryption(leaf, extent, | ||
627 | encryption); | ||
628 | btrfs_set_file_extent_other_encoding(leaf, extent, | ||
629 | other_encoding); | ||
630 | btrfs_set_file_extent_offset(leaf, extent, | ||
631 | le64_to_cpu(old.offset) + end - key.offset); | ||
632 | WARN_ON(le64_to_cpu(old.num_bytes) < | ||
633 | (extent_end - end)); | ||
634 | btrfs_set_file_extent_num_bytes(leaf, extent, | ||
635 | extent_end - end); | ||
636 | |||
637 | /* | ||
638 | * set the ram bytes to the size of the full extent | ||
639 | * before splitting. This is a worst case flag, | ||
640 | * but its the best we can do because we don't know | ||
641 | * how splitting affects compression | ||
642 | */ | ||
643 | btrfs_set_file_extent_ram_bytes(leaf, extent, | ||
644 | ram_bytes); | ||
645 | btrfs_set_file_extent_type(leaf, extent, found_type); | ||
646 | |||
647 | btrfs_mark_buffer_dirty(path->nodes[0]); | ||
648 | |||
649 | if (disk_bytenr != 0) { | ||
650 | ret = btrfs_update_extent_ref(trans, root, | ||
651 | disk_bytenr, orig_parent, | ||
652 | leaf->start, | ||
653 | root->root_key.objectid, | ||
654 | trans->transid, ins.objectid); | ||
655 | |||
656 | BUG_ON(ret); | ||
657 | } | ||
658 | btrfs_release_path(root, path); | ||
659 | if (disk_bytenr != 0) | ||
660 | inode_add_bytes(inode, extent_end - end); | ||
661 | } | ||
662 | |||
663 | if (found_extent && !keep) { | ||
664 | u64 old_disk_bytenr = le64_to_cpu(old.disk_bytenr); | ||
665 | |||
666 | if (old_disk_bytenr != 0) { | ||
667 | inode_sub_bytes(inode, | ||
668 | le64_to_cpu(old.num_bytes)); | ||
669 | ret = btrfs_free_extent(trans, root, | ||
670 | old_disk_bytenr, | ||
671 | le64_to_cpu(old.disk_num_bytes), | ||
672 | leaf_start, root_owner, | ||
673 | root_gen, key.objectid, 0); | ||
674 | BUG_ON(ret); | ||
675 | *hint_byte = old_disk_bytenr; | ||
676 | } | ||
677 | } | ||
678 | |||
679 | if (search_start >= end) { | ||
680 | ret = 0; | ||
681 | goto out; | ||
682 | } | ||
683 | } | ||
684 | out: | ||
685 | btrfs_free_path(path); | ||
686 | if (locked_end > end) { | ||
687 | unlock_extent(&BTRFS_I(inode)->io_tree, end, locked_end - 1, | ||
688 | GFP_NOFS); | ||
689 | } | ||
690 | btrfs_check_file(root, inode); | ||
691 | return ret; | ||
692 | } | ||
693 | |||
694 | static int extent_mergeable(struct extent_buffer *leaf, int slot, | ||
695 | u64 objectid, u64 bytenr, u64 *start, u64 *end) | ||
696 | { | ||
697 | struct btrfs_file_extent_item *fi; | ||
698 | struct btrfs_key key; | ||
699 | u64 extent_end; | ||
700 | |||
701 | if (slot < 0 || slot >= btrfs_header_nritems(leaf)) | ||
702 | return 0; | ||
703 | |||
704 | btrfs_item_key_to_cpu(leaf, &key, slot); | ||
705 | if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY) | ||
706 | return 0; | ||
707 | |||
708 | fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); | ||
709 | if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG || | ||
710 | btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr || | ||
711 | btrfs_file_extent_compression(leaf, fi) || | ||
712 | btrfs_file_extent_encryption(leaf, fi) || | ||
713 | btrfs_file_extent_other_encoding(leaf, fi)) | ||
714 | return 0; | ||
715 | |||
716 | extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); | ||
717 | if ((*start && *start != key.offset) || (*end && *end != extent_end)) | ||
718 | return 0; | ||
719 | |||
720 | *start = key.offset; | ||
721 | *end = extent_end; | ||
722 | return 1; | ||
723 | } | ||
724 | |||
725 | /* | ||
726 | * Mark extent in the range start - end as written. | ||
727 | * | ||
728 | * This changes extent type from 'pre-allocated' to 'regular'. If only | ||
729 | * part of extent is marked as written, the extent will be split into | ||
730 | * two or three. | ||
731 | */ | ||
732 | int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, | ||
733 | struct btrfs_root *root, | ||
734 | struct inode *inode, u64 start, u64 end) | ||
735 | { | ||
736 | struct extent_buffer *leaf; | ||
737 | struct btrfs_path *path; | ||
738 | struct btrfs_file_extent_item *fi; | ||
739 | struct btrfs_key key; | ||
740 | u64 bytenr; | ||
741 | u64 num_bytes; | ||
742 | u64 extent_end; | ||
743 | u64 extent_offset; | ||
744 | u64 other_start; | ||
745 | u64 other_end; | ||
746 | u64 split = start; | ||
747 | u64 locked_end = end; | ||
748 | u64 orig_parent; | ||
749 | int extent_type; | ||
750 | int split_end = 1; | ||
751 | int ret; | ||
752 | |||
753 | btrfs_drop_extent_cache(inode, start, end - 1, 0); | ||
754 | |||
755 | path = btrfs_alloc_path(); | ||
756 | BUG_ON(!path); | ||
757 | again: | ||
758 | key.objectid = inode->i_ino; | ||
759 | key.type = BTRFS_EXTENT_DATA_KEY; | ||
760 | if (split == start) | ||
761 | key.offset = split; | ||
762 | else | ||
763 | key.offset = split - 1; | ||
764 | |||
765 | ret = btrfs_search_slot(trans, root, &key, path, -1, 1); | ||
766 | if (ret > 0 && path->slots[0] > 0) | ||
767 | path->slots[0]--; | ||
768 | |||
769 | leaf = path->nodes[0]; | ||
770 | btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); | ||
771 | BUG_ON(key.objectid != inode->i_ino || | ||
772 | key.type != BTRFS_EXTENT_DATA_KEY); | ||
773 | fi = btrfs_item_ptr(leaf, path->slots[0], | ||
774 | struct btrfs_file_extent_item); | ||
775 | extent_type = btrfs_file_extent_type(leaf, fi); | ||
776 | BUG_ON(extent_type != BTRFS_FILE_EXTENT_PREALLOC); | ||
777 | extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); | ||
778 | BUG_ON(key.offset > start || extent_end < end); | ||
779 | |||
780 | bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); | ||
781 | num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); | ||
782 | extent_offset = btrfs_file_extent_offset(leaf, fi); | ||
783 | |||
784 | if (key.offset == start) | ||
785 | split = end; | ||
786 | |||
787 | if (key.offset == start && extent_end == end) { | ||
788 | int del_nr = 0; | ||
789 | int del_slot = 0; | ||
790 | u64 leaf_owner = btrfs_header_owner(leaf); | ||
791 | u64 leaf_gen = btrfs_header_generation(leaf); | ||
792 | other_start = end; | ||
793 | other_end = 0; | ||
794 | if (extent_mergeable(leaf, path->slots[0] + 1, inode->i_ino, | ||
795 | bytenr, &other_start, &other_end)) { | ||
796 | extent_end = other_end; | ||
797 | del_slot = path->slots[0] + 1; | ||
798 | del_nr++; | ||
799 | ret = btrfs_free_extent(trans, root, bytenr, num_bytes, | ||
800 | leaf->start, leaf_owner, | ||
801 | leaf_gen, inode->i_ino, 0); | ||
802 | BUG_ON(ret); | ||
803 | } | ||
804 | other_start = 0; | ||
805 | other_end = start; | ||
806 | if (extent_mergeable(leaf, path->slots[0] - 1, inode->i_ino, | ||
807 | bytenr, &other_start, &other_end)) { | ||
808 | key.offset = other_start; | ||
809 | del_slot = path->slots[0]; | ||
810 | del_nr++; | ||
811 | ret = btrfs_free_extent(trans, root, bytenr, num_bytes, | ||
812 | leaf->start, leaf_owner, | ||
813 | leaf_gen, inode->i_ino, 0); | ||
814 | BUG_ON(ret); | ||
815 | } | ||
816 | split_end = 0; | ||
817 | if (del_nr == 0) { | ||
818 | btrfs_set_file_extent_type(leaf, fi, | ||
819 | BTRFS_FILE_EXTENT_REG); | ||
820 | goto done; | ||
821 | } | ||
822 | |||
823 | fi = btrfs_item_ptr(leaf, del_slot - 1, | ||
824 | struct btrfs_file_extent_item); | ||
825 | btrfs_set_file_extent_type(leaf, fi, BTRFS_FILE_EXTENT_REG); | ||
826 | btrfs_set_file_extent_num_bytes(leaf, fi, | ||
827 | extent_end - key.offset); | ||
828 | btrfs_mark_buffer_dirty(leaf); | ||
829 | |||
830 | ret = btrfs_del_items(trans, root, path, del_slot, del_nr); | ||
831 | BUG_ON(ret); | ||
832 | goto done; | ||
833 | } else if (split == start) { | ||
834 | if (locked_end < extent_end) { | ||
835 | ret = try_lock_extent(&BTRFS_I(inode)->io_tree, | ||
836 | locked_end, extent_end - 1, GFP_NOFS); | ||
837 | if (!ret) { | ||
838 | btrfs_release_path(root, path); | ||
839 | lock_extent(&BTRFS_I(inode)->io_tree, | ||
840 | locked_end, extent_end - 1, GFP_NOFS); | ||
841 | locked_end = extent_end; | ||
842 | goto again; | ||
843 | } | ||
844 | locked_end = extent_end; | ||
845 | } | ||
846 | btrfs_set_file_extent_num_bytes(leaf, fi, split - key.offset); | ||
847 | extent_offset += split - key.offset; | ||
848 | } else { | ||
849 | BUG_ON(key.offset != start); | ||
850 | btrfs_set_file_extent_offset(leaf, fi, extent_offset + | ||
851 | split - key.offset); | ||
852 | btrfs_set_file_extent_num_bytes(leaf, fi, extent_end - split); | ||
853 | key.offset = split; | ||
854 | btrfs_set_item_key_safe(trans, root, path, &key); | ||
855 | extent_end = split; | ||
856 | } | ||
857 | |||
858 | if (extent_end == end) { | ||
859 | split_end = 0; | ||
860 | extent_type = BTRFS_FILE_EXTENT_REG; | ||
861 | } | ||
862 | if (extent_end == end && split == start) { | ||
863 | other_start = end; | ||
864 | other_end = 0; | ||
865 | if (extent_mergeable(leaf, path->slots[0] + 1, inode->i_ino, | ||
866 | bytenr, &other_start, &other_end)) { | ||
867 | path->slots[0]++; | ||
868 | fi = btrfs_item_ptr(leaf, path->slots[0], | ||
869 | struct btrfs_file_extent_item); | ||
870 | key.offset = split; | ||
871 | btrfs_set_item_key_safe(trans, root, path, &key); | ||
872 | btrfs_set_file_extent_offset(leaf, fi, extent_offset); | ||
873 | btrfs_set_file_extent_num_bytes(leaf, fi, | ||
874 | other_end - split); | ||
875 | goto done; | ||
876 | } | ||
877 | } | ||
878 | if (extent_end == end && split == end) { | ||
879 | other_start = 0; | ||
880 | other_end = start; | ||
881 | if (extent_mergeable(leaf, path->slots[0] - 1 , inode->i_ino, | ||
882 | bytenr, &other_start, &other_end)) { | ||
883 | path->slots[0]--; | ||
884 | fi = btrfs_item_ptr(leaf, path->slots[0], | ||
885 | struct btrfs_file_extent_item); | ||
886 | btrfs_set_file_extent_num_bytes(leaf, fi, extent_end - | ||
887 | other_start); | ||
888 | goto done; | ||
889 | } | ||
890 | } | ||
891 | |||
892 | btrfs_mark_buffer_dirty(leaf); | ||
893 | |||
894 | orig_parent = leaf->start; | ||
895 | ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, | ||
896 | orig_parent, root->root_key.objectid, | ||
897 | trans->transid, inode->i_ino); | ||
898 | BUG_ON(ret); | ||
899 | btrfs_release_path(root, path); | ||
900 | |||
901 | key.offset = start; | ||
902 | ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*fi)); | ||
903 | BUG_ON(ret); | ||
904 | |||
905 | leaf = path->nodes[0]; | ||
906 | fi = btrfs_item_ptr(leaf, path->slots[0], | ||
907 | struct btrfs_file_extent_item); | ||
908 | btrfs_set_file_extent_generation(leaf, fi, trans->transid); | ||
909 | btrfs_set_file_extent_type(leaf, fi, extent_type); | ||
910 | btrfs_set_file_extent_disk_bytenr(leaf, fi, bytenr); | ||
911 | btrfs_set_file_extent_disk_num_bytes(leaf, fi, num_bytes); | ||
912 | btrfs_set_file_extent_offset(leaf, fi, extent_offset); | ||
913 | btrfs_set_file_extent_num_bytes(leaf, fi, extent_end - key.offset); | ||
914 | btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); | ||
915 | btrfs_set_file_extent_compression(leaf, fi, 0); | ||
916 | btrfs_set_file_extent_encryption(leaf, fi, 0); | ||
917 | btrfs_set_file_extent_other_encoding(leaf, fi, 0); | ||
918 | |||
919 | if (orig_parent != leaf->start) { | ||
920 | ret = btrfs_update_extent_ref(trans, root, bytenr, | ||
921 | orig_parent, leaf->start, | ||
922 | root->root_key.objectid, | ||
923 | trans->transid, inode->i_ino); | ||
924 | BUG_ON(ret); | ||
925 | } | ||
926 | done: | ||
927 | btrfs_mark_buffer_dirty(leaf); | ||
928 | btrfs_release_path(root, path); | ||
929 | if (split_end && split == start) { | ||
930 | split = end; | ||
931 | goto again; | ||
932 | } | ||
933 | if (locked_end > end) { | ||
934 | unlock_extent(&BTRFS_I(inode)->io_tree, end, locked_end - 1, | ||
935 | GFP_NOFS); | ||
936 | } | ||
937 | btrfs_free_path(path); | ||
938 | return 0; | ||
939 | } | ||
940 | |||
941 | /* | ||
942 | * this gets pages into the page cache and locks them down, it also properly | ||
943 | * waits for data=ordered extents to finish before allowing the pages to be | ||
944 | * modified. | ||
945 | */ | ||
946 | static noinline int prepare_pages(struct btrfs_root *root, struct file *file, | ||
947 | struct page **pages, size_t num_pages, | ||
948 | loff_t pos, unsigned long first_index, | ||
949 | unsigned long last_index, size_t write_bytes) | ||
950 | { | ||
951 | int i; | ||
952 | unsigned long index = pos >> PAGE_CACHE_SHIFT; | ||
953 | struct inode *inode = fdentry(file)->d_inode; | ||
954 | int err = 0; | ||
955 | u64 start_pos; | ||
956 | u64 last_pos; | ||
957 | |||
958 | start_pos = pos & ~((u64)root->sectorsize - 1); | ||
959 | last_pos = ((u64)index + num_pages) << PAGE_CACHE_SHIFT; | ||
960 | |||
961 | if (start_pos > inode->i_size) { | ||
962 | err = btrfs_cont_expand(inode, start_pos); | ||
963 | if (err) | ||
964 | return err; | ||
965 | } | ||
966 | |||
967 | memset(pages, 0, num_pages * sizeof(struct page *)); | ||
968 | again: | ||
969 | for (i = 0; i < num_pages; i++) { | ||
970 | pages[i] = grab_cache_page(inode->i_mapping, index + i); | ||
971 | if (!pages[i]) { | ||
972 | err = -ENOMEM; | ||
973 | BUG_ON(1); | ||
974 | } | ||
975 | wait_on_page_writeback(pages[i]); | ||
976 | } | ||
977 | if (start_pos < inode->i_size) { | ||
978 | struct btrfs_ordered_extent *ordered; | ||
979 | lock_extent(&BTRFS_I(inode)->io_tree, | ||
980 | start_pos, last_pos - 1, GFP_NOFS); | ||
981 | ordered = btrfs_lookup_first_ordered_extent(inode, | ||
982 | last_pos - 1); | ||
983 | if (ordered && | ||
984 | ordered->file_offset + ordered->len > start_pos && | ||
985 | ordered->file_offset < last_pos) { | ||
986 | btrfs_put_ordered_extent(ordered); | ||
987 | unlock_extent(&BTRFS_I(inode)->io_tree, | ||
988 | start_pos, last_pos - 1, GFP_NOFS); | ||
989 | for (i = 0; i < num_pages; i++) { | ||
990 | unlock_page(pages[i]); | ||
991 | page_cache_release(pages[i]); | ||
992 | } | ||
993 | btrfs_wait_ordered_range(inode, start_pos, | ||
994 | last_pos - start_pos); | ||
995 | goto again; | ||
996 | } | ||
997 | if (ordered) | ||
998 | btrfs_put_ordered_extent(ordered); | ||
999 | |||
1000 | clear_extent_bits(&BTRFS_I(inode)->io_tree, start_pos, | ||
1001 | last_pos - 1, EXTENT_DIRTY | EXTENT_DELALLOC, | ||
1002 | GFP_NOFS); | ||
1003 | unlock_extent(&BTRFS_I(inode)->io_tree, | ||
1004 | start_pos, last_pos - 1, GFP_NOFS); | ||
1005 | } | ||
1006 | for (i = 0; i < num_pages; i++) { | ||
1007 | clear_page_dirty_for_io(pages[i]); | ||
1008 | set_page_extent_mapped(pages[i]); | ||
1009 | WARN_ON(!PageLocked(pages[i])); | ||
1010 | } | ||
1011 | return 0; | ||
1012 | } | ||
1013 | |||
1014 | static ssize_t btrfs_file_write(struct file *file, const char __user *buf, | ||
1015 | size_t count, loff_t *ppos) | ||
1016 | { | ||
1017 | loff_t pos; | ||
1018 | loff_t start_pos; | ||
1019 | ssize_t num_written = 0; | ||
1020 | ssize_t err = 0; | ||
1021 | int ret = 0; | ||
1022 | struct inode *inode = fdentry(file)->d_inode; | ||
1023 | struct btrfs_root *root = BTRFS_I(inode)->root; | ||
1024 | struct page **pages = NULL; | ||
1025 | int nrptrs; | ||
1026 | struct page *pinned[2]; | ||
1027 | unsigned long first_index; | ||
1028 | unsigned long last_index; | ||
1029 | int will_write; | ||
1030 | |||
1031 | will_write = ((file->f_flags & O_SYNC) || IS_SYNC(inode) || | ||
1032 | (file->f_flags & O_DIRECT)); | ||
1033 | |||
1034 | nrptrs = min((count + PAGE_CACHE_SIZE - 1) / PAGE_CACHE_SIZE, | ||
1035 | PAGE_CACHE_SIZE / (sizeof(struct page *))); | ||
1036 | pinned[0] = NULL; | ||
1037 | pinned[1] = NULL; | ||
1038 | |||
1039 | pos = *ppos; | ||
1040 | start_pos = pos; | ||
1041 | |||
1042 | vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE); | ||
1043 | current->backing_dev_info = inode->i_mapping->backing_dev_info; | ||
1044 | err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode)); | ||
1045 | if (err) | ||
1046 | goto out_nolock; | ||
1047 | if (count == 0) | ||
1048 | goto out_nolock; | ||
1049 | |||
1050 | err = file_remove_suid(file); | ||
1051 | if (err) | ||
1052 | goto out_nolock; | ||
1053 | file_update_time(file); | ||
1054 | |||
1055 | pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL); | ||
1056 | |||
1057 | mutex_lock(&inode->i_mutex); | ||
1058 | BTRFS_I(inode)->sequence++; | ||
1059 | first_index = pos >> PAGE_CACHE_SHIFT; | ||
1060 | last_index = (pos + count) >> PAGE_CACHE_SHIFT; | ||
1061 | |||
1062 | /* | ||
1063 | * there are lots of better ways to do this, but this code | ||
1064 | * makes sure the first and last page in the file range are | ||
1065 | * up to date and ready for cow | ||
1066 | */ | ||
1067 | if ((pos & (PAGE_CACHE_SIZE - 1))) { | ||
1068 | pinned[0] = grab_cache_page(inode->i_mapping, first_index); | ||
1069 | if (!PageUptodate(pinned[0])) { | ||
1070 | ret = btrfs_readpage(NULL, pinned[0]); | ||
1071 | BUG_ON(ret); | ||
1072 | wait_on_page_locked(pinned[0]); | ||
1073 | } else { | ||
1074 | unlock_page(pinned[0]); | ||
1075 | } | ||
1076 | } | ||
1077 | if ((pos + count) & (PAGE_CACHE_SIZE - 1)) { | ||
1078 | pinned[1] = grab_cache_page(inode->i_mapping, last_index); | ||
1079 | if (!PageUptodate(pinned[1])) { | ||
1080 | ret = btrfs_readpage(NULL, pinned[1]); | ||
1081 | BUG_ON(ret); | ||
1082 | wait_on_page_locked(pinned[1]); | ||
1083 | } else { | ||
1084 | unlock_page(pinned[1]); | ||
1085 | } | ||
1086 | } | ||
1087 | |||
1088 | while (count > 0) { | ||
1089 | size_t offset = pos & (PAGE_CACHE_SIZE - 1); | ||
1090 | size_t write_bytes = min(count, nrptrs * | ||
1091 | (size_t)PAGE_CACHE_SIZE - | ||
1092 | offset); | ||
1093 | size_t num_pages = (write_bytes + PAGE_CACHE_SIZE - 1) >> | ||
1094 | PAGE_CACHE_SHIFT; | ||
1095 | |||
1096 | WARN_ON(num_pages > nrptrs); | ||
1097 | memset(pages, 0, sizeof(struct page *) * nrptrs); | ||
1098 | |||
1099 | ret = btrfs_check_free_space(root, write_bytes, 0); | ||
1100 | if (ret) | ||
1101 | goto out; | ||
1102 | |||
1103 | ret = prepare_pages(root, file, pages, num_pages, | ||
1104 | pos, first_index, last_index, | ||
1105 | write_bytes); | ||
1106 | if (ret) | ||
1107 | goto out; | ||
1108 | |||
1109 | ret = btrfs_copy_from_user(pos, num_pages, | ||
1110 | write_bytes, pages, buf); | ||
1111 | if (ret) { | ||
1112 | btrfs_drop_pages(pages, num_pages); | ||
1113 | goto out; | ||
1114 | } | ||
1115 | |||
1116 | ret = dirty_and_release_pages(NULL, root, file, pages, | ||
1117 | num_pages, pos, write_bytes); | ||
1118 | btrfs_drop_pages(pages, num_pages); | ||
1119 | if (ret) | ||
1120 | goto out; | ||
1121 | |||
1122 | if (will_write) { | ||
1123 | btrfs_fdatawrite_range(inode->i_mapping, pos, | ||
1124 | pos + write_bytes - 1, | ||
1125 | WB_SYNC_NONE); | ||
1126 | } else { | ||
1127 | balance_dirty_pages_ratelimited_nr(inode->i_mapping, | ||
1128 | num_pages); | ||
1129 | if (num_pages < | ||
1130 | (root->leafsize >> PAGE_CACHE_SHIFT) + 1) | ||
1131 | btrfs_btree_balance_dirty(root, 1); | ||
1132 | btrfs_throttle(root); | ||
1133 | } | ||
1134 | |||
1135 | buf += write_bytes; | ||
1136 | count -= write_bytes; | ||
1137 | pos += write_bytes; | ||
1138 | num_written += write_bytes; | ||
1139 | |||
1140 | cond_resched(); | ||
1141 | } | ||
1142 | out: | ||
1143 | mutex_unlock(&inode->i_mutex); | ||
1144 | |||
1145 | out_nolock: | ||
1146 | kfree(pages); | ||
1147 | if (pinned[0]) | ||
1148 | page_cache_release(pinned[0]); | ||
1149 | if (pinned[1]) | ||
1150 | page_cache_release(pinned[1]); | ||
1151 | *ppos = pos; | ||
1152 | |||
1153 | if (num_written > 0 && will_write) { | ||
1154 | struct btrfs_trans_handle *trans; | ||
1155 | |||
1156 | err = btrfs_wait_ordered_range(inode, start_pos, num_written); | ||
1157 | if (err) | ||
1158 | num_written = err; | ||
1159 | |||
1160 | if ((file->f_flags & O_SYNC) || IS_SYNC(inode)) { | ||
1161 | trans = btrfs_start_transaction(root, 1); | ||
1162 | ret = btrfs_log_dentry_safe(trans, root, | ||
1163 | file->f_dentry); | ||
1164 | if (ret == 0) { | ||
1165 | btrfs_sync_log(trans, root); | ||
1166 | btrfs_end_transaction(trans, root); | ||
1167 | } else { | ||
1168 | btrfs_commit_transaction(trans, root); | ||
1169 | } | ||
1170 | } | ||
1171 | if (file->f_flags & O_DIRECT) { | ||
1172 | invalidate_mapping_pages(inode->i_mapping, | ||
1173 | start_pos >> PAGE_CACHE_SHIFT, | ||
1174 | (start_pos + num_written - 1) >> PAGE_CACHE_SHIFT); | ||
1175 | } | ||
1176 | } | ||
1177 | current->backing_dev_info = NULL; | ||
1178 | return num_written ? num_written : err; | ||
1179 | } | ||
1180 | |||
1181 | int btrfs_release_file(struct inode *inode, struct file *filp) | ||
1182 | { | ||
1183 | if (filp->private_data) | ||
1184 | btrfs_ioctl_trans_end(filp); | ||
1185 | return 0; | ||
1186 | } | ||
1187 | |||
1188 | /* | ||
1189 | * fsync call for both files and directories. This logs the inode into | ||
1190 | * the tree log instead of forcing full commits whenever possible. | ||
1191 | * | ||
1192 | * It needs to call filemap_fdatawait so that all ordered extent updates are | ||
1193 | * in the metadata btree are up to date for copying to the log. | ||
1194 | * | ||
1195 | * It drops the inode mutex before doing the tree log commit. This is an | ||
1196 | * important optimization for directories because holding the mutex prevents | ||
1197 | * new operations on the dir while we write to disk. | ||
1198 | */ | ||
1199 | int btrfs_sync_file(struct file *file, struct dentry *dentry, int datasync) | ||
1200 | { | ||
1201 | struct inode *inode = dentry->d_inode; | ||
1202 | struct btrfs_root *root = BTRFS_I(inode)->root; | ||
1203 | int ret = 0; | ||
1204 | struct btrfs_trans_handle *trans; | ||
1205 | |||
1206 | /* | ||
1207 | * check the transaction that last modified this inode | ||
1208 | * and see if its already been committed | ||
1209 | */ | ||
1210 | if (!BTRFS_I(inode)->last_trans) | ||
1211 | goto out; | ||
1212 | |||
1213 | mutex_lock(&root->fs_info->trans_mutex); | ||
1214 | if (BTRFS_I(inode)->last_trans <= | ||
1215 | root->fs_info->last_trans_committed) { | ||
1216 | BTRFS_I(inode)->last_trans = 0; | ||
1217 | mutex_unlock(&root->fs_info->trans_mutex); | ||
1218 | goto out; | ||
1219 | } | ||
1220 | mutex_unlock(&root->fs_info->trans_mutex); | ||
1221 | |||
1222 | root->fs_info->tree_log_batch++; | ||
1223 | filemap_fdatawrite(inode->i_mapping); | ||
1224 | btrfs_wait_ordered_range(inode, 0, (u64)-1); | ||
1225 | root->fs_info->tree_log_batch++; | ||
1226 | |||
1227 | /* | ||
1228 | * ok we haven't committed the transaction yet, lets do a commit | ||
1229 | */ | ||
1230 | if (file->private_data) | ||
1231 | btrfs_ioctl_trans_end(file); | ||
1232 | |||
1233 | trans = btrfs_start_transaction(root, 1); | ||
1234 | if (!trans) { | ||
1235 | ret = -ENOMEM; | ||
1236 | goto out; | ||
1237 | } | ||
1238 | |||
1239 | ret = btrfs_log_dentry_safe(trans, root, file->f_dentry); | ||
1240 | if (ret < 0) | ||
1241 | goto out; | ||
1242 | |||
1243 | /* we've logged all the items and now have a consistent | ||
1244 | * version of the file in the log. It is possible that | ||
1245 | * someone will come in and modify the file, but that's | ||
1246 | * fine because the log is consistent on disk, and we | ||
1247 | * have references to all of the file's extents | ||
1248 | * | ||
1249 | * It is possible that someone will come in and log the | ||
1250 | * file again, but that will end up using the synchronization | ||
1251 | * inside btrfs_sync_log to keep things safe. | ||
1252 | */ | ||
1253 | mutex_unlock(&file->f_dentry->d_inode->i_mutex); | ||
1254 | |||
1255 | if (ret > 0) { | ||
1256 | ret = btrfs_commit_transaction(trans, root); | ||
1257 | } else { | ||
1258 | btrfs_sync_log(trans, root); | ||
1259 | ret = btrfs_end_transaction(trans, root); | ||
1260 | } | ||
1261 | mutex_lock(&file->f_dentry->d_inode->i_mutex); | ||
1262 | out: | ||
1263 | return ret > 0 ? EIO : ret; | ||
1264 | } | ||
1265 | |||
1266 | static struct vm_operations_struct btrfs_file_vm_ops = { | ||
1267 | .fault = filemap_fault, | ||
1268 | .page_mkwrite = btrfs_page_mkwrite, | ||
1269 | }; | ||
1270 | |||
1271 | static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma) | ||
1272 | { | ||
1273 | vma->vm_ops = &btrfs_file_vm_ops; | ||
1274 | file_accessed(filp); | ||
1275 | return 0; | ||
1276 | } | ||
1277 | |||
1278 | struct file_operations btrfs_file_operations = { | ||
1279 | .llseek = generic_file_llseek, | ||
1280 | .read = do_sync_read, | ||
1281 | .aio_read = generic_file_aio_read, | ||
1282 | .splice_read = generic_file_splice_read, | ||
1283 | .write = btrfs_file_write, | ||
1284 | .mmap = btrfs_file_mmap, | ||
1285 | .open = generic_file_open, | ||
1286 | .release = btrfs_release_file, | ||
1287 | .fsync = btrfs_sync_file, | ||
1288 | .unlocked_ioctl = btrfs_ioctl, | ||
1289 | #ifdef CONFIG_COMPAT | ||
1290 | .compat_ioctl = btrfs_ioctl, | ||
1291 | #endif | ||
1292 | }; | ||
diff --git a/fs/btrfs/free-space-cache.c b/fs/btrfs/free-space-cache.c new file mode 100644 index 000000000000..d1e5f0e84c58 --- /dev/null +++ b/fs/btrfs/free-space-cache.c | |||
@@ -0,0 +1,495 @@ | |||
1 | /* | ||
2 | * Copyright (C) 2008 Red Hat. All rights reserved. | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or | ||
5 | * modify it under the terms of the GNU General Public | ||
6 | * License v2 as published by the Free Software Foundation. | ||
7 | * | ||
8 | * This program is distributed in the hope that it will be useful, | ||
9 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | ||
11 | * General Public License for more details. | ||
12 | * | ||
13 | * You should have received a copy of the GNU General Public | ||
14 | * License along with this program; if not, write to the | ||
15 | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | ||
16 | * Boston, MA 021110-1307, USA. | ||
17 | */ | ||
18 | |||
19 | #include <linux/sched.h> | ||
20 | #include "ctree.h" | ||
21 | |||
22 | static int tree_insert_offset(struct rb_root *root, u64 offset, | ||
23 | struct rb_node *node) | ||
24 | { | ||
25 | struct rb_node **p = &root->rb_node; | ||
26 | struct rb_node *parent = NULL; | ||
27 | struct btrfs_free_space *info; | ||
28 | |||
29 | while (*p) { | ||
30 | parent = *p; | ||
31 | info = rb_entry(parent, struct btrfs_free_space, offset_index); | ||
32 | |||
33 | if (offset < info->offset) | ||
34 | p = &(*p)->rb_left; | ||
35 | else if (offset > info->offset) | ||
36 | p = &(*p)->rb_right; | ||
37 | else | ||
38 | return -EEXIST; | ||
39 | } | ||
40 | |||
41 | rb_link_node(node, parent, p); | ||
42 | rb_insert_color(node, root); | ||
43 | |||
44 | return 0; | ||
45 | } | ||
46 | |||
47 | static int tree_insert_bytes(struct rb_root *root, u64 bytes, | ||
48 | struct rb_node *node) | ||
49 | { | ||
50 | struct rb_node **p = &root->rb_node; | ||
51 | struct rb_node *parent = NULL; | ||
52 | struct btrfs_free_space *info; | ||
53 | |||
54 | while (*p) { | ||
55 | parent = *p; | ||
56 | info = rb_entry(parent, struct btrfs_free_space, bytes_index); | ||
57 | |||
58 | if (bytes < info->bytes) | ||
59 | p = &(*p)->rb_left; | ||
60 | else | ||
61 | p = &(*p)->rb_right; | ||
62 | } | ||
63 | |||
64 | rb_link_node(node, parent, p); | ||
65 | rb_insert_color(node, root); | ||
66 | |||
67 | return 0; | ||
68 | } | ||
69 | |||
70 | /* | ||
71 | * searches the tree for the given offset. If contains is set we will return | ||
72 | * the free space that contains the given offset. If contains is not set we | ||
73 | * will return the free space that starts at or after the given offset and is | ||
74 | * at least bytes long. | ||
75 | */ | ||
76 | static struct btrfs_free_space *tree_search_offset(struct rb_root *root, | ||
77 | u64 offset, u64 bytes, | ||
78 | int contains) | ||
79 | { | ||
80 | struct rb_node *n = root->rb_node; | ||
81 | struct btrfs_free_space *entry, *ret = NULL; | ||
82 | |||
83 | while (n) { | ||
84 | entry = rb_entry(n, struct btrfs_free_space, offset_index); | ||
85 | |||
86 | if (offset < entry->offset) { | ||
87 | if (!contains && | ||
88 | (!ret || entry->offset < ret->offset) && | ||
89 | (bytes <= entry->bytes)) | ||
90 | ret = entry; | ||
91 | n = n->rb_left; | ||
92 | } else if (offset > entry->offset) { | ||
93 | if ((entry->offset + entry->bytes - 1) >= offset && | ||
94 | bytes <= entry->bytes) { | ||
95 | ret = entry; | ||
96 | break; | ||
97 | } | ||
98 | n = n->rb_right; | ||
99 | } else { | ||
100 | if (bytes > entry->bytes) { | ||
101 | n = n->rb_right; | ||
102 | continue; | ||
103 | } | ||
104 | ret = entry; | ||
105 | break; | ||
106 | } | ||
107 | } | ||
108 | |||
109 | return ret; | ||
110 | } | ||
111 | |||
112 | /* | ||
113 | * return a chunk at least bytes size, as close to offset that we can get. | ||
114 | */ | ||
115 | static struct btrfs_free_space *tree_search_bytes(struct rb_root *root, | ||
116 | u64 offset, u64 bytes) | ||
117 | { | ||
118 | struct rb_node *n = root->rb_node; | ||
119 | struct btrfs_free_space *entry, *ret = NULL; | ||
120 | |||
121 | while (n) { | ||
122 | entry = rb_entry(n, struct btrfs_free_space, bytes_index); | ||
123 | |||
124 | if (bytes < entry->bytes) { | ||
125 | /* | ||
126 | * We prefer to get a hole size as close to the size we | ||
127 | * are asking for so we don't take small slivers out of | ||
128 | * huge holes, but we also want to get as close to the | ||
129 | * offset as possible so we don't have a whole lot of | ||
130 | * fragmentation. | ||
131 | */ | ||
132 | if (offset <= entry->offset) { | ||
133 | if (!ret) | ||
134 | ret = entry; | ||
135 | else if (entry->bytes < ret->bytes) | ||
136 | ret = entry; | ||
137 | else if (entry->offset < ret->offset) | ||
138 | ret = entry; | ||
139 | } | ||
140 | n = n->rb_left; | ||
141 | } else if (bytes > entry->bytes) { | ||
142 | n = n->rb_right; | ||
143 | } else { | ||
144 | /* | ||
145 | * Ok we may have multiple chunks of the wanted size, | ||
146 | * so we don't want to take the first one we find, we | ||
147 | * want to take the one closest to our given offset, so | ||
148 | * keep searching just in case theres a better match. | ||
149 | */ | ||
150 | n = n->rb_right; | ||
151 | if (offset > entry->offset) | ||
152 | continue; | ||
153 | else if (!ret || entry->offset < ret->offset) | ||
154 | ret = entry; | ||
155 | } | ||
156 | } | ||
157 | |||
158 | return ret; | ||
159 | } | ||
160 | |||
161 | static void unlink_free_space(struct btrfs_block_group_cache *block_group, | ||
162 | struct btrfs_free_space *info) | ||
163 | { | ||
164 | rb_erase(&info->offset_index, &block_group->free_space_offset); | ||
165 | rb_erase(&info->bytes_index, &block_group->free_space_bytes); | ||
166 | } | ||
167 | |||
168 | static int link_free_space(struct btrfs_block_group_cache *block_group, | ||
169 | struct btrfs_free_space *info) | ||
170 | { | ||
171 | int ret = 0; | ||
172 | |||
173 | |||
174 | ret = tree_insert_offset(&block_group->free_space_offset, info->offset, | ||
175 | &info->offset_index); | ||
176 | if (ret) | ||
177 | return ret; | ||
178 | |||
179 | ret = tree_insert_bytes(&block_group->free_space_bytes, info->bytes, | ||
180 | &info->bytes_index); | ||
181 | if (ret) | ||
182 | return ret; | ||
183 | |||
184 | return ret; | ||
185 | } | ||
186 | |||
187 | static int __btrfs_add_free_space(struct btrfs_block_group_cache *block_group, | ||
188 | u64 offset, u64 bytes) | ||
189 | { | ||
190 | struct btrfs_free_space *right_info; | ||
191 | struct btrfs_free_space *left_info; | ||
192 | struct btrfs_free_space *info = NULL; | ||
193 | struct btrfs_free_space *alloc_info; | ||
194 | int ret = 0; | ||
195 | |||
196 | alloc_info = kzalloc(sizeof(struct btrfs_free_space), GFP_NOFS); | ||
197 | if (!alloc_info) | ||
198 | return -ENOMEM; | ||
199 | |||
200 | /* | ||
201 | * first we want to see if there is free space adjacent to the range we | ||
202 | * are adding, if there is remove that struct and add a new one to | ||
203 | * cover the entire range | ||
204 | */ | ||
205 | right_info = tree_search_offset(&block_group->free_space_offset, | ||
206 | offset+bytes, 0, 1); | ||
207 | left_info = tree_search_offset(&block_group->free_space_offset, | ||
208 | offset-1, 0, 1); | ||
209 | |||
210 | if (right_info && right_info->offset == offset+bytes) { | ||
211 | unlink_free_space(block_group, right_info); | ||
212 | info = right_info; | ||
213 | info->offset = offset; | ||
214 | info->bytes += bytes; | ||
215 | } else if (right_info && right_info->offset != offset+bytes) { | ||
216 | printk(KERN_ERR "btrfs adding space in the middle of an " | ||
217 | "existing free space area. existing: " | ||
218 | "offset=%llu, bytes=%llu. new: offset=%llu, " | ||
219 | "bytes=%llu\n", (unsigned long long)right_info->offset, | ||
220 | (unsigned long long)right_info->bytes, | ||
221 | (unsigned long long)offset, | ||
222 | (unsigned long long)bytes); | ||
223 | BUG(); | ||
224 | } | ||
225 | |||
226 | if (left_info) { | ||
227 | unlink_free_space(block_group, left_info); | ||
228 | |||
229 | if (unlikely((left_info->offset + left_info->bytes) != | ||
230 | offset)) { | ||
231 | printk(KERN_ERR "btrfs free space to the left " | ||
232 | "of new free space isn't " | ||
233 | "quite right. existing: offset=%llu, " | ||
234 | "bytes=%llu. new: offset=%llu, bytes=%llu\n", | ||
235 | (unsigned long long)left_info->offset, | ||
236 | (unsigned long long)left_info->bytes, | ||
237 | (unsigned long long)offset, | ||
238 | (unsigned long long)bytes); | ||
239 | BUG(); | ||
240 | } | ||
241 | |||
242 | if (info) { | ||
243 | info->offset = left_info->offset; | ||
244 | info->bytes += left_info->bytes; | ||
245 | kfree(left_info); | ||
246 | } else { | ||
247 | info = left_info; | ||
248 | info->bytes += bytes; | ||
249 | } | ||
250 | } | ||
251 | |||
252 | if (info) { | ||
253 | ret = link_free_space(block_group, info); | ||
254 | if (!ret) | ||
255 | info = NULL; | ||
256 | goto out; | ||
257 | } | ||
258 | |||
259 | info = alloc_info; | ||
260 | alloc_info = NULL; | ||
261 | info->offset = offset; | ||
262 | info->bytes = bytes; | ||
263 | |||
264 | ret = link_free_space(block_group, info); | ||
265 | if (ret) | ||
266 | kfree(info); | ||
267 | out: | ||
268 | if (ret) { | ||
269 | printk(KERN_ERR "btrfs: unable to add free space :%d\n", ret); | ||
270 | if (ret == -EEXIST) | ||
271 | BUG(); | ||
272 | } | ||
273 | |||
274 | kfree(alloc_info); | ||
275 | |||
276 | return ret; | ||
277 | } | ||
278 | |||
279 | static int | ||
280 | __btrfs_remove_free_space(struct btrfs_block_group_cache *block_group, | ||
281 | u64 offset, u64 bytes) | ||
282 | { | ||
283 | struct btrfs_free_space *info; | ||
284 | int ret = 0; | ||
285 | |||
286 | info = tree_search_offset(&block_group->free_space_offset, offset, 0, | ||
287 | 1); | ||
288 | |||
289 | if (info && info->offset == offset) { | ||
290 | if (info->bytes < bytes) { | ||
291 | printk(KERN_ERR "Found free space at %llu, size %llu," | ||
292 | "trying to use %llu\n", | ||
293 | (unsigned long long)info->offset, | ||
294 | (unsigned long long)info->bytes, | ||
295 | (unsigned long long)bytes); | ||
296 | WARN_ON(1); | ||
297 | ret = -EINVAL; | ||
298 | goto out; | ||
299 | } | ||
300 | unlink_free_space(block_group, info); | ||
301 | |||
302 | if (info->bytes == bytes) { | ||
303 | kfree(info); | ||
304 | goto out; | ||
305 | } | ||
306 | |||
307 | info->offset += bytes; | ||
308 | info->bytes -= bytes; | ||
309 | |||
310 | ret = link_free_space(block_group, info); | ||
311 | BUG_ON(ret); | ||
312 | } else if (info && info->offset < offset && | ||
313 | info->offset + info->bytes >= offset + bytes) { | ||
314 | u64 old_start = info->offset; | ||
315 | /* | ||
316 | * we're freeing space in the middle of the info, | ||
317 | * this can happen during tree log replay | ||
318 | * | ||
319 | * first unlink the old info and then | ||
320 | * insert it again after the hole we're creating | ||
321 | */ | ||
322 | unlink_free_space(block_group, info); | ||
323 | if (offset + bytes < info->offset + info->bytes) { | ||
324 | u64 old_end = info->offset + info->bytes; | ||
325 | |||
326 | info->offset = offset + bytes; | ||
327 | info->bytes = old_end - info->offset; | ||
328 | ret = link_free_space(block_group, info); | ||
329 | BUG_ON(ret); | ||
330 | } else { | ||
331 | /* the hole we're creating ends at the end | ||
332 | * of the info struct, just free the info | ||
333 | */ | ||
334 | kfree(info); | ||
335 | } | ||
336 | |||
337 | /* step two, insert a new info struct to cover anything | ||
338 | * before the hole | ||
339 | */ | ||
340 | ret = __btrfs_add_free_space(block_group, old_start, | ||
341 | offset - old_start); | ||
342 | BUG_ON(ret); | ||
343 | } else { | ||
344 | WARN_ON(1); | ||
345 | } | ||
346 | out: | ||
347 | return ret; | ||
348 | } | ||
349 | |||
350 | int btrfs_add_free_space(struct btrfs_block_group_cache *block_group, | ||
351 | u64 offset, u64 bytes) | ||
352 | { | ||
353 | int ret; | ||
354 | struct btrfs_free_space *sp; | ||
355 | |||
356 | mutex_lock(&block_group->alloc_mutex); | ||
357 | ret = __btrfs_add_free_space(block_group, offset, bytes); | ||
358 | sp = tree_search_offset(&block_group->free_space_offset, offset, 0, 1); | ||
359 | BUG_ON(!sp); | ||
360 | mutex_unlock(&block_group->alloc_mutex); | ||
361 | |||
362 | return ret; | ||
363 | } | ||
364 | |||
365 | int btrfs_add_free_space_lock(struct btrfs_block_group_cache *block_group, | ||
366 | u64 offset, u64 bytes) | ||
367 | { | ||
368 | int ret; | ||
369 | struct btrfs_free_space *sp; | ||
370 | |||
371 | ret = __btrfs_add_free_space(block_group, offset, bytes); | ||
372 | sp = tree_search_offset(&block_group->free_space_offset, offset, 0, 1); | ||
373 | BUG_ON(!sp); | ||
374 | |||
375 | return ret; | ||
376 | } | ||
377 | |||
378 | int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group, | ||
379 | u64 offset, u64 bytes) | ||
380 | { | ||
381 | int ret = 0; | ||
382 | |||
383 | mutex_lock(&block_group->alloc_mutex); | ||
384 | ret = __btrfs_remove_free_space(block_group, offset, bytes); | ||
385 | mutex_unlock(&block_group->alloc_mutex); | ||
386 | |||
387 | return ret; | ||
388 | } | ||
389 | |||
390 | int btrfs_remove_free_space_lock(struct btrfs_block_group_cache *block_group, | ||
391 | u64 offset, u64 bytes) | ||
392 | { | ||
393 | int ret; | ||
394 | |||
395 | ret = __btrfs_remove_free_space(block_group, offset, bytes); | ||
396 | |||
397 | return ret; | ||
398 | } | ||
399 | |||
400 | void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group, | ||
401 | u64 bytes) | ||
402 | { | ||
403 | struct btrfs_free_space *info; | ||
404 | struct rb_node *n; | ||
405 | int count = 0; | ||
406 | |||
407 | for (n = rb_first(&block_group->free_space_offset); n; n = rb_next(n)) { | ||
408 | info = rb_entry(n, struct btrfs_free_space, offset_index); | ||
409 | if (info->bytes >= bytes) | ||
410 | count++; | ||
411 | } | ||
412 | printk(KERN_INFO "%d blocks of free space at or bigger than bytes is" | ||
413 | "\n", count); | ||
414 | } | ||
415 | |||
416 | u64 btrfs_block_group_free_space(struct btrfs_block_group_cache *block_group) | ||
417 | { | ||
418 | struct btrfs_free_space *info; | ||
419 | struct rb_node *n; | ||
420 | u64 ret = 0; | ||
421 | |||
422 | for (n = rb_first(&block_group->free_space_offset); n; | ||
423 | n = rb_next(n)) { | ||
424 | info = rb_entry(n, struct btrfs_free_space, offset_index); | ||
425 | ret += info->bytes; | ||
426 | } | ||
427 | |||
428 | return ret; | ||
429 | } | ||
430 | |||
431 | void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group) | ||
432 | { | ||
433 | struct btrfs_free_space *info; | ||
434 | struct rb_node *node; | ||
435 | |||
436 | mutex_lock(&block_group->alloc_mutex); | ||
437 | while ((node = rb_last(&block_group->free_space_bytes)) != NULL) { | ||
438 | info = rb_entry(node, struct btrfs_free_space, bytes_index); | ||
439 | unlink_free_space(block_group, info); | ||
440 | kfree(info); | ||
441 | if (need_resched()) { | ||
442 | mutex_unlock(&block_group->alloc_mutex); | ||
443 | cond_resched(); | ||
444 | mutex_lock(&block_group->alloc_mutex); | ||
445 | } | ||
446 | } | ||
447 | mutex_unlock(&block_group->alloc_mutex); | ||
448 | } | ||
449 | |||
450 | #if 0 | ||
451 | static struct btrfs_free_space *btrfs_find_free_space_offset(struct | ||
452 | btrfs_block_group_cache | ||
453 | *block_group, u64 offset, | ||
454 | u64 bytes) | ||
455 | { | ||
456 | struct btrfs_free_space *ret; | ||
457 | |||
458 | mutex_lock(&block_group->alloc_mutex); | ||
459 | ret = tree_search_offset(&block_group->free_space_offset, offset, | ||
460 | bytes, 0); | ||
461 | mutex_unlock(&block_group->alloc_mutex); | ||
462 | |||
463 | return ret; | ||
464 | } | ||
465 | |||
466 | static struct btrfs_free_space *btrfs_find_free_space_bytes(struct | ||
467 | btrfs_block_group_cache | ||
468 | *block_group, u64 offset, | ||
469 | u64 bytes) | ||
470 | { | ||
471 | struct btrfs_free_space *ret; | ||
472 | |||
473 | mutex_lock(&block_group->alloc_mutex); | ||
474 | |||
475 | ret = tree_search_bytes(&block_group->free_space_bytes, offset, bytes); | ||
476 | mutex_unlock(&block_group->alloc_mutex); | ||
477 | |||
478 | return ret; | ||
479 | } | ||
480 | #endif | ||
481 | |||
482 | struct btrfs_free_space *btrfs_find_free_space(struct btrfs_block_group_cache | ||
483 | *block_group, u64 offset, | ||
484 | u64 bytes) | ||
485 | { | ||
486 | struct btrfs_free_space *ret = NULL; | ||
487 | |||
488 | ret = tree_search_offset(&block_group->free_space_offset, offset, | ||
489 | bytes, 0); | ||
490 | if (!ret) | ||
491 | ret = tree_search_bytes(&block_group->free_space_bytes, | ||
492 | offset, bytes); | ||
493 | |||
494 | return ret; | ||
495 | } | ||
diff --git a/fs/btrfs/hash.h b/fs/btrfs/hash.h new file mode 100644 index 000000000000..2a020b276768 --- /dev/null +++ b/fs/btrfs/hash.h | |||
@@ -0,0 +1,27 @@ | |||
1 | /* | ||
2 | * Copyright (C) 2007 Oracle. All rights reserved. | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or | ||
5 | * modify it under the terms of the GNU General Public | ||
6 | * License v2 as published by the Free Software Foundation. | ||
7 | * | ||
8 | * This program is distributed in the hope that it will be useful, | ||
9 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | ||
11 | * General Public License for more details. | ||
12 | * | ||
13 | * You should have received a copy of the GNU General Public | ||
14 | * License along with this program; if not, write to the | ||
15 | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | ||
16 | * Boston, MA 021110-1307, USA. | ||
17 | */ | ||
18 | |||
19 | #ifndef __HASH__ | ||
20 | #define __HASH__ | ||
21 | |||
22 | #include "crc32c.h" | ||
23 | static inline u64 btrfs_name_hash(const char *name, int len) | ||
24 | { | ||
25 | return btrfs_crc32c((u32)~1, name, len); | ||
26 | } | ||
27 | #endif | ||
diff --git a/fs/btrfs/inode-item.c b/fs/btrfs/inode-item.c new file mode 100644 index 000000000000..3d46fa1f29a4 --- /dev/null +++ b/fs/btrfs/inode-item.c | |||
@@ -0,0 +1,206 @@ | |||
1 | /* | ||
2 | * Copyright (C) 2007 Oracle. All rights reserved. | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or | ||
5 | * modify it under the terms of the GNU General Public | ||
6 | * License v2 as published by the Free Software Foundation. | ||
7 | * | ||
8 | * This program is distributed in the hope that it will be useful, | ||
9 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | ||
11 | * General Public License for more details. | ||
12 | * | ||
13 | * You should have received a copy of the GNU General Public | ||
14 | * License along with this program; if not, write to the | ||
15 | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | ||
16 | * Boston, MA 021110-1307, USA. | ||
17 | */ | ||
18 | |||
19 | #include "ctree.h" | ||
20 | #include "disk-io.h" | ||
21 | #include "transaction.h" | ||
22 | |||
23 | static int find_name_in_backref(struct btrfs_path *path, const char *name, | ||
24 | int name_len, struct btrfs_inode_ref **ref_ret) | ||
25 | { | ||
26 | struct extent_buffer *leaf; | ||
27 | struct btrfs_inode_ref *ref; | ||
28 | unsigned long ptr; | ||
29 | unsigned long name_ptr; | ||
30 | u32 item_size; | ||
31 | u32 cur_offset = 0; | ||
32 | int len; | ||
33 | |||
34 | leaf = path->nodes[0]; | ||
35 | item_size = btrfs_item_size_nr(leaf, path->slots[0]); | ||
36 | ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); | ||
37 | while (cur_offset < item_size) { | ||
38 | ref = (struct btrfs_inode_ref *)(ptr + cur_offset); | ||
39 | len = btrfs_inode_ref_name_len(leaf, ref); | ||
40 | name_ptr = (unsigned long)(ref + 1); | ||
41 | cur_offset += len + sizeof(*ref); | ||
42 | if (len != name_len) | ||
43 | continue; | ||
44 | if (memcmp_extent_buffer(leaf, name, name_ptr, name_len) == 0) { | ||
45 | *ref_ret = ref; | ||
46 | return 1; | ||
47 | } | ||
48 | } | ||
49 | return 0; | ||
50 | } | ||
51 | |||
52 | int btrfs_del_inode_ref(struct btrfs_trans_handle *trans, | ||
53 | struct btrfs_root *root, | ||
54 | const char *name, int name_len, | ||
55 | u64 inode_objectid, u64 ref_objectid, u64 *index) | ||
56 | { | ||
57 | struct btrfs_path *path; | ||
58 | struct btrfs_key key; | ||
59 | struct btrfs_inode_ref *ref; | ||
60 | struct extent_buffer *leaf; | ||
61 | unsigned long ptr; | ||
62 | unsigned long item_start; | ||
63 | u32 item_size; | ||
64 | u32 sub_item_len; | ||
65 | int ret; | ||
66 | int del_len = name_len + sizeof(*ref); | ||
67 | |||
68 | key.objectid = inode_objectid; | ||
69 | key.offset = ref_objectid; | ||
70 | btrfs_set_key_type(&key, BTRFS_INODE_REF_KEY); | ||
71 | |||
72 | path = btrfs_alloc_path(); | ||
73 | if (!path) | ||
74 | return -ENOMEM; | ||
75 | |||
76 | ret = btrfs_search_slot(trans, root, &key, path, -1, 1); | ||
77 | if (ret > 0) { | ||
78 | ret = -ENOENT; | ||
79 | goto out; | ||
80 | } else if (ret < 0) { | ||
81 | goto out; | ||
82 | } | ||
83 | if (!find_name_in_backref(path, name, name_len, &ref)) { | ||
84 | ret = -ENOENT; | ||
85 | goto out; | ||
86 | } | ||
87 | leaf = path->nodes[0]; | ||
88 | item_size = btrfs_item_size_nr(leaf, path->slots[0]); | ||
89 | |||
90 | if (index) | ||
91 | *index = btrfs_inode_ref_index(leaf, ref); | ||
92 | |||
93 | if (del_len == item_size) { | ||
94 | ret = btrfs_del_item(trans, root, path); | ||
95 | goto out; | ||
96 | } | ||
97 | ptr = (unsigned long)ref; | ||
98 | sub_item_len = name_len + sizeof(*ref); | ||
99 | item_start = btrfs_item_ptr_offset(leaf, path->slots[0]); | ||
100 | memmove_extent_buffer(leaf, ptr, ptr + sub_item_len, | ||
101 | item_size - (ptr + sub_item_len - item_start)); | ||
102 | ret = btrfs_truncate_item(trans, root, path, | ||
103 | item_size - sub_item_len, 1); | ||
104 | BUG_ON(ret); | ||
105 | out: | ||
106 | btrfs_free_path(path); | ||
107 | return ret; | ||
108 | } | ||
109 | |||
110 | int btrfs_insert_inode_ref(struct btrfs_trans_handle *trans, | ||
111 | struct btrfs_root *root, | ||
112 | const char *name, int name_len, | ||
113 | u64 inode_objectid, u64 ref_objectid, u64 index) | ||
114 | { | ||
115 | struct btrfs_path *path; | ||
116 | struct btrfs_key key; | ||
117 | struct btrfs_inode_ref *ref; | ||
118 | unsigned long ptr; | ||
119 | int ret; | ||
120 | int ins_len = name_len + sizeof(*ref); | ||
121 | |||
122 | key.objectid = inode_objectid; | ||
123 | key.offset = ref_objectid; | ||
124 | btrfs_set_key_type(&key, BTRFS_INODE_REF_KEY); | ||
125 | |||
126 | path = btrfs_alloc_path(); | ||
127 | if (!path) | ||
128 | return -ENOMEM; | ||
129 | |||
130 | ret = btrfs_insert_empty_item(trans, root, path, &key, | ||
131 | ins_len); | ||
132 | if (ret == -EEXIST) { | ||
133 | u32 old_size; | ||
134 | |||
135 | if (find_name_in_backref(path, name, name_len, &ref)) | ||
136 | goto out; | ||
137 | |||
138 | old_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]); | ||
139 | ret = btrfs_extend_item(trans, root, path, ins_len); | ||
140 | BUG_ON(ret); | ||
141 | ref = btrfs_item_ptr(path->nodes[0], path->slots[0], | ||
142 | struct btrfs_inode_ref); | ||
143 | ref = (struct btrfs_inode_ref *)((unsigned long)ref + old_size); | ||
144 | btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); | ||
145 | btrfs_set_inode_ref_index(path->nodes[0], ref, index); | ||
146 | ptr = (unsigned long)(ref + 1); | ||
147 | ret = 0; | ||
148 | } else if (ret < 0) { | ||
149 | goto out; | ||
150 | } else { | ||
151 | ref = btrfs_item_ptr(path->nodes[0], path->slots[0], | ||
152 | struct btrfs_inode_ref); | ||
153 | btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); | ||
154 | btrfs_set_inode_ref_index(path->nodes[0], ref, index); | ||
155 | ptr = (unsigned long)(ref + 1); | ||
156 | } | ||
157 | write_extent_buffer(path->nodes[0], name, ptr, name_len); | ||
158 | btrfs_mark_buffer_dirty(path->nodes[0]); | ||
159 | |||
160 | out: | ||
161 | btrfs_free_path(path); | ||
162 | return ret; | ||
163 | } | ||
164 | |||
165 | int btrfs_insert_empty_inode(struct btrfs_trans_handle *trans, | ||
166 | struct btrfs_root *root, | ||
167 | struct btrfs_path *path, u64 objectid) | ||
168 | { | ||
169 | struct btrfs_key key; | ||
170 | int ret; | ||
171 | key.objectid = objectid; | ||
172 | btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY); | ||
173 | key.offset = 0; | ||
174 | |||
175 | ret = btrfs_insert_empty_item(trans, root, path, &key, | ||
176 | sizeof(struct btrfs_inode_item)); | ||
177 | if (ret == 0 && objectid > root->highest_inode) | ||
178 | root->highest_inode = objectid; | ||
179 | return ret; | ||
180 | } | ||
181 | |||
182 | int btrfs_lookup_inode(struct btrfs_trans_handle *trans, struct btrfs_root | ||
183 | *root, struct btrfs_path *path, | ||
184 | struct btrfs_key *location, int mod) | ||
185 | { | ||
186 | int ins_len = mod < 0 ? -1 : 0; | ||
187 | int cow = mod != 0; | ||
188 | int ret; | ||
189 | int slot; | ||
190 | struct extent_buffer *leaf; | ||
191 | struct btrfs_key found_key; | ||
192 | |||
193 | ret = btrfs_search_slot(trans, root, location, path, ins_len, cow); | ||
194 | if (ret > 0 && btrfs_key_type(location) == BTRFS_ROOT_ITEM_KEY && | ||
195 | location->offset == (u64)-1 && path->slots[0] != 0) { | ||
196 | slot = path->slots[0] - 1; | ||
197 | leaf = path->nodes[0]; | ||
198 | btrfs_item_key_to_cpu(leaf, &found_key, slot); | ||
199 | if (found_key.objectid == location->objectid && | ||
200 | btrfs_key_type(&found_key) == btrfs_key_type(location)) { | ||
201 | path->slots[0]--; | ||
202 | return 0; | ||
203 | } | ||
204 | } | ||
205 | return ret; | ||
206 | } | ||
diff --git a/fs/btrfs/inode-map.c b/fs/btrfs/inode-map.c new file mode 100644 index 000000000000..2aa79873eb46 --- /dev/null +++ b/fs/btrfs/inode-map.c | |||
@@ -0,0 +1,144 @@ | |||
1 | /* | ||
2 | * Copyright (C) 2007 Oracle. All rights reserved. | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or | ||
5 | * modify it under the terms of the GNU General Public | ||
6 | * License v2 as published by the Free Software Foundation. | ||
7 | * | ||
8 | * This program is distributed in the hope that it will be useful, | ||
9 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | ||
11 | * General Public License for more details. | ||
12 | * | ||
13 | * You should have received a copy of the GNU General Public | ||
14 | * License along with this program; if not, write to the | ||
15 | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | ||
16 | * Boston, MA 021110-1307, USA. | ||
17 | */ | ||
18 | |||
19 | #include "ctree.h" | ||
20 | #include "disk-io.h" | ||
21 | #include "transaction.h" | ||
22 | |||
23 | int btrfs_find_highest_inode(struct btrfs_root *root, u64 *objectid) | ||
24 | { | ||
25 | struct btrfs_path *path; | ||
26 | int ret; | ||
27 | struct extent_buffer *l; | ||
28 | struct btrfs_key search_key; | ||
29 | struct btrfs_key found_key; | ||
30 | int slot; | ||
31 | |||
32 | path = btrfs_alloc_path(); | ||
33 | BUG_ON(!path); | ||
34 | |||
35 | search_key.objectid = BTRFS_LAST_FREE_OBJECTID; | ||
36 | search_key.type = -1; | ||
37 | search_key.offset = (u64)-1; | ||
38 | ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); | ||
39 | if (ret < 0) | ||
40 | goto error; | ||
41 | BUG_ON(ret == 0); | ||
42 | if (path->slots[0] > 0) { | ||
43 | slot = path->slots[0] - 1; | ||
44 | l = path->nodes[0]; | ||
45 | btrfs_item_key_to_cpu(l, &found_key, slot); | ||
46 | *objectid = found_key.objectid; | ||
47 | } else { | ||
48 | *objectid = BTRFS_FIRST_FREE_OBJECTID; | ||
49 | } | ||
50 | ret = 0; | ||
51 | error: | ||
52 | btrfs_free_path(path); | ||
53 | return ret; | ||
54 | } | ||
55 | |||
56 | /* | ||
57 | * walks the btree of allocated inodes and find a hole. | ||
58 | */ | ||
59 | int btrfs_find_free_objectid(struct btrfs_trans_handle *trans, | ||
60 | struct btrfs_root *root, | ||
61 | u64 dirid, u64 *objectid) | ||
62 | { | ||
63 | struct btrfs_path *path; | ||
64 | struct btrfs_key key; | ||
65 | int ret; | ||
66 | int slot = 0; | ||
67 | u64 last_ino = 0; | ||
68 | int start_found; | ||
69 | struct extent_buffer *l; | ||
70 | struct btrfs_key search_key; | ||
71 | u64 search_start = dirid; | ||
72 | |||
73 | mutex_lock(&root->objectid_mutex); | ||
74 | if (root->last_inode_alloc >= BTRFS_FIRST_FREE_OBJECTID && | ||
75 | root->last_inode_alloc < BTRFS_LAST_FREE_OBJECTID) { | ||
76 | *objectid = ++root->last_inode_alloc; | ||
77 | mutex_unlock(&root->objectid_mutex); | ||
78 | return 0; | ||
79 | } | ||
80 | path = btrfs_alloc_path(); | ||
81 | BUG_ON(!path); | ||
82 | search_start = max(search_start, BTRFS_FIRST_FREE_OBJECTID); | ||
83 | search_key.objectid = search_start; | ||
84 | search_key.type = 0; | ||
85 | search_key.offset = 0; | ||
86 | |||
87 | btrfs_init_path(path); | ||
88 | start_found = 0; | ||
89 | ret = btrfs_search_slot(trans, root, &search_key, path, 0, 0); | ||
90 | if (ret < 0) | ||
91 | goto error; | ||
92 | |||
93 | while (1) { | ||
94 | l = path->nodes[0]; | ||
95 | slot = path->slots[0]; | ||
96 | if (slot >= btrfs_header_nritems(l)) { | ||
97 | ret = btrfs_next_leaf(root, path); | ||
98 | if (ret == 0) | ||
99 | continue; | ||
100 | if (ret < 0) | ||
101 | goto error; | ||
102 | if (!start_found) { | ||
103 | *objectid = search_start; | ||
104 | start_found = 1; | ||
105 | goto found; | ||
106 | } | ||
107 | *objectid = last_ino > search_start ? | ||
108 | last_ino : search_start; | ||
109 | goto found; | ||
110 | } | ||
111 | btrfs_item_key_to_cpu(l, &key, slot); | ||
112 | if (key.objectid >= search_start) { | ||
113 | if (start_found) { | ||
114 | if (last_ino < search_start) | ||
115 | last_ino = search_start; | ||
116 | if (key.objectid > last_ino) { | ||
117 | *objectid = last_ino; | ||
118 | goto found; | ||
119 | } | ||
120 | } else if (key.objectid > search_start) { | ||
121 | *objectid = search_start; | ||
122 | goto found; | ||
123 | } | ||
124 | } | ||
125 | if (key.objectid >= BTRFS_LAST_FREE_OBJECTID) | ||
126 | break; | ||
127 | |||
128 | start_found = 1; | ||
129 | last_ino = key.objectid + 1; | ||
130 | path->slots[0]++; | ||
131 | } | ||
132 | BUG_ON(1); | ||
133 | found: | ||
134 | btrfs_release_path(root, path); | ||
135 | btrfs_free_path(path); | ||
136 | BUG_ON(*objectid < search_start); | ||
137 | mutex_unlock(&root->objectid_mutex); | ||
138 | return 0; | ||
139 | error: | ||
140 | btrfs_release_path(root, path); | ||
141 | btrfs_free_path(path); | ||
142 | mutex_unlock(&root->objectid_mutex); | ||
143 | return ret; | ||
144 | } | ||
diff --git a/fs/btrfs/inode.c b/fs/btrfs/inode.c new file mode 100644 index 000000000000..1b35ea63b6ce --- /dev/null +++ b/fs/btrfs/inode.c | |||
@@ -0,0 +1,5040 @@ | |||
1 | /* | ||
2 | * Copyright (C) 2007 Oracle. All rights reserved. | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or | ||
5 | * modify it under the terms of the GNU General Public | ||
6 | * License v2 as published by the Free Software Foundation. | ||
7 | * | ||
8 | * This program is distributed in the hope that it will be useful, | ||
9 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | ||
11 | * General Public License for more details. | ||
12 | * | ||
13 | * You should have received a copy of the GNU General Public | ||
14 | * License along with this program; if not, write to the | ||
15 | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | ||
16 | * Boston, MA 021110-1307, USA. | ||
17 | */ | ||
18 | |||
19 | #include <linux/kernel.h> | ||
20 | #include <linux/bio.h> | ||
21 | #include <linux/buffer_head.h> | ||
22 | #include <linux/file.h> | ||
23 | #include <linux/fs.h> | ||
24 | #include <linux/pagemap.h> | ||
25 | #include <linux/highmem.h> | ||
26 | #include <linux/time.h> | ||
27 | #include <linux/init.h> | ||
28 | #include <linux/string.h> | ||
29 | #include <linux/smp_lock.h> | ||
30 | #include <linux/backing-dev.h> | ||
31 | #include <linux/mpage.h> | ||
32 | #include <linux/swap.h> | ||
33 | #include <linux/writeback.h> | ||
34 | #include <linux/statfs.h> | ||
35 | #include <linux/compat.h> | ||
36 | #include <linux/bit_spinlock.h> | ||
37 | #include <linux/version.h> | ||
38 | #include <linux/xattr.h> | ||
39 | #include <linux/posix_acl.h> | ||
40 | #include <linux/falloc.h> | ||
41 | #include "compat.h" | ||
42 | #include "ctree.h" | ||
43 | #include "disk-io.h" | ||
44 | #include "transaction.h" | ||
45 | #include "btrfs_inode.h" | ||
46 | #include "ioctl.h" | ||
47 | #include "print-tree.h" | ||
48 | #include "volumes.h" | ||
49 | #include "ordered-data.h" | ||
50 | #include "xattr.h" | ||
51 | #include "tree-log.h" | ||
52 | #include "ref-cache.h" | ||
53 | #include "compression.h" | ||
54 | |||
55 | struct btrfs_iget_args { | ||
56 | u64 ino; | ||
57 | struct btrfs_root *root; | ||
58 | }; | ||
59 | |||
60 | static struct inode_operations btrfs_dir_inode_operations; | ||
61 | static struct inode_operations btrfs_symlink_inode_operations; | ||
62 | static struct inode_operations btrfs_dir_ro_inode_operations; | ||
63 | static struct inode_operations btrfs_special_inode_operations; | ||
64 | static struct inode_operations btrfs_file_inode_operations; | ||
65 | static struct address_space_operations btrfs_aops; | ||
66 | static struct address_space_operations btrfs_symlink_aops; | ||
67 | static struct file_operations btrfs_dir_file_operations; | ||
68 | static struct extent_io_ops btrfs_extent_io_ops; | ||
69 | |||
70 | static struct kmem_cache *btrfs_inode_cachep; | ||
71 | struct kmem_cache *btrfs_trans_handle_cachep; | ||
72 | struct kmem_cache *btrfs_transaction_cachep; | ||
73 | struct kmem_cache *btrfs_bit_radix_cachep; | ||
74 | struct kmem_cache *btrfs_path_cachep; | ||
75 | |||
76 | #define S_SHIFT 12 | ||
77 | static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = { | ||
78 | [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE, | ||
79 | [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR, | ||
80 | [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV, | ||
81 | [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV, | ||
82 | [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO, | ||
83 | [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK, | ||
84 | [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK, | ||
85 | }; | ||
86 | |||
87 | static void btrfs_truncate(struct inode *inode); | ||
88 | static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end); | ||
89 | static noinline int cow_file_range(struct inode *inode, | ||
90 | struct page *locked_page, | ||
91 | u64 start, u64 end, int *page_started, | ||
92 | unsigned long *nr_written, int unlock); | ||
93 | |||
94 | /* | ||
95 | * a very lame attempt at stopping writes when the FS is 85% full. There | ||
96 | * are countless ways this is incorrect, but it is better than nothing. | ||
97 | */ | ||
98 | int btrfs_check_free_space(struct btrfs_root *root, u64 num_required, | ||
99 | int for_del) | ||
100 | { | ||
101 | u64 total; | ||
102 | u64 used; | ||
103 | u64 thresh; | ||
104 | int ret = 0; | ||
105 | |||
106 | spin_lock(&root->fs_info->delalloc_lock); | ||
107 | total = btrfs_super_total_bytes(&root->fs_info->super_copy); | ||
108 | used = btrfs_super_bytes_used(&root->fs_info->super_copy); | ||
109 | if (for_del) | ||
110 | thresh = total * 90; | ||
111 | else | ||
112 | thresh = total * 85; | ||
113 | |||
114 | do_div(thresh, 100); | ||
115 | |||
116 | if (used + root->fs_info->delalloc_bytes + num_required > thresh) | ||
117 | ret = -ENOSPC; | ||
118 | spin_unlock(&root->fs_info->delalloc_lock); | ||
119 | return ret; | ||
120 | } | ||
121 | |||
122 | /* | ||
123 | * this does all the hard work for inserting an inline extent into | ||
124 | * the btree. The caller should have done a btrfs_drop_extents so that | ||
125 | * no overlapping inline items exist in the btree | ||
126 | */ | ||
127 | static noinline int insert_inline_extent(struct btrfs_trans_handle *trans, | ||
128 | struct btrfs_root *root, struct inode *inode, | ||
129 | u64 start, size_t size, size_t compressed_size, | ||
130 | struct page **compressed_pages) | ||
131 | { | ||
132 | struct btrfs_key key; | ||
133 | struct btrfs_path *path; | ||
134 | struct extent_buffer *leaf; | ||
135 | struct page *page = NULL; | ||
136 | char *kaddr; | ||
137 | unsigned long ptr; | ||
138 | struct btrfs_file_extent_item *ei; | ||
139 | int err = 0; | ||
140 | int ret; | ||
141 | size_t cur_size = size; | ||
142 | size_t datasize; | ||
143 | unsigned long offset; | ||
144 | int use_compress = 0; | ||
145 | |||
146 | if (compressed_size && compressed_pages) { | ||
147 | use_compress = 1; | ||
148 | cur_size = compressed_size; | ||
149 | } | ||
150 | |||
151 | path = btrfs_alloc_path(); | ||
152 | if (!path) | ||
153 | return -ENOMEM; | ||
154 | |||
155 | btrfs_set_trans_block_group(trans, inode); | ||
156 | |||
157 | key.objectid = inode->i_ino; | ||
158 | key.offset = start; | ||
159 | btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY); | ||
160 | inode_add_bytes(inode, size); | ||
161 | datasize = btrfs_file_extent_calc_inline_size(cur_size); | ||
162 | |||
163 | inode_add_bytes(inode, size); | ||
164 | ret = btrfs_insert_empty_item(trans, root, path, &key, | ||
165 | datasize); | ||
166 | BUG_ON(ret); | ||
167 | if (ret) { | ||
168 | err = ret; | ||
169 | goto fail; | ||
170 | } | ||
171 | leaf = path->nodes[0]; | ||
172 | ei = btrfs_item_ptr(leaf, path->slots[0], | ||
173 | struct btrfs_file_extent_item); | ||
174 | btrfs_set_file_extent_generation(leaf, ei, trans->transid); | ||
175 | btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); | ||
176 | btrfs_set_file_extent_encryption(leaf, ei, 0); | ||
177 | btrfs_set_file_extent_other_encoding(leaf, ei, 0); | ||
178 | btrfs_set_file_extent_ram_bytes(leaf, ei, size); | ||
179 | ptr = btrfs_file_extent_inline_start(ei); | ||
180 | |||
181 | if (use_compress) { | ||
182 | struct page *cpage; | ||
183 | int i = 0; | ||
184 | while (compressed_size > 0) { | ||
185 | cpage = compressed_pages[i]; | ||
186 | cur_size = min_t(unsigned long, compressed_size, | ||
187 | PAGE_CACHE_SIZE); | ||
188 | |||
189 | kaddr = kmap(cpage); | ||
190 | write_extent_buffer(leaf, kaddr, ptr, cur_size); | ||
191 | kunmap(cpage); | ||
192 | |||
193 | i++; | ||
194 | ptr += cur_size; | ||
195 | compressed_size -= cur_size; | ||
196 | } | ||
197 | btrfs_set_file_extent_compression(leaf, ei, | ||
198 | BTRFS_COMPRESS_ZLIB); | ||
199 | } else { | ||
200 | page = find_get_page(inode->i_mapping, | ||
201 | start >> PAGE_CACHE_SHIFT); | ||
202 | btrfs_set_file_extent_compression(leaf, ei, 0); | ||
203 | kaddr = kmap_atomic(page, KM_USER0); | ||
204 | offset = start & (PAGE_CACHE_SIZE - 1); | ||
205 | write_extent_buffer(leaf, kaddr + offset, ptr, size); | ||
206 | kunmap_atomic(kaddr, KM_USER0); | ||
207 | page_cache_release(page); | ||
208 | } | ||
209 | btrfs_mark_buffer_dirty(leaf); | ||
210 | btrfs_free_path(path); | ||
211 | |||
212 | BTRFS_I(inode)->disk_i_size = inode->i_size; | ||
213 | btrfs_update_inode(trans, root, inode); | ||
214 | return 0; | ||
215 | fail: | ||
216 | btrfs_free_path(path); | ||
217 | return err; | ||
218 | } | ||
219 | |||
220 | |||
221 | /* | ||
222 | * conditionally insert an inline extent into the file. This | ||
223 | * does the checks required to make sure the data is small enough | ||
224 | * to fit as an inline extent. | ||
225 | */ | ||
226 | static int cow_file_range_inline(struct btrfs_trans_handle *trans, | ||
227 | struct btrfs_root *root, | ||
228 | struct inode *inode, u64 start, u64 end, | ||
229 | size_t compressed_size, | ||
230 | struct page **compressed_pages) | ||
231 | { | ||
232 | u64 isize = i_size_read(inode); | ||
233 | u64 actual_end = min(end + 1, isize); | ||
234 | u64 inline_len = actual_end - start; | ||
235 | u64 aligned_end = (end + root->sectorsize - 1) & | ||
236 | ~((u64)root->sectorsize - 1); | ||
237 | u64 hint_byte; | ||
238 | u64 data_len = inline_len; | ||
239 | int ret; | ||
240 | |||
241 | if (compressed_size) | ||
242 | data_len = compressed_size; | ||
243 | |||
244 | if (start > 0 || | ||
245 | actual_end >= PAGE_CACHE_SIZE || | ||
246 | data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) || | ||
247 | (!compressed_size && | ||
248 | (actual_end & (root->sectorsize - 1)) == 0) || | ||
249 | end + 1 < isize || | ||
250 | data_len > root->fs_info->max_inline) { | ||
251 | return 1; | ||
252 | } | ||
253 | |||
254 | ret = btrfs_drop_extents(trans, root, inode, start, | ||
255 | aligned_end, start, &hint_byte); | ||
256 | BUG_ON(ret); | ||
257 | |||
258 | if (isize > actual_end) | ||
259 | inline_len = min_t(u64, isize, actual_end); | ||
260 | ret = insert_inline_extent(trans, root, inode, start, | ||
261 | inline_len, compressed_size, | ||
262 | compressed_pages); | ||
263 | BUG_ON(ret); | ||
264 | btrfs_drop_extent_cache(inode, start, aligned_end, 0); | ||
265 | return 0; | ||
266 | } | ||
267 | |||
268 | struct async_extent { | ||
269 | u64 start; | ||
270 | u64 ram_size; | ||
271 | u64 compressed_size; | ||
272 | struct page **pages; | ||
273 | unsigned long nr_pages; | ||
274 | struct list_head list; | ||
275 | }; | ||
276 | |||
277 | struct async_cow { | ||
278 | struct inode *inode; | ||
279 | struct btrfs_root *root; | ||
280 | struct page *locked_page; | ||
281 | u64 start; | ||
282 | u64 end; | ||
283 | struct list_head extents; | ||
284 | struct btrfs_work work; | ||
285 | }; | ||
286 | |||
287 | static noinline int add_async_extent(struct async_cow *cow, | ||
288 | u64 start, u64 ram_size, | ||
289 | u64 compressed_size, | ||
290 | struct page **pages, | ||
291 | unsigned long nr_pages) | ||
292 | { | ||
293 | struct async_extent *async_extent; | ||
294 | |||
295 | async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); | ||
296 | async_extent->start = start; | ||
297 | async_extent->ram_size = ram_size; | ||
298 | async_extent->compressed_size = compressed_size; | ||
299 | async_extent->pages = pages; | ||
300 | async_extent->nr_pages = nr_pages; | ||
301 | list_add_tail(&async_extent->list, &cow->extents); | ||
302 | return 0; | ||
303 | } | ||
304 | |||
305 | /* | ||
306 | * we create compressed extents in two phases. The first | ||
307 | * phase compresses a range of pages that have already been | ||
308 | * locked (both pages and state bits are locked). | ||
309 | * | ||
310 | * This is done inside an ordered work queue, and the compression | ||
311 | * is spread across many cpus. The actual IO submission is step | ||
312 | * two, and the ordered work queue takes care of making sure that | ||
313 | * happens in the same order things were put onto the queue by | ||
314 | * writepages and friends. | ||
315 | * | ||
316 | * If this code finds it can't get good compression, it puts an | ||
317 | * entry onto the work queue to write the uncompressed bytes. This | ||
318 | * makes sure that both compressed inodes and uncompressed inodes | ||
319 | * are written in the same order that pdflush sent them down. | ||
320 | */ | ||
321 | static noinline int compress_file_range(struct inode *inode, | ||
322 | struct page *locked_page, | ||
323 | u64 start, u64 end, | ||
324 | struct async_cow *async_cow, | ||
325 | int *num_added) | ||
326 | { | ||
327 | struct btrfs_root *root = BTRFS_I(inode)->root; | ||
328 | struct btrfs_trans_handle *trans; | ||
329 | u64 num_bytes; | ||
330 | u64 orig_start; | ||
331 | u64 disk_num_bytes; | ||
332 | u64 blocksize = root->sectorsize; | ||
333 | u64 actual_end; | ||
334 | u64 isize = i_size_read(inode); | ||
335 | int ret = 0; | ||
336 | struct page **pages = NULL; | ||
337 | unsigned long nr_pages; | ||
338 | unsigned long nr_pages_ret = 0; | ||
339 | unsigned long total_compressed = 0; | ||
340 | unsigned long total_in = 0; | ||
341 | unsigned long max_compressed = 128 * 1024; | ||
342 | unsigned long max_uncompressed = 128 * 1024; | ||
343 | int i; | ||
344 | int will_compress; | ||
345 | |||
346 | orig_start = start; | ||
347 | |||
348 | actual_end = min_t(u64, isize, end + 1); | ||
349 | again: | ||
350 | will_compress = 0; | ||
351 | nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1; | ||
352 | nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE); | ||
353 | |||
354 | total_compressed = actual_end - start; | ||
355 | |||
356 | /* we want to make sure that amount of ram required to uncompress | ||
357 | * an extent is reasonable, so we limit the total size in ram | ||
358 | * of a compressed extent to 128k. This is a crucial number | ||
359 | * because it also controls how easily we can spread reads across | ||
360 | * cpus for decompression. | ||
361 | * | ||
362 | * We also want to make sure the amount of IO required to do | ||
363 | * a random read is reasonably small, so we limit the size of | ||
364 | * a compressed extent to 128k. | ||
365 | */ | ||
366 | total_compressed = min(total_compressed, max_uncompressed); | ||
367 | num_bytes = (end - start + blocksize) & ~(blocksize - 1); | ||
368 | num_bytes = max(blocksize, num_bytes); | ||
369 | disk_num_bytes = num_bytes; | ||
370 | total_in = 0; | ||
371 | ret = 0; | ||
372 | |||
373 | /* | ||
374 | * we do compression for mount -o compress and when the | ||
375 | * inode has not been flagged as nocompress. This flag can | ||
376 | * change at any time if we discover bad compression ratios. | ||
377 | */ | ||
378 | if (!btrfs_test_flag(inode, NOCOMPRESS) && | ||
379 | btrfs_test_opt(root, COMPRESS)) { | ||
380 | WARN_ON(pages); | ||
381 | pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS); | ||
382 | |||
383 | ret = btrfs_zlib_compress_pages(inode->i_mapping, start, | ||
384 | total_compressed, pages, | ||
385 | nr_pages, &nr_pages_ret, | ||
386 | &total_in, | ||
387 | &total_compressed, | ||
388 | max_compressed); | ||
389 | |||
390 | if (!ret) { | ||
391 | unsigned long offset = total_compressed & | ||
392 | (PAGE_CACHE_SIZE - 1); | ||
393 | struct page *page = pages[nr_pages_ret - 1]; | ||
394 | char *kaddr; | ||
395 | |||
396 | /* zero the tail end of the last page, we might be | ||
397 | * sending it down to disk | ||
398 | */ | ||
399 | if (offset) { | ||
400 | kaddr = kmap_atomic(page, KM_USER0); | ||
401 | memset(kaddr + offset, 0, | ||
402 | PAGE_CACHE_SIZE - offset); | ||
403 | kunmap_atomic(kaddr, KM_USER0); | ||
404 | } | ||
405 | will_compress = 1; | ||
406 | } | ||
407 | } | ||
408 | if (start == 0) { | ||
409 | trans = btrfs_join_transaction(root, 1); | ||
410 | BUG_ON(!trans); | ||
411 | btrfs_set_trans_block_group(trans, inode); | ||
412 | |||
413 | /* lets try to make an inline extent */ | ||
414 | if (ret || total_in < (actual_end - start)) { | ||
415 | /* we didn't compress the entire range, try | ||
416 | * to make an uncompressed inline extent. | ||
417 | */ | ||
418 | ret = cow_file_range_inline(trans, root, inode, | ||
419 | start, end, 0, NULL); | ||
420 | } else { | ||
421 | /* try making a compressed inline extent */ | ||
422 | ret = cow_file_range_inline(trans, root, inode, | ||
423 | start, end, | ||
424 | total_compressed, pages); | ||
425 | } | ||
426 | btrfs_end_transaction(trans, root); | ||
427 | if (ret == 0) { | ||
428 | /* | ||
429 | * inline extent creation worked, we don't need | ||
430 | * to create any more async work items. Unlock | ||
431 | * and free up our temp pages. | ||
432 | */ | ||
433 | extent_clear_unlock_delalloc(inode, | ||
434 | &BTRFS_I(inode)->io_tree, | ||
435 | start, end, NULL, 1, 0, | ||
436 | 0, 1, 1, 1); | ||
437 | ret = 0; | ||
438 | goto free_pages_out; | ||
439 | } | ||
440 | } | ||
441 | |||
442 | if (will_compress) { | ||
443 | /* | ||
444 | * we aren't doing an inline extent round the compressed size | ||
445 | * up to a block size boundary so the allocator does sane | ||
446 | * things | ||
447 | */ | ||
448 | total_compressed = (total_compressed + blocksize - 1) & | ||
449 | ~(blocksize - 1); | ||
450 | |||
451 | /* | ||
452 | * one last check to make sure the compression is really a | ||
453 | * win, compare the page count read with the blocks on disk | ||
454 | */ | ||
455 | total_in = (total_in + PAGE_CACHE_SIZE - 1) & | ||
456 | ~(PAGE_CACHE_SIZE - 1); | ||
457 | if (total_compressed >= total_in) { | ||
458 | will_compress = 0; | ||
459 | } else { | ||
460 | disk_num_bytes = total_compressed; | ||
461 | num_bytes = total_in; | ||
462 | } | ||
463 | } | ||
464 | if (!will_compress && pages) { | ||
465 | /* | ||
466 | * the compression code ran but failed to make things smaller, | ||
467 | * free any pages it allocated and our page pointer array | ||
468 | */ | ||
469 | for (i = 0; i < nr_pages_ret; i++) { | ||
470 | WARN_ON(pages[i]->mapping); | ||
471 | page_cache_release(pages[i]); | ||
472 | } | ||
473 | kfree(pages); | ||
474 | pages = NULL; | ||
475 | total_compressed = 0; | ||
476 | nr_pages_ret = 0; | ||
477 | |||
478 | /* flag the file so we don't compress in the future */ | ||
479 | btrfs_set_flag(inode, NOCOMPRESS); | ||
480 | } | ||
481 | if (will_compress) { | ||
482 | *num_added += 1; | ||
483 | |||
484 | /* the async work queues will take care of doing actual | ||
485 | * allocation on disk for these compressed pages, | ||
486 | * and will submit them to the elevator. | ||
487 | */ | ||
488 | add_async_extent(async_cow, start, num_bytes, | ||
489 | total_compressed, pages, nr_pages_ret); | ||
490 | |||
491 | if (start + num_bytes < end && start + num_bytes < actual_end) { | ||
492 | start += num_bytes; | ||
493 | pages = NULL; | ||
494 | cond_resched(); | ||
495 | goto again; | ||
496 | } | ||
497 | } else { | ||
498 | /* | ||
499 | * No compression, but we still need to write the pages in | ||
500 | * the file we've been given so far. redirty the locked | ||
501 | * page if it corresponds to our extent and set things up | ||
502 | * for the async work queue to run cow_file_range to do | ||
503 | * the normal delalloc dance | ||
504 | */ | ||
505 | if (page_offset(locked_page) >= start && | ||
506 | page_offset(locked_page) <= end) { | ||
507 | __set_page_dirty_nobuffers(locked_page); | ||
508 | /* unlocked later on in the async handlers */ | ||
509 | } | ||
510 | add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0); | ||
511 | *num_added += 1; | ||
512 | } | ||
513 | |||
514 | out: | ||
515 | return 0; | ||
516 | |||
517 | free_pages_out: | ||
518 | for (i = 0; i < nr_pages_ret; i++) { | ||
519 | WARN_ON(pages[i]->mapping); | ||
520 | page_cache_release(pages[i]); | ||
521 | } | ||
522 | kfree(pages); | ||
523 | |||
524 | goto out; | ||
525 | } | ||
526 | |||
527 | /* | ||
528 | * phase two of compressed writeback. This is the ordered portion | ||
529 | * of the code, which only gets called in the order the work was | ||
530 | * queued. We walk all the async extents created by compress_file_range | ||
531 | * and send them down to the disk. | ||
532 | */ | ||
533 | static noinline int submit_compressed_extents(struct inode *inode, | ||
534 | struct async_cow *async_cow) | ||
535 | { | ||
536 | struct async_extent *async_extent; | ||
537 | u64 alloc_hint = 0; | ||
538 | struct btrfs_trans_handle *trans; | ||
539 | struct btrfs_key ins; | ||
540 | struct extent_map *em; | ||
541 | struct btrfs_root *root = BTRFS_I(inode)->root; | ||
542 | struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; | ||
543 | struct extent_io_tree *io_tree; | ||
544 | int ret; | ||
545 | |||
546 | if (list_empty(&async_cow->extents)) | ||
547 | return 0; | ||
548 | |||
549 | trans = btrfs_join_transaction(root, 1); | ||
550 | |||
551 | while (!list_empty(&async_cow->extents)) { | ||
552 | async_extent = list_entry(async_cow->extents.next, | ||
553 | struct async_extent, list); | ||
554 | list_del(&async_extent->list); | ||
555 | |||
556 | io_tree = &BTRFS_I(inode)->io_tree; | ||
557 | |||
558 | /* did the compression code fall back to uncompressed IO? */ | ||
559 | if (!async_extent->pages) { | ||
560 | int page_started = 0; | ||
561 | unsigned long nr_written = 0; | ||
562 | |||
563 | lock_extent(io_tree, async_extent->start, | ||
564 | async_extent->start + | ||
565 | async_extent->ram_size - 1, GFP_NOFS); | ||
566 | |||
567 | /* allocate blocks */ | ||
568 | cow_file_range(inode, async_cow->locked_page, | ||
569 | async_extent->start, | ||
570 | async_extent->start + | ||
571 | async_extent->ram_size - 1, | ||
572 | &page_started, &nr_written, 0); | ||
573 | |||
574 | /* | ||
575 | * if page_started, cow_file_range inserted an | ||
576 | * inline extent and took care of all the unlocking | ||
577 | * and IO for us. Otherwise, we need to submit | ||
578 | * all those pages down to the drive. | ||
579 | */ | ||
580 | if (!page_started) | ||
581 | extent_write_locked_range(io_tree, | ||
582 | inode, async_extent->start, | ||
583 | async_extent->start + | ||
584 | async_extent->ram_size - 1, | ||
585 | btrfs_get_extent, | ||
586 | WB_SYNC_ALL); | ||
587 | kfree(async_extent); | ||
588 | cond_resched(); | ||
589 | continue; | ||
590 | } | ||
591 | |||
592 | lock_extent(io_tree, async_extent->start, | ||
593 | async_extent->start + async_extent->ram_size - 1, | ||
594 | GFP_NOFS); | ||
595 | /* | ||
596 | * here we're doing allocation and writeback of the | ||
597 | * compressed pages | ||
598 | */ | ||
599 | btrfs_drop_extent_cache(inode, async_extent->start, | ||
600 | async_extent->start + | ||
601 | async_extent->ram_size - 1, 0); | ||
602 | |||
603 | ret = btrfs_reserve_extent(trans, root, | ||
604 | async_extent->compressed_size, | ||
605 | async_extent->compressed_size, | ||
606 | 0, alloc_hint, | ||
607 | (u64)-1, &ins, 1); | ||
608 | BUG_ON(ret); | ||
609 | em = alloc_extent_map(GFP_NOFS); | ||
610 | em->start = async_extent->start; | ||
611 | em->len = async_extent->ram_size; | ||
612 | em->orig_start = em->start; | ||
613 | |||
614 | em->block_start = ins.objectid; | ||
615 | em->block_len = ins.offset; | ||
616 | em->bdev = root->fs_info->fs_devices->latest_bdev; | ||
617 | set_bit(EXTENT_FLAG_PINNED, &em->flags); | ||
618 | set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); | ||
619 | |||
620 | while (1) { | ||
621 | spin_lock(&em_tree->lock); | ||
622 | ret = add_extent_mapping(em_tree, em); | ||
623 | spin_unlock(&em_tree->lock); | ||
624 | if (ret != -EEXIST) { | ||
625 | free_extent_map(em); | ||
626 | break; | ||
627 | } | ||
628 | btrfs_drop_extent_cache(inode, async_extent->start, | ||
629 | async_extent->start + | ||
630 | async_extent->ram_size - 1, 0); | ||
631 | } | ||
632 | |||
633 | ret = btrfs_add_ordered_extent(inode, async_extent->start, | ||
634 | ins.objectid, | ||
635 | async_extent->ram_size, | ||
636 | ins.offset, | ||
637 | BTRFS_ORDERED_COMPRESSED); | ||
638 | BUG_ON(ret); | ||
639 | |||
640 | btrfs_end_transaction(trans, root); | ||
641 | |||
642 | /* | ||
643 | * clear dirty, set writeback and unlock the pages. | ||
644 | */ | ||
645 | extent_clear_unlock_delalloc(inode, | ||
646 | &BTRFS_I(inode)->io_tree, | ||
647 | async_extent->start, | ||
648 | async_extent->start + | ||
649 | async_extent->ram_size - 1, | ||
650 | NULL, 1, 1, 0, 1, 1, 0); | ||
651 | |||
652 | ret = btrfs_submit_compressed_write(inode, | ||
653 | async_extent->start, | ||
654 | async_extent->ram_size, | ||
655 | ins.objectid, | ||
656 | ins.offset, async_extent->pages, | ||
657 | async_extent->nr_pages); | ||
658 | |||
659 | BUG_ON(ret); | ||
660 | trans = btrfs_join_transaction(root, 1); | ||
661 | alloc_hint = ins.objectid + ins.offset; | ||
662 | kfree(async_extent); | ||
663 | cond_resched(); | ||
664 | } | ||
665 | |||
666 | btrfs_end_transaction(trans, root); | ||
667 | return 0; | ||
668 | } | ||
669 | |||
670 | /* | ||
671 | * when extent_io.c finds a delayed allocation range in the file, | ||
672 | * the call backs end up in this code. The basic idea is to | ||
673 | * allocate extents on disk for the range, and create ordered data structs | ||
674 | * in ram to track those extents. | ||
675 | * | ||
676 | * locked_page is the page that writepage had locked already. We use | ||
677 | * it to make sure we don't do extra locks or unlocks. | ||
678 | * | ||
679 | * *page_started is set to one if we unlock locked_page and do everything | ||
680 | * required to start IO on it. It may be clean and already done with | ||
681 | * IO when we return. | ||
682 | */ | ||
683 | static noinline int cow_file_range(struct inode *inode, | ||
684 | struct page *locked_page, | ||
685 | u64 start, u64 end, int *page_started, | ||
686 | unsigned long *nr_written, | ||
687 | int unlock) | ||
688 | { | ||
689 | struct btrfs_root *root = BTRFS_I(inode)->root; | ||
690 | struct btrfs_trans_handle *trans; | ||
691 | u64 alloc_hint = 0; | ||
692 | u64 num_bytes; | ||
693 | unsigned long ram_size; | ||
694 | u64 disk_num_bytes; | ||
695 | u64 cur_alloc_size; | ||
696 | u64 blocksize = root->sectorsize; | ||
697 | u64 actual_end; | ||
698 | u64 isize = i_size_read(inode); | ||
699 | struct btrfs_key ins; | ||
700 | struct extent_map *em; | ||
701 | struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; | ||
702 | int ret = 0; | ||
703 | |||
704 | trans = btrfs_join_transaction(root, 1); | ||
705 | BUG_ON(!trans); | ||
706 | btrfs_set_trans_block_group(trans, inode); | ||
707 | |||
708 | actual_end = min_t(u64, isize, end + 1); | ||
709 | |||
710 | num_bytes = (end - start + blocksize) & ~(blocksize - 1); | ||
711 | num_bytes = max(blocksize, num_bytes); | ||
712 | disk_num_bytes = num_bytes; | ||
713 | ret = 0; | ||
714 | |||
715 | if (start == 0) { | ||
716 | /* lets try to make an inline extent */ | ||
717 | ret = cow_file_range_inline(trans, root, inode, | ||
718 | start, end, 0, NULL); | ||
719 | if (ret == 0) { | ||
720 | extent_clear_unlock_delalloc(inode, | ||
721 | &BTRFS_I(inode)->io_tree, | ||
722 | start, end, NULL, 1, 1, | ||
723 | 1, 1, 1, 1); | ||
724 | *nr_written = *nr_written + | ||
725 | (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE; | ||
726 | *page_started = 1; | ||
727 | ret = 0; | ||
728 | goto out; | ||
729 | } | ||
730 | } | ||
731 | |||
732 | BUG_ON(disk_num_bytes > | ||
733 | btrfs_super_total_bytes(&root->fs_info->super_copy)); | ||
734 | |||
735 | btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0); | ||
736 | |||
737 | while (disk_num_bytes > 0) { | ||
738 | cur_alloc_size = min(disk_num_bytes, root->fs_info->max_extent); | ||
739 | ret = btrfs_reserve_extent(trans, root, cur_alloc_size, | ||
740 | root->sectorsize, 0, alloc_hint, | ||
741 | (u64)-1, &ins, 1); | ||
742 | BUG_ON(ret); | ||
743 | |||
744 | em = alloc_extent_map(GFP_NOFS); | ||
745 | em->start = start; | ||
746 | em->orig_start = em->start; | ||
747 | |||
748 | ram_size = ins.offset; | ||
749 | em->len = ins.offset; | ||
750 | |||
751 | em->block_start = ins.objectid; | ||
752 | em->block_len = ins.offset; | ||
753 | em->bdev = root->fs_info->fs_devices->latest_bdev; | ||
754 | set_bit(EXTENT_FLAG_PINNED, &em->flags); | ||
755 | |||
756 | while (1) { | ||
757 | spin_lock(&em_tree->lock); | ||
758 | ret = add_extent_mapping(em_tree, em); | ||
759 | spin_unlock(&em_tree->lock); | ||
760 | if (ret != -EEXIST) { | ||
761 | free_extent_map(em); | ||
762 | break; | ||
763 | } | ||
764 | btrfs_drop_extent_cache(inode, start, | ||
765 | start + ram_size - 1, 0); | ||
766 | } | ||
767 | |||
768 | cur_alloc_size = ins.offset; | ||
769 | ret = btrfs_add_ordered_extent(inode, start, ins.objectid, | ||
770 | ram_size, cur_alloc_size, 0); | ||
771 | BUG_ON(ret); | ||
772 | |||
773 | if (root->root_key.objectid == | ||
774 | BTRFS_DATA_RELOC_TREE_OBJECTID) { | ||
775 | ret = btrfs_reloc_clone_csums(inode, start, | ||
776 | cur_alloc_size); | ||
777 | BUG_ON(ret); | ||
778 | } | ||
779 | |||
780 | if (disk_num_bytes < cur_alloc_size) | ||
781 | break; | ||
782 | |||
783 | /* we're not doing compressed IO, don't unlock the first | ||
784 | * page (which the caller expects to stay locked), don't | ||
785 | * clear any dirty bits and don't set any writeback bits | ||
786 | */ | ||
787 | extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree, | ||
788 | start, start + ram_size - 1, | ||
789 | locked_page, unlock, 1, | ||
790 | 1, 0, 0, 0); | ||
791 | disk_num_bytes -= cur_alloc_size; | ||
792 | num_bytes -= cur_alloc_size; | ||
793 | alloc_hint = ins.objectid + ins.offset; | ||
794 | start += cur_alloc_size; | ||
795 | } | ||
796 | out: | ||
797 | ret = 0; | ||
798 | btrfs_end_transaction(trans, root); | ||
799 | |||
800 | return ret; | ||
801 | } | ||
802 | |||
803 | /* | ||
804 | * work queue call back to started compression on a file and pages | ||
805 | */ | ||
806 | static noinline void async_cow_start(struct btrfs_work *work) | ||
807 | { | ||
808 | struct async_cow *async_cow; | ||
809 | int num_added = 0; | ||
810 | async_cow = container_of(work, struct async_cow, work); | ||
811 | |||
812 | compress_file_range(async_cow->inode, async_cow->locked_page, | ||
813 | async_cow->start, async_cow->end, async_cow, | ||
814 | &num_added); | ||
815 | if (num_added == 0) | ||
816 | async_cow->inode = NULL; | ||
817 | } | ||
818 | |||
819 | /* | ||
820 | * work queue call back to submit previously compressed pages | ||
821 | */ | ||
822 | static noinline void async_cow_submit(struct btrfs_work *work) | ||
823 | { | ||
824 | struct async_cow *async_cow; | ||
825 | struct btrfs_root *root; | ||
826 | unsigned long nr_pages; | ||
827 | |||
828 | async_cow = container_of(work, struct async_cow, work); | ||
829 | |||
830 | root = async_cow->root; | ||
831 | nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >> | ||
832 | PAGE_CACHE_SHIFT; | ||
833 | |||
834 | atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages); | ||
835 | |||
836 | if (atomic_read(&root->fs_info->async_delalloc_pages) < | ||
837 | 5 * 1042 * 1024 && | ||
838 | waitqueue_active(&root->fs_info->async_submit_wait)) | ||
839 | wake_up(&root->fs_info->async_submit_wait); | ||
840 | |||
841 | if (async_cow->inode) | ||
842 | submit_compressed_extents(async_cow->inode, async_cow); | ||
843 | } | ||
844 | |||
845 | static noinline void async_cow_free(struct btrfs_work *work) | ||
846 | { | ||
847 | struct async_cow *async_cow; | ||
848 | async_cow = container_of(work, struct async_cow, work); | ||
849 | kfree(async_cow); | ||
850 | } | ||
851 | |||
852 | static int cow_file_range_async(struct inode *inode, struct page *locked_page, | ||
853 | u64 start, u64 end, int *page_started, | ||
854 | unsigned long *nr_written) | ||
855 | { | ||
856 | struct async_cow *async_cow; | ||
857 | struct btrfs_root *root = BTRFS_I(inode)->root; | ||
858 | unsigned long nr_pages; | ||
859 | u64 cur_end; | ||
860 | int limit = 10 * 1024 * 1042; | ||
861 | |||
862 | if (!btrfs_test_opt(root, COMPRESS)) { | ||
863 | return cow_file_range(inode, locked_page, start, end, | ||
864 | page_started, nr_written, 1); | ||
865 | } | ||
866 | |||
867 | clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED | | ||
868 | EXTENT_DELALLOC, 1, 0, GFP_NOFS); | ||
869 | while (start < end) { | ||
870 | async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS); | ||
871 | async_cow->inode = inode; | ||
872 | async_cow->root = root; | ||
873 | async_cow->locked_page = locked_page; | ||
874 | async_cow->start = start; | ||
875 | |||
876 | if (btrfs_test_flag(inode, NOCOMPRESS)) | ||
877 | cur_end = end; | ||
878 | else | ||
879 | cur_end = min(end, start + 512 * 1024 - 1); | ||
880 | |||
881 | async_cow->end = cur_end; | ||
882 | INIT_LIST_HEAD(&async_cow->extents); | ||
883 | |||
884 | async_cow->work.func = async_cow_start; | ||
885 | async_cow->work.ordered_func = async_cow_submit; | ||
886 | async_cow->work.ordered_free = async_cow_free; | ||
887 | async_cow->work.flags = 0; | ||
888 | |||
889 | nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >> | ||
890 | PAGE_CACHE_SHIFT; | ||
891 | atomic_add(nr_pages, &root->fs_info->async_delalloc_pages); | ||
892 | |||
893 | btrfs_queue_worker(&root->fs_info->delalloc_workers, | ||
894 | &async_cow->work); | ||
895 | |||
896 | if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) { | ||
897 | wait_event(root->fs_info->async_submit_wait, | ||
898 | (atomic_read(&root->fs_info->async_delalloc_pages) < | ||
899 | limit)); | ||
900 | } | ||
901 | |||
902 | while (atomic_read(&root->fs_info->async_submit_draining) && | ||
903 | atomic_read(&root->fs_info->async_delalloc_pages)) { | ||
904 | wait_event(root->fs_info->async_submit_wait, | ||
905 | (atomic_read(&root->fs_info->async_delalloc_pages) == | ||
906 | 0)); | ||
907 | } | ||
908 | |||
909 | *nr_written += nr_pages; | ||
910 | start = cur_end + 1; | ||
911 | } | ||
912 | *page_started = 1; | ||
913 | return 0; | ||
914 | } | ||
915 | |||
916 | static noinline int csum_exist_in_range(struct btrfs_root *root, | ||
917 | u64 bytenr, u64 num_bytes) | ||
918 | { | ||
919 | int ret; | ||
920 | struct btrfs_ordered_sum *sums; | ||
921 | LIST_HEAD(list); | ||
922 | |||
923 | ret = btrfs_lookup_csums_range(root, bytenr, bytenr + num_bytes - 1, | ||
924 | &list); | ||
925 | if (ret == 0 && list_empty(&list)) | ||
926 | return 0; | ||
927 | |||
928 | while (!list_empty(&list)) { | ||
929 | sums = list_entry(list.next, struct btrfs_ordered_sum, list); | ||
930 | list_del(&sums->list); | ||
931 | kfree(sums); | ||
932 | } | ||
933 | return 1; | ||
934 | } | ||
935 | |||
936 | /* | ||
937 | * when nowcow writeback call back. This checks for snapshots or COW copies | ||
938 | * of the extents that exist in the file, and COWs the file as required. | ||
939 | * | ||
940 | * If no cow copies or snapshots exist, we write directly to the existing | ||
941 | * blocks on disk | ||
942 | */ | ||
943 | static int run_delalloc_nocow(struct inode *inode, struct page *locked_page, | ||
944 | u64 start, u64 end, int *page_started, int force, | ||
945 | unsigned long *nr_written) | ||
946 | { | ||
947 | struct btrfs_root *root = BTRFS_I(inode)->root; | ||
948 | struct btrfs_trans_handle *trans; | ||
949 | struct extent_buffer *leaf; | ||
950 | struct btrfs_path *path; | ||
951 | struct btrfs_file_extent_item *fi; | ||
952 | struct btrfs_key found_key; | ||
953 | u64 cow_start; | ||
954 | u64 cur_offset; | ||
955 | u64 extent_end; | ||
956 | u64 disk_bytenr; | ||
957 | u64 num_bytes; | ||
958 | int extent_type; | ||
959 | int ret; | ||
960 | int type; | ||
961 | int nocow; | ||
962 | int check_prev = 1; | ||
963 | |||
964 | path = btrfs_alloc_path(); | ||
965 | BUG_ON(!path); | ||
966 | trans = btrfs_join_transaction(root, 1); | ||
967 | BUG_ON(!trans); | ||
968 | |||
969 | cow_start = (u64)-1; | ||
970 | cur_offset = start; | ||
971 | while (1) { | ||
972 | ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino, | ||
973 | cur_offset, 0); | ||
974 | BUG_ON(ret < 0); | ||
975 | if (ret > 0 && path->slots[0] > 0 && check_prev) { | ||
976 | leaf = path->nodes[0]; | ||
977 | btrfs_item_key_to_cpu(leaf, &found_key, | ||
978 | path->slots[0] - 1); | ||
979 | if (found_key.objectid == inode->i_ino && | ||
980 | found_key.type == BTRFS_EXTENT_DATA_KEY) | ||
981 | path->slots[0]--; | ||
982 | } | ||
983 | check_prev = 0; | ||
984 | next_slot: | ||
985 | leaf = path->nodes[0]; | ||
986 | if (path->slots[0] >= btrfs_header_nritems(leaf)) { | ||
987 | ret = btrfs_next_leaf(root, path); | ||
988 | if (ret < 0) | ||
989 | BUG_ON(1); | ||
990 | if (ret > 0) | ||
991 | break; | ||
992 | leaf = path->nodes[0]; | ||
993 | } | ||
994 | |||
995 | nocow = 0; | ||
996 | disk_bytenr = 0; | ||
997 | num_bytes = 0; | ||
998 | btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); | ||
999 | |||
1000 | if (found_key.objectid > inode->i_ino || | ||
1001 | found_key.type > BTRFS_EXTENT_DATA_KEY || | ||
1002 | found_key.offset > end) | ||
1003 | break; | ||
1004 | |||
1005 | if (found_key.offset > cur_offset) { | ||
1006 | extent_end = found_key.offset; | ||
1007 | goto out_check; | ||
1008 | } | ||
1009 | |||
1010 | fi = btrfs_item_ptr(leaf, path->slots[0], | ||
1011 | struct btrfs_file_extent_item); | ||
1012 | extent_type = btrfs_file_extent_type(leaf, fi); | ||
1013 | |||
1014 | if (extent_type == BTRFS_FILE_EXTENT_REG || | ||
1015 | extent_type == BTRFS_FILE_EXTENT_PREALLOC) { | ||
1016 | disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); | ||
1017 | extent_end = found_key.offset + | ||
1018 | btrfs_file_extent_num_bytes(leaf, fi); | ||
1019 | if (extent_end <= start) { | ||
1020 | path->slots[0]++; | ||
1021 | goto next_slot; | ||
1022 | } | ||
1023 | if (disk_bytenr == 0) | ||
1024 | goto out_check; | ||
1025 | if (btrfs_file_extent_compression(leaf, fi) || | ||
1026 | btrfs_file_extent_encryption(leaf, fi) || | ||
1027 | btrfs_file_extent_other_encoding(leaf, fi)) | ||
1028 | goto out_check; | ||
1029 | if (extent_type == BTRFS_FILE_EXTENT_REG && !force) | ||
1030 | goto out_check; | ||
1031 | if (btrfs_extent_readonly(root, disk_bytenr)) | ||
1032 | goto out_check; | ||
1033 | if (btrfs_cross_ref_exist(trans, root, inode->i_ino, | ||
1034 | disk_bytenr)) | ||
1035 | goto out_check; | ||
1036 | disk_bytenr += btrfs_file_extent_offset(leaf, fi); | ||
1037 | disk_bytenr += cur_offset - found_key.offset; | ||
1038 | num_bytes = min(end + 1, extent_end) - cur_offset; | ||
1039 | /* | ||
1040 | * force cow if csum exists in the range. | ||
1041 | * this ensure that csum for a given extent are | ||
1042 | * either valid or do not exist. | ||
1043 | */ | ||
1044 | if (csum_exist_in_range(root, disk_bytenr, num_bytes)) | ||
1045 | goto out_check; | ||
1046 | nocow = 1; | ||
1047 | } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { | ||
1048 | extent_end = found_key.offset + | ||
1049 | btrfs_file_extent_inline_len(leaf, fi); | ||
1050 | extent_end = ALIGN(extent_end, root->sectorsize); | ||
1051 | } else { | ||
1052 | BUG_ON(1); | ||
1053 | } | ||
1054 | out_check: | ||
1055 | if (extent_end <= start) { | ||
1056 | path->slots[0]++; | ||
1057 | goto next_slot; | ||
1058 | } | ||
1059 | if (!nocow) { | ||
1060 | if (cow_start == (u64)-1) | ||
1061 | cow_start = cur_offset; | ||
1062 | cur_offset = extent_end; | ||
1063 | if (cur_offset > end) | ||
1064 | break; | ||
1065 | path->slots[0]++; | ||
1066 | goto next_slot; | ||
1067 | } | ||
1068 | |||
1069 | btrfs_release_path(root, path); | ||
1070 | if (cow_start != (u64)-1) { | ||
1071 | ret = cow_file_range(inode, locked_page, cow_start, | ||
1072 | found_key.offset - 1, page_started, | ||
1073 | nr_written, 1); | ||
1074 | BUG_ON(ret); | ||
1075 | cow_start = (u64)-1; | ||
1076 | } | ||
1077 | |||
1078 | if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { | ||
1079 | struct extent_map *em; | ||
1080 | struct extent_map_tree *em_tree; | ||
1081 | em_tree = &BTRFS_I(inode)->extent_tree; | ||
1082 | em = alloc_extent_map(GFP_NOFS); | ||
1083 | em->start = cur_offset; | ||
1084 | em->orig_start = em->start; | ||
1085 | em->len = num_bytes; | ||
1086 | em->block_len = num_bytes; | ||
1087 | em->block_start = disk_bytenr; | ||
1088 | em->bdev = root->fs_info->fs_devices->latest_bdev; | ||
1089 | set_bit(EXTENT_FLAG_PINNED, &em->flags); | ||
1090 | while (1) { | ||
1091 | spin_lock(&em_tree->lock); | ||
1092 | ret = add_extent_mapping(em_tree, em); | ||
1093 | spin_unlock(&em_tree->lock); | ||
1094 | if (ret != -EEXIST) { | ||
1095 | free_extent_map(em); | ||
1096 | break; | ||
1097 | } | ||
1098 | btrfs_drop_extent_cache(inode, em->start, | ||
1099 | em->start + em->len - 1, 0); | ||
1100 | } | ||
1101 | type = BTRFS_ORDERED_PREALLOC; | ||
1102 | } else { | ||
1103 | type = BTRFS_ORDERED_NOCOW; | ||
1104 | } | ||
1105 | |||
1106 | ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr, | ||
1107 | num_bytes, num_bytes, type); | ||
1108 | BUG_ON(ret); | ||
1109 | |||
1110 | extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree, | ||
1111 | cur_offset, cur_offset + num_bytes - 1, | ||
1112 | locked_page, 1, 1, 1, 0, 0, 0); | ||
1113 | cur_offset = extent_end; | ||
1114 | if (cur_offset > end) | ||
1115 | break; | ||
1116 | } | ||
1117 | btrfs_release_path(root, path); | ||
1118 | |||
1119 | if (cur_offset <= end && cow_start == (u64)-1) | ||
1120 | cow_start = cur_offset; | ||
1121 | if (cow_start != (u64)-1) { | ||
1122 | ret = cow_file_range(inode, locked_page, cow_start, end, | ||
1123 | page_started, nr_written, 1); | ||
1124 | BUG_ON(ret); | ||
1125 | } | ||
1126 | |||
1127 | ret = btrfs_end_transaction(trans, root); | ||
1128 | BUG_ON(ret); | ||
1129 | btrfs_free_path(path); | ||
1130 | return 0; | ||
1131 | } | ||
1132 | |||
1133 | /* | ||
1134 | * extent_io.c call back to do delayed allocation processing | ||
1135 | */ | ||
1136 | static int run_delalloc_range(struct inode *inode, struct page *locked_page, | ||
1137 | u64 start, u64 end, int *page_started, | ||
1138 | unsigned long *nr_written) | ||
1139 | { | ||
1140 | int ret; | ||
1141 | |||
1142 | if (btrfs_test_flag(inode, NODATACOW)) | ||
1143 | ret = run_delalloc_nocow(inode, locked_page, start, end, | ||
1144 | page_started, 1, nr_written); | ||
1145 | else if (btrfs_test_flag(inode, PREALLOC)) | ||
1146 | ret = run_delalloc_nocow(inode, locked_page, start, end, | ||
1147 | page_started, 0, nr_written); | ||
1148 | else | ||
1149 | ret = cow_file_range_async(inode, locked_page, start, end, | ||
1150 | page_started, nr_written); | ||
1151 | |||
1152 | return ret; | ||
1153 | } | ||
1154 | |||
1155 | /* | ||
1156 | * extent_io.c set_bit_hook, used to track delayed allocation | ||
1157 | * bytes in this file, and to maintain the list of inodes that | ||
1158 | * have pending delalloc work to be done. | ||
1159 | */ | ||
1160 | static int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end, | ||
1161 | unsigned long old, unsigned long bits) | ||
1162 | { | ||
1163 | /* | ||
1164 | * set_bit and clear bit hooks normally require _irqsave/restore | ||
1165 | * but in this case, we are only testeing for the DELALLOC | ||
1166 | * bit, which is only set or cleared with irqs on | ||
1167 | */ | ||
1168 | if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { | ||
1169 | struct btrfs_root *root = BTRFS_I(inode)->root; | ||
1170 | spin_lock(&root->fs_info->delalloc_lock); | ||
1171 | BTRFS_I(inode)->delalloc_bytes += end - start + 1; | ||
1172 | root->fs_info->delalloc_bytes += end - start + 1; | ||
1173 | if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { | ||
1174 | list_add_tail(&BTRFS_I(inode)->delalloc_inodes, | ||
1175 | &root->fs_info->delalloc_inodes); | ||
1176 | } | ||
1177 | spin_unlock(&root->fs_info->delalloc_lock); | ||
1178 | } | ||
1179 | return 0; | ||
1180 | } | ||
1181 | |||
1182 | /* | ||
1183 | * extent_io.c clear_bit_hook, see set_bit_hook for why | ||
1184 | */ | ||
1185 | static int btrfs_clear_bit_hook(struct inode *inode, u64 start, u64 end, | ||
1186 | unsigned long old, unsigned long bits) | ||
1187 | { | ||
1188 | /* | ||
1189 | * set_bit and clear bit hooks normally require _irqsave/restore | ||
1190 | * but in this case, we are only testeing for the DELALLOC | ||
1191 | * bit, which is only set or cleared with irqs on | ||
1192 | */ | ||
1193 | if ((old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { | ||
1194 | struct btrfs_root *root = BTRFS_I(inode)->root; | ||
1195 | |||
1196 | spin_lock(&root->fs_info->delalloc_lock); | ||
1197 | if (end - start + 1 > root->fs_info->delalloc_bytes) { | ||
1198 | printk(KERN_INFO "btrfs warning: delalloc account " | ||
1199 | "%llu %llu\n", | ||
1200 | (unsigned long long)end - start + 1, | ||
1201 | (unsigned long long) | ||
1202 | root->fs_info->delalloc_bytes); | ||
1203 | root->fs_info->delalloc_bytes = 0; | ||
1204 | BTRFS_I(inode)->delalloc_bytes = 0; | ||
1205 | } else { | ||
1206 | root->fs_info->delalloc_bytes -= end - start + 1; | ||
1207 | BTRFS_I(inode)->delalloc_bytes -= end - start + 1; | ||
1208 | } | ||
1209 | if (BTRFS_I(inode)->delalloc_bytes == 0 && | ||
1210 | !list_empty(&BTRFS_I(inode)->delalloc_inodes)) { | ||
1211 | list_del_init(&BTRFS_I(inode)->delalloc_inodes); | ||
1212 | } | ||
1213 | spin_unlock(&root->fs_info->delalloc_lock); | ||
1214 | } | ||
1215 | return 0; | ||
1216 | } | ||
1217 | |||
1218 | /* | ||
1219 | * extent_io.c merge_bio_hook, this must check the chunk tree to make sure | ||
1220 | * we don't create bios that span stripes or chunks | ||
1221 | */ | ||
1222 | int btrfs_merge_bio_hook(struct page *page, unsigned long offset, | ||
1223 | size_t size, struct bio *bio, | ||
1224 | unsigned long bio_flags) | ||
1225 | { | ||
1226 | struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; | ||
1227 | struct btrfs_mapping_tree *map_tree; | ||
1228 | u64 logical = (u64)bio->bi_sector << 9; | ||
1229 | u64 length = 0; | ||
1230 | u64 map_length; | ||
1231 | int ret; | ||
1232 | |||
1233 | if (bio_flags & EXTENT_BIO_COMPRESSED) | ||
1234 | return 0; | ||
1235 | |||
1236 | length = bio->bi_size; | ||
1237 | map_tree = &root->fs_info->mapping_tree; | ||
1238 | map_length = length; | ||
1239 | ret = btrfs_map_block(map_tree, READ, logical, | ||
1240 | &map_length, NULL, 0); | ||
1241 | |||
1242 | if (map_length < length + size) | ||
1243 | return 1; | ||
1244 | return 0; | ||
1245 | } | ||
1246 | |||
1247 | /* | ||
1248 | * in order to insert checksums into the metadata in large chunks, | ||
1249 | * we wait until bio submission time. All the pages in the bio are | ||
1250 | * checksummed and sums are attached onto the ordered extent record. | ||
1251 | * | ||
1252 | * At IO completion time the cums attached on the ordered extent record | ||
1253 | * are inserted into the btree | ||
1254 | */ | ||
1255 | static int __btrfs_submit_bio_start(struct inode *inode, int rw, | ||
1256 | struct bio *bio, int mirror_num, | ||
1257 | unsigned long bio_flags) | ||
1258 | { | ||
1259 | struct btrfs_root *root = BTRFS_I(inode)->root; | ||
1260 | int ret = 0; | ||
1261 | |||
1262 | ret = btrfs_csum_one_bio(root, inode, bio, 0, 0); | ||
1263 | BUG_ON(ret); | ||
1264 | return 0; | ||
1265 | } | ||
1266 | |||
1267 | /* | ||
1268 | * in order to insert checksums into the metadata in large chunks, | ||
1269 | * we wait until bio submission time. All the pages in the bio are | ||
1270 | * checksummed and sums are attached onto the ordered extent record. | ||
1271 | * | ||
1272 | * At IO completion time the cums attached on the ordered extent record | ||
1273 | * are inserted into the btree | ||
1274 | */ | ||
1275 | static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio, | ||
1276 | int mirror_num, unsigned long bio_flags) | ||
1277 | { | ||
1278 | struct btrfs_root *root = BTRFS_I(inode)->root; | ||
1279 | return btrfs_map_bio(root, rw, bio, mirror_num, 1); | ||
1280 | } | ||
1281 | |||
1282 | /* | ||
1283 | * extent_io.c submission hook. This does the right thing for csum calculation | ||
1284 | * on write, or reading the csums from the tree before a read | ||
1285 | */ | ||
1286 | static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, | ||
1287 | int mirror_num, unsigned long bio_flags) | ||
1288 | { | ||
1289 | struct btrfs_root *root = BTRFS_I(inode)->root; | ||
1290 | int ret = 0; | ||
1291 | int skip_sum; | ||
1292 | |||
1293 | skip_sum = btrfs_test_flag(inode, NODATASUM); | ||
1294 | |||
1295 | ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0); | ||
1296 | BUG_ON(ret); | ||
1297 | |||
1298 | if (!(rw & (1 << BIO_RW))) { | ||
1299 | if (bio_flags & EXTENT_BIO_COMPRESSED) { | ||
1300 | return btrfs_submit_compressed_read(inode, bio, | ||
1301 | mirror_num, bio_flags); | ||
1302 | } else if (!skip_sum) | ||
1303 | btrfs_lookup_bio_sums(root, inode, bio, NULL); | ||
1304 | goto mapit; | ||
1305 | } else if (!skip_sum) { | ||
1306 | /* csum items have already been cloned */ | ||
1307 | if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) | ||
1308 | goto mapit; | ||
1309 | /* we're doing a write, do the async checksumming */ | ||
1310 | return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, | ||
1311 | inode, rw, bio, mirror_num, | ||
1312 | bio_flags, __btrfs_submit_bio_start, | ||
1313 | __btrfs_submit_bio_done); | ||
1314 | } | ||
1315 | |||
1316 | mapit: | ||
1317 | return btrfs_map_bio(root, rw, bio, mirror_num, 0); | ||
1318 | } | ||
1319 | |||
1320 | /* | ||
1321 | * given a list of ordered sums record them in the inode. This happens | ||
1322 | * at IO completion time based on sums calculated at bio submission time. | ||
1323 | */ | ||
1324 | static noinline int add_pending_csums(struct btrfs_trans_handle *trans, | ||
1325 | struct inode *inode, u64 file_offset, | ||
1326 | struct list_head *list) | ||
1327 | { | ||
1328 | struct list_head *cur; | ||
1329 | struct btrfs_ordered_sum *sum; | ||
1330 | |||
1331 | btrfs_set_trans_block_group(trans, inode); | ||
1332 | list_for_each(cur, list) { | ||
1333 | sum = list_entry(cur, struct btrfs_ordered_sum, list); | ||
1334 | btrfs_csum_file_blocks(trans, | ||
1335 | BTRFS_I(inode)->root->fs_info->csum_root, sum); | ||
1336 | } | ||
1337 | return 0; | ||
1338 | } | ||
1339 | |||
1340 | int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end) | ||
1341 | { | ||
1342 | if ((end & (PAGE_CACHE_SIZE - 1)) == 0) | ||
1343 | WARN_ON(1); | ||
1344 | return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, | ||
1345 | GFP_NOFS); | ||
1346 | } | ||
1347 | |||
1348 | /* see btrfs_writepage_start_hook for details on why this is required */ | ||
1349 | struct btrfs_writepage_fixup { | ||
1350 | struct page *page; | ||
1351 | struct btrfs_work work; | ||
1352 | }; | ||
1353 | |||
1354 | static void btrfs_writepage_fixup_worker(struct btrfs_work *work) | ||
1355 | { | ||
1356 | struct btrfs_writepage_fixup *fixup; | ||
1357 | struct btrfs_ordered_extent *ordered; | ||
1358 | struct page *page; | ||
1359 | struct inode *inode; | ||
1360 | u64 page_start; | ||
1361 | u64 page_end; | ||
1362 | |||
1363 | fixup = container_of(work, struct btrfs_writepage_fixup, work); | ||
1364 | page = fixup->page; | ||
1365 | again: | ||
1366 | lock_page(page); | ||
1367 | if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { | ||
1368 | ClearPageChecked(page); | ||
1369 | goto out_page; | ||
1370 | } | ||
1371 | |||
1372 | inode = page->mapping->host; | ||
1373 | page_start = page_offset(page); | ||
1374 | page_end = page_offset(page) + PAGE_CACHE_SIZE - 1; | ||
1375 | |||
1376 | lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS); | ||
1377 | |||
1378 | /* already ordered? We're done */ | ||
1379 | if (test_range_bit(&BTRFS_I(inode)->io_tree, page_start, page_end, | ||
1380 | EXTENT_ORDERED, 0)) { | ||
1381 | goto out; | ||
1382 | } | ||
1383 | |||
1384 | ordered = btrfs_lookup_ordered_extent(inode, page_start); | ||
1385 | if (ordered) { | ||
1386 | unlock_extent(&BTRFS_I(inode)->io_tree, page_start, | ||
1387 | page_end, GFP_NOFS); | ||
1388 | unlock_page(page); | ||
1389 | btrfs_start_ordered_extent(inode, ordered, 1); | ||
1390 | goto again; | ||
1391 | } | ||
1392 | |||
1393 | btrfs_set_extent_delalloc(inode, page_start, page_end); | ||
1394 | ClearPageChecked(page); | ||
1395 | out: | ||
1396 | unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS); | ||
1397 | out_page: | ||
1398 | unlock_page(page); | ||
1399 | page_cache_release(page); | ||
1400 | } | ||
1401 | |||
1402 | /* | ||
1403 | * There are a few paths in the higher layers of the kernel that directly | ||
1404 | * set the page dirty bit without asking the filesystem if it is a | ||
1405 | * good idea. This causes problems because we want to make sure COW | ||
1406 | * properly happens and the data=ordered rules are followed. | ||
1407 | * | ||
1408 | * In our case any range that doesn't have the ORDERED bit set | ||
1409 | * hasn't been properly setup for IO. We kick off an async process | ||
1410 | * to fix it up. The async helper will wait for ordered extents, set | ||
1411 | * the delalloc bit and make it safe to write the page. | ||
1412 | */ | ||
1413 | static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end) | ||
1414 | { | ||
1415 | struct inode *inode = page->mapping->host; | ||
1416 | struct btrfs_writepage_fixup *fixup; | ||
1417 | struct btrfs_root *root = BTRFS_I(inode)->root; | ||
1418 | int ret; | ||
1419 | |||
1420 | ret = test_range_bit(&BTRFS_I(inode)->io_tree, start, end, | ||
1421 | EXTENT_ORDERED, 0); | ||
1422 | if (ret) | ||
1423 | return 0; | ||
1424 | |||
1425 | if (PageChecked(page)) | ||
1426 | return -EAGAIN; | ||
1427 | |||
1428 | fixup = kzalloc(sizeof(*fixup), GFP_NOFS); | ||
1429 | if (!fixup) | ||
1430 | return -EAGAIN; | ||
1431 | |||
1432 | SetPageChecked(page); | ||
1433 | page_cache_get(page); | ||
1434 | fixup->work.func = btrfs_writepage_fixup_worker; | ||
1435 | fixup->page = page; | ||
1436 | btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work); | ||
1437 | return -EAGAIN; | ||
1438 | } | ||
1439 | |||
1440 | static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, | ||
1441 | struct inode *inode, u64 file_pos, | ||
1442 | u64 disk_bytenr, u64 disk_num_bytes, | ||
1443 | u64 num_bytes, u64 ram_bytes, | ||
1444 | u8 compression, u8 encryption, | ||
1445 | u16 other_encoding, int extent_type) | ||
1446 | { | ||
1447 | struct btrfs_root *root = BTRFS_I(inode)->root; | ||
1448 | struct btrfs_file_extent_item *fi; | ||
1449 | struct btrfs_path *path; | ||
1450 | struct extent_buffer *leaf; | ||
1451 | struct btrfs_key ins; | ||
1452 | u64 hint; | ||
1453 | int ret; | ||
1454 | |||
1455 | path = btrfs_alloc_path(); | ||
1456 | BUG_ON(!path); | ||
1457 | |||
1458 | ret = btrfs_drop_extents(trans, root, inode, file_pos, | ||
1459 | file_pos + num_bytes, file_pos, &hint); | ||
1460 | BUG_ON(ret); | ||
1461 | |||
1462 | ins.objectid = inode->i_ino; | ||
1463 | ins.offset = file_pos; | ||
1464 | ins.type = BTRFS_EXTENT_DATA_KEY; | ||
1465 | ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi)); | ||
1466 | BUG_ON(ret); | ||
1467 | leaf = path->nodes[0]; | ||
1468 | fi = btrfs_item_ptr(leaf, path->slots[0], | ||
1469 | struct btrfs_file_extent_item); | ||
1470 | btrfs_set_file_extent_generation(leaf, fi, trans->transid); | ||
1471 | btrfs_set_file_extent_type(leaf, fi, extent_type); | ||
1472 | btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); | ||
1473 | btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); | ||
1474 | btrfs_set_file_extent_offset(leaf, fi, 0); | ||
1475 | btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); | ||
1476 | btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); | ||
1477 | btrfs_set_file_extent_compression(leaf, fi, compression); | ||
1478 | btrfs_set_file_extent_encryption(leaf, fi, encryption); | ||
1479 | btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); | ||
1480 | btrfs_mark_buffer_dirty(leaf); | ||
1481 | |||
1482 | inode_add_bytes(inode, num_bytes); | ||
1483 | btrfs_drop_extent_cache(inode, file_pos, file_pos + num_bytes - 1, 0); | ||
1484 | |||
1485 | ins.objectid = disk_bytenr; | ||
1486 | ins.offset = disk_num_bytes; | ||
1487 | ins.type = BTRFS_EXTENT_ITEM_KEY; | ||
1488 | ret = btrfs_alloc_reserved_extent(trans, root, leaf->start, | ||
1489 | root->root_key.objectid, | ||
1490 | trans->transid, inode->i_ino, &ins); | ||
1491 | BUG_ON(ret); | ||
1492 | |||
1493 | btrfs_free_path(path); | ||
1494 | return 0; | ||
1495 | } | ||
1496 | |||
1497 | /* as ordered data IO finishes, this gets called so we can finish | ||
1498 | * an ordered extent if the range of bytes in the file it covers are | ||
1499 | * fully written. | ||
1500 | */ | ||
1501 | static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end) | ||
1502 | { | ||
1503 | struct btrfs_root *root = BTRFS_I(inode)->root; | ||
1504 | struct btrfs_trans_handle *trans; | ||
1505 | struct btrfs_ordered_extent *ordered_extent; | ||
1506 | struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; | ||
1507 | int compressed = 0; | ||
1508 | int ret; | ||
1509 | |||
1510 | ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1); | ||
1511 | if (!ret) | ||
1512 | return 0; | ||
1513 | |||
1514 | trans = btrfs_join_transaction(root, 1); | ||
1515 | |||
1516 | ordered_extent = btrfs_lookup_ordered_extent(inode, start); | ||
1517 | BUG_ON(!ordered_extent); | ||
1518 | if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) | ||
1519 | goto nocow; | ||
1520 | |||
1521 | lock_extent(io_tree, ordered_extent->file_offset, | ||
1522 | ordered_extent->file_offset + ordered_extent->len - 1, | ||
1523 | GFP_NOFS); | ||
1524 | |||
1525 | if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) | ||
1526 | compressed = 1; | ||
1527 | if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { | ||
1528 | BUG_ON(compressed); | ||
1529 | ret = btrfs_mark_extent_written(trans, root, inode, | ||
1530 | ordered_extent->file_offset, | ||
1531 | ordered_extent->file_offset + | ||
1532 | ordered_extent->len); | ||
1533 | BUG_ON(ret); | ||
1534 | } else { | ||
1535 | ret = insert_reserved_file_extent(trans, inode, | ||
1536 | ordered_extent->file_offset, | ||
1537 | ordered_extent->start, | ||
1538 | ordered_extent->disk_len, | ||
1539 | ordered_extent->len, | ||
1540 | ordered_extent->len, | ||
1541 | compressed, 0, 0, | ||
1542 | BTRFS_FILE_EXTENT_REG); | ||
1543 | BUG_ON(ret); | ||
1544 | } | ||
1545 | unlock_extent(io_tree, ordered_extent->file_offset, | ||
1546 | ordered_extent->file_offset + ordered_extent->len - 1, | ||
1547 | GFP_NOFS); | ||
1548 | nocow: | ||
1549 | add_pending_csums(trans, inode, ordered_extent->file_offset, | ||
1550 | &ordered_extent->list); | ||
1551 | |||
1552 | mutex_lock(&BTRFS_I(inode)->extent_mutex); | ||
1553 | btrfs_ordered_update_i_size(inode, ordered_extent); | ||
1554 | btrfs_update_inode(trans, root, inode); | ||
1555 | btrfs_remove_ordered_extent(inode, ordered_extent); | ||
1556 | mutex_unlock(&BTRFS_I(inode)->extent_mutex); | ||
1557 | |||
1558 | /* once for us */ | ||
1559 | btrfs_put_ordered_extent(ordered_extent); | ||
1560 | /* once for the tree */ | ||
1561 | btrfs_put_ordered_extent(ordered_extent); | ||
1562 | |||
1563 | btrfs_end_transaction(trans, root); | ||
1564 | return 0; | ||
1565 | } | ||
1566 | |||
1567 | static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end, | ||
1568 | struct extent_state *state, int uptodate) | ||
1569 | { | ||
1570 | return btrfs_finish_ordered_io(page->mapping->host, start, end); | ||
1571 | } | ||
1572 | |||
1573 | /* | ||
1574 | * When IO fails, either with EIO or csum verification fails, we | ||
1575 | * try other mirrors that might have a good copy of the data. This | ||
1576 | * io_failure_record is used to record state as we go through all the | ||
1577 | * mirrors. If another mirror has good data, the page is set up to date | ||
1578 | * and things continue. If a good mirror can't be found, the original | ||
1579 | * bio end_io callback is called to indicate things have failed. | ||
1580 | */ | ||
1581 | struct io_failure_record { | ||
1582 | struct page *page; | ||
1583 | u64 start; | ||
1584 | u64 len; | ||
1585 | u64 logical; | ||
1586 | unsigned long bio_flags; | ||
1587 | int last_mirror; | ||
1588 | }; | ||
1589 | |||
1590 | static int btrfs_io_failed_hook(struct bio *failed_bio, | ||
1591 | struct page *page, u64 start, u64 end, | ||
1592 | struct extent_state *state) | ||
1593 | { | ||
1594 | struct io_failure_record *failrec = NULL; | ||
1595 | u64 private; | ||
1596 | struct extent_map *em; | ||
1597 | struct inode *inode = page->mapping->host; | ||
1598 | struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; | ||
1599 | struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; | ||
1600 | struct bio *bio; | ||
1601 | int num_copies; | ||
1602 | int ret; | ||
1603 | int rw; | ||
1604 | u64 logical; | ||
1605 | |||
1606 | ret = get_state_private(failure_tree, start, &private); | ||
1607 | if (ret) { | ||
1608 | failrec = kmalloc(sizeof(*failrec), GFP_NOFS); | ||
1609 | if (!failrec) | ||
1610 | return -ENOMEM; | ||
1611 | failrec->start = start; | ||
1612 | failrec->len = end - start + 1; | ||
1613 | failrec->last_mirror = 0; | ||
1614 | failrec->bio_flags = 0; | ||
1615 | |||
1616 | spin_lock(&em_tree->lock); | ||
1617 | em = lookup_extent_mapping(em_tree, start, failrec->len); | ||
1618 | if (em->start > start || em->start + em->len < start) { | ||
1619 | free_extent_map(em); | ||
1620 | em = NULL; | ||
1621 | } | ||
1622 | spin_unlock(&em_tree->lock); | ||
1623 | |||
1624 | if (!em || IS_ERR(em)) { | ||
1625 | kfree(failrec); | ||
1626 | return -EIO; | ||
1627 | } | ||
1628 | logical = start - em->start; | ||
1629 | logical = em->block_start + logical; | ||
1630 | if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { | ||
1631 | logical = em->block_start; | ||
1632 | failrec->bio_flags = EXTENT_BIO_COMPRESSED; | ||
1633 | } | ||
1634 | failrec->logical = logical; | ||
1635 | free_extent_map(em); | ||
1636 | set_extent_bits(failure_tree, start, end, EXTENT_LOCKED | | ||
1637 | EXTENT_DIRTY, GFP_NOFS); | ||
1638 | set_state_private(failure_tree, start, | ||
1639 | (u64)(unsigned long)failrec); | ||
1640 | } else { | ||
1641 | failrec = (struct io_failure_record *)(unsigned long)private; | ||
1642 | } | ||
1643 | num_copies = btrfs_num_copies( | ||
1644 | &BTRFS_I(inode)->root->fs_info->mapping_tree, | ||
1645 | failrec->logical, failrec->len); | ||
1646 | failrec->last_mirror++; | ||
1647 | if (!state) { | ||
1648 | spin_lock(&BTRFS_I(inode)->io_tree.lock); | ||
1649 | state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree, | ||
1650 | failrec->start, | ||
1651 | EXTENT_LOCKED); | ||
1652 | if (state && state->start != failrec->start) | ||
1653 | state = NULL; | ||
1654 | spin_unlock(&BTRFS_I(inode)->io_tree.lock); | ||
1655 | } | ||
1656 | if (!state || failrec->last_mirror > num_copies) { | ||
1657 | set_state_private(failure_tree, failrec->start, 0); | ||
1658 | clear_extent_bits(failure_tree, failrec->start, | ||
1659 | failrec->start + failrec->len - 1, | ||
1660 | EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS); | ||
1661 | kfree(failrec); | ||
1662 | return -EIO; | ||
1663 | } | ||
1664 | bio = bio_alloc(GFP_NOFS, 1); | ||
1665 | bio->bi_private = state; | ||
1666 | bio->bi_end_io = failed_bio->bi_end_io; | ||
1667 | bio->bi_sector = failrec->logical >> 9; | ||
1668 | bio->bi_bdev = failed_bio->bi_bdev; | ||
1669 | bio->bi_size = 0; | ||
1670 | |||
1671 | bio_add_page(bio, page, failrec->len, start - page_offset(page)); | ||
1672 | if (failed_bio->bi_rw & (1 << BIO_RW)) | ||
1673 | rw = WRITE; | ||
1674 | else | ||
1675 | rw = READ; | ||
1676 | |||
1677 | BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio, | ||
1678 | failrec->last_mirror, | ||
1679 | failrec->bio_flags); | ||
1680 | return 0; | ||
1681 | } | ||
1682 | |||
1683 | /* | ||
1684 | * each time an IO finishes, we do a fast check in the IO failure tree | ||
1685 | * to see if we need to process or clean up an io_failure_record | ||
1686 | */ | ||
1687 | static int btrfs_clean_io_failures(struct inode *inode, u64 start) | ||
1688 | { | ||
1689 | u64 private; | ||
1690 | u64 private_failure; | ||
1691 | struct io_failure_record *failure; | ||
1692 | int ret; | ||
1693 | |||
1694 | private = 0; | ||
1695 | if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private, | ||
1696 | (u64)-1, 1, EXTENT_DIRTY)) { | ||
1697 | ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, | ||
1698 | start, &private_failure); | ||
1699 | if (ret == 0) { | ||
1700 | failure = (struct io_failure_record *)(unsigned long) | ||
1701 | private_failure; | ||
1702 | set_state_private(&BTRFS_I(inode)->io_failure_tree, | ||
1703 | failure->start, 0); | ||
1704 | clear_extent_bits(&BTRFS_I(inode)->io_failure_tree, | ||
1705 | failure->start, | ||
1706 | failure->start + failure->len - 1, | ||
1707 | EXTENT_DIRTY | EXTENT_LOCKED, | ||
1708 | GFP_NOFS); | ||
1709 | kfree(failure); | ||
1710 | } | ||
1711 | } | ||
1712 | return 0; | ||
1713 | } | ||
1714 | |||
1715 | /* | ||
1716 | * when reads are done, we need to check csums to verify the data is correct | ||
1717 | * if there's a match, we allow the bio to finish. If not, we go through | ||
1718 | * the io_failure_record routines to find good copies | ||
1719 | */ | ||
1720 | static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end, | ||
1721 | struct extent_state *state) | ||
1722 | { | ||
1723 | size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT); | ||
1724 | struct inode *inode = page->mapping->host; | ||
1725 | struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; | ||
1726 | char *kaddr; | ||
1727 | u64 private = ~(u32)0; | ||
1728 | int ret; | ||
1729 | struct btrfs_root *root = BTRFS_I(inode)->root; | ||
1730 | u32 csum = ~(u32)0; | ||
1731 | unsigned long flags; | ||
1732 | |||
1733 | if (PageChecked(page)) { | ||
1734 | ClearPageChecked(page); | ||
1735 | goto good; | ||
1736 | } | ||
1737 | if (btrfs_test_flag(inode, NODATASUM)) | ||
1738 | return 0; | ||
1739 | |||
1740 | if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && | ||
1741 | test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1)) { | ||
1742 | clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM, | ||
1743 | GFP_NOFS); | ||
1744 | return 0; | ||
1745 | } | ||
1746 | |||
1747 | if (state && state->start == start) { | ||
1748 | private = state->private; | ||
1749 | ret = 0; | ||
1750 | } else { | ||
1751 | ret = get_state_private(io_tree, start, &private); | ||
1752 | } | ||
1753 | local_irq_save(flags); | ||
1754 | kaddr = kmap_atomic(page, KM_IRQ0); | ||
1755 | if (ret) | ||
1756 | goto zeroit; | ||
1757 | |||
1758 | csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1); | ||
1759 | btrfs_csum_final(csum, (char *)&csum); | ||
1760 | if (csum != private) | ||
1761 | goto zeroit; | ||
1762 | |||
1763 | kunmap_atomic(kaddr, KM_IRQ0); | ||
1764 | local_irq_restore(flags); | ||
1765 | good: | ||
1766 | /* if the io failure tree for this inode is non-empty, | ||
1767 | * check to see if we've recovered from a failed IO | ||
1768 | */ | ||
1769 | btrfs_clean_io_failures(inode, start); | ||
1770 | return 0; | ||
1771 | |||
1772 | zeroit: | ||
1773 | printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u " | ||
1774 | "private %llu\n", page->mapping->host->i_ino, | ||
1775 | (unsigned long long)start, csum, | ||
1776 | (unsigned long long)private); | ||
1777 | memset(kaddr + offset, 1, end - start + 1); | ||
1778 | flush_dcache_page(page); | ||
1779 | kunmap_atomic(kaddr, KM_IRQ0); | ||
1780 | local_irq_restore(flags); | ||
1781 | if (private == 0) | ||
1782 | return 0; | ||
1783 | return -EIO; | ||
1784 | } | ||
1785 | |||
1786 | /* | ||
1787 | * This creates an orphan entry for the given inode in case something goes | ||
1788 | * wrong in the middle of an unlink/truncate. | ||
1789 | */ | ||
1790 | int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode) | ||
1791 | { | ||
1792 | struct btrfs_root *root = BTRFS_I(inode)->root; | ||
1793 | int ret = 0; | ||
1794 | |||
1795 | spin_lock(&root->list_lock); | ||
1796 | |||
1797 | /* already on the orphan list, we're good */ | ||
1798 | if (!list_empty(&BTRFS_I(inode)->i_orphan)) { | ||
1799 | spin_unlock(&root->list_lock); | ||
1800 | return 0; | ||
1801 | } | ||
1802 | |||
1803 | list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list); | ||
1804 | |||
1805 | spin_unlock(&root->list_lock); | ||
1806 | |||
1807 | /* | ||
1808 | * insert an orphan item to track this unlinked/truncated file | ||
1809 | */ | ||
1810 | ret = btrfs_insert_orphan_item(trans, root, inode->i_ino); | ||
1811 | |||
1812 | return ret; | ||
1813 | } | ||
1814 | |||
1815 | /* | ||
1816 | * We have done the truncate/delete so we can go ahead and remove the orphan | ||
1817 | * item for this particular inode. | ||
1818 | */ | ||
1819 | int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode) | ||
1820 | { | ||
1821 | struct btrfs_root *root = BTRFS_I(inode)->root; | ||
1822 | int ret = 0; | ||
1823 | |||
1824 | spin_lock(&root->list_lock); | ||
1825 | |||
1826 | if (list_empty(&BTRFS_I(inode)->i_orphan)) { | ||
1827 | spin_unlock(&root->list_lock); | ||
1828 | return 0; | ||
1829 | } | ||
1830 | |||
1831 | list_del_init(&BTRFS_I(inode)->i_orphan); | ||
1832 | if (!trans) { | ||
1833 | spin_unlock(&root->list_lock); | ||
1834 | return 0; | ||
1835 | } | ||
1836 | |||
1837 | spin_unlock(&root->list_lock); | ||
1838 | |||
1839 | ret = btrfs_del_orphan_item(trans, root, inode->i_ino); | ||
1840 | |||
1841 | return ret; | ||
1842 | } | ||
1843 | |||
1844 | /* | ||
1845 | * this cleans up any orphans that may be left on the list from the last use | ||
1846 | * of this root. | ||
1847 | */ | ||
1848 | void btrfs_orphan_cleanup(struct btrfs_root *root) | ||
1849 | { | ||
1850 | struct btrfs_path *path; | ||
1851 | struct extent_buffer *leaf; | ||
1852 | struct btrfs_item *item; | ||
1853 | struct btrfs_key key, found_key; | ||
1854 | struct btrfs_trans_handle *trans; | ||
1855 | struct inode *inode; | ||
1856 | int ret = 0, nr_unlink = 0, nr_truncate = 0; | ||
1857 | |||
1858 | path = btrfs_alloc_path(); | ||
1859 | if (!path) | ||
1860 | return; | ||
1861 | path->reada = -1; | ||
1862 | |||
1863 | key.objectid = BTRFS_ORPHAN_OBJECTID; | ||
1864 | btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY); | ||
1865 | key.offset = (u64)-1; | ||
1866 | |||
1867 | |||
1868 | while (1) { | ||
1869 | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | ||
1870 | if (ret < 0) { | ||
1871 | printk(KERN_ERR "Error searching slot for orphan: %d" | ||
1872 | "\n", ret); | ||
1873 | break; | ||
1874 | } | ||
1875 | |||
1876 | /* | ||
1877 | * if ret == 0 means we found what we were searching for, which | ||
1878 | * is weird, but possible, so only screw with path if we didnt | ||
1879 | * find the key and see if we have stuff that matches | ||
1880 | */ | ||
1881 | if (ret > 0) { | ||
1882 | if (path->slots[0] == 0) | ||
1883 | break; | ||
1884 | path->slots[0]--; | ||
1885 | } | ||
1886 | |||
1887 | /* pull out the item */ | ||
1888 | leaf = path->nodes[0]; | ||
1889 | item = btrfs_item_nr(leaf, path->slots[0]); | ||
1890 | btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); | ||
1891 | |||
1892 | /* make sure the item matches what we want */ | ||
1893 | if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) | ||
1894 | break; | ||
1895 | if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY) | ||
1896 | break; | ||
1897 | |||
1898 | /* release the path since we're done with it */ | ||
1899 | btrfs_release_path(root, path); | ||
1900 | |||
1901 | /* | ||
1902 | * this is where we are basically btrfs_lookup, without the | ||
1903 | * crossing root thing. we store the inode number in the | ||
1904 | * offset of the orphan item. | ||
1905 | */ | ||
1906 | inode = btrfs_iget_locked(root->fs_info->sb, | ||
1907 | found_key.offset, root); | ||
1908 | if (!inode) | ||
1909 | break; | ||
1910 | |||
1911 | if (inode->i_state & I_NEW) { | ||
1912 | BTRFS_I(inode)->root = root; | ||
1913 | |||
1914 | /* have to set the location manually */ | ||
1915 | BTRFS_I(inode)->location.objectid = inode->i_ino; | ||
1916 | BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY; | ||
1917 | BTRFS_I(inode)->location.offset = 0; | ||
1918 | |||
1919 | btrfs_read_locked_inode(inode); | ||
1920 | unlock_new_inode(inode); | ||
1921 | } | ||
1922 | |||
1923 | /* | ||
1924 | * add this inode to the orphan list so btrfs_orphan_del does | ||
1925 | * the proper thing when we hit it | ||
1926 | */ | ||
1927 | spin_lock(&root->list_lock); | ||
1928 | list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list); | ||
1929 | spin_unlock(&root->list_lock); | ||
1930 | |||
1931 | /* | ||
1932 | * if this is a bad inode, means we actually succeeded in | ||
1933 | * removing the inode, but not the orphan record, which means | ||
1934 | * we need to manually delete the orphan since iput will just | ||
1935 | * do a destroy_inode | ||
1936 | */ | ||
1937 | if (is_bad_inode(inode)) { | ||
1938 | trans = btrfs_start_transaction(root, 1); | ||
1939 | btrfs_orphan_del(trans, inode); | ||
1940 | btrfs_end_transaction(trans, root); | ||
1941 | iput(inode); | ||
1942 | continue; | ||
1943 | } | ||
1944 | |||
1945 | /* if we have links, this was a truncate, lets do that */ | ||
1946 | if (inode->i_nlink) { | ||
1947 | nr_truncate++; | ||
1948 | btrfs_truncate(inode); | ||
1949 | } else { | ||
1950 | nr_unlink++; | ||
1951 | } | ||
1952 | |||
1953 | /* this will do delete_inode and everything for us */ | ||
1954 | iput(inode); | ||
1955 | } | ||
1956 | |||
1957 | if (nr_unlink) | ||
1958 | printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink); | ||
1959 | if (nr_truncate) | ||
1960 | printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate); | ||
1961 | |||
1962 | btrfs_free_path(path); | ||
1963 | } | ||
1964 | |||
1965 | /* | ||
1966 | * read an inode from the btree into the in-memory inode | ||
1967 | */ | ||
1968 | void btrfs_read_locked_inode(struct inode *inode) | ||
1969 | { | ||
1970 | struct btrfs_path *path; | ||
1971 | struct extent_buffer *leaf; | ||
1972 | struct btrfs_inode_item *inode_item; | ||
1973 | struct btrfs_timespec *tspec; | ||
1974 | struct btrfs_root *root = BTRFS_I(inode)->root; | ||
1975 | struct btrfs_key location; | ||
1976 | u64 alloc_group_block; | ||
1977 | u32 rdev; | ||
1978 | int ret; | ||
1979 | |||
1980 | path = btrfs_alloc_path(); | ||
1981 | BUG_ON(!path); | ||
1982 | memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); | ||
1983 | |||
1984 | ret = btrfs_lookup_inode(NULL, root, path, &location, 0); | ||
1985 | if (ret) | ||
1986 | goto make_bad; | ||
1987 | |||
1988 | leaf = path->nodes[0]; | ||
1989 | inode_item = btrfs_item_ptr(leaf, path->slots[0], | ||
1990 | struct btrfs_inode_item); | ||
1991 | |||
1992 | inode->i_mode = btrfs_inode_mode(leaf, inode_item); | ||
1993 | inode->i_nlink = btrfs_inode_nlink(leaf, inode_item); | ||
1994 | inode->i_uid = btrfs_inode_uid(leaf, inode_item); | ||
1995 | inode->i_gid = btrfs_inode_gid(leaf, inode_item); | ||
1996 | btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item)); | ||
1997 | |||
1998 | tspec = btrfs_inode_atime(inode_item); | ||
1999 | inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec); | ||
2000 | inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); | ||
2001 | |||
2002 | tspec = btrfs_inode_mtime(inode_item); | ||
2003 | inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec); | ||
2004 | inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); | ||
2005 | |||
2006 | tspec = btrfs_inode_ctime(inode_item); | ||
2007 | inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec); | ||
2008 | inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); | ||
2009 | |||
2010 | inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); | ||
2011 | BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); | ||
2012 | BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item); | ||
2013 | inode->i_generation = BTRFS_I(inode)->generation; | ||
2014 | inode->i_rdev = 0; | ||
2015 | rdev = btrfs_inode_rdev(leaf, inode_item); | ||
2016 | |||
2017 | BTRFS_I(inode)->index_cnt = (u64)-1; | ||
2018 | BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); | ||
2019 | |||
2020 | alloc_group_block = btrfs_inode_block_group(leaf, inode_item); | ||
2021 | BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0, | ||
2022 | alloc_group_block, 0); | ||
2023 | btrfs_free_path(path); | ||
2024 | inode_item = NULL; | ||
2025 | |||
2026 | switch (inode->i_mode & S_IFMT) { | ||
2027 | case S_IFREG: | ||
2028 | inode->i_mapping->a_ops = &btrfs_aops; | ||
2029 | inode->i_mapping->backing_dev_info = &root->fs_info->bdi; | ||
2030 | BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; | ||
2031 | inode->i_fop = &btrfs_file_operations; | ||
2032 | inode->i_op = &btrfs_file_inode_operations; | ||
2033 | break; | ||
2034 | case S_IFDIR: | ||
2035 | inode->i_fop = &btrfs_dir_file_operations; | ||
2036 | if (root == root->fs_info->tree_root) | ||
2037 | inode->i_op = &btrfs_dir_ro_inode_operations; | ||
2038 | else | ||
2039 | inode->i_op = &btrfs_dir_inode_operations; | ||
2040 | break; | ||
2041 | case S_IFLNK: | ||
2042 | inode->i_op = &btrfs_symlink_inode_operations; | ||
2043 | inode->i_mapping->a_ops = &btrfs_symlink_aops; | ||
2044 | inode->i_mapping->backing_dev_info = &root->fs_info->bdi; | ||
2045 | break; | ||
2046 | default: | ||
2047 | init_special_inode(inode, inode->i_mode, rdev); | ||
2048 | break; | ||
2049 | } | ||
2050 | return; | ||
2051 | |||
2052 | make_bad: | ||
2053 | btrfs_free_path(path); | ||
2054 | make_bad_inode(inode); | ||
2055 | } | ||
2056 | |||
2057 | /* | ||
2058 | * given a leaf and an inode, copy the inode fields into the leaf | ||
2059 | */ | ||
2060 | static void fill_inode_item(struct btrfs_trans_handle *trans, | ||
2061 | struct extent_buffer *leaf, | ||
2062 | struct btrfs_inode_item *item, | ||
2063 | struct inode *inode) | ||
2064 | { | ||
2065 | btrfs_set_inode_uid(leaf, item, inode->i_uid); | ||
2066 | btrfs_set_inode_gid(leaf, item, inode->i_gid); | ||
2067 | btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size); | ||
2068 | btrfs_set_inode_mode(leaf, item, inode->i_mode); | ||
2069 | btrfs_set_inode_nlink(leaf, item, inode->i_nlink); | ||
2070 | |||
2071 | btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item), | ||
2072 | inode->i_atime.tv_sec); | ||
2073 | btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item), | ||
2074 | inode->i_atime.tv_nsec); | ||
2075 | |||
2076 | btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item), | ||
2077 | inode->i_mtime.tv_sec); | ||
2078 | btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item), | ||
2079 | inode->i_mtime.tv_nsec); | ||
2080 | |||
2081 | btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item), | ||
2082 | inode->i_ctime.tv_sec); | ||
2083 | btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item), | ||
2084 | inode->i_ctime.tv_nsec); | ||
2085 | |||
2086 | btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode)); | ||
2087 | btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation); | ||
2088 | btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence); | ||
2089 | btrfs_set_inode_transid(leaf, item, trans->transid); | ||
2090 | btrfs_set_inode_rdev(leaf, item, inode->i_rdev); | ||
2091 | btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags); | ||
2092 | btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group); | ||
2093 | } | ||
2094 | |||
2095 | /* | ||
2096 | * copy everything in the in-memory inode into the btree. | ||
2097 | */ | ||
2098 | noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, | ||
2099 | struct btrfs_root *root, struct inode *inode) | ||
2100 | { | ||
2101 | struct btrfs_inode_item *inode_item; | ||
2102 | struct btrfs_path *path; | ||
2103 | struct extent_buffer *leaf; | ||
2104 | int ret; | ||
2105 | |||
2106 | path = btrfs_alloc_path(); | ||
2107 | BUG_ON(!path); | ||
2108 | ret = btrfs_lookup_inode(trans, root, path, | ||
2109 | &BTRFS_I(inode)->location, 1); | ||
2110 | if (ret) { | ||
2111 | if (ret > 0) | ||
2112 | ret = -ENOENT; | ||
2113 | goto failed; | ||
2114 | } | ||
2115 | |||
2116 | leaf = path->nodes[0]; | ||
2117 | inode_item = btrfs_item_ptr(leaf, path->slots[0], | ||
2118 | struct btrfs_inode_item); | ||
2119 | |||
2120 | fill_inode_item(trans, leaf, inode_item, inode); | ||
2121 | btrfs_mark_buffer_dirty(leaf); | ||
2122 | btrfs_set_inode_last_trans(trans, inode); | ||
2123 | ret = 0; | ||
2124 | failed: | ||
2125 | btrfs_free_path(path); | ||
2126 | return ret; | ||
2127 | } | ||
2128 | |||
2129 | |||
2130 | /* | ||
2131 | * unlink helper that gets used here in inode.c and in the tree logging | ||
2132 | * recovery code. It remove a link in a directory with a given name, and | ||
2133 | * also drops the back refs in the inode to the directory | ||
2134 | */ | ||
2135 | int btrfs_unlink_inode(struct btrfs_trans_handle *trans, | ||
2136 | struct btrfs_root *root, | ||
2137 | struct inode *dir, struct inode *inode, | ||
2138 | const char *name, int name_len) | ||
2139 | { | ||
2140 | struct btrfs_path *path; | ||
2141 | int ret = 0; | ||
2142 | struct extent_buffer *leaf; | ||
2143 | struct btrfs_dir_item *di; | ||
2144 | struct btrfs_key key; | ||
2145 | u64 index; | ||
2146 | |||
2147 | path = btrfs_alloc_path(); | ||
2148 | if (!path) { | ||
2149 | ret = -ENOMEM; | ||
2150 | goto err; | ||
2151 | } | ||
2152 | |||
2153 | di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino, | ||
2154 | name, name_len, -1); | ||
2155 | if (IS_ERR(di)) { | ||
2156 | ret = PTR_ERR(di); | ||
2157 | goto err; | ||
2158 | } | ||
2159 | if (!di) { | ||
2160 | ret = -ENOENT; | ||
2161 | goto err; | ||
2162 | } | ||
2163 | leaf = path->nodes[0]; | ||
2164 | btrfs_dir_item_key_to_cpu(leaf, di, &key); | ||
2165 | ret = btrfs_delete_one_dir_name(trans, root, path, di); | ||
2166 | if (ret) | ||
2167 | goto err; | ||
2168 | btrfs_release_path(root, path); | ||
2169 | |||
2170 | ret = btrfs_del_inode_ref(trans, root, name, name_len, | ||
2171 | inode->i_ino, | ||
2172 | dir->i_ino, &index); | ||
2173 | if (ret) { | ||
2174 | printk(KERN_INFO "btrfs failed to delete reference to %.*s, " | ||
2175 | "inode %lu parent %lu\n", name_len, name, | ||
2176 | inode->i_ino, dir->i_ino); | ||
2177 | goto err; | ||
2178 | } | ||
2179 | |||
2180 | di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, | ||
2181 | index, name, name_len, -1); | ||
2182 | if (IS_ERR(di)) { | ||
2183 | ret = PTR_ERR(di); | ||
2184 | goto err; | ||
2185 | } | ||
2186 | if (!di) { | ||
2187 | ret = -ENOENT; | ||
2188 | goto err; | ||
2189 | } | ||
2190 | ret = btrfs_delete_one_dir_name(trans, root, path, di); | ||
2191 | btrfs_release_path(root, path); | ||
2192 | |||
2193 | ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, | ||
2194 | inode, dir->i_ino); | ||
2195 | BUG_ON(ret != 0 && ret != -ENOENT); | ||
2196 | if (ret != -ENOENT) | ||
2197 | BTRFS_I(dir)->log_dirty_trans = trans->transid; | ||
2198 | |||
2199 | ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, | ||
2200 | dir, index); | ||
2201 | BUG_ON(ret); | ||
2202 | err: | ||
2203 | btrfs_free_path(path); | ||
2204 | if (ret) | ||
2205 | goto out; | ||
2206 | |||
2207 | btrfs_i_size_write(dir, dir->i_size - name_len * 2); | ||
2208 | inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME; | ||
2209 | btrfs_update_inode(trans, root, dir); | ||
2210 | btrfs_drop_nlink(inode); | ||
2211 | ret = btrfs_update_inode(trans, root, inode); | ||
2212 | dir->i_sb->s_dirt = 1; | ||
2213 | out: | ||
2214 | return ret; | ||
2215 | } | ||
2216 | |||
2217 | static int btrfs_unlink(struct inode *dir, struct dentry *dentry) | ||
2218 | { | ||
2219 | struct btrfs_root *root; | ||
2220 | struct btrfs_trans_handle *trans; | ||
2221 | struct inode *inode = dentry->d_inode; | ||
2222 | int ret; | ||
2223 | unsigned long nr = 0; | ||
2224 | |||
2225 | root = BTRFS_I(dir)->root; | ||
2226 | |||
2227 | ret = btrfs_check_free_space(root, 1, 1); | ||
2228 | if (ret) | ||
2229 | goto fail; | ||
2230 | |||
2231 | trans = btrfs_start_transaction(root, 1); | ||
2232 | |||
2233 | btrfs_set_trans_block_group(trans, dir); | ||
2234 | ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode, | ||
2235 | dentry->d_name.name, dentry->d_name.len); | ||
2236 | |||
2237 | if (inode->i_nlink == 0) | ||
2238 | ret = btrfs_orphan_add(trans, inode); | ||
2239 | |||
2240 | nr = trans->blocks_used; | ||
2241 | |||
2242 | btrfs_end_transaction_throttle(trans, root); | ||
2243 | fail: | ||
2244 | btrfs_btree_balance_dirty(root, nr); | ||
2245 | return ret; | ||
2246 | } | ||
2247 | |||
2248 | static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) | ||
2249 | { | ||
2250 | struct inode *inode = dentry->d_inode; | ||
2251 | int err = 0; | ||
2252 | int ret; | ||
2253 | struct btrfs_root *root = BTRFS_I(dir)->root; | ||
2254 | struct btrfs_trans_handle *trans; | ||
2255 | unsigned long nr = 0; | ||
2256 | |||
2257 | /* | ||
2258 | * the FIRST_FREE_OBJECTID check makes sure we don't try to rmdir | ||
2259 | * the root of a subvolume or snapshot | ||
2260 | */ | ||
2261 | if (inode->i_size > BTRFS_EMPTY_DIR_SIZE || | ||
2262 | inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) { | ||
2263 | return -ENOTEMPTY; | ||
2264 | } | ||
2265 | |||
2266 | ret = btrfs_check_free_space(root, 1, 1); | ||
2267 | if (ret) | ||
2268 | goto fail; | ||
2269 | |||
2270 | trans = btrfs_start_transaction(root, 1); | ||
2271 | btrfs_set_trans_block_group(trans, dir); | ||
2272 | |||
2273 | err = btrfs_orphan_add(trans, inode); | ||
2274 | if (err) | ||
2275 | goto fail_trans; | ||
2276 | |||
2277 | /* now the directory is empty */ | ||
2278 | err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode, | ||
2279 | dentry->d_name.name, dentry->d_name.len); | ||
2280 | if (!err) | ||
2281 | btrfs_i_size_write(inode, 0); | ||
2282 | |||
2283 | fail_trans: | ||
2284 | nr = trans->blocks_used; | ||
2285 | ret = btrfs_end_transaction_throttle(trans, root); | ||
2286 | fail: | ||
2287 | btrfs_btree_balance_dirty(root, nr); | ||
2288 | |||
2289 | if (ret && !err) | ||
2290 | err = ret; | ||
2291 | return err; | ||
2292 | } | ||
2293 | |||
2294 | #if 0 | ||
2295 | /* | ||
2296 | * when truncating bytes in a file, it is possible to avoid reading | ||
2297 | * the leaves that contain only checksum items. This can be the | ||
2298 | * majority of the IO required to delete a large file, but it must | ||
2299 | * be done carefully. | ||
2300 | * | ||
2301 | * The keys in the level just above the leaves are checked to make sure | ||
2302 | * the lowest key in a given leaf is a csum key, and starts at an offset | ||
2303 | * after the new size. | ||
2304 | * | ||
2305 | * Then the key for the next leaf is checked to make sure it also has | ||
2306 | * a checksum item for the same file. If it does, we know our target leaf | ||
2307 | * contains only checksum items, and it can be safely freed without reading | ||
2308 | * it. | ||
2309 | * | ||
2310 | * This is just an optimization targeted at large files. It may do | ||
2311 | * nothing. It will return 0 unless things went badly. | ||
2312 | */ | ||
2313 | static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans, | ||
2314 | struct btrfs_root *root, | ||
2315 | struct btrfs_path *path, | ||
2316 | struct inode *inode, u64 new_size) | ||
2317 | { | ||
2318 | struct btrfs_key key; | ||
2319 | int ret; | ||
2320 | int nritems; | ||
2321 | struct btrfs_key found_key; | ||
2322 | struct btrfs_key other_key; | ||
2323 | struct btrfs_leaf_ref *ref; | ||
2324 | u64 leaf_gen; | ||
2325 | u64 leaf_start; | ||
2326 | |||
2327 | path->lowest_level = 1; | ||
2328 | key.objectid = inode->i_ino; | ||
2329 | key.type = BTRFS_CSUM_ITEM_KEY; | ||
2330 | key.offset = new_size; | ||
2331 | again: | ||
2332 | ret = btrfs_search_slot(trans, root, &key, path, -1, 1); | ||
2333 | if (ret < 0) | ||
2334 | goto out; | ||
2335 | |||
2336 | if (path->nodes[1] == NULL) { | ||
2337 | ret = 0; | ||
2338 | goto out; | ||
2339 | } | ||
2340 | ret = 0; | ||
2341 | btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]); | ||
2342 | nritems = btrfs_header_nritems(path->nodes[1]); | ||
2343 | |||
2344 | if (!nritems) | ||
2345 | goto out; | ||
2346 | |||
2347 | if (path->slots[1] >= nritems) | ||
2348 | goto next_node; | ||
2349 | |||
2350 | /* did we find a key greater than anything we want to delete? */ | ||
2351 | if (found_key.objectid > inode->i_ino || | ||
2352 | (found_key.objectid == inode->i_ino && found_key.type > key.type)) | ||
2353 | goto out; | ||
2354 | |||
2355 | /* we check the next key in the node to make sure the leave contains | ||
2356 | * only checksum items. This comparison doesn't work if our | ||
2357 | * leaf is the last one in the node | ||
2358 | */ | ||
2359 | if (path->slots[1] + 1 >= nritems) { | ||
2360 | next_node: | ||
2361 | /* search forward from the last key in the node, this | ||
2362 | * will bring us into the next node in the tree | ||
2363 | */ | ||
2364 | btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1); | ||
2365 | |||
2366 | /* unlikely, but we inc below, so check to be safe */ | ||
2367 | if (found_key.offset == (u64)-1) | ||
2368 | goto out; | ||
2369 | |||
2370 | /* search_forward needs a path with locks held, do the | ||
2371 | * search again for the original key. It is possible | ||
2372 | * this will race with a balance and return a path that | ||
2373 | * we could modify, but this drop is just an optimization | ||
2374 | * and is allowed to miss some leaves. | ||
2375 | */ | ||
2376 | btrfs_release_path(root, path); | ||
2377 | found_key.offset++; | ||
2378 | |||
2379 | /* setup a max key for search_forward */ | ||
2380 | other_key.offset = (u64)-1; | ||
2381 | other_key.type = key.type; | ||
2382 | other_key.objectid = key.objectid; | ||
2383 | |||
2384 | path->keep_locks = 1; | ||
2385 | ret = btrfs_search_forward(root, &found_key, &other_key, | ||
2386 | path, 0, 0); | ||
2387 | path->keep_locks = 0; | ||
2388 | if (ret || found_key.objectid != key.objectid || | ||
2389 | found_key.type != key.type) { | ||
2390 | ret = 0; | ||
2391 | goto out; | ||
2392 | } | ||
2393 | |||
2394 | key.offset = found_key.offset; | ||
2395 | btrfs_release_path(root, path); | ||
2396 | cond_resched(); | ||
2397 | goto again; | ||
2398 | } | ||
2399 | |||
2400 | /* we know there's one more slot after us in the tree, | ||
2401 | * read that key so we can verify it is also a checksum item | ||
2402 | */ | ||
2403 | btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1); | ||
2404 | |||
2405 | if (found_key.objectid < inode->i_ino) | ||
2406 | goto next_key; | ||
2407 | |||
2408 | if (found_key.type != key.type || found_key.offset < new_size) | ||
2409 | goto next_key; | ||
2410 | |||
2411 | /* | ||
2412 | * if the key for the next leaf isn't a csum key from this objectid, | ||
2413 | * we can't be sure there aren't good items inside this leaf. | ||
2414 | * Bail out | ||
2415 | */ | ||
2416 | if (other_key.objectid != inode->i_ino || other_key.type != key.type) | ||
2417 | goto out; | ||
2418 | |||
2419 | leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]); | ||
2420 | leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]); | ||
2421 | /* | ||
2422 | * it is safe to delete this leaf, it contains only | ||
2423 | * csum items from this inode at an offset >= new_size | ||
2424 | */ | ||
2425 | ret = btrfs_del_leaf(trans, root, path, leaf_start); | ||
2426 | BUG_ON(ret); | ||
2427 | |||
2428 | if (root->ref_cows && leaf_gen < trans->transid) { | ||
2429 | ref = btrfs_alloc_leaf_ref(root, 0); | ||
2430 | if (ref) { | ||
2431 | ref->root_gen = root->root_key.offset; | ||
2432 | ref->bytenr = leaf_start; | ||
2433 | ref->owner = 0; | ||
2434 | ref->generation = leaf_gen; | ||
2435 | ref->nritems = 0; | ||
2436 | |||
2437 | ret = btrfs_add_leaf_ref(root, ref, 0); | ||
2438 | WARN_ON(ret); | ||
2439 | btrfs_free_leaf_ref(root, ref); | ||
2440 | } else { | ||
2441 | WARN_ON(1); | ||
2442 | } | ||
2443 | } | ||
2444 | next_key: | ||
2445 | btrfs_release_path(root, path); | ||
2446 | |||
2447 | if (other_key.objectid == inode->i_ino && | ||
2448 | other_key.type == key.type && other_key.offset > key.offset) { | ||
2449 | key.offset = other_key.offset; | ||
2450 | cond_resched(); | ||
2451 | goto again; | ||
2452 | } | ||
2453 | ret = 0; | ||
2454 | out: | ||
2455 | /* fixup any changes we've made to the path */ | ||
2456 | path->lowest_level = 0; | ||
2457 | path->keep_locks = 0; | ||
2458 | btrfs_release_path(root, path); | ||
2459 | return ret; | ||
2460 | } | ||
2461 | |||
2462 | #endif | ||
2463 | |||
2464 | /* | ||
2465 | * this can truncate away extent items, csum items and directory items. | ||
2466 | * It starts at a high offset and removes keys until it can't find | ||
2467 | * any higher than new_size | ||
2468 | * | ||
2469 | * csum items that cross the new i_size are truncated to the new size | ||
2470 | * as well. | ||
2471 | * | ||
2472 | * min_type is the minimum key type to truncate down to. If set to 0, this | ||
2473 | * will kill all the items on this inode, including the INODE_ITEM_KEY. | ||
2474 | */ | ||
2475 | noinline int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, | ||
2476 | struct btrfs_root *root, | ||
2477 | struct inode *inode, | ||
2478 | u64 new_size, u32 min_type) | ||
2479 | { | ||
2480 | int ret; | ||
2481 | struct btrfs_path *path; | ||
2482 | struct btrfs_key key; | ||
2483 | struct btrfs_key found_key; | ||
2484 | u32 found_type; | ||
2485 | struct extent_buffer *leaf; | ||
2486 | struct btrfs_file_extent_item *fi; | ||
2487 | u64 extent_start = 0; | ||
2488 | u64 extent_num_bytes = 0; | ||
2489 | u64 item_end = 0; | ||
2490 | u64 root_gen = 0; | ||
2491 | u64 root_owner = 0; | ||
2492 | int found_extent; | ||
2493 | int del_item; | ||
2494 | int pending_del_nr = 0; | ||
2495 | int pending_del_slot = 0; | ||
2496 | int extent_type = -1; | ||
2497 | int encoding; | ||
2498 | u64 mask = root->sectorsize - 1; | ||
2499 | |||
2500 | if (root->ref_cows) | ||
2501 | btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0); | ||
2502 | path = btrfs_alloc_path(); | ||
2503 | path->reada = -1; | ||
2504 | BUG_ON(!path); | ||
2505 | |||
2506 | /* FIXME, add redo link to tree so we don't leak on crash */ | ||
2507 | key.objectid = inode->i_ino; | ||
2508 | key.offset = (u64)-1; | ||
2509 | key.type = (u8)-1; | ||
2510 | |||
2511 | btrfs_init_path(path); | ||
2512 | |||
2513 | search_again: | ||
2514 | ret = btrfs_search_slot(trans, root, &key, path, -1, 1); | ||
2515 | if (ret < 0) | ||
2516 | goto error; | ||
2517 | |||
2518 | if (ret > 0) { | ||
2519 | /* there are no items in the tree for us to truncate, we're | ||
2520 | * done | ||
2521 | */ | ||
2522 | if (path->slots[0] == 0) { | ||
2523 | ret = 0; | ||
2524 | goto error; | ||
2525 | } | ||
2526 | path->slots[0]--; | ||
2527 | } | ||
2528 | |||
2529 | while (1) { | ||
2530 | fi = NULL; | ||
2531 | leaf = path->nodes[0]; | ||
2532 | btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); | ||
2533 | found_type = btrfs_key_type(&found_key); | ||
2534 | encoding = 0; | ||
2535 | |||
2536 | if (found_key.objectid != inode->i_ino) | ||
2537 | break; | ||
2538 | |||
2539 | if (found_type < min_type) | ||
2540 | break; | ||
2541 | |||
2542 | item_end = found_key.offset; | ||
2543 | if (found_type == BTRFS_EXTENT_DATA_KEY) { | ||
2544 | fi = btrfs_item_ptr(leaf, path->slots[0], | ||
2545 | struct btrfs_file_extent_item); | ||
2546 | extent_type = btrfs_file_extent_type(leaf, fi); | ||
2547 | encoding = btrfs_file_extent_compression(leaf, fi); | ||
2548 | encoding |= btrfs_file_extent_encryption(leaf, fi); | ||
2549 | encoding |= btrfs_file_extent_other_encoding(leaf, fi); | ||
2550 | |||
2551 | if (extent_type != BTRFS_FILE_EXTENT_INLINE) { | ||
2552 | item_end += | ||
2553 | btrfs_file_extent_num_bytes(leaf, fi); | ||
2554 | } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { | ||
2555 | item_end += btrfs_file_extent_inline_len(leaf, | ||
2556 | fi); | ||
2557 | } | ||
2558 | item_end--; | ||
2559 | } | ||
2560 | if (item_end < new_size) { | ||
2561 | if (found_type == BTRFS_DIR_ITEM_KEY) | ||
2562 | found_type = BTRFS_INODE_ITEM_KEY; | ||
2563 | else if (found_type == BTRFS_EXTENT_ITEM_KEY) | ||
2564 | found_type = BTRFS_EXTENT_DATA_KEY; | ||
2565 | else if (found_type == BTRFS_EXTENT_DATA_KEY) | ||
2566 | found_type = BTRFS_XATTR_ITEM_KEY; | ||
2567 | else if (found_type == BTRFS_XATTR_ITEM_KEY) | ||
2568 | found_type = BTRFS_INODE_REF_KEY; | ||
2569 | else if (found_type) | ||
2570 | found_type--; | ||
2571 | else | ||
2572 | break; | ||
2573 | btrfs_set_key_type(&key, found_type); | ||
2574 | goto next; | ||
2575 | } | ||
2576 | if (found_key.offset >= new_size) | ||
2577 | del_item = 1; | ||
2578 | else | ||
2579 | del_item = 0; | ||
2580 | found_extent = 0; | ||
2581 | |||
2582 | /* FIXME, shrink the extent if the ref count is only 1 */ | ||
2583 | if (found_type != BTRFS_EXTENT_DATA_KEY) | ||
2584 | goto delete; | ||
2585 | |||
2586 | if (extent_type != BTRFS_FILE_EXTENT_INLINE) { | ||
2587 | u64 num_dec; | ||
2588 | extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); | ||
2589 | if (!del_item && !encoding) { | ||
2590 | u64 orig_num_bytes = | ||
2591 | btrfs_file_extent_num_bytes(leaf, fi); | ||
2592 | extent_num_bytes = new_size - | ||
2593 | found_key.offset + root->sectorsize - 1; | ||
2594 | extent_num_bytes = extent_num_bytes & | ||
2595 | ~((u64)root->sectorsize - 1); | ||
2596 | btrfs_set_file_extent_num_bytes(leaf, fi, | ||
2597 | extent_num_bytes); | ||
2598 | num_dec = (orig_num_bytes - | ||
2599 | extent_num_bytes); | ||
2600 | if (root->ref_cows && extent_start != 0) | ||
2601 | inode_sub_bytes(inode, num_dec); | ||
2602 | btrfs_mark_buffer_dirty(leaf); | ||
2603 | } else { | ||
2604 | extent_num_bytes = | ||
2605 | btrfs_file_extent_disk_num_bytes(leaf, | ||
2606 | fi); | ||
2607 | /* FIXME blocksize != 4096 */ | ||
2608 | num_dec = btrfs_file_extent_num_bytes(leaf, fi); | ||
2609 | if (extent_start != 0) { | ||
2610 | found_extent = 1; | ||
2611 | if (root->ref_cows) | ||
2612 | inode_sub_bytes(inode, num_dec); | ||
2613 | } | ||
2614 | root_gen = btrfs_header_generation(leaf); | ||
2615 | root_owner = btrfs_header_owner(leaf); | ||
2616 | } | ||
2617 | } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { | ||
2618 | /* | ||
2619 | * we can't truncate inline items that have had | ||
2620 | * special encodings | ||
2621 | */ | ||
2622 | if (!del_item && | ||
2623 | btrfs_file_extent_compression(leaf, fi) == 0 && | ||
2624 | btrfs_file_extent_encryption(leaf, fi) == 0 && | ||
2625 | btrfs_file_extent_other_encoding(leaf, fi) == 0) { | ||
2626 | u32 size = new_size - found_key.offset; | ||
2627 | |||
2628 | if (root->ref_cows) { | ||
2629 | inode_sub_bytes(inode, item_end + 1 - | ||
2630 | new_size); | ||
2631 | } | ||
2632 | size = | ||
2633 | btrfs_file_extent_calc_inline_size(size); | ||
2634 | ret = btrfs_truncate_item(trans, root, path, | ||
2635 | size, 1); | ||
2636 | BUG_ON(ret); | ||
2637 | } else if (root->ref_cows) { | ||
2638 | inode_sub_bytes(inode, item_end + 1 - | ||
2639 | found_key.offset); | ||
2640 | } | ||
2641 | } | ||
2642 | delete: | ||
2643 | if (del_item) { | ||
2644 | if (!pending_del_nr) { | ||
2645 | /* no pending yet, add ourselves */ | ||
2646 | pending_del_slot = path->slots[0]; | ||
2647 | pending_del_nr = 1; | ||
2648 | } else if (pending_del_nr && | ||
2649 | path->slots[0] + 1 == pending_del_slot) { | ||
2650 | /* hop on the pending chunk */ | ||
2651 | pending_del_nr++; | ||
2652 | pending_del_slot = path->slots[0]; | ||
2653 | } else { | ||
2654 | BUG(); | ||
2655 | } | ||
2656 | } else { | ||
2657 | break; | ||
2658 | } | ||
2659 | if (found_extent) { | ||
2660 | ret = btrfs_free_extent(trans, root, extent_start, | ||
2661 | extent_num_bytes, | ||
2662 | leaf->start, root_owner, | ||
2663 | root_gen, inode->i_ino, 0); | ||
2664 | BUG_ON(ret); | ||
2665 | } | ||
2666 | next: | ||
2667 | if (path->slots[0] == 0) { | ||
2668 | if (pending_del_nr) | ||
2669 | goto del_pending; | ||
2670 | btrfs_release_path(root, path); | ||
2671 | goto search_again; | ||
2672 | } | ||
2673 | |||
2674 | path->slots[0]--; | ||
2675 | if (pending_del_nr && | ||
2676 | path->slots[0] + 1 != pending_del_slot) { | ||
2677 | struct btrfs_key debug; | ||
2678 | del_pending: | ||
2679 | btrfs_item_key_to_cpu(path->nodes[0], &debug, | ||
2680 | pending_del_slot); | ||
2681 | ret = btrfs_del_items(trans, root, path, | ||
2682 | pending_del_slot, | ||
2683 | pending_del_nr); | ||
2684 | BUG_ON(ret); | ||
2685 | pending_del_nr = 0; | ||
2686 | btrfs_release_path(root, path); | ||
2687 | goto search_again; | ||
2688 | } | ||
2689 | } | ||
2690 | ret = 0; | ||
2691 | error: | ||
2692 | if (pending_del_nr) { | ||
2693 | ret = btrfs_del_items(trans, root, path, pending_del_slot, | ||
2694 | pending_del_nr); | ||
2695 | } | ||
2696 | btrfs_free_path(path); | ||
2697 | inode->i_sb->s_dirt = 1; | ||
2698 | return ret; | ||
2699 | } | ||
2700 | |||
2701 | /* | ||
2702 | * taken from block_truncate_page, but does cow as it zeros out | ||
2703 | * any bytes left in the last page in the file. | ||
2704 | */ | ||
2705 | static int btrfs_truncate_page(struct address_space *mapping, loff_t from) | ||
2706 | { | ||
2707 | struct inode *inode = mapping->host; | ||
2708 | struct btrfs_root *root = BTRFS_I(inode)->root; | ||
2709 | struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; | ||
2710 | struct btrfs_ordered_extent *ordered; | ||
2711 | char *kaddr; | ||
2712 | u32 blocksize = root->sectorsize; | ||
2713 | pgoff_t index = from >> PAGE_CACHE_SHIFT; | ||
2714 | unsigned offset = from & (PAGE_CACHE_SIZE-1); | ||
2715 | struct page *page; | ||
2716 | int ret = 0; | ||
2717 | u64 page_start; | ||
2718 | u64 page_end; | ||
2719 | |||
2720 | if ((offset & (blocksize - 1)) == 0) | ||
2721 | goto out; | ||
2722 | |||
2723 | ret = -ENOMEM; | ||
2724 | again: | ||
2725 | page = grab_cache_page(mapping, index); | ||
2726 | if (!page) | ||
2727 | goto out; | ||
2728 | |||
2729 | page_start = page_offset(page); | ||
2730 | page_end = page_start + PAGE_CACHE_SIZE - 1; | ||
2731 | |||
2732 | if (!PageUptodate(page)) { | ||
2733 | ret = btrfs_readpage(NULL, page); | ||
2734 | lock_page(page); | ||
2735 | if (page->mapping != mapping) { | ||
2736 | unlock_page(page); | ||
2737 | page_cache_release(page); | ||
2738 | goto again; | ||
2739 | } | ||
2740 | if (!PageUptodate(page)) { | ||
2741 | ret = -EIO; | ||
2742 | goto out_unlock; | ||
2743 | } | ||
2744 | } | ||
2745 | wait_on_page_writeback(page); | ||
2746 | |||
2747 | lock_extent(io_tree, page_start, page_end, GFP_NOFS); | ||
2748 | set_page_extent_mapped(page); | ||
2749 | |||
2750 | ordered = btrfs_lookup_ordered_extent(inode, page_start); | ||
2751 | if (ordered) { | ||
2752 | unlock_extent(io_tree, page_start, page_end, GFP_NOFS); | ||
2753 | unlock_page(page); | ||
2754 | page_cache_release(page); | ||
2755 | btrfs_start_ordered_extent(inode, ordered, 1); | ||
2756 | btrfs_put_ordered_extent(ordered); | ||
2757 | goto again; | ||
2758 | } | ||
2759 | |||
2760 | btrfs_set_extent_delalloc(inode, page_start, page_end); | ||
2761 | ret = 0; | ||
2762 | if (offset != PAGE_CACHE_SIZE) { | ||
2763 | kaddr = kmap(page); | ||
2764 | memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset); | ||
2765 | flush_dcache_page(page); | ||
2766 | kunmap(page); | ||
2767 | } | ||
2768 | ClearPageChecked(page); | ||
2769 | set_page_dirty(page); | ||
2770 | unlock_extent(io_tree, page_start, page_end, GFP_NOFS); | ||
2771 | |||
2772 | out_unlock: | ||
2773 | unlock_page(page); | ||
2774 | page_cache_release(page); | ||
2775 | out: | ||
2776 | return ret; | ||
2777 | } | ||
2778 | |||
2779 | int btrfs_cont_expand(struct inode *inode, loff_t size) | ||
2780 | { | ||
2781 | struct btrfs_trans_handle *trans; | ||
2782 | struct btrfs_root *root = BTRFS_I(inode)->root; | ||
2783 | struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; | ||
2784 | struct extent_map *em; | ||
2785 | u64 mask = root->sectorsize - 1; | ||
2786 | u64 hole_start = (inode->i_size + mask) & ~mask; | ||
2787 | u64 block_end = (size + mask) & ~mask; | ||
2788 | u64 last_byte; | ||
2789 | u64 cur_offset; | ||
2790 | u64 hole_size; | ||
2791 | int err; | ||
2792 | |||
2793 | if (size <= hole_start) | ||
2794 | return 0; | ||
2795 | |||
2796 | err = btrfs_check_free_space(root, 1, 0); | ||
2797 | if (err) | ||
2798 | return err; | ||
2799 | |||
2800 | btrfs_truncate_page(inode->i_mapping, inode->i_size); | ||
2801 | |||
2802 | while (1) { | ||
2803 | struct btrfs_ordered_extent *ordered; | ||
2804 | btrfs_wait_ordered_range(inode, hole_start, | ||
2805 | block_end - hole_start); | ||
2806 | lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS); | ||
2807 | ordered = btrfs_lookup_ordered_extent(inode, hole_start); | ||
2808 | if (!ordered) | ||
2809 | break; | ||
2810 | unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS); | ||
2811 | btrfs_put_ordered_extent(ordered); | ||
2812 | } | ||
2813 | |||
2814 | trans = btrfs_start_transaction(root, 1); | ||
2815 | btrfs_set_trans_block_group(trans, inode); | ||
2816 | |||
2817 | cur_offset = hole_start; | ||
2818 | while (1) { | ||
2819 | em = btrfs_get_extent(inode, NULL, 0, cur_offset, | ||
2820 | block_end - cur_offset, 0); | ||
2821 | BUG_ON(IS_ERR(em) || !em); | ||
2822 | last_byte = min(extent_map_end(em), block_end); | ||
2823 | last_byte = (last_byte + mask) & ~mask; | ||
2824 | if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) { | ||
2825 | u64 hint_byte = 0; | ||
2826 | hole_size = last_byte - cur_offset; | ||
2827 | err = btrfs_drop_extents(trans, root, inode, | ||
2828 | cur_offset, | ||
2829 | cur_offset + hole_size, | ||
2830 | cur_offset, &hint_byte); | ||
2831 | if (err) | ||
2832 | break; | ||
2833 | err = btrfs_insert_file_extent(trans, root, | ||
2834 | inode->i_ino, cur_offset, 0, | ||
2835 | 0, hole_size, 0, hole_size, | ||
2836 | 0, 0, 0); | ||
2837 | btrfs_drop_extent_cache(inode, hole_start, | ||
2838 | last_byte - 1, 0); | ||
2839 | } | ||
2840 | free_extent_map(em); | ||
2841 | cur_offset = last_byte; | ||
2842 | if (err || cur_offset >= block_end) | ||
2843 | break; | ||
2844 | } | ||
2845 | |||
2846 | btrfs_end_transaction(trans, root); | ||
2847 | unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS); | ||
2848 | return err; | ||
2849 | } | ||
2850 | |||
2851 | static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) | ||
2852 | { | ||
2853 | struct inode *inode = dentry->d_inode; | ||
2854 | int err; | ||
2855 | |||
2856 | err = inode_change_ok(inode, attr); | ||
2857 | if (err) | ||
2858 | return err; | ||
2859 | |||
2860 | if (S_ISREG(inode->i_mode) && | ||
2861 | attr->ia_valid & ATTR_SIZE && attr->ia_size > inode->i_size) { | ||
2862 | err = btrfs_cont_expand(inode, attr->ia_size); | ||
2863 | if (err) | ||
2864 | return err; | ||
2865 | } | ||
2866 | |||
2867 | err = inode_setattr(inode, attr); | ||
2868 | |||
2869 | if (!err && ((attr->ia_valid & ATTR_MODE))) | ||
2870 | err = btrfs_acl_chmod(inode); | ||
2871 | return err; | ||
2872 | } | ||
2873 | |||
2874 | void btrfs_delete_inode(struct inode *inode) | ||
2875 | { | ||
2876 | struct btrfs_trans_handle *trans; | ||
2877 | struct btrfs_root *root = BTRFS_I(inode)->root; | ||
2878 | unsigned long nr; | ||
2879 | int ret; | ||
2880 | |||
2881 | truncate_inode_pages(&inode->i_data, 0); | ||
2882 | if (is_bad_inode(inode)) { | ||
2883 | btrfs_orphan_del(NULL, inode); | ||
2884 | goto no_delete; | ||
2885 | } | ||
2886 | btrfs_wait_ordered_range(inode, 0, (u64)-1); | ||
2887 | |||
2888 | btrfs_i_size_write(inode, 0); | ||
2889 | trans = btrfs_start_transaction(root, 1); | ||
2890 | |||
2891 | btrfs_set_trans_block_group(trans, inode); | ||
2892 | ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size, 0); | ||
2893 | if (ret) { | ||
2894 | btrfs_orphan_del(NULL, inode); | ||
2895 | goto no_delete_lock; | ||
2896 | } | ||
2897 | |||
2898 | btrfs_orphan_del(trans, inode); | ||
2899 | |||
2900 | nr = trans->blocks_used; | ||
2901 | clear_inode(inode); | ||
2902 | |||
2903 | btrfs_end_transaction(trans, root); | ||
2904 | btrfs_btree_balance_dirty(root, nr); | ||
2905 | return; | ||
2906 | |||
2907 | no_delete_lock: | ||
2908 | nr = trans->blocks_used; | ||
2909 | btrfs_end_transaction(trans, root); | ||
2910 | btrfs_btree_balance_dirty(root, nr); | ||
2911 | no_delete: | ||
2912 | clear_inode(inode); | ||
2913 | } | ||
2914 | |||
2915 | /* | ||
2916 | * this returns the key found in the dir entry in the location pointer. | ||
2917 | * If no dir entries were found, location->objectid is 0. | ||
2918 | */ | ||
2919 | static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, | ||
2920 | struct btrfs_key *location) | ||
2921 | { | ||
2922 | const char *name = dentry->d_name.name; | ||
2923 | int namelen = dentry->d_name.len; | ||
2924 | struct btrfs_dir_item *di; | ||
2925 | struct btrfs_path *path; | ||
2926 | struct btrfs_root *root = BTRFS_I(dir)->root; | ||
2927 | int ret = 0; | ||
2928 | |||
2929 | path = btrfs_alloc_path(); | ||
2930 | BUG_ON(!path); | ||
2931 | |||
2932 | di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name, | ||
2933 | namelen, 0); | ||
2934 | if (IS_ERR(di)) | ||
2935 | ret = PTR_ERR(di); | ||
2936 | |||
2937 | if (!di || IS_ERR(di)) | ||
2938 | goto out_err; | ||
2939 | |||
2940 | btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); | ||
2941 | out: | ||
2942 | btrfs_free_path(path); | ||
2943 | return ret; | ||
2944 | out_err: | ||
2945 | location->objectid = 0; | ||
2946 | goto out; | ||
2947 | } | ||
2948 | |||
2949 | /* | ||
2950 | * when we hit a tree root in a directory, the btrfs part of the inode | ||
2951 | * needs to be changed to reflect the root directory of the tree root. This | ||
2952 | * is kind of like crossing a mount point. | ||
2953 | */ | ||
2954 | static int fixup_tree_root_location(struct btrfs_root *root, | ||
2955 | struct btrfs_key *location, | ||
2956 | struct btrfs_root **sub_root, | ||
2957 | struct dentry *dentry) | ||
2958 | { | ||
2959 | struct btrfs_root_item *ri; | ||
2960 | |||
2961 | if (btrfs_key_type(location) != BTRFS_ROOT_ITEM_KEY) | ||
2962 | return 0; | ||
2963 | if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) | ||
2964 | return 0; | ||
2965 | |||
2966 | *sub_root = btrfs_read_fs_root(root->fs_info, location, | ||
2967 | dentry->d_name.name, | ||
2968 | dentry->d_name.len); | ||
2969 | if (IS_ERR(*sub_root)) | ||
2970 | return PTR_ERR(*sub_root); | ||
2971 | |||
2972 | ri = &(*sub_root)->root_item; | ||
2973 | location->objectid = btrfs_root_dirid(ri); | ||
2974 | btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY); | ||
2975 | location->offset = 0; | ||
2976 | |||
2977 | return 0; | ||
2978 | } | ||
2979 | |||
2980 | static noinline void init_btrfs_i(struct inode *inode) | ||
2981 | { | ||
2982 | struct btrfs_inode *bi = BTRFS_I(inode); | ||
2983 | |||
2984 | bi->i_acl = NULL; | ||
2985 | bi->i_default_acl = NULL; | ||
2986 | |||
2987 | bi->generation = 0; | ||
2988 | bi->sequence = 0; | ||
2989 | bi->last_trans = 0; | ||
2990 | bi->logged_trans = 0; | ||
2991 | bi->delalloc_bytes = 0; | ||
2992 | bi->disk_i_size = 0; | ||
2993 | bi->flags = 0; | ||
2994 | bi->index_cnt = (u64)-1; | ||
2995 | bi->log_dirty_trans = 0; | ||
2996 | extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS); | ||
2997 | extent_io_tree_init(&BTRFS_I(inode)->io_tree, | ||
2998 | inode->i_mapping, GFP_NOFS); | ||
2999 | extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree, | ||
3000 | inode->i_mapping, GFP_NOFS); | ||
3001 | INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes); | ||
3002 | btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree); | ||
3003 | mutex_init(&BTRFS_I(inode)->extent_mutex); | ||
3004 | mutex_init(&BTRFS_I(inode)->log_mutex); | ||
3005 | } | ||
3006 | |||
3007 | static int btrfs_init_locked_inode(struct inode *inode, void *p) | ||
3008 | { | ||
3009 | struct btrfs_iget_args *args = p; | ||
3010 | inode->i_ino = args->ino; | ||
3011 | init_btrfs_i(inode); | ||
3012 | BTRFS_I(inode)->root = args->root; | ||
3013 | return 0; | ||
3014 | } | ||
3015 | |||
3016 | static int btrfs_find_actor(struct inode *inode, void *opaque) | ||
3017 | { | ||
3018 | struct btrfs_iget_args *args = opaque; | ||
3019 | return args->ino == inode->i_ino && | ||
3020 | args->root == BTRFS_I(inode)->root; | ||
3021 | } | ||
3022 | |||
3023 | struct inode *btrfs_ilookup(struct super_block *s, u64 objectid, | ||
3024 | struct btrfs_root *root, int wait) | ||
3025 | { | ||
3026 | struct inode *inode; | ||
3027 | struct btrfs_iget_args args; | ||
3028 | args.ino = objectid; | ||
3029 | args.root = root; | ||
3030 | |||
3031 | if (wait) { | ||
3032 | inode = ilookup5(s, objectid, btrfs_find_actor, | ||
3033 | (void *)&args); | ||
3034 | } else { | ||
3035 | inode = ilookup5_nowait(s, objectid, btrfs_find_actor, | ||
3036 | (void *)&args); | ||
3037 | } | ||
3038 | return inode; | ||
3039 | } | ||
3040 | |||
3041 | struct inode *btrfs_iget_locked(struct super_block *s, u64 objectid, | ||
3042 | struct btrfs_root *root) | ||
3043 | { | ||
3044 | struct inode *inode; | ||
3045 | struct btrfs_iget_args args; | ||
3046 | args.ino = objectid; | ||
3047 | args.root = root; | ||
3048 | |||
3049 | inode = iget5_locked(s, objectid, btrfs_find_actor, | ||
3050 | btrfs_init_locked_inode, | ||
3051 | (void *)&args); | ||
3052 | return inode; | ||
3053 | } | ||
3054 | |||
3055 | /* Get an inode object given its location and corresponding root. | ||
3056 | * Returns in *is_new if the inode was read from disk | ||
3057 | */ | ||
3058 | struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, | ||
3059 | struct btrfs_root *root, int *is_new) | ||
3060 | { | ||
3061 | struct inode *inode; | ||
3062 | |||
3063 | inode = btrfs_iget_locked(s, location->objectid, root); | ||
3064 | if (!inode) | ||
3065 | return ERR_PTR(-EACCES); | ||
3066 | |||
3067 | if (inode->i_state & I_NEW) { | ||
3068 | BTRFS_I(inode)->root = root; | ||
3069 | memcpy(&BTRFS_I(inode)->location, location, sizeof(*location)); | ||
3070 | btrfs_read_locked_inode(inode); | ||
3071 | unlock_new_inode(inode); | ||
3072 | if (is_new) | ||
3073 | *is_new = 1; | ||
3074 | } else { | ||
3075 | if (is_new) | ||
3076 | *is_new = 0; | ||
3077 | } | ||
3078 | |||
3079 | return inode; | ||
3080 | } | ||
3081 | |||
3082 | struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) | ||
3083 | { | ||
3084 | struct inode *inode; | ||
3085 | struct btrfs_inode *bi = BTRFS_I(dir); | ||
3086 | struct btrfs_root *root = bi->root; | ||
3087 | struct btrfs_root *sub_root = root; | ||
3088 | struct btrfs_key location; | ||
3089 | int ret, new; | ||
3090 | |||
3091 | if (dentry->d_name.len > BTRFS_NAME_LEN) | ||
3092 | return ERR_PTR(-ENAMETOOLONG); | ||
3093 | |||
3094 | ret = btrfs_inode_by_name(dir, dentry, &location); | ||
3095 | |||
3096 | if (ret < 0) | ||
3097 | return ERR_PTR(ret); | ||
3098 | |||
3099 | inode = NULL; | ||
3100 | if (location.objectid) { | ||
3101 | ret = fixup_tree_root_location(root, &location, &sub_root, | ||
3102 | dentry); | ||
3103 | if (ret < 0) | ||
3104 | return ERR_PTR(ret); | ||
3105 | if (ret > 0) | ||
3106 | return ERR_PTR(-ENOENT); | ||
3107 | inode = btrfs_iget(dir->i_sb, &location, sub_root, &new); | ||
3108 | if (IS_ERR(inode)) | ||
3109 | return ERR_CAST(inode); | ||
3110 | } | ||
3111 | return inode; | ||
3112 | } | ||
3113 | |||
3114 | static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, | ||
3115 | struct nameidata *nd) | ||
3116 | { | ||
3117 | struct inode *inode; | ||
3118 | |||
3119 | if (dentry->d_name.len > BTRFS_NAME_LEN) | ||
3120 | return ERR_PTR(-ENAMETOOLONG); | ||
3121 | |||
3122 | inode = btrfs_lookup_dentry(dir, dentry); | ||
3123 | if (IS_ERR(inode)) | ||
3124 | return ERR_CAST(inode); | ||
3125 | |||
3126 | return d_splice_alias(inode, dentry); | ||
3127 | } | ||
3128 | |||
3129 | static unsigned char btrfs_filetype_table[] = { | ||
3130 | DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK | ||
3131 | }; | ||
3132 | |||
3133 | static int btrfs_real_readdir(struct file *filp, void *dirent, | ||
3134 | filldir_t filldir) | ||
3135 | { | ||
3136 | struct inode *inode = filp->f_dentry->d_inode; | ||
3137 | struct btrfs_root *root = BTRFS_I(inode)->root; | ||
3138 | struct btrfs_item *item; | ||
3139 | struct btrfs_dir_item *di; | ||
3140 | struct btrfs_key key; | ||
3141 | struct btrfs_key found_key; | ||
3142 | struct btrfs_path *path; | ||
3143 | int ret; | ||
3144 | u32 nritems; | ||
3145 | struct extent_buffer *leaf; | ||
3146 | int slot; | ||
3147 | int advance; | ||
3148 | unsigned char d_type; | ||
3149 | int over = 0; | ||
3150 | u32 di_cur; | ||
3151 | u32 di_total; | ||
3152 | u32 di_len; | ||
3153 | int key_type = BTRFS_DIR_INDEX_KEY; | ||
3154 | char tmp_name[32]; | ||
3155 | char *name_ptr; | ||
3156 | int name_len; | ||
3157 | |||
3158 | /* FIXME, use a real flag for deciding about the key type */ | ||
3159 | if (root->fs_info->tree_root == root) | ||
3160 | key_type = BTRFS_DIR_ITEM_KEY; | ||
3161 | |||
3162 | /* special case for "." */ | ||
3163 | if (filp->f_pos == 0) { | ||
3164 | over = filldir(dirent, ".", 1, | ||
3165 | 1, inode->i_ino, | ||
3166 | DT_DIR); | ||
3167 | if (over) | ||
3168 | return 0; | ||
3169 | filp->f_pos = 1; | ||
3170 | } | ||
3171 | /* special case for .., just use the back ref */ | ||
3172 | if (filp->f_pos == 1) { | ||
3173 | u64 pino = parent_ino(filp->f_path.dentry); | ||
3174 | over = filldir(dirent, "..", 2, | ||
3175 | 2, pino, DT_DIR); | ||
3176 | if (over) | ||
3177 | return 0; | ||
3178 | filp->f_pos = 2; | ||
3179 | } | ||
3180 | path = btrfs_alloc_path(); | ||
3181 | path->reada = 2; | ||
3182 | |||
3183 | btrfs_set_key_type(&key, key_type); | ||
3184 | key.offset = filp->f_pos; | ||
3185 | key.objectid = inode->i_ino; | ||
3186 | |||
3187 | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | ||
3188 | if (ret < 0) | ||
3189 | goto err; | ||
3190 | advance = 0; | ||
3191 | |||
3192 | while (1) { | ||
3193 | leaf = path->nodes[0]; | ||
3194 | nritems = btrfs_header_nritems(leaf); | ||
3195 | slot = path->slots[0]; | ||
3196 | if (advance || slot >= nritems) { | ||
3197 | if (slot >= nritems - 1) { | ||
3198 | ret = btrfs_next_leaf(root, path); | ||
3199 | if (ret) | ||
3200 | break; | ||
3201 | leaf = path->nodes[0]; | ||
3202 | nritems = btrfs_header_nritems(leaf); | ||
3203 | slot = path->slots[0]; | ||
3204 | } else { | ||
3205 | slot++; | ||
3206 | path->slots[0]++; | ||
3207 | } | ||
3208 | } | ||
3209 | |||
3210 | advance = 1; | ||
3211 | item = btrfs_item_nr(leaf, slot); | ||
3212 | btrfs_item_key_to_cpu(leaf, &found_key, slot); | ||
3213 | |||
3214 | if (found_key.objectid != key.objectid) | ||
3215 | break; | ||
3216 | if (btrfs_key_type(&found_key) != key_type) | ||
3217 | break; | ||
3218 | if (found_key.offset < filp->f_pos) | ||
3219 | continue; | ||
3220 | |||
3221 | filp->f_pos = found_key.offset; | ||
3222 | |||
3223 | di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); | ||
3224 | di_cur = 0; | ||
3225 | di_total = btrfs_item_size(leaf, item); | ||
3226 | |||
3227 | while (di_cur < di_total) { | ||
3228 | struct btrfs_key location; | ||
3229 | |||
3230 | name_len = btrfs_dir_name_len(leaf, di); | ||
3231 | if (name_len <= sizeof(tmp_name)) { | ||
3232 | name_ptr = tmp_name; | ||
3233 | } else { | ||
3234 | name_ptr = kmalloc(name_len, GFP_NOFS); | ||
3235 | if (!name_ptr) { | ||
3236 | ret = -ENOMEM; | ||
3237 | goto err; | ||
3238 | } | ||
3239 | } | ||
3240 | read_extent_buffer(leaf, name_ptr, | ||
3241 | (unsigned long)(di + 1), name_len); | ||
3242 | |||
3243 | d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)]; | ||
3244 | btrfs_dir_item_key_to_cpu(leaf, di, &location); | ||
3245 | |||
3246 | /* is this a reference to our own snapshot? If so | ||
3247 | * skip it | ||
3248 | */ | ||
3249 | if (location.type == BTRFS_ROOT_ITEM_KEY && | ||
3250 | location.objectid == root->root_key.objectid) { | ||
3251 | over = 0; | ||
3252 | goto skip; | ||
3253 | } | ||
3254 | over = filldir(dirent, name_ptr, name_len, | ||
3255 | found_key.offset, location.objectid, | ||
3256 | d_type); | ||
3257 | |||
3258 | skip: | ||
3259 | if (name_ptr != tmp_name) | ||
3260 | kfree(name_ptr); | ||
3261 | |||
3262 | if (over) | ||
3263 | goto nopos; | ||
3264 | di_len = btrfs_dir_name_len(leaf, di) + | ||
3265 | btrfs_dir_data_len(leaf, di) + sizeof(*di); | ||
3266 | di_cur += di_len; | ||
3267 | di = (struct btrfs_dir_item *)((char *)di + di_len); | ||
3268 | } | ||
3269 | } | ||
3270 | |||
3271 | /* Reached end of directory/root. Bump pos past the last item. */ | ||
3272 | if (key_type == BTRFS_DIR_INDEX_KEY) | ||
3273 | filp->f_pos = INT_LIMIT(typeof(filp->f_pos)); | ||
3274 | else | ||
3275 | filp->f_pos++; | ||
3276 | nopos: | ||
3277 | ret = 0; | ||
3278 | err: | ||
3279 | btrfs_free_path(path); | ||
3280 | return ret; | ||
3281 | } | ||
3282 | |||
3283 | int btrfs_write_inode(struct inode *inode, int wait) | ||
3284 | { | ||
3285 | struct btrfs_root *root = BTRFS_I(inode)->root; | ||
3286 | struct btrfs_trans_handle *trans; | ||
3287 | int ret = 0; | ||
3288 | |||
3289 | if (root->fs_info->btree_inode == inode) | ||
3290 | return 0; | ||
3291 | |||
3292 | if (wait) { | ||
3293 | trans = btrfs_join_transaction(root, 1); | ||
3294 | btrfs_set_trans_block_group(trans, inode); | ||
3295 | ret = btrfs_commit_transaction(trans, root); | ||
3296 | } | ||
3297 | return ret; | ||
3298 | } | ||
3299 | |||
3300 | /* | ||
3301 | * This is somewhat expensive, updating the tree every time the | ||
3302 | * inode changes. But, it is most likely to find the inode in cache. | ||
3303 | * FIXME, needs more benchmarking...there are no reasons other than performance | ||
3304 | * to keep or drop this code. | ||
3305 | */ | ||
3306 | void btrfs_dirty_inode(struct inode *inode) | ||
3307 | { | ||
3308 | struct btrfs_root *root = BTRFS_I(inode)->root; | ||
3309 | struct btrfs_trans_handle *trans; | ||
3310 | |||
3311 | trans = btrfs_join_transaction(root, 1); | ||
3312 | btrfs_set_trans_block_group(trans, inode); | ||
3313 | btrfs_update_inode(trans, root, inode); | ||
3314 | btrfs_end_transaction(trans, root); | ||
3315 | } | ||
3316 | |||
3317 | /* | ||
3318 | * find the highest existing sequence number in a directory | ||
3319 | * and then set the in-memory index_cnt variable to reflect | ||
3320 | * free sequence numbers | ||
3321 | */ | ||
3322 | static int btrfs_set_inode_index_count(struct inode *inode) | ||
3323 | { | ||
3324 | struct btrfs_root *root = BTRFS_I(inode)->root; | ||
3325 | struct btrfs_key key, found_key; | ||
3326 | struct btrfs_path *path; | ||
3327 | struct extent_buffer *leaf; | ||
3328 | int ret; | ||
3329 | |||
3330 | key.objectid = inode->i_ino; | ||
3331 | btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY); | ||
3332 | key.offset = (u64)-1; | ||
3333 | |||
3334 | path = btrfs_alloc_path(); | ||
3335 | if (!path) | ||
3336 | return -ENOMEM; | ||
3337 | |||
3338 | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | ||
3339 | if (ret < 0) | ||
3340 | goto out; | ||
3341 | /* FIXME: we should be able to handle this */ | ||
3342 | if (ret == 0) | ||
3343 | goto out; | ||
3344 | ret = 0; | ||
3345 | |||
3346 | /* | ||
3347 | * MAGIC NUMBER EXPLANATION: | ||
3348 | * since we search a directory based on f_pos we have to start at 2 | ||
3349 | * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody | ||
3350 | * else has to start at 2 | ||
3351 | */ | ||
3352 | if (path->slots[0] == 0) { | ||
3353 | BTRFS_I(inode)->index_cnt = 2; | ||
3354 | goto out; | ||
3355 | } | ||
3356 | |||
3357 | path->slots[0]--; | ||
3358 | |||
3359 | leaf = path->nodes[0]; | ||
3360 | btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); | ||
3361 | |||
3362 | if (found_key.objectid != inode->i_ino || | ||
3363 | btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) { | ||
3364 | BTRFS_I(inode)->index_cnt = 2; | ||
3365 | goto out; | ||
3366 | } | ||
3367 | |||
3368 | BTRFS_I(inode)->index_cnt = found_key.offset + 1; | ||
3369 | out: | ||
3370 | btrfs_free_path(path); | ||
3371 | return ret; | ||
3372 | } | ||
3373 | |||
3374 | /* | ||
3375 | * helper to find a free sequence number in a given directory. This current | ||
3376 | * code is very simple, later versions will do smarter things in the btree | ||
3377 | */ | ||
3378 | int btrfs_set_inode_index(struct inode *dir, u64 *index) | ||
3379 | { | ||
3380 | int ret = 0; | ||
3381 | |||
3382 | if (BTRFS_I(dir)->index_cnt == (u64)-1) { | ||
3383 | ret = btrfs_set_inode_index_count(dir); | ||
3384 | if (ret) | ||
3385 | return ret; | ||
3386 | } | ||
3387 | |||
3388 | *index = BTRFS_I(dir)->index_cnt; | ||
3389 | BTRFS_I(dir)->index_cnt++; | ||
3390 | |||
3391 | return ret; | ||
3392 | } | ||
3393 | |||
3394 | static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, | ||
3395 | struct btrfs_root *root, | ||
3396 | struct inode *dir, | ||
3397 | const char *name, int name_len, | ||
3398 | u64 ref_objectid, u64 objectid, | ||
3399 | u64 alloc_hint, int mode, u64 *index) | ||
3400 | { | ||
3401 | struct inode *inode; | ||
3402 | struct btrfs_inode_item *inode_item; | ||
3403 | struct btrfs_key *location; | ||
3404 | struct btrfs_path *path; | ||
3405 | struct btrfs_inode_ref *ref; | ||
3406 | struct btrfs_key key[2]; | ||
3407 | u32 sizes[2]; | ||
3408 | unsigned long ptr; | ||
3409 | int ret; | ||
3410 | int owner; | ||
3411 | |||
3412 | path = btrfs_alloc_path(); | ||
3413 | BUG_ON(!path); | ||
3414 | |||
3415 | inode = new_inode(root->fs_info->sb); | ||
3416 | if (!inode) | ||
3417 | return ERR_PTR(-ENOMEM); | ||
3418 | |||
3419 | if (dir) { | ||
3420 | ret = btrfs_set_inode_index(dir, index); | ||
3421 | if (ret) | ||
3422 | return ERR_PTR(ret); | ||
3423 | } | ||
3424 | /* | ||
3425 | * index_cnt is ignored for everything but a dir, | ||
3426 | * btrfs_get_inode_index_count has an explanation for the magic | ||
3427 | * number | ||
3428 | */ | ||
3429 | init_btrfs_i(inode); | ||
3430 | BTRFS_I(inode)->index_cnt = 2; | ||
3431 | BTRFS_I(inode)->root = root; | ||
3432 | BTRFS_I(inode)->generation = trans->transid; | ||
3433 | |||
3434 | if (mode & S_IFDIR) | ||
3435 | owner = 0; | ||
3436 | else | ||
3437 | owner = 1; | ||
3438 | BTRFS_I(inode)->block_group = | ||
3439 | btrfs_find_block_group(root, 0, alloc_hint, owner); | ||
3440 | if ((mode & S_IFREG)) { | ||
3441 | if (btrfs_test_opt(root, NODATASUM)) | ||
3442 | btrfs_set_flag(inode, NODATASUM); | ||
3443 | if (btrfs_test_opt(root, NODATACOW)) | ||
3444 | btrfs_set_flag(inode, NODATACOW); | ||
3445 | } | ||
3446 | |||
3447 | key[0].objectid = objectid; | ||
3448 | btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY); | ||
3449 | key[0].offset = 0; | ||
3450 | |||
3451 | key[1].objectid = objectid; | ||
3452 | btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY); | ||
3453 | key[1].offset = ref_objectid; | ||
3454 | |||
3455 | sizes[0] = sizeof(struct btrfs_inode_item); | ||
3456 | sizes[1] = name_len + sizeof(*ref); | ||
3457 | |||
3458 | ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2); | ||
3459 | if (ret != 0) | ||
3460 | goto fail; | ||
3461 | |||
3462 | if (objectid > root->highest_inode) | ||
3463 | root->highest_inode = objectid; | ||
3464 | |||
3465 | inode->i_uid = current_fsuid(); | ||
3466 | inode->i_gid = current_fsgid(); | ||
3467 | inode->i_mode = mode; | ||
3468 | inode->i_ino = objectid; | ||
3469 | inode_set_bytes(inode, 0); | ||
3470 | inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; | ||
3471 | inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], | ||
3472 | struct btrfs_inode_item); | ||
3473 | fill_inode_item(trans, path->nodes[0], inode_item, inode); | ||
3474 | |||
3475 | ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, | ||
3476 | struct btrfs_inode_ref); | ||
3477 | btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); | ||
3478 | btrfs_set_inode_ref_index(path->nodes[0], ref, *index); | ||
3479 | ptr = (unsigned long)(ref + 1); | ||
3480 | write_extent_buffer(path->nodes[0], name, ptr, name_len); | ||
3481 | |||
3482 | btrfs_mark_buffer_dirty(path->nodes[0]); | ||
3483 | btrfs_free_path(path); | ||
3484 | |||
3485 | location = &BTRFS_I(inode)->location; | ||
3486 | location->objectid = objectid; | ||
3487 | location->offset = 0; | ||
3488 | btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY); | ||
3489 | |||
3490 | insert_inode_hash(inode); | ||
3491 | return inode; | ||
3492 | fail: | ||
3493 | if (dir) | ||
3494 | BTRFS_I(dir)->index_cnt--; | ||
3495 | btrfs_free_path(path); | ||
3496 | return ERR_PTR(ret); | ||
3497 | } | ||
3498 | |||
3499 | static inline u8 btrfs_inode_type(struct inode *inode) | ||
3500 | { | ||
3501 | return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT]; | ||
3502 | } | ||
3503 | |||
3504 | /* | ||
3505 | * utility function to add 'inode' into 'parent_inode' with | ||
3506 | * a give name and a given sequence number. | ||
3507 | * if 'add_backref' is true, also insert a backref from the | ||
3508 | * inode to the parent directory. | ||
3509 | */ | ||
3510 | int btrfs_add_link(struct btrfs_trans_handle *trans, | ||
3511 | struct inode *parent_inode, struct inode *inode, | ||
3512 | const char *name, int name_len, int add_backref, u64 index) | ||
3513 | { | ||
3514 | int ret; | ||
3515 | struct btrfs_key key; | ||
3516 | struct btrfs_root *root = BTRFS_I(parent_inode)->root; | ||
3517 | |||
3518 | key.objectid = inode->i_ino; | ||
3519 | btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY); | ||
3520 | key.offset = 0; | ||
3521 | |||
3522 | ret = btrfs_insert_dir_item(trans, root, name, name_len, | ||
3523 | parent_inode->i_ino, | ||
3524 | &key, btrfs_inode_type(inode), | ||
3525 | index); | ||
3526 | if (ret == 0) { | ||
3527 | if (add_backref) { | ||
3528 | ret = btrfs_insert_inode_ref(trans, root, | ||
3529 | name, name_len, | ||
3530 | inode->i_ino, | ||
3531 | parent_inode->i_ino, | ||
3532 | index); | ||
3533 | } | ||
3534 | btrfs_i_size_write(parent_inode, parent_inode->i_size + | ||
3535 | name_len * 2); | ||
3536 | parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME; | ||
3537 | ret = btrfs_update_inode(trans, root, parent_inode); | ||
3538 | } | ||
3539 | return ret; | ||
3540 | } | ||
3541 | |||
3542 | static int btrfs_add_nondir(struct btrfs_trans_handle *trans, | ||
3543 | struct dentry *dentry, struct inode *inode, | ||
3544 | int backref, u64 index) | ||
3545 | { | ||
3546 | int err = btrfs_add_link(trans, dentry->d_parent->d_inode, | ||
3547 | inode, dentry->d_name.name, | ||
3548 | dentry->d_name.len, backref, index); | ||
3549 | if (!err) { | ||
3550 | d_instantiate(dentry, inode); | ||
3551 | return 0; | ||
3552 | } | ||
3553 | if (err > 0) | ||
3554 | err = -EEXIST; | ||
3555 | return err; | ||
3556 | } | ||
3557 | |||
3558 | static int btrfs_mknod(struct inode *dir, struct dentry *dentry, | ||
3559 | int mode, dev_t rdev) | ||
3560 | { | ||
3561 | struct btrfs_trans_handle *trans; | ||
3562 | struct btrfs_root *root = BTRFS_I(dir)->root; | ||
3563 | struct inode *inode = NULL; | ||
3564 | int err; | ||
3565 | int drop_inode = 0; | ||
3566 | u64 objectid; | ||
3567 | unsigned long nr = 0; | ||
3568 | u64 index = 0; | ||
3569 | |||
3570 | if (!new_valid_dev(rdev)) | ||
3571 | return -EINVAL; | ||
3572 | |||
3573 | err = btrfs_check_free_space(root, 1, 0); | ||
3574 | if (err) | ||
3575 | goto fail; | ||
3576 | |||
3577 | trans = btrfs_start_transaction(root, 1); | ||
3578 | btrfs_set_trans_block_group(trans, dir); | ||
3579 | |||
3580 | err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid); | ||
3581 | if (err) { | ||
3582 | err = -ENOSPC; | ||
3583 | goto out_unlock; | ||
3584 | } | ||
3585 | |||
3586 | inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, | ||
3587 | dentry->d_name.len, | ||
3588 | dentry->d_parent->d_inode->i_ino, objectid, | ||
3589 | BTRFS_I(dir)->block_group, mode, &index); | ||
3590 | err = PTR_ERR(inode); | ||
3591 | if (IS_ERR(inode)) | ||
3592 | goto out_unlock; | ||
3593 | |||
3594 | err = btrfs_init_acl(inode, dir); | ||
3595 | if (err) { | ||
3596 | drop_inode = 1; | ||
3597 | goto out_unlock; | ||
3598 | } | ||
3599 | |||
3600 | btrfs_set_trans_block_group(trans, inode); | ||
3601 | err = btrfs_add_nondir(trans, dentry, inode, 0, index); | ||
3602 | if (err) | ||
3603 | drop_inode = 1; | ||
3604 | else { | ||
3605 | inode->i_op = &btrfs_special_inode_operations; | ||
3606 | init_special_inode(inode, inode->i_mode, rdev); | ||
3607 | btrfs_update_inode(trans, root, inode); | ||
3608 | } | ||
3609 | dir->i_sb->s_dirt = 1; | ||
3610 | btrfs_update_inode_block_group(trans, inode); | ||
3611 | btrfs_update_inode_block_group(trans, dir); | ||
3612 | out_unlock: | ||
3613 | nr = trans->blocks_used; | ||
3614 | btrfs_end_transaction_throttle(trans, root); | ||
3615 | fail: | ||
3616 | if (drop_inode) { | ||
3617 | inode_dec_link_count(inode); | ||
3618 | iput(inode); | ||
3619 | } | ||
3620 | btrfs_btree_balance_dirty(root, nr); | ||
3621 | return err; | ||
3622 | } | ||
3623 | |||
3624 | static int btrfs_create(struct inode *dir, struct dentry *dentry, | ||
3625 | int mode, struct nameidata *nd) | ||
3626 | { | ||
3627 | struct btrfs_trans_handle *trans; | ||
3628 | struct btrfs_root *root = BTRFS_I(dir)->root; | ||
3629 | struct inode *inode = NULL; | ||
3630 | int err; | ||
3631 | int drop_inode = 0; | ||
3632 | unsigned long nr = 0; | ||
3633 | u64 objectid; | ||
3634 | u64 index = 0; | ||
3635 | |||
3636 | err = btrfs_check_free_space(root, 1, 0); | ||
3637 | if (err) | ||
3638 | goto fail; | ||
3639 | trans = btrfs_start_transaction(root, 1); | ||
3640 | btrfs_set_trans_block_group(trans, dir); | ||
3641 | |||
3642 | err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid); | ||
3643 | if (err) { | ||
3644 | err = -ENOSPC; | ||
3645 | goto out_unlock; | ||
3646 | } | ||
3647 | |||
3648 | inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, | ||
3649 | dentry->d_name.len, | ||
3650 | dentry->d_parent->d_inode->i_ino, | ||
3651 | objectid, BTRFS_I(dir)->block_group, mode, | ||
3652 | &index); | ||
3653 | err = PTR_ERR(inode); | ||
3654 | if (IS_ERR(inode)) | ||
3655 | goto out_unlock; | ||
3656 | |||
3657 | err = btrfs_init_acl(inode, dir); | ||
3658 | if (err) { | ||
3659 | drop_inode = 1; | ||
3660 | goto out_unlock; | ||
3661 | } | ||
3662 | |||
3663 | btrfs_set_trans_block_group(trans, inode); | ||
3664 | err = btrfs_add_nondir(trans, dentry, inode, 0, index); | ||
3665 | if (err) | ||
3666 | drop_inode = 1; | ||
3667 | else { | ||
3668 | inode->i_mapping->a_ops = &btrfs_aops; | ||
3669 | inode->i_mapping->backing_dev_info = &root->fs_info->bdi; | ||
3670 | inode->i_fop = &btrfs_file_operations; | ||
3671 | inode->i_op = &btrfs_file_inode_operations; | ||
3672 | BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; | ||
3673 | } | ||
3674 | dir->i_sb->s_dirt = 1; | ||
3675 | btrfs_update_inode_block_group(trans, inode); | ||
3676 | btrfs_update_inode_block_group(trans, dir); | ||
3677 | out_unlock: | ||
3678 | nr = trans->blocks_used; | ||
3679 | btrfs_end_transaction_throttle(trans, root); | ||
3680 | fail: | ||
3681 | if (drop_inode) { | ||
3682 | inode_dec_link_count(inode); | ||
3683 | iput(inode); | ||
3684 | } | ||
3685 | btrfs_btree_balance_dirty(root, nr); | ||
3686 | return err; | ||
3687 | } | ||
3688 | |||
3689 | static int btrfs_link(struct dentry *old_dentry, struct inode *dir, | ||
3690 | struct dentry *dentry) | ||
3691 | { | ||
3692 | struct btrfs_trans_handle *trans; | ||
3693 | struct btrfs_root *root = BTRFS_I(dir)->root; | ||
3694 | struct inode *inode = old_dentry->d_inode; | ||
3695 | u64 index; | ||
3696 | unsigned long nr = 0; | ||
3697 | int err; | ||
3698 | int drop_inode = 0; | ||
3699 | |||
3700 | if (inode->i_nlink == 0) | ||
3701 | return -ENOENT; | ||
3702 | |||
3703 | btrfs_inc_nlink(inode); | ||
3704 | err = btrfs_check_free_space(root, 1, 0); | ||
3705 | if (err) | ||
3706 | goto fail; | ||
3707 | err = btrfs_set_inode_index(dir, &index); | ||
3708 | if (err) | ||
3709 | goto fail; | ||
3710 | |||
3711 | trans = btrfs_start_transaction(root, 1); | ||
3712 | |||
3713 | btrfs_set_trans_block_group(trans, dir); | ||
3714 | atomic_inc(&inode->i_count); | ||
3715 | |||
3716 | err = btrfs_add_nondir(trans, dentry, inode, 1, index); | ||
3717 | |||
3718 | if (err) | ||
3719 | drop_inode = 1; | ||
3720 | |||
3721 | dir->i_sb->s_dirt = 1; | ||
3722 | btrfs_update_inode_block_group(trans, dir); | ||
3723 | err = btrfs_update_inode(trans, root, inode); | ||
3724 | |||
3725 | if (err) | ||
3726 | drop_inode = 1; | ||
3727 | |||
3728 | nr = trans->blocks_used; | ||
3729 | btrfs_end_transaction_throttle(trans, root); | ||
3730 | fail: | ||
3731 | if (drop_inode) { | ||
3732 | inode_dec_link_count(inode); | ||
3733 | iput(inode); | ||
3734 | } | ||
3735 | btrfs_btree_balance_dirty(root, nr); | ||
3736 | return err; | ||
3737 | } | ||
3738 | |||
3739 | static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode) | ||
3740 | { | ||
3741 | struct inode *inode = NULL; | ||
3742 | struct btrfs_trans_handle *trans; | ||
3743 | struct btrfs_root *root = BTRFS_I(dir)->root; | ||
3744 | int err = 0; | ||
3745 | int drop_on_err = 0; | ||
3746 | u64 objectid = 0; | ||
3747 | u64 index = 0; | ||
3748 | unsigned long nr = 1; | ||
3749 | |||
3750 | err = btrfs_check_free_space(root, 1, 0); | ||
3751 | if (err) | ||
3752 | goto out_unlock; | ||
3753 | |||
3754 | trans = btrfs_start_transaction(root, 1); | ||
3755 | btrfs_set_trans_block_group(trans, dir); | ||
3756 | |||
3757 | if (IS_ERR(trans)) { | ||
3758 | err = PTR_ERR(trans); | ||
3759 | goto out_unlock; | ||
3760 | } | ||
3761 | |||
3762 | err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid); | ||
3763 | if (err) { | ||
3764 | err = -ENOSPC; | ||
3765 | goto out_unlock; | ||
3766 | } | ||
3767 | |||
3768 | inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, | ||
3769 | dentry->d_name.len, | ||
3770 | dentry->d_parent->d_inode->i_ino, objectid, | ||
3771 | BTRFS_I(dir)->block_group, S_IFDIR | mode, | ||
3772 | &index); | ||
3773 | if (IS_ERR(inode)) { | ||
3774 | err = PTR_ERR(inode); | ||
3775 | goto out_fail; | ||
3776 | } | ||
3777 | |||
3778 | drop_on_err = 1; | ||
3779 | |||
3780 | err = btrfs_init_acl(inode, dir); | ||
3781 | if (err) | ||
3782 | goto out_fail; | ||
3783 | |||
3784 | inode->i_op = &btrfs_dir_inode_operations; | ||
3785 | inode->i_fop = &btrfs_dir_file_operations; | ||
3786 | btrfs_set_trans_block_group(trans, inode); | ||
3787 | |||
3788 | btrfs_i_size_write(inode, 0); | ||
3789 | err = btrfs_update_inode(trans, root, inode); | ||
3790 | if (err) | ||
3791 | goto out_fail; | ||
3792 | |||
3793 | err = btrfs_add_link(trans, dentry->d_parent->d_inode, | ||
3794 | inode, dentry->d_name.name, | ||
3795 | dentry->d_name.len, 0, index); | ||
3796 | if (err) | ||
3797 | goto out_fail; | ||
3798 | |||
3799 | d_instantiate(dentry, inode); | ||
3800 | drop_on_err = 0; | ||
3801 | dir->i_sb->s_dirt = 1; | ||
3802 | btrfs_update_inode_block_group(trans, inode); | ||
3803 | btrfs_update_inode_block_group(trans, dir); | ||
3804 | |||
3805 | out_fail: | ||
3806 | nr = trans->blocks_used; | ||
3807 | btrfs_end_transaction_throttle(trans, root); | ||
3808 | |||
3809 | out_unlock: | ||
3810 | if (drop_on_err) | ||
3811 | iput(inode); | ||
3812 | btrfs_btree_balance_dirty(root, nr); | ||
3813 | return err; | ||
3814 | } | ||
3815 | |||
3816 | /* helper for btfs_get_extent. Given an existing extent in the tree, | ||
3817 | * and an extent that you want to insert, deal with overlap and insert | ||
3818 | * the new extent into the tree. | ||
3819 | */ | ||
3820 | static int merge_extent_mapping(struct extent_map_tree *em_tree, | ||
3821 | struct extent_map *existing, | ||
3822 | struct extent_map *em, | ||
3823 | u64 map_start, u64 map_len) | ||
3824 | { | ||
3825 | u64 start_diff; | ||
3826 | |||
3827 | BUG_ON(map_start < em->start || map_start >= extent_map_end(em)); | ||
3828 | start_diff = map_start - em->start; | ||
3829 | em->start = map_start; | ||
3830 | em->len = map_len; | ||
3831 | if (em->block_start < EXTENT_MAP_LAST_BYTE && | ||
3832 | !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { | ||
3833 | em->block_start += start_diff; | ||
3834 | em->block_len -= start_diff; | ||
3835 | } | ||
3836 | return add_extent_mapping(em_tree, em); | ||
3837 | } | ||
3838 | |||
3839 | static noinline int uncompress_inline(struct btrfs_path *path, | ||
3840 | struct inode *inode, struct page *page, | ||
3841 | size_t pg_offset, u64 extent_offset, | ||
3842 | struct btrfs_file_extent_item *item) | ||
3843 | { | ||
3844 | int ret; | ||
3845 | struct extent_buffer *leaf = path->nodes[0]; | ||
3846 | char *tmp; | ||
3847 | size_t max_size; | ||
3848 | unsigned long inline_size; | ||
3849 | unsigned long ptr; | ||
3850 | |||
3851 | WARN_ON(pg_offset != 0); | ||
3852 | max_size = btrfs_file_extent_ram_bytes(leaf, item); | ||
3853 | inline_size = btrfs_file_extent_inline_item_len(leaf, | ||
3854 | btrfs_item_nr(leaf, path->slots[0])); | ||
3855 | tmp = kmalloc(inline_size, GFP_NOFS); | ||
3856 | ptr = btrfs_file_extent_inline_start(item); | ||
3857 | |||
3858 | read_extent_buffer(leaf, tmp, ptr, inline_size); | ||
3859 | |||
3860 | max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size); | ||
3861 | ret = btrfs_zlib_decompress(tmp, page, extent_offset, | ||
3862 | inline_size, max_size); | ||
3863 | if (ret) { | ||
3864 | char *kaddr = kmap_atomic(page, KM_USER0); | ||
3865 | unsigned long copy_size = min_t(u64, | ||
3866 | PAGE_CACHE_SIZE - pg_offset, | ||
3867 | max_size - extent_offset); | ||
3868 | memset(kaddr + pg_offset, 0, copy_size); | ||
3869 | kunmap_atomic(kaddr, KM_USER0); | ||
3870 | } | ||
3871 | kfree(tmp); | ||
3872 | return 0; | ||
3873 | } | ||
3874 | |||
3875 | /* | ||
3876 | * a bit scary, this does extent mapping from logical file offset to the disk. | ||
3877 | * the ugly parts come from merging extents from the disk with the in-ram | ||
3878 | * representation. This gets more complex because of the data=ordered code, | ||
3879 | * where the in-ram extents might be locked pending data=ordered completion. | ||
3880 | * | ||
3881 | * This also copies inline extents directly into the page. | ||
3882 | */ | ||
3883 | |||
3884 | struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page, | ||
3885 | size_t pg_offset, u64 start, u64 len, | ||
3886 | int create) | ||
3887 | { | ||
3888 | int ret; | ||
3889 | int err = 0; | ||
3890 | u64 bytenr; | ||
3891 | u64 extent_start = 0; | ||
3892 | u64 extent_end = 0; | ||
3893 | u64 objectid = inode->i_ino; | ||
3894 | u32 found_type; | ||
3895 | struct btrfs_path *path = NULL; | ||
3896 | struct btrfs_root *root = BTRFS_I(inode)->root; | ||
3897 | struct btrfs_file_extent_item *item; | ||
3898 | struct extent_buffer *leaf; | ||
3899 | struct btrfs_key found_key; | ||
3900 | struct extent_map *em = NULL; | ||
3901 | struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; | ||
3902 | struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; | ||
3903 | struct btrfs_trans_handle *trans = NULL; | ||
3904 | int compressed; | ||
3905 | |||
3906 | again: | ||
3907 | spin_lock(&em_tree->lock); | ||
3908 | em = lookup_extent_mapping(em_tree, start, len); | ||
3909 | if (em) | ||
3910 | em->bdev = root->fs_info->fs_devices->latest_bdev; | ||
3911 | spin_unlock(&em_tree->lock); | ||
3912 | |||
3913 | if (em) { | ||
3914 | if (em->start > start || em->start + em->len <= start) | ||
3915 | free_extent_map(em); | ||
3916 | else if (em->block_start == EXTENT_MAP_INLINE && page) | ||
3917 | free_extent_map(em); | ||
3918 | else | ||
3919 | goto out; | ||
3920 | } | ||
3921 | em = alloc_extent_map(GFP_NOFS); | ||
3922 | if (!em) { | ||
3923 | err = -ENOMEM; | ||
3924 | goto out; | ||
3925 | } | ||
3926 | em->bdev = root->fs_info->fs_devices->latest_bdev; | ||
3927 | em->start = EXTENT_MAP_HOLE; | ||
3928 | em->orig_start = EXTENT_MAP_HOLE; | ||
3929 | em->len = (u64)-1; | ||
3930 | em->block_len = (u64)-1; | ||
3931 | |||
3932 | if (!path) { | ||
3933 | path = btrfs_alloc_path(); | ||
3934 | BUG_ON(!path); | ||
3935 | } | ||
3936 | |||
3937 | ret = btrfs_lookup_file_extent(trans, root, path, | ||
3938 | objectid, start, trans != NULL); | ||
3939 | if (ret < 0) { | ||
3940 | err = ret; | ||
3941 | goto out; | ||
3942 | } | ||
3943 | |||
3944 | if (ret != 0) { | ||
3945 | if (path->slots[0] == 0) | ||
3946 | goto not_found; | ||
3947 | path->slots[0]--; | ||
3948 | } | ||
3949 | |||
3950 | leaf = path->nodes[0]; | ||
3951 | item = btrfs_item_ptr(leaf, path->slots[0], | ||
3952 | struct btrfs_file_extent_item); | ||
3953 | /* are we inside the extent that was found? */ | ||
3954 | btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); | ||
3955 | found_type = btrfs_key_type(&found_key); | ||
3956 | if (found_key.objectid != objectid || | ||
3957 | found_type != BTRFS_EXTENT_DATA_KEY) { | ||
3958 | goto not_found; | ||
3959 | } | ||
3960 | |||
3961 | found_type = btrfs_file_extent_type(leaf, item); | ||
3962 | extent_start = found_key.offset; | ||
3963 | compressed = btrfs_file_extent_compression(leaf, item); | ||
3964 | if (found_type == BTRFS_FILE_EXTENT_REG || | ||
3965 | found_type == BTRFS_FILE_EXTENT_PREALLOC) { | ||
3966 | extent_end = extent_start + | ||
3967 | btrfs_file_extent_num_bytes(leaf, item); | ||
3968 | } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { | ||
3969 | size_t size; | ||
3970 | size = btrfs_file_extent_inline_len(leaf, item); | ||
3971 | extent_end = (extent_start + size + root->sectorsize - 1) & | ||
3972 | ~((u64)root->sectorsize - 1); | ||
3973 | } | ||
3974 | |||
3975 | if (start >= extent_end) { | ||
3976 | path->slots[0]++; | ||
3977 | if (path->slots[0] >= btrfs_header_nritems(leaf)) { | ||
3978 | ret = btrfs_next_leaf(root, path); | ||
3979 | if (ret < 0) { | ||
3980 | err = ret; | ||
3981 | goto out; | ||
3982 | } | ||
3983 | if (ret > 0) | ||
3984 | goto not_found; | ||
3985 | leaf = path->nodes[0]; | ||
3986 | } | ||
3987 | btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); | ||
3988 | if (found_key.objectid != objectid || | ||
3989 | found_key.type != BTRFS_EXTENT_DATA_KEY) | ||
3990 | goto not_found; | ||
3991 | if (start + len <= found_key.offset) | ||
3992 | goto not_found; | ||
3993 | em->start = start; | ||
3994 | em->len = found_key.offset - start; | ||
3995 | goto not_found_em; | ||
3996 | } | ||
3997 | |||
3998 | if (found_type == BTRFS_FILE_EXTENT_REG || | ||
3999 | found_type == BTRFS_FILE_EXTENT_PREALLOC) { | ||
4000 | em->start = extent_start; | ||
4001 | em->len = extent_end - extent_start; | ||
4002 | em->orig_start = extent_start - | ||
4003 | btrfs_file_extent_offset(leaf, item); | ||
4004 | bytenr = btrfs_file_extent_disk_bytenr(leaf, item); | ||
4005 | if (bytenr == 0) { | ||
4006 | em->block_start = EXTENT_MAP_HOLE; | ||
4007 | goto insert; | ||
4008 | } | ||
4009 | if (compressed) { | ||
4010 | set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); | ||
4011 | em->block_start = bytenr; | ||
4012 | em->block_len = btrfs_file_extent_disk_num_bytes(leaf, | ||
4013 | item); | ||
4014 | } else { | ||
4015 | bytenr += btrfs_file_extent_offset(leaf, item); | ||
4016 | em->block_start = bytenr; | ||
4017 | em->block_len = em->len; | ||
4018 | if (found_type == BTRFS_FILE_EXTENT_PREALLOC) | ||
4019 | set_bit(EXTENT_FLAG_PREALLOC, &em->flags); | ||
4020 | } | ||
4021 | goto insert; | ||
4022 | } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { | ||
4023 | unsigned long ptr; | ||
4024 | char *map; | ||
4025 | size_t size; | ||
4026 | size_t extent_offset; | ||
4027 | size_t copy_size; | ||
4028 | |||
4029 | em->block_start = EXTENT_MAP_INLINE; | ||
4030 | if (!page || create) { | ||
4031 | em->start = extent_start; | ||
4032 | em->len = extent_end - extent_start; | ||
4033 | goto out; | ||
4034 | } | ||
4035 | |||
4036 | size = btrfs_file_extent_inline_len(leaf, item); | ||
4037 | extent_offset = page_offset(page) + pg_offset - extent_start; | ||
4038 | copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset, | ||
4039 | size - extent_offset); | ||
4040 | em->start = extent_start + extent_offset; | ||
4041 | em->len = (copy_size + root->sectorsize - 1) & | ||
4042 | ~((u64)root->sectorsize - 1); | ||
4043 | em->orig_start = EXTENT_MAP_INLINE; | ||
4044 | if (compressed) | ||
4045 | set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); | ||
4046 | ptr = btrfs_file_extent_inline_start(item) + extent_offset; | ||
4047 | if (create == 0 && !PageUptodate(page)) { | ||
4048 | if (btrfs_file_extent_compression(leaf, item) == | ||
4049 | BTRFS_COMPRESS_ZLIB) { | ||
4050 | ret = uncompress_inline(path, inode, page, | ||
4051 | pg_offset, | ||
4052 | extent_offset, item); | ||
4053 | BUG_ON(ret); | ||
4054 | } else { | ||
4055 | map = kmap(page); | ||
4056 | read_extent_buffer(leaf, map + pg_offset, ptr, | ||
4057 | copy_size); | ||
4058 | kunmap(page); | ||
4059 | } | ||
4060 | flush_dcache_page(page); | ||
4061 | } else if (create && PageUptodate(page)) { | ||
4062 | if (!trans) { | ||
4063 | kunmap(page); | ||
4064 | free_extent_map(em); | ||
4065 | em = NULL; | ||
4066 | btrfs_release_path(root, path); | ||
4067 | trans = btrfs_join_transaction(root, 1); | ||
4068 | goto again; | ||
4069 | } | ||
4070 | map = kmap(page); | ||
4071 | write_extent_buffer(leaf, map + pg_offset, ptr, | ||
4072 | copy_size); | ||
4073 | kunmap(page); | ||
4074 | btrfs_mark_buffer_dirty(leaf); | ||
4075 | } | ||
4076 | set_extent_uptodate(io_tree, em->start, | ||
4077 | extent_map_end(em) - 1, GFP_NOFS); | ||
4078 | goto insert; | ||
4079 | } else { | ||
4080 | printk(KERN_ERR "btrfs unknown found_type %d\n", found_type); | ||
4081 | WARN_ON(1); | ||
4082 | } | ||
4083 | not_found: | ||
4084 | em->start = start; | ||
4085 | em->len = len; | ||
4086 | not_found_em: | ||
4087 | em->block_start = EXTENT_MAP_HOLE; | ||
4088 | set_bit(EXTENT_FLAG_VACANCY, &em->flags); | ||
4089 | insert: | ||
4090 | btrfs_release_path(root, path); | ||
4091 | if (em->start > start || extent_map_end(em) <= start) { | ||
4092 | printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed " | ||
4093 | "[%llu %llu]\n", (unsigned long long)em->start, | ||
4094 | (unsigned long long)em->len, | ||
4095 | (unsigned long long)start, | ||
4096 | (unsigned long long)len); | ||
4097 | err = -EIO; | ||
4098 | goto out; | ||
4099 | } | ||
4100 | |||
4101 | err = 0; | ||
4102 | spin_lock(&em_tree->lock); | ||
4103 | ret = add_extent_mapping(em_tree, em); | ||
4104 | /* it is possible that someone inserted the extent into the tree | ||
4105 | * while we had the lock dropped. It is also possible that | ||
4106 | * an overlapping map exists in the tree | ||
4107 | */ | ||
4108 | if (ret == -EEXIST) { | ||
4109 | struct extent_map *existing; | ||
4110 | |||
4111 | ret = 0; | ||
4112 | |||
4113 | existing = lookup_extent_mapping(em_tree, start, len); | ||
4114 | if (existing && (existing->start > start || | ||
4115 | existing->start + existing->len <= start)) { | ||
4116 | free_extent_map(existing); | ||
4117 | existing = NULL; | ||
4118 | } | ||
4119 | if (!existing) { | ||
4120 | existing = lookup_extent_mapping(em_tree, em->start, | ||
4121 | em->len); | ||
4122 | if (existing) { | ||
4123 | err = merge_extent_mapping(em_tree, existing, | ||
4124 | em, start, | ||
4125 | root->sectorsize); | ||
4126 | free_extent_map(existing); | ||
4127 | if (err) { | ||
4128 | free_extent_map(em); | ||
4129 | em = NULL; | ||
4130 | } | ||
4131 | } else { | ||
4132 | err = -EIO; | ||
4133 | free_extent_map(em); | ||
4134 | em = NULL; | ||
4135 | } | ||
4136 | } else { | ||
4137 | free_extent_map(em); | ||
4138 | em = existing; | ||
4139 | err = 0; | ||
4140 | } | ||
4141 | } | ||
4142 | spin_unlock(&em_tree->lock); | ||
4143 | out: | ||
4144 | if (path) | ||
4145 | btrfs_free_path(path); | ||
4146 | if (trans) { | ||
4147 | ret = btrfs_end_transaction(trans, root); | ||
4148 | if (!err) | ||
4149 | err = ret; | ||
4150 | } | ||
4151 | if (err) { | ||
4152 | free_extent_map(em); | ||
4153 | WARN_ON(1); | ||
4154 | return ERR_PTR(err); | ||
4155 | } | ||
4156 | return em; | ||
4157 | } | ||
4158 | |||
4159 | static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb, | ||
4160 | const struct iovec *iov, loff_t offset, | ||
4161 | unsigned long nr_segs) | ||
4162 | { | ||
4163 | return -EINVAL; | ||
4164 | } | ||
4165 | |||
4166 | static sector_t btrfs_bmap(struct address_space *mapping, sector_t iblock) | ||
4167 | { | ||
4168 | return extent_bmap(mapping, iblock, btrfs_get_extent); | ||
4169 | } | ||
4170 | |||
4171 | int btrfs_readpage(struct file *file, struct page *page) | ||
4172 | { | ||
4173 | struct extent_io_tree *tree; | ||
4174 | tree = &BTRFS_I(page->mapping->host)->io_tree; | ||
4175 | return extent_read_full_page(tree, page, btrfs_get_extent); | ||
4176 | } | ||
4177 | |||
4178 | static int btrfs_writepage(struct page *page, struct writeback_control *wbc) | ||
4179 | { | ||
4180 | struct extent_io_tree *tree; | ||
4181 | |||
4182 | |||
4183 | if (current->flags & PF_MEMALLOC) { | ||
4184 | redirty_page_for_writepage(wbc, page); | ||
4185 | unlock_page(page); | ||
4186 | return 0; | ||
4187 | } | ||
4188 | tree = &BTRFS_I(page->mapping->host)->io_tree; | ||
4189 | return extent_write_full_page(tree, page, btrfs_get_extent, wbc); | ||
4190 | } | ||
4191 | |||
4192 | int btrfs_writepages(struct address_space *mapping, | ||
4193 | struct writeback_control *wbc) | ||
4194 | { | ||
4195 | struct extent_io_tree *tree; | ||
4196 | |||
4197 | tree = &BTRFS_I(mapping->host)->io_tree; | ||
4198 | return extent_writepages(tree, mapping, btrfs_get_extent, wbc); | ||
4199 | } | ||
4200 | |||
4201 | static int | ||
4202 | btrfs_readpages(struct file *file, struct address_space *mapping, | ||
4203 | struct list_head *pages, unsigned nr_pages) | ||
4204 | { | ||
4205 | struct extent_io_tree *tree; | ||
4206 | tree = &BTRFS_I(mapping->host)->io_tree; | ||
4207 | return extent_readpages(tree, mapping, pages, nr_pages, | ||
4208 | btrfs_get_extent); | ||
4209 | } | ||
4210 | static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) | ||
4211 | { | ||
4212 | struct extent_io_tree *tree; | ||
4213 | struct extent_map_tree *map; | ||
4214 | int ret; | ||
4215 | |||
4216 | tree = &BTRFS_I(page->mapping->host)->io_tree; | ||
4217 | map = &BTRFS_I(page->mapping->host)->extent_tree; | ||
4218 | ret = try_release_extent_mapping(map, tree, page, gfp_flags); | ||
4219 | if (ret == 1) { | ||
4220 | ClearPagePrivate(page); | ||
4221 | set_page_private(page, 0); | ||
4222 | page_cache_release(page); | ||
4223 | } | ||
4224 | return ret; | ||
4225 | } | ||
4226 | |||
4227 | static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) | ||
4228 | { | ||
4229 | if (PageWriteback(page) || PageDirty(page)) | ||
4230 | return 0; | ||
4231 | return __btrfs_releasepage(page, gfp_flags); | ||
4232 | } | ||
4233 | |||
4234 | static void btrfs_invalidatepage(struct page *page, unsigned long offset) | ||
4235 | { | ||
4236 | struct extent_io_tree *tree; | ||
4237 | struct btrfs_ordered_extent *ordered; | ||
4238 | u64 page_start = page_offset(page); | ||
4239 | u64 page_end = page_start + PAGE_CACHE_SIZE - 1; | ||
4240 | |||
4241 | wait_on_page_writeback(page); | ||
4242 | tree = &BTRFS_I(page->mapping->host)->io_tree; | ||
4243 | if (offset) { | ||
4244 | btrfs_releasepage(page, GFP_NOFS); | ||
4245 | return; | ||
4246 | } | ||
4247 | |||
4248 | lock_extent(tree, page_start, page_end, GFP_NOFS); | ||
4249 | ordered = btrfs_lookup_ordered_extent(page->mapping->host, | ||
4250 | page_offset(page)); | ||
4251 | if (ordered) { | ||
4252 | /* | ||
4253 | * IO on this page will never be started, so we need | ||
4254 | * to account for any ordered extents now | ||
4255 | */ | ||
4256 | clear_extent_bit(tree, page_start, page_end, | ||
4257 | EXTENT_DIRTY | EXTENT_DELALLOC | | ||
4258 | EXTENT_LOCKED, 1, 0, GFP_NOFS); | ||
4259 | btrfs_finish_ordered_io(page->mapping->host, | ||
4260 | page_start, page_end); | ||
4261 | btrfs_put_ordered_extent(ordered); | ||
4262 | lock_extent(tree, page_start, page_end, GFP_NOFS); | ||
4263 | } | ||
4264 | clear_extent_bit(tree, page_start, page_end, | ||
4265 | EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC | | ||
4266 | EXTENT_ORDERED, | ||
4267 | 1, 1, GFP_NOFS); | ||
4268 | __btrfs_releasepage(page, GFP_NOFS); | ||
4269 | |||
4270 | ClearPageChecked(page); | ||
4271 | if (PagePrivate(page)) { | ||
4272 | ClearPagePrivate(page); | ||
4273 | set_page_private(page, 0); | ||
4274 | page_cache_release(page); | ||
4275 | } | ||
4276 | } | ||
4277 | |||
4278 | /* | ||
4279 | * btrfs_page_mkwrite() is not allowed to change the file size as it gets | ||
4280 | * called from a page fault handler when a page is first dirtied. Hence we must | ||
4281 | * be careful to check for EOF conditions here. We set the page up correctly | ||
4282 | * for a written page which means we get ENOSPC checking when writing into | ||
4283 | * holes and correct delalloc and unwritten extent mapping on filesystems that | ||
4284 | * support these features. | ||
4285 | * | ||
4286 | * We are not allowed to take the i_mutex here so we have to play games to | ||
4287 | * protect against truncate races as the page could now be beyond EOF. Because | ||
4288 | * vmtruncate() writes the inode size before removing pages, once we have the | ||
4289 | * page lock we can determine safely if the page is beyond EOF. If it is not | ||
4290 | * beyond EOF, then the page is guaranteed safe against truncation until we | ||
4291 | * unlock the page. | ||
4292 | */ | ||
4293 | int btrfs_page_mkwrite(struct vm_area_struct *vma, struct page *page) | ||
4294 | { | ||
4295 | struct inode *inode = fdentry(vma->vm_file)->d_inode; | ||
4296 | struct btrfs_root *root = BTRFS_I(inode)->root; | ||
4297 | struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; | ||
4298 | struct btrfs_ordered_extent *ordered; | ||
4299 | char *kaddr; | ||
4300 | unsigned long zero_start; | ||
4301 | loff_t size; | ||
4302 | int ret; | ||
4303 | u64 page_start; | ||
4304 | u64 page_end; | ||
4305 | |||
4306 | ret = btrfs_check_free_space(root, PAGE_CACHE_SIZE, 0); | ||
4307 | if (ret) | ||
4308 | goto out; | ||
4309 | |||
4310 | ret = -EINVAL; | ||
4311 | again: | ||
4312 | lock_page(page); | ||
4313 | size = i_size_read(inode); | ||
4314 | page_start = page_offset(page); | ||
4315 | page_end = page_start + PAGE_CACHE_SIZE - 1; | ||
4316 | |||
4317 | if ((page->mapping != inode->i_mapping) || | ||
4318 | (page_start >= size)) { | ||
4319 | /* page got truncated out from underneath us */ | ||
4320 | goto out_unlock; | ||
4321 | } | ||
4322 | wait_on_page_writeback(page); | ||
4323 | |||
4324 | lock_extent(io_tree, page_start, page_end, GFP_NOFS); | ||
4325 | set_page_extent_mapped(page); | ||
4326 | |||
4327 | /* | ||
4328 | * we can't set the delalloc bits if there are pending ordered | ||
4329 | * extents. Drop our locks and wait for them to finish | ||
4330 | */ | ||
4331 | ordered = btrfs_lookup_ordered_extent(inode, page_start); | ||
4332 | if (ordered) { | ||
4333 | unlock_extent(io_tree, page_start, page_end, GFP_NOFS); | ||
4334 | unlock_page(page); | ||
4335 | btrfs_start_ordered_extent(inode, ordered, 1); | ||
4336 | btrfs_put_ordered_extent(ordered); | ||
4337 | goto again; | ||
4338 | } | ||
4339 | |||
4340 | btrfs_set_extent_delalloc(inode, page_start, page_end); | ||
4341 | ret = 0; | ||
4342 | |||
4343 | /* page is wholly or partially inside EOF */ | ||
4344 | if (page_start + PAGE_CACHE_SIZE > size) | ||
4345 | zero_start = size & ~PAGE_CACHE_MASK; | ||
4346 | else | ||
4347 | zero_start = PAGE_CACHE_SIZE; | ||
4348 | |||
4349 | if (zero_start != PAGE_CACHE_SIZE) { | ||
4350 | kaddr = kmap(page); | ||
4351 | memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start); | ||
4352 | flush_dcache_page(page); | ||
4353 | kunmap(page); | ||
4354 | } | ||
4355 | ClearPageChecked(page); | ||
4356 | set_page_dirty(page); | ||
4357 | unlock_extent(io_tree, page_start, page_end, GFP_NOFS); | ||
4358 | |||
4359 | out_unlock: | ||
4360 | unlock_page(page); | ||
4361 | out: | ||
4362 | return ret; | ||
4363 | } | ||
4364 | |||
4365 | static void btrfs_truncate(struct inode *inode) | ||
4366 | { | ||
4367 | struct btrfs_root *root = BTRFS_I(inode)->root; | ||
4368 | int ret; | ||
4369 | struct btrfs_trans_handle *trans; | ||
4370 | unsigned long nr; | ||
4371 | u64 mask = root->sectorsize - 1; | ||
4372 | |||
4373 | if (!S_ISREG(inode->i_mode)) | ||
4374 | return; | ||
4375 | if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) | ||
4376 | return; | ||
4377 | |||
4378 | btrfs_truncate_page(inode->i_mapping, inode->i_size); | ||
4379 | btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1); | ||
4380 | |||
4381 | trans = btrfs_start_transaction(root, 1); | ||
4382 | btrfs_set_trans_block_group(trans, inode); | ||
4383 | btrfs_i_size_write(inode, inode->i_size); | ||
4384 | |||
4385 | ret = btrfs_orphan_add(trans, inode); | ||
4386 | if (ret) | ||
4387 | goto out; | ||
4388 | /* FIXME, add redo link to tree so we don't leak on crash */ | ||
4389 | ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size, | ||
4390 | BTRFS_EXTENT_DATA_KEY); | ||
4391 | btrfs_update_inode(trans, root, inode); | ||
4392 | |||
4393 | ret = btrfs_orphan_del(trans, inode); | ||
4394 | BUG_ON(ret); | ||
4395 | |||
4396 | out: | ||
4397 | nr = trans->blocks_used; | ||
4398 | ret = btrfs_end_transaction_throttle(trans, root); | ||
4399 | BUG_ON(ret); | ||
4400 | btrfs_btree_balance_dirty(root, nr); | ||
4401 | } | ||
4402 | |||
4403 | /* | ||
4404 | * create a new subvolume directory/inode (helper for the ioctl). | ||
4405 | */ | ||
4406 | int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, | ||
4407 | struct btrfs_root *new_root, struct dentry *dentry, | ||
4408 | u64 new_dirid, u64 alloc_hint) | ||
4409 | { | ||
4410 | struct inode *inode; | ||
4411 | int error; | ||
4412 | u64 index = 0; | ||
4413 | |||
4414 | inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid, | ||
4415 | new_dirid, alloc_hint, S_IFDIR | 0700, &index); | ||
4416 | if (IS_ERR(inode)) | ||
4417 | return PTR_ERR(inode); | ||
4418 | inode->i_op = &btrfs_dir_inode_operations; | ||
4419 | inode->i_fop = &btrfs_dir_file_operations; | ||
4420 | |||
4421 | inode->i_nlink = 1; | ||
4422 | btrfs_i_size_write(inode, 0); | ||
4423 | |||
4424 | error = btrfs_update_inode(trans, new_root, inode); | ||
4425 | if (error) | ||
4426 | return error; | ||
4427 | |||
4428 | d_instantiate(dentry, inode); | ||
4429 | return 0; | ||
4430 | } | ||
4431 | |||
4432 | /* helper function for file defrag and space balancing. This | ||
4433 | * forces readahead on a given range of bytes in an inode | ||
4434 | */ | ||
4435 | unsigned long btrfs_force_ra(struct address_space *mapping, | ||
4436 | struct file_ra_state *ra, struct file *file, | ||
4437 | pgoff_t offset, pgoff_t last_index) | ||
4438 | { | ||
4439 | pgoff_t req_size = last_index - offset + 1; | ||
4440 | |||
4441 | page_cache_sync_readahead(mapping, ra, file, offset, req_size); | ||
4442 | return offset + req_size; | ||
4443 | } | ||
4444 | |||
4445 | struct inode *btrfs_alloc_inode(struct super_block *sb) | ||
4446 | { | ||
4447 | struct btrfs_inode *ei; | ||
4448 | |||
4449 | ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS); | ||
4450 | if (!ei) | ||
4451 | return NULL; | ||
4452 | ei->last_trans = 0; | ||
4453 | ei->logged_trans = 0; | ||
4454 | btrfs_ordered_inode_tree_init(&ei->ordered_tree); | ||
4455 | ei->i_acl = BTRFS_ACL_NOT_CACHED; | ||
4456 | ei->i_default_acl = BTRFS_ACL_NOT_CACHED; | ||
4457 | INIT_LIST_HEAD(&ei->i_orphan); | ||
4458 | return &ei->vfs_inode; | ||
4459 | } | ||
4460 | |||
4461 | void btrfs_destroy_inode(struct inode *inode) | ||
4462 | { | ||
4463 | struct btrfs_ordered_extent *ordered; | ||
4464 | WARN_ON(!list_empty(&inode->i_dentry)); | ||
4465 | WARN_ON(inode->i_data.nrpages); | ||
4466 | |||
4467 | if (BTRFS_I(inode)->i_acl && | ||
4468 | BTRFS_I(inode)->i_acl != BTRFS_ACL_NOT_CACHED) | ||
4469 | posix_acl_release(BTRFS_I(inode)->i_acl); | ||
4470 | if (BTRFS_I(inode)->i_default_acl && | ||
4471 | BTRFS_I(inode)->i_default_acl != BTRFS_ACL_NOT_CACHED) | ||
4472 | posix_acl_release(BTRFS_I(inode)->i_default_acl); | ||
4473 | |||
4474 | spin_lock(&BTRFS_I(inode)->root->list_lock); | ||
4475 | if (!list_empty(&BTRFS_I(inode)->i_orphan)) { | ||
4476 | printk(KERN_ERR "BTRFS: inode %lu: inode still on the orphan" | ||
4477 | " list\n", inode->i_ino); | ||
4478 | dump_stack(); | ||
4479 | } | ||
4480 | spin_unlock(&BTRFS_I(inode)->root->list_lock); | ||
4481 | |||
4482 | while (1) { | ||
4483 | ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); | ||
4484 | if (!ordered) | ||
4485 | break; | ||
4486 | else { | ||
4487 | printk(KERN_ERR "btrfs found ordered " | ||
4488 | "extent %llu %llu on inode cleanup\n", | ||
4489 | (unsigned long long)ordered->file_offset, | ||
4490 | (unsigned long long)ordered->len); | ||
4491 | btrfs_remove_ordered_extent(inode, ordered); | ||
4492 | btrfs_put_ordered_extent(ordered); | ||
4493 | btrfs_put_ordered_extent(ordered); | ||
4494 | } | ||
4495 | } | ||
4496 | btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); | ||
4497 | kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); | ||
4498 | } | ||
4499 | |||
4500 | static void init_once(void *foo) | ||
4501 | { | ||
4502 | struct btrfs_inode *ei = (struct btrfs_inode *) foo; | ||
4503 | |||
4504 | inode_init_once(&ei->vfs_inode); | ||
4505 | } | ||
4506 | |||
4507 | void btrfs_destroy_cachep(void) | ||
4508 | { | ||
4509 | if (btrfs_inode_cachep) | ||
4510 | kmem_cache_destroy(btrfs_inode_cachep); | ||
4511 | if (btrfs_trans_handle_cachep) | ||
4512 | kmem_cache_destroy(btrfs_trans_handle_cachep); | ||
4513 | if (btrfs_transaction_cachep) | ||
4514 | kmem_cache_destroy(btrfs_transaction_cachep); | ||
4515 | if (btrfs_bit_radix_cachep) | ||
4516 | kmem_cache_destroy(btrfs_bit_radix_cachep); | ||
4517 | if (btrfs_path_cachep) | ||
4518 | kmem_cache_destroy(btrfs_path_cachep); | ||
4519 | } | ||
4520 | |||
4521 | struct kmem_cache *btrfs_cache_create(const char *name, size_t size, | ||
4522 | unsigned long extra_flags, | ||
4523 | void (*ctor)(void *)) | ||
4524 | { | ||
4525 | return kmem_cache_create(name, size, 0, (SLAB_RECLAIM_ACCOUNT | | ||
4526 | SLAB_MEM_SPREAD | extra_flags), ctor); | ||
4527 | } | ||
4528 | |||
4529 | int btrfs_init_cachep(void) | ||
4530 | { | ||
4531 | btrfs_inode_cachep = btrfs_cache_create("btrfs_inode_cache", | ||
4532 | sizeof(struct btrfs_inode), | ||
4533 | 0, init_once); | ||
4534 | if (!btrfs_inode_cachep) | ||
4535 | goto fail; | ||
4536 | btrfs_trans_handle_cachep = | ||
4537 | btrfs_cache_create("btrfs_trans_handle_cache", | ||
4538 | sizeof(struct btrfs_trans_handle), | ||
4539 | 0, NULL); | ||
4540 | if (!btrfs_trans_handle_cachep) | ||
4541 | goto fail; | ||
4542 | btrfs_transaction_cachep = btrfs_cache_create("btrfs_transaction_cache", | ||
4543 | sizeof(struct btrfs_transaction), | ||
4544 | 0, NULL); | ||
4545 | if (!btrfs_transaction_cachep) | ||
4546 | goto fail; | ||
4547 | btrfs_path_cachep = btrfs_cache_create("btrfs_path_cache", | ||
4548 | sizeof(struct btrfs_path), | ||
4549 | 0, NULL); | ||
4550 | if (!btrfs_path_cachep) | ||
4551 | goto fail; | ||
4552 | btrfs_bit_radix_cachep = btrfs_cache_create("btrfs_radix", 256, | ||
4553 | SLAB_DESTROY_BY_RCU, NULL); | ||
4554 | if (!btrfs_bit_radix_cachep) | ||
4555 | goto fail; | ||
4556 | return 0; | ||
4557 | fail: | ||
4558 | btrfs_destroy_cachep(); | ||
4559 | return -ENOMEM; | ||
4560 | } | ||
4561 | |||
4562 | static int btrfs_getattr(struct vfsmount *mnt, | ||
4563 | struct dentry *dentry, struct kstat *stat) | ||
4564 | { | ||
4565 | struct inode *inode = dentry->d_inode; | ||
4566 | generic_fillattr(inode, stat); | ||
4567 | stat->dev = BTRFS_I(inode)->root->anon_super.s_dev; | ||
4568 | stat->blksize = PAGE_CACHE_SIZE; | ||
4569 | stat->blocks = (inode_get_bytes(inode) + | ||
4570 | BTRFS_I(inode)->delalloc_bytes) >> 9; | ||
4571 | return 0; | ||
4572 | } | ||
4573 | |||
4574 | static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, | ||
4575 | struct inode *new_dir, struct dentry *new_dentry) | ||
4576 | { | ||
4577 | struct btrfs_trans_handle *trans; | ||
4578 | struct btrfs_root *root = BTRFS_I(old_dir)->root; | ||
4579 | struct inode *new_inode = new_dentry->d_inode; | ||
4580 | struct inode *old_inode = old_dentry->d_inode; | ||
4581 | struct timespec ctime = CURRENT_TIME; | ||
4582 | u64 index = 0; | ||
4583 | int ret; | ||
4584 | |||
4585 | /* we're not allowed to rename between subvolumes */ | ||
4586 | if (BTRFS_I(old_inode)->root->root_key.objectid != | ||
4587 | BTRFS_I(new_dir)->root->root_key.objectid) | ||
4588 | return -EXDEV; | ||
4589 | |||
4590 | if (S_ISDIR(old_inode->i_mode) && new_inode && | ||
4591 | new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) { | ||
4592 | return -ENOTEMPTY; | ||
4593 | } | ||
4594 | |||
4595 | /* to rename a snapshot or subvolume, we need to juggle the | ||
4596 | * backrefs. This isn't coded yet | ||
4597 | */ | ||
4598 | if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) | ||
4599 | return -EXDEV; | ||
4600 | |||
4601 | ret = btrfs_check_free_space(root, 1, 0); | ||
4602 | if (ret) | ||
4603 | goto out_unlock; | ||
4604 | |||
4605 | trans = btrfs_start_transaction(root, 1); | ||
4606 | |||
4607 | btrfs_set_trans_block_group(trans, new_dir); | ||
4608 | |||
4609 | btrfs_inc_nlink(old_dentry->d_inode); | ||
4610 | old_dir->i_ctime = old_dir->i_mtime = ctime; | ||
4611 | new_dir->i_ctime = new_dir->i_mtime = ctime; | ||
4612 | old_inode->i_ctime = ctime; | ||
4613 | |||
4614 | ret = btrfs_unlink_inode(trans, root, old_dir, old_dentry->d_inode, | ||
4615 | old_dentry->d_name.name, | ||
4616 | old_dentry->d_name.len); | ||
4617 | if (ret) | ||
4618 | goto out_fail; | ||
4619 | |||
4620 | if (new_inode) { | ||
4621 | new_inode->i_ctime = CURRENT_TIME; | ||
4622 | ret = btrfs_unlink_inode(trans, root, new_dir, | ||
4623 | new_dentry->d_inode, | ||
4624 | new_dentry->d_name.name, | ||
4625 | new_dentry->d_name.len); | ||
4626 | if (ret) | ||
4627 | goto out_fail; | ||
4628 | if (new_inode->i_nlink == 0) { | ||
4629 | ret = btrfs_orphan_add(trans, new_dentry->d_inode); | ||
4630 | if (ret) | ||
4631 | goto out_fail; | ||
4632 | } | ||
4633 | |||
4634 | } | ||
4635 | ret = btrfs_set_inode_index(new_dir, &index); | ||
4636 | if (ret) | ||
4637 | goto out_fail; | ||
4638 | |||
4639 | ret = btrfs_add_link(trans, new_dentry->d_parent->d_inode, | ||
4640 | old_inode, new_dentry->d_name.name, | ||
4641 | new_dentry->d_name.len, 1, index); | ||
4642 | if (ret) | ||
4643 | goto out_fail; | ||
4644 | |||
4645 | out_fail: | ||
4646 | btrfs_end_transaction_throttle(trans, root); | ||
4647 | out_unlock: | ||
4648 | return ret; | ||
4649 | } | ||
4650 | |||
4651 | /* | ||
4652 | * some fairly slow code that needs optimization. This walks the list | ||
4653 | * of all the inodes with pending delalloc and forces them to disk. | ||
4654 | */ | ||
4655 | int btrfs_start_delalloc_inodes(struct btrfs_root *root) | ||
4656 | { | ||
4657 | struct list_head *head = &root->fs_info->delalloc_inodes; | ||
4658 | struct btrfs_inode *binode; | ||
4659 | struct inode *inode; | ||
4660 | |||
4661 | if (root->fs_info->sb->s_flags & MS_RDONLY) | ||
4662 | return -EROFS; | ||
4663 | |||
4664 | spin_lock(&root->fs_info->delalloc_lock); | ||
4665 | while (!list_empty(head)) { | ||
4666 | binode = list_entry(head->next, struct btrfs_inode, | ||
4667 | delalloc_inodes); | ||
4668 | inode = igrab(&binode->vfs_inode); | ||
4669 | if (!inode) | ||
4670 | list_del_init(&binode->delalloc_inodes); | ||
4671 | spin_unlock(&root->fs_info->delalloc_lock); | ||
4672 | if (inode) { | ||
4673 | filemap_flush(inode->i_mapping); | ||
4674 | iput(inode); | ||
4675 | } | ||
4676 | cond_resched(); | ||
4677 | spin_lock(&root->fs_info->delalloc_lock); | ||
4678 | } | ||
4679 | spin_unlock(&root->fs_info->delalloc_lock); | ||
4680 | |||
4681 | /* the filemap_flush will queue IO into the worker threads, but | ||
4682 | * we have to make sure the IO is actually started and that | ||
4683 | * ordered extents get created before we return | ||
4684 | */ | ||
4685 | atomic_inc(&root->fs_info->async_submit_draining); | ||
4686 | while (atomic_read(&root->fs_info->nr_async_submits) || | ||
4687 | atomic_read(&root->fs_info->async_delalloc_pages)) { | ||
4688 | wait_event(root->fs_info->async_submit_wait, | ||
4689 | (atomic_read(&root->fs_info->nr_async_submits) == 0 && | ||
4690 | atomic_read(&root->fs_info->async_delalloc_pages) == 0)); | ||
4691 | } | ||
4692 | atomic_dec(&root->fs_info->async_submit_draining); | ||
4693 | return 0; | ||
4694 | } | ||
4695 | |||
4696 | static int btrfs_symlink(struct inode *dir, struct dentry *dentry, | ||
4697 | const char *symname) | ||
4698 | { | ||
4699 | struct btrfs_trans_handle *trans; | ||
4700 | struct btrfs_root *root = BTRFS_I(dir)->root; | ||
4701 | struct btrfs_path *path; | ||
4702 | struct btrfs_key key; | ||
4703 | struct inode *inode = NULL; | ||
4704 | int err; | ||
4705 | int drop_inode = 0; | ||
4706 | u64 objectid; | ||
4707 | u64 index = 0 ; | ||
4708 | int name_len; | ||
4709 | int datasize; | ||
4710 | unsigned long ptr; | ||
4711 | struct btrfs_file_extent_item *ei; | ||
4712 | struct extent_buffer *leaf; | ||
4713 | unsigned long nr = 0; | ||
4714 | |||
4715 | name_len = strlen(symname) + 1; | ||
4716 | if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root)) | ||
4717 | return -ENAMETOOLONG; | ||
4718 | |||
4719 | err = btrfs_check_free_space(root, 1, 0); | ||
4720 | if (err) | ||
4721 | goto out_fail; | ||
4722 | |||
4723 | trans = btrfs_start_transaction(root, 1); | ||
4724 | btrfs_set_trans_block_group(trans, dir); | ||
4725 | |||
4726 | err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid); | ||
4727 | if (err) { | ||
4728 | err = -ENOSPC; | ||
4729 | goto out_unlock; | ||
4730 | } | ||
4731 | |||
4732 | inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, | ||
4733 | dentry->d_name.len, | ||
4734 | dentry->d_parent->d_inode->i_ino, objectid, | ||
4735 | BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO, | ||
4736 | &index); | ||
4737 | err = PTR_ERR(inode); | ||
4738 | if (IS_ERR(inode)) | ||
4739 | goto out_unlock; | ||
4740 | |||
4741 | err = btrfs_init_acl(inode, dir); | ||
4742 | if (err) { | ||
4743 | drop_inode = 1; | ||
4744 | goto out_unlock; | ||
4745 | } | ||
4746 | |||
4747 | btrfs_set_trans_block_group(trans, inode); | ||
4748 | err = btrfs_add_nondir(trans, dentry, inode, 0, index); | ||
4749 | if (err) | ||
4750 | drop_inode = 1; | ||
4751 | else { | ||
4752 | inode->i_mapping->a_ops = &btrfs_aops; | ||
4753 | inode->i_mapping->backing_dev_info = &root->fs_info->bdi; | ||
4754 | inode->i_fop = &btrfs_file_operations; | ||
4755 | inode->i_op = &btrfs_file_inode_operations; | ||
4756 | BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; | ||
4757 | } | ||
4758 | dir->i_sb->s_dirt = 1; | ||
4759 | btrfs_update_inode_block_group(trans, inode); | ||
4760 | btrfs_update_inode_block_group(trans, dir); | ||
4761 | if (drop_inode) | ||
4762 | goto out_unlock; | ||
4763 | |||
4764 | path = btrfs_alloc_path(); | ||
4765 | BUG_ON(!path); | ||
4766 | key.objectid = inode->i_ino; | ||
4767 | key.offset = 0; | ||
4768 | btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY); | ||
4769 | datasize = btrfs_file_extent_calc_inline_size(name_len); | ||
4770 | err = btrfs_insert_empty_item(trans, root, path, &key, | ||
4771 | datasize); | ||
4772 | if (err) { | ||
4773 | drop_inode = 1; | ||
4774 | goto out_unlock; | ||
4775 | } | ||
4776 | leaf = path->nodes[0]; | ||
4777 | ei = btrfs_item_ptr(leaf, path->slots[0], | ||
4778 | struct btrfs_file_extent_item); | ||
4779 | btrfs_set_file_extent_generation(leaf, ei, trans->transid); | ||
4780 | btrfs_set_file_extent_type(leaf, ei, | ||
4781 | BTRFS_FILE_EXTENT_INLINE); | ||
4782 | btrfs_set_file_extent_encryption(leaf, ei, 0); | ||
4783 | btrfs_set_file_extent_compression(leaf, ei, 0); | ||
4784 | btrfs_set_file_extent_other_encoding(leaf, ei, 0); | ||
4785 | btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); | ||
4786 | |||
4787 | ptr = btrfs_file_extent_inline_start(ei); | ||
4788 | write_extent_buffer(leaf, symname, ptr, name_len); | ||
4789 | btrfs_mark_buffer_dirty(leaf); | ||
4790 | btrfs_free_path(path); | ||
4791 | |||
4792 | inode->i_op = &btrfs_symlink_inode_operations; | ||
4793 | inode->i_mapping->a_ops = &btrfs_symlink_aops; | ||
4794 | inode->i_mapping->backing_dev_info = &root->fs_info->bdi; | ||
4795 | inode_set_bytes(inode, name_len); | ||
4796 | btrfs_i_size_write(inode, name_len - 1); | ||
4797 | err = btrfs_update_inode(trans, root, inode); | ||
4798 | if (err) | ||
4799 | drop_inode = 1; | ||
4800 | |||
4801 | out_unlock: | ||
4802 | nr = trans->blocks_used; | ||
4803 | btrfs_end_transaction_throttle(trans, root); | ||
4804 | out_fail: | ||
4805 | if (drop_inode) { | ||
4806 | inode_dec_link_count(inode); | ||
4807 | iput(inode); | ||
4808 | } | ||
4809 | btrfs_btree_balance_dirty(root, nr); | ||
4810 | return err; | ||
4811 | } | ||
4812 | |||
4813 | static int prealloc_file_range(struct inode *inode, u64 start, u64 end, | ||
4814 | u64 alloc_hint, int mode) | ||
4815 | { | ||
4816 | struct btrfs_trans_handle *trans; | ||
4817 | struct btrfs_root *root = BTRFS_I(inode)->root; | ||
4818 | struct btrfs_key ins; | ||
4819 | u64 alloc_size; | ||
4820 | u64 cur_offset = start; | ||
4821 | u64 num_bytes = end - start; | ||
4822 | int ret = 0; | ||
4823 | |||
4824 | trans = btrfs_join_transaction(root, 1); | ||
4825 | BUG_ON(!trans); | ||
4826 | btrfs_set_trans_block_group(trans, inode); | ||
4827 | |||
4828 | while (num_bytes > 0) { | ||
4829 | alloc_size = min(num_bytes, root->fs_info->max_extent); | ||
4830 | ret = btrfs_reserve_extent(trans, root, alloc_size, | ||
4831 | root->sectorsize, 0, alloc_hint, | ||
4832 | (u64)-1, &ins, 1); | ||
4833 | if (ret) { | ||
4834 | WARN_ON(1); | ||
4835 | goto out; | ||
4836 | } | ||
4837 | ret = insert_reserved_file_extent(trans, inode, | ||
4838 | cur_offset, ins.objectid, | ||
4839 | ins.offset, ins.offset, | ||
4840 | ins.offset, 0, 0, 0, | ||
4841 | BTRFS_FILE_EXTENT_PREALLOC); | ||
4842 | BUG_ON(ret); | ||
4843 | num_bytes -= ins.offset; | ||
4844 | cur_offset += ins.offset; | ||
4845 | alloc_hint = ins.objectid + ins.offset; | ||
4846 | } | ||
4847 | out: | ||
4848 | if (cur_offset > start) { | ||
4849 | inode->i_ctime = CURRENT_TIME; | ||
4850 | btrfs_set_flag(inode, PREALLOC); | ||
4851 | if (!(mode & FALLOC_FL_KEEP_SIZE) && | ||
4852 | cur_offset > i_size_read(inode)) | ||
4853 | btrfs_i_size_write(inode, cur_offset); | ||
4854 | ret = btrfs_update_inode(trans, root, inode); | ||
4855 | BUG_ON(ret); | ||
4856 | } | ||
4857 | |||
4858 | btrfs_end_transaction(trans, root); | ||
4859 | return ret; | ||
4860 | } | ||
4861 | |||
4862 | static long btrfs_fallocate(struct inode *inode, int mode, | ||
4863 | loff_t offset, loff_t len) | ||
4864 | { | ||
4865 | u64 cur_offset; | ||
4866 | u64 last_byte; | ||
4867 | u64 alloc_start; | ||
4868 | u64 alloc_end; | ||
4869 | u64 alloc_hint = 0; | ||
4870 | u64 mask = BTRFS_I(inode)->root->sectorsize - 1; | ||
4871 | struct extent_map *em; | ||
4872 | int ret; | ||
4873 | |||
4874 | alloc_start = offset & ~mask; | ||
4875 | alloc_end = (offset + len + mask) & ~mask; | ||
4876 | |||
4877 | mutex_lock(&inode->i_mutex); | ||
4878 | if (alloc_start > inode->i_size) { | ||
4879 | ret = btrfs_cont_expand(inode, alloc_start); | ||
4880 | if (ret) | ||
4881 | goto out; | ||
4882 | } | ||
4883 | |||
4884 | while (1) { | ||
4885 | struct btrfs_ordered_extent *ordered; | ||
4886 | lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, | ||
4887 | alloc_end - 1, GFP_NOFS); | ||
4888 | ordered = btrfs_lookup_first_ordered_extent(inode, | ||
4889 | alloc_end - 1); | ||
4890 | if (ordered && | ||
4891 | ordered->file_offset + ordered->len > alloc_start && | ||
4892 | ordered->file_offset < alloc_end) { | ||
4893 | btrfs_put_ordered_extent(ordered); | ||
4894 | unlock_extent(&BTRFS_I(inode)->io_tree, | ||
4895 | alloc_start, alloc_end - 1, GFP_NOFS); | ||
4896 | btrfs_wait_ordered_range(inode, alloc_start, | ||
4897 | alloc_end - alloc_start); | ||
4898 | } else { | ||
4899 | if (ordered) | ||
4900 | btrfs_put_ordered_extent(ordered); | ||
4901 | break; | ||
4902 | } | ||
4903 | } | ||
4904 | |||
4905 | cur_offset = alloc_start; | ||
4906 | while (1) { | ||
4907 | em = btrfs_get_extent(inode, NULL, 0, cur_offset, | ||
4908 | alloc_end - cur_offset, 0); | ||
4909 | BUG_ON(IS_ERR(em) || !em); | ||
4910 | last_byte = min(extent_map_end(em), alloc_end); | ||
4911 | last_byte = (last_byte + mask) & ~mask; | ||
4912 | if (em->block_start == EXTENT_MAP_HOLE) { | ||
4913 | ret = prealloc_file_range(inode, cur_offset, | ||
4914 | last_byte, alloc_hint, mode); | ||
4915 | if (ret < 0) { | ||
4916 | free_extent_map(em); | ||
4917 | break; | ||
4918 | } | ||
4919 | } | ||
4920 | if (em->block_start <= EXTENT_MAP_LAST_BYTE) | ||
4921 | alloc_hint = em->block_start; | ||
4922 | free_extent_map(em); | ||
4923 | |||
4924 | cur_offset = last_byte; | ||
4925 | if (cur_offset >= alloc_end) { | ||
4926 | ret = 0; | ||
4927 | break; | ||
4928 | } | ||
4929 | } | ||
4930 | unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, alloc_end - 1, | ||
4931 | GFP_NOFS); | ||
4932 | out: | ||
4933 | mutex_unlock(&inode->i_mutex); | ||
4934 | return ret; | ||
4935 | } | ||
4936 | |||
4937 | static int btrfs_set_page_dirty(struct page *page) | ||
4938 | { | ||
4939 | return __set_page_dirty_nobuffers(page); | ||
4940 | } | ||
4941 | |||
4942 | static int btrfs_permission(struct inode *inode, int mask) | ||
4943 | { | ||
4944 | if (btrfs_test_flag(inode, READONLY) && (mask & MAY_WRITE)) | ||
4945 | return -EACCES; | ||
4946 | return generic_permission(inode, mask, btrfs_check_acl); | ||
4947 | } | ||
4948 | |||
4949 | static struct inode_operations btrfs_dir_inode_operations = { | ||
4950 | .getattr = btrfs_getattr, | ||
4951 | .lookup = btrfs_lookup, | ||
4952 | .create = btrfs_create, | ||
4953 | .unlink = btrfs_unlink, | ||
4954 | .link = btrfs_link, | ||
4955 | .mkdir = btrfs_mkdir, | ||
4956 | .rmdir = btrfs_rmdir, | ||
4957 | .rename = btrfs_rename, | ||
4958 | .symlink = btrfs_symlink, | ||
4959 | .setattr = btrfs_setattr, | ||
4960 | .mknod = btrfs_mknod, | ||
4961 | .setxattr = btrfs_setxattr, | ||
4962 | .getxattr = btrfs_getxattr, | ||
4963 | .listxattr = btrfs_listxattr, | ||
4964 | .removexattr = btrfs_removexattr, | ||
4965 | .permission = btrfs_permission, | ||
4966 | }; | ||
4967 | static struct inode_operations btrfs_dir_ro_inode_operations = { | ||
4968 | .lookup = btrfs_lookup, | ||
4969 | .permission = btrfs_permission, | ||
4970 | }; | ||
4971 | static struct file_operations btrfs_dir_file_operations = { | ||
4972 | .llseek = generic_file_llseek, | ||
4973 | .read = generic_read_dir, | ||
4974 | .readdir = btrfs_real_readdir, | ||
4975 | .unlocked_ioctl = btrfs_ioctl, | ||
4976 | #ifdef CONFIG_COMPAT | ||
4977 | .compat_ioctl = btrfs_ioctl, | ||
4978 | #endif | ||
4979 | .release = btrfs_release_file, | ||
4980 | .fsync = btrfs_sync_file, | ||
4981 | }; | ||
4982 | |||
4983 | static struct extent_io_ops btrfs_extent_io_ops = { | ||
4984 | .fill_delalloc = run_delalloc_range, | ||
4985 | .submit_bio_hook = btrfs_submit_bio_hook, | ||
4986 | .merge_bio_hook = btrfs_merge_bio_hook, | ||
4987 | .readpage_end_io_hook = btrfs_readpage_end_io_hook, | ||
4988 | .writepage_end_io_hook = btrfs_writepage_end_io_hook, | ||
4989 | .writepage_start_hook = btrfs_writepage_start_hook, | ||
4990 | .readpage_io_failed_hook = btrfs_io_failed_hook, | ||
4991 | .set_bit_hook = btrfs_set_bit_hook, | ||
4992 | .clear_bit_hook = btrfs_clear_bit_hook, | ||
4993 | }; | ||
4994 | |||
4995 | static struct address_space_operations btrfs_aops = { | ||
4996 | .readpage = btrfs_readpage, | ||
4997 | .writepage = btrfs_writepage, | ||
4998 | .writepages = btrfs_writepages, | ||
4999 | .readpages = btrfs_readpages, | ||
5000 | .sync_page = block_sync_page, | ||
5001 | .bmap = btrfs_bmap, | ||
5002 | .direct_IO = btrfs_direct_IO, | ||
5003 | .invalidatepage = btrfs_invalidatepage, | ||
5004 | .releasepage = btrfs_releasepage, | ||
5005 | .set_page_dirty = btrfs_set_page_dirty, | ||
5006 | }; | ||
5007 | |||
5008 | static struct address_space_operations btrfs_symlink_aops = { | ||
5009 | .readpage = btrfs_readpage, | ||
5010 | .writepage = btrfs_writepage, | ||
5011 | .invalidatepage = btrfs_invalidatepage, | ||
5012 | .releasepage = btrfs_releasepage, | ||
5013 | }; | ||
5014 | |||
5015 | static struct inode_operations btrfs_file_inode_operations = { | ||
5016 | .truncate = btrfs_truncate, | ||
5017 | .getattr = btrfs_getattr, | ||
5018 | .setattr = btrfs_setattr, | ||
5019 | .setxattr = btrfs_setxattr, | ||
5020 | .getxattr = btrfs_getxattr, | ||
5021 | .listxattr = btrfs_listxattr, | ||
5022 | .removexattr = btrfs_removexattr, | ||
5023 | .permission = btrfs_permission, | ||
5024 | .fallocate = btrfs_fallocate, | ||
5025 | }; | ||
5026 | static struct inode_operations btrfs_special_inode_operations = { | ||
5027 | .getattr = btrfs_getattr, | ||
5028 | .setattr = btrfs_setattr, | ||
5029 | .permission = btrfs_permission, | ||
5030 | .setxattr = btrfs_setxattr, | ||
5031 | .getxattr = btrfs_getxattr, | ||
5032 | .listxattr = btrfs_listxattr, | ||
5033 | .removexattr = btrfs_removexattr, | ||
5034 | }; | ||
5035 | static struct inode_operations btrfs_symlink_inode_operations = { | ||
5036 | .readlink = generic_readlink, | ||
5037 | .follow_link = page_follow_link_light, | ||
5038 | .put_link = page_put_link, | ||
5039 | .permission = btrfs_permission, | ||
5040 | }; | ||
diff --git a/fs/btrfs/ioctl.c b/fs/btrfs/ioctl.c new file mode 100644 index 000000000000..c2aa33e3feb5 --- /dev/null +++ b/fs/btrfs/ioctl.c | |||
@@ -0,0 +1,1132 @@ | |||
1 | /* | ||
2 | * Copyright (C) 2007 Oracle. All rights reserved. | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or | ||
5 | * modify it under the terms of the GNU General Public | ||
6 | * License v2 as published by the Free Software Foundation. | ||
7 | * | ||
8 | * This program is distributed in the hope that it will be useful, | ||
9 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | ||
11 | * General Public License for more details. | ||
12 | * | ||
13 | * You should have received a copy of the GNU General Public | ||
14 | * License along with this program; if not, write to the | ||
15 | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | ||
16 | * Boston, MA 021110-1307, USA. | ||
17 | */ | ||
18 | |||
19 | #include <linux/kernel.h> | ||
20 | #include <linux/bio.h> | ||
21 | #include <linux/buffer_head.h> | ||
22 | #include <linux/file.h> | ||
23 | #include <linux/fs.h> | ||
24 | #include <linux/fsnotify.h> | ||
25 | #include <linux/pagemap.h> | ||
26 | #include <linux/highmem.h> | ||
27 | #include <linux/time.h> | ||
28 | #include <linux/init.h> | ||
29 | #include <linux/string.h> | ||
30 | #include <linux/smp_lock.h> | ||
31 | #include <linux/backing-dev.h> | ||
32 | #include <linux/mount.h> | ||
33 | #include <linux/mpage.h> | ||
34 | #include <linux/namei.h> | ||
35 | #include <linux/swap.h> | ||
36 | #include <linux/writeback.h> | ||
37 | #include <linux/statfs.h> | ||
38 | #include <linux/compat.h> | ||
39 | #include <linux/bit_spinlock.h> | ||
40 | #include <linux/security.h> | ||
41 | #include <linux/version.h> | ||
42 | #include <linux/xattr.h> | ||
43 | #include <linux/vmalloc.h> | ||
44 | #include "compat.h" | ||
45 | #include "ctree.h" | ||
46 | #include "disk-io.h" | ||
47 | #include "transaction.h" | ||
48 | #include "btrfs_inode.h" | ||
49 | #include "ioctl.h" | ||
50 | #include "print-tree.h" | ||
51 | #include "volumes.h" | ||
52 | #include "locking.h" | ||
53 | |||
54 | |||
55 | |||
56 | static noinline int create_subvol(struct btrfs_root *root, | ||
57 | struct dentry *dentry, | ||
58 | char *name, int namelen) | ||
59 | { | ||
60 | struct btrfs_trans_handle *trans; | ||
61 | struct btrfs_key key; | ||
62 | struct btrfs_root_item root_item; | ||
63 | struct btrfs_inode_item *inode_item; | ||
64 | struct extent_buffer *leaf; | ||
65 | struct btrfs_root *new_root = root; | ||
66 | struct inode *dir; | ||
67 | int ret; | ||
68 | int err; | ||
69 | u64 objectid; | ||
70 | u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID; | ||
71 | u64 index = 0; | ||
72 | unsigned long nr = 1; | ||
73 | |||
74 | ret = btrfs_check_free_space(root, 1, 0); | ||
75 | if (ret) | ||
76 | goto fail_commit; | ||
77 | |||
78 | trans = btrfs_start_transaction(root, 1); | ||
79 | BUG_ON(!trans); | ||
80 | |||
81 | ret = btrfs_find_free_objectid(trans, root->fs_info->tree_root, | ||
82 | 0, &objectid); | ||
83 | if (ret) | ||
84 | goto fail; | ||
85 | |||
86 | leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0, | ||
87 | objectid, trans->transid, 0, 0, 0); | ||
88 | if (IS_ERR(leaf)) { | ||
89 | ret = PTR_ERR(leaf); | ||
90 | goto fail; | ||
91 | } | ||
92 | |||
93 | btrfs_set_header_nritems(leaf, 0); | ||
94 | btrfs_set_header_level(leaf, 0); | ||
95 | btrfs_set_header_bytenr(leaf, leaf->start); | ||
96 | btrfs_set_header_generation(leaf, trans->transid); | ||
97 | btrfs_set_header_owner(leaf, objectid); | ||
98 | |||
99 | write_extent_buffer(leaf, root->fs_info->fsid, | ||
100 | (unsigned long)btrfs_header_fsid(leaf), | ||
101 | BTRFS_FSID_SIZE); | ||
102 | btrfs_mark_buffer_dirty(leaf); | ||
103 | |||
104 | inode_item = &root_item.inode; | ||
105 | memset(inode_item, 0, sizeof(*inode_item)); | ||
106 | inode_item->generation = cpu_to_le64(1); | ||
107 | inode_item->size = cpu_to_le64(3); | ||
108 | inode_item->nlink = cpu_to_le32(1); | ||
109 | inode_item->nbytes = cpu_to_le64(root->leafsize); | ||
110 | inode_item->mode = cpu_to_le32(S_IFDIR | 0755); | ||
111 | |||
112 | btrfs_set_root_bytenr(&root_item, leaf->start); | ||
113 | btrfs_set_root_generation(&root_item, trans->transid); | ||
114 | btrfs_set_root_level(&root_item, 0); | ||
115 | btrfs_set_root_refs(&root_item, 1); | ||
116 | btrfs_set_root_used(&root_item, 0); | ||
117 | btrfs_set_root_last_snapshot(&root_item, 0); | ||
118 | |||
119 | memset(&root_item.drop_progress, 0, sizeof(root_item.drop_progress)); | ||
120 | root_item.drop_level = 0; | ||
121 | |||
122 | btrfs_tree_unlock(leaf); | ||
123 | free_extent_buffer(leaf); | ||
124 | leaf = NULL; | ||
125 | |||
126 | btrfs_set_root_dirid(&root_item, new_dirid); | ||
127 | |||
128 | key.objectid = objectid; | ||
129 | key.offset = 1; | ||
130 | btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY); | ||
131 | ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key, | ||
132 | &root_item); | ||
133 | if (ret) | ||
134 | goto fail; | ||
135 | |||
136 | /* | ||
137 | * insert the directory item | ||
138 | */ | ||
139 | key.offset = (u64)-1; | ||
140 | dir = dentry->d_parent->d_inode; | ||
141 | ret = btrfs_set_inode_index(dir, &index); | ||
142 | BUG_ON(ret); | ||
143 | |||
144 | ret = btrfs_insert_dir_item(trans, root, | ||
145 | name, namelen, dir->i_ino, &key, | ||
146 | BTRFS_FT_DIR, index); | ||
147 | if (ret) | ||
148 | goto fail; | ||
149 | |||
150 | btrfs_i_size_write(dir, dir->i_size + namelen * 2); | ||
151 | ret = btrfs_update_inode(trans, root, dir); | ||
152 | BUG_ON(ret); | ||
153 | |||
154 | /* add the backref first */ | ||
155 | ret = btrfs_add_root_ref(trans, root->fs_info->tree_root, | ||
156 | objectid, BTRFS_ROOT_BACKREF_KEY, | ||
157 | root->root_key.objectid, | ||
158 | dir->i_ino, index, name, namelen); | ||
159 | |||
160 | BUG_ON(ret); | ||
161 | |||
162 | /* now add the forward ref */ | ||
163 | ret = btrfs_add_root_ref(trans, root->fs_info->tree_root, | ||
164 | root->root_key.objectid, BTRFS_ROOT_REF_KEY, | ||
165 | objectid, | ||
166 | dir->i_ino, index, name, namelen); | ||
167 | |||
168 | BUG_ON(ret); | ||
169 | |||
170 | ret = btrfs_commit_transaction(trans, root); | ||
171 | if (ret) | ||
172 | goto fail_commit; | ||
173 | |||
174 | new_root = btrfs_read_fs_root_no_name(root->fs_info, &key); | ||
175 | BUG_ON(!new_root); | ||
176 | |||
177 | trans = btrfs_start_transaction(new_root, 1); | ||
178 | BUG_ON(!trans); | ||
179 | |||
180 | ret = btrfs_create_subvol_root(trans, new_root, dentry, new_dirid, | ||
181 | BTRFS_I(dir)->block_group); | ||
182 | if (ret) | ||
183 | goto fail; | ||
184 | |||
185 | fail: | ||
186 | nr = trans->blocks_used; | ||
187 | err = btrfs_commit_transaction(trans, new_root); | ||
188 | if (err && !ret) | ||
189 | ret = err; | ||
190 | fail_commit: | ||
191 | btrfs_btree_balance_dirty(root, nr); | ||
192 | return ret; | ||
193 | } | ||
194 | |||
195 | static int create_snapshot(struct btrfs_root *root, struct dentry *dentry, | ||
196 | char *name, int namelen) | ||
197 | { | ||
198 | struct btrfs_pending_snapshot *pending_snapshot; | ||
199 | struct btrfs_trans_handle *trans; | ||
200 | int ret = 0; | ||
201 | int err; | ||
202 | unsigned long nr = 0; | ||
203 | |||
204 | if (!root->ref_cows) | ||
205 | return -EINVAL; | ||
206 | |||
207 | ret = btrfs_check_free_space(root, 1, 0); | ||
208 | if (ret) | ||
209 | goto fail_unlock; | ||
210 | |||
211 | pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS); | ||
212 | if (!pending_snapshot) { | ||
213 | ret = -ENOMEM; | ||
214 | goto fail_unlock; | ||
215 | } | ||
216 | pending_snapshot->name = kmalloc(namelen + 1, GFP_NOFS); | ||
217 | if (!pending_snapshot->name) { | ||
218 | ret = -ENOMEM; | ||
219 | kfree(pending_snapshot); | ||
220 | goto fail_unlock; | ||
221 | } | ||
222 | memcpy(pending_snapshot->name, name, namelen); | ||
223 | pending_snapshot->name[namelen] = '\0'; | ||
224 | pending_snapshot->dentry = dentry; | ||
225 | trans = btrfs_start_transaction(root, 1); | ||
226 | BUG_ON(!trans); | ||
227 | pending_snapshot->root = root; | ||
228 | list_add(&pending_snapshot->list, | ||
229 | &trans->transaction->pending_snapshots); | ||
230 | err = btrfs_commit_transaction(trans, root); | ||
231 | |||
232 | fail_unlock: | ||
233 | btrfs_btree_balance_dirty(root, nr); | ||
234 | return ret; | ||
235 | } | ||
236 | |||
237 | /* copy of may_create in fs/namei.c() */ | ||
238 | static inline int btrfs_may_create(struct inode *dir, struct dentry *child) | ||
239 | { | ||
240 | if (child->d_inode) | ||
241 | return -EEXIST; | ||
242 | if (IS_DEADDIR(dir)) | ||
243 | return -ENOENT; | ||
244 | return inode_permission(dir, MAY_WRITE | MAY_EXEC); | ||
245 | } | ||
246 | |||
247 | /* | ||
248 | * Create a new subvolume below @parent. This is largely modeled after | ||
249 | * sys_mkdirat and vfs_mkdir, but we only do a single component lookup | ||
250 | * inside this filesystem so it's quite a bit simpler. | ||
251 | */ | ||
252 | static noinline int btrfs_mksubvol(struct path *parent, char *name, | ||
253 | int mode, int namelen, | ||
254 | struct btrfs_root *snap_src) | ||
255 | { | ||
256 | struct dentry *dentry; | ||
257 | int error; | ||
258 | |||
259 | mutex_lock_nested(&parent->dentry->d_inode->i_mutex, I_MUTEX_PARENT); | ||
260 | |||
261 | dentry = lookup_one_len(name, parent->dentry, namelen); | ||
262 | error = PTR_ERR(dentry); | ||
263 | if (IS_ERR(dentry)) | ||
264 | goto out_unlock; | ||
265 | |||
266 | error = -EEXIST; | ||
267 | if (dentry->d_inode) | ||
268 | goto out_dput; | ||
269 | |||
270 | if (!IS_POSIXACL(parent->dentry->d_inode)) | ||
271 | mode &= ~current->fs->umask; | ||
272 | |||
273 | error = mnt_want_write(parent->mnt); | ||
274 | if (error) | ||
275 | goto out_dput; | ||
276 | |||
277 | error = btrfs_may_create(parent->dentry->d_inode, dentry); | ||
278 | if (error) | ||
279 | goto out_drop_write; | ||
280 | |||
281 | /* | ||
282 | * Actually perform the low-level subvolume creation after all | ||
283 | * this VFS fuzz. | ||
284 | * | ||
285 | * Eventually we want to pass in an inode under which we create this | ||
286 | * subvolume, but for now all are under the filesystem root. | ||
287 | * | ||
288 | * Also we should pass on the mode eventually to allow creating new | ||
289 | * subvolume with specific mode bits. | ||
290 | */ | ||
291 | if (snap_src) { | ||
292 | struct dentry *dir = dentry->d_parent; | ||
293 | struct dentry *test = dir->d_parent; | ||
294 | struct btrfs_path *path = btrfs_alloc_path(); | ||
295 | int ret; | ||
296 | u64 test_oid; | ||
297 | u64 parent_oid = BTRFS_I(dir->d_inode)->root->root_key.objectid; | ||
298 | |||
299 | test_oid = snap_src->root_key.objectid; | ||
300 | |||
301 | ret = btrfs_find_root_ref(snap_src->fs_info->tree_root, | ||
302 | path, parent_oid, test_oid); | ||
303 | if (ret == 0) | ||
304 | goto create; | ||
305 | btrfs_release_path(snap_src->fs_info->tree_root, path); | ||
306 | |||
307 | /* we need to make sure we aren't creating a directory loop | ||
308 | * by taking a snapshot of something that has our current | ||
309 | * subvol in its directory tree. So, this loops through | ||
310 | * the dentries and checks the forward refs for each subvolume | ||
311 | * to see if is references the subvolume where we are | ||
312 | * placing this new snapshot. | ||
313 | */ | ||
314 | while (1) { | ||
315 | if (!test || | ||
316 | dir == snap_src->fs_info->sb->s_root || | ||
317 | test == snap_src->fs_info->sb->s_root || | ||
318 | test->d_inode->i_sb != snap_src->fs_info->sb) { | ||
319 | break; | ||
320 | } | ||
321 | if (S_ISLNK(test->d_inode->i_mode)) { | ||
322 | printk(KERN_INFO "Btrfs symlink in snapshot " | ||
323 | "path, failed\n"); | ||
324 | error = -EMLINK; | ||
325 | btrfs_free_path(path); | ||
326 | goto out_drop_write; | ||
327 | } | ||
328 | test_oid = | ||
329 | BTRFS_I(test->d_inode)->root->root_key.objectid; | ||
330 | ret = btrfs_find_root_ref(snap_src->fs_info->tree_root, | ||
331 | path, test_oid, parent_oid); | ||
332 | if (ret == 0) { | ||
333 | printk(KERN_INFO "Btrfs snapshot creation " | ||
334 | "failed, looping\n"); | ||
335 | error = -EMLINK; | ||
336 | btrfs_free_path(path); | ||
337 | goto out_drop_write; | ||
338 | } | ||
339 | btrfs_release_path(snap_src->fs_info->tree_root, path); | ||
340 | test = test->d_parent; | ||
341 | } | ||
342 | create: | ||
343 | btrfs_free_path(path); | ||
344 | error = create_snapshot(snap_src, dentry, name, namelen); | ||
345 | } else { | ||
346 | error = create_subvol(BTRFS_I(parent->dentry->d_inode)->root, | ||
347 | dentry, name, namelen); | ||
348 | } | ||
349 | if (error) | ||
350 | goto out_drop_write; | ||
351 | |||
352 | fsnotify_mkdir(parent->dentry->d_inode, dentry); | ||
353 | out_drop_write: | ||
354 | mnt_drop_write(parent->mnt); | ||
355 | out_dput: | ||
356 | dput(dentry); | ||
357 | out_unlock: | ||
358 | mutex_unlock(&parent->dentry->d_inode->i_mutex); | ||
359 | return error; | ||
360 | } | ||
361 | |||
362 | |||
363 | static int btrfs_defrag_file(struct file *file) | ||
364 | { | ||
365 | struct inode *inode = fdentry(file)->d_inode; | ||
366 | struct btrfs_root *root = BTRFS_I(inode)->root; | ||
367 | struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; | ||
368 | struct btrfs_ordered_extent *ordered; | ||
369 | struct page *page; | ||
370 | unsigned long last_index; | ||
371 | unsigned long ra_pages = root->fs_info->bdi.ra_pages; | ||
372 | unsigned long total_read = 0; | ||
373 | u64 page_start; | ||
374 | u64 page_end; | ||
375 | unsigned long i; | ||
376 | int ret; | ||
377 | |||
378 | ret = btrfs_check_free_space(root, inode->i_size, 0); | ||
379 | if (ret) | ||
380 | return -ENOSPC; | ||
381 | |||
382 | mutex_lock(&inode->i_mutex); | ||
383 | last_index = inode->i_size >> PAGE_CACHE_SHIFT; | ||
384 | for (i = 0; i <= last_index; i++) { | ||
385 | if (total_read % ra_pages == 0) { | ||
386 | btrfs_force_ra(inode->i_mapping, &file->f_ra, file, i, | ||
387 | min(last_index, i + ra_pages - 1)); | ||
388 | } | ||
389 | total_read++; | ||
390 | again: | ||
391 | page = grab_cache_page(inode->i_mapping, i); | ||
392 | if (!page) | ||
393 | goto out_unlock; | ||
394 | if (!PageUptodate(page)) { | ||
395 | btrfs_readpage(NULL, page); | ||
396 | lock_page(page); | ||
397 | if (!PageUptodate(page)) { | ||
398 | unlock_page(page); | ||
399 | page_cache_release(page); | ||
400 | goto out_unlock; | ||
401 | } | ||
402 | } | ||
403 | |||
404 | wait_on_page_writeback(page); | ||
405 | |||
406 | page_start = (u64)page->index << PAGE_CACHE_SHIFT; | ||
407 | page_end = page_start + PAGE_CACHE_SIZE - 1; | ||
408 | lock_extent(io_tree, page_start, page_end, GFP_NOFS); | ||
409 | |||
410 | ordered = btrfs_lookup_ordered_extent(inode, page_start); | ||
411 | if (ordered) { | ||
412 | unlock_extent(io_tree, page_start, page_end, GFP_NOFS); | ||
413 | unlock_page(page); | ||
414 | page_cache_release(page); | ||
415 | btrfs_start_ordered_extent(inode, ordered, 1); | ||
416 | btrfs_put_ordered_extent(ordered); | ||
417 | goto again; | ||
418 | } | ||
419 | set_page_extent_mapped(page); | ||
420 | |||
421 | /* | ||
422 | * this makes sure page_mkwrite is called on the | ||
423 | * page if it is dirtied again later | ||
424 | */ | ||
425 | clear_page_dirty_for_io(page); | ||
426 | |||
427 | btrfs_set_extent_delalloc(inode, page_start, page_end); | ||
428 | |||
429 | unlock_extent(io_tree, page_start, page_end, GFP_NOFS); | ||
430 | set_page_dirty(page); | ||
431 | unlock_page(page); | ||
432 | page_cache_release(page); | ||
433 | balance_dirty_pages_ratelimited_nr(inode->i_mapping, 1); | ||
434 | } | ||
435 | |||
436 | out_unlock: | ||
437 | mutex_unlock(&inode->i_mutex); | ||
438 | return 0; | ||
439 | } | ||
440 | |||
441 | /* | ||
442 | * Called inside transaction, so use GFP_NOFS | ||
443 | */ | ||
444 | |||
445 | static int btrfs_ioctl_resize(struct btrfs_root *root, void __user *arg) | ||
446 | { | ||
447 | u64 new_size; | ||
448 | u64 old_size; | ||
449 | u64 devid = 1; | ||
450 | struct btrfs_ioctl_vol_args *vol_args; | ||
451 | struct btrfs_trans_handle *trans; | ||
452 | struct btrfs_device *device = NULL; | ||
453 | char *sizestr; | ||
454 | char *devstr = NULL; | ||
455 | int ret = 0; | ||
456 | int namelen; | ||
457 | int mod = 0; | ||
458 | |||
459 | if (root->fs_info->sb->s_flags & MS_RDONLY) | ||
460 | return -EROFS; | ||
461 | |||
462 | if (!capable(CAP_SYS_ADMIN)) | ||
463 | return -EPERM; | ||
464 | |||
465 | vol_args = kmalloc(sizeof(*vol_args), GFP_NOFS); | ||
466 | |||
467 | if (!vol_args) | ||
468 | return -ENOMEM; | ||
469 | |||
470 | if (copy_from_user(vol_args, arg, sizeof(*vol_args))) { | ||
471 | ret = -EFAULT; | ||
472 | goto out; | ||
473 | } | ||
474 | |||
475 | vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; | ||
476 | namelen = strlen(vol_args->name); | ||
477 | |||
478 | mutex_lock(&root->fs_info->volume_mutex); | ||
479 | sizestr = vol_args->name; | ||
480 | devstr = strchr(sizestr, ':'); | ||
481 | if (devstr) { | ||
482 | char *end; | ||
483 | sizestr = devstr + 1; | ||
484 | *devstr = '\0'; | ||
485 | devstr = vol_args->name; | ||
486 | devid = simple_strtoull(devstr, &end, 10); | ||
487 | printk(KERN_INFO "resizing devid %llu\n", devid); | ||
488 | } | ||
489 | device = btrfs_find_device(root, devid, NULL, NULL); | ||
490 | if (!device) { | ||
491 | printk(KERN_INFO "resizer unable to find device %llu\n", devid); | ||
492 | ret = -EINVAL; | ||
493 | goto out_unlock; | ||
494 | } | ||
495 | if (!strcmp(sizestr, "max")) | ||
496 | new_size = device->bdev->bd_inode->i_size; | ||
497 | else { | ||
498 | if (sizestr[0] == '-') { | ||
499 | mod = -1; | ||
500 | sizestr++; | ||
501 | } else if (sizestr[0] == '+') { | ||
502 | mod = 1; | ||
503 | sizestr++; | ||
504 | } | ||
505 | new_size = btrfs_parse_size(sizestr); | ||
506 | if (new_size == 0) { | ||
507 | ret = -EINVAL; | ||
508 | goto out_unlock; | ||
509 | } | ||
510 | } | ||
511 | |||
512 | old_size = device->total_bytes; | ||
513 | |||
514 | if (mod < 0) { | ||
515 | if (new_size > old_size) { | ||
516 | ret = -EINVAL; | ||
517 | goto out_unlock; | ||
518 | } | ||
519 | new_size = old_size - new_size; | ||
520 | } else if (mod > 0) { | ||
521 | new_size = old_size + new_size; | ||
522 | } | ||
523 | |||
524 | if (new_size < 256 * 1024 * 1024) { | ||
525 | ret = -EINVAL; | ||
526 | goto out_unlock; | ||
527 | } | ||
528 | if (new_size > device->bdev->bd_inode->i_size) { | ||
529 | ret = -EFBIG; | ||
530 | goto out_unlock; | ||
531 | } | ||
532 | |||
533 | do_div(new_size, root->sectorsize); | ||
534 | new_size *= root->sectorsize; | ||
535 | |||
536 | printk(KERN_INFO "new size for %s is %llu\n", | ||
537 | device->name, (unsigned long long)new_size); | ||
538 | |||
539 | if (new_size > old_size) { | ||
540 | trans = btrfs_start_transaction(root, 1); | ||
541 | ret = btrfs_grow_device(trans, device, new_size); | ||
542 | btrfs_commit_transaction(trans, root); | ||
543 | } else { | ||
544 | ret = btrfs_shrink_device(device, new_size); | ||
545 | } | ||
546 | |||
547 | out_unlock: | ||
548 | mutex_unlock(&root->fs_info->volume_mutex); | ||
549 | out: | ||
550 | kfree(vol_args); | ||
551 | return ret; | ||
552 | } | ||
553 | |||
554 | static noinline int btrfs_ioctl_snap_create(struct file *file, | ||
555 | void __user *arg, int subvol) | ||
556 | { | ||
557 | struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root; | ||
558 | struct btrfs_ioctl_vol_args *vol_args; | ||
559 | struct btrfs_dir_item *di; | ||
560 | struct btrfs_path *path; | ||
561 | struct file *src_file; | ||
562 | u64 root_dirid; | ||
563 | int namelen; | ||
564 | int ret = 0; | ||
565 | |||
566 | if (root->fs_info->sb->s_flags & MS_RDONLY) | ||
567 | return -EROFS; | ||
568 | |||
569 | vol_args = kmalloc(sizeof(*vol_args), GFP_NOFS); | ||
570 | |||
571 | if (!vol_args) | ||
572 | return -ENOMEM; | ||
573 | |||
574 | if (copy_from_user(vol_args, arg, sizeof(*vol_args))) { | ||
575 | ret = -EFAULT; | ||
576 | goto out; | ||
577 | } | ||
578 | |||
579 | vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; | ||
580 | namelen = strlen(vol_args->name); | ||
581 | if (strchr(vol_args->name, '/')) { | ||
582 | ret = -EINVAL; | ||
583 | goto out; | ||
584 | } | ||
585 | |||
586 | path = btrfs_alloc_path(); | ||
587 | if (!path) { | ||
588 | ret = -ENOMEM; | ||
589 | goto out; | ||
590 | } | ||
591 | |||
592 | root_dirid = root->fs_info->sb->s_root->d_inode->i_ino, | ||
593 | di = btrfs_lookup_dir_item(NULL, root->fs_info->tree_root, | ||
594 | path, root_dirid, | ||
595 | vol_args->name, namelen, 0); | ||
596 | btrfs_free_path(path); | ||
597 | |||
598 | if (di && !IS_ERR(di)) { | ||
599 | ret = -EEXIST; | ||
600 | goto out; | ||
601 | } | ||
602 | |||
603 | if (IS_ERR(di)) { | ||
604 | ret = PTR_ERR(di); | ||
605 | goto out; | ||
606 | } | ||
607 | |||
608 | if (subvol) { | ||
609 | ret = btrfs_mksubvol(&file->f_path, vol_args->name, | ||
610 | file->f_path.dentry->d_inode->i_mode, | ||
611 | namelen, NULL); | ||
612 | } else { | ||
613 | struct inode *src_inode; | ||
614 | src_file = fget(vol_args->fd); | ||
615 | if (!src_file) { | ||
616 | ret = -EINVAL; | ||
617 | goto out; | ||
618 | } | ||
619 | |||
620 | src_inode = src_file->f_path.dentry->d_inode; | ||
621 | if (src_inode->i_sb != file->f_path.dentry->d_inode->i_sb) { | ||
622 | printk(KERN_INFO "btrfs: Snapshot src from " | ||
623 | "another FS\n"); | ||
624 | ret = -EINVAL; | ||
625 | fput(src_file); | ||
626 | goto out; | ||
627 | } | ||
628 | ret = btrfs_mksubvol(&file->f_path, vol_args->name, | ||
629 | file->f_path.dentry->d_inode->i_mode, | ||
630 | namelen, BTRFS_I(src_inode)->root); | ||
631 | fput(src_file); | ||
632 | } | ||
633 | |||
634 | out: | ||
635 | kfree(vol_args); | ||
636 | return ret; | ||
637 | } | ||
638 | |||
639 | static int btrfs_ioctl_defrag(struct file *file) | ||
640 | { | ||
641 | struct inode *inode = fdentry(file)->d_inode; | ||
642 | struct btrfs_root *root = BTRFS_I(inode)->root; | ||
643 | int ret; | ||
644 | |||
645 | ret = mnt_want_write(file->f_path.mnt); | ||
646 | if (ret) | ||
647 | return ret; | ||
648 | |||
649 | switch (inode->i_mode & S_IFMT) { | ||
650 | case S_IFDIR: | ||
651 | if (!capable(CAP_SYS_ADMIN)) { | ||
652 | ret = -EPERM; | ||
653 | goto out; | ||
654 | } | ||
655 | btrfs_defrag_root(root, 0); | ||
656 | btrfs_defrag_root(root->fs_info->extent_root, 0); | ||
657 | break; | ||
658 | case S_IFREG: | ||
659 | if (!(file->f_mode & FMODE_WRITE)) { | ||
660 | ret = -EINVAL; | ||
661 | goto out; | ||
662 | } | ||
663 | btrfs_defrag_file(file); | ||
664 | break; | ||
665 | } | ||
666 | out: | ||
667 | mnt_drop_write(file->f_path.mnt); | ||
668 | return ret; | ||
669 | } | ||
670 | |||
671 | static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg) | ||
672 | { | ||
673 | struct btrfs_ioctl_vol_args *vol_args; | ||
674 | int ret; | ||
675 | |||
676 | if (!capable(CAP_SYS_ADMIN)) | ||
677 | return -EPERM; | ||
678 | |||
679 | vol_args = kmalloc(sizeof(*vol_args), GFP_NOFS); | ||
680 | |||
681 | if (!vol_args) | ||
682 | return -ENOMEM; | ||
683 | |||
684 | if (copy_from_user(vol_args, arg, sizeof(*vol_args))) { | ||
685 | ret = -EFAULT; | ||
686 | goto out; | ||
687 | } | ||
688 | vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; | ||
689 | ret = btrfs_init_new_device(root, vol_args->name); | ||
690 | |||
691 | out: | ||
692 | kfree(vol_args); | ||
693 | return ret; | ||
694 | } | ||
695 | |||
696 | static long btrfs_ioctl_rm_dev(struct btrfs_root *root, void __user *arg) | ||
697 | { | ||
698 | struct btrfs_ioctl_vol_args *vol_args; | ||
699 | int ret; | ||
700 | |||
701 | if (!capable(CAP_SYS_ADMIN)) | ||
702 | return -EPERM; | ||
703 | |||
704 | if (root->fs_info->sb->s_flags & MS_RDONLY) | ||
705 | return -EROFS; | ||
706 | |||
707 | vol_args = kmalloc(sizeof(*vol_args), GFP_NOFS); | ||
708 | |||
709 | if (!vol_args) | ||
710 | return -ENOMEM; | ||
711 | |||
712 | if (copy_from_user(vol_args, arg, sizeof(*vol_args))) { | ||
713 | ret = -EFAULT; | ||
714 | goto out; | ||
715 | } | ||
716 | vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; | ||
717 | ret = btrfs_rm_device(root, vol_args->name); | ||
718 | |||
719 | out: | ||
720 | kfree(vol_args); | ||
721 | return ret; | ||
722 | } | ||
723 | |||
724 | static long btrfs_ioctl_clone(struct file *file, unsigned long srcfd, | ||
725 | u64 off, u64 olen, u64 destoff) | ||
726 | { | ||
727 | struct inode *inode = fdentry(file)->d_inode; | ||
728 | struct btrfs_root *root = BTRFS_I(inode)->root; | ||
729 | struct file *src_file; | ||
730 | struct inode *src; | ||
731 | struct btrfs_trans_handle *trans; | ||
732 | struct btrfs_path *path; | ||
733 | struct extent_buffer *leaf; | ||
734 | char *buf; | ||
735 | struct btrfs_key key; | ||
736 | u32 nritems; | ||
737 | int slot; | ||
738 | int ret; | ||
739 | u64 len = olen; | ||
740 | u64 bs = root->fs_info->sb->s_blocksize; | ||
741 | u64 hint_byte; | ||
742 | |||
743 | /* | ||
744 | * TODO: | ||
745 | * - split compressed inline extents. annoying: we need to | ||
746 | * decompress into destination's address_space (the file offset | ||
747 | * may change, so source mapping won't do), then recompress (or | ||
748 | * otherwise reinsert) a subrange. | ||
749 | * - allow ranges within the same file to be cloned (provided | ||
750 | * they don't overlap)? | ||
751 | */ | ||
752 | |||
753 | /* the destination must be opened for writing */ | ||
754 | if (!(file->f_mode & FMODE_WRITE)) | ||
755 | return -EINVAL; | ||
756 | |||
757 | ret = mnt_want_write(file->f_path.mnt); | ||
758 | if (ret) | ||
759 | return ret; | ||
760 | |||
761 | src_file = fget(srcfd); | ||
762 | if (!src_file) { | ||
763 | ret = -EBADF; | ||
764 | goto out_drop_write; | ||
765 | } | ||
766 | src = src_file->f_dentry->d_inode; | ||
767 | |||
768 | ret = -EINVAL; | ||
769 | if (src == inode) | ||
770 | goto out_fput; | ||
771 | |||
772 | ret = -EISDIR; | ||
773 | if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode)) | ||
774 | goto out_fput; | ||
775 | |||
776 | ret = -EXDEV; | ||
777 | if (src->i_sb != inode->i_sb || BTRFS_I(src)->root != root) | ||
778 | goto out_fput; | ||
779 | |||
780 | ret = -ENOMEM; | ||
781 | buf = vmalloc(btrfs_level_size(root, 0)); | ||
782 | if (!buf) | ||
783 | goto out_fput; | ||
784 | |||
785 | path = btrfs_alloc_path(); | ||
786 | if (!path) { | ||
787 | vfree(buf); | ||
788 | goto out_fput; | ||
789 | } | ||
790 | path->reada = 2; | ||
791 | |||
792 | if (inode < src) { | ||
793 | mutex_lock(&inode->i_mutex); | ||
794 | mutex_lock(&src->i_mutex); | ||
795 | } else { | ||
796 | mutex_lock(&src->i_mutex); | ||
797 | mutex_lock(&inode->i_mutex); | ||
798 | } | ||
799 | |||
800 | /* determine range to clone */ | ||
801 | ret = -EINVAL; | ||
802 | if (off >= src->i_size || off + len > src->i_size) | ||
803 | goto out_unlock; | ||
804 | if (len == 0) | ||
805 | olen = len = src->i_size - off; | ||
806 | /* if we extend to eof, continue to block boundary */ | ||
807 | if (off + len == src->i_size) | ||
808 | len = ((src->i_size + bs-1) & ~(bs-1)) | ||
809 | - off; | ||
810 | |||
811 | /* verify the end result is block aligned */ | ||
812 | if ((off & (bs-1)) || | ||
813 | ((off + len) & (bs-1))) | ||
814 | goto out_unlock; | ||
815 | |||
816 | /* do any pending delalloc/csum calc on src, one way or | ||
817 | another, and lock file content */ | ||
818 | while (1) { | ||
819 | struct btrfs_ordered_extent *ordered; | ||
820 | lock_extent(&BTRFS_I(src)->io_tree, off, off+len, GFP_NOFS); | ||
821 | ordered = btrfs_lookup_first_ordered_extent(inode, off+len); | ||
822 | if (BTRFS_I(src)->delalloc_bytes == 0 && !ordered) | ||
823 | break; | ||
824 | unlock_extent(&BTRFS_I(src)->io_tree, off, off+len, GFP_NOFS); | ||
825 | if (ordered) | ||
826 | btrfs_put_ordered_extent(ordered); | ||
827 | btrfs_wait_ordered_range(src, off, off+len); | ||
828 | } | ||
829 | |||
830 | trans = btrfs_start_transaction(root, 1); | ||
831 | BUG_ON(!trans); | ||
832 | |||
833 | /* punch hole in destination first */ | ||
834 | btrfs_drop_extents(trans, root, inode, off, off+len, 0, &hint_byte); | ||
835 | |||
836 | /* clone data */ | ||
837 | key.objectid = src->i_ino; | ||
838 | key.type = BTRFS_EXTENT_DATA_KEY; | ||
839 | key.offset = 0; | ||
840 | |||
841 | while (1) { | ||
842 | /* | ||
843 | * note the key will change type as we walk through the | ||
844 | * tree. | ||
845 | */ | ||
846 | ret = btrfs_search_slot(trans, root, &key, path, 0, 0); | ||
847 | if (ret < 0) | ||
848 | goto out; | ||
849 | |||
850 | nritems = btrfs_header_nritems(path->nodes[0]); | ||
851 | if (path->slots[0] >= nritems) { | ||
852 | ret = btrfs_next_leaf(root, path); | ||
853 | if (ret < 0) | ||
854 | goto out; | ||
855 | if (ret > 0) | ||
856 | break; | ||
857 | nritems = btrfs_header_nritems(path->nodes[0]); | ||
858 | } | ||
859 | leaf = path->nodes[0]; | ||
860 | slot = path->slots[0]; | ||
861 | |||
862 | btrfs_item_key_to_cpu(leaf, &key, slot); | ||
863 | if (btrfs_key_type(&key) > BTRFS_EXTENT_DATA_KEY || | ||
864 | key.objectid != src->i_ino) | ||
865 | break; | ||
866 | |||
867 | if (btrfs_key_type(&key) == BTRFS_EXTENT_DATA_KEY) { | ||
868 | struct btrfs_file_extent_item *extent; | ||
869 | int type; | ||
870 | u32 size; | ||
871 | struct btrfs_key new_key; | ||
872 | u64 disko = 0, diskl = 0; | ||
873 | u64 datao = 0, datal = 0; | ||
874 | u8 comp; | ||
875 | |||
876 | size = btrfs_item_size_nr(leaf, slot); | ||
877 | read_extent_buffer(leaf, buf, | ||
878 | btrfs_item_ptr_offset(leaf, slot), | ||
879 | size); | ||
880 | |||
881 | extent = btrfs_item_ptr(leaf, slot, | ||
882 | struct btrfs_file_extent_item); | ||
883 | comp = btrfs_file_extent_compression(leaf, extent); | ||
884 | type = btrfs_file_extent_type(leaf, extent); | ||
885 | if (type == BTRFS_FILE_EXTENT_REG) { | ||
886 | disko = btrfs_file_extent_disk_bytenr(leaf, | ||
887 | extent); | ||
888 | diskl = btrfs_file_extent_disk_num_bytes(leaf, | ||
889 | extent); | ||
890 | datao = btrfs_file_extent_offset(leaf, extent); | ||
891 | datal = btrfs_file_extent_num_bytes(leaf, | ||
892 | extent); | ||
893 | } else if (type == BTRFS_FILE_EXTENT_INLINE) { | ||
894 | /* take upper bound, may be compressed */ | ||
895 | datal = btrfs_file_extent_ram_bytes(leaf, | ||
896 | extent); | ||
897 | } | ||
898 | btrfs_release_path(root, path); | ||
899 | |||
900 | if (key.offset + datal < off || | ||
901 | key.offset >= off+len) | ||
902 | goto next; | ||
903 | |||
904 | memcpy(&new_key, &key, sizeof(new_key)); | ||
905 | new_key.objectid = inode->i_ino; | ||
906 | new_key.offset = key.offset + destoff - off; | ||
907 | |||
908 | if (type == BTRFS_FILE_EXTENT_REG) { | ||
909 | ret = btrfs_insert_empty_item(trans, root, path, | ||
910 | &new_key, size); | ||
911 | if (ret) | ||
912 | goto out; | ||
913 | |||
914 | leaf = path->nodes[0]; | ||
915 | slot = path->slots[0]; | ||
916 | write_extent_buffer(leaf, buf, | ||
917 | btrfs_item_ptr_offset(leaf, slot), | ||
918 | size); | ||
919 | |||
920 | extent = btrfs_item_ptr(leaf, slot, | ||
921 | struct btrfs_file_extent_item); | ||
922 | |||
923 | if (off > key.offset) { | ||
924 | datao += off - key.offset; | ||
925 | datal -= off - key.offset; | ||
926 | } | ||
927 | if (key.offset + datao + datal + key.offset > | ||
928 | off + len) | ||
929 | datal = off + len - key.offset - datao; | ||
930 | /* disko == 0 means it's a hole */ | ||
931 | if (!disko) | ||
932 | datao = 0; | ||
933 | |||
934 | btrfs_set_file_extent_offset(leaf, extent, | ||
935 | datao); | ||
936 | btrfs_set_file_extent_num_bytes(leaf, extent, | ||
937 | datal); | ||
938 | if (disko) { | ||
939 | inode_add_bytes(inode, datal); | ||
940 | ret = btrfs_inc_extent_ref(trans, root, | ||
941 | disko, diskl, leaf->start, | ||
942 | root->root_key.objectid, | ||
943 | trans->transid, | ||
944 | inode->i_ino); | ||
945 | BUG_ON(ret); | ||
946 | } | ||
947 | } else if (type == BTRFS_FILE_EXTENT_INLINE) { | ||
948 | u64 skip = 0; | ||
949 | u64 trim = 0; | ||
950 | if (off > key.offset) { | ||
951 | skip = off - key.offset; | ||
952 | new_key.offset += skip; | ||
953 | } | ||
954 | |||
955 | if (key.offset + datal > off+len) | ||
956 | trim = key.offset + datal - (off+len); | ||
957 | |||
958 | if (comp && (skip || trim)) { | ||
959 | ret = -EINVAL; | ||
960 | goto out; | ||
961 | } | ||
962 | size -= skip + trim; | ||
963 | datal -= skip + trim; | ||
964 | ret = btrfs_insert_empty_item(trans, root, path, | ||
965 | &new_key, size); | ||
966 | if (ret) | ||
967 | goto out; | ||
968 | |||
969 | if (skip) { | ||
970 | u32 start = | ||
971 | btrfs_file_extent_calc_inline_size(0); | ||
972 | memmove(buf+start, buf+start+skip, | ||
973 | datal); | ||
974 | } | ||
975 | |||
976 | leaf = path->nodes[0]; | ||
977 | slot = path->slots[0]; | ||
978 | write_extent_buffer(leaf, buf, | ||
979 | btrfs_item_ptr_offset(leaf, slot), | ||
980 | size); | ||
981 | inode_add_bytes(inode, datal); | ||
982 | } | ||
983 | |||
984 | btrfs_mark_buffer_dirty(leaf); | ||
985 | } | ||
986 | |||
987 | next: | ||
988 | btrfs_release_path(root, path); | ||
989 | key.offset++; | ||
990 | } | ||
991 | ret = 0; | ||
992 | out: | ||
993 | btrfs_release_path(root, path); | ||
994 | if (ret == 0) { | ||
995 | inode->i_mtime = inode->i_ctime = CURRENT_TIME; | ||
996 | if (destoff + olen > inode->i_size) | ||
997 | btrfs_i_size_write(inode, destoff + olen); | ||
998 | BTRFS_I(inode)->flags = BTRFS_I(src)->flags; | ||
999 | ret = btrfs_update_inode(trans, root, inode); | ||
1000 | } | ||
1001 | btrfs_end_transaction(trans, root); | ||
1002 | unlock_extent(&BTRFS_I(src)->io_tree, off, off+len, GFP_NOFS); | ||
1003 | if (ret) | ||
1004 | vmtruncate(inode, 0); | ||
1005 | out_unlock: | ||
1006 | mutex_unlock(&src->i_mutex); | ||
1007 | mutex_unlock(&inode->i_mutex); | ||
1008 | vfree(buf); | ||
1009 | btrfs_free_path(path); | ||
1010 | out_fput: | ||
1011 | fput(src_file); | ||
1012 | out_drop_write: | ||
1013 | mnt_drop_write(file->f_path.mnt); | ||
1014 | return ret; | ||
1015 | } | ||
1016 | |||
1017 | static long btrfs_ioctl_clone_range(struct file *file, void __user *argp) | ||
1018 | { | ||
1019 | struct btrfs_ioctl_clone_range_args args; | ||
1020 | |||
1021 | if (copy_from_user(&args, argp, sizeof(args))) | ||
1022 | return -EFAULT; | ||
1023 | return btrfs_ioctl_clone(file, args.src_fd, args.src_offset, | ||
1024 | args.src_length, args.dest_offset); | ||
1025 | } | ||
1026 | |||
1027 | /* | ||
1028 | * there are many ways the trans_start and trans_end ioctls can lead | ||
1029 | * to deadlocks. They should only be used by applications that | ||
1030 | * basically own the machine, and have a very in depth understanding | ||
1031 | * of all the possible deadlocks and enospc problems. | ||
1032 | */ | ||
1033 | static long btrfs_ioctl_trans_start(struct file *file) | ||
1034 | { | ||
1035 | struct inode *inode = fdentry(file)->d_inode; | ||
1036 | struct btrfs_root *root = BTRFS_I(inode)->root; | ||
1037 | struct btrfs_trans_handle *trans; | ||
1038 | int ret = 0; | ||
1039 | |||
1040 | if (!capable(CAP_SYS_ADMIN)) | ||
1041 | return -EPERM; | ||
1042 | |||
1043 | if (file->private_data) { | ||
1044 | ret = -EINPROGRESS; | ||
1045 | goto out; | ||
1046 | } | ||
1047 | |||
1048 | ret = mnt_want_write(file->f_path.mnt); | ||
1049 | if (ret) | ||
1050 | goto out; | ||
1051 | |||
1052 | mutex_lock(&root->fs_info->trans_mutex); | ||
1053 | root->fs_info->open_ioctl_trans++; | ||
1054 | mutex_unlock(&root->fs_info->trans_mutex); | ||
1055 | |||
1056 | trans = btrfs_start_ioctl_transaction(root, 0); | ||
1057 | if (trans) | ||
1058 | file->private_data = trans; | ||
1059 | else | ||
1060 | ret = -ENOMEM; | ||
1061 | /*printk(KERN_INFO "btrfs_ioctl_trans_start on %p\n", file);*/ | ||
1062 | out: | ||
1063 | return ret; | ||
1064 | } | ||
1065 | |||
1066 | /* | ||
1067 | * there are many ways the trans_start and trans_end ioctls can lead | ||
1068 | * to deadlocks. They should only be used by applications that | ||
1069 | * basically own the machine, and have a very in depth understanding | ||
1070 | * of all the possible deadlocks and enospc problems. | ||
1071 | */ | ||
1072 | long btrfs_ioctl_trans_end(struct file *file) | ||
1073 | { | ||
1074 | struct inode *inode = fdentry(file)->d_inode; | ||
1075 | struct btrfs_root *root = BTRFS_I(inode)->root; | ||
1076 | struct btrfs_trans_handle *trans; | ||
1077 | int ret = 0; | ||
1078 | |||
1079 | trans = file->private_data; | ||
1080 | if (!trans) { | ||
1081 | ret = -EINVAL; | ||
1082 | goto out; | ||
1083 | } | ||
1084 | btrfs_end_transaction(trans, root); | ||
1085 | file->private_data = NULL; | ||
1086 | |||
1087 | mutex_lock(&root->fs_info->trans_mutex); | ||
1088 | root->fs_info->open_ioctl_trans--; | ||
1089 | mutex_unlock(&root->fs_info->trans_mutex); | ||
1090 | |||
1091 | mnt_drop_write(file->f_path.mnt); | ||
1092 | |||
1093 | out: | ||
1094 | return ret; | ||
1095 | } | ||
1096 | |||
1097 | long btrfs_ioctl(struct file *file, unsigned int | ||
1098 | cmd, unsigned long arg) | ||
1099 | { | ||
1100 | struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root; | ||
1101 | void __user *argp = (void __user *)arg; | ||
1102 | |||
1103 | switch (cmd) { | ||
1104 | case BTRFS_IOC_SNAP_CREATE: | ||
1105 | return btrfs_ioctl_snap_create(file, argp, 0); | ||
1106 | case BTRFS_IOC_SUBVOL_CREATE: | ||
1107 | return btrfs_ioctl_snap_create(file, argp, 1); | ||
1108 | case BTRFS_IOC_DEFRAG: | ||
1109 | return btrfs_ioctl_defrag(file); | ||
1110 | case BTRFS_IOC_RESIZE: | ||
1111 | return btrfs_ioctl_resize(root, argp); | ||
1112 | case BTRFS_IOC_ADD_DEV: | ||
1113 | return btrfs_ioctl_add_dev(root, argp); | ||
1114 | case BTRFS_IOC_RM_DEV: | ||
1115 | return btrfs_ioctl_rm_dev(root, argp); | ||
1116 | case BTRFS_IOC_BALANCE: | ||
1117 | return btrfs_balance(root->fs_info->dev_root); | ||
1118 | case BTRFS_IOC_CLONE: | ||
1119 | return btrfs_ioctl_clone(file, arg, 0, 0, 0); | ||
1120 | case BTRFS_IOC_CLONE_RANGE: | ||
1121 | return btrfs_ioctl_clone_range(file, argp); | ||
1122 | case BTRFS_IOC_TRANS_START: | ||
1123 | return btrfs_ioctl_trans_start(file); | ||
1124 | case BTRFS_IOC_TRANS_END: | ||
1125 | return btrfs_ioctl_trans_end(file); | ||
1126 | case BTRFS_IOC_SYNC: | ||
1127 | btrfs_sync_fs(file->f_dentry->d_sb, 1); | ||
1128 | return 0; | ||
1129 | } | ||
1130 | |||
1131 | return -ENOTTY; | ||
1132 | } | ||
diff --git a/fs/btrfs/ioctl.h b/fs/btrfs/ioctl.h new file mode 100644 index 000000000000..78049ea208db --- /dev/null +++ b/fs/btrfs/ioctl.h | |||
@@ -0,0 +1,67 @@ | |||
1 | /* | ||
2 | * Copyright (C) 2007 Oracle. All rights reserved. | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or | ||
5 | * modify it under the terms of the GNU General Public | ||
6 | * License v2 as published by the Free Software Foundation. | ||
7 | * | ||
8 | * This program is distributed in the hope that it will be useful, | ||
9 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | ||
11 | * General Public License for more details. | ||
12 | * | ||
13 | * You should have received a copy of the GNU General Public | ||
14 | * License along with this program; if not, write to the | ||
15 | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | ||
16 | * Boston, MA 021110-1307, USA. | ||
17 | */ | ||
18 | |||
19 | #ifndef __IOCTL_ | ||
20 | #define __IOCTL_ | ||
21 | #include <linux/ioctl.h> | ||
22 | |||
23 | #define BTRFS_IOCTL_MAGIC 0x94 | ||
24 | #define BTRFS_VOL_NAME_MAX 255 | ||
25 | #define BTRFS_PATH_NAME_MAX 3072 | ||
26 | |||
27 | struct btrfs_ioctl_vol_args { | ||
28 | __s64 fd; | ||
29 | char name[BTRFS_PATH_NAME_MAX + 1]; | ||
30 | }; | ||
31 | |||
32 | #define BTRFS_IOC_SNAP_CREATE _IOW(BTRFS_IOCTL_MAGIC, 1, \ | ||
33 | struct btrfs_ioctl_vol_args) | ||
34 | #define BTRFS_IOC_DEFRAG _IOW(BTRFS_IOCTL_MAGIC, 2, \ | ||
35 | struct btrfs_ioctl_vol_args) | ||
36 | #define BTRFS_IOC_RESIZE _IOW(BTRFS_IOCTL_MAGIC, 3, \ | ||
37 | struct btrfs_ioctl_vol_args) | ||
38 | #define BTRFS_IOC_SCAN_DEV _IOW(BTRFS_IOCTL_MAGIC, 4, \ | ||
39 | struct btrfs_ioctl_vol_args) | ||
40 | /* trans start and trans end are dangerous, and only for | ||
41 | * use by applications that know how to avoid the | ||
42 | * resulting deadlocks | ||
43 | */ | ||
44 | #define BTRFS_IOC_TRANS_START _IO(BTRFS_IOCTL_MAGIC, 6) | ||
45 | #define BTRFS_IOC_TRANS_END _IO(BTRFS_IOCTL_MAGIC, 7) | ||
46 | #define BTRFS_IOC_SYNC _IO(BTRFS_IOCTL_MAGIC, 8) | ||
47 | |||
48 | #define BTRFS_IOC_CLONE _IOW(BTRFS_IOCTL_MAGIC, 9, int) | ||
49 | #define BTRFS_IOC_ADD_DEV _IOW(BTRFS_IOCTL_MAGIC, 10, \ | ||
50 | struct btrfs_ioctl_vol_args) | ||
51 | #define BTRFS_IOC_RM_DEV _IOW(BTRFS_IOCTL_MAGIC, 11, \ | ||
52 | struct btrfs_ioctl_vol_args) | ||
53 | #define BTRFS_IOC_BALANCE _IOW(BTRFS_IOCTL_MAGIC, 12, \ | ||
54 | struct btrfs_ioctl_vol_args) | ||
55 | struct btrfs_ioctl_clone_range_args { | ||
56 | __s64 src_fd; | ||
57 | __u64 src_offset, src_length; | ||
58 | __u64 dest_offset; | ||
59 | }; | ||
60 | |||
61 | #define BTRFS_IOC_CLONE_RANGE _IOW(BTRFS_IOCTL_MAGIC, 13, \ | ||
62 | struct btrfs_ioctl_clone_range_args) | ||
63 | |||
64 | #define BTRFS_IOC_SUBVOL_CREATE _IOW(BTRFS_IOCTL_MAGIC, 14, \ | ||
65 | struct btrfs_ioctl_vol_args) | ||
66 | |||
67 | #endif | ||
diff --git a/fs/btrfs/locking.c b/fs/btrfs/locking.c new file mode 100644 index 000000000000..39bae7761db6 --- /dev/null +++ b/fs/btrfs/locking.c | |||
@@ -0,0 +1,88 @@ | |||
1 | /* | ||
2 | * Copyright (C) 2008 Oracle. All rights reserved. | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or | ||
5 | * modify it under the terms of the GNU General Public | ||
6 | * License v2 as published by the Free Software Foundation. | ||
7 | * | ||
8 | * This program is distributed in the hope that it will be useful, | ||
9 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | ||
11 | * General Public License for more details. | ||
12 | * | ||
13 | * You should have received a copy of the GNU General Public | ||
14 | * License along with this program; if not, write to the | ||
15 | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | ||
16 | * Boston, MA 021110-1307, USA. | ||
17 | */ | ||
18 | #include <linux/sched.h> | ||
19 | #include <linux/gfp.h> | ||
20 | #include <linux/pagemap.h> | ||
21 | #include <linux/spinlock.h> | ||
22 | #include <linux/page-flags.h> | ||
23 | #include <asm/bug.h> | ||
24 | #include "ctree.h" | ||
25 | #include "extent_io.h" | ||
26 | #include "locking.h" | ||
27 | |||
28 | /* | ||
29 | * locks the per buffer mutex in an extent buffer. This uses adaptive locks | ||
30 | * and the spin is not tuned very extensively. The spinning does make a big | ||
31 | * difference in almost every workload, but spinning for the right amount of | ||
32 | * time needs some help. | ||
33 | * | ||
34 | * In general, we want to spin as long as the lock holder is doing btree | ||
35 | * searches, and we should give up if they are in more expensive code. | ||
36 | */ | ||
37 | |||
38 | int btrfs_tree_lock(struct extent_buffer *eb) | ||
39 | { | ||
40 | int i; | ||
41 | |||
42 | if (mutex_trylock(&eb->mutex)) | ||
43 | return 0; | ||
44 | for (i = 0; i < 512; i++) { | ||
45 | cpu_relax(); | ||
46 | if (mutex_trylock(&eb->mutex)) | ||
47 | return 0; | ||
48 | } | ||
49 | cpu_relax(); | ||
50 | mutex_lock_nested(&eb->mutex, BTRFS_MAX_LEVEL - btrfs_header_level(eb)); | ||
51 | return 0; | ||
52 | } | ||
53 | |||
54 | int btrfs_try_tree_lock(struct extent_buffer *eb) | ||
55 | { | ||
56 | return mutex_trylock(&eb->mutex); | ||
57 | } | ||
58 | |||
59 | int btrfs_tree_unlock(struct extent_buffer *eb) | ||
60 | { | ||
61 | mutex_unlock(&eb->mutex); | ||
62 | return 0; | ||
63 | } | ||
64 | |||
65 | int btrfs_tree_locked(struct extent_buffer *eb) | ||
66 | { | ||
67 | return mutex_is_locked(&eb->mutex); | ||
68 | } | ||
69 | |||
70 | /* | ||
71 | * btrfs_search_slot uses this to decide if it should drop its locks | ||
72 | * before doing something expensive like allocating free blocks for cow. | ||
73 | */ | ||
74 | int btrfs_path_lock_waiting(struct btrfs_path *path, int level) | ||
75 | { | ||
76 | int i; | ||
77 | struct extent_buffer *eb; | ||
78 | for (i = level; i <= level + 1 && i < BTRFS_MAX_LEVEL; i++) { | ||
79 | eb = path->nodes[i]; | ||
80 | if (!eb) | ||
81 | break; | ||
82 | smp_mb(); | ||
83 | if (!list_empty(&eb->mutex.wait_list)) | ||
84 | return 1; | ||
85 | } | ||
86 | return 0; | ||
87 | } | ||
88 | |||
diff --git a/fs/btrfs/locking.h b/fs/btrfs/locking.h new file mode 100644 index 000000000000..bc1faef12519 --- /dev/null +++ b/fs/btrfs/locking.h | |||
@@ -0,0 +1,27 @@ | |||
1 | /* | ||
2 | * Copyright (C) 2008 Oracle. All rights reserved. | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or | ||
5 | * modify it under the terms of the GNU General Public | ||
6 | * License v2 as published by the Free Software Foundation. | ||
7 | * | ||
8 | * This program is distributed in the hope that it will be useful, | ||
9 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | ||
11 | * General Public License for more details. | ||
12 | * | ||
13 | * You should have received a copy of the GNU General Public | ||
14 | * License along with this program; if not, write to the | ||
15 | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | ||
16 | * Boston, MA 021110-1307, USA. | ||
17 | */ | ||
18 | |||
19 | #ifndef __BTRFS_LOCKING_ | ||
20 | #define __BTRFS_LOCKING_ | ||
21 | |||
22 | int btrfs_tree_lock(struct extent_buffer *eb); | ||
23 | int btrfs_tree_unlock(struct extent_buffer *eb); | ||
24 | int btrfs_tree_locked(struct extent_buffer *eb); | ||
25 | int btrfs_try_tree_lock(struct extent_buffer *eb); | ||
26 | int btrfs_path_lock_waiting(struct btrfs_path *path, int level); | ||
27 | #endif | ||
diff --git a/fs/btrfs/ordered-data.c b/fs/btrfs/ordered-data.c new file mode 100644 index 000000000000..a20940170274 --- /dev/null +++ b/fs/btrfs/ordered-data.c | |||
@@ -0,0 +1,730 @@ | |||
1 | /* | ||
2 | * Copyright (C) 2007 Oracle. All rights reserved. | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or | ||
5 | * modify it under the terms of the GNU General Public | ||
6 | * License v2 as published by the Free Software Foundation. | ||
7 | * | ||
8 | * This program is distributed in the hope that it will be useful, | ||
9 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | ||
11 | * General Public License for more details. | ||
12 | * | ||
13 | * You should have received a copy of the GNU General Public | ||
14 | * License along with this program; if not, write to the | ||
15 | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | ||
16 | * Boston, MA 021110-1307, USA. | ||
17 | */ | ||
18 | |||
19 | #include <linux/gfp.h> | ||
20 | #include <linux/slab.h> | ||
21 | #include <linux/blkdev.h> | ||
22 | #include <linux/writeback.h> | ||
23 | #include <linux/pagevec.h> | ||
24 | #include "ctree.h" | ||
25 | #include "transaction.h" | ||
26 | #include "btrfs_inode.h" | ||
27 | #include "extent_io.h" | ||
28 | |||
29 | static u64 entry_end(struct btrfs_ordered_extent *entry) | ||
30 | { | ||
31 | if (entry->file_offset + entry->len < entry->file_offset) | ||
32 | return (u64)-1; | ||
33 | return entry->file_offset + entry->len; | ||
34 | } | ||
35 | |||
36 | /* returns NULL if the insertion worked, or it returns the node it did find | ||
37 | * in the tree | ||
38 | */ | ||
39 | static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset, | ||
40 | struct rb_node *node) | ||
41 | { | ||
42 | struct rb_node **p = &root->rb_node; | ||
43 | struct rb_node *parent = NULL; | ||
44 | struct btrfs_ordered_extent *entry; | ||
45 | |||
46 | while (*p) { | ||
47 | parent = *p; | ||
48 | entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node); | ||
49 | |||
50 | if (file_offset < entry->file_offset) | ||
51 | p = &(*p)->rb_left; | ||
52 | else if (file_offset >= entry_end(entry)) | ||
53 | p = &(*p)->rb_right; | ||
54 | else | ||
55 | return parent; | ||
56 | } | ||
57 | |||
58 | rb_link_node(node, parent, p); | ||
59 | rb_insert_color(node, root); | ||
60 | return NULL; | ||
61 | } | ||
62 | |||
63 | /* | ||
64 | * look for a given offset in the tree, and if it can't be found return the | ||
65 | * first lesser offset | ||
66 | */ | ||
67 | static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset, | ||
68 | struct rb_node **prev_ret) | ||
69 | { | ||
70 | struct rb_node *n = root->rb_node; | ||
71 | struct rb_node *prev = NULL; | ||
72 | struct rb_node *test; | ||
73 | struct btrfs_ordered_extent *entry; | ||
74 | struct btrfs_ordered_extent *prev_entry = NULL; | ||
75 | |||
76 | while (n) { | ||
77 | entry = rb_entry(n, struct btrfs_ordered_extent, rb_node); | ||
78 | prev = n; | ||
79 | prev_entry = entry; | ||
80 | |||
81 | if (file_offset < entry->file_offset) | ||
82 | n = n->rb_left; | ||
83 | else if (file_offset >= entry_end(entry)) | ||
84 | n = n->rb_right; | ||
85 | else | ||
86 | return n; | ||
87 | } | ||
88 | if (!prev_ret) | ||
89 | return NULL; | ||
90 | |||
91 | while (prev && file_offset >= entry_end(prev_entry)) { | ||
92 | test = rb_next(prev); | ||
93 | if (!test) | ||
94 | break; | ||
95 | prev_entry = rb_entry(test, struct btrfs_ordered_extent, | ||
96 | rb_node); | ||
97 | if (file_offset < entry_end(prev_entry)) | ||
98 | break; | ||
99 | |||
100 | prev = test; | ||
101 | } | ||
102 | if (prev) | ||
103 | prev_entry = rb_entry(prev, struct btrfs_ordered_extent, | ||
104 | rb_node); | ||
105 | while (prev && file_offset < entry_end(prev_entry)) { | ||
106 | test = rb_prev(prev); | ||
107 | if (!test) | ||
108 | break; | ||
109 | prev_entry = rb_entry(test, struct btrfs_ordered_extent, | ||
110 | rb_node); | ||
111 | prev = test; | ||
112 | } | ||
113 | *prev_ret = prev; | ||
114 | return NULL; | ||
115 | } | ||
116 | |||
117 | /* | ||
118 | * helper to check if a given offset is inside a given entry | ||
119 | */ | ||
120 | static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset) | ||
121 | { | ||
122 | if (file_offset < entry->file_offset || | ||
123 | entry->file_offset + entry->len <= file_offset) | ||
124 | return 0; | ||
125 | return 1; | ||
126 | } | ||
127 | |||
128 | /* | ||
129 | * look find the first ordered struct that has this offset, otherwise | ||
130 | * the first one less than this offset | ||
131 | */ | ||
132 | static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree, | ||
133 | u64 file_offset) | ||
134 | { | ||
135 | struct rb_root *root = &tree->tree; | ||
136 | struct rb_node *prev; | ||
137 | struct rb_node *ret; | ||
138 | struct btrfs_ordered_extent *entry; | ||
139 | |||
140 | if (tree->last) { | ||
141 | entry = rb_entry(tree->last, struct btrfs_ordered_extent, | ||
142 | rb_node); | ||
143 | if (offset_in_entry(entry, file_offset)) | ||
144 | return tree->last; | ||
145 | } | ||
146 | ret = __tree_search(root, file_offset, &prev); | ||
147 | if (!ret) | ||
148 | ret = prev; | ||
149 | if (ret) | ||
150 | tree->last = ret; | ||
151 | return ret; | ||
152 | } | ||
153 | |||
154 | /* allocate and add a new ordered_extent into the per-inode tree. | ||
155 | * file_offset is the logical offset in the file | ||
156 | * | ||
157 | * start is the disk block number of an extent already reserved in the | ||
158 | * extent allocation tree | ||
159 | * | ||
160 | * len is the length of the extent | ||
161 | * | ||
162 | * This also sets the EXTENT_ORDERED bit on the range in the inode. | ||
163 | * | ||
164 | * The tree is given a single reference on the ordered extent that was | ||
165 | * inserted. | ||
166 | */ | ||
167 | int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset, | ||
168 | u64 start, u64 len, u64 disk_len, int type) | ||
169 | { | ||
170 | struct btrfs_ordered_inode_tree *tree; | ||
171 | struct rb_node *node; | ||
172 | struct btrfs_ordered_extent *entry; | ||
173 | |||
174 | tree = &BTRFS_I(inode)->ordered_tree; | ||
175 | entry = kzalloc(sizeof(*entry), GFP_NOFS); | ||
176 | if (!entry) | ||
177 | return -ENOMEM; | ||
178 | |||
179 | mutex_lock(&tree->mutex); | ||
180 | entry->file_offset = file_offset; | ||
181 | entry->start = start; | ||
182 | entry->len = len; | ||
183 | entry->disk_len = disk_len; | ||
184 | entry->inode = inode; | ||
185 | if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE) | ||
186 | set_bit(type, &entry->flags); | ||
187 | |||
188 | /* one ref for the tree */ | ||
189 | atomic_set(&entry->refs, 1); | ||
190 | init_waitqueue_head(&entry->wait); | ||
191 | INIT_LIST_HEAD(&entry->list); | ||
192 | INIT_LIST_HEAD(&entry->root_extent_list); | ||
193 | |||
194 | node = tree_insert(&tree->tree, file_offset, | ||
195 | &entry->rb_node); | ||
196 | BUG_ON(node); | ||
197 | |||
198 | set_extent_ordered(&BTRFS_I(inode)->io_tree, file_offset, | ||
199 | entry_end(entry) - 1, GFP_NOFS); | ||
200 | |||
201 | spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock); | ||
202 | list_add_tail(&entry->root_extent_list, | ||
203 | &BTRFS_I(inode)->root->fs_info->ordered_extents); | ||
204 | spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock); | ||
205 | |||
206 | mutex_unlock(&tree->mutex); | ||
207 | BUG_ON(node); | ||
208 | return 0; | ||
209 | } | ||
210 | |||
211 | /* | ||
212 | * Add a struct btrfs_ordered_sum into the list of checksums to be inserted | ||
213 | * when an ordered extent is finished. If the list covers more than one | ||
214 | * ordered extent, it is split across multiples. | ||
215 | */ | ||
216 | int btrfs_add_ordered_sum(struct inode *inode, | ||
217 | struct btrfs_ordered_extent *entry, | ||
218 | struct btrfs_ordered_sum *sum) | ||
219 | { | ||
220 | struct btrfs_ordered_inode_tree *tree; | ||
221 | |||
222 | tree = &BTRFS_I(inode)->ordered_tree; | ||
223 | mutex_lock(&tree->mutex); | ||
224 | list_add_tail(&sum->list, &entry->list); | ||
225 | mutex_unlock(&tree->mutex); | ||
226 | return 0; | ||
227 | } | ||
228 | |||
229 | /* | ||
230 | * this is used to account for finished IO across a given range | ||
231 | * of the file. The IO should not span ordered extents. If | ||
232 | * a given ordered_extent is completely done, 1 is returned, otherwise | ||
233 | * 0. | ||
234 | * | ||
235 | * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used | ||
236 | * to make sure this function only returns 1 once for a given ordered extent. | ||
237 | */ | ||
238 | int btrfs_dec_test_ordered_pending(struct inode *inode, | ||
239 | u64 file_offset, u64 io_size) | ||
240 | { | ||
241 | struct btrfs_ordered_inode_tree *tree; | ||
242 | struct rb_node *node; | ||
243 | struct btrfs_ordered_extent *entry; | ||
244 | struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; | ||
245 | int ret; | ||
246 | |||
247 | tree = &BTRFS_I(inode)->ordered_tree; | ||
248 | mutex_lock(&tree->mutex); | ||
249 | clear_extent_ordered(io_tree, file_offset, file_offset + io_size - 1, | ||
250 | GFP_NOFS); | ||
251 | node = tree_search(tree, file_offset); | ||
252 | if (!node) { | ||
253 | ret = 1; | ||
254 | goto out; | ||
255 | } | ||
256 | |||
257 | entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); | ||
258 | if (!offset_in_entry(entry, file_offset)) { | ||
259 | ret = 1; | ||
260 | goto out; | ||
261 | } | ||
262 | |||
263 | ret = test_range_bit(io_tree, entry->file_offset, | ||
264 | entry->file_offset + entry->len - 1, | ||
265 | EXTENT_ORDERED, 0); | ||
266 | if (ret == 0) | ||
267 | ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); | ||
268 | out: | ||
269 | mutex_unlock(&tree->mutex); | ||
270 | return ret == 0; | ||
271 | } | ||
272 | |||
273 | /* | ||
274 | * used to drop a reference on an ordered extent. This will free | ||
275 | * the extent if the last reference is dropped | ||
276 | */ | ||
277 | int btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry) | ||
278 | { | ||
279 | struct list_head *cur; | ||
280 | struct btrfs_ordered_sum *sum; | ||
281 | |||
282 | if (atomic_dec_and_test(&entry->refs)) { | ||
283 | while (!list_empty(&entry->list)) { | ||
284 | cur = entry->list.next; | ||
285 | sum = list_entry(cur, struct btrfs_ordered_sum, list); | ||
286 | list_del(&sum->list); | ||
287 | kfree(sum); | ||
288 | } | ||
289 | kfree(entry); | ||
290 | } | ||
291 | return 0; | ||
292 | } | ||
293 | |||
294 | /* | ||
295 | * remove an ordered extent from the tree. No references are dropped | ||
296 | * but, anyone waiting on this extent is woken up. | ||
297 | */ | ||
298 | int btrfs_remove_ordered_extent(struct inode *inode, | ||
299 | struct btrfs_ordered_extent *entry) | ||
300 | { | ||
301 | struct btrfs_ordered_inode_tree *tree; | ||
302 | struct rb_node *node; | ||
303 | |||
304 | tree = &BTRFS_I(inode)->ordered_tree; | ||
305 | mutex_lock(&tree->mutex); | ||
306 | node = &entry->rb_node; | ||
307 | rb_erase(node, &tree->tree); | ||
308 | tree->last = NULL; | ||
309 | set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags); | ||
310 | |||
311 | spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock); | ||
312 | list_del_init(&entry->root_extent_list); | ||
313 | spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock); | ||
314 | |||
315 | mutex_unlock(&tree->mutex); | ||
316 | wake_up(&entry->wait); | ||
317 | return 0; | ||
318 | } | ||
319 | |||
320 | /* | ||
321 | * wait for all the ordered extents in a root. This is done when balancing | ||
322 | * space between drives. | ||
323 | */ | ||
324 | int btrfs_wait_ordered_extents(struct btrfs_root *root, int nocow_only) | ||
325 | { | ||
326 | struct list_head splice; | ||
327 | struct list_head *cur; | ||
328 | struct btrfs_ordered_extent *ordered; | ||
329 | struct inode *inode; | ||
330 | |||
331 | INIT_LIST_HEAD(&splice); | ||
332 | |||
333 | spin_lock(&root->fs_info->ordered_extent_lock); | ||
334 | list_splice_init(&root->fs_info->ordered_extents, &splice); | ||
335 | while (!list_empty(&splice)) { | ||
336 | cur = splice.next; | ||
337 | ordered = list_entry(cur, struct btrfs_ordered_extent, | ||
338 | root_extent_list); | ||
339 | if (nocow_only && | ||
340 | !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) && | ||
341 | !test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) { | ||
342 | list_move(&ordered->root_extent_list, | ||
343 | &root->fs_info->ordered_extents); | ||
344 | cond_resched_lock(&root->fs_info->ordered_extent_lock); | ||
345 | continue; | ||
346 | } | ||
347 | |||
348 | list_del_init(&ordered->root_extent_list); | ||
349 | atomic_inc(&ordered->refs); | ||
350 | |||
351 | /* | ||
352 | * the inode may be getting freed (in sys_unlink path). | ||
353 | */ | ||
354 | inode = igrab(ordered->inode); | ||
355 | |||
356 | spin_unlock(&root->fs_info->ordered_extent_lock); | ||
357 | |||
358 | if (inode) { | ||
359 | btrfs_start_ordered_extent(inode, ordered, 1); | ||
360 | btrfs_put_ordered_extent(ordered); | ||
361 | iput(inode); | ||
362 | } else { | ||
363 | btrfs_put_ordered_extent(ordered); | ||
364 | } | ||
365 | |||
366 | spin_lock(&root->fs_info->ordered_extent_lock); | ||
367 | } | ||
368 | spin_unlock(&root->fs_info->ordered_extent_lock); | ||
369 | return 0; | ||
370 | } | ||
371 | |||
372 | /* | ||
373 | * Used to start IO or wait for a given ordered extent to finish. | ||
374 | * | ||
375 | * If wait is one, this effectively waits on page writeback for all the pages | ||
376 | * in the extent, and it waits on the io completion code to insert | ||
377 | * metadata into the btree corresponding to the extent | ||
378 | */ | ||
379 | void btrfs_start_ordered_extent(struct inode *inode, | ||
380 | struct btrfs_ordered_extent *entry, | ||
381 | int wait) | ||
382 | { | ||
383 | u64 start = entry->file_offset; | ||
384 | u64 end = start + entry->len - 1; | ||
385 | |||
386 | /* | ||
387 | * pages in the range can be dirty, clean or writeback. We | ||
388 | * start IO on any dirty ones so the wait doesn't stall waiting | ||
389 | * for pdflush to find them | ||
390 | */ | ||
391 | btrfs_fdatawrite_range(inode->i_mapping, start, end, WB_SYNC_ALL); | ||
392 | if (wait) { | ||
393 | wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, | ||
394 | &entry->flags)); | ||
395 | } | ||
396 | } | ||
397 | |||
398 | /* | ||
399 | * Used to wait on ordered extents across a large range of bytes. | ||
400 | */ | ||
401 | int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len) | ||
402 | { | ||
403 | u64 end; | ||
404 | u64 orig_end; | ||
405 | u64 wait_end; | ||
406 | struct btrfs_ordered_extent *ordered; | ||
407 | |||
408 | if (start + len < start) { | ||
409 | orig_end = INT_LIMIT(loff_t); | ||
410 | } else { | ||
411 | orig_end = start + len - 1; | ||
412 | if (orig_end > INT_LIMIT(loff_t)) | ||
413 | orig_end = INT_LIMIT(loff_t); | ||
414 | } | ||
415 | wait_end = orig_end; | ||
416 | again: | ||
417 | /* start IO across the range first to instantiate any delalloc | ||
418 | * extents | ||
419 | */ | ||
420 | btrfs_fdatawrite_range(inode->i_mapping, start, orig_end, WB_SYNC_NONE); | ||
421 | |||
422 | /* The compression code will leave pages locked but return from | ||
423 | * writepage without setting the page writeback. Starting again | ||
424 | * with WB_SYNC_ALL will end up waiting for the IO to actually start. | ||
425 | */ | ||
426 | btrfs_fdatawrite_range(inode->i_mapping, start, orig_end, WB_SYNC_ALL); | ||
427 | |||
428 | btrfs_wait_on_page_writeback_range(inode->i_mapping, | ||
429 | start >> PAGE_CACHE_SHIFT, | ||
430 | orig_end >> PAGE_CACHE_SHIFT); | ||
431 | |||
432 | end = orig_end; | ||
433 | while (1) { | ||
434 | ordered = btrfs_lookup_first_ordered_extent(inode, end); | ||
435 | if (!ordered) | ||
436 | break; | ||
437 | if (ordered->file_offset > orig_end) { | ||
438 | btrfs_put_ordered_extent(ordered); | ||
439 | break; | ||
440 | } | ||
441 | if (ordered->file_offset + ordered->len < start) { | ||
442 | btrfs_put_ordered_extent(ordered); | ||
443 | break; | ||
444 | } | ||
445 | btrfs_start_ordered_extent(inode, ordered, 1); | ||
446 | end = ordered->file_offset; | ||
447 | btrfs_put_ordered_extent(ordered); | ||
448 | if (end == 0 || end == start) | ||
449 | break; | ||
450 | end--; | ||
451 | } | ||
452 | if (test_range_bit(&BTRFS_I(inode)->io_tree, start, orig_end, | ||
453 | EXTENT_ORDERED | EXTENT_DELALLOC, 0)) { | ||
454 | schedule_timeout(1); | ||
455 | goto again; | ||
456 | } | ||
457 | return 0; | ||
458 | } | ||
459 | |||
460 | /* | ||
461 | * find an ordered extent corresponding to file_offset. return NULL if | ||
462 | * nothing is found, otherwise take a reference on the extent and return it | ||
463 | */ | ||
464 | struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode, | ||
465 | u64 file_offset) | ||
466 | { | ||
467 | struct btrfs_ordered_inode_tree *tree; | ||
468 | struct rb_node *node; | ||
469 | struct btrfs_ordered_extent *entry = NULL; | ||
470 | |||
471 | tree = &BTRFS_I(inode)->ordered_tree; | ||
472 | mutex_lock(&tree->mutex); | ||
473 | node = tree_search(tree, file_offset); | ||
474 | if (!node) | ||
475 | goto out; | ||
476 | |||
477 | entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); | ||
478 | if (!offset_in_entry(entry, file_offset)) | ||
479 | entry = NULL; | ||
480 | if (entry) | ||
481 | atomic_inc(&entry->refs); | ||
482 | out: | ||
483 | mutex_unlock(&tree->mutex); | ||
484 | return entry; | ||
485 | } | ||
486 | |||
487 | /* | ||
488 | * lookup and return any extent before 'file_offset'. NULL is returned | ||
489 | * if none is found | ||
490 | */ | ||
491 | struct btrfs_ordered_extent * | ||
492 | btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset) | ||
493 | { | ||
494 | struct btrfs_ordered_inode_tree *tree; | ||
495 | struct rb_node *node; | ||
496 | struct btrfs_ordered_extent *entry = NULL; | ||
497 | |||
498 | tree = &BTRFS_I(inode)->ordered_tree; | ||
499 | mutex_lock(&tree->mutex); | ||
500 | node = tree_search(tree, file_offset); | ||
501 | if (!node) | ||
502 | goto out; | ||
503 | |||
504 | entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); | ||
505 | atomic_inc(&entry->refs); | ||
506 | out: | ||
507 | mutex_unlock(&tree->mutex); | ||
508 | return entry; | ||
509 | } | ||
510 | |||
511 | /* | ||
512 | * After an extent is done, call this to conditionally update the on disk | ||
513 | * i_size. i_size is updated to cover any fully written part of the file. | ||
514 | */ | ||
515 | int btrfs_ordered_update_i_size(struct inode *inode, | ||
516 | struct btrfs_ordered_extent *ordered) | ||
517 | { | ||
518 | struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree; | ||
519 | struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; | ||
520 | u64 disk_i_size; | ||
521 | u64 new_i_size; | ||
522 | u64 i_size_test; | ||
523 | struct rb_node *node; | ||
524 | struct btrfs_ordered_extent *test; | ||
525 | |||
526 | mutex_lock(&tree->mutex); | ||
527 | disk_i_size = BTRFS_I(inode)->disk_i_size; | ||
528 | |||
529 | /* | ||
530 | * if the disk i_size is already at the inode->i_size, or | ||
531 | * this ordered extent is inside the disk i_size, we're done | ||
532 | */ | ||
533 | if (disk_i_size >= inode->i_size || | ||
534 | ordered->file_offset + ordered->len <= disk_i_size) { | ||
535 | goto out; | ||
536 | } | ||
537 | |||
538 | /* | ||
539 | * we can't update the disk_isize if there are delalloc bytes | ||
540 | * between disk_i_size and this ordered extent | ||
541 | */ | ||
542 | if (test_range_bit(io_tree, disk_i_size, | ||
543 | ordered->file_offset + ordered->len - 1, | ||
544 | EXTENT_DELALLOC, 0)) { | ||
545 | goto out; | ||
546 | } | ||
547 | /* | ||
548 | * walk backward from this ordered extent to disk_i_size. | ||
549 | * if we find an ordered extent then we can't update disk i_size | ||
550 | * yet | ||
551 | */ | ||
552 | node = &ordered->rb_node; | ||
553 | while (1) { | ||
554 | node = rb_prev(node); | ||
555 | if (!node) | ||
556 | break; | ||
557 | test = rb_entry(node, struct btrfs_ordered_extent, rb_node); | ||
558 | if (test->file_offset + test->len <= disk_i_size) | ||
559 | break; | ||
560 | if (test->file_offset >= inode->i_size) | ||
561 | break; | ||
562 | if (test->file_offset >= disk_i_size) | ||
563 | goto out; | ||
564 | } | ||
565 | new_i_size = min_t(u64, entry_end(ordered), i_size_read(inode)); | ||
566 | |||
567 | /* | ||
568 | * at this point, we know we can safely update i_size to at least | ||
569 | * the offset from this ordered extent. But, we need to | ||
570 | * walk forward and see if ios from higher up in the file have | ||
571 | * finished. | ||
572 | */ | ||
573 | node = rb_next(&ordered->rb_node); | ||
574 | i_size_test = 0; | ||
575 | if (node) { | ||
576 | /* | ||
577 | * do we have an area where IO might have finished | ||
578 | * between our ordered extent and the next one. | ||
579 | */ | ||
580 | test = rb_entry(node, struct btrfs_ordered_extent, rb_node); | ||
581 | if (test->file_offset > entry_end(ordered)) | ||
582 | i_size_test = test->file_offset; | ||
583 | } else { | ||
584 | i_size_test = i_size_read(inode); | ||
585 | } | ||
586 | |||
587 | /* | ||
588 | * i_size_test is the end of a region after this ordered | ||
589 | * extent where there are no ordered extents. As long as there | ||
590 | * are no delalloc bytes in this area, it is safe to update | ||
591 | * disk_i_size to the end of the region. | ||
592 | */ | ||
593 | if (i_size_test > entry_end(ordered) && | ||
594 | !test_range_bit(io_tree, entry_end(ordered), i_size_test - 1, | ||
595 | EXTENT_DELALLOC, 0)) { | ||
596 | new_i_size = min_t(u64, i_size_test, i_size_read(inode)); | ||
597 | } | ||
598 | BTRFS_I(inode)->disk_i_size = new_i_size; | ||
599 | out: | ||
600 | mutex_unlock(&tree->mutex); | ||
601 | return 0; | ||
602 | } | ||
603 | |||
604 | /* | ||
605 | * search the ordered extents for one corresponding to 'offset' and | ||
606 | * try to find a checksum. This is used because we allow pages to | ||
607 | * be reclaimed before their checksum is actually put into the btree | ||
608 | */ | ||
609 | int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr, | ||
610 | u32 *sum) | ||
611 | { | ||
612 | struct btrfs_ordered_sum *ordered_sum; | ||
613 | struct btrfs_sector_sum *sector_sums; | ||
614 | struct btrfs_ordered_extent *ordered; | ||
615 | struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree; | ||
616 | struct list_head *cur; | ||
617 | unsigned long num_sectors; | ||
618 | unsigned long i; | ||
619 | u32 sectorsize = BTRFS_I(inode)->root->sectorsize; | ||
620 | int ret = 1; | ||
621 | |||
622 | ordered = btrfs_lookup_ordered_extent(inode, offset); | ||
623 | if (!ordered) | ||
624 | return 1; | ||
625 | |||
626 | mutex_lock(&tree->mutex); | ||
627 | list_for_each_prev(cur, &ordered->list) { | ||
628 | ordered_sum = list_entry(cur, struct btrfs_ordered_sum, list); | ||
629 | if (disk_bytenr >= ordered_sum->bytenr) { | ||
630 | num_sectors = ordered_sum->len / sectorsize; | ||
631 | sector_sums = ordered_sum->sums; | ||
632 | for (i = 0; i < num_sectors; i++) { | ||
633 | if (sector_sums[i].bytenr == disk_bytenr) { | ||
634 | *sum = sector_sums[i].sum; | ||
635 | ret = 0; | ||
636 | goto out; | ||
637 | } | ||
638 | } | ||
639 | } | ||
640 | } | ||
641 | out: | ||
642 | mutex_unlock(&tree->mutex); | ||
643 | btrfs_put_ordered_extent(ordered); | ||
644 | return ret; | ||
645 | } | ||
646 | |||
647 | |||
648 | /** | ||
649 | * taken from mm/filemap.c because it isn't exported | ||
650 | * | ||
651 | * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range | ||
652 | * @mapping: address space structure to write | ||
653 | * @start: offset in bytes where the range starts | ||
654 | * @end: offset in bytes where the range ends (inclusive) | ||
655 | * @sync_mode: enable synchronous operation | ||
656 | * | ||
657 | * Start writeback against all of a mapping's dirty pages that lie | ||
658 | * within the byte offsets <start, end> inclusive. | ||
659 | * | ||
660 | * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as | ||
661 | * opposed to a regular memory cleansing writeback. The difference between | ||
662 | * these two operations is that if a dirty page/buffer is encountered, it must | ||
663 | * be waited upon, and not just skipped over. | ||
664 | */ | ||
665 | int btrfs_fdatawrite_range(struct address_space *mapping, loff_t start, | ||
666 | loff_t end, int sync_mode) | ||
667 | { | ||
668 | struct writeback_control wbc = { | ||
669 | .sync_mode = sync_mode, | ||
670 | .nr_to_write = mapping->nrpages * 2, | ||
671 | .range_start = start, | ||
672 | .range_end = end, | ||
673 | .for_writepages = 1, | ||
674 | }; | ||
675 | return btrfs_writepages(mapping, &wbc); | ||
676 | } | ||
677 | |||
678 | /** | ||
679 | * taken from mm/filemap.c because it isn't exported | ||
680 | * | ||
681 | * wait_on_page_writeback_range - wait for writeback to complete | ||
682 | * @mapping: target address_space | ||
683 | * @start: beginning page index | ||
684 | * @end: ending page index | ||
685 | * | ||
686 | * Wait for writeback to complete against pages indexed by start->end | ||
687 | * inclusive | ||
688 | */ | ||
689 | int btrfs_wait_on_page_writeback_range(struct address_space *mapping, | ||
690 | pgoff_t start, pgoff_t end) | ||
691 | { | ||
692 | struct pagevec pvec; | ||
693 | int nr_pages; | ||
694 | int ret = 0; | ||
695 | pgoff_t index; | ||
696 | |||
697 | if (end < start) | ||
698 | return 0; | ||
699 | |||
700 | pagevec_init(&pvec, 0); | ||
701 | index = start; | ||
702 | while ((index <= end) && | ||
703 | (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, | ||
704 | PAGECACHE_TAG_WRITEBACK, | ||
705 | min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) { | ||
706 | unsigned i; | ||
707 | |||
708 | for (i = 0; i < nr_pages; i++) { | ||
709 | struct page *page = pvec.pages[i]; | ||
710 | |||
711 | /* until radix tree lookup accepts end_index */ | ||
712 | if (page->index > end) | ||
713 | continue; | ||
714 | |||
715 | wait_on_page_writeback(page); | ||
716 | if (PageError(page)) | ||
717 | ret = -EIO; | ||
718 | } | ||
719 | pagevec_release(&pvec); | ||
720 | cond_resched(); | ||
721 | } | ||
722 | |||
723 | /* Check for outstanding write errors */ | ||
724 | if (test_and_clear_bit(AS_ENOSPC, &mapping->flags)) | ||
725 | ret = -ENOSPC; | ||
726 | if (test_and_clear_bit(AS_EIO, &mapping->flags)) | ||
727 | ret = -EIO; | ||
728 | |||
729 | return ret; | ||
730 | } | ||
diff --git a/fs/btrfs/ordered-data.h b/fs/btrfs/ordered-data.h new file mode 100644 index 000000000000..ab66d5e8d6d6 --- /dev/null +++ b/fs/btrfs/ordered-data.h | |||
@@ -0,0 +1,158 @@ | |||
1 | /* | ||
2 | * Copyright (C) 2007 Oracle. All rights reserved. | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or | ||
5 | * modify it under the terms of the GNU General Public | ||
6 | * License v2 as published by the Free Software Foundation. | ||
7 | * | ||
8 | * This program is distributed in the hope that it will be useful, | ||
9 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | ||
11 | * General Public License for more details. | ||
12 | * | ||
13 | * You should have received a copy of the GNU General Public | ||
14 | * License along with this program; if not, write to the | ||
15 | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | ||
16 | * Boston, MA 021110-1307, USA. | ||
17 | */ | ||
18 | |||
19 | #ifndef __BTRFS_ORDERED_DATA__ | ||
20 | #define __BTRFS_ORDERED_DATA__ | ||
21 | |||
22 | /* one of these per inode */ | ||
23 | struct btrfs_ordered_inode_tree { | ||
24 | struct mutex mutex; | ||
25 | struct rb_root tree; | ||
26 | struct rb_node *last; | ||
27 | }; | ||
28 | |||
29 | /* | ||
30 | * these are used to collect checksums done just before bios submission. | ||
31 | * They are attached via a list into the ordered extent, and | ||
32 | * checksum items are inserted into the tree after all the blocks in | ||
33 | * the ordered extent are on disk | ||
34 | */ | ||
35 | struct btrfs_sector_sum { | ||
36 | /* bytenr on disk */ | ||
37 | u64 bytenr; | ||
38 | u32 sum; | ||
39 | }; | ||
40 | |||
41 | struct btrfs_ordered_sum { | ||
42 | /* bytenr is the start of this extent on disk */ | ||
43 | u64 bytenr; | ||
44 | |||
45 | /* | ||
46 | * this is the length in bytes covered by the sums array below. | ||
47 | */ | ||
48 | unsigned long len; | ||
49 | struct list_head list; | ||
50 | /* last field is a variable length array of btrfs_sector_sums */ | ||
51 | struct btrfs_sector_sum sums[]; | ||
52 | }; | ||
53 | |||
54 | /* | ||
55 | * bits for the flags field: | ||
56 | * | ||
57 | * BTRFS_ORDERED_IO_DONE is set when all of the blocks are written. | ||
58 | * It is used to make sure metadata is inserted into the tree only once | ||
59 | * per extent. | ||
60 | * | ||
61 | * BTRFS_ORDERED_COMPLETE is set when the extent is removed from the | ||
62 | * rbtree, just before waking any waiters. It is used to indicate the | ||
63 | * IO is done and any metadata is inserted into the tree. | ||
64 | */ | ||
65 | #define BTRFS_ORDERED_IO_DONE 0 /* set when all the pages are written */ | ||
66 | |||
67 | #define BTRFS_ORDERED_COMPLETE 1 /* set when removed from the tree */ | ||
68 | |||
69 | #define BTRFS_ORDERED_NOCOW 2 /* set when we want to write in place */ | ||
70 | |||
71 | #define BTRFS_ORDERED_COMPRESSED 3 /* writing a compressed extent */ | ||
72 | |||
73 | #define BTRFS_ORDERED_PREALLOC 4 /* set when writing to prealloced extent */ | ||
74 | |||
75 | struct btrfs_ordered_extent { | ||
76 | /* logical offset in the file */ | ||
77 | u64 file_offset; | ||
78 | |||
79 | /* disk byte number */ | ||
80 | u64 start; | ||
81 | |||
82 | /* ram length of the extent in bytes */ | ||
83 | u64 len; | ||
84 | |||
85 | /* extent length on disk */ | ||
86 | u64 disk_len; | ||
87 | |||
88 | /* flags (described above) */ | ||
89 | unsigned long flags; | ||
90 | |||
91 | /* reference count */ | ||
92 | atomic_t refs; | ||
93 | |||
94 | /* the inode we belong to */ | ||
95 | struct inode *inode; | ||
96 | |||
97 | /* list of checksums for insertion when the extent io is done */ | ||
98 | struct list_head list; | ||
99 | |||
100 | /* used to wait for the BTRFS_ORDERED_COMPLETE bit */ | ||
101 | wait_queue_head_t wait; | ||
102 | |||
103 | /* our friendly rbtree entry */ | ||
104 | struct rb_node rb_node; | ||
105 | |||
106 | /* a per root list of all the pending ordered extents */ | ||
107 | struct list_head root_extent_list; | ||
108 | }; | ||
109 | |||
110 | |||
111 | /* | ||
112 | * calculates the total size you need to allocate for an ordered sum | ||
113 | * structure spanning 'bytes' in the file | ||
114 | */ | ||
115 | static inline int btrfs_ordered_sum_size(struct btrfs_root *root, | ||
116 | unsigned long bytes) | ||
117 | { | ||
118 | unsigned long num_sectors = (bytes + root->sectorsize - 1) / | ||
119 | root->sectorsize; | ||
120 | num_sectors++; | ||
121 | return sizeof(struct btrfs_ordered_sum) + | ||
122 | num_sectors * sizeof(struct btrfs_sector_sum); | ||
123 | } | ||
124 | |||
125 | static inline void | ||
126 | btrfs_ordered_inode_tree_init(struct btrfs_ordered_inode_tree *t) | ||
127 | { | ||
128 | mutex_init(&t->mutex); | ||
129 | t->tree.rb_node = NULL; | ||
130 | t->last = NULL; | ||
131 | } | ||
132 | |||
133 | int btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry); | ||
134 | int btrfs_remove_ordered_extent(struct inode *inode, | ||
135 | struct btrfs_ordered_extent *entry); | ||
136 | int btrfs_dec_test_ordered_pending(struct inode *inode, | ||
137 | u64 file_offset, u64 io_size); | ||
138 | int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset, | ||
139 | u64 start, u64 len, u64 disk_len, int tyep); | ||
140 | int btrfs_add_ordered_sum(struct inode *inode, | ||
141 | struct btrfs_ordered_extent *entry, | ||
142 | struct btrfs_ordered_sum *sum); | ||
143 | struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode, | ||
144 | u64 file_offset); | ||
145 | void btrfs_start_ordered_extent(struct inode *inode, | ||
146 | struct btrfs_ordered_extent *entry, int wait); | ||
147 | int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len); | ||
148 | struct btrfs_ordered_extent * | ||
149 | btrfs_lookup_first_ordered_extent(struct inode * inode, u64 file_offset); | ||
150 | int btrfs_ordered_update_i_size(struct inode *inode, | ||
151 | struct btrfs_ordered_extent *ordered); | ||
152 | int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr, u32 *sum); | ||
153 | int btrfs_wait_on_page_writeback_range(struct address_space *mapping, | ||
154 | pgoff_t start, pgoff_t end); | ||
155 | int btrfs_fdatawrite_range(struct address_space *mapping, loff_t start, | ||
156 | loff_t end, int sync_mode); | ||
157 | int btrfs_wait_ordered_extents(struct btrfs_root *root, int nocow_only); | ||
158 | #endif | ||
diff --git a/fs/btrfs/orphan.c b/fs/btrfs/orphan.c new file mode 100644 index 000000000000..3c0d52af4f80 --- /dev/null +++ b/fs/btrfs/orphan.c | |||
@@ -0,0 +1,67 @@ | |||
1 | /* | ||
2 | * Copyright (C) 2008 Red Hat. All rights reserved. | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or | ||
5 | * modify it under the terms of the GNU General Public | ||
6 | * License v2 as published by the Free Software Foundation. | ||
7 | * | ||
8 | * This program is distributed in the hope that it will be useful, | ||
9 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | ||
11 | * General Public License for more details. | ||
12 | * | ||
13 | * You should have received a copy of the GNU General Public | ||
14 | * License along with this program; if not, write to the | ||
15 | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | ||
16 | * Boston, MA 021110-1307, USA. | ||
17 | */ | ||
18 | |||
19 | #include "ctree.h" | ||
20 | #include "disk-io.h" | ||
21 | |||
22 | int btrfs_insert_orphan_item(struct btrfs_trans_handle *trans, | ||
23 | struct btrfs_root *root, u64 offset) | ||
24 | { | ||
25 | struct btrfs_path *path; | ||
26 | struct btrfs_key key; | ||
27 | int ret = 0; | ||
28 | |||
29 | key.objectid = BTRFS_ORPHAN_OBJECTID; | ||
30 | btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY); | ||
31 | key.offset = offset; | ||
32 | |||
33 | path = btrfs_alloc_path(); | ||
34 | if (!path) | ||
35 | return -ENOMEM; | ||
36 | |||
37 | ret = btrfs_insert_empty_item(trans, root, path, &key, 0); | ||
38 | |||
39 | btrfs_free_path(path); | ||
40 | return ret; | ||
41 | } | ||
42 | |||
43 | int btrfs_del_orphan_item(struct btrfs_trans_handle *trans, | ||
44 | struct btrfs_root *root, u64 offset) | ||
45 | { | ||
46 | struct btrfs_path *path; | ||
47 | struct btrfs_key key; | ||
48 | int ret = 0; | ||
49 | |||
50 | key.objectid = BTRFS_ORPHAN_OBJECTID; | ||
51 | btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY); | ||
52 | key.offset = offset; | ||
53 | |||
54 | path = btrfs_alloc_path(); | ||
55 | if (!path) | ||
56 | return -ENOMEM; | ||
57 | |||
58 | ret = btrfs_search_slot(trans, root, &key, path, -1, 1); | ||
59 | if (ret) | ||
60 | goto out; | ||
61 | |||
62 | ret = btrfs_del_item(trans, root, path); | ||
63 | |||
64 | out: | ||
65 | btrfs_free_path(path); | ||
66 | return ret; | ||
67 | } | ||
diff --git a/fs/btrfs/print-tree.c b/fs/btrfs/print-tree.c new file mode 100644 index 000000000000..5f8f218c1005 --- /dev/null +++ b/fs/btrfs/print-tree.c | |||
@@ -0,0 +1,216 @@ | |||
1 | /* | ||
2 | * Copyright (C) 2007 Oracle. All rights reserved. | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or | ||
5 | * modify it under the terms of the GNU General Public | ||
6 | * License v2 as published by the Free Software Foundation. | ||
7 | * | ||
8 | * This program is distributed in the hope that it will be useful, | ||
9 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | ||
11 | * General Public License for more details. | ||
12 | * | ||
13 | * You should have received a copy of the GNU General Public | ||
14 | * License along with this program; if not, write to the | ||
15 | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | ||
16 | * Boston, MA 021110-1307, USA. | ||
17 | */ | ||
18 | |||
19 | #include "ctree.h" | ||
20 | #include "disk-io.h" | ||
21 | #include "print-tree.h" | ||
22 | |||
23 | static void print_chunk(struct extent_buffer *eb, struct btrfs_chunk *chunk) | ||
24 | { | ||
25 | int num_stripes = btrfs_chunk_num_stripes(eb, chunk); | ||
26 | int i; | ||
27 | printk(KERN_INFO "\t\tchunk length %llu owner %llu type %llu " | ||
28 | "num_stripes %d\n", | ||
29 | (unsigned long long)btrfs_chunk_length(eb, chunk), | ||
30 | (unsigned long long)btrfs_chunk_owner(eb, chunk), | ||
31 | (unsigned long long)btrfs_chunk_type(eb, chunk), | ||
32 | num_stripes); | ||
33 | for (i = 0 ; i < num_stripes ; i++) { | ||
34 | printk(KERN_INFO "\t\t\tstripe %d devid %llu offset %llu\n", i, | ||
35 | (unsigned long long)btrfs_stripe_devid_nr(eb, chunk, i), | ||
36 | (unsigned long long)btrfs_stripe_offset_nr(eb, chunk, i)); | ||
37 | } | ||
38 | } | ||
39 | static void print_dev_item(struct extent_buffer *eb, | ||
40 | struct btrfs_dev_item *dev_item) | ||
41 | { | ||
42 | printk(KERN_INFO "\t\tdev item devid %llu " | ||
43 | "total_bytes %llu bytes used %llu\n", | ||
44 | (unsigned long long)btrfs_device_id(eb, dev_item), | ||
45 | (unsigned long long)btrfs_device_total_bytes(eb, dev_item), | ||
46 | (unsigned long long)btrfs_device_bytes_used(eb, dev_item)); | ||
47 | } | ||
48 | void btrfs_print_leaf(struct btrfs_root *root, struct extent_buffer *l) | ||
49 | { | ||
50 | int i; | ||
51 | u32 nr = btrfs_header_nritems(l); | ||
52 | struct btrfs_item *item; | ||
53 | struct btrfs_extent_item *ei; | ||
54 | struct btrfs_root_item *ri; | ||
55 | struct btrfs_dir_item *di; | ||
56 | struct btrfs_inode_item *ii; | ||
57 | struct btrfs_block_group_item *bi; | ||
58 | struct btrfs_file_extent_item *fi; | ||
59 | struct btrfs_key key; | ||
60 | struct btrfs_key found_key; | ||
61 | struct btrfs_extent_ref *ref; | ||
62 | struct btrfs_dev_extent *dev_extent; | ||
63 | u32 type; | ||
64 | |||
65 | printk(KERN_INFO "leaf %llu total ptrs %d free space %d\n", | ||
66 | (unsigned long long)btrfs_header_bytenr(l), nr, | ||
67 | btrfs_leaf_free_space(root, l)); | ||
68 | for (i = 0 ; i < nr ; i++) { | ||
69 | item = btrfs_item_nr(l, i); | ||
70 | btrfs_item_key_to_cpu(l, &key, i); | ||
71 | type = btrfs_key_type(&key); | ||
72 | printk(KERN_INFO "\titem %d key (%llu %x %llu) itemoff %d " | ||
73 | "itemsize %d\n", | ||
74 | i, | ||
75 | (unsigned long long)key.objectid, type, | ||
76 | (unsigned long long)key.offset, | ||
77 | btrfs_item_offset(l, item), btrfs_item_size(l, item)); | ||
78 | switch (type) { | ||
79 | case BTRFS_INODE_ITEM_KEY: | ||
80 | ii = btrfs_item_ptr(l, i, struct btrfs_inode_item); | ||
81 | printk(KERN_INFO "\t\tinode generation %llu size %llu " | ||
82 | "mode %o\n", | ||
83 | (unsigned long long) | ||
84 | btrfs_inode_generation(l, ii), | ||
85 | (unsigned long long)btrfs_inode_size(l, ii), | ||
86 | btrfs_inode_mode(l, ii)); | ||
87 | break; | ||
88 | case BTRFS_DIR_ITEM_KEY: | ||
89 | di = btrfs_item_ptr(l, i, struct btrfs_dir_item); | ||
90 | btrfs_dir_item_key_to_cpu(l, di, &found_key); | ||
91 | printk(KERN_INFO "\t\tdir oid %llu type %u\n", | ||
92 | (unsigned long long)found_key.objectid, | ||
93 | btrfs_dir_type(l, di)); | ||
94 | break; | ||
95 | case BTRFS_ROOT_ITEM_KEY: | ||
96 | ri = btrfs_item_ptr(l, i, struct btrfs_root_item); | ||
97 | printk(KERN_INFO "\t\troot data bytenr %llu refs %u\n", | ||
98 | (unsigned long long) | ||
99 | btrfs_disk_root_bytenr(l, ri), | ||
100 | btrfs_disk_root_refs(l, ri)); | ||
101 | break; | ||
102 | case BTRFS_EXTENT_ITEM_KEY: | ||
103 | ei = btrfs_item_ptr(l, i, struct btrfs_extent_item); | ||
104 | printk(KERN_INFO "\t\textent data refs %u\n", | ||
105 | btrfs_extent_refs(l, ei)); | ||
106 | break; | ||
107 | case BTRFS_EXTENT_REF_KEY: | ||
108 | ref = btrfs_item_ptr(l, i, struct btrfs_extent_ref); | ||
109 | printk(KERN_INFO "\t\textent back ref root %llu " | ||
110 | "gen %llu owner %llu num_refs %lu\n", | ||
111 | (unsigned long long)btrfs_ref_root(l, ref), | ||
112 | (unsigned long long)btrfs_ref_generation(l, ref), | ||
113 | (unsigned long long)btrfs_ref_objectid(l, ref), | ||
114 | (unsigned long)btrfs_ref_num_refs(l, ref)); | ||
115 | break; | ||
116 | |||
117 | case BTRFS_EXTENT_DATA_KEY: | ||
118 | fi = btrfs_item_ptr(l, i, | ||
119 | struct btrfs_file_extent_item); | ||
120 | if (btrfs_file_extent_type(l, fi) == | ||
121 | BTRFS_FILE_EXTENT_INLINE) { | ||
122 | printk(KERN_INFO "\t\tinline extent data " | ||
123 | "size %u\n", | ||
124 | btrfs_file_extent_inline_len(l, fi)); | ||
125 | break; | ||
126 | } | ||
127 | printk(KERN_INFO "\t\textent data disk bytenr %llu " | ||
128 | "nr %llu\n", | ||
129 | (unsigned long long) | ||
130 | btrfs_file_extent_disk_bytenr(l, fi), | ||
131 | (unsigned long long) | ||
132 | btrfs_file_extent_disk_num_bytes(l, fi)); | ||
133 | printk(KERN_INFO "\t\textent data offset %llu " | ||
134 | "nr %llu ram %llu\n", | ||
135 | (unsigned long long) | ||
136 | btrfs_file_extent_offset(l, fi), | ||
137 | (unsigned long long) | ||
138 | btrfs_file_extent_num_bytes(l, fi), | ||
139 | (unsigned long long) | ||
140 | btrfs_file_extent_ram_bytes(l, fi)); | ||
141 | break; | ||
142 | case BTRFS_BLOCK_GROUP_ITEM_KEY: | ||
143 | bi = btrfs_item_ptr(l, i, | ||
144 | struct btrfs_block_group_item); | ||
145 | printk(KERN_INFO "\t\tblock group used %llu\n", | ||
146 | (unsigned long long) | ||
147 | btrfs_disk_block_group_used(l, bi)); | ||
148 | break; | ||
149 | case BTRFS_CHUNK_ITEM_KEY: | ||
150 | print_chunk(l, btrfs_item_ptr(l, i, | ||
151 | struct btrfs_chunk)); | ||
152 | break; | ||
153 | case BTRFS_DEV_ITEM_KEY: | ||
154 | print_dev_item(l, btrfs_item_ptr(l, i, | ||
155 | struct btrfs_dev_item)); | ||
156 | break; | ||
157 | case BTRFS_DEV_EXTENT_KEY: | ||
158 | dev_extent = btrfs_item_ptr(l, i, | ||
159 | struct btrfs_dev_extent); | ||
160 | printk(KERN_INFO "\t\tdev extent chunk_tree %llu\n" | ||
161 | "\t\tchunk objectid %llu chunk offset %llu " | ||
162 | "length %llu\n", | ||
163 | (unsigned long long) | ||
164 | btrfs_dev_extent_chunk_tree(l, dev_extent), | ||
165 | (unsigned long long) | ||
166 | btrfs_dev_extent_chunk_objectid(l, dev_extent), | ||
167 | (unsigned long long) | ||
168 | btrfs_dev_extent_chunk_offset(l, dev_extent), | ||
169 | (unsigned long long) | ||
170 | btrfs_dev_extent_length(l, dev_extent)); | ||
171 | }; | ||
172 | } | ||
173 | } | ||
174 | |||
175 | void btrfs_print_tree(struct btrfs_root *root, struct extent_buffer *c) | ||
176 | { | ||
177 | int i; u32 nr; | ||
178 | struct btrfs_key key; | ||
179 | int level; | ||
180 | |||
181 | if (!c) | ||
182 | return; | ||
183 | nr = btrfs_header_nritems(c); | ||
184 | level = btrfs_header_level(c); | ||
185 | if (level == 0) { | ||
186 | btrfs_print_leaf(root, c); | ||
187 | return; | ||
188 | } | ||
189 | printk(KERN_INFO "node %llu level %d total ptrs %d free spc %u\n", | ||
190 | (unsigned long long)btrfs_header_bytenr(c), | ||
191 | btrfs_header_level(c), nr, | ||
192 | (u32)BTRFS_NODEPTRS_PER_BLOCK(root) - nr); | ||
193 | for (i = 0; i < nr; i++) { | ||
194 | btrfs_node_key_to_cpu(c, &key, i); | ||
195 | printk(KERN_INFO "\tkey %d (%llu %u %llu) block %llu\n", | ||
196 | i, | ||
197 | (unsigned long long)key.objectid, | ||
198 | key.type, | ||
199 | (unsigned long long)key.offset, | ||
200 | (unsigned long long)btrfs_node_blockptr(c, i)); | ||
201 | } | ||
202 | for (i = 0; i < nr; i++) { | ||
203 | struct extent_buffer *next = read_tree_block(root, | ||
204 | btrfs_node_blockptr(c, i), | ||
205 | btrfs_level_size(root, level - 1), | ||
206 | btrfs_node_ptr_generation(c, i)); | ||
207 | if (btrfs_is_leaf(next) && | ||
208 | btrfs_header_level(c) != 1) | ||
209 | BUG(); | ||
210 | if (btrfs_header_level(next) != | ||
211 | btrfs_header_level(c) - 1) | ||
212 | BUG(); | ||
213 | btrfs_print_tree(root, next); | ||
214 | free_extent_buffer(next); | ||
215 | } | ||
216 | } | ||
diff --git a/fs/btrfs/print-tree.h b/fs/btrfs/print-tree.h new file mode 100644 index 000000000000..da75efe534d5 --- /dev/null +++ b/fs/btrfs/print-tree.h | |||
@@ -0,0 +1,23 @@ | |||
1 | /* | ||
2 | * Copyright (C) 2007 Oracle. All rights reserved. | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or | ||
5 | * modify it under the terms of the GNU General Public | ||
6 | * License v2 as published by the Free Software Foundation. | ||
7 | * | ||
8 | * This program is distributed in the hope that it will be useful, | ||
9 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | ||
11 | * General Public License for more details. | ||
12 | * | ||
13 | * You should have received a copy of the GNU General Public | ||
14 | * License along with this program; if not, write to the | ||
15 | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | ||
16 | * Boston, MA 021110-1307, USA. | ||
17 | */ | ||
18 | |||
19 | #ifndef __PRINT_TREE_ | ||
20 | #define __PRINT_TREE_ | ||
21 | void btrfs_print_leaf(struct btrfs_root *root, struct extent_buffer *l); | ||
22 | void btrfs_print_tree(struct btrfs_root *root, struct extent_buffer *t); | ||
23 | #endif | ||
diff --git a/fs/btrfs/ref-cache.c b/fs/btrfs/ref-cache.c new file mode 100644 index 000000000000..6f0acc4c9eab --- /dev/null +++ b/fs/btrfs/ref-cache.c | |||
@@ -0,0 +1,230 @@ | |||
1 | /* | ||
2 | * Copyright (C) 2008 Oracle. All rights reserved. | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or | ||
5 | * modify it under the terms of the GNU General Public | ||
6 | * License v2 as published by the Free Software Foundation. | ||
7 | * | ||
8 | * This program is distributed in the hope that it will be useful, | ||
9 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | ||
11 | * General Public License for more details. | ||
12 | * | ||
13 | * You should have received a copy of the GNU General Public | ||
14 | * License along with this program; if not, write to the | ||
15 | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | ||
16 | * Boston, MA 021110-1307, USA. | ||
17 | */ | ||
18 | |||
19 | #include <linux/sched.h> | ||
20 | #include "ctree.h" | ||
21 | #include "ref-cache.h" | ||
22 | #include "transaction.h" | ||
23 | |||
24 | /* | ||
25 | * leaf refs are used to cache the information about which extents | ||
26 | * a given leaf has references on. This allows us to process that leaf | ||
27 | * in btrfs_drop_snapshot without needing to read it back from disk. | ||
28 | */ | ||
29 | |||
30 | /* | ||
31 | * kmalloc a leaf reference struct and update the counters for the | ||
32 | * total ref cache size | ||
33 | */ | ||
34 | struct btrfs_leaf_ref *btrfs_alloc_leaf_ref(struct btrfs_root *root, | ||
35 | int nr_extents) | ||
36 | { | ||
37 | struct btrfs_leaf_ref *ref; | ||
38 | size_t size = btrfs_leaf_ref_size(nr_extents); | ||
39 | |||
40 | ref = kmalloc(size, GFP_NOFS); | ||
41 | if (ref) { | ||
42 | spin_lock(&root->fs_info->ref_cache_lock); | ||
43 | root->fs_info->total_ref_cache_size += size; | ||
44 | spin_unlock(&root->fs_info->ref_cache_lock); | ||
45 | |||
46 | memset(ref, 0, sizeof(*ref)); | ||
47 | atomic_set(&ref->usage, 1); | ||
48 | INIT_LIST_HEAD(&ref->list); | ||
49 | } | ||
50 | return ref; | ||
51 | } | ||
52 | |||
53 | /* | ||
54 | * free a leaf reference struct and update the counters for the | ||
55 | * total ref cache size | ||
56 | */ | ||
57 | void btrfs_free_leaf_ref(struct btrfs_root *root, struct btrfs_leaf_ref *ref) | ||
58 | { | ||
59 | if (!ref) | ||
60 | return; | ||
61 | WARN_ON(atomic_read(&ref->usage) == 0); | ||
62 | if (atomic_dec_and_test(&ref->usage)) { | ||
63 | size_t size = btrfs_leaf_ref_size(ref->nritems); | ||
64 | |||
65 | BUG_ON(ref->in_tree); | ||
66 | kfree(ref); | ||
67 | |||
68 | spin_lock(&root->fs_info->ref_cache_lock); | ||
69 | root->fs_info->total_ref_cache_size -= size; | ||
70 | spin_unlock(&root->fs_info->ref_cache_lock); | ||
71 | } | ||
72 | } | ||
73 | |||
74 | static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr, | ||
75 | struct rb_node *node) | ||
76 | { | ||
77 | struct rb_node **p = &root->rb_node; | ||
78 | struct rb_node *parent = NULL; | ||
79 | struct btrfs_leaf_ref *entry; | ||
80 | |||
81 | while (*p) { | ||
82 | parent = *p; | ||
83 | entry = rb_entry(parent, struct btrfs_leaf_ref, rb_node); | ||
84 | |||
85 | if (bytenr < entry->bytenr) | ||
86 | p = &(*p)->rb_left; | ||
87 | else if (bytenr > entry->bytenr) | ||
88 | p = &(*p)->rb_right; | ||
89 | else | ||
90 | return parent; | ||
91 | } | ||
92 | |||
93 | entry = rb_entry(node, struct btrfs_leaf_ref, rb_node); | ||
94 | rb_link_node(node, parent, p); | ||
95 | rb_insert_color(node, root); | ||
96 | return NULL; | ||
97 | } | ||
98 | |||
99 | static struct rb_node *tree_search(struct rb_root *root, u64 bytenr) | ||
100 | { | ||
101 | struct rb_node *n = root->rb_node; | ||
102 | struct btrfs_leaf_ref *entry; | ||
103 | |||
104 | while (n) { | ||
105 | entry = rb_entry(n, struct btrfs_leaf_ref, rb_node); | ||
106 | WARN_ON(!entry->in_tree); | ||
107 | |||
108 | if (bytenr < entry->bytenr) | ||
109 | n = n->rb_left; | ||
110 | else if (bytenr > entry->bytenr) | ||
111 | n = n->rb_right; | ||
112 | else | ||
113 | return n; | ||
114 | } | ||
115 | return NULL; | ||
116 | } | ||
117 | |||
118 | int btrfs_remove_leaf_refs(struct btrfs_root *root, u64 max_root_gen, | ||
119 | int shared) | ||
120 | { | ||
121 | struct btrfs_leaf_ref *ref = NULL; | ||
122 | struct btrfs_leaf_ref_tree *tree = root->ref_tree; | ||
123 | |||
124 | if (shared) | ||
125 | tree = &root->fs_info->shared_ref_tree; | ||
126 | if (!tree) | ||
127 | return 0; | ||
128 | |||
129 | spin_lock(&tree->lock); | ||
130 | while (!list_empty(&tree->list)) { | ||
131 | ref = list_entry(tree->list.next, struct btrfs_leaf_ref, list); | ||
132 | BUG_ON(ref->tree != tree); | ||
133 | if (ref->root_gen > max_root_gen) | ||
134 | break; | ||
135 | if (!xchg(&ref->in_tree, 0)) { | ||
136 | cond_resched_lock(&tree->lock); | ||
137 | continue; | ||
138 | } | ||
139 | |||
140 | rb_erase(&ref->rb_node, &tree->root); | ||
141 | list_del_init(&ref->list); | ||
142 | |||
143 | spin_unlock(&tree->lock); | ||
144 | btrfs_free_leaf_ref(root, ref); | ||
145 | cond_resched(); | ||
146 | spin_lock(&tree->lock); | ||
147 | } | ||
148 | spin_unlock(&tree->lock); | ||
149 | return 0; | ||
150 | } | ||
151 | |||
152 | /* | ||
153 | * find the leaf ref for a given extent. This returns the ref struct with | ||
154 | * a usage reference incremented | ||
155 | */ | ||
156 | struct btrfs_leaf_ref *btrfs_lookup_leaf_ref(struct btrfs_root *root, | ||
157 | u64 bytenr) | ||
158 | { | ||
159 | struct rb_node *rb; | ||
160 | struct btrfs_leaf_ref *ref = NULL; | ||
161 | struct btrfs_leaf_ref_tree *tree = root->ref_tree; | ||
162 | again: | ||
163 | if (tree) { | ||
164 | spin_lock(&tree->lock); | ||
165 | rb = tree_search(&tree->root, bytenr); | ||
166 | if (rb) | ||
167 | ref = rb_entry(rb, struct btrfs_leaf_ref, rb_node); | ||
168 | if (ref) | ||
169 | atomic_inc(&ref->usage); | ||
170 | spin_unlock(&tree->lock); | ||
171 | if (ref) | ||
172 | return ref; | ||
173 | } | ||
174 | if (tree != &root->fs_info->shared_ref_tree) { | ||
175 | tree = &root->fs_info->shared_ref_tree; | ||
176 | goto again; | ||
177 | } | ||
178 | return NULL; | ||
179 | } | ||
180 | |||
181 | /* | ||
182 | * add a fully filled in leaf ref struct | ||
183 | * remove all the refs older than a given root generation | ||
184 | */ | ||
185 | int btrfs_add_leaf_ref(struct btrfs_root *root, struct btrfs_leaf_ref *ref, | ||
186 | int shared) | ||
187 | { | ||
188 | int ret = 0; | ||
189 | struct rb_node *rb; | ||
190 | struct btrfs_leaf_ref_tree *tree = root->ref_tree; | ||
191 | |||
192 | if (shared) | ||
193 | tree = &root->fs_info->shared_ref_tree; | ||
194 | |||
195 | spin_lock(&tree->lock); | ||
196 | rb = tree_insert(&tree->root, ref->bytenr, &ref->rb_node); | ||
197 | if (rb) { | ||
198 | ret = -EEXIST; | ||
199 | } else { | ||
200 | atomic_inc(&ref->usage); | ||
201 | ref->tree = tree; | ||
202 | ref->in_tree = 1; | ||
203 | list_add_tail(&ref->list, &tree->list); | ||
204 | } | ||
205 | spin_unlock(&tree->lock); | ||
206 | return ret; | ||
207 | } | ||
208 | |||
209 | /* | ||
210 | * remove a single leaf ref from the tree. This drops the ref held by the tree | ||
211 | * only | ||
212 | */ | ||
213 | int btrfs_remove_leaf_ref(struct btrfs_root *root, struct btrfs_leaf_ref *ref) | ||
214 | { | ||
215 | struct btrfs_leaf_ref_tree *tree; | ||
216 | |||
217 | if (!xchg(&ref->in_tree, 0)) | ||
218 | return 0; | ||
219 | |||
220 | tree = ref->tree; | ||
221 | spin_lock(&tree->lock); | ||
222 | |||
223 | rb_erase(&ref->rb_node, &tree->root); | ||
224 | list_del_init(&ref->list); | ||
225 | |||
226 | spin_unlock(&tree->lock); | ||
227 | |||
228 | btrfs_free_leaf_ref(root, ref); | ||
229 | return 0; | ||
230 | } | ||
diff --git a/fs/btrfs/ref-cache.h b/fs/btrfs/ref-cache.h new file mode 100644 index 000000000000..16f3183d7c59 --- /dev/null +++ b/fs/btrfs/ref-cache.h | |||
@@ -0,0 +1,77 @@ | |||
1 | /* | ||
2 | * Copyright (C) 2008 Oracle. All rights reserved. | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or | ||
5 | * modify it under the terms of the GNU General Public | ||
6 | * License v2 as published by the Free Software Foundation. | ||
7 | * | ||
8 | * This program is distributed in the hope that it will be useful, | ||
9 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | ||
11 | * General Public License for more details. | ||
12 | * | ||
13 | * You should have received a copy of the GNU General Public | ||
14 | * License along with this program; if not, write to the | ||
15 | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | ||
16 | * Boston, MA 021110-1307, USA. | ||
17 | */ | ||
18 | #ifndef __REFCACHE__ | ||
19 | #define __REFCACHE__ | ||
20 | |||
21 | struct btrfs_extent_info { | ||
22 | /* bytenr and num_bytes find the extent in the extent allocation tree */ | ||
23 | u64 bytenr; | ||
24 | u64 num_bytes; | ||
25 | |||
26 | /* objectid and offset find the back reference for the file */ | ||
27 | u64 objectid; | ||
28 | u64 offset; | ||
29 | }; | ||
30 | |||
31 | struct btrfs_leaf_ref { | ||
32 | struct rb_node rb_node; | ||
33 | struct btrfs_leaf_ref_tree *tree; | ||
34 | int in_tree; | ||
35 | atomic_t usage; | ||
36 | |||
37 | u64 root_gen; | ||
38 | u64 bytenr; | ||
39 | u64 owner; | ||
40 | u64 generation; | ||
41 | int nritems; | ||
42 | |||
43 | struct list_head list; | ||
44 | struct btrfs_extent_info extents[]; | ||
45 | }; | ||
46 | |||
47 | static inline size_t btrfs_leaf_ref_size(int nr_extents) | ||
48 | { | ||
49 | return sizeof(struct btrfs_leaf_ref) + | ||
50 | sizeof(struct btrfs_extent_info) * nr_extents; | ||
51 | } | ||
52 | |||
53 | static inline void btrfs_leaf_ref_tree_init(struct btrfs_leaf_ref_tree *tree) | ||
54 | { | ||
55 | tree->root.rb_node = NULL; | ||
56 | INIT_LIST_HEAD(&tree->list); | ||
57 | spin_lock_init(&tree->lock); | ||
58 | } | ||
59 | |||
60 | static inline int btrfs_leaf_ref_tree_empty(struct btrfs_leaf_ref_tree *tree) | ||
61 | { | ||
62 | return RB_EMPTY_ROOT(&tree->root); | ||
63 | } | ||
64 | |||
65 | void btrfs_leaf_ref_tree_init(struct btrfs_leaf_ref_tree *tree); | ||
66 | struct btrfs_leaf_ref *btrfs_alloc_leaf_ref(struct btrfs_root *root, | ||
67 | int nr_extents); | ||
68 | void btrfs_free_leaf_ref(struct btrfs_root *root, struct btrfs_leaf_ref *ref); | ||
69 | struct btrfs_leaf_ref *btrfs_lookup_leaf_ref(struct btrfs_root *root, | ||
70 | u64 bytenr); | ||
71 | int btrfs_add_leaf_ref(struct btrfs_root *root, struct btrfs_leaf_ref *ref, | ||
72 | int shared); | ||
73 | int btrfs_remove_leaf_refs(struct btrfs_root *root, u64 max_root_gen, | ||
74 | int shared); | ||
75 | int btrfs_remove_leaf_ref(struct btrfs_root *root, struct btrfs_leaf_ref *ref); | ||
76 | |||
77 | #endif | ||
diff --git a/fs/btrfs/root-tree.c b/fs/btrfs/root-tree.c new file mode 100644 index 000000000000..b48650de4472 --- /dev/null +++ b/fs/btrfs/root-tree.c | |||
@@ -0,0 +1,366 @@ | |||
1 | /* | ||
2 | * Copyright (C) 2007 Oracle. All rights reserved. | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or | ||
5 | * modify it under the terms of the GNU General Public | ||
6 | * License v2 as published by the Free Software Foundation. | ||
7 | * | ||
8 | * This program is distributed in the hope that it will be useful, | ||
9 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | ||
11 | * General Public License for more details. | ||
12 | * | ||
13 | * You should have received a copy of the GNU General Public | ||
14 | * License along with this program; if not, write to the | ||
15 | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | ||
16 | * Boston, MA 021110-1307, USA. | ||
17 | */ | ||
18 | |||
19 | #include "ctree.h" | ||
20 | #include "transaction.h" | ||
21 | #include "disk-io.h" | ||
22 | #include "print-tree.h" | ||
23 | |||
24 | /* | ||
25 | * search forward for a root, starting with objectid 'search_start' | ||
26 | * if a root key is found, the objectid we find is filled into 'found_objectid' | ||
27 | * and 0 is returned. < 0 is returned on error, 1 if there is nothing | ||
28 | * left in the tree. | ||
29 | */ | ||
30 | int btrfs_search_root(struct btrfs_root *root, u64 search_start, | ||
31 | u64 *found_objectid) | ||
32 | { | ||
33 | struct btrfs_path *path; | ||
34 | struct btrfs_key search_key; | ||
35 | int ret; | ||
36 | |||
37 | root = root->fs_info->tree_root; | ||
38 | search_key.objectid = search_start; | ||
39 | search_key.type = (u8)-1; | ||
40 | search_key.offset = (u64)-1; | ||
41 | |||
42 | path = btrfs_alloc_path(); | ||
43 | BUG_ON(!path); | ||
44 | again: | ||
45 | ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); | ||
46 | if (ret < 0) | ||
47 | goto out; | ||
48 | if (ret == 0) { | ||
49 | ret = 1; | ||
50 | goto out; | ||
51 | } | ||
52 | if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { | ||
53 | ret = btrfs_next_leaf(root, path); | ||
54 | if (ret) | ||
55 | goto out; | ||
56 | } | ||
57 | btrfs_item_key_to_cpu(path->nodes[0], &search_key, path->slots[0]); | ||
58 | if (search_key.type != BTRFS_ROOT_ITEM_KEY) { | ||
59 | search_key.offset++; | ||
60 | btrfs_release_path(root, path); | ||
61 | goto again; | ||
62 | } | ||
63 | ret = 0; | ||
64 | *found_objectid = search_key.objectid; | ||
65 | |||
66 | out: | ||
67 | btrfs_free_path(path); | ||
68 | return ret; | ||
69 | } | ||
70 | |||
71 | /* | ||
72 | * lookup the root with the highest offset for a given objectid. The key we do | ||
73 | * find is copied into 'key'. If we find something return 0, otherwise 1, < 0 | ||
74 | * on error. | ||
75 | */ | ||
76 | int btrfs_find_last_root(struct btrfs_root *root, u64 objectid, | ||
77 | struct btrfs_root_item *item, struct btrfs_key *key) | ||
78 | { | ||
79 | struct btrfs_path *path; | ||
80 | struct btrfs_key search_key; | ||
81 | struct btrfs_key found_key; | ||
82 | struct extent_buffer *l; | ||
83 | int ret; | ||
84 | int slot; | ||
85 | |||
86 | search_key.objectid = objectid; | ||
87 | search_key.type = BTRFS_ROOT_ITEM_KEY; | ||
88 | search_key.offset = (u64)-1; | ||
89 | |||
90 | path = btrfs_alloc_path(); | ||
91 | BUG_ON(!path); | ||
92 | ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); | ||
93 | if (ret < 0) | ||
94 | goto out; | ||
95 | |||
96 | BUG_ON(ret == 0); | ||
97 | l = path->nodes[0]; | ||
98 | BUG_ON(path->slots[0] == 0); | ||
99 | slot = path->slots[0] - 1; | ||
100 | btrfs_item_key_to_cpu(l, &found_key, slot); | ||
101 | if (found_key.objectid != objectid) { | ||
102 | ret = 1; | ||
103 | goto out; | ||
104 | } | ||
105 | read_extent_buffer(l, item, btrfs_item_ptr_offset(l, slot), | ||
106 | sizeof(*item)); | ||
107 | memcpy(key, &found_key, sizeof(found_key)); | ||
108 | ret = 0; | ||
109 | out: | ||
110 | btrfs_free_path(path); | ||
111 | return ret; | ||
112 | } | ||
113 | |||
114 | /* | ||
115 | * copy the data in 'item' into the btree | ||
116 | */ | ||
117 | int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root | ||
118 | *root, struct btrfs_key *key, struct btrfs_root_item | ||
119 | *item) | ||
120 | { | ||
121 | struct btrfs_path *path; | ||
122 | struct extent_buffer *l; | ||
123 | int ret; | ||
124 | int slot; | ||
125 | unsigned long ptr; | ||
126 | |||
127 | path = btrfs_alloc_path(); | ||
128 | BUG_ON(!path); | ||
129 | ret = btrfs_search_slot(trans, root, key, path, 0, 1); | ||
130 | if (ret < 0) | ||
131 | goto out; | ||
132 | |||
133 | if (ret != 0) { | ||
134 | btrfs_print_leaf(root, path->nodes[0]); | ||
135 | printk(KERN_CRIT "unable to update root key %llu %u %llu\n", | ||
136 | (unsigned long long)key->objectid, key->type, | ||
137 | (unsigned long long)key->offset); | ||
138 | BUG_ON(1); | ||
139 | } | ||
140 | |||
141 | l = path->nodes[0]; | ||
142 | slot = path->slots[0]; | ||
143 | ptr = btrfs_item_ptr_offset(l, slot); | ||
144 | write_extent_buffer(l, item, ptr, sizeof(*item)); | ||
145 | btrfs_mark_buffer_dirty(path->nodes[0]); | ||
146 | out: | ||
147 | btrfs_release_path(root, path); | ||
148 | btrfs_free_path(path); | ||
149 | return ret; | ||
150 | } | ||
151 | |||
152 | int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root | ||
153 | *root, struct btrfs_key *key, struct btrfs_root_item | ||
154 | *item) | ||
155 | { | ||
156 | int ret; | ||
157 | ret = btrfs_insert_item(trans, root, key, item, sizeof(*item)); | ||
158 | return ret; | ||
159 | } | ||
160 | |||
161 | /* | ||
162 | * at mount time we want to find all the old transaction snapshots that were in | ||
163 | * the process of being deleted if we crashed. This is any root item with an | ||
164 | * offset lower than the latest root. They need to be queued for deletion to | ||
165 | * finish what was happening when we crashed. | ||
166 | */ | ||
167 | int btrfs_find_dead_roots(struct btrfs_root *root, u64 objectid, | ||
168 | struct btrfs_root *latest) | ||
169 | { | ||
170 | struct btrfs_root *dead_root; | ||
171 | struct btrfs_item *item; | ||
172 | struct btrfs_root_item *ri; | ||
173 | struct btrfs_key key; | ||
174 | struct btrfs_key found_key; | ||
175 | struct btrfs_path *path; | ||
176 | int ret; | ||
177 | u32 nritems; | ||
178 | struct extent_buffer *leaf; | ||
179 | int slot; | ||
180 | |||
181 | key.objectid = objectid; | ||
182 | btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY); | ||
183 | key.offset = 0; | ||
184 | path = btrfs_alloc_path(); | ||
185 | if (!path) | ||
186 | return -ENOMEM; | ||
187 | |||
188 | again: | ||
189 | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | ||
190 | if (ret < 0) | ||
191 | goto err; | ||
192 | while (1) { | ||
193 | leaf = path->nodes[0]; | ||
194 | nritems = btrfs_header_nritems(leaf); | ||
195 | slot = path->slots[0]; | ||
196 | if (slot >= nritems) { | ||
197 | ret = btrfs_next_leaf(root, path); | ||
198 | if (ret) | ||
199 | break; | ||
200 | leaf = path->nodes[0]; | ||
201 | nritems = btrfs_header_nritems(leaf); | ||
202 | slot = path->slots[0]; | ||
203 | } | ||
204 | item = btrfs_item_nr(leaf, slot); | ||
205 | btrfs_item_key_to_cpu(leaf, &key, slot); | ||
206 | if (btrfs_key_type(&key) != BTRFS_ROOT_ITEM_KEY) | ||
207 | goto next; | ||
208 | |||
209 | if (key.objectid < objectid) | ||
210 | goto next; | ||
211 | |||
212 | if (key.objectid > objectid) | ||
213 | break; | ||
214 | |||
215 | ri = btrfs_item_ptr(leaf, slot, struct btrfs_root_item); | ||
216 | if (btrfs_disk_root_refs(leaf, ri) != 0) | ||
217 | goto next; | ||
218 | |||
219 | memcpy(&found_key, &key, sizeof(key)); | ||
220 | key.offset++; | ||
221 | btrfs_release_path(root, path); | ||
222 | dead_root = | ||
223 | btrfs_read_fs_root_no_radix(root->fs_info->tree_root, | ||
224 | &found_key); | ||
225 | if (IS_ERR(dead_root)) { | ||
226 | ret = PTR_ERR(dead_root); | ||
227 | goto err; | ||
228 | } | ||
229 | |||
230 | if (objectid == BTRFS_TREE_RELOC_OBJECTID) | ||
231 | ret = btrfs_add_dead_reloc_root(dead_root); | ||
232 | else | ||
233 | ret = btrfs_add_dead_root(dead_root, latest); | ||
234 | if (ret) | ||
235 | goto err; | ||
236 | goto again; | ||
237 | next: | ||
238 | slot++; | ||
239 | path->slots[0]++; | ||
240 | } | ||
241 | ret = 0; | ||
242 | err: | ||
243 | btrfs_free_path(path); | ||
244 | return ret; | ||
245 | } | ||
246 | |||
247 | /* drop the root item for 'key' from 'root' */ | ||
248 | int btrfs_del_root(struct btrfs_trans_handle *trans, struct btrfs_root *root, | ||
249 | struct btrfs_key *key) | ||
250 | { | ||
251 | struct btrfs_path *path; | ||
252 | int ret; | ||
253 | u32 refs; | ||
254 | struct btrfs_root_item *ri; | ||
255 | struct extent_buffer *leaf; | ||
256 | |||
257 | path = btrfs_alloc_path(); | ||
258 | BUG_ON(!path); | ||
259 | ret = btrfs_search_slot(trans, root, key, path, -1, 1); | ||
260 | if (ret < 0) | ||
261 | goto out; | ||
262 | |||
263 | BUG_ON(ret != 0); | ||
264 | leaf = path->nodes[0]; | ||
265 | ri = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_item); | ||
266 | |||
267 | refs = btrfs_disk_root_refs(leaf, ri); | ||
268 | BUG_ON(refs != 0); | ||
269 | ret = btrfs_del_item(trans, root, path); | ||
270 | out: | ||
271 | btrfs_release_path(root, path); | ||
272 | btrfs_free_path(path); | ||
273 | return ret; | ||
274 | } | ||
275 | |||
276 | #if 0 /* this will get used when snapshot deletion is implemented */ | ||
277 | int btrfs_del_root_ref(struct btrfs_trans_handle *trans, | ||
278 | struct btrfs_root *tree_root, | ||
279 | u64 root_id, u8 type, u64 ref_id) | ||
280 | { | ||
281 | struct btrfs_key key; | ||
282 | int ret; | ||
283 | struct btrfs_path *path; | ||
284 | |||
285 | path = btrfs_alloc_path(); | ||
286 | |||
287 | key.objectid = root_id; | ||
288 | key.type = type; | ||
289 | key.offset = ref_id; | ||
290 | |||
291 | ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1); | ||
292 | BUG_ON(ret); | ||
293 | |||
294 | ret = btrfs_del_item(trans, tree_root, path); | ||
295 | BUG_ON(ret); | ||
296 | |||
297 | btrfs_free_path(path); | ||
298 | return ret; | ||
299 | } | ||
300 | #endif | ||
301 | |||
302 | int btrfs_find_root_ref(struct btrfs_root *tree_root, | ||
303 | struct btrfs_path *path, | ||
304 | u64 root_id, u64 ref_id) | ||
305 | { | ||
306 | struct btrfs_key key; | ||
307 | int ret; | ||
308 | |||
309 | key.objectid = root_id; | ||
310 | key.type = BTRFS_ROOT_REF_KEY; | ||
311 | key.offset = ref_id; | ||
312 | |||
313 | ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0); | ||
314 | return ret; | ||
315 | } | ||
316 | |||
317 | |||
318 | /* | ||
319 | * add a btrfs_root_ref item. type is either BTRFS_ROOT_REF_KEY | ||
320 | * or BTRFS_ROOT_BACKREF_KEY. | ||
321 | * | ||
322 | * The dirid, sequence, name and name_len refer to the directory entry | ||
323 | * that is referencing the root. | ||
324 | * | ||
325 | * For a forward ref, the root_id is the id of the tree referencing | ||
326 | * the root and ref_id is the id of the subvol or snapshot. | ||
327 | * | ||
328 | * For a back ref the root_id is the id of the subvol or snapshot and | ||
329 | * ref_id is the id of the tree referencing it. | ||
330 | */ | ||
331 | int btrfs_add_root_ref(struct btrfs_trans_handle *trans, | ||
332 | struct btrfs_root *tree_root, | ||
333 | u64 root_id, u8 type, u64 ref_id, | ||
334 | u64 dirid, u64 sequence, | ||
335 | const char *name, int name_len) | ||
336 | { | ||
337 | struct btrfs_key key; | ||
338 | int ret; | ||
339 | struct btrfs_path *path; | ||
340 | struct btrfs_root_ref *ref; | ||
341 | struct extent_buffer *leaf; | ||
342 | unsigned long ptr; | ||
343 | |||
344 | |||
345 | path = btrfs_alloc_path(); | ||
346 | |||
347 | key.objectid = root_id; | ||
348 | key.type = type; | ||
349 | key.offset = ref_id; | ||
350 | |||
351 | ret = btrfs_insert_empty_item(trans, tree_root, path, &key, | ||
352 | sizeof(*ref) + name_len); | ||
353 | BUG_ON(ret); | ||
354 | |||
355 | leaf = path->nodes[0]; | ||
356 | ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); | ||
357 | btrfs_set_root_ref_dirid(leaf, ref, dirid); | ||
358 | btrfs_set_root_ref_sequence(leaf, ref, sequence); | ||
359 | btrfs_set_root_ref_name_len(leaf, ref, name_len); | ||
360 | ptr = (unsigned long)(ref + 1); | ||
361 | write_extent_buffer(leaf, name, ptr, name_len); | ||
362 | btrfs_mark_buffer_dirty(leaf); | ||
363 | |||
364 | btrfs_free_path(path); | ||
365 | return ret; | ||
366 | } | ||
diff --git a/fs/btrfs/struct-funcs.c b/fs/btrfs/struct-funcs.c new file mode 100644 index 000000000000..c0f7ecaf1e79 --- /dev/null +++ b/fs/btrfs/struct-funcs.c | |||
@@ -0,0 +1,139 @@ | |||
1 | /* | ||
2 | * Copyright (C) 2007 Oracle. All rights reserved. | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or | ||
5 | * modify it under the terms of the GNU General Public | ||
6 | * License v2 as published by the Free Software Foundation. | ||
7 | * | ||
8 | * This program is distributed in the hope that it will be useful, | ||
9 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | ||
11 | * General Public License for more details. | ||
12 | * | ||
13 | * You should have received a copy of the GNU General Public | ||
14 | * License along with this program; if not, write to the | ||
15 | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | ||
16 | * Boston, MA 021110-1307, USA. | ||
17 | */ | ||
18 | |||
19 | #include <linux/highmem.h> | ||
20 | |||
21 | /* this is some deeply nasty code. ctree.h has a different | ||
22 | * definition for this BTRFS_SETGET_FUNCS macro, behind a #ifndef | ||
23 | * | ||
24 | * The end result is that anyone who #includes ctree.h gets a | ||
25 | * declaration for the btrfs_set_foo functions and btrfs_foo functions | ||
26 | * | ||
27 | * This file declares the macros and then #includes ctree.h, which results | ||
28 | * in cpp creating the function here based on the template below. | ||
29 | * | ||
30 | * These setget functions do all the extent_buffer related mapping | ||
31 | * required to efficiently read and write specific fields in the extent | ||
32 | * buffers. Every pointer to metadata items in btrfs is really just | ||
33 | * an unsigned long offset into the extent buffer which has been | ||
34 | * cast to a specific type. This gives us all the gcc type checking. | ||
35 | * | ||
36 | * The extent buffer api is used to do all the kmapping and page | ||
37 | * spanning work required to get extent buffers in highmem and have | ||
38 | * a metadata blocksize different from the page size. | ||
39 | * | ||
40 | * The macro starts with a simple function prototype declaration so that | ||
41 | * sparse won't complain about it being static. | ||
42 | */ | ||
43 | |||
44 | #define BTRFS_SETGET_FUNCS(name, type, member, bits) \ | ||
45 | u##bits btrfs_##name(struct extent_buffer *eb, type *s); \ | ||
46 | void btrfs_set_##name(struct extent_buffer *eb, type *s, u##bits val); \ | ||
47 | u##bits btrfs_##name(struct extent_buffer *eb, \ | ||
48 | type *s) \ | ||
49 | { \ | ||
50 | unsigned long part_offset = (unsigned long)s; \ | ||
51 | unsigned long offset = part_offset + offsetof(type, member); \ | ||
52 | type *p; \ | ||
53 | /* ugly, but we want the fast path here */ \ | ||
54 | if (eb->map_token && offset >= eb->map_start && \ | ||
55 | offset + sizeof(((type *)0)->member) <= eb->map_start + \ | ||
56 | eb->map_len) { \ | ||
57 | p = (type *)(eb->kaddr + part_offset - eb->map_start); \ | ||
58 | return le##bits##_to_cpu(p->member); \ | ||
59 | } \ | ||
60 | { \ | ||
61 | int err; \ | ||
62 | char *map_token; \ | ||
63 | char *kaddr; \ | ||
64 | int unmap_on_exit = (eb->map_token == NULL); \ | ||
65 | unsigned long map_start; \ | ||
66 | unsigned long map_len; \ | ||
67 | u##bits res; \ | ||
68 | err = map_extent_buffer(eb, offset, \ | ||
69 | sizeof(((type *)0)->member), \ | ||
70 | &map_token, &kaddr, \ | ||
71 | &map_start, &map_len, KM_USER1); \ | ||
72 | if (err) { \ | ||
73 | __le##bits leres; \ | ||
74 | read_eb_member(eb, s, type, member, &leres); \ | ||
75 | return le##bits##_to_cpu(leres); \ | ||
76 | } \ | ||
77 | p = (type *)(kaddr + part_offset - map_start); \ | ||
78 | res = le##bits##_to_cpu(p->member); \ | ||
79 | if (unmap_on_exit) \ | ||
80 | unmap_extent_buffer(eb, map_token, KM_USER1); \ | ||
81 | return res; \ | ||
82 | } \ | ||
83 | } \ | ||
84 | void btrfs_set_##name(struct extent_buffer *eb, \ | ||
85 | type *s, u##bits val) \ | ||
86 | { \ | ||
87 | unsigned long part_offset = (unsigned long)s; \ | ||
88 | unsigned long offset = part_offset + offsetof(type, member); \ | ||
89 | type *p; \ | ||
90 | /* ugly, but we want the fast path here */ \ | ||
91 | if (eb->map_token && offset >= eb->map_start && \ | ||
92 | offset + sizeof(((type *)0)->member) <= eb->map_start + \ | ||
93 | eb->map_len) { \ | ||
94 | p = (type *)(eb->kaddr + part_offset - eb->map_start); \ | ||
95 | p->member = cpu_to_le##bits(val); \ | ||
96 | return; \ | ||
97 | } \ | ||
98 | { \ | ||
99 | int err; \ | ||
100 | char *map_token; \ | ||
101 | char *kaddr; \ | ||
102 | int unmap_on_exit = (eb->map_token == NULL); \ | ||
103 | unsigned long map_start; \ | ||
104 | unsigned long map_len; \ | ||
105 | err = map_extent_buffer(eb, offset, \ | ||
106 | sizeof(((type *)0)->member), \ | ||
107 | &map_token, &kaddr, \ | ||
108 | &map_start, &map_len, KM_USER1); \ | ||
109 | if (err) { \ | ||
110 | __le##bits val2; \ | ||
111 | val2 = cpu_to_le##bits(val); \ | ||
112 | write_eb_member(eb, s, type, member, &val2); \ | ||
113 | return; \ | ||
114 | } \ | ||
115 | p = (type *)(kaddr + part_offset - map_start); \ | ||
116 | p->member = cpu_to_le##bits(val); \ | ||
117 | if (unmap_on_exit) \ | ||
118 | unmap_extent_buffer(eb, map_token, KM_USER1); \ | ||
119 | } \ | ||
120 | } | ||
121 | |||
122 | #include "ctree.h" | ||
123 | |||
124 | void btrfs_node_key(struct extent_buffer *eb, | ||
125 | struct btrfs_disk_key *disk_key, int nr) | ||
126 | { | ||
127 | unsigned long ptr = btrfs_node_key_ptr_offset(nr); | ||
128 | if (eb->map_token && ptr >= eb->map_start && | ||
129 | ptr + sizeof(*disk_key) <= eb->map_start + eb->map_len) { | ||
130 | memcpy(disk_key, eb->kaddr + ptr - eb->map_start, | ||
131 | sizeof(*disk_key)); | ||
132 | return; | ||
133 | } else if (eb->map_token) { | ||
134 | unmap_extent_buffer(eb, eb->map_token, KM_USER1); | ||
135 | eb->map_token = NULL; | ||
136 | } | ||
137 | read_eb_member(eb, (struct btrfs_key_ptr *)ptr, | ||
138 | struct btrfs_key_ptr, key, disk_key); | ||
139 | } | ||
diff --git a/fs/btrfs/super.c b/fs/btrfs/super.c new file mode 100644 index 000000000000..b4c101d9322c --- /dev/null +++ b/fs/btrfs/super.c | |||
@@ -0,0 +1,720 @@ | |||
1 | /* | ||
2 | * Copyright (C) 2007 Oracle. All rights reserved. | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or | ||
5 | * modify it under the terms of the GNU General Public | ||
6 | * License v2 as published by the Free Software Foundation. | ||
7 | * | ||
8 | * This program is distributed in the hope that it will be useful, | ||
9 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | ||
11 | * General Public License for more details. | ||
12 | * | ||
13 | * You should have received a copy of the GNU General Public | ||
14 | * License along with this program; if not, write to the | ||
15 | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | ||
16 | * Boston, MA 021110-1307, USA. | ||
17 | */ | ||
18 | |||
19 | #include <linux/blkdev.h> | ||
20 | #include <linux/module.h> | ||
21 | #include <linux/buffer_head.h> | ||
22 | #include <linux/fs.h> | ||
23 | #include <linux/pagemap.h> | ||
24 | #include <linux/highmem.h> | ||
25 | #include <linux/time.h> | ||
26 | #include <linux/init.h> | ||
27 | #include <linux/string.h> | ||
28 | #include <linux/smp_lock.h> | ||
29 | #include <linux/backing-dev.h> | ||
30 | #include <linux/mount.h> | ||
31 | #include <linux/mpage.h> | ||
32 | #include <linux/swap.h> | ||
33 | #include <linux/writeback.h> | ||
34 | #include <linux/statfs.h> | ||
35 | #include <linux/compat.h> | ||
36 | #include <linux/parser.h> | ||
37 | #include <linux/ctype.h> | ||
38 | #include <linux/namei.h> | ||
39 | #include <linux/miscdevice.h> | ||
40 | #include <linux/version.h> | ||
41 | #include "compat.h" | ||
42 | #include "ctree.h" | ||
43 | #include "disk-io.h" | ||
44 | #include "transaction.h" | ||
45 | #include "btrfs_inode.h" | ||
46 | #include "ioctl.h" | ||
47 | #include "print-tree.h" | ||
48 | #include "xattr.h" | ||
49 | #include "volumes.h" | ||
50 | #include "version.h" | ||
51 | #include "export.h" | ||
52 | #include "compression.h" | ||
53 | |||
54 | #define BTRFS_SUPER_MAGIC 0x9123683E | ||
55 | |||
56 | static struct super_operations btrfs_super_ops; | ||
57 | |||
58 | static void btrfs_put_super(struct super_block *sb) | ||
59 | { | ||
60 | struct btrfs_root *root = btrfs_sb(sb); | ||
61 | int ret; | ||
62 | |||
63 | ret = close_ctree(root); | ||
64 | sb->s_fs_info = NULL; | ||
65 | } | ||
66 | |||
67 | enum { | ||
68 | Opt_degraded, Opt_subvol, Opt_device, Opt_nodatasum, Opt_nodatacow, | ||
69 | Opt_max_extent, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, | ||
70 | Opt_ssd, Opt_thread_pool, Opt_noacl, Opt_compress, Opt_err, | ||
71 | }; | ||
72 | |||
73 | static match_table_t tokens = { | ||
74 | {Opt_degraded, "degraded"}, | ||
75 | {Opt_subvol, "subvol=%s"}, | ||
76 | {Opt_device, "device=%s"}, | ||
77 | {Opt_nodatasum, "nodatasum"}, | ||
78 | {Opt_nodatacow, "nodatacow"}, | ||
79 | {Opt_nobarrier, "nobarrier"}, | ||
80 | {Opt_max_extent, "max_extent=%s"}, | ||
81 | {Opt_max_inline, "max_inline=%s"}, | ||
82 | {Opt_alloc_start, "alloc_start=%s"}, | ||
83 | {Opt_thread_pool, "thread_pool=%d"}, | ||
84 | {Opt_compress, "compress"}, | ||
85 | {Opt_ssd, "ssd"}, | ||
86 | {Opt_noacl, "noacl"}, | ||
87 | {Opt_err, NULL}, | ||
88 | }; | ||
89 | |||
90 | u64 btrfs_parse_size(char *str) | ||
91 | { | ||
92 | u64 res; | ||
93 | int mult = 1; | ||
94 | char *end; | ||
95 | char last; | ||
96 | |||
97 | res = simple_strtoul(str, &end, 10); | ||
98 | |||
99 | last = end[0]; | ||
100 | if (isalpha(last)) { | ||
101 | last = tolower(last); | ||
102 | switch (last) { | ||
103 | case 'g': | ||
104 | mult *= 1024; | ||
105 | case 'm': | ||
106 | mult *= 1024; | ||
107 | case 'k': | ||
108 | mult *= 1024; | ||
109 | } | ||
110 | res = res * mult; | ||
111 | } | ||
112 | return res; | ||
113 | } | ||
114 | |||
115 | /* | ||
116 | * Regular mount options parser. Everything that is needed only when | ||
117 | * reading in a new superblock is parsed here. | ||
118 | */ | ||
119 | int btrfs_parse_options(struct btrfs_root *root, char *options) | ||
120 | { | ||
121 | struct btrfs_fs_info *info = root->fs_info; | ||
122 | substring_t args[MAX_OPT_ARGS]; | ||
123 | char *p, *num; | ||
124 | int intarg; | ||
125 | |||
126 | if (!options) | ||
127 | return 0; | ||
128 | |||
129 | /* | ||
130 | * strsep changes the string, duplicate it because parse_options | ||
131 | * gets called twice | ||
132 | */ | ||
133 | options = kstrdup(options, GFP_NOFS); | ||
134 | if (!options) | ||
135 | return -ENOMEM; | ||
136 | |||
137 | |||
138 | while ((p = strsep(&options, ",")) != NULL) { | ||
139 | int token; | ||
140 | if (!*p) | ||
141 | continue; | ||
142 | |||
143 | token = match_token(p, tokens, args); | ||
144 | switch (token) { | ||
145 | case Opt_degraded: | ||
146 | printk(KERN_INFO "btrfs: allowing degraded mounts\n"); | ||
147 | btrfs_set_opt(info->mount_opt, DEGRADED); | ||
148 | break; | ||
149 | case Opt_subvol: | ||
150 | case Opt_device: | ||
151 | /* | ||
152 | * These are parsed by btrfs_parse_early_options | ||
153 | * and can be happily ignored here. | ||
154 | */ | ||
155 | break; | ||
156 | case Opt_nodatasum: | ||
157 | printk(KERN_INFO "btrfs: setting nodatacsum\n"); | ||
158 | btrfs_set_opt(info->mount_opt, NODATASUM); | ||
159 | break; | ||
160 | case Opt_nodatacow: | ||
161 | printk(KERN_INFO "btrfs: setting nodatacow\n"); | ||
162 | btrfs_set_opt(info->mount_opt, NODATACOW); | ||
163 | btrfs_set_opt(info->mount_opt, NODATASUM); | ||
164 | break; | ||
165 | case Opt_compress: | ||
166 | printk(KERN_INFO "btrfs: use compression\n"); | ||
167 | btrfs_set_opt(info->mount_opt, COMPRESS); | ||
168 | break; | ||
169 | case Opt_ssd: | ||
170 | printk(KERN_INFO "btrfs: use ssd allocation scheme\n"); | ||
171 | btrfs_set_opt(info->mount_opt, SSD); | ||
172 | break; | ||
173 | case Opt_nobarrier: | ||
174 | printk(KERN_INFO "btrfs: turning off barriers\n"); | ||
175 | btrfs_set_opt(info->mount_opt, NOBARRIER); | ||
176 | break; | ||
177 | case Opt_thread_pool: | ||
178 | intarg = 0; | ||
179 | match_int(&args[0], &intarg); | ||
180 | if (intarg) { | ||
181 | info->thread_pool_size = intarg; | ||
182 | printk(KERN_INFO "btrfs: thread pool %d\n", | ||
183 | info->thread_pool_size); | ||
184 | } | ||
185 | break; | ||
186 | case Opt_max_extent: | ||
187 | num = match_strdup(&args[0]); | ||
188 | if (num) { | ||
189 | info->max_extent = btrfs_parse_size(num); | ||
190 | kfree(num); | ||
191 | |||
192 | info->max_extent = max_t(u64, | ||
193 | info->max_extent, root->sectorsize); | ||
194 | printk(KERN_INFO "btrfs: max_extent at %llu\n", | ||
195 | info->max_extent); | ||
196 | } | ||
197 | break; | ||
198 | case Opt_max_inline: | ||
199 | num = match_strdup(&args[0]); | ||
200 | if (num) { | ||
201 | info->max_inline = btrfs_parse_size(num); | ||
202 | kfree(num); | ||
203 | |||
204 | if (info->max_inline) { | ||
205 | info->max_inline = max_t(u64, | ||
206 | info->max_inline, | ||
207 | root->sectorsize); | ||
208 | } | ||
209 | printk(KERN_INFO "btrfs: max_inline at %llu\n", | ||
210 | info->max_inline); | ||
211 | } | ||
212 | break; | ||
213 | case Opt_alloc_start: | ||
214 | num = match_strdup(&args[0]); | ||
215 | if (num) { | ||
216 | info->alloc_start = btrfs_parse_size(num); | ||
217 | kfree(num); | ||
218 | printk(KERN_INFO | ||
219 | "btrfs: allocations start at %llu\n", | ||
220 | info->alloc_start); | ||
221 | } | ||
222 | break; | ||
223 | case Opt_noacl: | ||
224 | root->fs_info->sb->s_flags &= ~MS_POSIXACL; | ||
225 | break; | ||
226 | default: | ||
227 | break; | ||
228 | } | ||
229 | } | ||
230 | kfree(options); | ||
231 | return 0; | ||
232 | } | ||
233 | |||
234 | /* | ||
235 | * Parse mount options that are required early in the mount process. | ||
236 | * | ||
237 | * All other options will be parsed on much later in the mount process and | ||
238 | * only when we need to allocate a new super block. | ||
239 | */ | ||
240 | static int btrfs_parse_early_options(const char *options, fmode_t flags, | ||
241 | void *holder, char **subvol_name, | ||
242 | struct btrfs_fs_devices **fs_devices) | ||
243 | { | ||
244 | substring_t args[MAX_OPT_ARGS]; | ||
245 | char *opts, *p; | ||
246 | int error = 0; | ||
247 | |||
248 | if (!options) | ||
249 | goto out; | ||
250 | |||
251 | /* | ||
252 | * strsep changes the string, duplicate it because parse_options | ||
253 | * gets called twice | ||
254 | */ | ||
255 | opts = kstrdup(options, GFP_KERNEL); | ||
256 | if (!opts) | ||
257 | return -ENOMEM; | ||
258 | |||
259 | while ((p = strsep(&opts, ",")) != NULL) { | ||
260 | int token; | ||
261 | if (!*p) | ||
262 | continue; | ||
263 | |||
264 | token = match_token(p, tokens, args); | ||
265 | switch (token) { | ||
266 | case Opt_subvol: | ||
267 | *subvol_name = match_strdup(&args[0]); | ||
268 | break; | ||
269 | case Opt_device: | ||
270 | error = btrfs_scan_one_device(match_strdup(&args[0]), | ||
271 | flags, holder, fs_devices); | ||
272 | if (error) | ||
273 | goto out_free_opts; | ||
274 | break; | ||
275 | default: | ||
276 | break; | ||
277 | } | ||
278 | } | ||
279 | |||
280 | out_free_opts: | ||
281 | kfree(opts); | ||
282 | out: | ||
283 | /* | ||
284 | * If no subvolume name is specified we use the default one. Allocate | ||
285 | * a copy of the string "." here so that code later in the | ||
286 | * mount path doesn't care if it's the default volume or another one. | ||
287 | */ | ||
288 | if (!*subvol_name) { | ||
289 | *subvol_name = kstrdup(".", GFP_KERNEL); | ||
290 | if (!*subvol_name) | ||
291 | return -ENOMEM; | ||
292 | } | ||
293 | return error; | ||
294 | } | ||
295 | |||
296 | static int btrfs_fill_super(struct super_block *sb, | ||
297 | struct btrfs_fs_devices *fs_devices, | ||
298 | void *data, int silent) | ||
299 | { | ||
300 | struct inode *inode; | ||
301 | struct dentry *root_dentry; | ||
302 | struct btrfs_super_block *disk_super; | ||
303 | struct btrfs_root *tree_root; | ||
304 | struct btrfs_inode *bi; | ||
305 | int err; | ||
306 | |||
307 | sb->s_maxbytes = MAX_LFS_FILESIZE; | ||
308 | sb->s_magic = BTRFS_SUPER_MAGIC; | ||
309 | sb->s_op = &btrfs_super_ops; | ||
310 | sb->s_export_op = &btrfs_export_ops; | ||
311 | sb->s_xattr = btrfs_xattr_handlers; | ||
312 | sb->s_time_gran = 1; | ||
313 | sb->s_flags |= MS_POSIXACL; | ||
314 | |||
315 | tree_root = open_ctree(sb, fs_devices, (char *)data); | ||
316 | |||
317 | if (IS_ERR(tree_root)) { | ||
318 | printk("btrfs: open_ctree failed\n"); | ||
319 | return PTR_ERR(tree_root); | ||
320 | } | ||
321 | sb->s_fs_info = tree_root; | ||
322 | disk_super = &tree_root->fs_info->super_copy; | ||
323 | inode = btrfs_iget_locked(sb, BTRFS_FIRST_FREE_OBJECTID, | ||
324 | tree_root->fs_info->fs_root); | ||
325 | bi = BTRFS_I(inode); | ||
326 | bi->location.objectid = inode->i_ino; | ||
327 | bi->location.offset = 0; | ||
328 | bi->root = tree_root->fs_info->fs_root; | ||
329 | |||
330 | btrfs_set_key_type(&bi->location, BTRFS_INODE_ITEM_KEY); | ||
331 | |||
332 | if (!inode) { | ||
333 | err = -ENOMEM; | ||
334 | goto fail_close; | ||
335 | } | ||
336 | if (inode->i_state & I_NEW) { | ||
337 | btrfs_read_locked_inode(inode); | ||
338 | unlock_new_inode(inode); | ||
339 | } | ||
340 | |||
341 | root_dentry = d_alloc_root(inode); | ||
342 | if (!root_dentry) { | ||
343 | iput(inode); | ||
344 | err = -ENOMEM; | ||
345 | goto fail_close; | ||
346 | } | ||
347 | #if 0 | ||
348 | /* this does the super kobj at the same time */ | ||
349 | err = btrfs_sysfs_add_super(tree_root->fs_info); | ||
350 | if (err) | ||
351 | goto fail_close; | ||
352 | #endif | ||
353 | |||
354 | sb->s_root = root_dentry; | ||
355 | |||
356 | save_mount_options(sb, data); | ||
357 | return 0; | ||
358 | |||
359 | fail_close: | ||
360 | close_ctree(tree_root); | ||
361 | return err; | ||
362 | } | ||
363 | |||
364 | int btrfs_sync_fs(struct super_block *sb, int wait) | ||
365 | { | ||
366 | struct btrfs_trans_handle *trans; | ||
367 | struct btrfs_root *root; | ||
368 | int ret; | ||
369 | root = btrfs_sb(sb); | ||
370 | |||
371 | if (sb->s_flags & MS_RDONLY) | ||
372 | return 0; | ||
373 | |||
374 | sb->s_dirt = 0; | ||
375 | if (!wait) { | ||
376 | filemap_flush(root->fs_info->btree_inode->i_mapping); | ||
377 | return 0; | ||
378 | } | ||
379 | |||
380 | btrfs_start_delalloc_inodes(root); | ||
381 | btrfs_wait_ordered_extents(root, 0); | ||
382 | |||
383 | btrfs_clean_old_snapshots(root); | ||
384 | trans = btrfs_start_transaction(root, 1); | ||
385 | ret = btrfs_commit_transaction(trans, root); | ||
386 | sb->s_dirt = 0; | ||
387 | return ret; | ||
388 | } | ||
389 | |||
390 | static void btrfs_write_super(struct super_block *sb) | ||
391 | { | ||
392 | sb->s_dirt = 0; | ||
393 | } | ||
394 | |||
395 | static int btrfs_test_super(struct super_block *s, void *data) | ||
396 | { | ||
397 | struct btrfs_fs_devices *test_fs_devices = data; | ||
398 | struct btrfs_root *root = btrfs_sb(s); | ||
399 | |||
400 | return root->fs_info->fs_devices == test_fs_devices; | ||
401 | } | ||
402 | |||
403 | /* | ||
404 | * Find a superblock for the given device / mount point. | ||
405 | * | ||
406 | * Note: This is based on get_sb_bdev from fs/super.c with a few additions | ||
407 | * for multiple device setup. Make sure to keep it in sync. | ||
408 | */ | ||
409 | static int btrfs_get_sb(struct file_system_type *fs_type, int flags, | ||
410 | const char *dev_name, void *data, struct vfsmount *mnt) | ||
411 | { | ||
412 | char *subvol_name = NULL; | ||
413 | struct block_device *bdev = NULL; | ||
414 | struct super_block *s; | ||
415 | struct dentry *root; | ||
416 | struct btrfs_fs_devices *fs_devices = NULL; | ||
417 | fmode_t mode = FMODE_READ; | ||
418 | int error = 0; | ||
419 | |||
420 | if (!(flags & MS_RDONLY)) | ||
421 | mode |= FMODE_WRITE; | ||
422 | |||
423 | error = btrfs_parse_early_options(data, mode, fs_type, | ||
424 | &subvol_name, &fs_devices); | ||
425 | if (error) | ||
426 | return error; | ||
427 | |||
428 | error = btrfs_scan_one_device(dev_name, mode, fs_type, &fs_devices); | ||
429 | if (error) | ||
430 | goto error_free_subvol_name; | ||
431 | |||
432 | error = btrfs_open_devices(fs_devices, mode, fs_type); | ||
433 | if (error) | ||
434 | goto error_free_subvol_name; | ||
435 | |||
436 | if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) { | ||
437 | error = -EACCES; | ||
438 | goto error_close_devices; | ||
439 | } | ||
440 | |||
441 | bdev = fs_devices->latest_bdev; | ||
442 | s = sget(fs_type, btrfs_test_super, set_anon_super, fs_devices); | ||
443 | if (IS_ERR(s)) | ||
444 | goto error_s; | ||
445 | |||
446 | if (s->s_root) { | ||
447 | if ((flags ^ s->s_flags) & MS_RDONLY) { | ||
448 | up_write(&s->s_umount); | ||
449 | deactivate_super(s); | ||
450 | error = -EBUSY; | ||
451 | goto error_close_devices; | ||
452 | } | ||
453 | |||
454 | btrfs_close_devices(fs_devices); | ||
455 | } else { | ||
456 | char b[BDEVNAME_SIZE]; | ||
457 | |||
458 | s->s_flags = flags; | ||
459 | strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id)); | ||
460 | error = btrfs_fill_super(s, fs_devices, data, | ||
461 | flags & MS_SILENT ? 1 : 0); | ||
462 | if (error) { | ||
463 | up_write(&s->s_umount); | ||
464 | deactivate_super(s); | ||
465 | goto error_free_subvol_name; | ||
466 | } | ||
467 | |||
468 | btrfs_sb(s)->fs_info->bdev_holder = fs_type; | ||
469 | s->s_flags |= MS_ACTIVE; | ||
470 | } | ||
471 | |||
472 | if (!strcmp(subvol_name, ".")) | ||
473 | root = dget(s->s_root); | ||
474 | else { | ||
475 | mutex_lock(&s->s_root->d_inode->i_mutex); | ||
476 | root = lookup_one_len(subvol_name, s->s_root, | ||
477 | strlen(subvol_name)); | ||
478 | mutex_unlock(&s->s_root->d_inode->i_mutex); | ||
479 | |||
480 | if (IS_ERR(root)) { | ||
481 | up_write(&s->s_umount); | ||
482 | deactivate_super(s); | ||
483 | error = PTR_ERR(root); | ||
484 | goto error_free_subvol_name; | ||
485 | } | ||
486 | if (!root->d_inode) { | ||
487 | dput(root); | ||
488 | up_write(&s->s_umount); | ||
489 | deactivate_super(s); | ||
490 | error = -ENXIO; | ||
491 | goto error_free_subvol_name; | ||
492 | } | ||
493 | } | ||
494 | |||
495 | mnt->mnt_sb = s; | ||
496 | mnt->mnt_root = root; | ||
497 | |||
498 | kfree(subvol_name); | ||
499 | return 0; | ||
500 | |||
501 | error_s: | ||
502 | error = PTR_ERR(s); | ||
503 | error_close_devices: | ||
504 | btrfs_close_devices(fs_devices); | ||
505 | error_free_subvol_name: | ||
506 | kfree(subvol_name); | ||
507 | return error; | ||
508 | } | ||
509 | |||
510 | static int btrfs_remount(struct super_block *sb, int *flags, char *data) | ||
511 | { | ||
512 | struct btrfs_root *root = btrfs_sb(sb); | ||
513 | int ret; | ||
514 | |||
515 | if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY)) | ||
516 | return 0; | ||
517 | |||
518 | if (*flags & MS_RDONLY) { | ||
519 | sb->s_flags |= MS_RDONLY; | ||
520 | |||
521 | ret = btrfs_commit_super(root); | ||
522 | WARN_ON(ret); | ||
523 | } else { | ||
524 | if (root->fs_info->fs_devices->rw_devices == 0) | ||
525 | return -EACCES; | ||
526 | |||
527 | if (btrfs_super_log_root(&root->fs_info->super_copy) != 0) | ||
528 | return -EINVAL; | ||
529 | |||
530 | ret = btrfs_cleanup_reloc_trees(root); | ||
531 | WARN_ON(ret); | ||
532 | |||
533 | ret = btrfs_cleanup_fs_roots(root->fs_info); | ||
534 | WARN_ON(ret); | ||
535 | |||
536 | sb->s_flags &= ~MS_RDONLY; | ||
537 | } | ||
538 | |||
539 | return 0; | ||
540 | } | ||
541 | |||
542 | static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf) | ||
543 | { | ||
544 | struct btrfs_root *root = btrfs_sb(dentry->d_sb); | ||
545 | struct btrfs_super_block *disk_super = &root->fs_info->super_copy; | ||
546 | int bits = dentry->d_sb->s_blocksize_bits; | ||
547 | __be32 *fsid = (__be32 *)root->fs_info->fsid; | ||
548 | |||
549 | buf->f_namelen = BTRFS_NAME_LEN; | ||
550 | buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits; | ||
551 | buf->f_bfree = buf->f_blocks - | ||
552 | (btrfs_super_bytes_used(disk_super) >> bits); | ||
553 | buf->f_bavail = buf->f_bfree; | ||
554 | buf->f_bsize = dentry->d_sb->s_blocksize; | ||
555 | buf->f_type = BTRFS_SUPER_MAGIC; | ||
556 | |||
557 | /* We treat it as constant endianness (it doesn't matter _which_) | ||
558 | because we want the fsid to come out the same whether mounted | ||
559 | on a big-endian or little-endian host */ | ||
560 | buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]); | ||
561 | buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]); | ||
562 | /* Mask in the root object ID too, to disambiguate subvols */ | ||
563 | buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32; | ||
564 | buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid; | ||
565 | |||
566 | return 0; | ||
567 | } | ||
568 | |||
569 | static struct file_system_type btrfs_fs_type = { | ||
570 | .owner = THIS_MODULE, | ||
571 | .name = "btrfs", | ||
572 | .get_sb = btrfs_get_sb, | ||
573 | .kill_sb = kill_anon_super, | ||
574 | .fs_flags = FS_REQUIRES_DEV, | ||
575 | }; | ||
576 | |||
577 | /* | ||
578 | * used by btrfsctl to scan devices when no FS is mounted | ||
579 | */ | ||
580 | static long btrfs_control_ioctl(struct file *file, unsigned int cmd, | ||
581 | unsigned long arg) | ||
582 | { | ||
583 | struct btrfs_ioctl_vol_args *vol; | ||
584 | struct btrfs_fs_devices *fs_devices; | ||
585 | int ret = 0; | ||
586 | int len; | ||
587 | |||
588 | if (!capable(CAP_SYS_ADMIN)) | ||
589 | return -EPERM; | ||
590 | |||
591 | vol = kmalloc(sizeof(*vol), GFP_KERNEL); | ||
592 | if (copy_from_user(vol, (void __user *)arg, sizeof(*vol))) { | ||
593 | ret = -EFAULT; | ||
594 | goto out; | ||
595 | } | ||
596 | len = strnlen(vol->name, BTRFS_PATH_NAME_MAX); | ||
597 | switch (cmd) { | ||
598 | case BTRFS_IOC_SCAN_DEV: | ||
599 | ret = btrfs_scan_one_device(vol->name, FMODE_READ, | ||
600 | &btrfs_fs_type, &fs_devices); | ||
601 | break; | ||
602 | } | ||
603 | out: | ||
604 | kfree(vol); | ||
605 | return ret; | ||
606 | } | ||
607 | |||
608 | static void btrfs_write_super_lockfs(struct super_block *sb) | ||
609 | { | ||
610 | struct btrfs_root *root = btrfs_sb(sb); | ||
611 | mutex_lock(&root->fs_info->transaction_kthread_mutex); | ||
612 | mutex_lock(&root->fs_info->cleaner_mutex); | ||
613 | } | ||
614 | |||
615 | static void btrfs_unlockfs(struct super_block *sb) | ||
616 | { | ||
617 | struct btrfs_root *root = btrfs_sb(sb); | ||
618 | mutex_unlock(&root->fs_info->cleaner_mutex); | ||
619 | mutex_unlock(&root->fs_info->transaction_kthread_mutex); | ||
620 | } | ||
621 | |||
622 | static struct super_operations btrfs_super_ops = { | ||
623 | .delete_inode = btrfs_delete_inode, | ||
624 | .put_super = btrfs_put_super, | ||
625 | .write_super = btrfs_write_super, | ||
626 | .sync_fs = btrfs_sync_fs, | ||
627 | .show_options = generic_show_options, | ||
628 | .write_inode = btrfs_write_inode, | ||
629 | .dirty_inode = btrfs_dirty_inode, | ||
630 | .alloc_inode = btrfs_alloc_inode, | ||
631 | .destroy_inode = btrfs_destroy_inode, | ||
632 | .statfs = btrfs_statfs, | ||
633 | .remount_fs = btrfs_remount, | ||
634 | .write_super_lockfs = btrfs_write_super_lockfs, | ||
635 | .unlockfs = btrfs_unlockfs, | ||
636 | }; | ||
637 | |||
638 | static const struct file_operations btrfs_ctl_fops = { | ||
639 | .unlocked_ioctl = btrfs_control_ioctl, | ||
640 | .compat_ioctl = btrfs_control_ioctl, | ||
641 | .owner = THIS_MODULE, | ||
642 | }; | ||
643 | |||
644 | static struct miscdevice btrfs_misc = { | ||
645 | .minor = MISC_DYNAMIC_MINOR, | ||
646 | .name = "btrfs-control", | ||
647 | .fops = &btrfs_ctl_fops | ||
648 | }; | ||
649 | |||
650 | static int btrfs_interface_init(void) | ||
651 | { | ||
652 | return misc_register(&btrfs_misc); | ||
653 | } | ||
654 | |||
655 | static void btrfs_interface_exit(void) | ||
656 | { | ||
657 | if (misc_deregister(&btrfs_misc) < 0) | ||
658 | printk(KERN_INFO "misc_deregister failed for control device"); | ||
659 | } | ||
660 | |||
661 | static int __init init_btrfs_fs(void) | ||
662 | { | ||
663 | int err; | ||
664 | |||
665 | err = btrfs_init_sysfs(); | ||
666 | if (err) | ||
667 | return err; | ||
668 | |||
669 | err = btrfs_init_cachep(); | ||
670 | if (err) | ||
671 | goto free_sysfs; | ||
672 | |||
673 | err = extent_io_init(); | ||
674 | if (err) | ||
675 | goto free_cachep; | ||
676 | |||
677 | err = extent_map_init(); | ||
678 | if (err) | ||
679 | goto free_extent_io; | ||
680 | |||
681 | err = btrfs_interface_init(); | ||
682 | if (err) | ||
683 | goto free_extent_map; | ||
684 | |||
685 | err = register_filesystem(&btrfs_fs_type); | ||
686 | if (err) | ||
687 | goto unregister_ioctl; | ||
688 | |||
689 | printk(KERN_INFO "%s loaded\n", BTRFS_BUILD_VERSION); | ||
690 | return 0; | ||
691 | |||
692 | unregister_ioctl: | ||
693 | btrfs_interface_exit(); | ||
694 | free_extent_map: | ||
695 | extent_map_exit(); | ||
696 | free_extent_io: | ||
697 | extent_io_exit(); | ||
698 | free_cachep: | ||
699 | btrfs_destroy_cachep(); | ||
700 | free_sysfs: | ||
701 | btrfs_exit_sysfs(); | ||
702 | return err; | ||
703 | } | ||
704 | |||
705 | static void __exit exit_btrfs_fs(void) | ||
706 | { | ||
707 | btrfs_destroy_cachep(); | ||
708 | extent_map_exit(); | ||
709 | extent_io_exit(); | ||
710 | btrfs_interface_exit(); | ||
711 | unregister_filesystem(&btrfs_fs_type); | ||
712 | btrfs_exit_sysfs(); | ||
713 | btrfs_cleanup_fs_uuids(); | ||
714 | btrfs_zlib_exit(); | ||
715 | } | ||
716 | |||
717 | module_init(init_btrfs_fs) | ||
718 | module_exit(exit_btrfs_fs) | ||
719 | |||
720 | MODULE_LICENSE("GPL"); | ||
diff --git a/fs/btrfs/sysfs.c b/fs/btrfs/sysfs.c new file mode 100644 index 000000000000..a240b6fa81df --- /dev/null +++ b/fs/btrfs/sysfs.c | |||
@@ -0,0 +1,269 @@ | |||
1 | /* | ||
2 | * Copyright (C) 2007 Oracle. All rights reserved. | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or | ||
5 | * modify it under the terms of the GNU General Public | ||
6 | * License v2 as published by the Free Software Foundation. | ||
7 | * | ||
8 | * This program is distributed in the hope that it will be useful, | ||
9 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | ||
11 | * General Public License for more details. | ||
12 | * | ||
13 | * You should have received a copy of the GNU General Public | ||
14 | * License along with this program; if not, write to the | ||
15 | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | ||
16 | * Boston, MA 021110-1307, USA. | ||
17 | */ | ||
18 | |||
19 | #include <linux/sched.h> | ||
20 | #include <linux/slab.h> | ||
21 | #include <linux/spinlock.h> | ||
22 | #include <linux/completion.h> | ||
23 | #include <linux/buffer_head.h> | ||
24 | #include <linux/module.h> | ||
25 | #include <linux/kobject.h> | ||
26 | |||
27 | #include "ctree.h" | ||
28 | #include "disk-io.h" | ||
29 | #include "transaction.h" | ||
30 | |||
31 | static ssize_t root_blocks_used_show(struct btrfs_root *root, char *buf) | ||
32 | { | ||
33 | return snprintf(buf, PAGE_SIZE, "%llu\n", | ||
34 | (unsigned long long)btrfs_root_used(&root->root_item)); | ||
35 | } | ||
36 | |||
37 | static ssize_t root_block_limit_show(struct btrfs_root *root, char *buf) | ||
38 | { | ||
39 | return snprintf(buf, PAGE_SIZE, "%llu\n", | ||
40 | (unsigned long long)btrfs_root_limit(&root->root_item)); | ||
41 | } | ||
42 | |||
43 | static ssize_t super_blocks_used_show(struct btrfs_fs_info *fs, char *buf) | ||
44 | { | ||
45 | |||
46 | return snprintf(buf, PAGE_SIZE, "%llu\n", | ||
47 | (unsigned long long)btrfs_super_bytes_used(&fs->super_copy)); | ||
48 | } | ||
49 | |||
50 | static ssize_t super_total_blocks_show(struct btrfs_fs_info *fs, char *buf) | ||
51 | { | ||
52 | return snprintf(buf, PAGE_SIZE, "%llu\n", | ||
53 | (unsigned long long)btrfs_super_total_bytes(&fs->super_copy)); | ||
54 | } | ||
55 | |||
56 | static ssize_t super_blocksize_show(struct btrfs_fs_info *fs, char *buf) | ||
57 | { | ||
58 | return snprintf(buf, PAGE_SIZE, "%llu\n", | ||
59 | (unsigned long long)btrfs_super_sectorsize(&fs->super_copy)); | ||
60 | } | ||
61 | |||
62 | /* this is for root attrs (subvols/snapshots) */ | ||
63 | struct btrfs_root_attr { | ||
64 | struct attribute attr; | ||
65 | ssize_t (*show)(struct btrfs_root *, char *); | ||
66 | ssize_t (*store)(struct btrfs_root *, const char *, size_t); | ||
67 | }; | ||
68 | |||
69 | #define ROOT_ATTR(name, mode, show, store) \ | ||
70 | static struct btrfs_root_attr btrfs_root_attr_##name = __ATTR(name, mode, \ | ||
71 | show, store) | ||
72 | |||
73 | ROOT_ATTR(blocks_used, 0444, root_blocks_used_show, NULL); | ||
74 | ROOT_ATTR(block_limit, 0644, root_block_limit_show, NULL); | ||
75 | |||
76 | static struct attribute *btrfs_root_attrs[] = { | ||
77 | &btrfs_root_attr_blocks_used.attr, | ||
78 | &btrfs_root_attr_block_limit.attr, | ||
79 | NULL, | ||
80 | }; | ||
81 | |||
82 | /* this is for super attrs (actual full fs) */ | ||
83 | struct btrfs_super_attr { | ||
84 | struct attribute attr; | ||
85 | ssize_t (*show)(struct btrfs_fs_info *, char *); | ||
86 | ssize_t (*store)(struct btrfs_fs_info *, const char *, size_t); | ||
87 | }; | ||
88 | |||
89 | #define SUPER_ATTR(name, mode, show, store) \ | ||
90 | static struct btrfs_super_attr btrfs_super_attr_##name = __ATTR(name, mode, \ | ||
91 | show, store) | ||
92 | |||
93 | SUPER_ATTR(blocks_used, 0444, super_blocks_used_show, NULL); | ||
94 | SUPER_ATTR(total_blocks, 0444, super_total_blocks_show, NULL); | ||
95 | SUPER_ATTR(blocksize, 0444, super_blocksize_show, NULL); | ||
96 | |||
97 | static struct attribute *btrfs_super_attrs[] = { | ||
98 | &btrfs_super_attr_blocks_used.attr, | ||
99 | &btrfs_super_attr_total_blocks.attr, | ||
100 | &btrfs_super_attr_blocksize.attr, | ||
101 | NULL, | ||
102 | }; | ||
103 | |||
104 | static ssize_t btrfs_super_attr_show(struct kobject *kobj, | ||
105 | struct attribute *attr, char *buf) | ||
106 | { | ||
107 | struct btrfs_fs_info *fs = container_of(kobj, struct btrfs_fs_info, | ||
108 | super_kobj); | ||
109 | struct btrfs_super_attr *a = container_of(attr, | ||
110 | struct btrfs_super_attr, | ||
111 | attr); | ||
112 | |||
113 | return a->show ? a->show(fs, buf) : 0; | ||
114 | } | ||
115 | |||
116 | static ssize_t btrfs_super_attr_store(struct kobject *kobj, | ||
117 | struct attribute *attr, | ||
118 | const char *buf, size_t len) | ||
119 | { | ||
120 | struct btrfs_fs_info *fs = container_of(kobj, struct btrfs_fs_info, | ||
121 | super_kobj); | ||
122 | struct btrfs_super_attr *a = container_of(attr, | ||
123 | struct btrfs_super_attr, | ||
124 | attr); | ||
125 | |||
126 | return a->store ? a->store(fs, buf, len) : 0; | ||
127 | } | ||
128 | |||
129 | static ssize_t btrfs_root_attr_show(struct kobject *kobj, | ||
130 | struct attribute *attr, char *buf) | ||
131 | { | ||
132 | struct btrfs_root *root = container_of(kobj, struct btrfs_root, | ||
133 | root_kobj); | ||
134 | struct btrfs_root_attr *a = container_of(attr, | ||
135 | struct btrfs_root_attr, | ||
136 | attr); | ||
137 | |||
138 | return a->show ? a->show(root, buf) : 0; | ||
139 | } | ||
140 | |||
141 | static ssize_t btrfs_root_attr_store(struct kobject *kobj, | ||
142 | struct attribute *attr, | ||
143 | const char *buf, size_t len) | ||
144 | { | ||
145 | struct btrfs_root *root = container_of(kobj, struct btrfs_root, | ||
146 | root_kobj); | ||
147 | struct btrfs_root_attr *a = container_of(attr, | ||
148 | struct btrfs_root_attr, | ||
149 | attr); | ||
150 | return a->store ? a->store(root, buf, len) : 0; | ||
151 | } | ||
152 | |||
153 | static void btrfs_super_release(struct kobject *kobj) | ||
154 | { | ||
155 | struct btrfs_fs_info *fs = container_of(kobj, struct btrfs_fs_info, | ||
156 | super_kobj); | ||
157 | complete(&fs->kobj_unregister); | ||
158 | } | ||
159 | |||
160 | static void btrfs_root_release(struct kobject *kobj) | ||
161 | { | ||
162 | struct btrfs_root *root = container_of(kobj, struct btrfs_root, | ||
163 | root_kobj); | ||
164 | complete(&root->kobj_unregister); | ||
165 | } | ||
166 | |||
167 | static struct sysfs_ops btrfs_super_attr_ops = { | ||
168 | .show = btrfs_super_attr_show, | ||
169 | .store = btrfs_super_attr_store, | ||
170 | }; | ||
171 | |||
172 | static struct sysfs_ops btrfs_root_attr_ops = { | ||
173 | .show = btrfs_root_attr_show, | ||
174 | .store = btrfs_root_attr_store, | ||
175 | }; | ||
176 | |||
177 | static struct kobj_type btrfs_root_ktype = { | ||
178 | .default_attrs = btrfs_root_attrs, | ||
179 | .sysfs_ops = &btrfs_root_attr_ops, | ||
180 | .release = btrfs_root_release, | ||
181 | }; | ||
182 | |||
183 | static struct kobj_type btrfs_super_ktype = { | ||
184 | .default_attrs = btrfs_super_attrs, | ||
185 | .sysfs_ops = &btrfs_super_attr_ops, | ||
186 | .release = btrfs_super_release, | ||
187 | }; | ||
188 | |||
189 | /* /sys/fs/btrfs/ entry */ | ||
190 | static struct kset *btrfs_kset; | ||
191 | |||
192 | int btrfs_sysfs_add_super(struct btrfs_fs_info *fs) | ||
193 | { | ||
194 | int error; | ||
195 | char *name; | ||
196 | char c; | ||
197 | int len = strlen(fs->sb->s_id) + 1; | ||
198 | int i; | ||
199 | |||
200 | name = kmalloc(len, GFP_NOFS); | ||
201 | if (!name) { | ||
202 | error = -ENOMEM; | ||
203 | goto fail; | ||
204 | } | ||
205 | |||
206 | for (i = 0; i < len; i++) { | ||
207 | c = fs->sb->s_id[i]; | ||
208 | if (c == '/' || c == '\\') | ||
209 | c = '!'; | ||
210 | name[i] = c; | ||
211 | } | ||
212 | name[len] = '\0'; | ||
213 | |||
214 | fs->super_kobj.kset = btrfs_kset; | ||
215 | error = kobject_init_and_add(&fs->super_kobj, &btrfs_super_ktype, | ||
216 | NULL, "%s", name); | ||
217 | kfree(name); | ||
218 | if (error) | ||
219 | goto fail; | ||
220 | |||
221 | return 0; | ||
222 | |||
223 | fail: | ||
224 | printk(KERN_ERR "btrfs: sysfs creation for super failed\n"); | ||
225 | return error; | ||
226 | } | ||
227 | |||
228 | int btrfs_sysfs_add_root(struct btrfs_root *root) | ||
229 | { | ||
230 | int error; | ||
231 | |||
232 | error = kobject_init_and_add(&root->root_kobj, &btrfs_root_ktype, | ||
233 | &root->fs_info->super_kobj, | ||
234 | "%s", root->name); | ||
235 | if (error) | ||
236 | goto fail; | ||
237 | |||
238 | return 0; | ||
239 | |||
240 | fail: | ||
241 | printk(KERN_ERR "btrfs: sysfs creation for root failed\n"); | ||
242 | return error; | ||
243 | } | ||
244 | |||
245 | void btrfs_sysfs_del_root(struct btrfs_root *root) | ||
246 | { | ||
247 | kobject_put(&root->root_kobj); | ||
248 | wait_for_completion(&root->kobj_unregister); | ||
249 | } | ||
250 | |||
251 | void btrfs_sysfs_del_super(struct btrfs_fs_info *fs) | ||
252 | { | ||
253 | kobject_put(&fs->super_kobj); | ||
254 | wait_for_completion(&fs->kobj_unregister); | ||
255 | } | ||
256 | |||
257 | int btrfs_init_sysfs(void) | ||
258 | { | ||
259 | btrfs_kset = kset_create_and_add("btrfs", NULL, fs_kobj); | ||
260 | if (!btrfs_kset) | ||
261 | return -ENOMEM; | ||
262 | return 0; | ||
263 | } | ||
264 | |||
265 | void btrfs_exit_sysfs(void) | ||
266 | { | ||
267 | kset_unregister(btrfs_kset); | ||
268 | } | ||
269 | |||
diff --git a/fs/btrfs/transaction.c b/fs/btrfs/transaction.c new file mode 100644 index 000000000000..56ab1f5ea11b --- /dev/null +++ b/fs/btrfs/transaction.c | |||
@@ -0,0 +1,1097 @@ | |||
1 | /* | ||
2 | * Copyright (C) 2007 Oracle. All rights reserved. | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or | ||
5 | * modify it under the terms of the GNU General Public | ||
6 | * License v2 as published by the Free Software Foundation. | ||
7 | * | ||
8 | * This program is distributed in the hope that it will be useful, | ||
9 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | ||
11 | * General Public License for more details. | ||
12 | * | ||
13 | * You should have received a copy of the GNU General Public | ||
14 | * License along with this program; if not, write to the | ||
15 | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | ||
16 | * Boston, MA 021110-1307, USA. | ||
17 | */ | ||
18 | |||
19 | #include <linux/fs.h> | ||
20 | #include <linux/sched.h> | ||
21 | #include <linux/writeback.h> | ||
22 | #include <linux/pagemap.h> | ||
23 | #include <linux/blkdev.h> | ||
24 | #include "ctree.h" | ||
25 | #include "disk-io.h" | ||
26 | #include "transaction.h" | ||
27 | #include "locking.h" | ||
28 | #include "ref-cache.h" | ||
29 | #include "tree-log.h" | ||
30 | |||
31 | #define BTRFS_ROOT_TRANS_TAG 0 | ||
32 | |||
33 | static noinline void put_transaction(struct btrfs_transaction *transaction) | ||
34 | { | ||
35 | WARN_ON(transaction->use_count == 0); | ||
36 | transaction->use_count--; | ||
37 | if (transaction->use_count == 0) { | ||
38 | list_del_init(&transaction->list); | ||
39 | memset(transaction, 0, sizeof(*transaction)); | ||
40 | kmem_cache_free(btrfs_transaction_cachep, transaction); | ||
41 | } | ||
42 | } | ||
43 | |||
44 | /* | ||
45 | * either allocate a new transaction or hop into the existing one | ||
46 | */ | ||
47 | static noinline int join_transaction(struct btrfs_root *root) | ||
48 | { | ||
49 | struct btrfs_transaction *cur_trans; | ||
50 | cur_trans = root->fs_info->running_transaction; | ||
51 | if (!cur_trans) { | ||
52 | cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, | ||
53 | GFP_NOFS); | ||
54 | BUG_ON(!cur_trans); | ||
55 | root->fs_info->generation++; | ||
56 | root->fs_info->last_alloc = 0; | ||
57 | root->fs_info->last_data_alloc = 0; | ||
58 | cur_trans->num_writers = 1; | ||
59 | cur_trans->num_joined = 0; | ||
60 | cur_trans->transid = root->fs_info->generation; | ||
61 | init_waitqueue_head(&cur_trans->writer_wait); | ||
62 | init_waitqueue_head(&cur_trans->commit_wait); | ||
63 | cur_trans->in_commit = 0; | ||
64 | cur_trans->blocked = 0; | ||
65 | cur_trans->use_count = 1; | ||
66 | cur_trans->commit_done = 0; | ||
67 | cur_trans->start_time = get_seconds(); | ||
68 | INIT_LIST_HEAD(&cur_trans->pending_snapshots); | ||
69 | list_add_tail(&cur_trans->list, &root->fs_info->trans_list); | ||
70 | extent_io_tree_init(&cur_trans->dirty_pages, | ||
71 | root->fs_info->btree_inode->i_mapping, | ||
72 | GFP_NOFS); | ||
73 | spin_lock(&root->fs_info->new_trans_lock); | ||
74 | root->fs_info->running_transaction = cur_trans; | ||
75 | spin_unlock(&root->fs_info->new_trans_lock); | ||
76 | } else { | ||
77 | cur_trans->num_writers++; | ||
78 | cur_trans->num_joined++; | ||
79 | } | ||
80 | |||
81 | return 0; | ||
82 | } | ||
83 | |||
84 | /* | ||
85 | * this does all the record keeping required to make sure that a reference | ||
86 | * counted root is properly recorded in a given transaction. This is required | ||
87 | * to make sure the old root from before we joined the transaction is deleted | ||
88 | * when the transaction commits | ||
89 | */ | ||
90 | noinline int btrfs_record_root_in_trans(struct btrfs_root *root) | ||
91 | { | ||
92 | struct btrfs_dirty_root *dirty; | ||
93 | u64 running_trans_id = root->fs_info->running_transaction->transid; | ||
94 | if (root->ref_cows && root->last_trans < running_trans_id) { | ||
95 | WARN_ON(root == root->fs_info->extent_root); | ||
96 | if (root->root_item.refs != 0) { | ||
97 | radix_tree_tag_set(&root->fs_info->fs_roots_radix, | ||
98 | (unsigned long)root->root_key.objectid, | ||
99 | BTRFS_ROOT_TRANS_TAG); | ||
100 | |||
101 | dirty = kmalloc(sizeof(*dirty), GFP_NOFS); | ||
102 | BUG_ON(!dirty); | ||
103 | dirty->root = kmalloc(sizeof(*dirty->root), GFP_NOFS); | ||
104 | BUG_ON(!dirty->root); | ||
105 | dirty->latest_root = root; | ||
106 | INIT_LIST_HEAD(&dirty->list); | ||
107 | |||
108 | root->commit_root = btrfs_root_node(root); | ||
109 | |||
110 | memcpy(dirty->root, root, sizeof(*root)); | ||
111 | spin_lock_init(&dirty->root->node_lock); | ||
112 | spin_lock_init(&dirty->root->list_lock); | ||
113 | mutex_init(&dirty->root->objectid_mutex); | ||
114 | mutex_init(&dirty->root->log_mutex); | ||
115 | INIT_LIST_HEAD(&dirty->root->dead_list); | ||
116 | dirty->root->node = root->commit_root; | ||
117 | dirty->root->commit_root = NULL; | ||
118 | |||
119 | spin_lock(&root->list_lock); | ||
120 | list_add(&dirty->root->dead_list, &root->dead_list); | ||
121 | spin_unlock(&root->list_lock); | ||
122 | |||
123 | root->dirty_root = dirty; | ||
124 | } else { | ||
125 | WARN_ON(1); | ||
126 | } | ||
127 | root->last_trans = running_trans_id; | ||
128 | } | ||
129 | return 0; | ||
130 | } | ||
131 | |||
132 | /* wait for commit against the current transaction to become unblocked | ||
133 | * when this is done, it is safe to start a new transaction, but the current | ||
134 | * transaction might not be fully on disk. | ||
135 | */ | ||
136 | static void wait_current_trans(struct btrfs_root *root) | ||
137 | { | ||
138 | struct btrfs_transaction *cur_trans; | ||
139 | |||
140 | cur_trans = root->fs_info->running_transaction; | ||
141 | if (cur_trans && cur_trans->blocked) { | ||
142 | DEFINE_WAIT(wait); | ||
143 | cur_trans->use_count++; | ||
144 | while (1) { | ||
145 | prepare_to_wait(&root->fs_info->transaction_wait, &wait, | ||
146 | TASK_UNINTERRUPTIBLE); | ||
147 | if (cur_trans->blocked) { | ||
148 | mutex_unlock(&root->fs_info->trans_mutex); | ||
149 | schedule(); | ||
150 | mutex_lock(&root->fs_info->trans_mutex); | ||
151 | finish_wait(&root->fs_info->transaction_wait, | ||
152 | &wait); | ||
153 | } else { | ||
154 | finish_wait(&root->fs_info->transaction_wait, | ||
155 | &wait); | ||
156 | break; | ||
157 | } | ||
158 | } | ||
159 | put_transaction(cur_trans); | ||
160 | } | ||
161 | } | ||
162 | |||
163 | static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root, | ||
164 | int num_blocks, int wait) | ||
165 | { | ||
166 | struct btrfs_trans_handle *h = | ||
167 | kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS); | ||
168 | int ret; | ||
169 | |||
170 | mutex_lock(&root->fs_info->trans_mutex); | ||
171 | if (!root->fs_info->log_root_recovering && | ||
172 | ((wait == 1 && !root->fs_info->open_ioctl_trans) || wait == 2)) | ||
173 | wait_current_trans(root); | ||
174 | ret = join_transaction(root); | ||
175 | BUG_ON(ret); | ||
176 | |||
177 | btrfs_record_root_in_trans(root); | ||
178 | h->transid = root->fs_info->running_transaction->transid; | ||
179 | h->transaction = root->fs_info->running_transaction; | ||
180 | h->blocks_reserved = num_blocks; | ||
181 | h->blocks_used = 0; | ||
182 | h->block_group = 0; | ||
183 | h->alloc_exclude_nr = 0; | ||
184 | h->alloc_exclude_start = 0; | ||
185 | root->fs_info->running_transaction->use_count++; | ||
186 | mutex_unlock(&root->fs_info->trans_mutex); | ||
187 | return h; | ||
188 | } | ||
189 | |||
190 | struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root, | ||
191 | int num_blocks) | ||
192 | { | ||
193 | return start_transaction(root, num_blocks, 1); | ||
194 | } | ||
195 | struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root, | ||
196 | int num_blocks) | ||
197 | { | ||
198 | return start_transaction(root, num_blocks, 0); | ||
199 | } | ||
200 | |||
201 | struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *r, | ||
202 | int num_blocks) | ||
203 | { | ||
204 | return start_transaction(r, num_blocks, 2); | ||
205 | } | ||
206 | |||
207 | /* wait for a transaction commit to be fully complete */ | ||
208 | static noinline int wait_for_commit(struct btrfs_root *root, | ||
209 | struct btrfs_transaction *commit) | ||
210 | { | ||
211 | DEFINE_WAIT(wait); | ||
212 | mutex_lock(&root->fs_info->trans_mutex); | ||
213 | while (!commit->commit_done) { | ||
214 | prepare_to_wait(&commit->commit_wait, &wait, | ||
215 | TASK_UNINTERRUPTIBLE); | ||
216 | if (commit->commit_done) | ||
217 | break; | ||
218 | mutex_unlock(&root->fs_info->trans_mutex); | ||
219 | schedule(); | ||
220 | mutex_lock(&root->fs_info->trans_mutex); | ||
221 | } | ||
222 | mutex_unlock(&root->fs_info->trans_mutex); | ||
223 | finish_wait(&commit->commit_wait, &wait); | ||
224 | return 0; | ||
225 | } | ||
226 | |||
227 | /* | ||
228 | * rate limit against the drop_snapshot code. This helps to slow down new | ||
229 | * operations if the drop_snapshot code isn't able to keep up. | ||
230 | */ | ||
231 | static void throttle_on_drops(struct btrfs_root *root) | ||
232 | { | ||
233 | struct btrfs_fs_info *info = root->fs_info; | ||
234 | int harder_count = 0; | ||
235 | |||
236 | harder: | ||
237 | if (atomic_read(&info->throttles)) { | ||
238 | DEFINE_WAIT(wait); | ||
239 | int thr; | ||
240 | thr = atomic_read(&info->throttle_gen); | ||
241 | |||
242 | do { | ||
243 | prepare_to_wait(&info->transaction_throttle, | ||
244 | &wait, TASK_UNINTERRUPTIBLE); | ||
245 | if (!atomic_read(&info->throttles)) { | ||
246 | finish_wait(&info->transaction_throttle, &wait); | ||
247 | break; | ||
248 | } | ||
249 | schedule(); | ||
250 | finish_wait(&info->transaction_throttle, &wait); | ||
251 | } while (thr == atomic_read(&info->throttle_gen)); | ||
252 | harder_count++; | ||
253 | |||
254 | if (root->fs_info->total_ref_cache_size > 1 * 1024 * 1024 && | ||
255 | harder_count < 2) | ||
256 | goto harder; | ||
257 | |||
258 | if (root->fs_info->total_ref_cache_size > 5 * 1024 * 1024 && | ||
259 | harder_count < 10) | ||
260 | goto harder; | ||
261 | |||
262 | if (root->fs_info->total_ref_cache_size > 10 * 1024 * 1024 && | ||
263 | harder_count < 20) | ||
264 | goto harder; | ||
265 | } | ||
266 | } | ||
267 | |||
268 | void btrfs_throttle(struct btrfs_root *root) | ||
269 | { | ||
270 | mutex_lock(&root->fs_info->trans_mutex); | ||
271 | if (!root->fs_info->open_ioctl_trans) | ||
272 | wait_current_trans(root); | ||
273 | mutex_unlock(&root->fs_info->trans_mutex); | ||
274 | |||
275 | throttle_on_drops(root); | ||
276 | } | ||
277 | |||
278 | static int __btrfs_end_transaction(struct btrfs_trans_handle *trans, | ||
279 | struct btrfs_root *root, int throttle) | ||
280 | { | ||
281 | struct btrfs_transaction *cur_trans; | ||
282 | struct btrfs_fs_info *info = root->fs_info; | ||
283 | |||
284 | mutex_lock(&info->trans_mutex); | ||
285 | cur_trans = info->running_transaction; | ||
286 | WARN_ON(cur_trans != trans->transaction); | ||
287 | WARN_ON(cur_trans->num_writers < 1); | ||
288 | cur_trans->num_writers--; | ||
289 | |||
290 | if (waitqueue_active(&cur_trans->writer_wait)) | ||
291 | wake_up(&cur_trans->writer_wait); | ||
292 | put_transaction(cur_trans); | ||
293 | mutex_unlock(&info->trans_mutex); | ||
294 | memset(trans, 0, sizeof(*trans)); | ||
295 | kmem_cache_free(btrfs_trans_handle_cachep, trans); | ||
296 | |||
297 | if (throttle) | ||
298 | throttle_on_drops(root); | ||
299 | |||
300 | return 0; | ||
301 | } | ||
302 | |||
303 | int btrfs_end_transaction(struct btrfs_trans_handle *trans, | ||
304 | struct btrfs_root *root) | ||
305 | { | ||
306 | return __btrfs_end_transaction(trans, root, 0); | ||
307 | } | ||
308 | |||
309 | int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans, | ||
310 | struct btrfs_root *root) | ||
311 | { | ||
312 | return __btrfs_end_transaction(trans, root, 1); | ||
313 | } | ||
314 | |||
315 | /* | ||
316 | * when btree blocks are allocated, they have some corresponding bits set for | ||
317 | * them in one of two extent_io trees. This is used to make sure all of | ||
318 | * those extents are on disk for transaction or log commit | ||
319 | */ | ||
320 | int btrfs_write_and_wait_marked_extents(struct btrfs_root *root, | ||
321 | struct extent_io_tree *dirty_pages) | ||
322 | { | ||
323 | int ret; | ||
324 | int err = 0; | ||
325 | int werr = 0; | ||
326 | struct page *page; | ||
327 | struct inode *btree_inode = root->fs_info->btree_inode; | ||
328 | u64 start = 0; | ||
329 | u64 end; | ||
330 | unsigned long index; | ||
331 | |||
332 | while (1) { | ||
333 | ret = find_first_extent_bit(dirty_pages, start, &start, &end, | ||
334 | EXTENT_DIRTY); | ||
335 | if (ret) | ||
336 | break; | ||
337 | while (start <= end) { | ||
338 | cond_resched(); | ||
339 | |||
340 | index = start >> PAGE_CACHE_SHIFT; | ||
341 | start = (u64)(index + 1) << PAGE_CACHE_SHIFT; | ||
342 | page = find_get_page(btree_inode->i_mapping, index); | ||
343 | if (!page) | ||
344 | continue; | ||
345 | |||
346 | btree_lock_page_hook(page); | ||
347 | if (!page->mapping) { | ||
348 | unlock_page(page); | ||
349 | page_cache_release(page); | ||
350 | continue; | ||
351 | } | ||
352 | |||
353 | if (PageWriteback(page)) { | ||
354 | if (PageDirty(page)) | ||
355 | wait_on_page_writeback(page); | ||
356 | else { | ||
357 | unlock_page(page); | ||
358 | page_cache_release(page); | ||
359 | continue; | ||
360 | } | ||
361 | } | ||
362 | err = write_one_page(page, 0); | ||
363 | if (err) | ||
364 | werr = err; | ||
365 | page_cache_release(page); | ||
366 | } | ||
367 | } | ||
368 | while (1) { | ||
369 | ret = find_first_extent_bit(dirty_pages, 0, &start, &end, | ||
370 | EXTENT_DIRTY); | ||
371 | if (ret) | ||
372 | break; | ||
373 | |||
374 | clear_extent_dirty(dirty_pages, start, end, GFP_NOFS); | ||
375 | while (start <= end) { | ||
376 | index = start >> PAGE_CACHE_SHIFT; | ||
377 | start = (u64)(index + 1) << PAGE_CACHE_SHIFT; | ||
378 | page = find_get_page(btree_inode->i_mapping, index); | ||
379 | if (!page) | ||
380 | continue; | ||
381 | if (PageDirty(page)) { | ||
382 | btree_lock_page_hook(page); | ||
383 | wait_on_page_writeback(page); | ||
384 | err = write_one_page(page, 0); | ||
385 | if (err) | ||
386 | werr = err; | ||
387 | } | ||
388 | wait_on_page_writeback(page); | ||
389 | page_cache_release(page); | ||
390 | cond_resched(); | ||
391 | } | ||
392 | } | ||
393 | if (err) | ||
394 | werr = err; | ||
395 | return werr; | ||
396 | } | ||
397 | |||
398 | int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans, | ||
399 | struct btrfs_root *root) | ||
400 | { | ||
401 | if (!trans || !trans->transaction) { | ||
402 | struct inode *btree_inode; | ||
403 | btree_inode = root->fs_info->btree_inode; | ||
404 | return filemap_write_and_wait(btree_inode->i_mapping); | ||
405 | } | ||
406 | return btrfs_write_and_wait_marked_extents(root, | ||
407 | &trans->transaction->dirty_pages); | ||
408 | } | ||
409 | |||
410 | /* | ||
411 | * this is used to update the root pointer in the tree of tree roots. | ||
412 | * | ||
413 | * But, in the case of the extent allocation tree, updating the root | ||
414 | * pointer may allocate blocks which may change the root of the extent | ||
415 | * allocation tree. | ||
416 | * | ||
417 | * So, this loops and repeats and makes sure the cowonly root didn't | ||
418 | * change while the root pointer was being updated in the metadata. | ||
419 | */ | ||
420 | static int update_cowonly_root(struct btrfs_trans_handle *trans, | ||
421 | struct btrfs_root *root) | ||
422 | { | ||
423 | int ret; | ||
424 | u64 old_root_bytenr; | ||
425 | struct btrfs_root *tree_root = root->fs_info->tree_root; | ||
426 | |||
427 | btrfs_extent_post_op(trans, root); | ||
428 | btrfs_write_dirty_block_groups(trans, root); | ||
429 | btrfs_extent_post_op(trans, root); | ||
430 | |||
431 | while (1) { | ||
432 | old_root_bytenr = btrfs_root_bytenr(&root->root_item); | ||
433 | if (old_root_bytenr == root->node->start) | ||
434 | break; | ||
435 | btrfs_set_root_bytenr(&root->root_item, | ||
436 | root->node->start); | ||
437 | btrfs_set_root_level(&root->root_item, | ||
438 | btrfs_header_level(root->node)); | ||
439 | btrfs_set_root_generation(&root->root_item, trans->transid); | ||
440 | |||
441 | btrfs_extent_post_op(trans, root); | ||
442 | |||
443 | ret = btrfs_update_root(trans, tree_root, | ||
444 | &root->root_key, | ||
445 | &root->root_item); | ||
446 | BUG_ON(ret); | ||
447 | btrfs_write_dirty_block_groups(trans, root); | ||
448 | btrfs_extent_post_op(trans, root); | ||
449 | } | ||
450 | return 0; | ||
451 | } | ||
452 | |||
453 | /* | ||
454 | * update all the cowonly tree roots on disk | ||
455 | */ | ||
456 | int btrfs_commit_tree_roots(struct btrfs_trans_handle *trans, | ||
457 | struct btrfs_root *root) | ||
458 | { | ||
459 | struct btrfs_fs_info *fs_info = root->fs_info; | ||
460 | struct list_head *next; | ||
461 | struct extent_buffer *eb; | ||
462 | |||
463 | btrfs_extent_post_op(trans, fs_info->tree_root); | ||
464 | |||
465 | eb = btrfs_lock_root_node(fs_info->tree_root); | ||
466 | btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb, 0); | ||
467 | btrfs_tree_unlock(eb); | ||
468 | free_extent_buffer(eb); | ||
469 | |||
470 | btrfs_extent_post_op(trans, fs_info->tree_root); | ||
471 | |||
472 | while (!list_empty(&fs_info->dirty_cowonly_roots)) { | ||
473 | next = fs_info->dirty_cowonly_roots.next; | ||
474 | list_del_init(next); | ||
475 | root = list_entry(next, struct btrfs_root, dirty_list); | ||
476 | |||
477 | update_cowonly_root(trans, root); | ||
478 | } | ||
479 | return 0; | ||
480 | } | ||
481 | |||
482 | /* | ||
483 | * dead roots are old snapshots that need to be deleted. This allocates | ||
484 | * a dirty root struct and adds it into the list of dead roots that need to | ||
485 | * be deleted | ||
486 | */ | ||
487 | int btrfs_add_dead_root(struct btrfs_root *root, struct btrfs_root *latest) | ||
488 | { | ||
489 | struct btrfs_dirty_root *dirty; | ||
490 | |||
491 | dirty = kmalloc(sizeof(*dirty), GFP_NOFS); | ||
492 | if (!dirty) | ||
493 | return -ENOMEM; | ||
494 | dirty->root = root; | ||
495 | dirty->latest_root = latest; | ||
496 | |||
497 | mutex_lock(&root->fs_info->trans_mutex); | ||
498 | list_add(&dirty->list, &latest->fs_info->dead_roots); | ||
499 | mutex_unlock(&root->fs_info->trans_mutex); | ||
500 | return 0; | ||
501 | } | ||
502 | |||
503 | /* | ||
504 | * at transaction commit time we need to schedule the old roots for | ||
505 | * deletion via btrfs_drop_snapshot. This runs through all the | ||
506 | * reference counted roots that were modified in the current | ||
507 | * transaction and puts them into the drop list | ||
508 | */ | ||
509 | static noinline int add_dirty_roots(struct btrfs_trans_handle *trans, | ||
510 | struct radix_tree_root *radix, | ||
511 | struct list_head *list) | ||
512 | { | ||
513 | struct btrfs_dirty_root *dirty; | ||
514 | struct btrfs_root *gang[8]; | ||
515 | struct btrfs_root *root; | ||
516 | int i; | ||
517 | int ret; | ||
518 | int err = 0; | ||
519 | u32 refs; | ||
520 | |||
521 | while (1) { | ||
522 | ret = radix_tree_gang_lookup_tag(radix, (void **)gang, 0, | ||
523 | ARRAY_SIZE(gang), | ||
524 | BTRFS_ROOT_TRANS_TAG); | ||
525 | if (ret == 0) | ||
526 | break; | ||
527 | for (i = 0; i < ret; i++) { | ||
528 | root = gang[i]; | ||
529 | radix_tree_tag_clear(radix, | ||
530 | (unsigned long)root->root_key.objectid, | ||
531 | BTRFS_ROOT_TRANS_TAG); | ||
532 | |||
533 | BUG_ON(!root->ref_tree); | ||
534 | dirty = root->dirty_root; | ||
535 | |||
536 | btrfs_free_log(trans, root); | ||
537 | btrfs_free_reloc_root(trans, root); | ||
538 | |||
539 | if (root->commit_root == root->node) { | ||
540 | WARN_ON(root->node->start != | ||
541 | btrfs_root_bytenr(&root->root_item)); | ||
542 | |||
543 | free_extent_buffer(root->commit_root); | ||
544 | root->commit_root = NULL; | ||
545 | root->dirty_root = NULL; | ||
546 | |||
547 | spin_lock(&root->list_lock); | ||
548 | list_del_init(&dirty->root->dead_list); | ||
549 | spin_unlock(&root->list_lock); | ||
550 | |||
551 | kfree(dirty->root); | ||
552 | kfree(dirty); | ||
553 | |||
554 | /* make sure to update the root on disk | ||
555 | * so we get any updates to the block used | ||
556 | * counts | ||
557 | */ | ||
558 | err = btrfs_update_root(trans, | ||
559 | root->fs_info->tree_root, | ||
560 | &root->root_key, | ||
561 | &root->root_item); | ||
562 | continue; | ||
563 | } | ||
564 | |||
565 | memset(&root->root_item.drop_progress, 0, | ||
566 | sizeof(struct btrfs_disk_key)); | ||
567 | root->root_item.drop_level = 0; | ||
568 | root->commit_root = NULL; | ||
569 | root->dirty_root = NULL; | ||
570 | root->root_key.offset = root->fs_info->generation; | ||
571 | btrfs_set_root_bytenr(&root->root_item, | ||
572 | root->node->start); | ||
573 | btrfs_set_root_level(&root->root_item, | ||
574 | btrfs_header_level(root->node)); | ||
575 | btrfs_set_root_generation(&root->root_item, | ||
576 | root->root_key.offset); | ||
577 | |||
578 | err = btrfs_insert_root(trans, root->fs_info->tree_root, | ||
579 | &root->root_key, | ||
580 | &root->root_item); | ||
581 | if (err) | ||
582 | break; | ||
583 | |||
584 | refs = btrfs_root_refs(&dirty->root->root_item); | ||
585 | btrfs_set_root_refs(&dirty->root->root_item, refs - 1); | ||
586 | err = btrfs_update_root(trans, root->fs_info->tree_root, | ||
587 | &dirty->root->root_key, | ||
588 | &dirty->root->root_item); | ||
589 | |||
590 | BUG_ON(err); | ||
591 | if (refs == 1) { | ||
592 | list_add(&dirty->list, list); | ||
593 | } else { | ||
594 | WARN_ON(1); | ||
595 | free_extent_buffer(dirty->root->node); | ||
596 | kfree(dirty->root); | ||
597 | kfree(dirty); | ||
598 | } | ||
599 | } | ||
600 | } | ||
601 | return err; | ||
602 | } | ||
603 | |||
604 | /* | ||
605 | * defrag a given btree. If cacheonly == 1, this won't read from the disk, | ||
606 | * otherwise every leaf in the btree is read and defragged. | ||
607 | */ | ||
608 | int btrfs_defrag_root(struct btrfs_root *root, int cacheonly) | ||
609 | { | ||
610 | struct btrfs_fs_info *info = root->fs_info; | ||
611 | int ret; | ||
612 | struct btrfs_trans_handle *trans; | ||
613 | unsigned long nr; | ||
614 | |||
615 | smp_mb(); | ||
616 | if (root->defrag_running) | ||
617 | return 0; | ||
618 | trans = btrfs_start_transaction(root, 1); | ||
619 | while (1) { | ||
620 | root->defrag_running = 1; | ||
621 | ret = btrfs_defrag_leaves(trans, root, cacheonly); | ||
622 | nr = trans->blocks_used; | ||
623 | btrfs_end_transaction(trans, root); | ||
624 | btrfs_btree_balance_dirty(info->tree_root, nr); | ||
625 | cond_resched(); | ||
626 | |||
627 | trans = btrfs_start_transaction(root, 1); | ||
628 | if (root->fs_info->closing || ret != -EAGAIN) | ||
629 | break; | ||
630 | } | ||
631 | root->defrag_running = 0; | ||
632 | smp_mb(); | ||
633 | btrfs_end_transaction(trans, root); | ||
634 | return 0; | ||
635 | } | ||
636 | |||
637 | /* | ||
638 | * Given a list of roots that need to be deleted, call btrfs_drop_snapshot on | ||
639 | * all of them | ||
640 | */ | ||
641 | static noinline int drop_dirty_roots(struct btrfs_root *tree_root, | ||
642 | struct list_head *list) | ||
643 | { | ||
644 | struct btrfs_dirty_root *dirty; | ||
645 | struct btrfs_trans_handle *trans; | ||
646 | unsigned long nr; | ||
647 | u64 num_bytes; | ||
648 | u64 bytes_used; | ||
649 | u64 max_useless; | ||
650 | int ret = 0; | ||
651 | int err; | ||
652 | |||
653 | while (!list_empty(list)) { | ||
654 | struct btrfs_root *root; | ||
655 | |||
656 | dirty = list_entry(list->prev, struct btrfs_dirty_root, list); | ||
657 | list_del_init(&dirty->list); | ||
658 | |||
659 | num_bytes = btrfs_root_used(&dirty->root->root_item); | ||
660 | root = dirty->latest_root; | ||
661 | atomic_inc(&root->fs_info->throttles); | ||
662 | |||
663 | while (1) { | ||
664 | trans = btrfs_start_transaction(tree_root, 1); | ||
665 | mutex_lock(&root->fs_info->drop_mutex); | ||
666 | ret = btrfs_drop_snapshot(trans, dirty->root); | ||
667 | if (ret != -EAGAIN) | ||
668 | break; | ||
669 | mutex_unlock(&root->fs_info->drop_mutex); | ||
670 | |||
671 | err = btrfs_update_root(trans, | ||
672 | tree_root, | ||
673 | &dirty->root->root_key, | ||
674 | &dirty->root->root_item); | ||
675 | if (err) | ||
676 | ret = err; | ||
677 | nr = trans->blocks_used; | ||
678 | ret = btrfs_end_transaction(trans, tree_root); | ||
679 | BUG_ON(ret); | ||
680 | |||
681 | btrfs_btree_balance_dirty(tree_root, nr); | ||
682 | cond_resched(); | ||
683 | } | ||
684 | BUG_ON(ret); | ||
685 | atomic_dec(&root->fs_info->throttles); | ||
686 | wake_up(&root->fs_info->transaction_throttle); | ||
687 | |||
688 | num_bytes -= btrfs_root_used(&dirty->root->root_item); | ||
689 | bytes_used = btrfs_root_used(&root->root_item); | ||
690 | if (num_bytes) { | ||
691 | btrfs_record_root_in_trans(root); | ||
692 | btrfs_set_root_used(&root->root_item, | ||
693 | bytes_used - num_bytes); | ||
694 | } | ||
695 | |||
696 | ret = btrfs_del_root(trans, tree_root, &dirty->root->root_key); | ||
697 | if (ret) { | ||
698 | BUG(); | ||
699 | break; | ||
700 | } | ||
701 | mutex_unlock(&root->fs_info->drop_mutex); | ||
702 | |||
703 | spin_lock(&root->list_lock); | ||
704 | list_del_init(&dirty->root->dead_list); | ||
705 | if (!list_empty(&root->dead_list)) { | ||
706 | struct btrfs_root *oldest; | ||
707 | oldest = list_entry(root->dead_list.prev, | ||
708 | struct btrfs_root, dead_list); | ||
709 | max_useless = oldest->root_key.offset - 1; | ||
710 | } else { | ||
711 | max_useless = root->root_key.offset - 1; | ||
712 | } | ||
713 | spin_unlock(&root->list_lock); | ||
714 | |||
715 | nr = trans->blocks_used; | ||
716 | ret = btrfs_end_transaction(trans, tree_root); | ||
717 | BUG_ON(ret); | ||
718 | |||
719 | ret = btrfs_remove_leaf_refs(root, max_useless, 0); | ||
720 | BUG_ON(ret); | ||
721 | |||
722 | free_extent_buffer(dirty->root->node); | ||
723 | kfree(dirty->root); | ||
724 | kfree(dirty); | ||
725 | |||
726 | btrfs_btree_balance_dirty(tree_root, nr); | ||
727 | cond_resched(); | ||
728 | } | ||
729 | return ret; | ||
730 | } | ||
731 | |||
732 | /* | ||
733 | * new snapshots need to be created at a very specific time in the | ||
734 | * transaction commit. This does the actual creation | ||
735 | */ | ||
736 | static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans, | ||
737 | struct btrfs_fs_info *fs_info, | ||
738 | struct btrfs_pending_snapshot *pending) | ||
739 | { | ||
740 | struct btrfs_key key; | ||
741 | struct btrfs_root_item *new_root_item; | ||
742 | struct btrfs_root *tree_root = fs_info->tree_root; | ||
743 | struct btrfs_root *root = pending->root; | ||
744 | struct extent_buffer *tmp; | ||
745 | struct extent_buffer *old; | ||
746 | int ret; | ||
747 | u64 objectid; | ||
748 | |||
749 | new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS); | ||
750 | if (!new_root_item) { | ||
751 | ret = -ENOMEM; | ||
752 | goto fail; | ||
753 | } | ||
754 | ret = btrfs_find_free_objectid(trans, tree_root, 0, &objectid); | ||
755 | if (ret) | ||
756 | goto fail; | ||
757 | |||
758 | btrfs_record_root_in_trans(root); | ||
759 | btrfs_set_root_last_snapshot(&root->root_item, trans->transid); | ||
760 | memcpy(new_root_item, &root->root_item, sizeof(*new_root_item)); | ||
761 | |||
762 | key.objectid = objectid; | ||
763 | key.offset = trans->transid; | ||
764 | btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY); | ||
765 | |||
766 | old = btrfs_lock_root_node(root); | ||
767 | btrfs_cow_block(trans, root, old, NULL, 0, &old, 0); | ||
768 | |||
769 | btrfs_copy_root(trans, root, old, &tmp, objectid); | ||
770 | btrfs_tree_unlock(old); | ||
771 | free_extent_buffer(old); | ||
772 | |||
773 | btrfs_set_root_bytenr(new_root_item, tmp->start); | ||
774 | btrfs_set_root_level(new_root_item, btrfs_header_level(tmp)); | ||
775 | btrfs_set_root_generation(new_root_item, trans->transid); | ||
776 | ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key, | ||
777 | new_root_item); | ||
778 | btrfs_tree_unlock(tmp); | ||
779 | free_extent_buffer(tmp); | ||
780 | if (ret) | ||
781 | goto fail; | ||
782 | |||
783 | key.offset = (u64)-1; | ||
784 | memcpy(&pending->root_key, &key, sizeof(key)); | ||
785 | fail: | ||
786 | kfree(new_root_item); | ||
787 | return ret; | ||
788 | } | ||
789 | |||
790 | static noinline int finish_pending_snapshot(struct btrfs_fs_info *fs_info, | ||
791 | struct btrfs_pending_snapshot *pending) | ||
792 | { | ||
793 | int ret; | ||
794 | int namelen; | ||
795 | u64 index = 0; | ||
796 | struct btrfs_trans_handle *trans; | ||
797 | struct inode *parent_inode; | ||
798 | struct inode *inode; | ||
799 | struct btrfs_root *parent_root; | ||
800 | |||
801 | parent_inode = pending->dentry->d_parent->d_inode; | ||
802 | parent_root = BTRFS_I(parent_inode)->root; | ||
803 | trans = btrfs_start_transaction(parent_root, 1); | ||
804 | |||
805 | /* | ||
806 | * insert the directory item | ||
807 | */ | ||
808 | namelen = strlen(pending->name); | ||
809 | ret = btrfs_set_inode_index(parent_inode, &index); | ||
810 | ret = btrfs_insert_dir_item(trans, parent_root, | ||
811 | pending->name, namelen, | ||
812 | parent_inode->i_ino, | ||
813 | &pending->root_key, BTRFS_FT_DIR, index); | ||
814 | |||
815 | if (ret) | ||
816 | goto fail; | ||
817 | |||
818 | btrfs_i_size_write(parent_inode, parent_inode->i_size + namelen * 2); | ||
819 | ret = btrfs_update_inode(trans, parent_root, parent_inode); | ||
820 | BUG_ON(ret); | ||
821 | |||
822 | /* add the backref first */ | ||
823 | ret = btrfs_add_root_ref(trans, parent_root->fs_info->tree_root, | ||
824 | pending->root_key.objectid, | ||
825 | BTRFS_ROOT_BACKREF_KEY, | ||
826 | parent_root->root_key.objectid, | ||
827 | parent_inode->i_ino, index, pending->name, | ||
828 | namelen); | ||
829 | |||
830 | BUG_ON(ret); | ||
831 | |||
832 | /* now add the forward ref */ | ||
833 | ret = btrfs_add_root_ref(trans, parent_root->fs_info->tree_root, | ||
834 | parent_root->root_key.objectid, | ||
835 | BTRFS_ROOT_REF_KEY, | ||
836 | pending->root_key.objectid, | ||
837 | parent_inode->i_ino, index, pending->name, | ||
838 | namelen); | ||
839 | |||
840 | inode = btrfs_lookup_dentry(parent_inode, pending->dentry); | ||
841 | d_instantiate(pending->dentry, inode); | ||
842 | fail: | ||
843 | btrfs_end_transaction(trans, fs_info->fs_root); | ||
844 | return ret; | ||
845 | } | ||
846 | |||
847 | /* | ||
848 | * create all the snapshots we've scheduled for creation | ||
849 | */ | ||
850 | static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans, | ||
851 | struct btrfs_fs_info *fs_info) | ||
852 | { | ||
853 | struct btrfs_pending_snapshot *pending; | ||
854 | struct list_head *head = &trans->transaction->pending_snapshots; | ||
855 | struct list_head *cur; | ||
856 | int ret; | ||
857 | |||
858 | list_for_each(cur, head) { | ||
859 | pending = list_entry(cur, struct btrfs_pending_snapshot, list); | ||
860 | ret = create_pending_snapshot(trans, fs_info, pending); | ||
861 | BUG_ON(ret); | ||
862 | } | ||
863 | return 0; | ||
864 | } | ||
865 | |||
866 | static noinline int finish_pending_snapshots(struct btrfs_trans_handle *trans, | ||
867 | struct btrfs_fs_info *fs_info) | ||
868 | { | ||
869 | struct btrfs_pending_snapshot *pending; | ||
870 | struct list_head *head = &trans->transaction->pending_snapshots; | ||
871 | int ret; | ||
872 | |||
873 | while (!list_empty(head)) { | ||
874 | pending = list_entry(head->next, | ||
875 | struct btrfs_pending_snapshot, list); | ||
876 | ret = finish_pending_snapshot(fs_info, pending); | ||
877 | BUG_ON(ret); | ||
878 | list_del(&pending->list); | ||
879 | kfree(pending->name); | ||
880 | kfree(pending); | ||
881 | } | ||
882 | return 0; | ||
883 | } | ||
884 | |||
885 | int btrfs_commit_transaction(struct btrfs_trans_handle *trans, | ||
886 | struct btrfs_root *root) | ||
887 | { | ||
888 | unsigned long joined = 0; | ||
889 | unsigned long timeout = 1; | ||
890 | struct btrfs_transaction *cur_trans; | ||
891 | struct btrfs_transaction *prev_trans = NULL; | ||
892 | struct btrfs_root *chunk_root = root->fs_info->chunk_root; | ||
893 | struct list_head dirty_fs_roots; | ||
894 | struct extent_io_tree *pinned_copy; | ||
895 | DEFINE_WAIT(wait); | ||
896 | int ret; | ||
897 | |||
898 | INIT_LIST_HEAD(&dirty_fs_roots); | ||
899 | mutex_lock(&root->fs_info->trans_mutex); | ||
900 | if (trans->transaction->in_commit) { | ||
901 | cur_trans = trans->transaction; | ||
902 | trans->transaction->use_count++; | ||
903 | mutex_unlock(&root->fs_info->trans_mutex); | ||
904 | btrfs_end_transaction(trans, root); | ||
905 | |||
906 | ret = wait_for_commit(root, cur_trans); | ||
907 | BUG_ON(ret); | ||
908 | |||
909 | mutex_lock(&root->fs_info->trans_mutex); | ||
910 | put_transaction(cur_trans); | ||
911 | mutex_unlock(&root->fs_info->trans_mutex); | ||
912 | |||
913 | return 0; | ||
914 | } | ||
915 | |||
916 | pinned_copy = kmalloc(sizeof(*pinned_copy), GFP_NOFS); | ||
917 | if (!pinned_copy) | ||
918 | return -ENOMEM; | ||
919 | |||
920 | extent_io_tree_init(pinned_copy, | ||
921 | root->fs_info->btree_inode->i_mapping, GFP_NOFS); | ||
922 | |||
923 | trans->transaction->in_commit = 1; | ||
924 | trans->transaction->blocked = 1; | ||
925 | cur_trans = trans->transaction; | ||
926 | if (cur_trans->list.prev != &root->fs_info->trans_list) { | ||
927 | prev_trans = list_entry(cur_trans->list.prev, | ||
928 | struct btrfs_transaction, list); | ||
929 | if (!prev_trans->commit_done) { | ||
930 | prev_trans->use_count++; | ||
931 | mutex_unlock(&root->fs_info->trans_mutex); | ||
932 | |||
933 | wait_for_commit(root, prev_trans); | ||
934 | |||
935 | mutex_lock(&root->fs_info->trans_mutex); | ||
936 | put_transaction(prev_trans); | ||
937 | } | ||
938 | } | ||
939 | |||
940 | do { | ||
941 | int snap_pending = 0; | ||
942 | joined = cur_trans->num_joined; | ||
943 | if (!list_empty(&trans->transaction->pending_snapshots)) | ||
944 | snap_pending = 1; | ||
945 | |||
946 | WARN_ON(cur_trans != trans->transaction); | ||
947 | prepare_to_wait(&cur_trans->writer_wait, &wait, | ||
948 | TASK_UNINTERRUPTIBLE); | ||
949 | |||
950 | if (cur_trans->num_writers > 1) | ||
951 | timeout = MAX_SCHEDULE_TIMEOUT; | ||
952 | else | ||
953 | timeout = 1; | ||
954 | |||
955 | mutex_unlock(&root->fs_info->trans_mutex); | ||
956 | |||
957 | if (snap_pending) { | ||
958 | ret = btrfs_wait_ordered_extents(root, 1); | ||
959 | BUG_ON(ret); | ||
960 | } | ||
961 | |||
962 | schedule_timeout(timeout); | ||
963 | |||
964 | mutex_lock(&root->fs_info->trans_mutex); | ||
965 | finish_wait(&cur_trans->writer_wait, &wait); | ||
966 | } while (cur_trans->num_writers > 1 || | ||
967 | (cur_trans->num_joined != joined)); | ||
968 | |||
969 | ret = create_pending_snapshots(trans, root->fs_info); | ||
970 | BUG_ON(ret); | ||
971 | |||
972 | WARN_ON(cur_trans != trans->transaction); | ||
973 | |||
974 | /* btrfs_commit_tree_roots is responsible for getting the | ||
975 | * various roots consistent with each other. Every pointer | ||
976 | * in the tree of tree roots has to point to the most up to date | ||
977 | * root for every subvolume and other tree. So, we have to keep | ||
978 | * the tree logging code from jumping in and changing any | ||
979 | * of the trees. | ||
980 | * | ||
981 | * At this point in the commit, there can't be any tree-log | ||
982 | * writers, but a little lower down we drop the trans mutex | ||
983 | * and let new people in. By holding the tree_log_mutex | ||
984 | * from now until after the super is written, we avoid races | ||
985 | * with the tree-log code. | ||
986 | */ | ||
987 | mutex_lock(&root->fs_info->tree_log_mutex); | ||
988 | /* | ||
989 | * keep tree reloc code from adding new reloc trees | ||
990 | */ | ||
991 | mutex_lock(&root->fs_info->tree_reloc_mutex); | ||
992 | |||
993 | |||
994 | ret = add_dirty_roots(trans, &root->fs_info->fs_roots_radix, | ||
995 | &dirty_fs_roots); | ||
996 | BUG_ON(ret); | ||
997 | |||
998 | /* add_dirty_roots gets rid of all the tree log roots, it is now | ||
999 | * safe to free the root of tree log roots | ||
1000 | */ | ||
1001 | btrfs_free_log_root_tree(trans, root->fs_info); | ||
1002 | |||
1003 | ret = btrfs_commit_tree_roots(trans, root); | ||
1004 | BUG_ON(ret); | ||
1005 | |||
1006 | cur_trans = root->fs_info->running_transaction; | ||
1007 | spin_lock(&root->fs_info->new_trans_lock); | ||
1008 | root->fs_info->running_transaction = NULL; | ||
1009 | spin_unlock(&root->fs_info->new_trans_lock); | ||
1010 | btrfs_set_super_generation(&root->fs_info->super_copy, | ||
1011 | cur_trans->transid); | ||
1012 | btrfs_set_super_root(&root->fs_info->super_copy, | ||
1013 | root->fs_info->tree_root->node->start); | ||
1014 | btrfs_set_super_root_level(&root->fs_info->super_copy, | ||
1015 | btrfs_header_level(root->fs_info->tree_root->node)); | ||
1016 | |||
1017 | btrfs_set_super_chunk_root(&root->fs_info->super_copy, | ||
1018 | chunk_root->node->start); | ||
1019 | btrfs_set_super_chunk_root_level(&root->fs_info->super_copy, | ||
1020 | btrfs_header_level(chunk_root->node)); | ||
1021 | btrfs_set_super_chunk_root_generation(&root->fs_info->super_copy, | ||
1022 | btrfs_header_generation(chunk_root->node)); | ||
1023 | |||
1024 | if (!root->fs_info->log_root_recovering) { | ||
1025 | btrfs_set_super_log_root(&root->fs_info->super_copy, 0); | ||
1026 | btrfs_set_super_log_root_level(&root->fs_info->super_copy, 0); | ||
1027 | } | ||
1028 | |||
1029 | memcpy(&root->fs_info->super_for_commit, &root->fs_info->super_copy, | ||
1030 | sizeof(root->fs_info->super_copy)); | ||
1031 | |||
1032 | btrfs_copy_pinned(root, pinned_copy); | ||
1033 | |||
1034 | trans->transaction->blocked = 0; | ||
1035 | wake_up(&root->fs_info->transaction_throttle); | ||
1036 | wake_up(&root->fs_info->transaction_wait); | ||
1037 | |||
1038 | mutex_unlock(&root->fs_info->trans_mutex); | ||
1039 | ret = btrfs_write_and_wait_transaction(trans, root); | ||
1040 | BUG_ON(ret); | ||
1041 | write_ctree_super(trans, root, 0); | ||
1042 | |||
1043 | /* | ||
1044 | * the super is written, we can safely allow the tree-loggers | ||
1045 | * to go about their business | ||
1046 | */ | ||
1047 | mutex_unlock(&root->fs_info->tree_log_mutex); | ||
1048 | |||
1049 | btrfs_finish_extent_commit(trans, root, pinned_copy); | ||
1050 | kfree(pinned_copy); | ||
1051 | |||
1052 | btrfs_drop_dead_reloc_roots(root); | ||
1053 | mutex_unlock(&root->fs_info->tree_reloc_mutex); | ||
1054 | |||
1055 | /* do the directory inserts of any pending snapshot creations */ | ||
1056 | finish_pending_snapshots(trans, root->fs_info); | ||
1057 | |||
1058 | mutex_lock(&root->fs_info->trans_mutex); | ||
1059 | |||
1060 | cur_trans->commit_done = 1; | ||
1061 | root->fs_info->last_trans_committed = cur_trans->transid; | ||
1062 | wake_up(&cur_trans->commit_wait); | ||
1063 | |||
1064 | put_transaction(cur_trans); | ||
1065 | put_transaction(cur_trans); | ||
1066 | |||
1067 | list_splice_init(&dirty_fs_roots, &root->fs_info->dead_roots); | ||
1068 | if (root->fs_info->closing) | ||
1069 | list_splice_init(&root->fs_info->dead_roots, &dirty_fs_roots); | ||
1070 | |||
1071 | mutex_unlock(&root->fs_info->trans_mutex); | ||
1072 | |||
1073 | kmem_cache_free(btrfs_trans_handle_cachep, trans); | ||
1074 | |||
1075 | if (root->fs_info->closing) | ||
1076 | drop_dirty_roots(root->fs_info->tree_root, &dirty_fs_roots); | ||
1077 | return ret; | ||
1078 | } | ||
1079 | |||
1080 | /* | ||
1081 | * interface function to delete all the snapshots we have scheduled for deletion | ||
1082 | */ | ||
1083 | int btrfs_clean_old_snapshots(struct btrfs_root *root) | ||
1084 | { | ||
1085 | struct list_head dirty_roots; | ||
1086 | INIT_LIST_HEAD(&dirty_roots); | ||
1087 | again: | ||
1088 | mutex_lock(&root->fs_info->trans_mutex); | ||
1089 | list_splice_init(&root->fs_info->dead_roots, &dirty_roots); | ||
1090 | mutex_unlock(&root->fs_info->trans_mutex); | ||
1091 | |||
1092 | if (!list_empty(&dirty_roots)) { | ||
1093 | drop_dirty_roots(root, &dirty_roots); | ||
1094 | goto again; | ||
1095 | } | ||
1096 | return 0; | ||
1097 | } | ||
diff --git a/fs/btrfs/transaction.h b/fs/btrfs/transaction.h new file mode 100644 index 000000000000..ea292117f882 --- /dev/null +++ b/fs/btrfs/transaction.h | |||
@@ -0,0 +1,106 @@ | |||
1 | /* | ||
2 | * Copyright (C) 2007 Oracle. All rights reserved. | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or | ||
5 | * modify it under the terms of the GNU General Public | ||
6 | * License v2 as published by the Free Software Foundation. | ||
7 | * | ||
8 | * This program is distributed in the hope that it will be useful, | ||
9 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | ||
11 | * General Public License for more details. | ||
12 | * | ||
13 | * You should have received a copy of the GNU General Public | ||
14 | * License along with this program; if not, write to the | ||
15 | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | ||
16 | * Boston, MA 021110-1307, USA. | ||
17 | */ | ||
18 | |||
19 | #ifndef __BTRFS_TRANSACTION__ | ||
20 | #define __BTRFS_TRANSACTION__ | ||
21 | #include "btrfs_inode.h" | ||
22 | |||
23 | struct btrfs_transaction { | ||
24 | u64 transid; | ||
25 | unsigned long num_writers; | ||
26 | unsigned long num_joined; | ||
27 | int in_commit; | ||
28 | int use_count; | ||
29 | int commit_done; | ||
30 | int blocked; | ||
31 | struct list_head list; | ||
32 | struct extent_io_tree dirty_pages; | ||
33 | unsigned long start_time; | ||
34 | wait_queue_head_t writer_wait; | ||
35 | wait_queue_head_t commit_wait; | ||
36 | struct list_head pending_snapshots; | ||
37 | }; | ||
38 | |||
39 | struct btrfs_trans_handle { | ||
40 | u64 transid; | ||
41 | unsigned long blocks_reserved; | ||
42 | unsigned long blocks_used; | ||
43 | struct btrfs_transaction *transaction; | ||
44 | u64 block_group; | ||
45 | u64 alloc_exclude_start; | ||
46 | u64 alloc_exclude_nr; | ||
47 | }; | ||
48 | |||
49 | struct btrfs_pending_snapshot { | ||
50 | struct dentry *dentry; | ||
51 | struct btrfs_root *root; | ||
52 | char *name; | ||
53 | struct btrfs_key root_key; | ||
54 | struct list_head list; | ||
55 | }; | ||
56 | |||
57 | struct btrfs_dirty_root { | ||
58 | struct list_head list; | ||
59 | struct btrfs_root *root; | ||
60 | struct btrfs_root *latest_root; | ||
61 | }; | ||
62 | |||
63 | static inline void btrfs_set_trans_block_group(struct btrfs_trans_handle *trans, | ||
64 | struct inode *inode) | ||
65 | { | ||
66 | trans->block_group = BTRFS_I(inode)->block_group; | ||
67 | } | ||
68 | |||
69 | static inline void btrfs_update_inode_block_group( | ||
70 | struct btrfs_trans_handle *trans, | ||
71 | struct inode *inode) | ||
72 | { | ||
73 | BTRFS_I(inode)->block_group = trans->block_group; | ||
74 | } | ||
75 | |||
76 | static inline void btrfs_set_inode_last_trans(struct btrfs_trans_handle *trans, | ||
77 | struct inode *inode) | ||
78 | { | ||
79 | BTRFS_I(inode)->last_trans = trans->transaction->transid; | ||
80 | } | ||
81 | |||
82 | int btrfs_end_transaction(struct btrfs_trans_handle *trans, | ||
83 | struct btrfs_root *root); | ||
84 | struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root, | ||
85 | int num_blocks); | ||
86 | struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root, | ||
87 | int num_blocks); | ||
88 | struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *r, | ||
89 | int num_blocks); | ||
90 | int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans, | ||
91 | struct btrfs_root *root); | ||
92 | int btrfs_commit_tree_roots(struct btrfs_trans_handle *trans, | ||
93 | struct btrfs_root *root); | ||
94 | |||
95 | int btrfs_add_dead_root(struct btrfs_root *root, struct btrfs_root *latest); | ||
96 | int btrfs_defrag_root(struct btrfs_root *root, int cacheonly); | ||
97 | int btrfs_clean_old_snapshots(struct btrfs_root *root); | ||
98 | int btrfs_commit_transaction(struct btrfs_trans_handle *trans, | ||
99 | struct btrfs_root *root); | ||
100 | int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans, | ||
101 | struct btrfs_root *root); | ||
102 | void btrfs_throttle(struct btrfs_root *root); | ||
103 | int btrfs_record_root_in_trans(struct btrfs_root *root); | ||
104 | int btrfs_write_and_wait_marked_extents(struct btrfs_root *root, | ||
105 | struct extent_io_tree *dirty_pages); | ||
106 | #endif | ||
diff --git a/fs/btrfs/tree-defrag.c b/fs/btrfs/tree-defrag.c new file mode 100644 index 000000000000..3e8358c36165 --- /dev/null +++ b/fs/btrfs/tree-defrag.c | |||
@@ -0,0 +1,147 @@ | |||
1 | /* | ||
2 | * Copyright (C) 2007 Oracle. All rights reserved. | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or | ||
5 | * modify it under the terms of the GNU General Public | ||
6 | * License v2 as published by the Free Software Foundation. | ||
7 | * | ||
8 | * This program is distributed in the hope that it will be useful, | ||
9 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | ||
11 | * General Public License for more details. | ||
12 | * | ||
13 | * You should have received a copy of the GNU General Public | ||
14 | * License along with this program; if not, write to the | ||
15 | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | ||
16 | * Boston, MA 021110-1307, USA. | ||
17 | */ | ||
18 | |||
19 | #include <linux/sched.h> | ||
20 | #include "ctree.h" | ||
21 | #include "disk-io.h" | ||
22 | #include "print-tree.h" | ||
23 | #include "transaction.h" | ||
24 | #include "locking.h" | ||
25 | |||
26 | /* defrag all the leaves in a given btree. If cache_only == 1, don't read | ||
27 | * things from disk, otherwise read all the leaves and try to get key order to | ||
28 | * better reflect disk order | ||
29 | */ | ||
30 | |||
31 | int btrfs_defrag_leaves(struct btrfs_trans_handle *trans, | ||
32 | struct btrfs_root *root, int cache_only) | ||
33 | { | ||
34 | struct btrfs_path *path = NULL; | ||
35 | struct btrfs_key key; | ||
36 | int ret = 0; | ||
37 | int wret; | ||
38 | int level; | ||
39 | int orig_level; | ||
40 | int is_extent = 0; | ||
41 | int next_key_ret = 0; | ||
42 | u64 last_ret = 0; | ||
43 | u64 min_trans = 0; | ||
44 | |||
45 | if (cache_only) | ||
46 | goto out; | ||
47 | |||
48 | if (root->fs_info->extent_root == root) { | ||
49 | /* | ||
50 | * there's recursion here right now in the tree locking, | ||
51 | * we can't defrag the extent root without deadlock | ||
52 | */ | ||
53 | goto out; | ||
54 | } | ||
55 | |||
56 | if (root->ref_cows == 0 && !is_extent) | ||
57 | goto out; | ||
58 | |||
59 | if (btrfs_test_opt(root, SSD)) | ||
60 | goto out; | ||
61 | |||
62 | path = btrfs_alloc_path(); | ||
63 | if (!path) | ||
64 | return -ENOMEM; | ||
65 | |||
66 | level = btrfs_header_level(root->node); | ||
67 | orig_level = level; | ||
68 | |||
69 | if (level == 0) | ||
70 | goto out; | ||
71 | |||
72 | if (root->defrag_progress.objectid == 0) { | ||
73 | struct extent_buffer *root_node; | ||
74 | u32 nritems; | ||
75 | |||
76 | root_node = btrfs_lock_root_node(root); | ||
77 | nritems = btrfs_header_nritems(root_node); | ||
78 | root->defrag_max.objectid = 0; | ||
79 | /* from above we know this is not a leaf */ | ||
80 | btrfs_node_key_to_cpu(root_node, &root->defrag_max, | ||
81 | nritems - 1); | ||
82 | btrfs_tree_unlock(root_node); | ||
83 | free_extent_buffer(root_node); | ||
84 | memset(&key, 0, sizeof(key)); | ||
85 | } else { | ||
86 | memcpy(&key, &root->defrag_progress, sizeof(key)); | ||
87 | } | ||
88 | |||
89 | path->keep_locks = 1; | ||
90 | if (cache_only) | ||
91 | min_trans = root->defrag_trans_start; | ||
92 | |||
93 | ret = btrfs_search_forward(root, &key, NULL, path, | ||
94 | cache_only, min_trans); | ||
95 | if (ret < 0) | ||
96 | goto out; | ||
97 | if (ret > 0) { | ||
98 | ret = 0; | ||
99 | goto out; | ||
100 | } | ||
101 | btrfs_release_path(root, path); | ||
102 | wret = btrfs_search_slot(trans, root, &key, path, 0, 1); | ||
103 | |||
104 | if (wret < 0) { | ||
105 | ret = wret; | ||
106 | goto out; | ||
107 | } | ||
108 | if (!path->nodes[1]) { | ||
109 | ret = 0; | ||
110 | goto out; | ||
111 | } | ||
112 | path->slots[1] = btrfs_header_nritems(path->nodes[1]); | ||
113 | next_key_ret = btrfs_find_next_key(root, path, &key, 1, cache_only, | ||
114 | min_trans); | ||
115 | ret = btrfs_realloc_node(trans, root, | ||
116 | path->nodes[1], 0, | ||
117 | cache_only, &last_ret, | ||
118 | &root->defrag_progress); | ||
119 | WARN_ON(ret && ret != -EAGAIN); | ||
120 | if (next_key_ret == 0) { | ||
121 | memcpy(&root->defrag_progress, &key, sizeof(key)); | ||
122 | ret = -EAGAIN; | ||
123 | } | ||
124 | |||
125 | btrfs_release_path(root, path); | ||
126 | if (is_extent) | ||
127 | btrfs_extent_post_op(trans, root); | ||
128 | out: | ||
129 | if (path) | ||
130 | btrfs_free_path(path); | ||
131 | if (ret == -EAGAIN) { | ||
132 | if (root->defrag_max.objectid > root->defrag_progress.objectid) | ||
133 | goto done; | ||
134 | if (root->defrag_max.type > root->defrag_progress.type) | ||
135 | goto done; | ||
136 | if (root->defrag_max.offset > root->defrag_progress.offset) | ||
137 | goto done; | ||
138 | ret = 0; | ||
139 | } | ||
140 | done: | ||
141 | if (ret != -EAGAIN) { | ||
142 | memset(&root->defrag_progress, 0, | ||
143 | sizeof(root->defrag_progress)); | ||
144 | root->defrag_trans_start = trans->transid; | ||
145 | } | ||
146 | return ret; | ||
147 | } | ||
diff --git a/fs/btrfs/tree-log.c b/fs/btrfs/tree-log.c new file mode 100644 index 000000000000..3a72a1b6c247 --- /dev/null +++ b/fs/btrfs/tree-log.c | |||
@@ -0,0 +1,2996 @@ | |||
1 | /* | ||
2 | * Copyright (C) 2008 Oracle. All rights reserved. | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or | ||
5 | * modify it under the terms of the GNU General Public | ||
6 | * License v2 as published by the Free Software Foundation. | ||
7 | * | ||
8 | * This program is distributed in the hope that it will be useful, | ||
9 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | ||
11 | * General Public License for more details. | ||
12 | * | ||
13 | * You should have received a copy of the GNU General Public | ||
14 | * License along with this program; if not, write to the | ||
15 | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | ||
16 | * Boston, MA 021110-1307, USA. | ||
17 | */ | ||
18 | |||
19 | #include <linux/sched.h> | ||
20 | #include "ctree.h" | ||
21 | #include "transaction.h" | ||
22 | #include "disk-io.h" | ||
23 | #include "locking.h" | ||
24 | #include "print-tree.h" | ||
25 | #include "compat.h" | ||
26 | #include "tree-log.h" | ||
27 | |||
28 | /* magic values for the inode_only field in btrfs_log_inode: | ||
29 | * | ||
30 | * LOG_INODE_ALL means to log everything | ||
31 | * LOG_INODE_EXISTS means to log just enough to recreate the inode | ||
32 | * during log replay | ||
33 | */ | ||
34 | #define LOG_INODE_ALL 0 | ||
35 | #define LOG_INODE_EXISTS 1 | ||
36 | |||
37 | /* | ||
38 | * stages for the tree walking. The first | ||
39 | * stage (0) is to only pin down the blocks we find | ||
40 | * the second stage (1) is to make sure that all the inodes | ||
41 | * we find in the log are created in the subvolume. | ||
42 | * | ||
43 | * The last stage is to deal with directories and links and extents | ||
44 | * and all the other fun semantics | ||
45 | */ | ||
46 | #define LOG_WALK_PIN_ONLY 0 | ||
47 | #define LOG_WALK_REPLAY_INODES 1 | ||
48 | #define LOG_WALK_REPLAY_ALL 2 | ||
49 | |||
50 | static int __btrfs_log_inode(struct btrfs_trans_handle *trans, | ||
51 | struct btrfs_root *root, struct inode *inode, | ||
52 | int inode_only); | ||
53 | static int link_to_fixup_dir(struct btrfs_trans_handle *trans, | ||
54 | struct btrfs_root *root, | ||
55 | struct btrfs_path *path, u64 objectid); | ||
56 | |||
57 | /* | ||
58 | * tree logging is a special write ahead log used to make sure that | ||
59 | * fsyncs and O_SYNCs can happen without doing full tree commits. | ||
60 | * | ||
61 | * Full tree commits are expensive because they require commonly | ||
62 | * modified blocks to be recowed, creating many dirty pages in the | ||
63 | * extent tree an 4x-6x higher write load than ext3. | ||
64 | * | ||
65 | * Instead of doing a tree commit on every fsync, we use the | ||
66 | * key ranges and transaction ids to find items for a given file or directory | ||
67 | * that have changed in this transaction. Those items are copied into | ||
68 | * a special tree (one per subvolume root), that tree is written to disk | ||
69 | * and then the fsync is considered complete. | ||
70 | * | ||
71 | * After a crash, items are copied out of the log-tree back into the | ||
72 | * subvolume tree. Any file data extents found are recorded in the extent | ||
73 | * allocation tree, and the log-tree freed. | ||
74 | * | ||
75 | * The log tree is read three times, once to pin down all the extents it is | ||
76 | * using in ram and once, once to create all the inodes logged in the tree | ||
77 | * and once to do all the other items. | ||
78 | */ | ||
79 | |||
80 | /* | ||
81 | * btrfs_add_log_tree adds a new per-subvolume log tree into the | ||
82 | * tree of log tree roots. This must be called with a tree log transaction | ||
83 | * running (see start_log_trans). | ||
84 | */ | ||
85 | static int btrfs_add_log_tree(struct btrfs_trans_handle *trans, | ||
86 | struct btrfs_root *root) | ||
87 | { | ||
88 | struct btrfs_key key; | ||
89 | struct btrfs_root_item root_item; | ||
90 | struct btrfs_inode_item *inode_item; | ||
91 | struct extent_buffer *leaf; | ||
92 | struct btrfs_root *new_root = root; | ||
93 | int ret; | ||
94 | u64 objectid = root->root_key.objectid; | ||
95 | |||
96 | leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0, | ||
97 | BTRFS_TREE_LOG_OBJECTID, | ||
98 | trans->transid, 0, 0, 0); | ||
99 | if (IS_ERR(leaf)) { | ||
100 | ret = PTR_ERR(leaf); | ||
101 | return ret; | ||
102 | } | ||
103 | |||
104 | btrfs_set_header_nritems(leaf, 0); | ||
105 | btrfs_set_header_level(leaf, 0); | ||
106 | btrfs_set_header_bytenr(leaf, leaf->start); | ||
107 | btrfs_set_header_generation(leaf, trans->transid); | ||
108 | btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID); | ||
109 | |||
110 | write_extent_buffer(leaf, root->fs_info->fsid, | ||
111 | (unsigned long)btrfs_header_fsid(leaf), | ||
112 | BTRFS_FSID_SIZE); | ||
113 | btrfs_mark_buffer_dirty(leaf); | ||
114 | |||
115 | inode_item = &root_item.inode; | ||
116 | memset(inode_item, 0, sizeof(*inode_item)); | ||
117 | inode_item->generation = cpu_to_le64(1); | ||
118 | inode_item->size = cpu_to_le64(3); | ||
119 | inode_item->nlink = cpu_to_le32(1); | ||
120 | inode_item->nbytes = cpu_to_le64(root->leafsize); | ||
121 | inode_item->mode = cpu_to_le32(S_IFDIR | 0755); | ||
122 | |||
123 | btrfs_set_root_bytenr(&root_item, leaf->start); | ||
124 | btrfs_set_root_generation(&root_item, trans->transid); | ||
125 | btrfs_set_root_level(&root_item, 0); | ||
126 | btrfs_set_root_refs(&root_item, 0); | ||
127 | btrfs_set_root_used(&root_item, 0); | ||
128 | |||
129 | memset(&root_item.drop_progress, 0, sizeof(root_item.drop_progress)); | ||
130 | root_item.drop_level = 0; | ||
131 | |||
132 | btrfs_tree_unlock(leaf); | ||
133 | free_extent_buffer(leaf); | ||
134 | leaf = NULL; | ||
135 | |||
136 | btrfs_set_root_dirid(&root_item, 0); | ||
137 | |||
138 | key.objectid = BTRFS_TREE_LOG_OBJECTID; | ||
139 | key.offset = objectid; | ||
140 | btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY); | ||
141 | ret = btrfs_insert_root(trans, root->fs_info->log_root_tree, &key, | ||
142 | &root_item); | ||
143 | if (ret) | ||
144 | goto fail; | ||
145 | |||
146 | new_root = btrfs_read_fs_root_no_radix(root->fs_info->log_root_tree, | ||
147 | &key); | ||
148 | BUG_ON(!new_root); | ||
149 | |||
150 | WARN_ON(root->log_root); | ||
151 | root->log_root = new_root; | ||
152 | |||
153 | /* | ||
154 | * log trees do not get reference counted because they go away | ||
155 | * before a real commit is actually done. They do store pointers | ||
156 | * to file data extents, and those reference counts still get | ||
157 | * updated (along with back refs to the log tree). | ||
158 | */ | ||
159 | new_root->ref_cows = 0; | ||
160 | new_root->last_trans = trans->transid; | ||
161 | fail: | ||
162 | return ret; | ||
163 | } | ||
164 | |||
165 | /* | ||
166 | * start a sub transaction and setup the log tree | ||
167 | * this increments the log tree writer count to make the people | ||
168 | * syncing the tree wait for us to finish | ||
169 | */ | ||
170 | static int start_log_trans(struct btrfs_trans_handle *trans, | ||
171 | struct btrfs_root *root) | ||
172 | { | ||
173 | int ret; | ||
174 | mutex_lock(&root->fs_info->tree_log_mutex); | ||
175 | if (!root->fs_info->log_root_tree) { | ||
176 | ret = btrfs_init_log_root_tree(trans, root->fs_info); | ||
177 | BUG_ON(ret); | ||
178 | } | ||
179 | if (!root->log_root) { | ||
180 | ret = btrfs_add_log_tree(trans, root); | ||
181 | BUG_ON(ret); | ||
182 | } | ||
183 | atomic_inc(&root->fs_info->tree_log_writers); | ||
184 | root->fs_info->tree_log_batch++; | ||
185 | mutex_unlock(&root->fs_info->tree_log_mutex); | ||
186 | return 0; | ||
187 | } | ||
188 | |||
189 | /* | ||
190 | * returns 0 if there was a log transaction running and we were able | ||
191 | * to join, or returns -ENOENT if there were not transactions | ||
192 | * in progress | ||
193 | */ | ||
194 | static int join_running_log_trans(struct btrfs_root *root) | ||
195 | { | ||
196 | int ret = -ENOENT; | ||
197 | |||
198 | smp_mb(); | ||
199 | if (!root->log_root) | ||
200 | return -ENOENT; | ||
201 | |||
202 | mutex_lock(&root->fs_info->tree_log_mutex); | ||
203 | if (root->log_root) { | ||
204 | ret = 0; | ||
205 | atomic_inc(&root->fs_info->tree_log_writers); | ||
206 | root->fs_info->tree_log_batch++; | ||
207 | } | ||
208 | mutex_unlock(&root->fs_info->tree_log_mutex); | ||
209 | return ret; | ||
210 | } | ||
211 | |||
212 | /* | ||
213 | * indicate we're done making changes to the log tree | ||
214 | * and wake up anyone waiting to do a sync | ||
215 | */ | ||
216 | static int end_log_trans(struct btrfs_root *root) | ||
217 | { | ||
218 | atomic_dec(&root->fs_info->tree_log_writers); | ||
219 | smp_mb(); | ||
220 | if (waitqueue_active(&root->fs_info->tree_log_wait)) | ||
221 | wake_up(&root->fs_info->tree_log_wait); | ||
222 | return 0; | ||
223 | } | ||
224 | |||
225 | |||
226 | /* | ||
227 | * the walk control struct is used to pass state down the chain when | ||
228 | * processing the log tree. The stage field tells us which part | ||
229 | * of the log tree processing we are currently doing. The others | ||
230 | * are state fields used for that specific part | ||
231 | */ | ||
232 | struct walk_control { | ||
233 | /* should we free the extent on disk when done? This is used | ||
234 | * at transaction commit time while freeing a log tree | ||
235 | */ | ||
236 | int free; | ||
237 | |||
238 | /* should we write out the extent buffer? This is used | ||
239 | * while flushing the log tree to disk during a sync | ||
240 | */ | ||
241 | int write; | ||
242 | |||
243 | /* should we wait for the extent buffer io to finish? Also used | ||
244 | * while flushing the log tree to disk for a sync | ||
245 | */ | ||
246 | int wait; | ||
247 | |||
248 | /* pin only walk, we record which extents on disk belong to the | ||
249 | * log trees | ||
250 | */ | ||
251 | int pin; | ||
252 | |||
253 | /* what stage of the replay code we're currently in */ | ||
254 | int stage; | ||
255 | |||
256 | /* the root we are currently replaying */ | ||
257 | struct btrfs_root *replay_dest; | ||
258 | |||
259 | /* the trans handle for the current replay */ | ||
260 | struct btrfs_trans_handle *trans; | ||
261 | |||
262 | /* the function that gets used to process blocks we find in the | ||
263 | * tree. Note the extent_buffer might not be up to date when it is | ||
264 | * passed in, and it must be checked or read if you need the data | ||
265 | * inside it | ||
266 | */ | ||
267 | int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb, | ||
268 | struct walk_control *wc, u64 gen); | ||
269 | }; | ||
270 | |||
271 | /* | ||
272 | * process_func used to pin down extents, write them or wait on them | ||
273 | */ | ||
274 | static int process_one_buffer(struct btrfs_root *log, | ||
275 | struct extent_buffer *eb, | ||
276 | struct walk_control *wc, u64 gen) | ||
277 | { | ||
278 | if (wc->pin) { | ||
279 | mutex_lock(&log->fs_info->pinned_mutex); | ||
280 | btrfs_update_pinned_extents(log->fs_info->extent_root, | ||
281 | eb->start, eb->len, 1); | ||
282 | mutex_unlock(&log->fs_info->pinned_mutex); | ||
283 | } | ||
284 | |||
285 | if (btrfs_buffer_uptodate(eb, gen)) { | ||
286 | if (wc->write) | ||
287 | btrfs_write_tree_block(eb); | ||
288 | if (wc->wait) | ||
289 | btrfs_wait_tree_block_writeback(eb); | ||
290 | } | ||
291 | return 0; | ||
292 | } | ||
293 | |||
294 | /* | ||
295 | * Item overwrite used by replay and tree logging. eb, slot and key all refer | ||
296 | * to the src data we are copying out. | ||
297 | * | ||
298 | * root is the tree we are copying into, and path is a scratch | ||
299 | * path for use in this function (it should be released on entry and | ||
300 | * will be released on exit). | ||
301 | * | ||
302 | * If the key is already in the destination tree the existing item is | ||
303 | * overwritten. If the existing item isn't big enough, it is extended. | ||
304 | * If it is too large, it is truncated. | ||
305 | * | ||
306 | * If the key isn't in the destination yet, a new item is inserted. | ||
307 | */ | ||
308 | static noinline int overwrite_item(struct btrfs_trans_handle *trans, | ||
309 | struct btrfs_root *root, | ||
310 | struct btrfs_path *path, | ||
311 | struct extent_buffer *eb, int slot, | ||
312 | struct btrfs_key *key) | ||
313 | { | ||
314 | int ret; | ||
315 | u32 item_size; | ||
316 | u64 saved_i_size = 0; | ||
317 | int save_old_i_size = 0; | ||
318 | unsigned long src_ptr; | ||
319 | unsigned long dst_ptr; | ||
320 | int overwrite_root = 0; | ||
321 | |||
322 | if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) | ||
323 | overwrite_root = 1; | ||
324 | |||
325 | item_size = btrfs_item_size_nr(eb, slot); | ||
326 | src_ptr = btrfs_item_ptr_offset(eb, slot); | ||
327 | |||
328 | /* look for the key in the destination tree */ | ||
329 | ret = btrfs_search_slot(NULL, root, key, path, 0, 0); | ||
330 | if (ret == 0) { | ||
331 | char *src_copy; | ||
332 | char *dst_copy; | ||
333 | u32 dst_size = btrfs_item_size_nr(path->nodes[0], | ||
334 | path->slots[0]); | ||
335 | if (dst_size != item_size) | ||
336 | goto insert; | ||
337 | |||
338 | if (item_size == 0) { | ||
339 | btrfs_release_path(root, path); | ||
340 | return 0; | ||
341 | } | ||
342 | dst_copy = kmalloc(item_size, GFP_NOFS); | ||
343 | src_copy = kmalloc(item_size, GFP_NOFS); | ||
344 | |||
345 | read_extent_buffer(eb, src_copy, src_ptr, item_size); | ||
346 | |||
347 | dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); | ||
348 | read_extent_buffer(path->nodes[0], dst_copy, dst_ptr, | ||
349 | item_size); | ||
350 | ret = memcmp(dst_copy, src_copy, item_size); | ||
351 | |||
352 | kfree(dst_copy); | ||
353 | kfree(src_copy); | ||
354 | /* | ||
355 | * they have the same contents, just return, this saves | ||
356 | * us from cowing blocks in the destination tree and doing | ||
357 | * extra writes that may not have been done by a previous | ||
358 | * sync | ||
359 | */ | ||
360 | if (ret == 0) { | ||
361 | btrfs_release_path(root, path); | ||
362 | return 0; | ||
363 | } | ||
364 | |||
365 | } | ||
366 | insert: | ||
367 | btrfs_release_path(root, path); | ||
368 | /* try to insert the key into the destination tree */ | ||
369 | ret = btrfs_insert_empty_item(trans, root, path, | ||
370 | key, item_size); | ||
371 | |||
372 | /* make sure any existing item is the correct size */ | ||
373 | if (ret == -EEXIST) { | ||
374 | u32 found_size; | ||
375 | found_size = btrfs_item_size_nr(path->nodes[0], | ||
376 | path->slots[0]); | ||
377 | if (found_size > item_size) { | ||
378 | btrfs_truncate_item(trans, root, path, item_size, 1); | ||
379 | } else if (found_size < item_size) { | ||
380 | ret = btrfs_extend_item(trans, root, path, | ||
381 | item_size - found_size); | ||
382 | BUG_ON(ret); | ||
383 | } | ||
384 | } else if (ret) { | ||
385 | BUG(); | ||
386 | } | ||
387 | dst_ptr = btrfs_item_ptr_offset(path->nodes[0], | ||
388 | path->slots[0]); | ||
389 | |||
390 | /* don't overwrite an existing inode if the generation number | ||
391 | * was logged as zero. This is done when the tree logging code | ||
392 | * is just logging an inode to make sure it exists after recovery. | ||
393 | * | ||
394 | * Also, don't overwrite i_size on directories during replay. | ||
395 | * log replay inserts and removes directory items based on the | ||
396 | * state of the tree found in the subvolume, and i_size is modified | ||
397 | * as it goes | ||
398 | */ | ||
399 | if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) { | ||
400 | struct btrfs_inode_item *src_item; | ||
401 | struct btrfs_inode_item *dst_item; | ||
402 | |||
403 | src_item = (struct btrfs_inode_item *)src_ptr; | ||
404 | dst_item = (struct btrfs_inode_item *)dst_ptr; | ||
405 | |||
406 | if (btrfs_inode_generation(eb, src_item) == 0) | ||
407 | goto no_copy; | ||
408 | |||
409 | if (overwrite_root && | ||
410 | S_ISDIR(btrfs_inode_mode(eb, src_item)) && | ||
411 | S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) { | ||
412 | save_old_i_size = 1; | ||
413 | saved_i_size = btrfs_inode_size(path->nodes[0], | ||
414 | dst_item); | ||
415 | } | ||
416 | } | ||
417 | |||
418 | copy_extent_buffer(path->nodes[0], eb, dst_ptr, | ||
419 | src_ptr, item_size); | ||
420 | |||
421 | if (save_old_i_size) { | ||
422 | struct btrfs_inode_item *dst_item; | ||
423 | dst_item = (struct btrfs_inode_item *)dst_ptr; | ||
424 | btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size); | ||
425 | } | ||
426 | |||
427 | /* make sure the generation is filled in */ | ||
428 | if (key->type == BTRFS_INODE_ITEM_KEY) { | ||
429 | struct btrfs_inode_item *dst_item; | ||
430 | dst_item = (struct btrfs_inode_item *)dst_ptr; | ||
431 | if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) { | ||
432 | btrfs_set_inode_generation(path->nodes[0], dst_item, | ||
433 | trans->transid); | ||
434 | } | ||
435 | } | ||
436 | |||
437 | if (overwrite_root && | ||
438 | key->type == BTRFS_EXTENT_DATA_KEY) { | ||
439 | int extent_type; | ||
440 | struct btrfs_file_extent_item *fi; | ||
441 | |||
442 | fi = (struct btrfs_file_extent_item *)dst_ptr; | ||
443 | extent_type = btrfs_file_extent_type(path->nodes[0], fi); | ||
444 | if (extent_type == BTRFS_FILE_EXTENT_REG || | ||
445 | extent_type == BTRFS_FILE_EXTENT_PREALLOC) { | ||
446 | struct btrfs_key ins; | ||
447 | ins.objectid = btrfs_file_extent_disk_bytenr( | ||
448 | path->nodes[0], fi); | ||
449 | ins.offset = btrfs_file_extent_disk_num_bytes( | ||
450 | path->nodes[0], fi); | ||
451 | ins.type = BTRFS_EXTENT_ITEM_KEY; | ||
452 | |||
453 | /* | ||
454 | * is this extent already allocated in the extent | ||
455 | * allocation tree? If so, just add a reference | ||
456 | */ | ||
457 | ret = btrfs_lookup_extent(root, ins.objectid, | ||
458 | ins.offset); | ||
459 | if (ret == 0) { | ||
460 | ret = btrfs_inc_extent_ref(trans, root, | ||
461 | ins.objectid, ins.offset, | ||
462 | path->nodes[0]->start, | ||
463 | root->root_key.objectid, | ||
464 | trans->transid, key->objectid); | ||
465 | } else { | ||
466 | /* | ||
467 | * insert the extent pointer in the extent | ||
468 | * allocation tree | ||
469 | */ | ||
470 | ret = btrfs_alloc_logged_extent(trans, root, | ||
471 | path->nodes[0]->start, | ||
472 | root->root_key.objectid, | ||
473 | trans->transid, key->objectid, | ||
474 | &ins); | ||
475 | BUG_ON(ret); | ||
476 | } | ||
477 | } | ||
478 | } | ||
479 | no_copy: | ||
480 | btrfs_mark_buffer_dirty(path->nodes[0]); | ||
481 | btrfs_release_path(root, path); | ||
482 | return 0; | ||
483 | } | ||
484 | |||
485 | /* | ||
486 | * simple helper to read an inode off the disk from a given root | ||
487 | * This can only be called for subvolume roots and not for the log | ||
488 | */ | ||
489 | static noinline struct inode *read_one_inode(struct btrfs_root *root, | ||
490 | u64 objectid) | ||
491 | { | ||
492 | struct inode *inode; | ||
493 | inode = btrfs_iget_locked(root->fs_info->sb, objectid, root); | ||
494 | if (inode->i_state & I_NEW) { | ||
495 | BTRFS_I(inode)->root = root; | ||
496 | BTRFS_I(inode)->location.objectid = objectid; | ||
497 | BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY; | ||
498 | BTRFS_I(inode)->location.offset = 0; | ||
499 | btrfs_read_locked_inode(inode); | ||
500 | unlock_new_inode(inode); | ||
501 | |||
502 | } | ||
503 | if (is_bad_inode(inode)) { | ||
504 | iput(inode); | ||
505 | inode = NULL; | ||
506 | } | ||
507 | return inode; | ||
508 | } | ||
509 | |||
510 | /* replays a single extent in 'eb' at 'slot' with 'key' into the | ||
511 | * subvolume 'root'. path is released on entry and should be released | ||
512 | * on exit. | ||
513 | * | ||
514 | * extents in the log tree have not been allocated out of the extent | ||
515 | * tree yet. So, this completes the allocation, taking a reference | ||
516 | * as required if the extent already exists or creating a new extent | ||
517 | * if it isn't in the extent allocation tree yet. | ||
518 | * | ||
519 | * The extent is inserted into the file, dropping any existing extents | ||
520 | * from the file that overlap the new one. | ||
521 | */ | ||
522 | static noinline int replay_one_extent(struct btrfs_trans_handle *trans, | ||
523 | struct btrfs_root *root, | ||
524 | struct btrfs_path *path, | ||
525 | struct extent_buffer *eb, int slot, | ||
526 | struct btrfs_key *key) | ||
527 | { | ||
528 | int found_type; | ||
529 | u64 mask = root->sectorsize - 1; | ||
530 | u64 extent_end; | ||
531 | u64 alloc_hint; | ||
532 | u64 start = key->offset; | ||
533 | struct btrfs_file_extent_item *item; | ||
534 | struct inode *inode = NULL; | ||
535 | unsigned long size; | ||
536 | int ret = 0; | ||
537 | |||
538 | item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); | ||
539 | found_type = btrfs_file_extent_type(eb, item); | ||
540 | |||
541 | if (found_type == BTRFS_FILE_EXTENT_REG || | ||
542 | found_type == BTRFS_FILE_EXTENT_PREALLOC) | ||
543 | extent_end = start + btrfs_file_extent_num_bytes(eb, item); | ||
544 | else if (found_type == BTRFS_FILE_EXTENT_INLINE) { | ||
545 | size = btrfs_file_extent_inline_len(eb, item); | ||
546 | extent_end = (start + size + mask) & ~mask; | ||
547 | } else { | ||
548 | ret = 0; | ||
549 | goto out; | ||
550 | } | ||
551 | |||
552 | inode = read_one_inode(root, key->objectid); | ||
553 | if (!inode) { | ||
554 | ret = -EIO; | ||
555 | goto out; | ||
556 | } | ||
557 | |||
558 | /* | ||
559 | * first check to see if we already have this extent in the | ||
560 | * file. This must be done before the btrfs_drop_extents run | ||
561 | * so we don't try to drop this extent. | ||
562 | */ | ||
563 | ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino, | ||
564 | start, 0); | ||
565 | |||
566 | if (ret == 0 && | ||
567 | (found_type == BTRFS_FILE_EXTENT_REG || | ||
568 | found_type == BTRFS_FILE_EXTENT_PREALLOC)) { | ||
569 | struct btrfs_file_extent_item cmp1; | ||
570 | struct btrfs_file_extent_item cmp2; | ||
571 | struct btrfs_file_extent_item *existing; | ||
572 | struct extent_buffer *leaf; | ||
573 | |||
574 | leaf = path->nodes[0]; | ||
575 | existing = btrfs_item_ptr(leaf, path->slots[0], | ||
576 | struct btrfs_file_extent_item); | ||
577 | |||
578 | read_extent_buffer(eb, &cmp1, (unsigned long)item, | ||
579 | sizeof(cmp1)); | ||
580 | read_extent_buffer(leaf, &cmp2, (unsigned long)existing, | ||
581 | sizeof(cmp2)); | ||
582 | |||
583 | /* | ||
584 | * we already have a pointer to this exact extent, | ||
585 | * we don't have to do anything | ||
586 | */ | ||
587 | if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) { | ||
588 | btrfs_release_path(root, path); | ||
589 | goto out; | ||
590 | } | ||
591 | } | ||
592 | btrfs_release_path(root, path); | ||
593 | |||
594 | /* drop any overlapping extents */ | ||
595 | ret = btrfs_drop_extents(trans, root, inode, | ||
596 | start, extent_end, start, &alloc_hint); | ||
597 | BUG_ON(ret); | ||
598 | |||
599 | /* insert the extent */ | ||
600 | ret = overwrite_item(trans, root, path, eb, slot, key); | ||
601 | BUG_ON(ret); | ||
602 | |||
603 | /* btrfs_drop_extents changes i_bytes & i_blocks, update it here */ | ||
604 | inode_add_bytes(inode, extent_end - start); | ||
605 | btrfs_update_inode(trans, root, inode); | ||
606 | out: | ||
607 | if (inode) | ||
608 | iput(inode); | ||
609 | return ret; | ||
610 | } | ||
611 | |||
612 | /* | ||
613 | * when cleaning up conflicts between the directory names in the | ||
614 | * subvolume, directory names in the log and directory names in the | ||
615 | * inode back references, we may have to unlink inodes from directories. | ||
616 | * | ||
617 | * This is a helper function to do the unlink of a specific directory | ||
618 | * item | ||
619 | */ | ||
620 | static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans, | ||
621 | struct btrfs_root *root, | ||
622 | struct btrfs_path *path, | ||
623 | struct inode *dir, | ||
624 | struct btrfs_dir_item *di) | ||
625 | { | ||
626 | struct inode *inode; | ||
627 | char *name; | ||
628 | int name_len; | ||
629 | struct extent_buffer *leaf; | ||
630 | struct btrfs_key location; | ||
631 | int ret; | ||
632 | |||
633 | leaf = path->nodes[0]; | ||
634 | |||
635 | btrfs_dir_item_key_to_cpu(leaf, di, &location); | ||
636 | name_len = btrfs_dir_name_len(leaf, di); | ||
637 | name = kmalloc(name_len, GFP_NOFS); | ||
638 | read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len); | ||
639 | btrfs_release_path(root, path); | ||
640 | |||
641 | inode = read_one_inode(root, location.objectid); | ||
642 | BUG_ON(!inode); | ||
643 | |||
644 | ret = link_to_fixup_dir(trans, root, path, location.objectid); | ||
645 | BUG_ON(ret); | ||
646 | ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len); | ||
647 | BUG_ON(ret); | ||
648 | kfree(name); | ||
649 | |||
650 | iput(inode); | ||
651 | return ret; | ||
652 | } | ||
653 | |||
654 | /* | ||
655 | * helper function to see if a given name and sequence number found | ||
656 | * in an inode back reference are already in a directory and correctly | ||
657 | * point to this inode | ||
658 | */ | ||
659 | static noinline int inode_in_dir(struct btrfs_root *root, | ||
660 | struct btrfs_path *path, | ||
661 | u64 dirid, u64 objectid, u64 index, | ||
662 | const char *name, int name_len) | ||
663 | { | ||
664 | struct btrfs_dir_item *di; | ||
665 | struct btrfs_key location; | ||
666 | int match = 0; | ||
667 | |||
668 | di = btrfs_lookup_dir_index_item(NULL, root, path, dirid, | ||
669 | index, name, name_len, 0); | ||
670 | if (di && !IS_ERR(di)) { | ||
671 | btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); | ||
672 | if (location.objectid != objectid) | ||
673 | goto out; | ||
674 | } else | ||
675 | goto out; | ||
676 | btrfs_release_path(root, path); | ||
677 | |||
678 | di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0); | ||
679 | if (di && !IS_ERR(di)) { | ||
680 | btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); | ||
681 | if (location.objectid != objectid) | ||
682 | goto out; | ||
683 | } else | ||
684 | goto out; | ||
685 | match = 1; | ||
686 | out: | ||
687 | btrfs_release_path(root, path); | ||
688 | return match; | ||
689 | } | ||
690 | |||
691 | /* | ||
692 | * helper function to check a log tree for a named back reference in | ||
693 | * an inode. This is used to decide if a back reference that is | ||
694 | * found in the subvolume conflicts with what we find in the log. | ||
695 | * | ||
696 | * inode backreferences may have multiple refs in a single item, | ||
697 | * during replay we process one reference at a time, and we don't | ||
698 | * want to delete valid links to a file from the subvolume if that | ||
699 | * link is also in the log. | ||
700 | */ | ||
701 | static noinline int backref_in_log(struct btrfs_root *log, | ||
702 | struct btrfs_key *key, | ||
703 | char *name, int namelen) | ||
704 | { | ||
705 | struct btrfs_path *path; | ||
706 | struct btrfs_inode_ref *ref; | ||
707 | unsigned long ptr; | ||
708 | unsigned long ptr_end; | ||
709 | unsigned long name_ptr; | ||
710 | int found_name_len; | ||
711 | int item_size; | ||
712 | int ret; | ||
713 | int match = 0; | ||
714 | |||
715 | path = btrfs_alloc_path(); | ||
716 | ret = btrfs_search_slot(NULL, log, key, path, 0, 0); | ||
717 | if (ret != 0) | ||
718 | goto out; | ||
719 | |||
720 | item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]); | ||
721 | ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); | ||
722 | ptr_end = ptr + item_size; | ||
723 | while (ptr < ptr_end) { | ||
724 | ref = (struct btrfs_inode_ref *)ptr; | ||
725 | found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref); | ||
726 | if (found_name_len == namelen) { | ||
727 | name_ptr = (unsigned long)(ref + 1); | ||
728 | ret = memcmp_extent_buffer(path->nodes[0], name, | ||
729 | name_ptr, namelen); | ||
730 | if (ret == 0) { | ||
731 | match = 1; | ||
732 | goto out; | ||
733 | } | ||
734 | } | ||
735 | ptr = (unsigned long)(ref + 1) + found_name_len; | ||
736 | } | ||
737 | out: | ||
738 | btrfs_free_path(path); | ||
739 | return match; | ||
740 | } | ||
741 | |||
742 | |||
743 | /* | ||
744 | * replay one inode back reference item found in the log tree. | ||
745 | * eb, slot and key refer to the buffer and key found in the log tree. | ||
746 | * root is the destination we are replaying into, and path is for temp | ||
747 | * use by this function. (it should be released on return). | ||
748 | */ | ||
749 | static noinline int add_inode_ref(struct btrfs_trans_handle *trans, | ||
750 | struct btrfs_root *root, | ||
751 | struct btrfs_root *log, | ||
752 | struct btrfs_path *path, | ||
753 | struct extent_buffer *eb, int slot, | ||
754 | struct btrfs_key *key) | ||
755 | { | ||
756 | struct inode *dir; | ||
757 | int ret; | ||
758 | struct btrfs_key location; | ||
759 | struct btrfs_inode_ref *ref; | ||
760 | struct btrfs_dir_item *di; | ||
761 | struct inode *inode; | ||
762 | char *name; | ||
763 | int namelen; | ||
764 | unsigned long ref_ptr; | ||
765 | unsigned long ref_end; | ||
766 | |||
767 | location.objectid = key->objectid; | ||
768 | location.type = BTRFS_INODE_ITEM_KEY; | ||
769 | location.offset = 0; | ||
770 | |||
771 | /* | ||
772 | * it is possible that we didn't log all the parent directories | ||
773 | * for a given inode. If we don't find the dir, just don't | ||
774 | * copy the back ref in. The link count fixup code will take | ||
775 | * care of the rest | ||
776 | */ | ||
777 | dir = read_one_inode(root, key->offset); | ||
778 | if (!dir) | ||
779 | return -ENOENT; | ||
780 | |||
781 | inode = read_one_inode(root, key->objectid); | ||
782 | BUG_ON(!dir); | ||
783 | |||
784 | ref_ptr = btrfs_item_ptr_offset(eb, slot); | ||
785 | ref_end = ref_ptr + btrfs_item_size_nr(eb, slot); | ||
786 | |||
787 | again: | ||
788 | ref = (struct btrfs_inode_ref *)ref_ptr; | ||
789 | |||
790 | namelen = btrfs_inode_ref_name_len(eb, ref); | ||
791 | name = kmalloc(namelen, GFP_NOFS); | ||
792 | BUG_ON(!name); | ||
793 | |||
794 | read_extent_buffer(eb, name, (unsigned long)(ref + 1), namelen); | ||
795 | |||
796 | /* if we already have a perfect match, we're done */ | ||
797 | if (inode_in_dir(root, path, dir->i_ino, inode->i_ino, | ||
798 | btrfs_inode_ref_index(eb, ref), | ||
799 | name, namelen)) { | ||
800 | goto out; | ||
801 | } | ||
802 | |||
803 | /* | ||
804 | * look for a conflicting back reference in the metadata. | ||
805 | * if we find one we have to unlink that name of the file | ||
806 | * before we add our new link. Later on, we overwrite any | ||
807 | * existing back reference, and we don't want to create | ||
808 | * dangling pointers in the directory. | ||
809 | */ | ||
810 | conflict_again: | ||
811 | ret = btrfs_search_slot(NULL, root, key, path, 0, 0); | ||
812 | if (ret == 0) { | ||
813 | char *victim_name; | ||
814 | int victim_name_len; | ||
815 | struct btrfs_inode_ref *victim_ref; | ||
816 | unsigned long ptr; | ||
817 | unsigned long ptr_end; | ||
818 | struct extent_buffer *leaf = path->nodes[0]; | ||
819 | |||
820 | /* are we trying to overwrite a back ref for the root directory | ||
821 | * if so, just jump out, we're done | ||
822 | */ | ||
823 | if (key->objectid == key->offset) | ||
824 | goto out_nowrite; | ||
825 | |||
826 | /* check all the names in this back reference to see | ||
827 | * if they are in the log. if so, we allow them to stay | ||
828 | * otherwise they must be unlinked as a conflict | ||
829 | */ | ||
830 | ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); | ||
831 | ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]); | ||
832 | while (ptr < ptr_end) { | ||
833 | victim_ref = (struct btrfs_inode_ref *)ptr; | ||
834 | victim_name_len = btrfs_inode_ref_name_len(leaf, | ||
835 | victim_ref); | ||
836 | victim_name = kmalloc(victim_name_len, GFP_NOFS); | ||
837 | BUG_ON(!victim_name); | ||
838 | |||
839 | read_extent_buffer(leaf, victim_name, | ||
840 | (unsigned long)(victim_ref + 1), | ||
841 | victim_name_len); | ||
842 | |||
843 | if (!backref_in_log(log, key, victim_name, | ||
844 | victim_name_len)) { | ||
845 | btrfs_inc_nlink(inode); | ||
846 | btrfs_release_path(root, path); | ||
847 | ret = btrfs_unlink_inode(trans, root, dir, | ||
848 | inode, victim_name, | ||
849 | victim_name_len); | ||
850 | kfree(victim_name); | ||
851 | btrfs_release_path(root, path); | ||
852 | goto conflict_again; | ||
853 | } | ||
854 | kfree(victim_name); | ||
855 | ptr = (unsigned long)(victim_ref + 1) + victim_name_len; | ||
856 | } | ||
857 | BUG_ON(ret); | ||
858 | } | ||
859 | btrfs_release_path(root, path); | ||
860 | |||
861 | /* look for a conflicting sequence number */ | ||
862 | di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, | ||
863 | btrfs_inode_ref_index(eb, ref), | ||
864 | name, namelen, 0); | ||
865 | if (di && !IS_ERR(di)) { | ||
866 | ret = drop_one_dir_item(trans, root, path, dir, di); | ||
867 | BUG_ON(ret); | ||
868 | } | ||
869 | btrfs_release_path(root, path); | ||
870 | |||
871 | |||
872 | /* look for a conflicting name */ | ||
873 | di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino, | ||
874 | name, namelen, 0); | ||
875 | if (di && !IS_ERR(di)) { | ||
876 | ret = drop_one_dir_item(trans, root, path, dir, di); | ||
877 | BUG_ON(ret); | ||
878 | } | ||
879 | btrfs_release_path(root, path); | ||
880 | |||
881 | /* insert our name */ | ||
882 | ret = btrfs_add_link(trans, dir, inode, name, namelen, 0, | ||
883 | btrfs_inode_ref_index(eb, ref)); | ||
884 | BUG_ON(ret); | ||
885 | |||
886 | btrfs_update_inode(trans, root, inode); | ||
887 | |||
888 | out: | ||
889 | ref_ptr = (unsigned long)(ref + 1) + namelen; | ||
890 | kfree(name); | ||
891 | if (ref_ptr < ref_end) | ||
892 | goto again; | ||
893 | |||
894 | /* finally write the back reference in the inode */ | ||
895 | ret = overwrite_item(trans, root, path, eb, slot, key); | ||
896 | BUG_ON(ret); | ||
897 | |||
898 | out_nowrite: | ||
899 | btrfs_release_path(root, path); | ||
900 | iput(dir); | ||
901 | iput(inode); | ||
902 | return 0; | ||
903 | } | ||
904 | |||
905 | /* | ||
906 | * replay one csum item from the log tree into the subvolume 'root' | ||
907 | * eb, slot and key all refer to the log tree | ||
908 | * path is for temp use by this function and should be released on return | ||
909 | * | ||
910 | * This copies the checksums out of the log tree and inserts them into | ||
911 | * the subvolume. Any existing checksums for this range in the file | ||
912 | * are overwritten, and new items are added where required. | ||
913 | * | ||
914 | * We keep this simple by reusing the btrfs_ordered_sum code from | ||
915 | * the data=ordered mode. This basically means making a copy | ||
916 | * of all the checksums in ram, which we have to do anyway for kmap | ||
917 | * rules. | ||
918 | * | ||
919 | * The copy is then sent down to btrfs_csum_file_blocks, which | ||
920 | * does all the hard work of finding existing items in the file | ||
921 | * or adding new ones. | ||
922 | */ | ||
923 | static noinline int replay_one_csum(struct btrfs_trans_handle *trans, | ||
924 | struct btrfs_root *root, | ||
925 | struct btrfs_path *path, | ||
926 | struct extent_buffer *eb, int slot, | ||
927 | struct btrfs_key *key) | ||
928 | { | ||
929 | int ret; | ||
930 | u32 item_size = btrfs_item_size_nr(eb, slot); | ||
931 | u64 cur_offset; | ||
932 | u16 csum_size = | ||
933 | btrfs_super_csum_size(&root->fs_info->super_copy); | ||
934 | unsigned long file_bytes; | ||
935 | struct btrfs_ordered_sum *sums; | ||
936 | struct btrfs_sector_sum *sector_sum; | ||
937 | unsigned long ptr; | ||
938 | |||
939 | file_bytes = (item_size / csum_size) * root->sectorsize; | ||
940 | sums = kzalloc(btrfs_ordered_sum_size(root, file_bytes), GFP_NOFS); | ||
941 | if (!sums) | ||
942 | return -ENOMEM; | ||
943 | |||
944 | INIT_LIST_HEAD(&sums->list); | ||
945 | sums->len = file_bytes; | ||
946 | sums->bytenr = key->offset; | ||
947 | |||
948 | /* | ||
949 | * copy all the sums into the ordered sum struct | ||
950 | */ | ||
951 | sector_sum = sums->sums; | ||
952 | cur_offset = key->offset; | ||
953 | ptr = btrfs_item_ptr_offset(eb, slot); | ||
954 | while (item_size > 0) { | ||
955 | sector_sum->bytenr = cur_offset; | ||
956 | read_extent_buffer(eb, §or_sum->sum, ptr, csum_size); | ||
957 | sector_sum++; | ||
958 | item_size -= csum_size; | ||
959 | ptr += csum_size; | ||
960 | cur_offset += root->sectorsize; | ||
961 | } | ||
962 | |||
963 | /* let btrfs_csum_file_blocks add them into the file */ | ||
964 | ret = btrfs_csum_file_blocks(trans, root->fs_info->csum_root, sums); | ||
965 | BUG_ON(ret); | ||
966 | kfree(sums); | ||
967 | return 0; | ||
968 | } | ||
969 | /* | ||
970 | * There are a few corners where the link count of the file can't | ||
971 | * be properly maintained during replay. So, instead of adding | ||
972 | * lots of complexity to the log code, we just scan the backrefs | ||
973 | * for any file that has been through replay. | ||
974 | * | ||
975 | * The scan will update the link count on the inode to reflect the | ||
976 | * number of back refs found. If it goes down to zero, the iput | ||
977 | * will free the inode. | ||
978 | */ | ||
979 | static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans, | ||
980 | struct btrfs_root *root, | ||
981 | struct inode *inode) | ||
982 | { | ||
983 | struct btrfs_path *path; | ||
984 | int ret; | ||
985 | struct btrfs_key key; | ||
986 | u64 nlink = 0; | ||
987 | unsigned long ptr; | ||
988 | unsigned long ptr_end; | ||
989 | int name_len; | ||
990 | |||
991 | key.objectid = inode->i_ino; | ||
992 | key.type = BTRFS_INODE_REF_KEY; | ||
993 | key.offset = (u64)-1; | ||
994 | |||
995 | path = btrfs_alloc_path(); | ||
996 | |||
997 | while (1) { | ||
998 | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | ||
999 | if (ret < 0) | ||
1000 | break; | ||
1001 | if (ret > 0) { | ||
1002 | if (path->slots[0] == 0) | ||
1003 | break; | ||
1004 | path->slots[0]--; | ||
1005 | } | ||
1006 | btrfs_item_key_to_cpu(path->nodes[0], &key, | ||
1007 | path->slots[0]); | ||
1008 | if (key.objectid != inode->i_ino || | ||
1009 | key.type != BTRFS_INODE_REF_KEY) | ||
1010 | break; | ||
1011 | ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); | ||
1012 | ptr_end = ptr + btrfs_item_size_nr(path->nodes[0], | ||
1013 | path->slots[0]); | ||
1014 | while (ptr < ptr_end) { | ||
1015 | struct btrfs_inode_ref *ref; | ||
1016 | |||
1017 | ref = (struct btrfs_inode_ref *)ptr; | ||
1018 | name_len = btrfs_inode_ref_name_len(path->nodes[0], | ||
1019 | ref); | ||
1020 | ptr = (unsigned long)(ref + 1) + name_len; | ||
1021 | nlink++; | ||
1022 | } | ||
1023 | |||
1024 | if (key.offset == 0) | ||
1025 | break; | ||
1026 | key.offset--; | ||
1027 | btrfs_release_path(root, path); | ||
1028 | } | ||
1029 | btrfs_free_path(path); | ||
1030 | if (nlink != inode->i_nlink) { | ||
1031 | inode->i_nlink = nlink; | ||
1032 | btrfs_update_inode(trans, root, inode); | ||
1033 | } | ||
1034 | BTRFS_I(inode)->index_cnt = (u64)-1; | ||
1035 | |||
1036 | return 0; | ||
1037 | } | ||
1038 | |||
1039 | static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans, | ||
1040 | struct btrfs_root *root, | ||
1041 | struct btrfs_path *path) | ||
1042 | { | ||
1043 | int ret; | ||
1044 | struct btrfs_key key; | ||
1045 | struct inode *inode; | ||
1046 | |||
1047 | key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; | ||
1048 | key.type = BTRFS_ORPHAN_ITEM_KEY; | ||
1049 | key.offset = (u64)-1; | ||
1050 | while (1) { | ||
1051 | ret = btrfs_search_slot(trans, root, &key, path, -1, 1); | ||
1052 | if (ret < 0) | ||
1053 | break; | ||
1054 | |||
1055 | if (ret == 1) { | ||
1056 | if (path->slots[0] == 0) | ||
1057 | break; | ||
1058 | path->slots[0]--; | ||
1059 | } | ||
1060 | |||
1061 | btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); | ||
1062 | if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID || | ||
1063 | key.type != BTRFS_ORPHAN_ITEM_KEY) | ||
1064 | break; | ||
1065 | |||
1066 | ret = btrfs_del_item(trans, root, path); | ||
1067 | BUG_ON(ret); | ||
1068 | |||
1069 | btrfs_release_path(root, path); | ||
1070 | inode = read_one_inode(root, key.offset); | ||
1071 | BUG_ON(!inode); | ||
1072 | |||
1073 | ret = fixup_inode_link_count(trans, root, inode); | ||
1074 | BUG_ON(ret); | ||
1075 | |||
1076 | iput(inode); | ||
1077 | |||
1078 | if (key.offset == 0) | ||
1079 | break; | ||
1080 | key.offset--; | ||
1081 | } | ||
1082 | btrfs_release_path(root, path); | ||
1083 | return 0; | ||
1084 | } | ||
1085 | |||
1086 | |||
1087 | /* | ||
1088 | * record a given inode in the fixup dir so we can check its link | ||
1089 | * count when replay is done. The link count is incremented here | ||
1090 | * so the inode won't go away until we check it | ||
1091 | */ | ||
1092 | static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans, | ||
1093 | struct btrfs_root *root, | ||
1094 | struct btrfs_path *path, | ||
1095 | u64 objectid) | ||
1096 | { | ||
1097 | struct btrfs_key key; | ||
1098 | int ret = 0; | ||
1099 | struct inode *inode; | ||
1100 | |||
1101 | inode = read_one_inode(root, objectid); | ||
1102 | BUG_ON(!inode); | ||
1103 | |||
1104 | key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; | ||
1105 | btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY); | ||
1106 | key.offset = objectid; | ||
1107 | |||
1108 | ret = btrfs_insert_empty_item(trans, root, path, &key, 0); | ||
1109 | |||
1110 | btrfs_release_path(root, path); | ||
1111 | if (ret == 0) { | ||
1112 | btrfs_inc_nlink(inode); | ||
1113 | btrfs_update_inode(trans, root, inode); | ||
1114 | } else if (ret == -EEXIST) { | ||
1115 | ret = 0; | ||
1116 | } else { | ||
1117 | BUG(); | ||
1118 | } | ||
1119 | iput(inode); | ||
1120 | |||
1121 | return ret; | ||
1122 | } | ||
1123 | |||
1124 | /* | ||
1125 | * when replaying the log for a directory, we only insert names | ||
1126 | * for inodes that actually exist. This means an fsync on a directory | ||
1127 | * does not implicitly fsync all the new files in it | ||
1128 | */ | ||
1129 | static noinline int insert_one_name(struct btrfs_trans_handle *trans, | ||
1130 | struct btrfs_root *root, | ||
1131 | struct btrfs_path *path, | ||
1132 | u64 dirid, u64 index, | ||
1133 | char *name, int name_len, u8 type, | ||
1134 | struct btrfs_key *location) | ||
1135 | { | ||
1136 | struct inode *inode; | ||
1137 | struct inode *dir; | ||
1138 | int ret; | ||
1139 | |||
1140 | inode = read_one_inode(root, location->objectid); | ||
1141 | if (!inode) | ||
1142 | return -ENOENT; | ||
1143 | |||
1144 | dir = read_one_inode(root, dirid); | ||
1145 | if (!dir) { | ||
1146 | iput(inode); | ||
1147 | return -EIO; | ||
1148 | } | ||
1149 | ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index); | ||
1150 | |||
1151 | /* FIXME, put inode into FIXUP list */ | ||
1152 | |||
1153 | iput(inode); | ||
1154 | iput(dir); | ||
1155 | return ret; | ||
1156 | } | ||
1157 | |||
1158 | /* | ||
1159 | * take a single entry in a log directory item and replay it into | ||
1160 | * the subvolume. | ||
1161 | * | ||
1162 | * if a conflicting item exists in the subdirectory already, | ||
1163 | * the inode it points to is unlinked and put into the link count | ||
1164 | * fix up tree. | ||
1165 | * | ||
1166 | * If a name from the log points to a file or directory that does | ||
1167 | * not exist in the FS, it is skipped. fsyncs on directories | ||
1168 | * do not force down inodes inside that directory, just changes to the | ||
1169 | * names or unlinks in a directory. | ||
1170 | */ | ||
1171 | static noinline int replay_one_name(struct btrfs_trans_handle *trans, | ||
1172 | struct btrfs_root *root, | ||
1173 | struct btrfs_path *path, | ||
1174 | struct extent_buffer *eb, | ||
1175 | struct btrfs_dir_item *di, | ||
1176 | struct btrfs_key *key) | ||
1177 | { | ||
1178 | char *name; | ||
1179 | int name_len; | ||
1180 | struct btrfs_dir_item *dst_di; | ||
1181 | struct btrfs_key found_key; | ||
1182 | struct btrfs_key log_key; | ||
1183 | struct inode *dir; | ||
1184 | u8 log_type; | ||
1185 | int exists; | ||
1186 | int ret; | ||
1187 | |||
1188 | dir = read_one_inode(root, key->objectid); | ||
1189 | BUG_ON(!dir); | ||
1190 | |||
1191 | name_len = btrfs_dir_name_len(eb, di); | ||
1192 | name = kmalloc(name_len, GFP_NOFS); | ||
1193 | log_type = btrfs_dir_type(eb, di); | ||
1194 | read_extent_buffer(eb, name, (unsigned long)(di + 1), | ||
1195 | name_len); | ||
1196 | |||
1197 | btrfs_dir_item_key_to_cpu(eb, di, &log_key); | ||
1198 | exists = btrfs_lookup_inode(trans, root, path, &log_key, 0); | ||
1199 | if (exists == 0) | ||
1200 | exists = 1; | ||
1201 | else | ||
1202 | exists = 0; | ||
1203 | btrfs_release_path(root, path); | ||
1204 | |||
1205 | if (key->type == BTRFS_DIR_ITEM_KEY) { | ||
1206 | dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid, | ||
1207 | name, name_len, 1); | ||
1208 | } else if (key->type == BTRFS_DIR_INDEX_KEY) { | ||
1209 | dst_di = btrfs_lookup_dir_index_item(trans, root, path, | ||
1210 | key->objectid, | ||
1211 | key->offset, name, | ||
1212 | name_len, 1); | ||
1213 | } else { | ||
1214 | BUG(); | ||
1215 | } | ||
1216 | if (!dst_di || IS_ERR(dst_di)) { | ||
1217 | /* we need a sequence number to insert, so we only | ||
1218 | * do inserts for the BTRFS_DIR_INDEX_KEY types | ||
1219 | */ | ||
1220 | if (key->type != BTRFS_DIR_INDEX_KEY) | ||
1221 | goto out; | ||
1222 | goto insert; | ||
1223 | } | ||
1224 | |||
1225 | btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key); | ||
1226 | /* the existing item matches the logged item */ | ||
1227 | if (found_key.objectid == log_key.objectid && | ||
1228 | found_key.type == log_key.type && | ||
1229 | found_key.offset == log_key.offset && | ||
1230 | btrfs_dir_type(path->nodes[0], dst_di) == log_type) { | ||
1231 | goto out; | ||
1232 | } | ||
1233 | |||
1234 | /* | ||
1235 | * don't drop the conflicting directory entry if the inode | ||
1236 | * for the new entry doesn't exist | ||
1237 | */ | ||
1238 | if (!exists) | ||
1239 | goto out; | ||
1240 | |||
1241 | ret = drop_one_dir_item(trans, root, path, dir, dst_di); | ||
1242 | BUG_ON(ret); | ||
1243 | |||
1244 | if (key->type == BTRFS_DIR_INDEX_KEY) | ||
1245 | goto insert; | ||
1246 | out: | ||
1247 | btrfs_release_path(root, path); | ||
1248 | kfree(name); | ||
1249 | iput(dir); | ||
1250 | return 0; | ||
1251 | |||
1252 | insert: | ||
1253 | btrfs_release_path(root, path); | ||
1254 | ret = insert_one_name(trans, root, path, key->objectid, key->offset, | ||
1255 | name, name_len, log_type, &log_key); | ||
1256 | |||
1257 | if (ret && ret != -ENOENT) | ||
1258 | BUG(); | ||
1259 | goto out; | ||
1260 | } | ||
1261 | |||
1262 | /* | ||
1263 | * find all the names in a directory item and reconcile them into | ||
1264 | * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than | ||
1265 | * one name in a directory item, but the same code gets used for | ||
1266 | * both directory index types | ||
1267 | */ | ||
1268 | static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans, | ||
1269 | struct btrfs_root *root, | ||
1270 | struct btrfs_path *path, | ||
1271 | struct extent_buffer *eb, int slot, | ||
1272 | struct btrfs_key *key) | ||
1273 | { | ||
1274 | int ret; | ||
1275 | u32 item_size = btrfs_item_size_nr(eb, slot); | ||
1276 | struct btrfs_dir_item *di; | ||
1277 | int name_len; | ||
1278 | unsigned long ptr; | ||
1279 | unsigned long ptr_end; | ||
1280 | |||
1281 | ptr = btrfs_item_ptr_offset(eb, slot); | ||
1282 | ptr_end = ptr + item_size; | ||
1283 | while (ptr < ptr_end) { | ||
1284 | di = (struct btrfs_dir_item *)ptr; | ||
1285 | name_len = btrfs_dir_name_len(eb, di); | ||
1286 | ret = replay_one_name(trans, root, path, eb, di, key); | ||
1287 | BUG_ON(ret); | ||
1288 | ptr = (unsigned long)(di + 1); | ||
1289 | ptr += name_len; | ||
1290 | } | ||
1291 | return 0; | ||
1292 | } | ||
1293 | |||
1294 | /* | ||
1295 | * directory replay has two parts. There are the standard directory | ||
1296 | * items in the log copied from the subvolume, and range items | ||
1297 | * created in the log while the subvolume was logged. | ||
1298 | * | ||
1299 | * The range items tell us which parts of the key space the log | ||
1300 | * is authoritative for. During replay, if a key in the subvolume | ||
1301 | * directory is in a logged range item, but not actually in the log | ||
1302 | * that means it was deleted from the directory before the fsync | ||
1303 | * and should be removed. | ||
1304 | */ | ||
1305 | static noinline int find_dir_range(struct btrfs_root *root, | ||
1306 | struct btrfs_path *path, | ||
1307 | u64 dirid, int key_type, | ||
1308 | u64 *start_ret, u64 *end_ret) | ||
1309 | { | ||
1310 | struct btrfs_key key; | ||
1311 | u64 found_end; | ||
1312 | struct btrfs_dir_log_item *item; | ||
1313 | int ret; | ||
1314 | int nritems; | ||
1315 | |||
1316 | if (*start_ret == (u64)-1) | ||
1317 | return 1; | ||
1318 | |||
1319 | key.objectid = dirid; | ||
1320 | key.type = key_type; | ||
1321 | key.offset = *start_ret; | ||
1322 | |||
1323 | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | ||
1324 | if (ret < 0) | ||
1325 | goto out; | ||
1326 | if (ret > 0) { | ||
1327 | if (path->slots[0] == 0) | ||
1328 | goto out; | ||
1329 | path->slots[0]--; | ||
1330 | } | ||
1331 | if (ret != 0) | ||
1332 | btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); | ||
1333 | |||
1334 | if (key.type != key_type || key.objectid != dirid) { | ||
1335 | ret = 1; | ||
1336 | goto next; | ||
1337 | } | ||
1338 | item = btrfs_item_ptr(path->nodes[0], path->slots[0], | ||
1339 | struct btrfs_dir_log_item); | ||
1340 | found_end = btrfs_dir_log_end(path->nodes[0], item); | ||
1341 | |||
1342 | if (*start_ret >= key.offset && *start_ret <= found_end) { | ||
1343 | ret = 0; | ||
1344 | *start_ret = key.offset; | ||
1345 | *end_ret = found_end; | ||
1346 | goto out; | ||
1347 | } | ||
1348 | ret = 1; | ||
1349 | next: | ||
1350 | /* check the next slot in the tree to see if it is a valid item */ | ||
1351 | nritems = btrfs_header_nritems(path->nodes[0]); | ||
1352 | if (path->slots[0] >= nritems) { | ||
1353 | ret = btrfs_next_leaf(root, path); | ||
1354 | if (ret) | ||
1355 | goto out; | ||
1356 | } else { | ||
1357 | path->slots[0]++; | ||
1358 | } | ||
1359 | |||
1360 | btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); | ||
1361 | |||
1362 | if (key.type != key_type || key.objectid != dirid) { | ||
1363 | ret = 1; | ||
1364 | goto out; | ||
1365 | } | ||
1366 | item = btrfs_item_ptr(path->nodes[0], path->slots[0], | ||
1367 | struct btrfs_dir_log_item); | ||
1368 | found_end = btrfs_dir_log_end(path->nodes[0], item); | ||
1369 | *start_ret = key.offset; | ||
1370 | *end_ret = found_end; | ||
1371 | ret = 0; | ||
1372 | out: | ||
1373 | btrfs_release_path(root, path); | ||
1374 | return ret; | ||
1375 | } | ||
1376 | |||
1377 | /* | ||
1378 | * this looks for a given directory item in the log. If the directory | ||
1379 | * item is not in the log, the item is removed and the inode it points | ||
1380 | * to is unlinked | ||
1381 | */ | ||
1382 | static noinline int check_item_in_log(struct btrfs_trans_handle *trans, | ||
1383 | struct btrfs_root *root, | ||
1384 | struct btrfs_root *log, | ||
1385 | struct btrfs_path *path, | ||
1386 | struct btrfs_path *log_path, | ||
1387 | struct inode *dir, | ||
1388 | struct btrfs_key *dir_key) | ||
1389 | { | ||
1390 | int ret; | ||
1391 | struct extent_buffer *eb; | ||
1392 | int slot; | ||
1393 | u32 item_size; | ||
1394 | struct btrfs_dir_item *di; | ||
1395 | struct btrfs_dir_item *log_di; | ||
1396 | int name_len; | ||
1397 | unsigned long ptr; | ||
1398 | unsigned long ptr_end; | ||
1399 | char *name; | ||
1400 | struct inode *inode; | ||
1401 | struct btrfs_key location; | ||
1402 | |||
1403 | again: | ||
1404 | eb = path->nodes[0]; | ||
1405 | slot = path->slots[0]; | ||
1406 | item_size = btrfs_item_size_nr(eb, slot); | ||
1407 | ptr = btrfs_item_ptr_offset(eb, slot); | ||
1408 | ptr_end = ptr + item_size; | ||
1409 | while (ptr < ptr_end) { | ||
1410 | di = (struct btrfs_dir_item *)ptr; | ||
1411 | name_len = btrfs_dir_name_len(eb, di); | ||
1412 | name = kmalloc(name_len, GFP_NOFS); | ||
1413 | if (!name) { | ||
1414 | ret = -ENOMEM; | ||
1415 | goto out; | ||
1416 | } | ||
1417 | read_extent_buffer(eb, name, (unsigned long)(di + 1), | ||
1418 | name_len); | ||
1419 | log_di = NULL; | ||
1420 | if (dir_key->type == BTRFS_DIR_ITEM_KEY) { | ||
1421 | log_di = btrfs_lookup_dir_item(trans, log, log_path, | ||
1422 | dir_key->objectid, | ||
1423 | name, name_len, 0); | ||
1424 | } else if (dir_key->type == BTRFS_DIR_INDEX_KEY) { | ||
1425 | log_di = btrfs_lookup_dir_index_item(trans, log, | ||
1426 | log_path, | ||
1427 | dir_key->objectid, | ||
1428 | dir_key->offset, | ||
1429 | name, name_len, 0); | ||
1430 | } | ||
1431 | if (!log_di || IS_ERR(log_di)) { | ||
1432 | btrfs_dir_item_key_to_cpu(eb, di, &location); | ||
1433 | btrfs_release_path(root, path); | ||
1434 | btrfs_release_path(log, log_path); | ||
1435 | inode = read_one_inode(root, location.objectid); | ||
1436 | BUG_ON(!inode); | ||
1437 | |||
1438 | ret = link_to_fixup_dir(trans, root, | ||
1439 | path, location.objectid); | ||
1440 | BUG_ON(ret); | ||
1441 | btrfs_inc_nlink(inode); | ||
1442 | ret = btrfs_unlink_inode(trans, root, dir, inode, | ||
1443 | name, name_len); | ||
1444 | BUG_ON(ret); | ||
1445 | kfree(name); | ||
1446 | iput(inode); | ||
1447 | |||
1448 | /* there might still be more names under this key | ||
1449 | * check and repeat if required | ||
1450 | */ | ||
1451 | ret = btrfs_search_slot(NULL, root, dir_key, path, | ||
1452 | 0, 0); | ||
1453 | if (ret == 0) | ||
1454 | goto again; | ||
1455 | ret = 0; | ||
1456 | goto out; | ||
1457 | } | ||
1458 | btrfs_release_path(log, log_path); | ||
1459 | kfree(name); | ||
1460 | |||
1461 | ptr = (unsigned long)(di + 1); | ||
1462 | ptr += name_len; | ||
1463 | } | ||
1464 | ret = 0; | ||
1465 | out: | ||
1466 | btrfs_release_path(root, path); | ||
1467 | btrfs_release_path(log, log_path); | ||
1468 | return ret; | ||
1469 | } | ||
1470 | |||
1471 | /* | ||
1472 | * deletion replay happens before we copy any new directory items | ||
1473 | * out of the log or out of backreferences from inodes. It | ||
1474 | * scans the log to find ranges of keys that log is authoritative for, | ||
1475 | * and then scans the directory to find items in those ranges that are | ||
1476 | * not present in the log. | ||
1477 | * | ||
1478 | * Anything we don't find in the log is unlinked and removed from the | ||
1479 | * directory. | ||
1480 | */ | ||
1481 | static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans, | ||
1482 | struct btrfs_root *root, | ||
1483 | struct btrfs_root *log, | ||
1484 | struct btrfs_path *path, | ||
1485 | u64 dirid) | ||
1486 | { | ||
1487 | u64 range_start; | ||
1488 | u64 range_end; | ||
1489 | int key_type = BTRFS_DIR_LOG_ITEM_KEY; | ||
1490 | int ret = 0; | ||
1491 | struct btrfs_key dir_key; | ||
1492 | struct btrfs_key found_key; | ||
1493 | struct btrfs_path *log_path; | ||
1494 | struct inode *dir; | ||
1495 | |||
1496 | dir_key.objectid = dirid; | ||
1497 | dir_key.type = BTRFS_DIR_ITEM_KEY; | ||
1498 | log_path = btrfs_alloc_path(); | ||
1499 | if (!log_path) | ||
1500 | return -ENOMEM; | ||
1501 | |||
1502 | dir = read_one_inode(root, dirid); | ||
1503 | /* it isn't an error if the inode isn't there, that can happen | ||
1504 | * because we replay the deletes before we copy in the inode item | ||
1505 | * from the log | ||
1506 | */ | ||
1507 | if (!dir) { | ||
1508 | btrfs_free_path(log_path); | ||
1509 | return 0; | ||
1510 | } | ||
1511 | again: | ||
1512 | range_start = 0; | ||
1513 | range_end = 0; | ||
1514 | while (1) { | ||
1515 | ret = find_dir_range(log, path, dirid, key_type, | ||
1516 | &range_start, &range_end); | ||
1517 | if (ret != 0) | ||
1518 | break; | ||
1519 | |||
1520 | dir_key.offset = range_start; | ||
1521 | while (1) { | ||
1522 | int nritems; | ||
1523 | ret = btrfs_search_slot(NULL, root, &dir_key, path, | ||
1524 | 0, 0); | ||
1525 | if (ret < 0) | ||
1526 | goto out; | ||
1527 | |||
1528 | nritems = btrfs_header_nritems(path->nodes[0]); | ||
1529 | if (path->slots[0] >= nritems) { | ||
1530 | ret = btrfs_next_leaf(root, path); | ||
1531 | if (ret) | ||
1532 | break; | ||
1533 | } | ||
1534 | btrfs_item_key_to_cpu(path->nodes[0], &found_key, | ||
1535 | path->slots[0]); | ||
1536 | if (found_key.objectid != dirid || | ||
1537 | found_key.type != dir_key.type) | ||
1538 | goto next_type; | ||
1539 | |||
1540 | if (found_key.offset > range_end) | ||
1541 | break; | ||
1542 | |||
1543 | ret = check_item_in_log(trans, root, log, path, | ||
1544 | log_path, dir, &found_key); | ||
1545 | BUG_ON(ret); | ||
1546 | if (found_key.offset == (u64)-1) | ||
1547 | break; | ||
1548 | dir_key.offset = found_key.offset + 1; | ||
1549 | } | ||
1550 | btrfs_release_path(root, path); | ||
1551 | if (range_end == (u64)-1) | ||
1552 | break; | ||
1553 | range_start = range_end + 1; | ||
1554 | } | ||
1555 | |||
1556 | next_type: | ||
1557 | ret = 0; | ||
1558 | if (key_type == BTRFS_DIR_LOG_ITEM_KEY) { | ||
1559 | key_type = BTRFS_DIR_LOG_INDEX_KEY; | ||
1560 | dir_key.type = BTRFS_DIR_INDEX_KEY; | ||
1561 | btrfs_release_path(root, path); | ||
1562 | goto again; | ||
1563 | } | ||
1564 | out: | ||
1565 | btrfs_release_path(root, path); | ||
1566 | btrfs_free_path(log_path); | ||
1567 | iput(dir); | ||
1568 | return ret; | ||
1569 | } | ||
1570 | |||
1571 | /* | ||
1572 | * the process_func used to replay items from the log tree. This | ||
1573 | * gets called in two different stages. The first stage just looks | ||
1574 | * for inodes and makes sure they are all copied into the subvolume. | ||
1575 | * | ||
1576 | * The second stage copies all the other item types from the log into | ||
1577 | * the subvolume. The two stage approach is slower, but gets rid of | ||
1578 | * lots of complexity around inodes referencing other inodes that exist | ||
1579 | * only in the log (references come from either directory items or inode | ||
1580 | * back refs). | ||
1581 | */ | ||
1582 | static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb, | ||
1583 | struct walk_control *wc, u64 gen) | ||
1584 | { | ||
1585 | int nritems; | ||
1586 | struct btrfs_path *path; | ||
1587 | struct btrfs_root *root = wc->replay_dest; | ||
1588 | struct btrfs_key key; | ||
1589 | u32 item_size; | ||
1590 | int level; | ||
1591 | int i; | ||
1592 | int ret; | ||
1593 | |||
1594 | btrfs_read_buffer(eb, gen); | ||
1595 | |||
1596 | level = btrfs_header_level(eb); | ||
1597 | |||
1598 | if (level != 0) | ||
1599 | return 0; | ||
1600 | |||
1601 | path = btrfs_alloc_path(); | ||
1602 | BUG_ON(!path); | ||
1603 | |||
1604 | nritems = btrfs_header_nritems(eb); | ||
1605 | for (i = 0; i < nritems; i++) { | ||
1606 | btrfs_item_key_to_cpu(eb, &key, i); | ||
1607 | item_size = btrfs_item_size_nr(eb, i); | ||
1608 | |||
1609 | /* inode keys are done during the first stage */ | ||
1610 | if (key.type == BTRFS_INODE_ITEM_KEY && | ||
1611 | wc->stage == LOG_WALK_REPLAY_INODES) { | ||
1612 | struct inode *inode; | ||
1613 | struct btrfs_inode_item *inode_item; | ||
1614 | u32 mode; | ||
1615 | |||
1616 | inode_item = btrfs_item_ptr(eb, i, | ||
1617 | struct btrfs_inode_item); | ||
1618 | mode = btrfs_inode_mode(eb, inode_item); | ||
1619 | if (S_ISDIR(mode)) { | ||
1620 | ret = replay_dir_deletes(wc->trans, | ||
1621 | root, log, path, key.objectid); | ||
1622 | BUG_ON(ret); | ||
1623 | } | ||
1624 | ret = overwrite_item(wc->trans, root, path, | ||
1625 | eb, i, &key); | ||
1626 | BUG_ON(ret); | ||
1627 | |||
1628 | /* for regular files, truncate away | ||
1629 | * extents past the new EOF | ||
1630 | */ | ||
1631 | if (S_ISREG(mode)) { | ||
1632 | inode = read_one_inode(root, | ||
1633 | key.objectid); | ||
1634 | BUG_ON(!inode); | ||
1635 | |||
1636 | ret = btrfs_truncate_inode_items(wc->trans, | ||
1637 | root, inode, inode->i_size, | ||
1638 | BTRFS_EXTENT_DATA_KEY); | ||
1639 | BUG_ON(ret); | ||
1640 | iput(inode); | ||
1641 | } | ||
1642 | ret = link_to_fixup_dir(wc->trans, root, | ||
1643 | path, key.objectid); | ||
1644 | BUG_ON(ret); | ||
1645 | } | ||
1646 | if (wc->stage < LOG_WALK_REPLAY_ALL) | ||
1647 | continue; | ||
1648 | |||
1649 | /* these keys are simply copied */ | ||
1650 | if (key.type == BTRFS_XATTR_ITEM_KEY) { | ||
1651 | ret = overwrite_item(wc->trans, root, path, | ||
1652 | eb, i, &key); | ||
1653 | BUG_ON(ret); | ||
1654 | } else if (key.type == BTRFS_INODE_REF_KEY) { | ||
1655 | ret = add_inode_ref(wc->trans, root, log, path, | ||
1656 | eb, i, &key); | ||
1657 | BUG_ON(ret && ret != -ENOENT); | ||
1658 | } else if (key.type == BTRFS_EXTENT_DATA_KEY) { | ||
1659 | ret = replay_one_extent(wc->trans, root, path, | ||
1660 | eb, i, &key); | ||
1661 | BUG_ON(ret); | ||
1662 | } else if (key.type == BTRFS_EXTENT_CSUM_KEY) { | ||
1663 | ret = replay_one_csum(wc->trans, root, path, | ||
1664 | eb, i, &key); | ||
1665 | BUG_ON(ret); | ||
1666 | } else if (key.type == BTRFS_DIR_ITEM_KEY || | ||
1667 | key.type == BTRFS_DIR_INDEX_KEY) { | ||
1668 | ret = replay_one_dir_item(wc->trans, root, path, | ||
1669 | eb, i, &key); | ||
1670 | BUG_ON(ret); | ||
1671 | } | ||
1672 | } | ||
1673 | btrfs_free_path(path); | ||
1674 | return 0; | ||
1675 | } | ||
1676 | |||
1677 | static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans, | ||
1678 | struct btrfs_root *root, | ||
1679 | struct btrfs_path *path, int *level, | ||
1680 | struct walk_control *wc) | ||
1681 | { | ||
1682 | u64 root_owner; | ||
1683 | u64 root_gen; | ||
1684 | u64 bytenr; | ||
1685 | u64 ptr_gen; | ||
1686 | struct extent_buffer *next; | ||
1687 | struct extent_buffer *cur; | ||
1688 | struct extent_buffer *parent; | ||
1689 | u32 blocksize; | ||
1690 | int ret = 0; | ||
1691 | |||
1692 | WARN_ON(*level < 0); | ||
1693 | WARN_ON(*level >= BTRFS_MAX_LEVEL); | ||
1694 | |||
1695 | while (*level > 0) { | ||
1696 | WARN_ON(*level < 0); | ||
1697 | WARN_ON(*level >= BTRFS_MAX_LEVEL); | ||
1698 | cur = path->nodes[*level]; | ||
1699 | |||
1700 | if (btrfs_header_level(cur) != *level) | ||
1701 | WARN_ON(1); | ||
1702 | |||
1703 | if (path->slots[*level] >= | ||
1704 | btrfs_header_nritems(cur)) | ||
1705 | break; | ||
1706 | |||
1707 | bytenr = btrfs_node_blockptr(cur, path->slots[*level]); | ||
1708 | ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]); | ||
1709 | blocksize = btrfs_level_size(root, *level - 1); | ||
1710 | |||
1711 | parent = path->nodes[*level]; | ||
1712 | root_owner = btrfs_header_owner(parent); | ||
1713 | root_gen = btrfs_header_generation(parent); | ||
1714 | |||
1715 | next = btrfs_find_create_tree_block(root, bytenr, blocksize); | ||
1716 | |||
1717 | wc->process_func(root, next, wc, ptr_gen); | ||
1718 | |||
1719 | if (*level == 1) { | ||
1720 | path->slots[*level]++; | ||
1721 | if (wc->free) { | ||
1722 | btrfs_read_buffer(next, ptr_gen); | ||
1723 | |||
1724 | btrfs_tree_lock(next); | ||
1725 | clean_tree_block(trans, root, next); | ||
1726 | btrfs_wait_tree_block_writeback(next); | ||
1727 | btrfs_tree_unlock(next); | ||
1728 | |||
1729 | ret = btrfs_drop_leaf_ref(trans, root, next); | ||
1730 | BUG_ON(ret); | ||
1731 | |||
1732 | WARN_ON(root_owner != | ||
1733 | BTRFS_TREE_LOG_OBJECTID); | ||
1734 | ret = btrfs_free_reserved_extent(root, | ||
1735 | bytenr, blocksize); | ||
1736 | BUG_ON(ret); | ||
1737 | } | ||
1738 | free_extent_buffer(next); | ||
1739 | continue; | ||
1740 | } | ||
1741 | btrfs_read_buffer(next, ptr_gen); | ||
1742 | |||
1743 | WARN_ON(*level <= 0); | ||
1744 | if (path->nodes[*level-1]) | ||
1745 | free_extent_buffer(path->nodes[*level-1]); | ||
1746 | path->nodes[*level-1] = next; | ||
1747 | *level = btrfs_header_level(next); | ||
1748 | path->slots[*level] = 0; | ||
1749 | cond_resched(); | ||
1750 | } | ||
1751 | WARN_ON(*level < 0); | ||
1752 | WARN_ON(*level >= BTRFS_MAX_LEVEL); | ||
1753 | |||
1754 | if (path->nodes[*level] == root->node) | ||
1755 | parent = path->nodes[*level]; | ||
1756 | else | ||
1757 | parent = path->nodes[*level + 1]; | ||
1758 | |||
1759 | bytenr = path->nodes[*level]->start; | ||
1760 | |||
1761 | blocksize = btrfs_level_size(root, *level); | ||
1762 | root_owner = btrfs_header_owner(parent); | ||
1763 | root_gen = btrfs_header_generation(parent); | ||
1764 | |||
1765 | wc->process_func(root, path->nodes[*level], wc, | ||
1766 | btrfs_header_generation(path->nodes[*level])); | ||
1767 | |||
1768 | if (wc->free) { | ||
1769 | next = path->nodes[*level]; | ||
1770 | btrfs_tree_lock(next); | ||
1771 | clean_tree_block(trans, root, next); | ||
1772 | btrfs_wait_tree_block_writeback(next); | ||
1773 | btrfs_tree_unlock(next); | ||
1774 | |||
1775 | if (*level == 0) { | ||
1776 | ret = btrfs_drop_leaf_ref(trans, root, next); | ||
1777 | BUG_ON(ret); | ||
1778 | } | ||
1779 | WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID); | ||
1780 | ret = btrfs_free_reserved_extent(root, bytenr, blocksize); | ||
1781 | BUG_ON(ret); | ||
1782 | } | ||
1783 | free_extent_buffer(path->nodes[*level]); | ||
1784 | path->nodes[*level] = NULL; | ||
1785 | *level += 1; | ||
1786 | |||
1787 | cond_resched(); | ||
1788 | return 0; | ||
1789 | } | ||
1790 | |||
1791 | static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans, | ||
1792 | struct btrfs_root *root, | ||
1793 | struct btrfs_path *path, int *level, | ||
1794 | struct walk_control *wc) | ||
1795 | { | ||
1796 | u64 root_owner; | ||
1797 | u64 root_gen; | ||
1798 | int i; | ||
1799 | int slot; | ||
1800 | int ret; | ||
1801 | |||
1802 | for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) { | ||
1803 | slot = path->slots[i]; | ||
1804 | if (slot < btrfs_header_nritems(path->nodes[i]) - 1) { | ||
1805 | struct extent_buffer *node; | ||
1806 | node = path->nodes[i]; | ||
1807 | path->slots[i]++; | ||
1808 | *level = i; | ||
1809 | WARN_ON(*level == 0); | ||
1810 | return 0; | ||
1811 | } else { | ||
1812 | struct extent_buffer *parent; | ||
1813 | if (path->nodes[*level] == root->node) | ||
1814 | parent = path->nodes[*level]; | ||
1815 | else | ||
1816 | parent = path->nodes[*level + 1]; | ||
1817 | |||
1818 | root_owner = btrfs_header_owner(parent); | ||
1819 | root_gen = btrfs_header_generation(parent); | ||
1820 | wc->process_func(root, path->nodes[*level], wc, | ||
1821 | btrfs_header_generation(path->nodes[*level])); | ||
1822 | if (wc->free) { | ||
1823 | struct extent_buffer *next; | ||
1824 | |||
1825 | next = path->nodes[*level]; | ||
1826 | |||
1827 | btrfs_tree_lock(next); | ||
1828 | clean_tree_block(trans, root, next); | ||
1829 | btrfs_wait_tree_block_writeback(next); | ||
1830 | btrfs_tree_unlock(next); | ||
1831 | |||
1832 | if (*level == 0) { | ||
1833 | ret = btrfs_drop_leaf_ref(trans, root, | ||
1834 | next); | ||
1835 | BUG_ON(ret); | ||
1836 | } | ||
1837 | |||
1838 | WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID); | ||
1839 | ret = btrfs_free_reserved_extent(root, | ||
1840 | path->nodes[*level]->start, | ||
1841 | path->nodes[*level]->len); | ||
1842 | BUG_ON(ret); | ||
1843 | } | ||
1844 | free_extent_buffer(path->nodes[*level]); | ||
1845 | path->nodes[*level] = NULL; | ||
1846 | *level = i + 1; | ||
1847 | } | ||
1848 | } | ||
1849 | return 1; | ||
1850 | } | ||
1851 | |||
1852 | /* | ||
1853 | * drop the reference count on the tree rooted at 'snap'. This traverses | ||
1854 | * the tree freeing any blocks that have a ref count of zero after being | ||
1855 | * decremented. | ||
1856 | */ | ||
1857 | static int walk_log_tree(struct btrfs_trans_handle *trans, | ||
1858 | struct btrfs_root *log, struct walk_control *wc) | ||
1859 | { | ||
1860 | int ret = 0; | ||
1861 | int wret; | ||
1862 | int level; | ||
1863 | struct btrfs_path *path; | ||
1864 | int i; | ||
1865 | int orig_level; | ||
1866 | |||
1867 | path = btrfs_alloc_path(); | ||
1868 | BUG_ON(!path); | ||
1869 | |||
1870 | level = btrfs_header_level(log->node); | ||
1871 | orig_level = level; | ||
1872 | path->nodes[level] = log->node; | ||
1873 | extent_buffer_get(log->node); | ||
1874 | path->slots[level] = 0; | ||
1875 | |||
1876 | while (1) { | ||
1877 | wret = walk_down_log_tree(trans, log, path, &level, wc); | ||
1878 | if (wret > 0) | ||
1879 | break; | ||
1880 | if (wret < 0) | ||
1881 | ret = wret; | ||
1882 | |||
1883 | wret = walk_up_log_tree(trans, log, path, &level, wc); | ||
1884 | if (wret > 0) | ||
1885 | break; | ||
1886 | if (wret < 0) | ||
1887 | ret = wret; | ||
1888 | } | ||
1889 | |||
1890 | /* was the root node processed? if not, catch it here */ | ||
1891 | if (path->nodes[orig_level]) { | ||
1892 | wc->process_func(log, path->nodes[orig_level], wc, | ||
1893 | btrfs_header_generation(path->nodes[orig_level])); | ||
1894 | if (wc->free) { | ||
1895 | struct extent_buffer *next; | ||
1896 | |||
1897 | next = path->nodes[orig_level]; | ||
1898 | |||
1899 | btrfs_tree_lock(next); | ||
1900 | clean_tree_block(trans, log, next); | ||
1901 | btrfs_wait_tree_block_writeback(next); | ||
1902 | btrfs_tree_unlock(next); | ||
1903 | |||
1904 | if (orig_level == 0) { | ||
1905 | ret = btrfs_drop_leaf_ref(trans, log, | ||
1906 | next); | ||
1907 | BUG_ON(ret); | ||
1908 | } | ||
1909 | WARN_ON(log->root_key.objectid != | ||
1910 | BTRFS_TREE_LOG_OBJECTID); | ||
1911 | ret = btrfs_free_reserved_extent(log, next->start, | ||
1912 | next->len); | ||
1913 | BUG_ON(ret); | ||
1914 | } | ||
1915 | } | ||
1916 | |||
1917 | for (i = 0; i <= orig_level; i++) { | ||
1918 | if (path->nodes[i]) { | ||
1919 | free_extent_buffer(path->nodes[i]); | ||
1920 | path->nodes[i] = NULL; | ||
1921 | } | ||
1922 | } | ||
1923 | btrfs_free_path(path); | ||
1924 | if (wc->free) | ||
1925 | free_extent_buffer(log->node); | ||
1926 | return ret; | ||
1927 | } | ||
1928 | |||
1929 | static int wait_log_commit(struct btrfs_root *log) | ||
1930 | { | ||
1931 | DEFINE_WAIT(wait); | ||
1932 | u64 transid = log->fs_info->tree_log_transid; | ||
1933 | |||
1934 | do { | ||
1935 | prepare_to_wait(&log->fs_info->tree_log_wait, &wait, | ||
1936 | TASK_UNINTERRUPTIBLE); | ||
1937 | mutex_unlock(&log->fs_info->tree_log_mutex); | ||
1938 | if (atomic_read(&log->fs_info->tree_log_commit)) | ||
1939 | schedule(); | ||
1940 | finish_wait(&log->fs_info->tree_log_wait, &wait); | ||
1941 | mutex_lock(&log->fs_info->tree_log_mutex); | ||
1942 | } while (transid == log->fs_info->tree_log_transid && | ||
1943 | atomic_read(&log->fs_info->tree_log_commit)); | ||
1944 | return 0; | ||
1945 | } | ||
1946 | |||
1947 | /* | ||
1948 | * btrfs_sync_log does sends a given tree log down to the disk and | ||
1949 | * updates the super blocks to record it. When this call is done, | ||
1950 | * you know that any inodes previously logged are safely on disk | ||
1951 | */ | ||
1952 | int btrfs_sync_log(struct btrfs_trans_handle *trans, | ||
1953 | struct btrfs_root *root) | ||
1954 | { | ||
1955 | int ret; | ||
1956 | unsigned long batch; | ||
1957 | struct btrfs_root *log = root->log_root; | ||
1958 | |||
1959 | mutex_lock(&log->fs_info->tree_log_mutex); | ||
1960 | if (atomic_read(&log->fs_info->tree_log_commit)) { | ||
1961 | wait_log_commit(log); | ||
1962 | goto out; | ||
1963 | } | ||
1964 | atomic_set(&log->fs_info->tree_log_commit, 1); | ||
1965 | |||
1966 | while (1) { | ||
1967 | batch = log->fs_info->tree_log_batch; | ||
1968 | mutex_unlock(&log->fs_info->tree_log_mutex); | ||
1969 | schedule_timeout_uninterruptible(1); | ||
1970 | mutex_lock(&log->fs_info->tree_log_mutex); | ||
1971 | |||
1972 | while (atomic_read(&log->fs_info->tree_log_writers)) { | ||
1973 | DEFINE_WAIT(wait); | ||
1974 | prepare_to_wait(&log->fs_info->tree_log_wait, &wait, | ||
1975 | TASK_UNINTERRUPTIBLE); | ||
1976 | mutex_unlock(&log->fs_info->tree_log_mutex); | ||
1977 | if (atomic_read(&log->fs_info->tree_log_writers)) | ||
1978 | schedule(); | ||
1979 | mutex_lock(&log->fs_info->tree_log_mutex); | ||
1980 | finish_wait(&log->fs_info->tree_log_wait, &wait); | ||
1981 | } | ||
1982 | if (batch == log->fs_info->tree_log_batch) | ||
1983 | break; | ||
1984 | } | ||
1985 | |||
1986 | ret = btrfs_write_and_wait_marked_extents(log, &log->dirty_log_pages); | ||
1987 | BUG_ON(ret); | ||
1988 | ret = btrfs_write_and_wait_marked_extents(root->fs_info->log_root_tree, | ||
1989 | &root->fs_info->log_root_tree->dirty_log_pages); | ||
1990 | BUG_ON(ret); | ||
1991 | |||
1992 | btrfs_set_super_log_root(&root->fs_info->super_for_commit, | ||
1993 | log->fs_info->log_root_tree->node->start); | ||
1994 | btrfs_set_super_log_root_level(&root->fs_info->super_for_commit, | ||
1995 | btrfs_header_level(log->fs_info->log_root_tree->node)); | ||
1996 | |||
1997 | write_ctree_super(trans, log->fs_info->tree_root, 2); | ||
1998 | log->fs_info->tree_log_transid++; | ||
1999 | log->fs_info->tree_log_batch = 0; | ||
2000 | atomic_set(&log->fs_info->tree_log_commit, 0); | ||
2001 | smp_mb(); | ||
2002 | if (waitqueue_active(&log->fs_info->tree_log_wait)) | ||
2003 | wake_up(&log->fs_info->tree_log_wait); | ||
2004 | out: | ||
2005 | mutex_unlock(&log->fs_info->tree_log_mutex); | ||
2006 | return 0; | ||
2007 | } | ||
2008 | |||
2009 | /* * free all the extents used by the tree log. This should be called | ||
2010 | * at commit time of the full transaction | ||
2011 | */ | ||
2012 | int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root) | ||
2013 | { | ||
2014 | int ret; | ||
2015 | struct btrfs_root *log; | ||
2016 | struct key; | ||
2017 | u64 start; | ||
2018 | u64 end; | ||
2019 | struct walk_control wc = { | ||
2020 | .free = 1, | ||
2021 | .process_func = process_one_buffer | ||
2022 | }; | ||
2023 | |||
2024 | if (!root->log_root) | ||
2025 | return 0; | ||
2026 | |||
2027 | log = root->log_root; | ||
2028 | ret = walk_log_tree(trans, log, &wc); | ||
2029 | BUG_ON(ret); | ||
2030 | |||
2031 | while (1) { | ||
2032 | ret = find_first_extent_bit(&log->dirty_log_pages, | ||
2033 | 0, &start, &end, EXTENT_DIRTY); | ||
2034 | if (ret) | ||
2035 | break; | ||
2036 | |||
2037 | clear_extent_dirty(&log->dirty_log_pages, | ||
2038 | start, end, GFP_NOFS); | ||
2039 | } | ||
2040 | |||
2041 | log = root->log_root; | ||
2042 | ret = btrfs_del_root(trans, root->fs_info->log_root_tree, | ||
2043 | &log->root_key); | ||
2044 | BUG_ON(ret); | ||
2045 | root->log_root = NULL; | ||
2046 | kfree(root->log_root); | ||
2047 | return 0; | ||
2048 | } | ||
2049 | |||
2050 | /* | ||
2051 | * helper function to update the item for a given subvolumes log root | ||
2052 | * in the tree of log roots | ||
2053 | */ | ||
2054 | static int update_log_root(struct btrfs_trans_handle *trans, | ||
2055 | struct btrfs_root *log) | ||
2056 | { | ||
2057 | u64 bytenr = btrfs_root_bytenr(&log->root_item); | ||
2058 | int ret; | ||
2059 | |||
2060 | if (log->node->start == bytenr) | ||
2061 | return 0; | ||
2062 | |||
2063 | btrfs_set_root_bytenr(&log->root_item, log->node->start); | ||
2064 | btrfs_set_root_generation(&log->root_item, trans->transid); | ||
2065 | btrfs_set_root_level(&log->root_item, btrfs_header_level(log->node)); | ||
2066 | ret = btrfs_update_root(trans, log->fs_info->log_root_tree, | ||
2067 | &log->root_key, &log->root_item); | ||
2068 | BUG_ON(ret); | ||
2069 | return ret; | ||
2070 | } | ||
2071 | |||
2072 | /* | ||
2073 | * If both a file and directory are logged, and unlinks or renames are | ||
2074 | * mixed in, we have a few interesting corners: | ||
2075 | * | ||
2076 | * create file X in dir Y | ||
2077 | * link file X to X.link in dir Y | ||
2078 | * fsync file X | ||
2079 | * unlink file X but leave X.link | ||
2080 | * fsync dir Y | ||
2081 | * | ||
2082 | * After a crash we would expect only X.link to exist. But file X | ||
2083 | * didn't get fsync'd again so the log has back refs for X and X.link. | ||
2084 | * | ||
2085 | * We solve this by removing directory entries and inode backrefs from the | ||
2086 | * log when a file that was logged in the current transaction is | ||
2087 | * unlinked. Any later fsync will include the updated log entries, and | ||
2088 | * we'll be able to reconstruct the proper directory items from backrefs. | ||
2089 | * | ||
2090 | * This optimizations allows us to avoid relogging the entire inode | ||
2091 | * or the entire directory. | ||
2092 | */ | ||
2093 | int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans, | ||
2094 | struct btrfs_root *root, | ||
2095 | const char *name, int name_len, | ||
2096 | struct inode *dir, u64 index) | ||
2097 | { | ||
2098 | struct btrfs_root *log; | ||
2099 | struct btrfs_dir_item *di; | ||
2100 | struct btrfs_path *path; | ||
2101 | int ret; | ||
2102 | int bytes_del = 0; | ||
2103 | |||
2104 | if (BTRFS_I(dir)->logged_trans < trans->transid) | ||
2105 | return 0; | ||
2106 | |||
2107 | ret = join_running_log_trans(root); | ||
2108 | if (ret) | ||
2109 | return 0; | ||
2110 | |||
2111 | mutex_lock(&BTRFS_I(dir)->log_mutex); | ||
2112 | |||
2113 | log = root->log_root; | ||
2114 | path = btrfs_alloc_path(); | ||
2115 | di = btrfs_lookup_dir_item(trans, log, path, dir->i_ino, | ||
2116 | name, name_len, -1); | ||
2117 | if (di && !IS_ERR(di)) { | ||
2118 | ret = btrfs_delete_one_dir_name(trans, log, path, di); | ||
2119 | bytes_del += name_len; | ||
2120 | BUG_ON(ret); | ||
2121 | } | ||
2122 | btrfs_release_path(log, path); | ||
2123 | di = btrfs_lookup_dir_index_item(trans, log, path, dir->i_ino, | ||
2124 | index, name, name_len, -1); | ||
2125 | if (di && !IS_ERR(di)) { | ||
2126 | ret = btrfs_delete_one_dir_name(trans, log, path, di); | ||
2127 | bytes_del += name_len; | ||
2128 | BUG_ON(ret); | ||
2129 | } | ||
2130 | |||
2131 | /* update the directory size in the log to reflect the names | ||
2132 | * we have removed | ||
2133 | */ | ||
2134 | if (bytes_del) { | ||
2135 | struct btrfs_key key; | ||
2136 | |||
2137 | key.objectid = dir->i_ino; | ||
2138 | key.offset = 0; | ||
2139 | key.type = BTRFS_INODE_ITEM_KEY; | ||
2140 | btrfs_release_path(log, path); | ||
2141 | |||
2142 | ret = btrfs_search_slot(trans, log, &key, path, 0, 1); | ||
2143 | if (ret == 0) { | ||
2144 | struct btrfs_inode_item *item; | ||
2145 | u64 i_size; | ||
2146 | |||
2147 | item = btrfs_item_ptr(path->nodes[0], path->slots[0], | ||
2148 | struct btrfs_inode_item); | ||
2149 | i_size = btrfs_inode_size(path->nodes[0], item); | ||
2150 | if (i_size > bytes_del) | ||
2151 | i_size -= bytes_del; | ||
2152 | else | ||
2153 | i_size = 0; | ||
2154 | btrfs_set_inode_size(path->nodes[0], item, i_size); | ||
2155 | btrfs_mark_buffer_dirty(path->nodes[0]); | ||
2156 | } else | ||
2157 | ret = 0; | ||
2158 | btrfs_release_path(log, path); | ||
2159 | } | ||
2160 | |||
2161 | btrfs_free_path(path); | ||
2162 | mutex_unlock(&BTRFS_I(dir)->log_mutex); | ||
2163 | end_log_trans(root); | ||
2164 | |||
2165 | return 0; | ||
2166 | } | ||
2167 | |||
2168 | /* see comments for btrfs_del_dir_entries_in_log */ | ||
2169 | int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans, | ||
2170 | struct btrfs_root *root, | ||
2171 | const char *name, int name_len, | ||
2172 | struct inode *inode, u64 dirid) | ||
2173 | { | ||
2174 | struct btrfs_root *log; | ||
2175 | u64 index; | ||
2176 | int ret; | ||
2177 | |||
2178 | if (BTRFS_I(inode)->logged_trans < trans->transid) | ||
2179 | return 0; | ||
2180 | |||
2181 | ret = join_running_log_trans(root); | ||
2182 | if (ret) | ||
2183 | return 0; | ||
2184 | log = root->log_root; | ||
2185 | mutex_lock(&BTRFS_I(inode)->log_mutex); | ||
2186 | |||
2187 | ret = btrfs_del_inode_ref(trans, log, name, name_len, inode->i_ino, | ||
2188 | dirid, &index); | ||
2189 | mutex_unlock(&BTRFS_I(inode)->log_mutex); | ||
2190 | end_log_trans(root); | ||
2191 | |||
2192 | return ret; | ||
2193 | } | ||
2194 | |||
2195 | /* | ||
2196 | * creates a range item in the log for 'dirid'. first_offset and | ||
2197 | * last_offset tell us which parts of the key space the log should | ||
2198 | * be considered authoritative for. | ||
2199 | */ | ||
2200 | static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans, | ||
2201 | struct btrfs_root *log, | ||
2202 | struct btrfs_path *path, | ||
2203 | int key_type, u64 dirid, | ||
2204 | u64 first_offset, u64 last_offset) | ||
2205 | { | ||
2206 | int ret; | ||
2207 | struct btrfs_key key; | ||
2208 | struct btrfs_dir_log_item *item; | ||
2209 | |||
2210 | key.objectid = dirid; | ||
2211 | key.offset = first_offset; | ||
2212 | if (key_type == BTRFS_DIR_ITEM_KEY) | ||
2213 | key.type = BTRFS_DIR_LOG_ITEM_KEY; | ||
2214 | else | ||
2215 | key.type = BTRFS_DIR_LOG_INDEX_KEY; | ||
2216 | ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item)); | ||
2217 | BUG_ON(ret); | ||
2218 | |||
2219 | item = btrfs_item_ptr(path->nodes[0], path->slots[0], | ||
2220 | struct btrfs_dir_log_item); | ||
2221 | btrfs_set_dir_log_end(path->nodes[0], item, last_offset); | ||
2222 | btrfs_mark_buffer_dirty(path->nodes[0]); | ||
2223 | btrfs_release_path(log, path); | ||
2224 | return 0; | ||
2225 | } | ||
2226 | |||
2227 | /* | ||
2228 | * log all the items included in the current transaction for a given | ||
2229 | * directory. This also creates the range items in the log tree required | ||
2230 | * to replay anything deleted before the fsync | ||
2231 | */ | ||
2232 | static noinline int log_dir_items(struct btrfs_trans_handle *trans, | ||
2233 | struct btrfs_root *root, struct inode *inode, | ||
2234 | struct btrfs_path *path, | ||
2235 | struct btrfs_path *dst_path, int key_type, | ||
2236 | u64 min_offset, u64 *last_offset_ret) | ||
2237 | { | ||
2238 | struct btrfs_key min_key; | ||
2239 | struct btrfs_key max_key; | ||
2240 | struct btrfs_root *log = root->log_root; | ||
2241 | struct extent_buffer *src; | ||
2242 | int ret; | ||
2243 | int i; | ||
2244 | int nritems; | ||
2245 | u64 first_offset = min_offset; | ||
2246 | u64 last_offset = (u64)-1; | ||
2247 | |||
2248 | log = root->log_root; | ||
2249 | max_key.objectid = inode->i_ino; | ||
2250 | max_key.offset = (u64)-1; | ||
2251 | max_key.type = key_type; | ||
2252 | |||
2253 | min_key.objectid = inode->i_ino; | ||
2254 | min_key.type = key_type; | ||
2255 | min_key.offset = min_offset; | ||
2256 | |||
2257 | path->keep_locks = 1; | ||
2258 | |||
2259 | ret = btrfs_search_forward(root, &min_key, &max_key, | ||
2260 | path, 0, trans->transid); | ||
2261 | |||
2262 | /* | ||
2263 | * we didn't find anything from this transaction, see if there | ||
2264 | * is anything at all | ||
2265 | */ | ||
2266 | if (ret != 0 || min_key.objectid != inode->i_ino || | ||
2267 | min_key.type != key_type) { | ||
2268 | min_key.objectid = inode->i_ino; | ||
2269 | min_key.type = key_type; | ||
2270 | min_key.offset = (u64)-1; | ||
2271 | btrfs_release_path(root, path); | ||
2272 | ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); | ||
2273 | if (ret < 0) { | ||
2274 | btrfs_release_path(root, path); | ||
2275 | return ret; | ||
2276 | } | ||
2277 | ret = btrfs_previous_item(root, path, inode->i_ino, key_type); | ||
2278 | |||
2279 | /* if ret == 0 there are items for this type, | ||
2280 | * create a range to tell us the last key of this type. | ||
2281 | * otherwise, there are no items in this directory after | ||
2282 | * *min_offset, and we create a range to indicate that. | ||
2283 | */ | ||
2284 | if (ret == 0) { | ||
2285 | struct btrfs_key tmp; | ||
2286 | btrfs_item_key_to_cpu(path->nodes[0], &tmp, | ||
2287 | path->slots[0]); | ||
2288 | if (key_type == tmp.type) | ||
2289 | first_offset = max(min_offset, tmp.offset) + 1; | ||
2290 | } | ||
2291 | goto done; | ||
2292 | } | ||
2293 | |||
2294 | /* go backward to find any previous key */ | ||
2295 | ret = btrfs_previous_item(root, path, inode->i_ino, key_type); | ||
2296 | if (ret == 0) { | ||
2297 | struct btrfs_key tmp; | ||
2298 | btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]); | ||
2299 | if (key_type == tmp.type) { | ||
2300 | first_offset = tmp.offset; | ||
2301 | ret = overwrite_item(trans, log, dst_path, | ||
2302 | path->nodes[0], path->slots[0], | ||
2303 | &tmp); | ||
2304 | } | ||
2305 | } | ||
2306 | btrfs_release_path(root, path); | ||
2307 | |||
2308 | /* find the first key from this transaction again */ | ||
2309 | ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); | ||
2310 | if (ret != 0) { | ||
2311 | WARN_ON(1); | ||
2312 | goto done; | ||
2313 | } | ||
2314 | |||
2315 | /* | ||
2316 | * we have a block from this transaction, log every item in it | ||
2317 | * from our directory | ||
2318 | */ | ||
2319 | while (1) { | ||
2320 | struct btrfs_key tmp; | ||
2321 | src = path->nodes[0]; | ||
2322 | nritems = btrfs_header_nritems(src); | ||
2323 | for (i = path->slots[0]; i < nritems; i++) { | ||
2324 | btrfs_item_key_to_cpu(src, &min_key, i); | ||
2325 | |||
2326 | if (min_key.objectid != inode->i_ino || | ||
2327 | min_key.type != key_type) | ||
2328 | goto done; | ||
2329 | ret = overwrite_item(trans, log, dst_path, src, i, | ||
2330 | &min_key); | ||
2331 | BUG_ON(ret); | ||
2332 | } | ||
2333 | path->slots[0] = nritems; | ||
2334 | |||
2335 | /* | ||
2336 | * look ahead to the next item and see if it is also | ||
2337 | * from this directory and from this transaction | ||
2338 | */ | ||
2339 | ret = btrfs_next_leaf(root, path); | ||
2340 | if (ret == 1) { | ||
2341 | last_offset = (u64)-1; | ||
2342 | goto done; | ||
2343 | } | ||
2344 | btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]); | ||
2345 | if (tmp.objectid != inode->i_ino || tmp.type != key_type) { | ||
2346 | last_offset = (u64)-1; | ||
2347 | goto done; | ||
2348 | } | ||
2349 | if (btrfs_header_generation(path->nodes[0]) != trans->transid) { | ||
2350 | ret = overwrite_item(trans, log, dst_path, | ||
2351 | path->nodes[0], path->slots[0], | ||
2352 | &tmp); | ||
2353 | |||
2354 | BUG_ON(ret); | ||
2355 | last_offset = tmp.offset; | ||
2356 | goto done; | ||
2357 | } | ||
2358 | } | ||
2359 | done: | ||
2360 | *last_offset_ret = last_offset; | ||
2361 | btrfs_release_path(root, path); | ||
2362 | btrfs_release_path(log, dst_path); | ||
2363 | |||
2364 | /* insert the log range keys to indicate where the log is valid */ | ||
2365 | ret = insert_dir_log_key(trans, log, path, key_type, inode->i_ino, | ||
2366 | first_offset, last_offset); | ||
2367 | BUG_ON(ret); | ||
2368 | return 0; | ||
2369 | } | ||
2370 | |||
2371 | /* | ||
2372 | * logging directories is very similar to logging inodes, We find all the items | ||
2373 | * from the current transaction and write them to the log. | ||
2374 | * | ||
2375 | * The recovery code scans the directory in the subvolume, and if it finds a | ||
2376 | * key in the range logged that is not present in the log tree, then it means | ||
2377 | * that dir entry was unlinked during the transaction. | ||
2378 | * | ||
2379 | * In order for that scan to work, we must include one key smaller than | ||
2380 | * the smallest logged by this transaction and one key larger than the largest | ||
2381 | * key logged by this transaction. | ||
2382 | */ | ||
2383 | static noinline int log_directory_changes(struct btrfs_trans_handle *trans, | ||
2384 | struct btrfs_root *root, struct inode *inode, | ||
2385 | struct btrfs_path *path, | ||
2386 | struct btrfs_path *dst_path) | ||
2387 | { | ||
2388 | u64 min_key; | ||
2389 | u64 max_key; | ||
2390 | int ret; | ||
2391 | int key_type = BTRFS_DIR_ITEM_KEY; | ||
2392 | |||
2393 | again: | ||
2394 | min_key = 0; | ||
2395 | max_key = 0; | ||
2396 | while (1) { | ||
2397 | ret = log_dir_items(trans, root, inode, path, | ||
2398 | dst_path, key_type, min_key, | ||
2399 | &max_key); | ||
2400 | BUG_ON(ret); | ||
2401 | if (max_key == (u64)-1) | ||
2402 | break; | ||
2403 | min_key = max_key + 1; | ||
2404 | } | ||
2405 | |||
2406 | if (key_type == BTRFS_DIR_ITEM_KEY) { | ||
2407 | key_type = BTRFS_DIR_INDEX_KEY; | ||
2408 | goto again; | ||
2409 | } | ||
2410 | return 0; | ||
2411 | } | ||
2412 | |||
2413 | /* | ||
2414 | * a helper function to drop items from the log before we relog an | ||
2415 | * inode. max_key_type indicates the highest item type to remove. | ||
2416 | * This cannot be run for file data extents because it does not | ||
2417 | * free the extents they point to. | ||
2418 | */ | ||
2419 | static int drop_objectid_items(struct btrfs_trans_handle *trans, | ||
2420 | struct btrfs_root *log, | ||
2421 | struct btrfs_path *path, | ||
2422 | u64 objectid, int max_key_type) | ||
2423 | { | ||
2424 | int ret; | ||
2425 | struct btrfs_key key; | ||
2426 | struct btrfs_key found_key; | ||
2427 | |||
2428 | key.objectid = objectid; | ||
2429 | key.type = max_key_type; | ||
2430 | key.offset = (u64)-1; | ||
2431 | |||
2432 | while (1) { | ||
2433 | ret = btrfs_search_slot(trans, log, &key, path, -1, 1); | ||
2434 | |||
2435 | if (ret != 1) | ||
2436 | break; | ||
2437 | |||
2438 | if (path->slots[0] == 0) | ||
2439 | break; | ||
2440 | |||
2441 | path->slots[0]--; | ||
2442 | btrfs_item_key_to_cpu(path->nodes[0], &found_key, | ||
2443 | path->slots[0]); | ||
2444 | |||
2445 | if (found_key.objectid != objectid) | ||
2446 | break; | ||
2447 | |||
2448 | ret = btrfs_del_item(trans, log, path); | ||
2449 | BUG_ON(ret); | ||
2450 | btrfs_release_path(log, path); | ||
2451 | } | ||
2452 | btrfs_release_path(log, path); | ||
2453 | return 0; | ||
2454 | } | ||
2455 | |||
2456 | static noinline int copy_extent_csums(struct btrfs_trans_handle *trans, | ||
2457 | struct list_head *list, | ||
2458 | struct btrfs_root *root, | ||
2459 | u64 disk_bytenr, u64 len) | ||
2460 | { | ||
2461 | struct btrfs_ordered_sum *sums; | ||
2462 | struct btrfs_sector_sum *sector_sum; | ||
2463 | int ret; | ||
2464 | struct btrfs_path *path; | ||
2465 | struct btrfs_csum_item *item = NULL; | ||
2466 | u64 end = disk_bytenr + len; | ||
2467 | u64 item_start_offset = 0; | ||
2468 | u64 item_last_offset = 0; | ||
2469 | u32 diff; | ||
2470 | u32 sum; | ||
2471 | u16 csum_size = btrfs_super_csum_size(&root->fs_info->super_copy); | ||
2472 | |||
2473 | sums = kzalloc(btrfs_ordered_sum_size(root, len), GFP_NOFS); | ||
2474 | |||
2475 | sector_sum = sums->sums; | ||
2476 | sums->bytenr = disk_bytenr; | ||
2477 | sums->len = len; | ||
2478 | list_add_tail(&sums->list, list); | ||
2479 | |||
2480 | path = btrfs_alloc_path(); | ||
2481 | while (disk_bytenr < end) { | ||
2482 | if (!item || disk_bytenr < item_start_offset || | ||
2483 | disk_bytenr >= item_last_offset) { | ||
2484 | struct btrfs_key found_key; | ||
2485 | u32 item_size; | ||
2486 | |||
2487 | if (item) | ||
2488 | btrfs_release_path(root, path); | ||
2489 | item = btrfs_lookup_csum(NULL, root, path, | ||
2490 | disk_bytenr, 0); | ||
2491 | if (IS_ERR(item)) { | ||
2492 | ret = PTR_ERR(item); | ||
2493 | if (ret == -ENOENT || ret == -EFBIG) | ||
2494 | ret = 0; | ||
2495 | sum = 0; | ||
2496 | printk(KERN_INFO "log no csum found for " | ||
2497 | "byte %llu\n", | ||
2498 | (unsigned long long)disk_bytenr); | ||
2499 | item = NULL; | ||
2500 | btrfs_release_path(root, path); | ||
2501 | goto found; | ||
2502 | } | ||
2503 | btrfs_item_key_to_cpu(path->nodes[0], &found_key, | ||
2504 | path->slots[0]); | ||
2505 | |||
2506 | item_start_offset = found_key.offset; | ||
2507 | item_size = btrfs_item_size_nr(path->nodes[0], | ||
2508 | path->slots[0]); | ||
2509 | item_last_offset = item_start_offset + | ||
2510 | (item_size / csum_size) * | ||
2511 | root->sectorsize; | ||
2512 | item = btrfs_item_ptr(path->nodes[0], path->slots[0], | ||
2513 | struct btrfs_csum_item); | ||
2514 | } | ||
2515 | /* | ||
2516 | * this byte range must be able to fit inside | ||
2517 | * a single leaf so it will also fit inside a u32 | ||
2518 | */ | ||
2519 | diff = disk_bytenr - item_start_offset; | ||
2520 | diff = diff / root->sectorsize; | ||
2521 | diff = diff * csum_size; | ||
2522 | |||
2523 | read_extent_buffer(path->nodes[0], &sum, | ||
2524 | ((unsigned long)item) + diff, | ||
2525 | csum_size); | ||
2526 | found: | ||
2527 | sector_sum->bytenr = disk_bytenr; | ||
2528 | sector_sum->sum = sum; | ||
2529 | disk_bytenr += root->sectorsize; | ||
2530 | sector_sum++; | ||
2531 | } | ||
2532 | btrfs_free_path(path); | ||
2533 | return 0; | ||
2534 | } | ||
2535 | |||
2536 | static noinline int copy_items(struct btrfs_trans_handle *trans, | ||
2537 | struct btrfs_root *log, | ||
2538 | struct btrfs_path *dst_path, | ||
2539 | struct extent_buffer *src, | ||
2540 | int start_slot, int nr, int inode_only) | ||
2541 | { | ||
2542 | unsigned long src_offset; | ||
2543 | unsigned long dst_offset; | ||
2544 | struct btrfs_file_extent_item *extent; | ||
2545 | struct btrfs_inode_item *inode_item; | ||
2546 | int ret; | ||
2547 | struct btrfs_key *ins_keys; | ||
2548 | u32 *ins_sizes; | ||
2549 | char *ins_data; | ||
2550 | int i; | ||
2551 | struct list_head ordered_sums; | ||
2552 | |||
2553 | INIT_LIST_HEAD(&ordered_sums); | ||
2554 | |||
2555 | ins_data = kmalloc(nr * sizeof(struct btrfs_key) + | ||
2556 | nr * sizeof(u32), GFP_NOFS); | ||
2557 | ins_sizes = (u32 *)ins_data; | ||
2558 | ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32)); | ||
2559 | |||
2560 | for (i = 0; i < nr; i++) { | ||
2561 | ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot); | ||
2562 | btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot); | ||
2563 | } | ||
2564 | ret = btrfs_insert_empty_items(trans, log, dst_path, | ||
2565 | ins_keys, ins_sizes, nr); | ||
2566 | BUG_ON(ret); | ||
2567 | |||
2568 | for (i = 0; i < nr; i++) { | ||
2569 | dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], | ||
2570 | dst_path->slots[0]); | ||
2571 | |||
2572 | src_offset = btrfs_item_ptr_offset(src, start_slot + i); | ||
2573 | |||
2574 | copy_extent_buffer(dst_path->nodes[0], src, dst_offset, | ||
2575 | src_offset, ins_sizes[i]); | ||
2576 | |||
2577 | if (inode_only == LOG_INODE_EXISTS && | ||
2578 | ins_keys[i].type == BTRFS_INODE_ITEM_KEY) { | ||
2579 | inode_item = btrfs_item_ptr(dst_path->nodes[0], | ||
2580 | dst_path->slots[0], | ||
2581 | struct btrfs_inode_item); | ||
2582 | btrfs_set_inode_size(dst_path->nodes[0], inode_item, 0); | ||
2583 | |||
2584 | /* set the generation to zero so the recover code | ||
2585 | * can tell the difference between an logging | ||
2586 | * just to say 'this inode exists' and a logging | ||
2587 | * to say 'update this inode with these values' | ||
2588 | */ | ||
2589 | btrfs_set_inode_generation(dst_path->nodes[0], | ||
2590 | inode_item, 0); | ||
2591 | } | ||
2592 | /* take a reference on file data extents so that truncates | ||
2593 | * or deletes of this inode don't have to relog the inode | ||
2594 | * again | ||
2595 | */ | ||
2596 | if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY) { | ||
2597 | int found_type; | ||
2598 | extent = btrfs_item_ptr(src, start_slot + i, | ||
2599 | struct btrfs_file_extent_item); | ||
2600 | |||
2601 | found_type = btrfs_file_extent_type(src, extent); | ||
2602 | if (found_type == BTRFS_FILE_EXTENT_REG || | ||
2603 | found_type == BTRFS_FILE_EXTENT_PREALLOC) { | ||
2604 | u64 ds = btrfs_file_extent_disk_bytenr(src, | ||
2605 | extent); | ||
2606 | u64 dl = btrfs_file_extent_disk_num_bytes(src, | ||
2607 | extent); | ||
2608 | u64 cs = btrfs_file_extent_offset(src, extent); | ||
2609 | u64 cl = btrfs_file_extent_num_bytes(src, | ||
2610 | extent);; | ||
2611 | if (btrfs_file_extent_compression(src, | ||
2612 | extent)) { | ||
2613 | cs = 0; | ||
2614 | cl = dl; | ||
2615 | } | ||
2616 | /* ds == 0 is a hole */ | ||
2617 | if (ds != 0) { | ||
2618 | ret = btrfs_inc_extent_ref(trans, log, | ||
2619 | ds, dl, | ||
2620 | dst_path->nodes[0]->start, | ||
2621 | BTRFS_TREE_LOG_OBJECTID, | ||
2622 | trans->transid, | ||
2623 | ins_keys[i].objectid); | ||
2624 | BUG_ON(ret); | ||
2625 | ret = copy_extent_csums(trans, | ||
2626 | &ordered_sums, | ||
2627 | log->fs_info->csum_root, | ||
2628 | ds + cs, cl); | ||
2629 | BUG_ON(ret); | ||
2630 | } | ||
2631 | } | ||
2632 | } | ||
2633 | dst_path->slots[0]++; | ||
2634 | } | ||
2635 | |||
2636 | btrfs_mark_buffer_dirty(dst_path->nodes[0]); | ||
2637 | btrfs_release_path(log, dst_path); | ||
2638 | kfree(ins_data); | ||
2639 | |||
2640 | /* | ||
2641 | * we have to do this after the loop above to avoid changing the | ||
2642 | * log tree while trying to change the log tree. | ||
2643 | */ | ||
2644 | while (!list_empty(&ordered_sums)) { | ||
2645 | struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next, | ||
2646 | struct btrfs_ordered_sum, | ||
2647 | list); | ||
2648 | ret = btrfs_csum_file_blocks(trans, log, sums); | ||
2649 | BUG_ON(ret); | ||
2650 | list_del(&sums->list); | ||
2651 | kfree(sums); | ||
2652 | } | ||
2653 | return 0; | ||
2654 | } | ||
2655 | |||
2656 | /* log a single inode in the tree log. | ||
2657 | * At least one parent directory for this inode must exist in the tree | ||
2658 | * or be logged already. | ||
2659 | * | ||
2660 | * Any items from this inode changed by the current transaction are copied | ||
2661 | * to the log tree. An extra reference is taken on any extents in this | ||
2662 | * file, allowing us to avoid a whole pile of corner cases around logging | ||
2663 | * blocks that have been removed from the tree. | ||
2664 | * | ||
2665 | * See LOG_INODE_ALL and related defines for a description of what inode_only | ||
2666 | * does. | ||
2667 | * | ||
2668 | * This handles both files and directories. | ||
2669 | */ | ||
2670 | static int __btrfs_log_inode(struct btrfs_trans_handle *trans, | ||
2671 | struct btrfs_root *root, struct inode *inode, | ||
2672 | int inode_only) | ||
2673 | { | ||
2674 | struct btrfs_path *path; | ||
2675 | struct btrfs_path *dst_path; | ||
2676 | struct btrfs_key min_key; | ||
2677 | struct btrfs_key max_key; | ||
2678 | struct btrfs_root *log = root->log_root; | ||
2679 | struct extent_buffer *src = NULL; | ||
2680 | u32 size; | ||
2681 | int ret; | ||
2682 | int nritems; | ||
2683 | int ins_start_slot = 0; | ||
2684 | int ins_nr; | ||
2685 | |||
2686 | log = root->log_root; | ||
2687 | |||
2688 | path = btrfs_alloc_path(); | ||
2689 | dst_path = btrfs_alloc_path(); | ||
2690 | |||
2691 | min_key.objectid = inode->i_ino; | ||
2692 | min_key.type = BTRFS_INODE_ITEM_KEY; | ||
2693 | min_key.offset = 0; | ||
2694 | |||
2695 | max_key.objectid = inode->i_ino; | ||
2696 | if (inode_only == LOG_INODE_EXISTS || S_ISDIR(inode->i_mode)) | ||
2697 | max_key.type = BTRFS_XATTR_ITEM_KEY; | ||
2698 | else | ||
2699 | max_key.type = (u8)-1; | ||
2700 | max_key.offset = (u64)-1; | ||
2701 | |||
2702 | /* | ||
2703 | * if this inode has already been logged and we're in inode_only | ||
2704 | * mode, we don't want to delete the things that have already | ||
2705 | * been written to the log. | ||
2706 | * | ||
2707 | * But, if the inode has been through an inode_only log, | ||
2708 | * the logged_trans field is not set. This allows us to catch | ||
2709 | * any new names for this inode in the backrefs by logging it | ||
2710 | * again | ||
2711 | */ | ||
2712 | if (inode_only == LOG_INODE_EXISTS && | ||
2713 | BTRFS_I(inode)->logged_trans == trans->transid) { | ||
2714 | btrfs_free_path(path); | ||
2715 | btrfs_free_path(dst_path); | ||
2716 | goto out; | ||
2717 | } | ||
2718 | mutex_lock(&BTRFS_I(inode)->log_mutex); | ||
2719 | |||
2720 | /* | ||
2721 | * a brute force approach to making sure we get the most uptodate | ||
2722 | * copies of everything. | ||
2723 | */ | ||
2724 | if (S_ISDIR(inode->i_mode)) { | ||
2725 | int max_key_type = BTRFS_DIR_LOG_INDEX_KEY; | ||
2726 | |||
2727 | if (inode_only == LOG_INODE_EXISTS) | ||
2728 | max_key_type = BTRFS_XATTR_ITEM_KEY; | ||
2729 | ret = drop_objectid_items(trans, log, path, | ||
2730 | inode->i_ino, max_key_type); | ||
2731 | } else { | ||
2732 | ret = btrfs_truncate_inode_items(trans, log, inode, 0, 0); | ||
2733 | } | ||
2734 | BUG_ON(ret); | ||
2735 | path->keep_locks = 1; | ||
2736 | |||
2737 | while (1) { | ||
2738 | ins_nr = 0; | ||
2739 | ret = btrfs_search_forward(root, &min_key, &max_key, | ||
2740 | path, 0, trans->transid); | ||
2741 | if (ret != 0) | ||
2742 | break; | ||
2743 | again: | ||
2744 | /* note, ins_nr might be > 0 here, cleanup outside the loop */ | ||
2745 | if (min_key.objectid != inode->i_ino) | ||
2746 | break; | ||
2747 | if (min_key.type > max_key.type) | ||
2748 | break; | ||
2749 | |||
2750 | src = path->nodes[0]; | ||
2751 | size = btrfs_item_size_nr(src, path->slots[0]); | ||
2752 | if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) { | ||
2753 | ins_nr++; | ||
2754 | goto next_slot; | ||
2755 | } else if (!ins_nr) { | ||
2756 | ins_start_slot = path->slots[0]; | ||
2757 | ins_nr = 1; | ||
2758 | goto next_slot; | ||
2759 | } | ||
2760 | |||
2761 | ret = copy_items(trans, log, dst_path, src, ins_start_slot, | ||
2762 | ins_nr, inode_only); | ||
2763 | BUG_ON(ret); | ||
2764 | ins_nr = 1; | ||
2765 | ins_start_slot = path->slots[0]; | ||
2766 | next_slot: | ||
2767 | |||
2768 | nritems = btrfs_header_nritems(path->nodes[0]); | ||
2769 | path->slots[0]++; | ||
2770 | if (path->slots[0] < nritems) { | ||
2771 | btrfs_item_key_to_cpu(path->nodes[0], &min_key, | ||
2772 | path->slots[0]); | ||
2773 | goto again; | ||
2774 | } | ||
2775 | if (ins_nr) { | ||
2776 | ret = copy_items(trans, log, dst_path, src, | ||
2777 | ins_start_slot, | ||
2778 | ins_nr, inode_only); | ||
2779 | BUG_ON(ret); | ||
2780 | ins_nr = 0; | ||
2781 | } | ||
2782 | btrfs_release_path(root, path); | ||
2783 | |||
2784 | if (min_key.offset < (u64)-1) | ||
2785 | min_key.offset++; | ||
2786 | else if (min_key.type < (u8)-1) | ||
2787 | min_key.type++; | ||
2788 | else if (min_key.objectid < (u64)-1) | ||
2789 | min_key.objectid++; | ||
2790 | else | ||
2791 | break; | ||
2792 | } | ||
2793 | if (ins_nr) { | ||
2794 | ret = copy_items(trans, log, dst_path, src, | ||
2795 | ins_start_slot, | ||
2796 | ins_nr, inode_only); | ||
2797 | BUG_ON(ret); | ||
2798 | ins_nr = 0; | ||
2799 | } | ||
2800 | WARN_ON(ins_nr); | ||
2801 | if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) { | ||
2802 | btrfs_release_path(root, path); | ||
2803 | btrfs_release_path(log, dst_path); | ||
2804 | BTRFS_I(inode)->log_dirty_trans = 0; | ||
2805 | ret = log_directory_changes(trans, root, inode, path, dst_path); | ||
2806 | BUG_ON(ret); | ||
2807 | } | ||
2808 | BTRFS_I(inode)->logged_trans = trans->transid; | ||
2809 | mutex_unlock(&BTRFS_I(inode)->log_mutex); | ||
2810 | |||
2811 | btrfs_free_path(path); | ||
2812 | btrfs_free_path(dst_path); | ||
2813 | |||
2814 | mutex_lock(&root->fs_info->tree_log_mutex); | ||
2815 | ret = update_log_root(trans, log); | ||
2816 | BUG_ON(ret); | ||
2817 | mutex_unlock(&root->fs_info->tree_log_mutex); | ||
2818 | out: | ||
2819 | return 0; | ||
2820 | } | ||
2821 | |||
2822 | int btrfs_log_inode(struct btrfs_trans_handle *trans, | ||
2823 | struct btrfs_root *root, struct inode *inode, | ||
2824 | int inode_only) | ||
2825 | { | ||
2826 | int ret; | ||
2827 | |||
2828 | start_log_trans(trans, root); | ||
2829 | ret = __btrfs_log_inode(trans, root, inode, inode_only); | ||
2830 | end_log_trans(root); | ||
2831 | return ret; | ||
2832 | } | ||
2833 | |||
2834 | /* | ||
2835 | * helper function around btrfs_log_inode to make sure newly created | ||
2836 | * parent directories also end up in the log. A minimal inode and backref | ||
2837 | * only logging is done of any parent directories that are older than | ||
2838 | * the last committed transaction | ||
2839 | */ | ||
2840 | int btrfs_log_dentry(struct btrfs_trans_handle *trans, | ||
2841 | struct btrfs_root *root, struct dentry *dentry) | ||
2842 | { | ||
2843 | int inode_only = LOG_INODE_ALL; | ||
2844 | struct super_block *sb; | ||
2845 | int ret; | ||
2846 | |||
2847 | start_log_trans(trans, root); | ||
2848 | sb = dentry->d_inode->i_sb; | ||
2849 | while (1) { | ||
2850 | ret = __btrfs_log_inode(trans, root, dentry->d_inode, | ||
2851 | inode_only); | ||
2852 | BUG_ON(ret); | ||
2853 | inode_only = LOG_INODE_EXISTS; | ||
2854 | |||
2855 | dentry = dentry->d_parent; | ||
2856 | if (!dentry || !dentry->d_inode || sb != dentry->d_inode->i_sb) | ||
2857 | break; | ||
2858 | |||
2859 | if (BTRFS_I(dentry->d_inode)->generation <= | ||
2860 | root->fs_info->last_trans_committed) | ||
2861 | break; | ||
2862 | } | ||
2863 | end_log_trans(root); | ||
2864 | return 0; | ||
2865 | } | ||
2866 | |||
2867 | /* | ||
2868 | * it is not safe to log dentry if the chunk root has added new | ||
2869 | * chunks. This returns 0 if the dentry was logged, and 1 otherwise. | ||
2870 | * If this returns 1, you must commit the transaction to safely get your | ||
2871 | * data on disk. | ||
2872 | */ | ||
2873 | int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans, | ||
2874 | struct btrfs_root *root, struct dentry *dentry) | ||
2875 | { | ||
2876 | u64 gen; | ||
2877 | gen = root->fs_info->last_trans_new_blockgroup; | ||
2878 | if (gen > root->fs_info->last_trans_committed) | ||
2879 | return 1; | ||
2880 | else | ||
2881 | return btrfs_log_dentry(trans, root, dentry); | ||
2882 | } | ||
2883 | |||
2884 | /* | ||
2885 | * should be called during mount to recover any replay any log trees | ||
2886 | * from the FS | ||
2887 | */ | ||
2888 | int btrfs_recover_log_trees(struct btrfs_root *log_root_tree) | ||
2889 | { | ||
2890 | int ret; | ||
2891 | struct btrfs_path *path; | ||
2892 | struct btrfs_trans_handle *trans; | ||
2893 | struct btrfs_key key; | ||
2894 | struct btrfs_key found_key; | ||
2895 | struct btrfs_key tmp_key; | ||
2896 | struct btrfs_root *log; | ||
2897 | struct btrfs_fs_info *fs_info = log_root_tree->fs_info; | ||
2898 | u64 highest_inode; | ||
2899 | struct walk_control wc = { | ||
2900 | .process_func = process_one_buffer, | ||
2901 | .stage = 0, | ||
2902 | }; | ||
2903 | |||
2904 | fs_info->log_root_recovering = 1; | ||
2905 | path = btrfs_alloc_path(); | ||
2906 | BUG_ON(!path); | ||
2907 | |||
2908 | trans = btrfs_start_transaction(fs_info->tree_root, 1); | ||
2909 | |||
2910 | wc.trans = trans; | ||
2911 | wc.pin = 1; | ||
2912 | |||
2913 | walk_log_tree(trans, log_root_tree, &wc); | ||
2914 | |||
2915 | again: | ||
2916 | key.objectid = BTRFS_TREE_LOG_OBJECTID; | ||
2917 | key.offset = (u64)-1; | ||
2918 | btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY); | ||
2919 | |||
2920 | while (1) { | ||
2921 | ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0); | ||
2922 | if (ret < 0) | ||
2923 | break; | ||
2924 | if (ret > 0) { | ||
2925 | if (path->slots[0] == 0) | ||
2926 | break; | ||
2927 | path->slots[0]--; | ||
2928 | } | ||
2929 | btrfs_item_key_to_cpu(path->nodes[0], &found_key, | ||
2930 | path->slots[0]); | ||
2931 | btrfs_release_path(log_root_tree, path); | ||
2932 | if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID) | ||
2933 | break; | ||
2934 | |||
2935 | log = btrfs_read_fs_root_no_radix(log_root_tree, | ||
2936 | &found_key); | ||
2937 | BUG_ON(!log); | ||
2938 | |||
2939 | |||
2940 | tmp_key.objectid = found_key.offset; | ||
2941 | tmp_key.type = BTRFS_ROOT_ITEM_KEY; | ||
2942 | tmp_key.offset = (u64)-1; | ||
2943 | |||
2944 | wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key); | ||
2945 | |||
2946 | BUG_ON(!wc.replay_dest); | ||
2947 | |||
2948 | btrfs_record_root_in_trans(wc.replay_dest); | ||
2949 | ret = walk_log_tree(trans, log, &wc); | ||
2950 | BUG_ON(ret); | ||
2951 | |||
2952 | if (wc.stage == LOG_WALK_REPLAY_ALL) { | ||
2953 | ret = fixup_inode_link_counts(trans, wc.replay_dest, | ||
2954 | path); | ||
2955 | BUG_ON(ret); | ||
2956 | } | ||
2957 | ret = btrfs_find_highest_inode(wc.replay_dest, &highest_inode); | ||
2958 | if (ret == 0) { | ||
2959 | wc.replay_dest->highest_inode = highest_inode; | ||
2960 | wc.replay_dest->last_inode_alloc = highest_inode; | ||
2961 | } | ||
2962 | |||
2963 | key.offset = found_key.offset - 1; | ||
2964 | free_extent_buffer(log->node); | ||
2965 | kfree(log); | ||
2966 | |||
2967 | if (found_key.offset == 0) | ||
2968 | break; | ||
2969 | } | ||
2970 | btrfs_release_path(log_root_tree, path); | ||
2971 | |||
2972 | /* step one is to pin it all, step two is to replay just inodes */ | ||
2973 | if (wc.pin) { | ||
2974 | wc.pin = 0; | ||
2975 | wc.process_func = replay_one_buffer; | ||
2976 | wc.stage = LOG_WALK_REPLAY_INODES; | ||
2977 | goto again; | ||
2978 | } | ||
2979 | /* step three is to replay everything */ | ||
2980 | if (wc.stage < LOG_WALK_REPLAY_ALL) { | ||
2981 | wc.stage++; | ||
2982 | goto again; | ||
2983 | } | ||
2984 | |||
2985 | btrfs_free_path(path); | ||
2986 | |||
2987 | free_extent_buffer(log_root_tree->node); | ||
2988 | log_root_tree->log_root = NULL; | ||
2989 | fs_info->log_root_recovering = 0; | ||
2990 | |||
2991 | /* step 4: commit the transaction, which also unpins the blocks */ | ||
2992 | btrfs_commit_transaction(trans, fs_info->tree_root); | ||
2993 | |||
2994 | kfree(log_root_tree); | ||
2995 | return 0; | ||
2996 | } | ||
diff --git a/fs/btrfs/tree-log.h b/fs/btrfs/tree-log.h new file mode 100644 index 000000000000..b9409b32ed02 --- /dev/null +++ b/fs/btrfs/tree-log.h | |||
@@ -0,0 +1,41 @@ | |||
1 | /* | ||
2 | * Copyright (C) 2008 Oracle. All rights reserved. | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or | ||
5 | * modify it under the terms of the GNU General Public | ||
6 | * License v2 as published by the Free Software Foundation. | ||
7 | * | ||
8 | * This program is distributed in the hope that it will be useful, | ||
9 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | ||
11 | * General Public License for more details. | ||
12 | * | ||
13 | * You should have received a copy of the GNU General Public | ||
14 | * License along with this program; if not, write to the | ||
15 | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | ||
16 | * Boston, MA 021110-1307, USA. | ||
17 | */ | ||
18 | |||
19 | #ifndef __TREE_LOG_ | ||
20 | #define __TREE_LOG_ | ||
21 | |||
22 | int btrfs_sync_log(struct btrfs_trans_handle *trans, | ||
23 | struct btrfs_root *root); | ||
24 | int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root); | ||
25 | int btrfs_log_dentry(struct btrfs_trans_handle *trans, | ||
26 | struct btrfs_root *root, struct dentry *dentry); | ||
27 | int btrfs_recover_log_trees(struct btrfs_root *tree_root); | ||
28 | int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans, | ||
29 | struct btrfs_root *root, struct dentry *dentry); | ||
30 | int btrfs_log_inode(struct btrfs_trans_handle *trans, | ||
31 | struct btrfs_root *root, struct inode *inode, | ||
32 | int inode_only); | ||
33 | int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans, | ||
34 | struct btrfs_root *root, | ||
35 | const char *name, int name_len, | ||
36 | struct inode *dir, u64 index); | ||
37 | int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans, | ||
38 | struct btrfs_root *root, | ||
39 | const char *name, int name_len, | ||
40 | struct inode *inode, u64 dirid); | ||
41 | #endif | ||
diff --git a/fs/btrfs/version.h b/fs/btrfs/version.h new file mode 100644 index 000000000000..9bf3946d5ef2 --- /dev/null +++ b/fs/btrfs/version.h | |||
@@ -0,0 +1,4 @@ | |||
1 | #ifndef __BTRFS_VERSION_H | ||
2 | #define __BTRFS_VERSION_H | ||
3 | #define BTRFS_BUILD_VERSION "Btrfs" | ||
4 | #endif | ||
diff --git a/fs/btrfs/version.sh b/fs/btrfs/version.sh new file mode 100644 index 000000000000..1ca1952fd917 --- /dev/null +++ b/fs/btrfs/version.sh | |||
@@ -0,0 +1,43 @@ | |||
1 | #!/bin/bash | ||
2 | # | ||
3 | # determine-version -- report a useful version for releases | ||
4 | # | ||
5 | # Copyright 2008, Aron Griffis <agriffis@n01se.net> | ||
6 | # Copyright 2008, Oracle | ||
7 | # Released under the GNU GPLv2 | ||
8 | |||
9 | v="v0.16" | ||
10 | |||
11 | which git &> /dev/null | ||
12 | if [ $? == 0 ]; then | ||
13 | git branch >& /dev/null | ||
14 | if [ $? == 0 ]; then | ||
15 | if head=`git rev-parse --verify HEAD 2>/dev/null`; then | ||
16 | if tag=`git describe --tags 2>/dev/null`; then | ||
17 | v="$tag" | ||
18 | fi | ||
19 | |||
20 | # Are there uncommitted changes? | ||
21 | git update-index --refresh --unmerged > /dev/null | ||
22 | if git diff-index --name-only HEAD | \ | ||
23 | grep -v "^scripts/package" \ | ||
24 | | read dummy; then | ||
25 | v="$v"-dirty | ||
26 | fi | ||
27 | fi | ||
28 | fi | ||
29 | fi | ||
30 | |||
31 | echo "#ifndef __BUILD_VERSION" > .build-version.h | ||
32 | echo "#define __BUILD_VERSION" >> .build-version.h | ||
33 | echo "#define BTRFS_BUILD_VERSION \"Btrfs $v\"" >> .build-version.h | ||
34 | echo "#endif" >> .build-version.h | ||
35 | |||
36 | diff -q version.h .build-version.h >& /dev/null | ||
37 | |||
38 | if [ $? == 0 ]; then | ||
39 | rm .build-version.h | ||
40 | exit 0 | ||
41 | fi | ||
42 | |||
43 | mv .build-version.h version.h | ||
diff --git a/fs/btrfs/volumes.c b/fs/btrfs/volumes.c new file mode 100644 index 000000000000..b187b537888e --- /dev/null +++ b/fs/btrfs/volumes.c | |||
@@ -0,0 +1,3218 @@ | |||
1 | /* | ||
2 | * Copyright (C) 2007 Oracle. All rights reserved. | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or | ||
5 | * modify it under the terms of the GNU General Public | ||
6 | * License v2 as published by the Free Software Foundation. | ||
7 | * | ||
8 | * This program is distributed in the hope that it will be useful, | ||
9 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | ||
11 | * General Public License for more details. | ||
12 | * | ||
13 | * You should have received a copy of the GNU General Public | ||
14 | * License along with this program; if not, write to the | ||
15 | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | ||
16 | * Boston, MA 021110-1307, USA. | ||
17 | */ | ||
18 | #include <linux/sched.h> | ||
19 | #include <linux/bio.h> | ||
20 | #include <linux/buffer_head.h> | ||
21 | #include <linux/blkdev.h> | ||
22 | #include <linux/random.h> | ||
23 | #include <linux/version.h> | ||
24 | #include <asm/div64.h> | ||
25 | #include "compat.h" | ||
26 | #include "ctree.h" | ||
27 | #include "extent_map.h" | ||
28 | #include "disk-io.h" | ||
29 | #include "transaction.h" | ||
30 | #include "print-tree.h" | ||
31 | #include "volumes.h" | ||
32 | #include "async-thread.h" | ||
33 | |||
34 | struct map_lookup { | ||
35 | u64 type; | ||
36 | int io_align; | ||
37 | int io_width; | ||
38 | int stripe_len; | ||
39 | int sector_size; | ||
40 | int num_stripes; | ||
41 | int sub_stripes; | ||
42 | struct btrfs_bio_stripe stripes[]; | ||
43 | }; | ||
44 | |||
45 | static int init_first_rw_device(struct btrfs_trans_handle *trans, | ||
46 | struct btrfs_root *root, | ||
47 | struct btrfs_device *device); | ||
48 | static int btrfs_relocate_sys_chunks(struct btrfs_root *root); | ||
49 | |||
50 | #define map_lookup_size(n) (sizeof(struct map_lookup) + \ | ||
51 | (sizeof(struct btrfs_bio_stripe) * (n))) | ||
52 | |||
53 | static DEFINE_MUTEX(uuid_mutex); | ||
54 | static LIST_HEAD(fs_uuids); | ||
55 | |||
56 | void btrfs_lock_volumes(void) | ||
57 | { | ||
58 | mutex_lock(&uuid_mutex); | ||
59 | } | ||
60 | |||
61 | void btrfs_unlock_volumes(void) | ||
62 | { | ||
63 | mutex_unlock(&uuid_mutex); | ||
64 | } | ||
65 | |||
66 | static void lock_chunks(struct btrfs_root *root) | ||
67 | { | ||
68 | mutex_lock(&root->fs_info->chunk_mutex); | ||
69 | } | ||
70 | |||
71 | static void unlock_chunks(struct btrfs_root *root) | ||
72 | { | ||
73 | mutex_unlock(&root->fs_info->chunk_mutex); | ||
74 | } | ||
75 | |||
76 | static void free_fs_devices(struct btrfs_fs_devices *fs_devices) | ||
77 | { | ||
78 | struct btrfs_device *device; | ||
79 | WARN_ON(fs_devices->opened); | ||
80 | while (!list_empty(&fs_devices->devices)) { | ||
81 | device = list_entry(fs_devices->devices.next, | ||
82 | struct btrfs_device, dev_list); | ||
83 | list_del(&device->dev_list); | ||
84 | kfree(device->name); | ||
85 | kfree(device); | ||
86 | } | ||
87 | kfree(fs_devices); | ||
88 | } | ||
89 | |||
90 | int btrfs_cleanup_fs_uuids(void) | ||
91 | { | ||
92 | struct btrfs_fs_devices *fs_devices; | ||
93 | |||
94 | while (!list_empty(&fs_uuids)) { | ||
95 | fs_devices = list_entry(fs_uuids.next, | ||
96 | struct btrfs_fs_devices, list); | ||
97 | list_del(&fs_devices->list); | ||
98 | free_fs_devices(fs_devices); | ||
99 | } | ||
100 | return 0; | ||
101 | } | ||
102 | |||
103 | static noinline struct btrfs_device *__find_device(struct list_head *head, | ||
104 | u64 devid, u8 *uuid) | ||
105 | { | ||
106 | struct btrfs_device *dev; | ||
107 | struct list_head *cur; | ||
108 | |||
109 | list_for_each(cur, head) { | ||
110 | dev = list_entry(cur, struct btrfs_device, dev_list); | ||
111 | if (dev->devid == devid && | ||
112 | (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) { | ||
113 | return dev; | ||
114 | } | ||
115 | } | ||
116 | return NULL; | ||
117 | } | ||
118 | |||
119 | static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid) | ||
120 | { | ||
121 | struct list_head *cur; | ||
122 | struct btrfs_fs_devices *fs_devices; | ||
123 | |||
124 | list_for_each(cur, &fs_uuids) { | ||
125 | fs_devices = list_entry(cur, struct btrfs_fs_devices, list); | ||
126 | if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0) | ||
127 | return fs_devices; | ||
128 | } | ||
129 | return NULL; | ||
130 | } | ||
131 | |||
132 | /* | ||
133 | * we try to collect pending bios for a device so we don't get a large | ||
134 | * number of procs sending bios down to the same device. This greatly | ||
135 | * improves the schedulers ability to collect and merge the bios. | ||
136 | * | ||
137 | * But, it also turns into a long list of bios to process and that is sure | ||
138 | * to eventually make the worker thread block. The solution here is to | ||
139 | * make some progress and then put this work struct back at the end of | ||
140 | * the list if the block device is congested. This way, multiple devices | ||
141 | * can make progress from a single worker thread. | ||
142 | */ | ||
143 | static noinline int run_scheduled_bios(struct btrfs_device *device) | ||
144 | { | ||
145 | struct bio *pending; | ||
146 | struct backing_dev_info *bdi; | ||
147 | struct btrfs_fs_info *fs_info; | ||
148 | struct bio *tail; | ||
149 | struct bio *cur; | ||
150 | int again = 0; | ||
151 | unsigned long num_run = 0; | ||
152 | unsigned long limit; | ||
153 | |||
154 | bdi = device->bdev->bd_inode->i_mapping->backing_dev_info; | ||
155 | fs_info = device->dev_root->fs_info; | ||
156 | limit = btrfs_async_submit_limit(fs_info); | ||
157 | limit = limit * 2 / 3; | ||
158 | |||
159 | loop: | ||
160 | spin_lock(&device->io_lock); | ||
161 | |||
162 | /* take all the bios off the list at once and process them | ||
163 | * later on (without the lock held). But, remember the | ||
164 | * tail and other pointers so the bios can be properly reinserted | ||
165 | * into the list if we hit congestion | ||
166 | */ | ||
167 | pending = device->pending_bios; | ||
168 | tail = device->pending_bio_tail; | ||
169 | WARN_ON(pending && !tail); | ||
170 | device->pending_bios = NULL; | ||
171 | device->pending_bio_tail = NULL; | ||
172 | |||
173 | /* | ||
174 | * if pending was null this time around, no bios need processing | ||
175 | * at all and we can stop. Otherwise it'll loop back up again | ||
176 | * and do an additional check so no bios are missed. | ||
177 | * | ||
178 | * device->running_pending is used to synchronize with the | ||
179 | * schedule_bio code. | ||
180 | */ | ||
181 | if (pending) { | ||
182 | again = 1; | ||
183 | device->running_pending = 1; | ||
184 | } else { | ||
185 | again = 0; | ||
186 | device->running_pending = 0; | ||
187 | } | ||
188 | spin_unlock(&device->io_lock); | ||
189 | |||
190 | while (pending) { | ||
191 | cur = pending; | ||
192 | pending = pending->bi_next; | ||
193 | cur->bi_next = NULL; | ||
194 | atomic_dec(&fs_info->nr_async_bios); | ||
195 | |||
196 | if (atomic_read(&fs_info->nr_async_bios) < limit && | ||
197 | waitqueue_active(&fs_info->async_submit_wait)) | ||
198 | wake_up(&fs_info->async_submit_wait); | ||
199 | |||
200 | BUG_ON(atomic_read(&cur->bi_cnt) == 0); | ||
201 | bio_get(cur); | ||
202 | submit_bio(cur->bi_rw, cur); | ||
203 | bio_put(cur); | ||
204 | num_run++; | ||
205 | |||
206 | /* | ||
207 | * we made progress, there is more work to do and the bdi | ||
208 | * is now congested. Back off and let other work structs | ||
209 | * run instead | ||
210 | */ | ||
211 | if (pending && bdi_write_congested(bdi) && | ||
212 | fs_info->fs_devices->open_devices > 1) { | ||
213 | struct bio *old_head; | ||
214 | |||
215 | spin_lock(&device->io_lock); | ||
216 | |||
217 | old_head = device->pending_bios; | ||
218 | device->pending_bios = pending; | ||
219 | if (device->pending_bio_tail) | ||
220 | tail->bi_next = old_head; | ||
221 | else | ||
222 | device->pending_bio_tail = tail; | ||
223 | |||
224 | spin_unlock(&device->io_lock); | ||
225 | btrfs_requeue_work(&device->work); | ||
226 | goto done; | ||
227 | } | ||
228 | } | ||
229 | if (again) | ||
230 | goto loop; | ||
231 | done: | ||
232 | return 0; | ||
233 | } | ||
234 | |||
235 | static void pending_bios_fn(struct btrfs_work *work) | ||
236 | { | ||
237 | struct btrfs_device *device; | ||
238 | |||
239 | device = container_of(work, struct btrfs_device, work); | ||
240 | run_scheduled_bios(device); | ||
241 | } | ||
242 | |||
243 | static noinline int device_list_add(const char *path, | ||
244 | struct btrfs_super_block *disk_super, | ||
245 | u64 devid, struct btrfs_fs_devices **fs_devices_ret) | ||
246 | { | ||
247 | struct btrfs_device *device; | ||
248 | struct btrfs_fs_devices *fs_devices; | ||
249 | u64 found_transid = btrfs_super_generation(disk_super); | ||
250 | |||
251 | fs_devices = find_fsid(disk_super->fsid); | ||
252 | if (!fs_devices) { | ||
253 | fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS); | ||
254 | if (!fs_devices) | ||
255 | return -ENOMEM; | ||
256 | INIT_LIST_HEAD(&fs_devices->devices); | ||
257 | INIT_LIST_HEAD(&fs_devices->alloc_list); | ||
258 | list_add(&fs_devices->list, &fs_uuids); | ||
259 | memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE); | ||
260 | fs_devices->latest_devid = devid; | ||
261 | fs_devices->latest_trans = found_transid; | ||
262 | device = NULL; | ||
263 | } else { | ||
264 | device = __find_device(&fs_devices->devices, devid, | ||
265 | disk_super->dev_item.uuid); | ||
266 | } | ||
267 | if (!device) { | ||
268 | if (fs_devices->opened) | ||
269 | return -EBUSY; | ||
270 | |||
271 | device = kzalloc(sizeof(*device), GFP_NOFS); | ||
272 | if (!device) { | ||
273 | /* we can safely leave the fs_devices entry around */ | ||
274 | return -ENOMEM; | ||
275 | } | ||
276 | device->devid = devid; | ||
277 | device->work.func = pending_bios_fn; | ||
278 | memcpy(device->uuid, disk_super->dev_item.uuid, | ||
279 | BTRFS_UUID_SIZE); | ||
280 | device->barriers = 1; | ||
281 | spin_lock_init(&device->io_lock); | ||
282 | device->name = kstrdup(path, GFP_NOFS); | ||
283 | if (!device->name) { | ||
284 | kfree(device); | ||
285 | return -ENOMEM; | ||
286 | } | ||
287 | INIT_LIST_HEAD(&device->dev_alloc_list); | ||
288 | list_add(&device->dev_list, &fs_devices->devices); | ||
289 | device->fs_devices = fs_devices; | ||
290 | fs_devices->num_devices++; | ||
291 | } | ||
292 | |||
293 | if (found_transid > fs_devices->latest_trans) { | ||
294 | fs_devices->latest_devid = devid; | ||
295 | fs_devices->latest_trans = found_transid; | ||
296 | } | ||
297 | *fs_devices_ret = fs_devices; | ||
298 | return 0; | ||
299 | } | ||
300 | |||
301 | static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig) | ||
302 | { | ||
303 | struct btrfs_fs_devices *fs_devices; | ||
304 | struct btrfs_device *device; | ||
305 | struct btrfs_device *orig_dev; | ||
306 | |||
307 | fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS); | ||
308 | if (!fs_devices) | ||
309 | return ERR_PTR(-ENOMEM); | ||
310 | |||
311 | INIT_LIST_HEAD(&fs_devices->devices); | ||
312 | INIT_LIST_HEAD(&fs_devices->alloc_list); | ||
313 | INIT_LIST_HEAD(&fs_devices->list); | ||
314 | fs_devices->latest_devid = orig->latest_devid; | ||
315 | fs_devices->latest_trans = orig->latest_trans; | ||
316 | memcpy(fs_devices->fsid, orig->fsid, sizeof(fs_devices->fsid)); | ||
317 | |||
318 | list_for_each_entry(orig_dev, &orig->devices, dev_list) { | ||
319 | device = kzalloc(sizeof(*device), GFP_NOFS); | ||
320 | if (!device) | ||
321 | goto error; | ||
322 | |||
323 | device->name = kstrdup(orig_dev->name, GFP_NOFS); | ||
324 | if (!device->name) | ||
325 | goto error; | ||
326 | |||
327 | device->devid = orig_dev->devid; | ||
328 | device->work.func = pending_bios_fn; | ||
329 | memcpy(device->uuid, orig_dev->uuid, sizeof(device->uuid)); | ||
330 | device->barriers = 1; | ||
331 | spin_lock_init(&device->io_lock); | ||
332 | INIT_LIST_HEAD(&device->dev_list); | ||
333 | INIT_LIST_HEAD(&device->dev_alloc_list); | ||
334 | |||
335 | list_add(&device->dev_list, &fs_devices->devices); | ||
336 | device->fs_devices = fs_devices; | ||
337 | fs_devices->num_devices++; | ||
338 | } | ||
339 | return fs_devices; | ||
340 | error: | ||
341 | free_fs_devices(fs_devices); | ||
342 | return ERR_PTR(-ENOMEM); | ||
343 | } | ||
344 | |||
345 | int btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices) | ||
346 | { | ||
347 | struct list_head *tmp; | ||
348 | struct list_head *cur; | ||
349 | struct btrfs_device *device; | ||
350 | |||
351 | mutex_lock(&uuid_mutex); | ||
352 | again: | ||
353 | list_for_each_safe(cur, tmp, &fs_devices->devices) { | ||
354 | device = list_entry(cur, struct btrfs_device, dev_list); | ||
355 | if (device->in_fs_metadata) | ||
356 | continue; | ||
357 | |||
358 | if (device->bdev) { | ||
359 | close_bdev_exclusive(device->bdev, device->mode); | ||
360 | device->bdev = NULL; | ||
361 | fs_devices->open_devices--; | ||
362 | } | ||
363 | if (device->writeable) { | ||
364 | list_del_init(&device->dev_alloc_list); | ||
365 | device->writeable = 0; | ||
366 | fs_devices->rw_devices--; | ||
367 | } | ||
368 | list_del_init(&device->dev_list); | ||
369 | fs_devices->num_devices--; | ||
370 | kfree(device->name); | ||
371 | kfree(device); | ||
372 | } | ||
373 | |||
374 | if (fs_devices->seed) { | ||
375 | fs_devices = fs_devices->seed; | ||
376 | goto again; | ||
377 | } | ||
378 | |||
379 | mutex_unlock(&uuid_mutex); | ||
380 | return 0; | ||
381 | } | ||
382 | |||
383 | static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices) | ||
384 | { | ||
385 | struct list_head *cur; | ||
386 | struct btrfs_device *device; | ||
387 | |||
388 | if (--fs_devices->opened > 0) | ||
389 | return 0; | ||
390 | |||
391 | list_for_each(cur, &fs_devices->devices) { | ||
392 | device = list_entry(cur, struct btrfs_device, dev_list); | ||
393 | if (device->bdev) { | ||
394 | close_bdev_exclusive(device->bdev, device->mode); | ||
395 | fs_devices->open_devices--; | ||
396 | } | ||
397 | if (device->writeable) { | ||
398 | list_del_init(&device->dev_alloc_list); | ||
399 | fs_devices->rw_devices--; | ||
400 | } | ||
401 | |||
402 | device->bdev = NULL; | ||
403 | device->writeable = 0; | ||
404 | device->in_fs_metadata = 0; | ||
405 | } | ||
406 | WARN_ON(fs_devices->open_devices); | ||
407 | WARN_ON(fs_devices->rw_devices); | ||
408 | fs_devices->opened = 0; | ||
409 | fs_devices->seeding = 0; | ||
410 | |||
411 | return 0; | ||
412 | } | ||
413 | |||
414 | int btrfs_close_devices(struct btrfs_fs_devices *fs_devices) | ||
415 | { | ||
416 | struct btrfs_fs_devices *seed_devices = NULL; | ||
417 | int ret; | ||
418 | |||
419 | mutex_lock(&uuid_mutex); | ||
420 | ret = __btrfs_close_devices(fs_devices); | ||
421 | if (!fs_devices->opened) { | ||
422 | seed_devices = fs_devices->seed; | ||
423 | fs_devices->seed = NULL; | ||
424 | } | ||
425 | mutex_unlock(&uuid_mutex); | ||
426 | |||
427 | while (seed_devices) { | ||
428 | fs_devices = seed_devices; | ||
429 | seed_devices = fs_devices->seed; | ||
430 | __btrfs_close_devices(fs_devices); | ||
431 | free_fs_devices(fs_devices); | ||
432 | } | ||
433 | return ret; | ||
434 | } | ||
435 | |||
436 | static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices, | ||
437 | fmode_t flags, void *holder) | ||
438 | { | ||
439 | struct block_device *bdev; | ||
440 | struct list_head *head = &fs_devices->devices; | ||
441 | struct list_head *cur; | ||
442 | struct btrfs_device *device; | ||
443 | struct block_device *latest_bdev = NULL; | ||
444 | struct buffer_head *bh; | ||
445 | struct btrfs_super_block *disk_super; | ||
446 | u64 latest_devid = 0; | ||
447 | u64 latest_transid = 0; | ||
448 | u64 devid; | ||
449 | int seeding = 1; | ||
450 | int ret = 0; | ||
451 | |||
452 | list_for_each(cur, head) { | ||
453 | device = list_entry(cur, struct btrfs_device, dev_list); | ||
454 | if (device->bdev) | ||
455 | continue; | ||
456 | if (!device->name) | ||
457 | continue; | ||
458 | |||
459 | bdev = open_bdev_exclusive(device->name, flags, holder); | ||
460 | if (IS_ERR(bdev)) { | ||
461 | printk(KERN_INFO "open %s failed\n", device->name); | ||
462 | goto error; | ||
463 | } | ||
464 | set_blocksize(bdev, 4096); | ||
465 | |||
466 | bh = btrfs_read_dev_super(bdev); | ||
467 | if (!bh) | ||
468 | goto error_close; | ||
469 | |||
470 | disk_super = (struct btrfs_super_block *)bh->b_data; | ||
471 | devid = le64_to_cpu(disk_super->dev_item.devid); | ||
472 | if (devid != device->devid) | ||
473 | goto error_brelse; | ||
474 | |||
475 | if (memcmp(device->uuid, disk_super->dev_item.uuid, | ||
476 | BTRFS_UUID_SIZE)) | ||
477 | goto error_brelse; | ||
478 | |||
479 | device->generation = btrfs_super_generation(disk_super); | ||
480 | if (!latest_transid || device->generation > latest_transid) { | ||
481 | latest_devid = devid; | ||
482 | latest_transid = device->generation; | ||
483 | latest_bdev = bdev; | ||
484 | } | ||
485 | |||
486 | if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) { | ||
487 | device->writeable = 0; | ||
488 | } else { | ||
489 | device->writeable = !bdev_read_only(bdev); | ||
490 | seeding = 0; | ||
491 | } | ||
492 | |||
493 | device->bdev = bdev; | ||
494 | device->in_fs_metadata = 0; | ||
495 | device->mode = flags; | ||
496 | |||
497 | fs_devices->open_devices++; | ||
498 | if (device->writeable) { | ||
499 | fs_devices->rw_devices++; | ||
500 | list_add(&device->dev_alloc_list, | ||
501 | &fs_devices->alloc_list); | ||
502 | } | ||
503 | continue; | ||
504 | |||
505 | error_brelse: | ||
506 | brelse(bh); | ||
507 | error_close: | ||
508 | close_bdev_exclusive(bdev, FMODE_READ); | ||
509 | error: | ||
510 | continue; | ||
511 | } | ||
512 | if (fs_devices->open_devices == 0) { | ||
513 | ret = -EIO; | ||
514 | goto out; | ||
515 | } | ||
516 | fs_devices->seeding = seeding; | ||
517 | fs_devices->opened = 1; | ||
518 | fs_devices->latest_bdev = latest_bdev; | ||
519 | fs_devices->latest_devid = latest_devid; | ||
520 | fs_devices->latest_trans = latest_transid; | ||
521 | fs_devices->total_rw_bytes = 0; | ||
522 | out: | ||
523 | return ret; | ||
524 | } | ||
525 | |||
526 | int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, | ||
527 | fmode_t flags, void *holder) | ||
528 | { | ||
529 | int ret; | ||
530 | |||
531 | mutex_lock(&uuid_mutex); | ||
532 | if (fs_devices->opened) { | ||
533 | fs_devices->opened++; | ||
534 | ret = 0; | ||
535 | } else { | ||
536 | ret = __btrfs_open_devices(fs_devices, flags, holder); | ||
537 | } | ||
538 | mutex_unlock(&uuid_mutex); | ||
539 | return ret; | ||
540 | } | ||
541 | |||
542 | int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder, | ||
543 | struct btrfs_fs_devices **fs_devices_ret) | ||
544 | { | ||
545 | struct btrfs_super_block *disk_super; | ||
546 | struct block_device *bdev; | ||
547 | struct buffer_head *bh; | ||
548 | int ret; | ||
549 | u64 devid; | ||
550 | u64 transid; | ||
551 | |||
552 | mutex_lock(&uuid_mutex); | ||
553 | |||
554 | bdev = open_bdev_exclusive(path, flags, holder); | ||
555 | |||
556 | if (IS_ERR(bdev)) { | ||
557 | ret = PTR_ERR(bdev); | ||
558 | goto error; | ||
559 | } | ||
560 | |||
561 | ret = set_blocksize(bdev, 4096); | ||
562 | if (ret) | ||
563 | goto error_close; | ||
564 | bh = btrfs_read_dev_super(bdev); | ||
565 | if (!bh) { | ||
566 | ret = -EIO; | ||
567 | goto error_close; | ||
568 | } | ||
569 | disk_super = (struct btrfs_super_block *)bh->b_data; | ||
570 | devid = le64_to_cpu(disk_super->dev_item.devid); | ||
571 | transid = btrfs_super_generation(disk_super); | ||
572 | if (disk_super->label[0]) | ||
573 | printk(KERN_INFO "device label %s ", disk_super->label); | ||
574 | else { | ||
575 | /* FIXME, make a readl uuid parser */ | ||
576 | printk(KERN_INFO "device fsid %llx-%llx ", | ||
577 | *(unsigned long long *)disk_super->fsid, | ||
578 | *(unsigned long long *)(disk_super->fsid + 8)); | ||
579 | } | ||
580 | printk(KERN_INFO "devid %llu transid %llu %s\n", | ||
581 | (unsigned long long)devid, (unsigned long long)transid, path); | ||
582 | ret = device_list_add(path, disk_super, devid, fs_devices_ret); | ||
583 | |||
584 | brelse(bh); | ||
585 | error_close: | ||
586 | close_bdev_exclusive(bdev, flags); | ||
587 | error: | ||
588 | mutex_unlock(&uuid_mutex); | ||
589 | return ret; | ||
590 | } | ||
591 | |||
592 | /* | ||
593 | * this uses a pretty simple search, the expectation is that it is | ||
594 | * called very infrequently and that a given device has a small number | ||
595 | * of extents | ||
596 | */ | ||
597 | static noinline int find_free_dev_extent(struct btrfs_trans_handle *trans, | ||
598 | struct btrfs_device *device, | ||
599 | u64 num_bytes, u64 *start) | ||
600 | { | ||
601 | struct btrfs_key key; | ||
602 | struct btrfs_root *root = device->dev_root; | ||
603 | struct btrfs_dev_extent *dev_extent = NULL; | ||
604 | struct btrfs_path *path; | ||
605 | u64 hole_size = 0; | ||
606 | u64 last_byte = 0; | ||
607 | u64 search_start = 0; | ||
608 | u64 search_end = device->total_bytes; | ||
609 | int ret; | ||
610 | int slot = 0; | ||
611 | int start_found; | ||
612 | struct extent_buffer *l; | ||
613 | |||
614 | path = btrfs_alloc_path(); | ||
615 | if (!path) | ||
616 | return -ENOMEM; | ||
617 | path->reada = 2; | ||
618 | start_found = 0; | ||
619 | |||
620 | /* FIXME use last free of some kind */ | ||
621 | |||
622 | /* we don't want to overwrite the superblock on the drive, | ||
623 | * so we make sure to start at an offset of at least 1MB | ||
624 | */ | ||
625 | search_start = max((u64)1024 * 1024, search_start); | ||
626 | |||
627 | if (root->fs_info->alloc_start + num_bytes <= device->total_bytes) | ||
628 | search_start = max(root->fs_info->alloc_start, search_start); | ||
629 | |||
630 | key.objectid = device->devid; | ||
631 | key.offset = search_start; | ||
632 | key.type = BTRFS_DEV_EXTENT_KEY; | ||
633 | ret = btrfs_search_slot(trans, root, &key, path, 0, 0); | ||
634 | if (ret < 0) | ||
635 | goto error; | ||
636 | ret = btrfs_previous_item(root, path, 0, key.type); | ||
637 | if (ret < 0) | ||
638 | goto error; | ||
639 | l = path->nodes[0]; | ||
640 | btrfs_item_key_to_cpu(l, &key, path->slots[0]); | ||
641 | while (1) { | ||
642 | l = path->nodes[0]; | ||
643 | slot = path->slots[0]; | ||
644 | if (slot >= btrfs_header_nritems(l)) { | ||
645 | ret = btrfs_next_leaf(root, path); | ||
646 | if (ret == 0) | ||
647 | continue; | ||
648 | if (ret < 0) | ||
649 | goto error; | ||
650 | no_more_items: | ||
651 | if (!start_found) { | ||
652 | if (search_start >= search_end) { | ||
653 | ret = -ENOSPC; | ||
654 | goto error; | ||
655 | } | ||
656 | *start = search_start; | ||
657 | start_found = 1; | ||
658 | goto check_pending; | ||
659 | } | ||
660 | *start = last_byte > search_start ? | ||
661 | last_byte : search_start; | ||
662 | if (search_end <= *start) { | ||
663 | ret = -ENOSPC; | ||
664 | goto error; | ||
665 | } | ||
666 | goto check_pending; | ||
667 | } | ||
668 | btrfs_item_key_to_cpu(l, &key, slot); | ||
669 | |||
670 | if (key.objectid < device->devid) | ||
671 | goto next; | ||
672 | |||
673 | if (key.objectid > device->devid) | ||
674 | goto no_more_items; | ||
675 | |||
676 | if (key.offset >= search_start && key.offset > last_byte && | ||
677 | start_found) { | ||
678 | if (last_byte < search_start) | ||
679 | last_byte = search_start; | ||
680 | hole_size = key.offset - last_byte; | ||
681 | if (key.offset > last_byte && | ||
682 | hole_size >= num_bytes) { | ||
683 | *start = last_byte; | ||
684 | goto check_pending; | ||
685 | } | ||
686 | } | ||
687 | if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY) | ||
688 | goto next; | ||
689 | |||
690 | start_found = 1; | ||
691 | dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); | ||
692 | last_byte = key.offset + btrfs_dev_extent_length(l, dev_extent); | ||
693 | next: | ||
694 | path->slots[0]++; | ||
695 | cond_resched(); | ||
696 | } | ||
697 | check_pending: | ||
698 | /* we have to make sure we didn't find an extent that has already | ||
699 | * been allocated by the map tree or the original allocation | ||
700 | */ | ||
701 | BUG_ON(*start < search_start); | ||
702 | |||
703 | if (*start + num_bytes > search_end) { | ||
704 | ret = -ENOSPC; | ||
705 | goto error; | ||
706 | } | ||
707 | /* check for pending inserts here */ | ||
708 | ret = 0; | ||
709 | |||
710 | error: | ||
711 | btrfs_free_path(path); | ||
712 | return ret; | ||
713 | } | ||
714 | |||
715 | static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans, | ||
716 | struct btrfs_device *device, | ||
717 | u64 start) | ||
718 | { | ||
719 | int ret; | ||
720 | struct btrfs_path *path; | ||
721 | struct btrfs_root *root = device->dev_root; | ||
722 | struct btrfs_key key; | ||
723 | struct btrfs_key found_key; | ||
724 | struct extent_buffer *leaf = NULL; | ||
725 | struct btrfs_dev_extent *extent = NULL; | ||
726 | |||
727 | path = btrfs_alloc_path(); | ||
728 | if (!path) | ||
729 | return -ENOMEM; | ||
730 | |||
731 | key.objectid = device->devid; | ||
732 | key.offset = start; | ||
733 | key.type = BTRFS_DEV_EXTENT_KEY; | ||
734 | |||
735 | ret = btrfs_search_slot(trans, root, &key, path, -1, 1); | ||
736 | if (ret > 0) { | ||
737 | ret = btrfs_previous_item(root, path, key.objectid, | ||
738 | BTRFS_DEV_EXTENT_KEY); | ||
739 | BUG_ON(ret); | ||
740 | leaf = path->nodes[0]; | ||
741 | btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); | ||
742 | extent = btrfs_item_ptr(leaf, path->slots[0], | ||
743 | struct btrfs_dev_extent); | ||
744 | BUG_ON(found_key.offset > start || found_key.offset + | ||
745 | btrfs_dev_extent_length(leaf, extent) < start); | ||
746 | ret = 0; | ||
747 | } else if (ret == 0) { | ||
748 | leaf = path->nodes[0]; | ||
749 | extent = btrfs_item_ptr(leaf, path->slots[0], | ||
750 | struct btrfs_dev_extent); | ||
751 | } | ||
752 | BUG_ON(ret); | ||
753 | |||
754 | if (device->bytes_used > 0) | ||
755 | device->bytes_used -= btrfs_dev_extent_length(leaf, extent); | ||
756 | ret = btrfs_del_item(trans, root, path); | ||
757 | BUG_ON(ret); | ||
758 | |||
759 | btrfs_free_path(path); | ||
760 | return ret; | ||
761 | } | ||
762 | |||
763 | int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans, | ||
764 | struct btrfs_device *device, | ||
765 | u64 chunk_tree, u64 chunk_objectid, | ||
766 | u64 chunk_offset, u64 start, u64 num_bytes) | ||
767 | { | ||
768 | int ret; | ||
769 | struct btrfs_path *path; | ||
770 | struct btrfs_root *root = device->dev_root; | ||
771 | struct btrfs_dev_extent *extent; | ||
772 | struct extent_buffer *leaf; | ||
773 | struct btrfs_key key; | ||
774 | |||
775 | WARN_ON(!device->in_fs_metadata); | ||
776 | path = btrfs_alloc_path(); | ||
777 | if (!path) | ||
778 | return -ENOMEM; | ||
779 | |||
780 | key.objectid = device->devid; | ||
781 | key.offset = start; | ||
782 | key.type = BTRFS_DEV_EXTENT_KEY; | ||
783 | ret = btrfs_insert_empty_item(trans, root, path, &key, | ||
784 | sizeof(*extent)); | ||
785 | BUG_ON(ret); | ||
786 | |||
787 | leaf = path->nodes[0]; | ||
788 | extent = btrfs_item_ptr(leaf, path->slots[0], | ||
789 | struct btrfs_dev_extent); | ||
790 | btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree); | ||
791 | btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid); | ||
792 | btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset); | ||
793 | |||
794 | write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid, | ||
795 | (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent), | ||
796 | BTRFS_UUID_SIZE); | ||
797 | |||
798 | btrfs_set_dev_extent_length(leaf, extent, num_bytes); | ||
799 | btrfs_mark_buffer_dirty(leaf); | ||
800 | btrfs_free_path(path); | ||
801 | return ret; | ||
802 | } | ||
803 | |||
804 | static noinline int find_next_chunk(struct btrfs_root *root, | ||
805 | u64 objectid, u64 *offset) | ||
806 | { | ||
807 | struct btrfs_path *path; | ||
808 | int ret; | ||
809 | struct btrfs_key key; | ||
810 | struct btrfs_chunk *chunk; | ||
811 | struct btrfs_key found_key; | ||
812 | |||
813 | path = btrfs_alloc_path(); | ||
814 | BUG_ON(!path); | ||
815 | |||
816 | key.objectid = objectid; | ||
817 | key.offset = (u64)-1; | ||
818 | key.type = BTRFS_CHUNK_ITEM_KEY; | ||
819 | |||
820 | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | ||
821 | if (ret < 0) | ||
822 | goto error; | ||
823 | |||
824 | BUG_ON(ret == 0); | ||
825 | |||
826 | ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY); | ||
827 | if (ret) { | ||
828 | *offset = 0; | ||
829 | } else { | ||
830 | btrfs_item_key_to_cpu(path->nodes[0], &found_key, | ||
831 | path->slots[0]); | ||
832 | if (found_key.objectid != objectid) | ||
833 | *offset = 0; | ||
834 | else { | ||
835 | chunk = btrfs_item_ptr(path->nodes[0], path->slots[0], | ||
836 | struct btrfs_chunk); | ||
837 | *offset = found_key.offset + | ||
838 | btrfs_chunk_length(path->nodes[0], chunk); | ||
839 | } | ||
840 | } | ||
841 | ret = 0; | ||
842 | error: | ||
843 | btrfs_free_path(path); | ||
844 | return ret; | ||
845 | } | ||
846 | |||
847 | static noinline int find_next_devid(struct btrfs_root *root, u64 *objectid) | ||
848 | { | ||
849 | int ret; | ||
850 | struct btrfs_key key; | ||
851 | struct btrfs_key found_key; | ||
852 | struct btrfs_path *path; | ||
853 | |||
854 | root = root->fs_info->chunk_root; | ||
855 | |||
856 | path = btrfs_alloc_path(); | ||
857 | if (!path) | ||
858 | return -ENOMEM; | ||
859 | |||
860 | key.objectid = BTRFS_DEV_ITEMS_OBJECTID; | ||
861 | key.type = BTRFS_DEV_ITEM_KEY; | ||
862 | key.offset = (u64)-1; | ||
863 | |||
864 | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | ||
865 | if (ret < 0) | ||
866 | goto error; | ||
867 | |||
868 | BUG_ON(ret == 0); | ||
869 | |||
870 | ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID, | ||
871 | BTRFS_DEV_ITEM_KEY); | ||
872 | if (ret) { | ||
873 | *objectid = 1; | ||
874 | } else { | ||
875 | btrfs_item_key_to_cpu(path->nodes[0], &found_key, | ||
876 | path->slots[0]); | ||
877 | *objectid = found_key.offset + 1; | ||
878 | } | ||
879 | ret = 0; | ||
880 | error: | ||
881 | btrfs_free_path(path); | ||
882 | return ret; | ||
883 | } | ||
884 | |||
885 | /* | ||
886 | * the device information is stored in the chunk root | ||
887 | * the btrfs_device struct should be fully filled in | ||
888 | */ | ||
889 | int btrfs_add_device(struct btrfs_trans_handle *trans, | ||
890 | struct btrfs_root *root, | ||
891 | struct btrfs_device *device) | ||
892 | { | ||
893 | int ret; | ||
894 | struct btrfs_path *path; | ||
895 | struct btrfs_dev_item *dev_item; | ||
896 | struct extent_buffer *leaf; | ||
897 | struct btrfs_key key; | ||
898 | unsigned long ptr; | ||
899 | |||
900 | root = root->fs_info->chunk_root; | ||
901 | |||
902 | path = btrfs_alloc_path(); | ||
903 | if (!path) | ||
904 | return -ENOMEM; | ||
905 | |||
906 | key.objectid = BTRFS_DEV_ITEMS_OBJECTID; | ||
907 | key.type = BTRFS_DEV_ITEM_KEY; | ||
908 | key.offset = device->devid; | ||
909 | |||
910 | ret = btrfs_insert_empty_item(trans, root, path, &key, | ||
911 | sizeof(*dev_item)); | ||
912 | if (ret) | ||
913 | goto out; | ||
914 | |||
915 | leaf = path->nodes[0]; | ||
916 | dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); | ||
917 | |||
918 | btrfs_set_device_id(leaf, dev_item, device->devid); | ||
919 | btrfs_set_device_generation(leaf, dev_item, 0); | ||
920 | btrfs_set_device_type(leaf, dev_item, device->type); | ||
921 | btrfs_set_device_io_align(leaf, dev_item, device->io_align); | ||
922 | btrfs_set_device_io_width(leaf, dev_item, device->io_width); | ||
923 | btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); | ||
924 | btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes); | ||
925 | btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used); | ||
926 | btrfs_set_device_group(leaf, dev_item, 0); | ||
927 | btrfs_set_device_seek_speed(leaf, dev_item, 0); | ||
928 | btrfs_set_device_bandwidth(leaf, dev_item, 0); | ||
929 | btrfs_set_device_start_offset(leaf, dev_item, 0); | ||
930 | |||
931 | ptr = (unsigned long)btrfs_device_uuid(dev_item); | ||
932 | write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); | ||
933 | ptr = (unsigned long)btrfs_device_fsid(dev_item); | ||
934 | write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE); | ||
935 | btrfs_mark_buffer_dirty(leaf); | ||
936 | |||
937 | ret = 0; | ||
938 | out: | ||
939 | btrfs_free_path(path); | ||
940 | return ret; | ||
941 | } | ||
942 | |||
943 | static int btrfs_rm_dev_item(struct btrfs_root *root, | ||
944 | struct btrfs_device *device) | ||
945 | { | ||
946 | int ret; | ||
947 | struct btrfs_path *path; | ||
948 | struct btrfs_key key; | ||
949 | struct btrfs_trans_handle *trans; | ||
950 | |||
951 | root = root->fs_info->chunk_root; | ||
952 | |||
953 | path = btrfs_alloc_path(); | ||
954 | if (!path) | ||
955 | return -ENOMEM; | ||
956 | |||
957 | trans = btrfs_start_transaction(root, 1); | ||
958 | key.objectid = BTRFS_DEV_ITEMS_OBJECTID; | ||
959 | key.type = BTRFS_DEV_ITEM_KEY; | ||
960 | key.offset = device->devid; | ||
961 | lock_chunks(root); | ||
962 | |||
963 | ret = btrfs_search_slot(trans, root, &key, path, -1, 1); | ||
964 | if (ret < 0) | ||
965 | goto out; | ||
966 | |||
967 | if (ret > 0) { | ||
968 | ret = -ENOENT; | ||
969 | goto out; | ||
970 | } | ||
971 | |||
972 | ret = btrfs_del_item(trans, root, path); | ||
973 | if (ret) | ||
974 | goto out; | ||
975 | out: | ||
976 | btrfs_free_path(path); | ||
977 | unlock_chunks(root); | ||
978 | btrfs_commit_transaction(trans, root); | ||
979 | return ret; | ||
980 | } | ||
981 | |||
982 | int btrfs_rm_device(struct btrfs_root *root, char *device_path) | ||
983 | { | ||
984 | struct btrfs_device *device; | ||
985 | struct btrfs_device *next_device; | ||
986 | struct block_device *bdev; | ||
987 | struct buffer_head *bh = NULL; | ||
988 | struct btrfs_super_block *disk_super; | ||
989 | u64 all_avail; | ||
990 | u64 devid; | ||
991 | u64 num_devices; | ||
992 | u8 *dev_uuid; | ||
993 | int ret = 0; | ||
994 | |||
995 | mutex_lock(&uuid_mutex); | ||
996 | mutex_lock(&root->fs_info->volume_mutex); | ||
997 | |||
998 | all_avail = root->fs_info->avail_data_alloc_bits | | ||
999 | root->fs_info->avail_system_alloc_bits | | ||
1000 | root->fs_info->avail_metadata_alloc_bits; | ||
1001 | |||
1002 | if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && | ||
1003 | root->fs_info->fs_devices->rw_devices <= 4) { | ||
1004 | printk(KERN_ERR "btrfs: unable to go below four devices " | ||
1005 | "on raid10\n"); | ||
1006 | ret = -EINVAL; | ||
1007 | goto out; | ||
1008 | } | ||
1009 | |||
1010 | if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && | ||
1011 | root->fs_info->fs_devices->rw_devices <= 2) { | ||
1012 | printk(KERN_ERR "btrfs: unable to go below two " | ||
1013 | "devices on raid1\n"); | ||
1014 | ret = -EINVAL; | ||
1015 | goto out; | ||
1016 | } | ||
1017 | |||
1018 | if (strcmp(device_path, "missing") == 0) { | ||
1019 | struct list_head *cur; | ||
1020 | struct list_head *devices; | ||
1021 | struct btrfs_device *tmp; | ||
1022 | |||
1023 | device = NULL; | ||
1024 | devices = &root->fs_info->fs_devices->devices; | ||
1025 | list_for_each(cur, devices) { | ||
1026 | tmp = list_entry(cur, struct btrfs_device, dev_list); | ||
1027 | if (tmp->in_fs_metadata && !tmp->bdev) { | ||
1028 | device = tmp; | ||
1029 | break; | ||
1030 | } | ||
1031 | } | ||
1032 | bdev = NULL; | ||
1033 | bh = NULL; | ||
1034 | disk_super = NULL; | ||
1035 | if (!device) { | ||
1036 | printk(KERN_ERR "btrfs: no missing devices found to " | ||
1037 | "remove\n"); | ||
1038 | goto out; | ||
1039 | } | ||
1040 | } else { | ||
1041 | bdev = open_bdev_exclusive(device_path, FMODE_READ, | ||
1042 | root->fs_info->bdev_holder); | ||
1043 | if (IS_ERR(bdev)) { | ||
1044 | ret = PTR_ERR(bdev); | ||
1045 | goto out; | ||
1046 | } | ||
1047 | |||
1048 | set_blocksize(bdev, 4096); | ||
1049 | bh = btrfs_read_dev_super(bdev); | ||
1050 | if (!bh) { | ||
1051 | ret = -EIO; | ||
1052 | goto error_close; | ||
1053 | } | ||
1054 | disk_super = (struct btrfs_super_block *)bh->b_data; | ||
1055 | devid = le64_to_cpu(disk_super->dev_item.devid); | ||
1056 | dev_uuid = disk_super->dev_item.uuid; | ||
1057 | device = btrfs_find_device(root, devid, dev_uuid, | ||
1058 | disk_super->fsid); | ||
1059 | if (!device) { | ||
1060 | ret = -ENOENT; | ||
1061 | goto error_brelse; | ||
1062 | } | ||
1063 | } | ||
1064 | |||
1065 | if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) { | ||
1066 | printk(KERN_ERR "btrfs: unable to remove the only writeable " | ||
1067 | "device\n"); | ||
1068 | ret = -EINVAL; | ||
1069 | goto error_brelse; | ||
1070 | } | ||
1071 | |||
1072 | if (device->writeable) { | ||
1073 | list_del_init(&device->dev_alloc_list); | ||
1074 | root->fs_info->fs_devices->rw_devices--; | ||
1075 | } | ||
1076 | |||
1077 | ret = btrfs_shrink_device(device, 0); | ||
1078 | if (ret) | ||
1079 | goto error_brelse; | ||
1080 | |||
1081 | ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device); | ||
1082 | if (ret) | ||
1083 | goto error_brelse; | ||
1084 | |||
1085 | device->in_fs_metadata = 0; | ||
1086 | list_del_init(&device->dev_list); | ||
1087 | device->fs_devices->num_devices--; | ||
1088 | |||
1089 | next_device = list_entry(root->fs_info->fs_devices->devices.next, | ||
1090 | struct btrfs_device, dev_list); | ||
1091 | if (device->bdev == root->fs_info->sb->s_bdev) | ||
1092 | root->fs_info->sb->s_bdev = next_device->bdev; | ||
1093 | if (device->bdev == root->fs_info->fs_devices->latest_bdev) | ||
1094 | root->fs_info->fs_devices->latest_bdev = next_device->bdev; | ||
1095 | |||
1096 | if (device->bdev) { | ||
1097 | close_bdev_exclusive(device->bdev, device->mode); | ||
1098 | device->bdev = NULL; | ||
1099 | device->fs_devices->open_devices--; | ||
1100 | } | ||
1101 | |||
1102 | num_devices = btrfs_super_num_devices(&root->fs_info->super_copy) - 1; | ||
1103 | btrfs_set_super_num_devices(&root->fs_info->super_copy, num_devices); | ||
1104 | |||
1105 | if (device->fs_devices->open_devices == 0) { | ||
1106 | struct btrfs_fs_devices *fs_devices; | ||
1107 | fs_devices = root->fs_info->fs_devices; | ||
1108 | while (fs_devices) { | ||
1109 | if (fs_devices->seed == device->fs_devices) | ||
1110 | break; | ||
1111 | fs_devices = fs_devices->seed; | ||
1112 | } | ||
1113 | fs_devices->seed = device->fs_devices->seed; | ||
1114 | device->fs_devices->seed = NULL; | ||
1115 | __btrfs_close_devices(device->fs_devices); | ||
1116 | free_fs_devices(device->fs_devices); | ||
1117 | } | ||
1118 | |||
1119 | /* | ||
1120 | * at this point, the device is zero sized. We want to | ||
1121 | * remove it from the devices list and zero out the old super | ||
1122 | */ | ||
1123 | if (device->writeable) { | ||
1124 | /* make sure this device isn't detected as part of | ||
1125 | * the FS anymore | ||
1126 | */ | ||
1127 | memset(&disk_super->magic, 0, sizeof(disk_super->magic)); | ||
1128 | set_buffer_dirty(bh); | ||
1129 | sync_dirty_buffer(bh); | ||
1130 | } | ||
1131 | |||
1132 | kfree(device->name); | ||
1133 | kfree(device); | ||
1134 | ret = 0; | ||
1135 | |||
1136 | error_brelse: | ||
1137 | brelse(bh); | ||
1138 | error_close: | ||
1139 | if (bdev) | ||
1140 | close_bdev_exclusive(bdev, FMODE_READ); | ||
1141 | out: | ||
1142 | mutex_unlock(&root->fs_info->volume_mutex); | ||
1143 | mutex_unlock(&uuid_mutex); | ||
1144 | return ret; | ||
1145 | } | ||
1146 | |||
1147 | /* | ||
1148 | * does all the dirty work required for changing file system's UUID. | ||
1149 | */ | ||
1150 | static int btrfs_prepare_sprout(struct btrfs_trans_handle *trans, | ||
1151 | struct btrfs_root *root) | ||
1152 | { | ||
1153 | struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; | ||
1154 | struct btrfs_fs_devices *old_devices; | ||
1155 | struct btrfs_fs_devices *seed_devices; | ||
1156 | struct btrfs_super_block *disk_super = &root->fs_info->super_copy; | ||
1157 | struct btrfs_device *device; | ||
1158 | u64 super_flags; | ||
1159 | |||
1160 | BUG_ON(!mutex_is_locked(&uuid_mutex)); | ||
1161 | if (!fs_devices->seeding) | ||
1162 | return -EINVAL; | ||
1163 | |||
1164 | seed_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS); | ||
1165 | if (!seed_devices) | ||
1166 | return -ENOMEM; | ||
1167 | |||
1168 | old_devices = clone_fs_devices(fs_devices); | ||
1169 | if (IS_ERR(old_devices)) { | ||
1170 | kfree(seed_devices); | ||
1171 | return PTR_ERR(old_devices); | ||
1172 | } | ||
1173 | |||
1174 | list_add(&old_devices->list, &fs_uuids); | ||
1175 | |||
1176 | memcpy(seed_devices, fs_devices, sizeof(*seed_devices)); | ||
1177 | seed_devices->opened = 1; | ||
1178 | INIT_LIST_HEAD(&seed_devices->devices); | ||
1179 | INIT_LIST_HEAD(&seed_devices->alloc_list); | ||
1180 | list_splice_init(&fs_devices->devices, &seed_devices->devices); | ||
1181 | list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list); | ||
1182 | list_for_each_entry(device, &seed_devices->devices, dev_list) { | ||
1183 | device->fs_devices = seed_devices; | ||
1184 | } | ||
1185 | |||
1186 | fs_devices->seeding = 0; | ||
1187 | fs_devices->num_devices = 0; | ||
1188 | fs_devices->open_devices = 0; | ||
1189 | fs_devices->seed = seed_devices; | ||
1190 | |||
1191 | generate_random_uuid(fs_devices->fsid); | ||
1192 | memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); | ||
1193 | memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); | ||
1194 | super_flags = btrfs_super_flags(disk_super) & | ||
1195 | ~BTRFS_SUPER_FLAG_SEEDING; | ||
1196 | btrfs_set_super_flags(disk_super, super_flags); | ||
1197 | |||
1198 | return 0; | ||
1199 | } | ||
1200 | |||
1201 | /* | ||
1202 | * strore the expected generation for seed devices in device items. | ||
1203 | */ | ||
1204 | static int btrfs_finish_sprout(struct btrfs_trans_handle *trans, | ||
1205 | struct btrfs_root *root) | ||
1206 | { | ||
1207 | struct btrfs_path *path; | ||
1208 | struct extent_buffer *leaf; | ||
1209 | struct btrfs_dev_item *dev_item; | ||
1210 | struct btrfs_device *device; | ||
1211 | struct btrfs_key key; | ||
1212 | u8 fs_uuid[BTRFS_UUID_SIZE]; | ||
1213 | u8 dev_uuid[BTRFS_UUID_SIZE]; | ||
1214 | u64 devid; | ||
1215 | int ret; | ||
1216 | |||
1217 | path = btrfs_alloc_path(); | ||
1218 | if (!path) | ||
1219 | return -ENOMEM; | ||
1220 | |||
1221 | root = root->fs_info->chunk_root; | ||
1222 | key.objectid = BTRFS_DEV_ITEMS_OBJECTID; | ||
1223 | key.offset = 0; | ||
1224 | key.type = BTRFS_DEV_ITEM_KEY; | ||
1225 | |||
1226 | while (1) { | ||
1227 | ret = btrfs_search_slot(trans, root, &key, path, 0, 1); | ||
1228 | if (ret < 0) | ||
1229 | goto error; | ||
1230 | |||
1231 | leaf = path->nodes[0]; | ||
1232 | next_slot: | ||
1233 | if (path->slots[0] >= btrfs_header_nritems(leaf)) { | ||
1234 | ret = btrfs_next_leaf(root, path); | ||
1235 | if (ret > 0) | ||
1236 | break; | ||
1237 | if (ret < 0) | ||
1238 | goto error; | ||
1239 | leaf = path->nodes[0]; | ||
1240 | btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); | ||
1241 | btrfs_release_path(root, path); | ||
1242 | continue; | ||
1243 | } | ||
1244 | |||
1245 | btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); | ||
1246 | if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID || | ||
1247 | key.type != BTRFS_DEV_ITEM_KEY) | ||
1248 | break; | ||
1249 | |||
1250 | dev_item = btrfs_item_ptr(leaf, path->slots[0], | ||
1251 | struct btrfs_dev_item); | ||
1252 | devid = btrfs_device_id(leaf, dev_item); | ||
1253 | read_extent_buffer(leaf, dev_uuid, | ||
1254 | (unsigned long)btrfs_device_uuid(dev_item), | ||
1255 | BTRFS_UUID_SIZE); | ||
1256 | read_extent_buffer(leaf, fs_uuid, | ||
1257 | (unsigned long)btrfs_device_fsid(dev_item), | ||
1258 | BTRFS_UUID_SIZE); | ||
1259 | device = btrfs_find_device(root, devid, dev_uuid, fs_uuid); | ||
1260 | BUG_ON(!device); | ||
1261 | |||
1262 | if (device->fs_devices->seeding) { | ||
1263 | btrfs_set_device_generation(leaf, dev_item, | ||
1264 | device->generation); | ||
1265 | btrfs_mark_buffer_dirty(leaf); | ||
1266 | } | ||
1267 | |||
1268 | path->slots[0]++; | ||
1269 | goto next_slot; | ||
1270 | } | ||
1271 | ret = 0; | ||
1272 | error: | ||
1273 | btrfs_free_path(path); | ||
1274 | return ret; | ||
1275 | } | ||
1276 | |||
1277 | int btrfs_init_new_device(struct btrfs_root *root, char *device_path) | ||
1278 | { | ||
1279 | struct btrfs_trans_handle *trans; | ||
1280 | struct btrfs_device *device; | ||
1281 | struct block_device *bdev; | ||
1282 | struct list_head *cur; | ||
1283 | struct list_head *devices; | ||
1284 | struct super_block *sb = root->fs_info->sb; | ||
1285 | u64 total_bytes; | ||
1286 | int seeding_dev = 0; | ||
1287 | int ret = 0; | ||
1288 | |||
1289 | if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding) | ||
1290 | return -EINVAL; | ||
1291 | |||
1292 | bdev = open_bdev_exclusive(device_path, 0, root->fs_info->bdev_holder); | ||
1293 | if (!bdev) | ||
1294 | return -EIO; | ||
1295 | |||
1296 | if (root->fs_info->fs_devices->seeding) { | ||
1297 | seeding_dev = 1; | ||
1298 | down_write(&sb->s_umount); | ||
1299 | mutex_lock(&uuid_mutex); | ||
1300 | } | ||
1301 | |||
1302 | filemap_write_and_wait(bdev->bd_inode->i_mapping); | ||
1303 | mutex_lock(&root->fs_info->volume_mutex); | ||
1304 | |||
1305 | devices = &root->fs_info->fs_devices->devices; | ||
1306 | list_for_each(cur, devices) { | ||
1307 | device = list_entry(cur, struct btrfs_device, dev_list); | ||
1308 | if (device->bdev == bdev) { | ||
1309 | ret = -EEXIST; | ||
1310 | goto error; | ||
1311 | } | ||
1312 | } | ||
1313 | |||
1314 | device = kzalloc(sizeof(*device), GFP_NOFS); | ||
1315 | if (!device) { | ||
1316 | /* we can safely leave the fs_devices entry around */ | ||
1317 | ret = -ENOMEM; | ||
1318 | goto error; | ||
1319 | } | ||
1320 | |||
1321 | device->name = kstrdup(device_path, GFP_NOFS); | ||
1322 | if (!device->name) { | ||
1323 | kfree(device); | ||
1324 | ret = -ENOMEM; | ||
1325 | goto error; | ||
1326 | } | ||
1327 | |||
1328 | ret = find_next_devid(root, &device->devid); | ||
1329 | if (ret) { | ||
1330 | kfree(device); | ||
1331 | goto error; | ||
1332 | } | ||
1333 | |||
1334 | trans = btrfs_start_transaction(root, 1); | ||
1335 | lock_chunks(root); | ||
1336 | |||
1337 | device->barriers = 1; | ||
1338 | device->writeable = 1; | ||
1339 | device->work.func = pending_bios_fn; | ||
1340 | generate_random_uuid(device->uuid); | ||
1341 | spin_lock_init(&device->io_lock); | ||
1342 | device->generation = trans->transid; | ||
1343 | device->io_width = root->sectorsize; | ||
1344 | device->io_align = root->sectorsize; | ||
1345 | device->sector_size = root->sectorsize; | ||
1346 | device->total_bytes = i_size_read(bdev->bd_inode); | ||
1347 | device->dev_root = root->fs_info->dev_root; | ||
1348 | device->bdev = bdev; | ||
1349 | device->in_fs_metadata = 1; | ||
1350 | device->mode = 0; | ||
1351 | set_blocksize(device->bdev, 4096); | ||
1352 | |||
1353 | if (seeding_dev) { | ||
1354 | sb->s_flags &= ~MS_RDONLY; | ||
1355 | ret = btrfs_prepare_sprout(trans, root); | ||
1356 | BUG_ON(ret); | ||
1357 | } | ||
1358 | |||
1359 | device->fs_devices = root->fs_info->fs_devices; | ||
1360 | list_add(&device->dev_list, &root->fs_info->fs_devices->devices); | ||
1361 | list_add(&device->dev_alloc_list, | ||
1362 | &root->fs_info->fs_devices->alloc_list); | ||
1363 | root->fs_info->fs_devices->num_devices++; | ||
1364 | root->fs_info->fs_devices->open_devices++; | ||
1365 | root->fs_info->fs_devices->rw_devices++; | ||
1366 | root->fs_info->fs_devices->total_rw_bytes += device->total_bytes; | ||
1367 | |||
1368 | total_bytes = btrfs_super_total_bytes(&root->fs_info->super_copy); | ||
1369 | btrfs_set_super_total_bytes(&root->fs_info->super_copy, | ||
1370 | total_bytes + device->total_bytes); | ||
1371 | |||
1372 | total_bytes = btrfs_super_num_devices(&root->fs_info->super_copy); | ||
1373 | btrfs_set_super_num_devices(&root->fs_info->super_copy, | ||
1374 | total_bytes + 1); | ||
1375 | |||
1376 | if (seeding_dev) { | ||
1377 | ret = init_first_rw_device(trans, root, device); | ||
1378 | BUG_ON(ret); | ||
1379 | ret = btrfs_finish_sprout(trans, root); | ||
1380 | BUG_ON(ret); | ||
1381 | } else { | ||
1382 | ret = btrfs_add_device(trans, root, device); | ||
1383 | } | ||
1384 | |||
1385 | unlock_chunks(root); | ||
1386 | btrfs_commit_transaction(trans, root); | ||
1387 | |||
1388 | if (seeding_dev) { | ||
1389 | mutex_unlock(&uuid_mutex); | ||
1390 | up_write(&sb->s_umount); | ||
1391 | |||
1392 | ret = btrfs_relocate_sys_chunks(root); | ||
1393 | BUG_ON(ret); | ||
1394 | } | ||
1395 | out: | ||
1396 | mutex_unlock(&root->fs_info->volume_mutex); | ||
1397 | return ret; | ||
1398 | error: | ||
1399 | close_bdev_exclusive(bdev, 0); | ||
1400 | if (seeding_dev) { | ||
1401 | mutex_unlock(&uuid_mutex); | ||
1402 | up_write(&sb->s_umount); | ||
1403 | } | ||
1404 | goto out; | ||
1405 | } | ||
1406 | |||
1407 | static noinline int btrfs_update_device(struct btrfs_trans_handle *trans, | ||
1408 | struct btrfs_device *device) | ||
1409 | { | ||
1410 | int ret; | ||
1411 | struct btrfs_path *path; | ||
1412 | struct btrfs_root *root; | ||
1413 | struct btrfs_dev_item *dev_item; | ||
1414 | struct extent_buffer *leaf; | ||
1415 | struct btrfs_key key; | ||
1416 | |||
1417 | root = device->dev_root->fs_info->chunk_root; | ||
1418 | |||
1419 | path = btrfs_alloc_path(); | ||
1420 | if (!path) | ||
1421 | return -ENOMEM; | ||
1422 | |||
1423 | key.objectid = BTRFS_DEV_ITEMS_OBJECTID; | ||
1424 | key.type = BTRFS_DEV_ITEM_KEY; | ||
1425 | key.offset = device->devid; | ||
1426 | |||
1427 | ret = btrfs_search_slot(trans, root, &key, path, 0, 1); | ||
1428 | if (ret < 0) | ||
1429 | goto out; | ||
1430 | |||
1431 | if (ret > 0) { | ||
1432 | ret = -ENOENT; | ||
1433 | goto out; | ||
1434 | } | ||
1435 | |||
1436 | leaf = path->nodes[0]; | ||
1437 | dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); | ||
1438 | |||
1439 | btrfs_set_device_id(leaf, dev_item, device->devid); | ||
1440 | btrfs_set_device_type(leaf, dev_item, device->type); | ||
1441 | btrfs_set_device_io_align(leaf, dev_item, device->io_align); | ||
1442 | btrfs_set_device_io_width(leaf, dev_item, device->io_width); | ||
1443 | btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); | ||
1444 | btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes); | ||
1445 | btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used); | ||
1446 | btrfs_mark_buffer_dirty(leaf); | ||
1447 | |||
1448 | out: | ||
1449 | btrfs_free_path(path); | ||
1450 | return ret; | ||
1451 | } | ||
1452 | |||
1453 | static int __btrfs_grow_device(struct btrfs_trans_handle *trans, | ||
1454 | struct btrfs_device *device, u64 new_size) | ||
1455 | { | ||
1456 | struct btrfs_super_block *super_copy = | ||
1457 | &device->dev_root->fs_info->super_copy; | ||
1458 | u64 old_total = btrfs_super_total_bytes(super_copy); | ||
1459 | u64 diff = new_size - device->total_bytes; | ||
1460 | |||
1461 | if (!device->writeable) | ||
1462 | return -EACCES; | ||
1463 | if (new_size <= device->total_bytes) | ||
1464 | return -EINVAL; | ||
1465 | |||
1466 | btrfs_set_super_total_bytes(super_copy, old_total + diff); | ||
1467 | device->fs_devices->total_rw_bytes += diff; | ||
1468 | |||
1469 | device->total_bytes = new_size; | ||
1470 | return btrfs_update_device(trans, device); | ||
1471 | } | ||
1472 | |||
1473 | int btrfs_grow_device(struct btrfs_trans_handle *trans, | ||
1474 | struct btrfs_device *device, u64 new_size) | ||
1475 | { | ||
1476 | int ret; | ||
1477 | lock_chunks(device->dev_root); | ||
1478 | ret = __btrfs_grow_device(trans, device, new_size); | ||
1479 | unlock_chunks(device->dev_root); | ||
1480 | return ret; | ||
1481 | } | ||
1482 | |||
1483 | static int btrfs_free_chunk(struct btrfs_trans_handle *trans, | ||
1484 | struct btrfs_root *root, | ||
1485 | u64 chunk_tree, u64 chunk_objectid, | ||
1486 | u64 chunk_offset) | ||
1487 | { | ||
1488 | int ret; | ||
1489 | struct btrfs_path *path; | ||
1490 | struct btrfs_key key; | ||
1491 | |||
1492 | root = root->fs_info->chunk_root; | ||
1493 | path = btrfs_alloc_path(); | ||
1494 | if (!path) | ||
1495 | return -ENOMEM; | ||
1496 | |||
1497 | key.objectid = chunk_objectid; | ||
1498 | key.offset = chunk_offset; | ||
1499 | key.type = BTRFS_CHUNK_ITEM_KEY; | ||
1500 | |||
1501 | ret = btrfs_search_slot(trans, root, &key, path, -1, 1); | ||
1502 | BUG_ON(ret); | ||
1503 | |||
1504 | ret = btrfs_del_item(trans, root, path); | ||
1505 | BUG_ON(ret); | ||
1506 | |||
1507 | btrfs_free_path(path); | ||
1508 | return 0; | ||
1509 | } | ||
1510 | |||
1511 | static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64 | ||
1512 | chunk_offset) | ||
1513 | { | ||
1514 | struct btrfs_super_block *super_copy = &root->fs_info->super_copy; | ||
1515 | struct btrfs_disk_key *disk_key; | ||
1516 | struct btrfs_chunk *chunk; | ||
1517 | u8 *ptr; | ||
1518 | int ret = 0; | ||
1519 | u32 num_stripes; | ||
1520 | u32 array_size; | ||
1521 | u32 len = 0; | ||
1522 | u32 cur; | ||
1523 | struct btrfs_key key; | ||
1524 | |||
1525 | array_size = btrfs_super_sys_array_size(super_copy); | ||
1526 | |||
1527 | ptr = super_copy->sys_chunk_array; | ||
1528 | cur = 0; | ||
1529 | |||
1530 | while (cur < array_size) { | ||
1531 | disk_key = (struct btrfs_disk_key *)ptr; | ||
1532 | btrfs_disk_key_to_cpu(&key, disk_key); | ||
1533 | |||
1534 | len = sizeof(*disk_key); | ||
1535 | |||
1536 | if (key.type == BTRFS_CHUNK_ITEM_KEY) { | ||
1537 | chunk = (struct btrfs_chunk *)(ptr + len); | ||
1538 | num_stripes = btrfs_stack_chunk_num_stripes(chunk); | ||
1539 | len += btrfs_chunk_item_size(num_stripes); | ||
1540 | } else { | ||
1541 | ret = -EIO; | ||
1542 | break; | ||
1543 | } | ||
1544 | if (key.objectid == chunk_objectid && | ||
1545 | key.offset == chunk_offset) { | ||
1546 | memmove(ptr, ptr + len, array_size - (cur + len)); | ||
1547 | array_size -= len; | ||
1548 | btrfs_set_super_sys_array_size(super_copy, array_size); | ||
1549 | } else { | ||
1550 | ptr += len; | ||
1551 | cur += len; | ||
1552 | } | ||
1553 | } | ||
1554 | return ret; | ||
1555 | } | ||
1556 | |||
1557 | static int btrfs_relocate_chunk(struct btrfs_root *root, | ||
1558 | u64 chunk_tree, u64 chunk_objectid, | ||
1559 | u64 chunk_offset) | ||
1560 | { | ||
1561 | struct extent_map_tree *em_tree; | ||
1562 | struct btrfs_root *extent_root; | ||
1563 | struct btrfs_trans_handle *trans; | ||
1564 | struct extent_map *em; | ||
1565 | struct map_lookup *map; | ||
1566 | int ret; | ||
1567 | int i; | ||
1568 | |||
1569 | printk(KERN_INFO "btrfs relocating chunk %llu\n", | ||
1570 | (unsigned long long)chunk_offset); | ||
1571 | root = root->fs_info->chunk_root; | ||
1572 | extent_root = root->fs_info->extent_root; | ||
1573 | em_tree = &root->fs_info->mapping_tree.map_tree; | ||
1574 | |||
1575 | /* step one, relocate all the extents inside this chunk */ | ||
1576 | ret = btrfs_relocate_block_group(extent_root, chunk_offset); | ||
1577 | BUG_ON(ret); | ||
1578 | |||
1579 | trans = btrfs_start_transaction(root, 1); | ||
1580 | BUG_ON(!trans); | ||
1581 | |||
1582 | lock_chunks(root); | ||
1583 | |||
1584 | /* | ||
1585 | * step two, delete the device extents and the | ||
1586 | * chunk tree entries | ||
1587 | */ | ||
1588 | spin_lock(&em_tree->lock); | ||
1589 | em = lookup_extent_mapping(em_tree, chunk_offset, 1); | ||
1590 | spin_unlock(&em_tree->lock); | ||
1591 | |||
1592 | BUG_ON(em->start > chunk_offset || | ||
1593 | em->start + em->len < chunk_offset); | ||
1594 | map = (struct map_lookup *)em->bdev; | ||
1595 | |||
1596 | for (i = 0; i < map->num_stripes; i++) { | ||
1597 | ret = btrfs_free_dev_extent(trans, map->stripes[i].dev, | ||
1598 | map->stripes[i].physical); | ||
1599 | BUG_ON(ret); | ||
1600 | |||
1601 | if (map->stripes[i].dev) { | ||
1602 | ret = btrfs_update_device(trans, map->stripes[i].dev); | ||
1603 | BUG_ON(ret); | ||
1604 | } | ||
1605 | } | ||
1606 | ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid, | ||
1607 | chunk_offset); | ||
1608 | |||
1609 | BUG_ON(ret); | ||
1610 | |||
1611 | if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { | ||
1612 | ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset); | ||
1613 | BUG_ON(ret); | ||
1614 | } | ||
1615 | |||
1616 | ret = btrfs_remove_block_group(trans, extent_root, chunk_offset); | ||
1617 | BUG_ON(ret); | ||
1618 | |||
1619 | spin_lock(&em_tree->lock); | ||
1620 | remove_extent_mapping(em_tree, em); | ||
1621 | spin_unlock(&em_tree->lock); | ||
1622 | |||
1623 | kfree(map); | ||
1624 | em->bdev = NULL; | ||
1625 | |||
1626 | /* once for the tree */ | ||
1627 | free_extent_map(em); | ||
1628 | /* once for us */ | ||
1629 | free_extent_map(em); | ||
1630 | |||
1631 | unlock_chunks(root); | ||
1632 | btrfs_end_transaction(trans, root); | ||
1633 | return 0; | ||
1634 | } | ||
1635 | |||
1636 | static int btrfs_relocate_sys_chunks(struct btrfs_root *root) | ||
1637 | { | ||
1638 | struct btrfs_root *chunk_root = root->fs_info->chunk_root; | ||
1639 | struct btrfs_path *path; | ||
1640 | struct extent_buffer *leaf; | ||
1641 | struct btrfs_chunk *chunk; | ||
1642 | struct btrfs_key key; | ||
1643 | struct btrfs_key found_key; | ||
1644 | u64 chunk_tree = chunk_root->root_key.objectid; | ||
1645 | u64 chunk_type; | ||
1646 | int ret; | ||
1647 | |||
1648 | path = btrfs_alloc_path(); | ||
1649 | if (!path) | ||
1650 | return -ENOMEM; | ||
1651 | |||
1652 | key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; | ||
1653 | key.offset = (u64)-1; | ||
1654 | key.type = BTRFS_CHUNK_ITEM_KEY; | ||
1655 | |||
1656 | while (1) { | ||
1657 | ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); | ||
1658 | if (ret < 0) | ||
1659 | goto error; | ||
1660 | BUG_ON(ret == 0); | ||
1661 | |||
1662 | ret = btrfs_previous_item(chunk_root, path, key.objectid, | ||
1663 | key.type); | ||
1664 | if (ret < 0) | ||
1665 | goto error; | ||
1666 | if (ret > 0) | ||
1667 | break; | ||
1668 | |||
1669 | leaf = path->nodes[0]; | ||
1670 | btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); | ||
1671 | |||
1672 | chunk = btrfs_item_ptr(leaf, path->slots[0], | ||
1673 | struct btrfs_chunk); | ||
1674 | chunk_type = btrfs_chunk_type(leaf, chunk); | ||
1675 | btrfs_release_path(chunk_root, path); | ||
1676 | |||
1677 | if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) { | ||
1678 | ret = btrfs_relocate_chunk(chunk_root, chunk_tree, | ||
1679 | found_key.objectid, | ||
1680 | found_key.offset); | ||
1681 | BUG_ON(ret); | ||
1682 | } | ||
1683 | |||
1684 | if (found_key.offset == 0) | ||
1685 | break; | ||
1686 | key.offset = found_key.offset - 1; | ||
1687 | } | ||
1688 | ret = 0; | ||
1689 | error: | ||
1690 | btrfs_free_path(path); | ||
1691 | return ret; | ||
1692 | } | ||
1693 | |||
1694 | static u64 div_factor(u64 num, int factor) | ||
1695 | { | ||
1696 | if (factor == 10) | ||
1697 | return num; | ||
1698 | num *= factor; | ||
1699 | do_div(num, 10); | ||
1700 | return num; | ||
1701 | } | ||
1702 | |||
1703 | int btrfs_balance(struct btrfs_root *dev_root) | ||
1704 | { | ||
1705 | int ret; | ||
1706 | struct list_head *cur; | ||
1707 | struct list_head *devices = &dev_root->fs_info->fs_devices->devices; | ||
1708 | struct btrfs_device *device; | ||
1709 | u64 old_size; | ||
1710 | u64 size_to_free; | ||
1711 | struct btrfs_path *path; | ||
1712 | struct btrfs_key key; | ||
1713 | struct btrfs_chunk *chunk; | ||
1714 | struct btrfs_root *chunk_root = dev_root->fs_info->chunk_root; | ||
1715 | struct btrfs_trans_handle *trans; | ||
1716 | struct btrfs_key found_key; | ||
1717 | |||
1718 | if (dev_root->fs_info->sb->s_flags & MS_RDONLY) | ||
1719 | return -EROFS; | ||
1720 | |||
1721 | mutex_lock(&dev_root->fs_info->volume_mutex); | ||
1722 | dev_root = dev_root->fs_info->dev_root; | ||
1723 | |||
1724 | /* step one make some room on all the devices */ | ||
1725 | list_for_each(cur, devices) { | ||
1726 | device = list_entry(cur, struct btrfs_device, dev_list); | ||
1727 | old_size = device->total_bytes; | ||
1728 | size_to_free = div_factor(old_size, 1); | ||
1729 | size_to_free = min(size_to_free, (u64)1 * 1024 * 1024); | ||
1730 | if (!device->writeable || | ||
1731 | device->total_bytes - device->bytes_used > size_to_free) | ||
1732 | continue; | ||
1733 | |||
1734 | ret = btrfs_shrink_device(device, old_size - size_to_free); | ||
1735 | BUG_ON(ret); | ||
1736 | |||
1737 | trans = btrfs_start_transaction(dev_root, 1); | ||
1738 | BUG_ON(!trans); | ||
1739 | |||
1740 | ret = btrfs_grow_device(trans, device, old_size); | ||
1741 | BUG_ON(ret); | ||
1742 | |||
1743 | btrfs_end_transaction(trans, dev_root); | ||
1744 | } | ||
1745 | |||
1746 | /* step two, relocate all the chunks */ | ||
1747 | path = btrfs_alloc_path(); | ||
1748 | BUG_ON(!path); | ||
1749 | |||
1750 | key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; | ||
1751 | key.offset = (u64)-1; | ||
1752 | key.type = BTRFS_CHUNK_ITEM_KEY; | ||
1753 | |||
1754 | while (1) { | ||
1755 | ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); | ||
1756 | if (ret < 0) | ||
1757 | goto error; | ||
1758 | |||
1759 | /* | ||
1760 | * this shouldn't happen, it means the last relocate | ||
1761 | * failed | ||
1762 | */ | ||
1763 | if (ret == 0) | ||
1764 | break; | ||
1765 | |||
1766 | ret = btrfs_previous_item(chunk_root, path, 0, | ||
1767 | BTRFS_CHUNK_ITEM_KEY); | ||
1768 | if (ret) | ||
1769 | break; | ||
1770 | |||
1771 | btrfs_item_key_to_cpu(path->nodes[0], &found_key, | ||
1772 | path->slots[0]); | ||
1773 | if (found_key.objectid != key.objectid) | ||
1774 | break; | ||
1775 | |||
1776 | chunk = btrfs_item_ptr(path->nodes[0], | ||
1777 | path->slots[0], | ||
1778 | struct btrfs_chunk); | ||
1779 | key.offset = found_key.offset; | ||
1780 | /* chunk zero is special */ | ||
1781 | if (key.offset == 0) | ||
1782 | break; | ||
1783 | |||
1784 | btrfs_release_path(chunk_root, path); | ||
1785 | ret = btrfs_relocate_chunk(chunk_root, | ||
1786 | chunk_root->root_key.objectid, | ||
1787 | found_key.objectid, | ||
1788 | found_key.offset); | ||
1789 | BUG_ON(ret); | ||
1790 | } | ||
1791 | ret = 0; | ||
1792 | error: | ||
1793 | btrfs_free_path(path); | ||
1794 | mutex_unlock(&dev_root->fs_info->volume_mutex); | ||
1795 | return ret; | ||
1796 | } | ||
1797 | |||
1798 | /* | ||
1799 | * shrinking a device means finding all of the device extents past | ||
1800 | * the new size, and then following the back refs to the chunks. | ||
1801 | * The chunk relocation code actually frees the device extent | ||
1802 | */ | ||
1803 | int btrfs_shrink_device(struct btrfs_device *device, u64 new_size) | ||
1804 | { | ||
1805 | struct btrfs_trans_handle *trans; | ||
1806 | struct btrfs_root *root = device->dev_root; | ||
1807 | struct btrfs_dev_extent *dev_extent = NULL; | ||
1808 | struct btrfs_path *path; | ||
1809 | u64 length; | ||
1810 | u64 chunk_tree; | ||
1811 | u64 chunk_objectid; | ||
1812 | u64 chunk_offset; | ||
1813 | int ret; | ||
1814 | int slot; | ||
1815 | struct extent_buffer *l; | ||
1816 | struct btrfs_key key; | ||
1817 | struct btrfs_super_block *super_copy = &root->fs_info->super_copy; | ||
1818 | u64 old_total = btrfs_super_total_bytes(super_copy); | ||
1819 | u64 diff = device->total_bytes - new_size; | ||
1820 | |||
1821 | if (new_size >= device->total_bytes) | ||
1822 | return -EINVAL; | ||
1823 | |||
1824 | path = btrfs_alloc_path(); | ||
1825 | if (!path) | ||
1826 | return -ENOMEM; | ||
1827 | |||
1828 | trans = btrfs_start_transaction(root, 1); | ||
1829 | if (!trans) { | ||
1830 | ret = -ENOMEM; | ||
1831 | goto done; | ||
1832 | } | ||
1833 | |||
1834 | path->reada = 2; | ||
1835 | |||
1836 | lock_chunks(root); | ||
1837 | |||
1838 | device->total_bytes = new_size; | ||
1839 | if (device->writeable) | ||
1840 | device->fs_devices->total_rw_bytes -= diff; | ||
1841 | ret = btrfs_update_device(trans, device); | ||
1842 | if (ret) { | ||
1843 | unlock_chunks(root); | ||
1844 | btrfs_end_transaction(trans, root); | ||
1845 | goto done; | ||
1846 | } | ||
1847 | WARN_ON(diff > old_total); | ||
1848 | btrfs_set_super_total_bytes(super_copy, old_total - diff); | ||
1849 | unlock_chunks(root); | ||
1850 | btrfs_end_transaction(trans, root); | ||
1851 | |||
1852 | key.objectid = device->devid; | ||
1853 | key.offset = (u64)-1; | ||
1854 | key.type = BTRFS_DEV_EXTENT_KEY; | ||
1855 | |||
1856 | while (1) { | ||
1857 | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | ||
1858 | if (ret < 0) | ||
1859 | goto done; | ||
1860 | |||
1861 | ret = btrfs_previous_item(root, path, 0, key.type); | ||
1862 | if (ret < 0) | ||
1863 | goto done; | ||
1864 | if (ret) { | ||
1865 | ret = 0; | ||
1866 | goto done; | ||
1867 | } | ||
1868 | |||
1869 | l = path->nodes[0]; | ||
1870 | slot = path->slots[0]; | ||
1871 | btrfs_item_key_to_cpu(l, &key, path->slots[0]); | ||
1872 | |||
1873 | if (key.objectid != device->devid) | ||
1874 | goto done; | ||
1875 | |||
1876 | dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); | ||
1877 | length = btrfs_dev_extent_length(l, dev_extent); | ||
1878 | |||
1879 | if (key.offset + length <= new_size) | ||
1880 | goto done; | ||
1881 | |||
1882 | chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent); | ||
1883 | chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent); | ||
1884 | chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); | ||
1885 | btrfs_release_path(root, path); | ||
1886 | |||
1887 | ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid, | ||
1888 | chunk_offset); | ||
1889 | if (ret) | ||
1890 | goto done; | ||
1891 | } | ||
1892 | |||
1893 | done: | ||
1894 | btrfs_free_path(path); | ||
1895 | return ret; | ||
1896 | } | ||
1897 | |||
1898 | static int btrfs_add_system_chunk(struct btrfs_trans_handle *trans, | ||
1899 | struct btrfs_root *root, | ||
1900 | struct btrfs_key *key, | ||
1901 | struct btrfs_chunk *chunk, int item_size) | ||
1902 | { | ||
1903 | struct btrfs_super_block *super_copy = &root->fs_info->super_copy; | ||
1904 | struct btrfs_disk_key disk_key; | ||
1905 | u32 array_size; | ||
1906 | u8 *ptr; | ||
1907 | |||
1908 | array_size = btrfs_super_sys_array_size(super_copy); | ||
1909 | if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) | ||
1910 | return -EFBIG; | ||
1911 | |||
1912 | ptr = super_copy->sys_chunk_array + array_size; | ||
1913 | btrfs_cpu_key_to_disk(&disk_key, key); | ||
1914 | memcpy(ptr, &disk_key, sizeof(disk_key)); | ||
1915 | ptr += sizeof(disk_key); | ||
1916 | memcpy(ptr, chunk, item_size); | ||
1917 | item_size += sizeof(disk_key); | ||
1918 | btrfs_set_super_sys_array_size(super_copy, array_size + item_size); | ||
1919 | return 0; | ||
1920 | } | ||
1921 | |||
1922 | static noinline u64 chunk_bytes_by_type(u64 type, u64 calc_size, | ||
1923 | int num_stripes, int sub_stripes) | ||
1924 | { | ||
1925 | if (type & (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_DUP)) | ||
1926 | return calc_size; | ||
1927 | else if (type & BTRFS_BLOCK_GROUP_RAID10) | ||
1928 | return calc_size * (num_stripes / sub_stripes); | ||
1929 | else | ||
1930 | return calc_size * num_stripes; | ||
1931 | } | ||
1932 | |||
1933 | static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans, | ||
1934 | struct btrfs_root *extent_root, | ||
1935 | struct map_lookup **map_ret, | ||
1936 | u64 *num_bytes, u64 *stripe_size, | ||
1937 | u64 start, u64 type) | ||
1938 | { | ||
1939 | struct btrfs_fs_info *info = extent_root->fs_info; | ||
1940 | struct btrfs_device *device = NULL; | ||
1941 | struct btrfs_fs_devices *fs_devices = info->fs_devices; | ||
1942 | struct list_head *cur; | ||
1943 | struct map_lookup *map = NULL; | ||
1944 | struct extent_map_tree *em_tree; | ||
1945 | struct extent_map *em; | ||
1946 | struct list_head private_devs; | ||
1947 | int min_stripe_size = 1 * 1024 * 1024; | ||
1948 | u64 calc_size = 1024 * 1024 * 1024; | ||
1949 | u64 max_chunk_size = calc_size; | ||
1950 | u64 min_free; | ||
1951 | u64 avail; | ||
1952 | u64 max_avail = 0; | ||
1953 | u64 dev_offset; | ||
1954 | int num_stripes = 1; | ||
1955 | int min_stripes = 1; | ||
1956 | int sub_stripes = 0; | ||
1957 | int looped = 0; | ||
1958 | int ret; | ||
1959 | int index; | ||
1960 | int stripe_len = 64 * 1024; | ||
1961 | |||
1962 | if ((type & BTRFS_BLOCK_GROUP_RAID1) && | ||
1963 | (type & BTRFS_BLOCK_GROUP_DUP)) { | ||
1964 | WARN_ON(1); | ||
1965 | type &= ~BTRFS_BLOCK_GROUP_DUP; | ||
1966 | } | ||
1967 | if (list_empty(&fs_devices->alloc_list)) | ||
1968 | return -ENOSPC; | ||
1969 | |||
1970 | if (type & (BTRFS_BLOCK_GROUP_RAID0)) { | ||
1971 | num_stripes = fs_devices->rw_devices; | ||
1972 | min_stripes = 2; | ||
1973 | } | ||
1974 | if (type & (BTRFS_BLOCK_GROUP_DUP)) { | ||
1975 | num_stripes = 2; | ||
1976 | min_stripes = 2; | ||
1977 | } | ||
1978 | if (type & (BTRFS_BLOCK_GROUP_RAID1)) { | ||
1979 | num_stripes = min_t(u64, 2, fs_devices->rw_devices); | ||
1980 | if (num_stripes < 2) | ||
1981 | return -ENOSPC; | ||
1982 | min_stripes = 2; | ||
1983 | } | ||
1984 | if (type & (BTRFS_BLOCK_GROUP_RAID10)) { | ||
1985 | num_stripes = fs_devices->rw_devices; | ||
1986 | if (num_stripes < 4) | ||
1987 | return -ENOSPC; | ||
1988 | num_stripes &= ~(u32)1; | ||
1989 | sub_stripes = 2; | ||
1990 | min_stripes = 4; | ||
1991 | } | ||
1992 | |||
1993 | if (type & BTRFS_BLOCK_GROUP_DATA) { | ||
1994 | max_chunk_size = 10 * calc_size; | ||
1995 | min_stripe_size = 64 * 1024 * 1024; | ||
1996 | } else if (type & BTRFS_BLOCK_GROUP_METADATA) { | ||
1997 | max_chunk_size = 4 * calc_size; | ||
1998 | min_stripe_size = 32 * 1024 * 1024; | ||
1999 | } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { | ||
2000 | calc_size = 8 * 1024 * 1024; | ||
2001 | max_chunk_size = calc_size * 2; | ||
2002 | min_stripe_size = 1 * 1024 * 1024; | ||
2003 | } | ||
2004 | |||
2005 | /* we don't want a chunk larger than 10% of writeable space */ | ||
2006 | max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1), | ||
2007 | max_chunk_size); | ||
2008 | |||
2009 | again: | ||
2010 | if (!map || map->num_stripes != num_stripes) { | ||
2011 | kfree(map); | ||
2012 | map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); | ||
2013 | if (!map) | ||
2014 | return -ENOMEM; | ||
2015 | map->num_stripes = num_stripes; | ||
2016 | } | ||
2017 | |||
2018 | if (calc_size * num_stripes > max_chunk_size) { | ||
2019 | calc_size = max_chunk_size; | ||
2020 | do_div(calc_size, num_stripes); | ||
2021 | do_div(calc_size, stripe_len); | ||
2022 | calc_size *= stripe_len; | ||
2023 | } | ||
2024 | /* we don't want tiny stripes */ | ||
2025 | calc_size = max_t(u64, min_stripe_size, calc_size); | ||
2026 | |||
2027 | do_div(calc_size, stripe_len); | ||
2028 | calc_size *= stripe_len; | ||
2029 | |||
2030 | cur = fs_devices->alloc_list.next; | ||
2031 | index = 0; | ||
2032 | |||
2033 | if (type & BTRFS_BLOCK_GROUP_DUP) | ||
2034 | min_free = calc_size * 2; | ||
2035 | else | ||
2036 | min_free = calc_size; | ||
2037 | |||
2038 | /* | ||
2039 | * we add 1MB because we never use the first 1MB of the device, unless | ||
2040 | * we've looped, then we are likely allocating the maximum amount of | ||
2041 | * space left already | ||
2042 | */ | ||
2043 | if (!looped) | ||
2044 | min_free += 1024 * 1024; | ||
2045 | |||
2046 | INIT_LIST_HEAD(&private_devs); | ||
2047 | while (index < num_stripes) { | ||
2048 | device = list_entry(cur, struct btrfs_device, dev_alloc_list); | ||
2049 | BUG_ON(!device->writeable); | ||
2050 | if (device->total_bytes > device->bytes_used) | ||
2051 | avail = device->total_bytes - device->bytes_used; | ||
2052 | else | ||
2053 | avail = 0; | ||
2054 | cur = cur->next; | ||
2055 | |||
2056 | if (device->in_fs_metadata && avail >= min_free) { | ||
2057 | ret = find_free_dev_extent(trans, device, | ||
2058 | min_free, &dev_offset); | ||
2059 | if (ret == 0) { | ||
2060 | list_move_tail(&device->dev_alloc_list, | ||
2061 | &private_devs); | ||
2062 | map->stripes[index].dev = device; | ||
2063 | map->stripes[index].physical = dev_offset; | ||
2064 | index++; | ||
2065 | if (type & BTRFS_BLOCK_GROUP_DUP) { | ||
2066 | map->stripes[index].dev = device; | ||
2067 | map->stripes[index].physical = | ||
2068 | dev_offset + calc_size; | ||
2069 | index++; | ||
2070 | } | ||
2071 | } | ||
2072 | } else if (device->in_fs_metadata && avail > max_avail) | ||
2073 | max_avail = avail; | ||
2074 | if (cur == &fs_devices->alloc_list) | ||
2075 | break; | ||
2076 | } | ||
2077 | list_splice(&private_devs, &fs_devices->alloc_list); | ||
2078 | if (index < num_stripes) { | ||
2079 | if (index >= min_stripes) { | ||
2080 | num_stripes = index; | ||
2081 | if (type & (BTRFS_BLOCK_GROUP_RAID10)) { | ||
2082 | num_stripes /= sub_stripes; | ||
2083 | num_stripes *= sub_stripes; | ||
2084 | } | ||
2085 | looped = 1; | ||
2086 | goto again; | ||
2087 | } | ||
2088 | if (!looped && max_avail > 0) { | ||
2089 | looped = 1; | ||
2090 | calc_size = max_avail; | ||
2091 | goto again; | ||
2092 | } | ||
2093 | kfree(map); | ||
2094 | return -ENOSPC; | ||
2095 | } | ||
2096 | map->sector_size = extent_root->sectorsize; | ||
2097 | map->stripe_len = stripe_len; | ||
2098 | map->io_align = stripe_len; | ||
2099 | map->io_width = stripe_len; | ||
2100 | map->type = type; | ||
2101 | map->num_stripes = num_stripes; | ||
2102 | map->sub_stripes = sub_stripes; | ||
2103 | |||
2104 | *map_ret = map; | ||
2105 | *stripe_size = calc_size; | ||
2106 | *num_bytes = chunk_bytes_by_type(type, calc_size, | ||
2107 | num_stripes, sub_stripes); | ||
2108 | |||
2109 | em = alloc_extent_map(GFP_NOFS); | ||
2110 | if (!em) { | ||
2111 | kfree(map); | ||
2112 | return -ENOMEM; | ||
2113 | } | ||
2114 | em->bdev = (struct block_device *)map; | ||
2115 | em->start = start; | ||
2116 | em->len = *num_bytes; | ||
2117 | em->block_start = 0; | ||
2118 | em->block_len = em->len; | ||
2119 | |||
2120 | em_tree = &extent_root->fs_info->mapping_tree.map_tree; | ||
2121 | spin_lock(&em_tree->lock); | ||
2122 | ret = add_extent_mapping(em_tree, em); | ||
2123 | spin_unlock(&em_tree->lock); | ||
2124 | BUG_ON(ret); | ||
2125 | free_extent_map(em); | ||
2126 | |||
2127 | ret = btrfs_make_block_group(trans, extent_root, 0, type, | ||
2128 | BTRFS_FIRST_CHUNK_TREE_OBJECTID, | ||
2129 | start, *num_bytes); | ||
2130 | BUG_ON(ret); | ||
2131 | |||
2132 | index = 0; | ||
2133 | while (index < map->num_stripes) { | ||
2134 | device = map->stripes[index].dev; | ||
2135 | dev_offset = map->stripes[index].physical; | ||
2136 | |||
2137 | ret = btrfs_alloc_dev_extent(trans, device, | ||
2138 | info->chunk_root->root_key.objectid, | ||
2139 | BTRFS_FIRST_CHUNK_TREE_OBJECTID, | ||
2140 | start, dev_offset, calc_size); | ||
2141 | BUG_ON(ret); | ||
2142 | index++; | ||
2143 | } | ||
2144 | |||
2145 | return 0; | ||
2146 | } | ||
2147 | |||
2148 | static int __finish_chunk_alloc(struct btrfs_trans_handle *trans, | ||
2149 | struct btrfs_root *extent_root, | ||
2150 | struct map_lookup *map, u64 chunk_offset, | ||
2151 | u64 chunk_size, u64 stripe_size) | ||
2152 | { | ||
2153 | u64 dev_offset; | ||
2154 | struct btrfs_key key; | ||
2155 | struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root; | ||
2156 | struct btrfs_device *device; | ||
2157 | struct btrfs_chunk *chunk; | ||
2158 | struct btrfs_stripe *stripe; | ||
2159 | size_t item_size = btrfs_chunk_item_size(map->num_stripes); | ||
2160 | int index = 0; | ||
2161 | int ret; | ||
2162 | |||
2163 | chunk = kzalloc(item_size, GFP_NOFS); | ||
2164 | if (!chunk) | ||
2165 | return -ENOMEM; | ||
2166 | |||
2167 | index = 0; | ||
2168 | while (index < map->num_stripes) { | ||
2169 | device = map->stripes[index].dev; | ||
2170 | device->bytes_used += stripe_size; | ||
2171 | ret = btrfs_update_device(trans, device); | ||
2172 | BUG_ON(ret); | ||
2173 | index++; | ||
2174 | } | ||
2175 | |||
2176 | index = 0; | ||
2177 | stripe = &chunk->stripe; | ||
2178 | while (index < map->num_stripes) { | ||
2179 | device = map->stripes[index].dev; | ||
2180 | dev_offset = map->stripes[index].physical; | ||
2181 | |||
2182 | btrfs_set_stack_stripe_devid(stripe, device->devid); | ||
2183 | btrfs_set_stack_stripe_offset(stripe, dev_offset); | ||
2184 | memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE); | ||
2185 | stripe++; | ||
2186 | index++; | ||
2187 | } | ||
2188 | |||
2189 | btrfs_set_stack_chunk_length(chunk, chunk_size); | ||
2190 | btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid); | ||
2191 | btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len); | ||
2192 | btrfs_set_stack_chunk_type(chunk, map->type); | ||
2193 | btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes); | ||
2194 | btrfs_set_stack_chunk_io_align(chunk, map->stripe_len); | ||
2195 | btrfs_set_stack_chunk_io_width(chunk, map->stripe_len); | ||
2196 | btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize); | ||
2197 | btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes); | ||
2198 | |||
2199 | key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; | ||
2200 | key.type = BTRFS_CHUNK_ITEM_KEY; | ||
2201 | key.offset = chunk_offset; | ||
2202 | |||
2203 | ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size); | ||
2204 | BUG_ON(ret); | ||
2205 | |||
2206 | if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { | ||
2207 | ret = btrfs_add_system_chunk(trans, chunk_root, &key, chunk, | ||
2208 | item_size); | ||
2209 | BUG_ON(ret); | ||
2210 | } | ||
2211 | kfree(chunk); | ||
2212 | return 0; | ||
2213 | } | ||
2214 | |||
2215 | /* | ||
2216 | * Chunk allocation falls into two parts. The first part does works | ||
2217 | * that make the new allocated chunk useable, but not do any operation | ||
2218 | * that modifies the chunk tree. The second part does the works that | ||
2219 | * require modifying the chunk tree. This division is important for the | ||
2220 | * bootstrap process of adding storage to a seed btrfs. | ||
2221 | */ | ||
2222 | int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, | ||
2223 | struct btrfs_root *extent_root, u64 type) | ||
2224 | { | ||
2225 | u64 chunk_offset; | ||
2226 | u64 chunk_size; | ||
2227 | u64 stripe_size; | ||
2228 | struct map_lookup *map; | ||
2229 | struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root; | ||
2230 | int ret; | ||
2231 | |||
2232 | ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID, | ||
2233 | &chunk_offset); | ||
2234 | if (ret) | ||
2235 | return ret; | ||
2236 | |||
2237 | ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size, | ||
2238 | &stripe_size, chunk_offset, type); | ||
2239 | if (ret) | ||
2240 | return ret; | ||
2241 | |||
2242 | ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset, | ||
2243 | chunk_size, stripe_size); | ||
2244 | BUG_ON(ret); | ||
2245 | return 0; | ||
2246 | } | ||
2247 | |||
2248 | static noinline int init_first_rw_device(struct btrfs_trans_handle *trans, | ||
2249 | struct btrfs_root *root, | ||
2250 | struct btrfs_device *device) | ||
2251 | { | ||
2252 | u64 chunk_offset; | ||
2253 | u64 sys_chunk_offset; | ||
2254 | u64 chunk_size; | ||
2255 | u64 sys_chunk_size; | ||
2256 | u64 stripe_size; | ||
2257 | u64 sys_stripe_size; | ||
2258 | u64 alloc_profile; | ||
2259 | struct map_lookup *map; | ||
2260 | struct map_lookup *sys_map; | ||
2261 | struct btrfs_fs_info *fs_info = root->fs_info; | ||
2262 | struct btrfs_root *extent_root = fs_info->extent_root; | ||
2263 | int ret; | ||
2264 | |||
2265 | ret = find_next_chunk(fs_info->chunk_root, | ||
2266 | BTRFS_FIRST_CHUNK_TREE_OBJECTID, &chunk_offset); | ||
2267 | BUG_ON(ret); | ||
2268 | |||
2269 | alloc_profile = BTRFS_BLOCK_GROUP_METADATA | | ||
2270 | (fs_info->metadata_alloc_profile & | ||
2271 | fs_info->avail_metadata_alloc_bits); | ||
2272 | alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile); | ||
2273 | |||
2274 | ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size, | ||
2275 | &stripe_size, chunk_offset, alloc_profile); | ||
2276 | BUG_ON(ret); | ||
2277 | |||
2278 | sys_chunk_offset = chunk_offset + chunk_size; | ||
2279 | |||
2280 | alloc_profile = BTRFS_BLOCK_GROUP_SYSTEM | | ||
2281 | (fs_info->system_alloc_profile & | ||
2282 | fs_info->avail_system_alloc_bits); | ||
2283 | alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile); | ||
2284 | |||
2285 | ret = __btrfs_alloc_chunk(trans, extent_root, &sys_map, | ||
2286 | &sys_chunk_size, &sys_stripe_size, | ||
2287 | sys_chunk_offset, alloc_profile); | ||
2288 | BUG_ON(ret); | ||
2289 | |||
2290 | ret = btrfs_add_device(trans, fs_info->chunk_root, device); | ||
2291 | BUG_ON(ret); | ||
2292 | |||
2293 | /* | ||
2294 | * Modifying chunk tree needs allocating new blocks from both | ||
2295 | * system block group and metadata block group. So we only can | ||
2296 | * do operations require modifying the chunk tree after both | ||
2297 | * block groups were created. | ||
2298 | */ | ||
2299 | ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset, | ||
2300 | chunk_size, stripe_size); | ||
2301 | BUG_ON(ret); | ||
2302 | |||
2303 | ret = __finish_chunk_alloc(trans, extent_root, sys_map, | ||
2304 | sys_chunk_offset, sys_chunk_size, | ||
2305 | sys_stripe_size); | ||
2306 | BUG_ON(ret); | ||
2307 | return 0; | ||
2308 | } | ||
2309 | |||
2310 | int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset) | ||
2311 | { | ||
2312 | struct extent_map *em; | ||
2313 | struct map_lookup *map; | ||
2314 | struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree; | ||
2315 | int readonly = 0; | ||
2316 | int i; | ||
2317 | |||
2318 | spin_lock(&map_tree->map_tree.lock); | ||
2319 | em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1); | ||
2320 | spin_unlock(&map_tree->map_tree.lock); | ||
2321 | if (!em) | ||
2322 | return 1; | ||
2323 | |||
2324 | map = (struct map_lookup *)em->bdev; | ||
2325 | for (i = 0; i < map->num_stripes; i++) { | ||
2326 | if (!map->stripes[i].dev->writeable) { | ||
2327 | readonly = 1; | ||
2328 | break; | ||
2329 | } | ||
2330 | } | ||
2331 | free_extent_map(em); | ||
2332 | return readonly; | ||
2333 | } | ||
2334 | |||
2335 | void btrfs_mapping_init(struct btrfs_mapping_tree *tree) | ||
2336 | { | ||
2337 | extent_map_tree_init(&tree->map_tree, GFP_NOFS); | ||
2338 | } | ||
2339 | |||
2340 | void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree) | ||
2341 | { | ||
2342 | struct extent_map *em; | ||
2343 | |||
2344 | while (1) { | ||
2345 | spin_lock(&tree->map_tree.lock); | ||
2346 | em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1); | ||
2347 | if (em) | ||
2348 | remove_extent_mapping(&tree->map_tree, em); | ||
2349 | spin_unlock(&tree->map_tree.lock); | ||
2350 | if (!em) | ||
2351 | break; | ||
2352 | kfree(em->bdev); | ||
2353 | /* once for us */ | ||
2354 | free_extent_map(em); | ||
2355 | /* once for the tree */ | ||
2356 | free_extent_map(em); | ||
2357 | } | ||
2358 | } | ||
2359 | |||
2360 | int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len) | ||
2361 | { | ||
2362 | struct extent_map *em; | ||
2363 | struct map_lookup *map; | ||
2364 | struct extent_map_tree *em_tree = &map_tree->map_tree; | ||
2365 | int ret; | ||
2366 | |||
2367 | spin_lock(&em_tree->lock); | ||
2368 | em = lookup_extent_mapping(em_tree, logical, len); | ||
2369 | spin_unlock(&em_tree->lock); | ||
2370 | BUG_ON(!em); | ||
2371 | |||
2372 | BUG_ON(em->start > logical || em->start + em->len < logical); | ||
2373 | map = (struct map_lookup *)em->bdev; | ||
2374 | if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1)) | ||
2375 | ret = map->num_stripes; | ||
2376 | else if (map->type & BTRFS_BLOCK_GROUP_RAID10) | ||
2377 | ret = map->sub_stripes; | ||
2378 | else | ||
2379 | ret = 1; | ||
2380 | free_extent_map(em); | ||
2381 | return ret; | ||
2382 | } | ||
2383 | |||
2384 | static int find_live_mirror(struct map_lookup *map, int first, int num, | ||
2385 | int optimal) | ||
2386 | { | ||
2387 | int i; | ||
2388 | if (map->stripes[optimal].dev->bdev) | ||
2389 | return optimal; | ||
2390 | for (i = first; i < first + num; i++) { | ||
2391 | if (map->stripes[i].dev->bdev) | ||
2392 | return i; | ||
2393 | } | ||
2394 | /* we couldn't find one that doesn't fail. Just return something | ||
2395 | * and the io error handling code will clean up eventually | ||
2396 | */ | ||
2397 | return optimal; | ||
2398 | } | ||
2399 | |||
2400 | static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw, | ||
2401 | u64 logical, u64 *length, | ||
2402 | struct btrfs_multi_bio **multi_ret, | ||
2403 | int mirror_num, struct page *unplug_page) | ||
2404 | { | ||
2405 | struct extent_map *em; | ||
2406 | struct map_lookup *map; | ||
2407 | struct extent_map_tree *em_tree = &map_tree->map_tree; | ||
2408 | u64 offset; | ||
2409 | u64 stripe_offset; | ||
2410 | u64 stripe_nr; | ||
2411 | int stripes_allocated = 8; | ||
2412 | int stripes_required = 1; | ||
2413 | int stripe_index; | ||
2414 | int i; | ||
2415 | int num_stripes; | ||
2416 | int max_errors = 0; | ||
2417 | struct btrfs_multi_bio *multi = NULL; | ||
2418 | |||
2419 | if (multi_ret && !(rw & (1 << BIO_RW))) | ||
2420 | stripes_allocated = 1; | ||
2421 | again: | ||
2422 | if (multi_ret) { | ||
2423 | multi = kzalloc(btrfs_multi_bio_size(stripes_allocated), | ||
2424 | GFP_NOFS); | ||
2425 | if (!multi) | ||
2426 | return -ENOMEM; | ||
2427 | |||
2428 | atomic_set(&multi->error, 0); | ||
2429 | } | ||
2430 | |||
2431 | spin_lock(&em_tree->lock); | ||
2432 | em = lookup_extent_mapping(em_tree, logical, *length); | ||
2433 | spin_unlock(&em_tree->lock); | ||
2434 | |||
2435 | if (!em && unplug_page) | ||
2436 | return 0; | ||
2437 | |||
2438 | if (!em) { | ||
2439 | printk(KERN_CRIT "unable to find logical %llu len %llu\n", | ||
2440 | (unsigned long long)logical, | ||
2441 | (unsigned long long)*length); | ||
2442 | BUG(); | ||
2443 | } | ||
2444 | |||
2445 | BUG_ON(em->start > logical || em->start + em->len < logical); | ||
2446 | map = (struct map_lookup *)em->bdev; | ||
2447 | offset = logical - em->start; | ||
2448 | |||
2449 | if (mirror_num > map->num_stripes) | ||
2450 | mirror_num = 0; | ||
2451 | |||
2452 | /* if our multi bio struct is too small, back off and try again */ | ||
2453 | if (rw & (1 << BIO_RW)) { | ||
2454 | if (map->type & (BTRFS_BLOCK_GROUP_RAID1 | | ||
2455 | BTRFS_BLOCK_GROUP_DUP)) { | ||
2456 | stripes_required = map->num_stripes; | ||
2457 | max_errors = 1; | ||
2458 | } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { | ||
2459 | stripes_required = map->sub_stripes; | ||
2460 | max_errors = 1; | ||
2461 | } | ||
2462 | } | ||
2463 | if (multi_ret && rw == WRITE && | ||
2464 | stripes_allocated < stripes_required) { | ||
2465 | stripes_allocated = map->num_stripes; | ||
2466 | free_extent_map(em); | ||
2467 | kfree(multi); | ||
2468 | goto again; | ||
2469 | } | ||
2470 | stripe_nr = offset; | ||
2471 | /* | ||
2472 | * stripe_nr counts the total number of stripes we have to stride | ||
2473 | * to get to this block | ||
2474 | */ | ||
2475 | do_div(stripe_nr, map->stripe_len); | ||
2476 | |||
2477 | stripe_offset = stripe_nr * map->stripe_len; | ||
2478 | BUG_ON(offset < stripe_offset); | ||
2479 | |||
2480 | /* stripe_offset is the offset of this block in its stripe*/ | ||
2481 | stripe_offset = offset - stripe_offset; | ||
2482 | |||
2483 | if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 | | ||
2484 | BTRFS_BLOCK_GROUP_RAID10 | | ||
2485 | BTRFS_BLOCK_GROUP_DUP)) { | ||
2486 | /* we limit the length of each bio to what fits in a stripe */ | ||
2487 | *length = min_t(u64, em->len - offset, | ||
2488 | map->stripe_len - stripe_offset); | ||
2489 | } else { | ||
2490 | *length = em->len - offset; | ||
2491 | } | ||
2492 | |||
2493 | if (!multi_ret && !unplug_page) | ||
2494 | goto out; | ||
2495 | |||
2496 | num_stripes = 1; | ||
2497 | stripe_index = 0; | ||
2498 | if (map->type & BTRFS_BLOCK_GROUP_RAID1) { | ||
2499 | if (unplug_page || (rw & (1 << BIO_RW))) | ||
2500 | num_stripes = map->num_stripes; | ||
2501 | else if (mirror_num) | ||
2502 | stripe_index = mirror_num - 1; | ||
2503 | else { | ||
2504 | stripe_index = find_live_mirror(map, 0, | ||
2505 | map->num_stripes, | ||
2506 | current->pid % map->num_stripes); | ||
2507 | } | ||
2508 | |||
2509 | } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { | ||
2510 | if (rw & (1 << BIO_RW)) | ||
2511 | num_stripes = map->num_stripes; | ||
2512 | else if (mirror_num) | ||
2513 | stripe_index = mirror_num - 1; | ||
2514 | |||
2515 | } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { | ||
2516 | int factor = map->num_stripes / map->sub_stripes; | ||
2517 | |||
2518 | stripe_index = do_div(stripe_nr, factor); | ||
2519 | stripe_index *= map->sub_stripes; | ||
2520 | |||
2521 | if (unplug_page || (rw & (1 << BIO_RW))) | ||
2522 | num_stripes = map->sub_stripes; | ||
2523 | else if (mirror_num) | ||
2524 | stripe_index += mirror_num - 1; | ||
2525 | else { | ||
2526 | stripe_index = find_live_mirror(map, stripe_index, | ||
2527 | map->sub_stripes, stripe_index + | ||
2528 | current->pid % map->sub_stripes); | ||
2529 | } | ||
2530 | } else { | ||
2531 | /* | ||
2532 | * after this do_div call, stripe_nr is the number of stripes | ||
2533 | * on this device we have to walk to find the data, and | ||
2534 | * stripe_index is the number of our device in the stripe array | ||
2535 | */ | ||
2536 | stripe_index = do_div(stripe_nr, map->num_stripes); | ||
2537 | } | ||
2538 | BUG_ON(stripe_index >= map->num_stripes); | ||
2539 | |||
2540 | for (i = 0; i < num_stripes; i++) { | ||
2541 | if (unplug_page) { | ||
2542 | struct btrfs_device *device; | ||
2543 | struct backing_dev_info *bdi; | ||
2544 | |||
2545 | device = map->stripes[stripe_index].dev; | ||
2546 | if (device->bdev) { | ||
2547 | bdi = blk_get_backing_dev_info(device->bdev); | ||
2548 | if (bdi->unplug_io_fn) | ||
2549 | bdi->unplug_io_fn(bdi, unplug_page); | ||
2550 | } | ||
2551 | } else { | ||
2552 | multi->stripes[i].physical = | ||
2553 | map->stripes[stripe_index].physical + | ||
2554 | stripe_offset + stripe_nr * map->stripe_len; | ||
2555 | multi->stripes[i].dev = map->stripes[stripe_index].dev; | ||
2556 | } | ||
2557 | stripe_index++; | ||
2558 | } | ||
2559 | if (multi_ret) { | ||
2560 | *multi_ret = multi; | ||
2561 | multi->num_stripes = num_stripes; | ||
2562 | multi->max_errors = max_errors; | ||
2563 | } | ||
2564 | out: | ||
2565 | free_extent_map(em); | ||
2566 | return 0; | ||
2567 | } | ||
2568 | |||
2569 | int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw, | ||
2570 | u64 logical, u64 *length, | ||
2571 | struct btrfs_multi_bio **multi_ret, int mirror_num) | ||
2572 | { | ||
2573 | return __btrfs_map_block(map_tree, rw, logical, length, multi_ret, | ||
2574 | mirror_num, NULL); | ||
2575 | } | ||
2576 | |||
2577 | int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree, | ||
2578 | u64 chunk_start, u64 physical, u64 devid, | ||
2579 | u64 **logical, int *naddrs, int *stripe_len) | ||
2580 | { | ||
2581 | struct extent_map_tree *em_tree = &map_tree->map_tree; | ||
2582 | struct extent_map *em; | ||
2583 | struct map_lookup *map; | ||
2584 | u64 *buf; | ||
2585 | u64 bytenr; | ||
2586 | u64 length; | ||
2587 | u64 stripe_nr; | ||
2588 | int i, j, nr = 0; | ||
2589 | |||
2590 | spin_lock(&em_tree->lock); | ||
2591 | em = lookup_extent_mapping(em_tree, chunk_start, 1); | ||
2592 | spin_unlock(&em_tree->lock); | ||
2593 | |||
2594 | BUG_ON(!em || em->start != chunk_start); | ||
2595 | map = (struct map_lookup *)em->bdev; | ||
2596 | |||
2597 | length = em->len; | ||
2598 | if (map->type & BTRFS_BLOCK_GROUP_RAID10) | ||
2599 | do_div(length, map->num_stripes / map->sub_stripes); | ||
2600 | else if (map->type & BTRFS_BLOCK_GROUP_RAID0) | ||
2601 | do_div(length, map->num_stripes); | ||
2602 | |||
2603 | buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS); | ||
2604 | BUG_ON(!buf); | ||
2605 | |||
2606 | for (i = 0; i < map->num_stripes; i++) { | ||
2607 | if (devid && map->stripes[i].dev->devid != devid) | ||
2608 | continue; | ||
2609 | if (map->stripes[i].physical > physical || | ||
2610 | map->stripes[i].physical + length <= physical) | ||
2611 | continue; | ||
2612 | |||
2613 | stripe_nr = physical - map->stripes[i].physical; | ||
2614 | do_div(stripe_nr, map->stripe_len); | ||
2615 | |||
2616 | if (map->type & BTRFS_BLOCK_GROUP_RAID10) { | ||
2617 | stripe_nr = stripe_nr * map->num_stripes + i; | ||
2618 | do_div(stripe_nr, map->sub_stripes); | ||
2619 | } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) { | ||
2620 | stripe_nr = stripe_nr * map->num_stripes + i; | ||
2621 | } | ||
2622 | bytenr = chunk_start + stripe_nr * map->stripe_len; | ||
2623 | WARN_ON(nr >= map->num_stripes); | ||
2624 | for (j = 0; j < nr; j++) { | ||
2625 | if (buf[j] == bytenr) | ||
2626 | break; | ||
2627 | } | ||
2628 | if (j == nr) { | ||
2629 | WARN_ON(nr >= map->num_stripes); | ||
2630 | buf[nr++] = bytenr; | ||
2631 | } | ||
2632 | } | ||
2633 | |||
2634 | for (i = 0; i > nr; i++) { | ||
2635 | struct btrfs_multi_bio *multi; | ||
2636 | struct btrfs_bio_stripe *stripe; | ||
2637 | int ret; | ||
2638 | |||
2639 | length = 1; | ||
2640 | ret = btrfs_map_block(map_tree, WRITE, buf[i], | ||
2641 | &length, &multi, 0); | ||
2642 | BUG_ON(ret); | ||
2643 | |||
2644 | stripe = multi->stripes; | ||
2645 | for (j = 0; j < multi->num_stripes; j++) { | ||
2646 | if (stripe->physical >= physical && | ||
2647 | physical < stripe->physical + length) | ||
2648 | break; | ||
2649 | } | ||
2650 | BUG_ON(j >= multi->num_stripes); | ||
2651 | kfree(multi); | ||
2652 | } | ||
2653 | |||
2654 | *logical = buf; | ||
2655 | *naddrs = nr; | ||
2656 | *stripe_len = map->stripe_len; | ||
2657 | |||
2658 | free_extent_map(em); | ||
2659 | return 0; | ||
2660 | } | ||
2661 | |||
2662 | int btrfs_unplug_page(struct btrfs_mapping_tree *map_tree, | ||
2663 | u64 logical, struct page *page) | ||
2664 | { | ||
2665 | u64 length = PAGE_CACHE_SIZE; | ||
2666 | return __btrfs_map_block(map_tree, READ, logical, &length, | ||
2667 | NULL, 0, page); | ||
2668 | } | ||
2669 | |||
2670 | static void end_bio_multi_stripe(struct bio *bio, int err) | ||
2671 | { | ||
2672 | struct btrfs_multi_bio *multi = bio->bi_private; | ||
2673 | int is_orig_bio = 0; | ||
2674 | |||
2675 | if (err) | ||
2676 | atomic_inc(&multi->error); | ||
2677 | |||
2678 | if (bio == multi->orig_bio) | ||
2679 | is_orig_bio = 1; | ||
2680 | |||
2681 | if (atomic_dec_and_test(&multi->stripes_pending)) { | ||
2682 | if (!is_orig_bio) { | ||
2683 | bio_put(bio); | ||
2684 | bio = multi->orig_bio; | ||
2685 | } | ||
2686 | bio->bi_private = multi->private; | ||
2687 | bio->bi_end_io = multi->end_io; | ||
2688 | /* only send an error to the higher layers if it is | ||
2689 | * beyond the tolerance of the multi-bio | ||
2690 | */ | ||
2691 | if (atomic_read(&multi->error) > multi->max_errors) { | ||
2692 | err = -EIO; | ||
2693 | } else if (err) { | ||
2694 | /* | ||
2695 | * this bio is actually up to date, we didn't | ||
2696 | * go over the max number of errors | ||
2697 | */ | ||
2698 | set_bit(BIO_UPTODATE, &bio->bi_flags); | ||
2699 | err = 0; | ||
2700 | } | ||
2701 | kfree(multi); | ||
2702 | |||
2703 | bio_endio(bio, err); | ||
2704 | } else if (!is_orig_bio) { | ||
2705 | bio_put(bio); | ||
2706 | } | ||
2707 | } | ||
2708 | |||
2709 | struct async_sched { | ||
2710 | struct bio *bio; | ||
2711 | int rw; | ||
2712 | struct btrfs_fs_info *info; | ||
2713 | struct btrfs_work work; | ||
2714 | }; | ||
2715 | |||
2716 | /* | ||
2717 | * see run_scheduled_bios for a description of why bios are collected for | ||
2718 | * async submit. | ||
2719 | * | ||
2720 | * This will add one bio to the pending list for a device and make sure | ||
2721 | * the work struct is scheduled. | ||
2722 | */ | ||
2723 | static noinline int schedule_bio(struct btrfs_root *root, | ||
2724 | struct btrfs_device *device, | ||
2725 | int rw, struct bio *bio) | ||
2726 | { | ||
2727 | int should_queue = 1; | ||
2728 | |||
2729 | /* don't bother with additional async steps for reads, right now */ | ||
2730 | if (!(rw & (1 << BIO_RW))) { | ||
2731 | bio_get(bio); | ||
2732 | submit_bio(rw, bio); | ||
2733 | bio_put(bio); | ||
2734 | return 0; | ||
2735 | } | ||
2736 | |||
2737 | /* | ||
2738 | * nr_async_bios allows us to reliably return congestion to the | ||
2739 | * higher layers. Otherwise, the async bio makes it appear we have | ||
2740 | * made progress against dirty pages when we've really just put it | ||
2741 | * on a queue for later | ||
2742 | */ | ||
2743 | atomic_inc(&root->fs_info->nr_async_bios); | ||
2744 | WARN_ON(bio->bi_next); | ||
2745 | bio->bi_next = NULL; | ||
2746 | bio->bi_rw |= rw; | ||
2747 | |||
2748 | spin_lock(&device->io_lock); | ||
2749 | |||
2750 | if (device->pending_bio_tail) | ||
2751 | device->pending_bio_tail->bi_next = bio; | ||
2752 | |||
2753 | device->pending_bio_tail = bio; | ||
2754 | if (!device->pending_bios) | ||
2755 | device->pending_bios = bio; | ||
2756 | if (device->running_pending) | ||
2757 | should_queue = 0; | ||
2758 | |||
2759 | spin_unlock(&device->io_lock); | ||
2760 | |||
2761 | if (should_queue) | ||
2762 | btrfs_queue_worker(&root->fs_info->submit_workers, | ||
2763 | &device->work); | ||
2764 | return 0; | ||
2765 | } | ||
2766 | |||
2767 | int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio, | ||
2768 | int mirror_num, int async_submit) | ||
2769 | { | ||
2770 | struct btrfs_mapping_tree *map_tree; | ||
2771 | struct btrfs_device *dev; | ||
2772 | struct bio *first_bio = bio; | ||
2773 | u64 logical = (u64)bio->bi_sector << 9; | ||
2774 | u64 length = 0; | ||
2775 | u64 map_length; | ||
2776 | struct btrfs_multi_bio *multi = NULL; | ||
2777 | int ret; | ||
2778 | int dev_nr = 0; | ||
2779 | int total_devs = 1; | ||
2780 | |||
2781 | length = bio->bi_size; | ||
2782 | map_tree = &root->fs_info->mapping_tree; | ||
2783 | map_length = length; | ||
2784 | |||
2785 | ret = btrfs_map_block(map_tree, rw, logical, &map_length, &multi, | ||
2786 | mirror_num); | ||
2787 | BUG_ON(ret); | ||
2788 | |||
2789 | total_devs = multi->num_stripes; | ||
2790 | if (map_length < length) { | ||
2791 | printk(KERN_CRIT "mapping failed logical %llu bio len %llu " | ||
2792 | "len %llu\n", (unsigned long long)logical, | ||
2793 | (unsigned long long)length, | ||
2794 | (unsigned long long)map_length); | ||
2795 | BUG(); | ||
2796 | } | ||
2797 | multi->end_io = first_bio->bi_end_io; | ||
2798 | multi->private = first_bio->bi_private; | ||
2799 | multi->orig_bio = first_bio; | ||
2800 | atomic_set(&multi->stripes_pending, multi->num_stripes); | ||
2801 | |||
2802 | while (dev_nr < total_devs) { | ||
2803 | if (total_devs > 1) { | ||
2804 | if (dev_nr < total_devs - 1) { | ||
2805 | bio = bio_clone(first_bio, GFP_NOFS); | ||
2806 | BUG_ON(!bio); | ||
2807 | } else { | ||
2808 | bio = first_bio; | ||
2809 | } | ||
2810 | bio->bi_private = multi; | ||
2811 | bio->bi_end_io = end_bio_multi_stripe; | ||
2812 | } | ||
2813 | bio->bi_sector = multi->stripes[dev_nr].physical >> 9; | ||
2814 | dev = multi->stripes[dev_nr].dev; | ||
2815 | BUG_ON(rw == WRITE && !dev->writeable); | ||
2816 | if (dev && dev->bdev) { | ||
2817 | bio->bi_bdev = dev->bdev; | ||
2818 | if (async_submit) | ||
2819 | schedule_bio(root, dev, rw, bio); | ||
2820 | else | ||
2821 | submit_bio(rw, bio); | ||
2822 | } else { | ||
2823 | bio->bi_bdev = root->fs_info->fs_devices->latest_bdev; | ||
2824 | bio->bi_sector = logical >> 9; | ||
2825 | bio_endio(bio, -EIO); | ||
2826 | } | ||
2827 | dev_nr++; | ||
2828 | } | ||
2829 | if (total_devs == 1) | ||
2830 | kfree(multi); | ||
2831 | return 0; | ||
2832 | } | ||
2833 | |||
2834 | struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid, | ||
2835 | u8 *uuid, u8 *fsid) | ||
2836 | { | ||
2837 | struct btrfs_device *device; | ||
2838 | struct btrfs_fs_devices *cur_devices; | ||
2839 | |||
2840 | cur_devices = root->fs_info->fs_devices; | ||
2841 | while (cur_devices) { | ||
2842 | if (!fsid || | ||
2843 | !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) { | ||
2844 | device = __find_device(&cur_devices->devices, | ||
2845 | devid, uuid); | ||
2846 | if (device) | ||
2847 | return device; | ||
2848 | } | ||
2849 | cur_devices = cur_devices->seed; | ||
2850 | } | ||
2851 | return NULL; | ||
2852 | } | ||
2853 | |||
2854 | static struct btrfs_device *add_missing_dev(struct btrfs_root *root, | ||
2855 | u64 devid, u8 *dev_uuid) | ||
2856 | { | ||
2857 | struct btrfs_device *device; | ||
2858 | struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; | ||
2859 | |||
2860 | device = kzalloc(sizeof(*device), GFP_NOFS); | ||
2861 | if (!device) | ||
2862 | return NULL; | ||
2863 | list_add(&device->dev_list, | ||
2864 | &fs_devices->devices); | ||
2865 | device->barriers = 1; | ||
2866 | device->dev_root = root->fs_info->dev_root; | ||
2867 | device->devid = devid; | ||
2868 | device->work.func = pending_bios_fn; | ||
2869 | device->fs_devices = fs_devices; | ||
2870 | fs_devices->num_devices++; | ||
2871 | spin_lock_init(&device->io_lock); | ||
2872 | INIT_LIST_HEAD(&device->dev_alloc_list); | ||
2873 | memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE); | ||
2874 | return device; | ||
2875 | } | ||
2876 | |||
2877 | static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key, | ||
2878 | struct extent_buffer *leaf, | ||
2879 | struct btrfs_chunk *chunk) | ||
2880 | { | ||
2881 | struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree; | ||
2882 | struct map_lookup *map; | ||
2883 | struct extent_map *em; | ||
2884 | u64 logical; | ||
2885 | u64 length; | ||
2886 | u64 devid; | ||
2887 | u8 uuid[BTRFS_UUID_SIZE]; | ||
2888 | int num_stripes; | ||
2889 | int ret; | ||
2890 | int i; | ||
2891 | |||
2892 | logical = key->offset; | ||
2893 | length = btrfs_chunk_length(leaf, chunk); | ||
2894 | |||
2895 | spin_lock(&map_tree->map_tree.lock); | ||
2896 | em = lookup_extent_mapping(&map_tree->map_tree, logical, 1); | ||
2897 | spin_unlock(&map_tree->map_tree.lock); | ||
2898 | |||
2899 | /* already mapped? */ | ||
2900 | if (em && em->start <= logical && em->start + em->len > logical) { | ||
2901 | free_extent_map(em); | ||
2902 | return 0; | ||
2903 | } else if (em) { | ||
2904 | free_extent_map(em); | ||
2905 | } | ||
2906 | |||
2907 | map = kzalloc(sizeof(*map), GFP_NOFS); | ||
2908 | if (!map) | ||
2909 | return -ENOMEM; | ||
2910 | |||
2911 | em = alloc_extent_map(GFP_NOFS); | ||
2912 | if (!em) | ||
2913 | return -ENOMEM; | ||
2914 | num_stripes = btrfs_chunk_num_stripes(leaf, chunk); | ||
2915 | map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); | ||
2916 | if (!map) { | ||
2917 | free_extent_map(em); | ||
2918 | return -ENOMEM; | ||
2919 | } | ||
2920 | |||
2921 | em->bdev = (struct block_device *)map; | ||
2922 | em->start = logical; | ||
2923 | em->len = length; | ||
2924 | em->block_start = 0; | ||
2925 | em->block_len = em->len; | ||
2926 | |||
2927 | map->num_stripes = num_stripes; | ||
2928 | map->io_width = btrfs_chunk_io_width(leaf, chunk); | ||
2929 | map->io_align = btrfs_chunk_io_align(leaf, chunk); | ||
2930 | map->sector_size = btrfs_chunk_sector_size(leaf, chunk); | ||
2931 | map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk); | ||
2932 | map->type = btrfs_chunk_type(leaf, chunk); | ||
2933 | map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk); | ||
2934 | for (i = 0; i < num_stripes; i++) { | ||
2935 | map->stripes[i].physical = | ||
2936 | btrfs_stripe_offset_nr(leaf, chunk, i); | ||
2937 | devid = btrfs_stripe_devid_nr(leaf, chunk, i); | ||
2938 | read_extent_buffer(leaf, uuid, (unsigned long) | ||
2939 | btrfs_stripe_dev_uuid_nr(chunk, i), | ||
2940 | BTRFS_UUID_SIZE); | ||
2941 | map->stripes[i].dev = btrfs_find_device(root, devid, uuid, | ||
2942 | NULL); | ||
2943 | if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) { | ||
2944 | kfree(map); | ||
2945 | free_extent_map(em); | ||
2946 | return -EIO; | ||
2947 | } | ||
2948 | if (!map->stripes[i].dev) { | ||
2949 | map->stripes[i].dev = | ||
2950 | add_missing_dev(root, devid, uuid); | ||
2951 | if (!map->stripes[i].dev) { | ||
2952 | kfree(map); | ||
2953 | free_extent_map(em); | ||
2954 | return -EIO; | ||
2955 | } | ||
2956 | } | ||
2957 | map->stripes[i].dev->in_fs_metadata = 1; | ||
2958 | } | ||
2959 | |||
2960 | spin_lock(&map_tree->map_tree.lock); | ||
2961 | ret = add_extent_mapping(&map_tree->map_tree, em); | ||
2962 | spin_unlock(&map_tree->map_tree.lock); | ||
2963 | BUG_ON(ret); | ||
2964 | free_extent_map(em); | ||
2965 | |||
2966 | return 0; | ||
2967 | } | ||
2968 | |||
2969 | static int fill_device_from_item(struct extent_buffer *leaf, | ||
2970 | struct btrfs_dev_item *dev_item, | ||
2971 | struct btrfs_device *device) | ||
2972 | { | ||
2973 | unsigned long ptr; | ||
2974 | |||
2975 | device->devid = btrfs_device_id(leaf, dev_item); | ||
2976 | device->total_bytes = btrfs_device_total_bytes(leaf, dev_item); | ||
2977 | device->bytes_used = btrfs_device_bytes_used(leaf, dev_item); | ||
2978 | device->type = btrfs_device_type(leaf, dev_item); | ||
2979 | device->io_align = btrfs_device_io_align(leaf, dev_item); | ||
2980 | device->io_width = btrfs_device_io_width(leaf, dev_item); | ||
2981 | device->sector_size = btrfs_device_sector_size(leaf, dev_item); | ||
2982 | |||
2983 | ptr = (unsigned long)btrfs_device_uuid(dev_item); | ||
2984 | read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); | ||
2985 | |||
2986 | return 0; | ||
2987 | } | ||
2988 | |||
2989 | static int open_seed_devices(struct btrfs_root *root, u8 *fsid) | ||
2990 | { | ||
2991 | struct btrfs_fs_devices *fs_devices; | ||
2992 | int ret; | ||
2993 | |||
2994 | mutex_lock(&uuid_mutex); | ||
2995 | |||
2996 | fs_devices = root->fs_info->fs_devices->seed; | ||
2997 | while (fs_devices) { | ||
2998 | if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) { | ||
2999 | ret = 0; | ||
3000 | goto out; | ||
3001 | } | ||
3002 | fs_devices = fs_devices->seed; | ||
3003 | } | ||
3004 | |||
3005 | fs_devices = find_fsid(fsid); | ||
3006 | if (!fs_devices) { | ||
3007 | ret = -ENOENT; | ||
3008 | goto out; | ||
3009 | } | ||
3010 | |||
3011 | fs_devices = clone_fs_devices(fs_devices); | ||
3012 | if (IS_ERR(fs_devices)) { | ||
3013 | ret = PTR_ERR(fs_devices); | ||
3014 | goto out; | ||
3015 | } | ||
3016 | |||
3017 | ret = __btrfs_open_devices(fs_devices, FMODE_READ, | ||
3018 | root->fs_info->bdev_holder); | ||
3019 | if (ret) | ||
3020 | goto out; | ||
3021 | |||
3022 | if (!fs_devices->seeding) { | ||
3023 | __btrfs_close_devices(fs_devices); | ||
3024 | free_fs_devices(fs_devices); | ||
3025 | ret = -EINVAL; | ||
3026 | goto out; | ||
3027 | } | ||
3028 | |||
3029 | fs_devices->seed = root->fs_info->fs_devices->seed; | ||
3030 | root->fs_info->fs_devices->seed = fs_devices; | ||
3031 | out: | ||
3032 | mutex_unlock(&uuid_mutex); | ||
3033 | return ret; | ||
3034 | } | ||
3035 | |||
3036 | static int read_one_dev(struct btrfs_root *root, | ||
3037 | struct extent_buffer *leaf, | ||
3038 | struct btrfs_dev_item *dev_item) | ||
3039 | { | ||
3040 | struct btrfs_device *device; | ||
3041 | u64 devid; | ||
3042 | int ret; | ||
3043 | u8 fs_uuid[BTRFS_UUID_SIZE]; | ||
3044 | u8 dev_uuid[BTRFS_UUID_SIZE]; | ||
3045 | |||
3046 | devid = btrfs_device_id(leaf, dev_item); | ||
3047 | read_extent_buffer(leaf, dev_uuid, | ||
3048 | (unsigned long)btrfs_device_uuid(dev_item), | ||
3049 | BTRFS_UUID_SIZE); | ||
3050 | read_extent_buffer(leaf, fs_uuid, | ||
3051 | (unsigned long)btrfs_device_fsid(dev_item), | ||
3052 | BTRFS_UUID_SIZE); | ||
3053 | |||
3054 | if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) { | ||
3055 | ret = open_seed_devices(root, fs_uuid); | ||
3056 | if (ret && !btrfs_test_opt(root, DEGRADED)) | ||
3057 | return ret; | ||
3058 | } | ||
3059 | |||
3060 | device = btrfs_find_device(root, devid, dev_uuid, fs_uuid); | ||
3061 | if (!device || !device->bdev) { | ||
3062 | if (!btrfs_test_opt(root, DEGRADED)) | ||
3063 | return -EIO; | ||
3064 | |||
3065 | if (!device) { | ||
3066 | printk(KERN_WARNING "warning devid %llu missing\n", | ||
3067 | (unsigned long long)devid); | ||
3068 | device = add_missing_dev(root, devid, dev_uuid); | ||
3069 | if (!device) | ||
3070 | return -ENOMEM; | ||
3071 | } | ||
3072 | } | ||
3073 | |||
3074 | if (device->fs_devices != root->fs_info->fs_devices) { | ||
3075 | BUG_ON(device->writeable); | ||
3076 | if (device->generation != | ||
3077 | btrfs_device_generation(leaf, dev_item)) | ||
3078 | return -EINVAL; | ||
3079 | } | ||
3080 | |||
3081 | fill_device_from_item(leaf, dev_item, device); | ||
3082 | device->dev_root = root->fs_info->dev_root; | ||
3083 | device->in_fs_metadata = 1; | ||
3084 | if (device->writeable) | ||
3085 | device->fs_devices->total_rw_bytes += device->total_bytes; | ||
3086 | ret = 0; | ||
3087 | return ret; | ||
3088 | } | ||
3089 | |||
3090 | int btrfs_read_super_device(struct btrfs_root *root, struct extent_buffer *buf) | ||
3091 | { | ||
3092 | struct btrfs_dev_item *dev_item; | ||
3093 | |||
3094 | dev_item = (struct btrfs_dev_item *)offsetof(struct btrfs_super_block, | ||
3095 | dev_item); | ||
3096 | return read_one_dev(root, buf, dev_item); | ||
3097 | } | ||
3098 | |||
3099 | int btrfs_read_sys_array(struct btrfs_root *root) | ||
3100 | { | ||
3101 | struct btrfs_super_block *super_copy = &root->fs_info->super_copy; | ||
3102 | struct extent_buffer *sb; | ||
3103 | struct btrfs_disk_key *disk_key; | ||
3104 | struct btrfs_chunk *chunk; | ||
3105 | u8 *ptr; | ||
3106 | unsigned long sb_ptr; | ||
3107 | int ret = 0; | ||
3108 | u32 num_stripes; | ||
3109 | u32 array_size; | ||
3110 | u32 len = 0; | ||
3111 | u32 cur; | ||
3112 | struct btrfs_key key; | ||
3113 | |||
3114 | sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET, | ||
3115 | BTRFS_SUPER_INFO_SIZE); | ||
3116 | if (!sb) | ||
3117 | return -ENOMEM; | ||
3118 | btrfs_set_buffer_uptodate(sb); | ||
3119 | write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE); | ||
3120 | array_size = btrfs_super_sys_array_size(super_copy); | ||
3121 | |||
3122 | ptr = super_copy->sys_chunk_array; | ||
3123 | sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array); | ||
3124 | cur = 0; | ||
3125 | |||
3126 | while (cur < array_size) { | ||
3127 | disk_key = (struct btrfs_disk_key *)ptr; | ||
3128 | btrfs_disk_key_to_cpu(&key, disk_key); | ||
3129 | |||
3130 | len = sizeof(*disk_key); ptr += len; | ||
3131 | sb_ptr += len; | ||
3132 | cur += len; | ||
3133 | |||
3134 | if (key.type == BTRFS_CHUNK_ITEM_KEY) { | ||
3135 | chunk = (struct btrfs_chunk *)sb_ptr; | ||
3136 | ret = read_one_chunk(root, &key, sb, chunk); | ||
3137 | if (ret) | ||
3138 | break; | ||
3139 | num_stripes = btrfs_chunk_num_stripes(sb, chunk); | ||
3140 | len = btrfs_chunk_item_size(num_stripes); | ||
3141 | } else { | ||
3142 | ret = -EIO; | ||
3143 | break; | ||
3144 | } | ||
3145 | ptr += len; | ||
3146 | sb_ptr += len; | ||
3147 | cur += len; | ||
3148 | } | ||
3149 | free_extent_buffer(sb); | ||
3150 | return ret; | ||
3151 | } | ||
3152 | |||
3153 | int btrfs_read_chunk_tree(struct btrfs_root *root) | ||
3154 | { | ||
3155 | struct btrfs_path *path; | ||
3156 | struct extent_buffer *leaf; | ||
3157 | struct btrfs_key key; | ||
3158 | struct btrfs_key found_key; | ||
3159 | int ret; | ||
3160 | int slot; | ||
3161 | |||
3162 | root = root->fs_info->chunk_root; | ||
3163 | |||
3164 | path = btrfs_alloc_path(); | ||
3165 | if (!path) | ||
3166 | return -ENOMEM; | ||
3167 | |||
3168 | /* first we search for all of the device items, and then we | ||
3169 | * read in all of the chunk items. This way we can create chunk | ||
3170 | * mappings that reference all of the devices that are afound | ||
3171 | */ | ||
3172 | key.objectid = BTRFS_DEV_ITEMS_OBJECTID; | ||
3173 | key.offset = 0; | ||
3174 | key.type = 0; | ||
3175 | again: | ||
3176 | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | ||
3177 | while (1) { | ||
3178 | leaf = path->nodes[0]; | ||
3179 | slot = path->slots[0]; | ||
3180 | if (slot >= btrfs_header_nritems(leaf)) { | ||
3181 | ret = btrfs_next_leaf(root, path); | ||
3182 | if (ret == 0) | ||
3183 | continue; | ||
3184 | if (ret < 0) | ||
3185 | goto error; | ||
3186 | break; | ||
3187 | } | ||
3188 | btrfs_item_key_to_cpu(leaf, &found_key, slot); | ||
3189 | if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) { | ||
3190 | if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID) | ||
3191 | break; | ||
3192 | if (found_key.type == BTRFS_DEV_ITEM_KEY) { | ||
3193 | struct btrfs_dev_item *dev_item; | ||
3194 | dev_item = btrfs_item_ptr(leaf, slot, | ||
3195 | struct btrfs_dev_item); | ||
3196 | ret = read_one_dev(root, leaf, dev_item); | ||
3197 | if (ret) | ||
3198 | goto error; | ||
3199 | } | ||
3200 | } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) { | ||
3201 | struct btrfs_chunk *chunk; | ||
3202 | chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); | ||
3203 | ret = read_one_chunk(root, &found_key, leaf, chunk); | ||
3204 | if (ret) | ||
3205 | goto error; | ||
3206 | } | ||
3207 | path->slots[0]++; | ||
3208 | } | ||
3209 | if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) { | ||
3210 | key.objectid = 0; | ||
3211 | btrfs_release_path(root, path); | ||
3212 | goto again; | ||
3213 | } | ||
3214 | ret = 0; | ||
3215 | error: | ||
3216 | btrfs_free_path(path); | ||
3217 | return ret; | ||
3218 | } | ||
diff --git a/fs/btrfs/volumes.h b/fs/btrfs/volumes.h new file mode 100644 index 000000000000..86c44e9ae110 --- /dev/null +++ b/fs/btrfs/volumes.h | |||
@@ -0,0 +1,162 @@ | |||
1 | /* | ||
2 | * Copyright (C) 2007 Oracle. All rights reserved. | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or | ||
5 | * modify it under the terms of the GNU General Public | ||
6 | * License v2 as published by the Free Software Foundation. | ||
7 | * | ||
8 | * This program is distributed in the hope that it will be useful, | ||
9 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | ||
11 | * General Public License for more details. | ||
12 | * | ||
13 | * You should have received a copy of the GNU General Public | ||
14 | * License along with this program; if not, write to the | ||
15 | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | ||
16 | * Boston, MA 021110-1307, USA. | ||
17 | */ | ||
18 | |||
19 | #ifndef __BTRFS_VOLUMES_ | ||
20 | #define __BTRFS_VOLUMES_ | ||
21 | |||
22 | #include <linux/bio.h> | ||
23 | #include "async-thread.h" | ||
24 | |||
25 | struct buffer_head; | ||
26 | struct btrfs_device { | ||
27 | struct list_head dev_list; | ||
28 | struct list_head dev_alloc_list; | ||
29 | struct btrfs_fs_devices *fs_devices; | ||
30 | struct btrfs_root *dev_root; | ||
31 | struct bio *pending_bios; | ||
32 | struct bio *pending_bio_tail; | ||
33 | int running_pending; | ||
34 | u64 generation; | ||
35 | |||
36 | int barriers; | ||
37 | int writeable; | ||
38 | int in_fs_metadata; | ||
39 | |||
40 | spinlock_t io_lock; | ||
41 | |||
42 | struct block_device *bdev; | ||
43 | |||
44 | /* the mode sent to open_bdev_exclusive */ | ||
45 | fmode_t mode; | ||
46 | |||
47 | char *name; | ||
48 | |||
49 | /* the internal btrfs device id */ | ||
50 | u64 devid; | ||
51 | |||
52 | /* size of the device */ | ||
53 | u64 total_bytes; | ||
54 | |||
55 | /* bytes used */ | ||
56 | u64 bytes_used; | ||
57 | |||
58 | /* optimal io alignment for this device */ | ||
59 | u32 io_align; | ||
60 | |||
61 | /* optimal io width for this device */ | ||
62 | u32 io_width; | ||
63 | |||
64 | /* minimal io size for this device */ | ||
65 | u32 sector_size; | ||
66 | |||
67 | /* type and info about this device */ | ||
68 | u64 type; | ||
69 | |||
70 | /* physical drive uuid (or lvm uuid) */ | ||
71 | u8 uuid[BTRFS_UUID_SIZE]; | ||
72 | |||
73 | struct btrfs_work work; | ||
74 | }; | ||
75 | |||
76 | struct btrfs_fs_devices { | ||
77 | u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */ | ||
78 | |||
79 | /* the device with this id has the most recent coyp of the super */ | ||
80 | u64 latest_devid; | ||
81 | u64 latest_trans; | ||
82 | u64 num_devices; | ||
83 | u64 open_devices; | ||
84 | u64 rw_devices; | ||
85 | u64 total_rw_bytes; | ||
86 | struct block_device *latest_bdev; | ||
87 | /* all of the devices in the FS */ | ||
88 | struct list_head devices; | ||
89 | |||
90 | /* devices not currently being allocated */ | ||
91 | struct list_head alloc_list; | ||
92 | struct list_head list; | ||
93 | |||
94 | struct btrfs_fs_devices *seed; | ||
95 | int seeding; | ||
96 | |||
97 | int opened; | ||
98 | }; | ||
99 | |||
100 | struct btrfs_bio_stripe { | ||
101 | struct btrfs_device *dev; | ||
102 | u64 physical; | ||
103 | }; | ||
104 | |||
105 | struct btrfs_multi_bio { | ||
106 | atomic_t stripes_pending; | ||
107 | bio_end_io_t *end_io; | ||
108 | struct bio *orig_bio; | ||
109 | void *private; | ||
110 | atomic_t error; | ||
111 | int max_errors; | ||
112 | int num_stripes; | ||
113 | struct btrfs_bio_stripe stripes[]; | ||
114 | }; | ||
115 | |||
116 | #define btrfs_multi_bio_size(n) (sizeof(struct btrfs_multi_bio) + \ | ||
117 | (sizeof(struct btrfs_bio_stripe) * (n))) | ||
118 | |||
119 | int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans, | ||
120 | struct btrfs_device *device, | ||
121 | u64 chunk_tree, u64 chunk_objectid, | ||
122 | u64 chunk_offset, u64 start, u64 num_bytes); | ||
123 | int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw, | ||
124 | u64 logical, u64 *length, | ||
125 | struct btrfs_multi_bio **multi_ret, int mirror_num); | ||
126 | int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree, | ||
127 | u64 chunk_start, u64 physical, u64 devid, | ||
128 | u64 **logical, int *naddrs, int *stripe_len); | ||
129 | int btrfs_read_sys_array(struct btrfs_root *root); | ||
130 | int btrfs_read_chunk_tree(struct btrfs_root *root); | ||
131 | int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, | ||
132 | struct btrfs_root *extent_root, u64 type); | ||
133 | void btrfs_mapping_init(struct btrfs_mapping_tree *tree); | ||
134 | void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree); | ||
135 | int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio, | ||
136 | int mirror_num, int async_submit); | ||
137 | int btrfs_read_super_device(struct btrfs_root *root, struct extent_buffer *buf); | ||
138 | int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, | ||
139 | fmode_t flags, void *holder); | ||
140 | int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder, | ||
141 | struct btrfs_fs_devices **fs_devices_ret); | ||
142 | int btrfs_close_devices(struct btrfs_fs_devices *fs_devices); | ||
143 | int btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices); | ||
144 | int btrfs_add_device(struct btrfs_trans_handle *trans, | ||
145 | struct btrfs_root *root, | ||
146 | struct btrfs_device *device); | ||
147 | int btrfs_rm_device(struct btrfs_root *root, char *device_path); | ||
148 | int btrfs_cleanup_fs_uuids(void); | ||
149 | int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len); | ||
150 | int btrfs_unplug_page(struct btrfs_mapping_tree *map_tree, | ||
151 | u64 logical, struct page *page); | ||
152 | int btrfs_grow_device(struct btrfs_trans_handle *trans, | ||
153 | struct btrfs_device *device, u64 new_size); | ||
154 | struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid, | ||
155 | u8 *uuid, u8 *fsid); | ||
156 | int btrfs_shrink_device(struct btrfs_device *device, u64 new_size); | ||
157 | int btrfs_init_new_device(struct btrfs_root *root, char *path); | ||
158 | int btrfs_balance(struct btrfs_root *dev_root); | ||
159 | void btrfs_unlock_volumes(void); | ||
160 | void btrfs_lock_volumes(void); | ||
161 | int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset); | ||
162 | #endif | ||
diff --git a/fs/btrfs/xattr.c b/fs/btrfs/xattr.c new file mode 100644 index 000000000000..7f332e270894 --- /dev/null +++ b/fs/btrfs/xattr.c | |||
@@ -0,0 +1,322 @@ | |||
1 | /* | ||
2 | * Copyright (C) 2007 Red Hat. All rights reserved. | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or | ||
5 | * modify it under the terms of the GNU General Public | ||
6 | * License v2 as published by the Free Software Foundation. | ||
7 | * | ||
8 | * This program is distributed in the hope that it will be useful, | ||
9 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | ||
11 | * General Public License for more details. | ||
12 | * | ||
13 | * You should have received a copy of the GNU General Public | ||
14 | * License along with this program; if not, write to the | ||
15 | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | ||
16 | * Boston, MA 021110-1307, USA. | ||
17 | */ | ||
18 | |||
19 | #include <linux/init.h> | ||
20 | #include <linux/fs.h> | ||
21 | #include <linux/slab.h> | ||
22 | #include <linux/rwsem.h> | ||
23 | #include <linux/xattr.h> | ||
24 | #include "ctree.h" | ||
25 | #include "btrfs_inode.h" | ||
26 | #include "transaction.h" | ||
27 | #include "xattr.h" | ||
28 | #include "disk-io.h" | ||
29 | |||
30 | |||
31 | ssize_t __btrfs_getxattr(struct inode *inode, const char *name, | ||
32 | void *buffer, size_t size) | ||
33 | { | ||
34 | struct btrfs_dir_item *di; | ||
35 | struct btrfs_root *root = BTRFS_I(inode)->root; | ||
36 | struct btrfs_path *path; | ||
37 | struct extent_buffer *leaf; | ||
38 | int ret = 0; | ||
39 | unsigned long data_ptr; | ||
40 | |||
41 | path = btrfs_alloc_path(); | ||
42 | if (!path) | ||
43 | return -ENOMEM; | ||
44 | |||
45 | /* lookup the xattr by name */ | ||
46 | di = btrfs_lookup_xattr(NULL, root, path, inode->i_ino, name, | ||
47 | strlen(name), 0); | ||
48 | if (!di || IS_ERR(di)) { | ||
49 | ret = -ENODATA; | ||
50 | goto out; | ||
51 | } | ||
52 | |||
53 | leaf = path->nodes[0]; | ||
54 | /* if size is 0, that means we want the size of the attr */ | ||
55 | if (!size) { | ||
56 | ret = btrfs_dir_data_len(leaf, di); | ||
57 | goto out; | ||
58 | } | ||
59 | |||
60 | /* now get the data out of our dir_item */ | ||
61 | if (btrfs_dir_data_len(leaf, di) > size) { | ||
62 | ret = -ERANGE; | ||
63 | goto out; | ||
64 | } | ||
65 | data_ptr = (unsigned long)((char *)(di + 1) + | ||
66 | btrfs_dir_name_len(leaf, di)); | ||
67 | read_extent_buffer(leaf, buffer, data_ptr, | ||
68 | btrfs_dir_data_len(leaf, di)); | ||
69 | ret = btrfs_dir_data_len(leaf, di); | ||
70 | |||
71 | out: | ||
72 | btrfs_free_path(path); | ||
73 | return ret; | ||
74 | } | ||
75 | |||
76 | int __btrfs_setxattr(struct inode *inode, const char *name, | ||
77 | const void *value, size_t size, int flags) | ||
78 | { | ||
79 | struct btrfs_dir_item *di; | ||
80 | struct btrfs_root *root = BTRFS_I(inode)->root; | ||
81 | struct btrfs_trans_handle *trans; | ||
82 | struct btrfs_path *path; | ||
83 | int ret = 0, mod = 0; | ||
84 | |||
85 | path = btrfs_alloc_path(); | ||
86 | if (!path) | ||
87 | return -ENOMEM; | ||
88 | |||
89 | trans = btrfs_start_transaction(root, 1); | ||
90 | btrfs_set_trans_block_group(trans, inode); | ||
91 | |||
92 | /* first lets see if we already have this xattr */ | ||
93 | di = btrfs_lookup_xattr(trans, root, path, inode->i_ino, name, | ||
94 | strlen(name), -1); | ||
95 | if (IS_ERR(di)) { | ||
96 | ret = PTR_ERR(di); | ||
97 | goto out; | ||
98 | } | ||
99 | |||
100 | /* ok we already have this xattr, lets remove it */ | ||
101 | if (di) { | ||
102 | /* if we want create only exit */ | ||
103 | if (flags & XATTR_CREATE) { | ||
104 | ret = -EEXIST; | ||
105 | goto out; | ||
106 | } | ||
107 | |||
108 | ret = btrfs_delete_one_dir_name(trans, root, path, di); | ||
109 | if (ret) | ||
110 | goto out; | ||
111 | btrfs_release_path(root, path); | ||
112 | |||
113 | /* if we don't have a value then we are removing the xattr */ | ||
114 | if (!value) { | ||
115 | mod = 1; | ||
116 | goto out; | ||
117 | } | ||
118 | } else { | ||
119 | btrfs_release_path(root, path); | ||
120 | |||
121 | if (flags & XATTR_REPLACE) { | ||
122 | /* we couldn't find the attr to replace */ | ||
123 | ret = -ENODATA; | ||
124 | goto out; | ||
125 | } | ||
126 | } | ||
127 | |||
128 | /* ok we have to create a completely new xattr */ | ||
129 | ret = btrfs_insert_xattr_item(trans, root, name, strlen(name), | ||
130 | value, size, inode->i_ino); | ||
131 | if (ret) | ||
132 | goto out; | ||
133 | mod = 1; | ||
134 | |||
135 | out: | ||
136 | if (mod) { | ||
137 | inode->i_ctime = CURRENT_TIME; | ||
138 | ret = btrfs_update_inode(trans, root, inode); | ||
139 | } | ||
140 | |||
141 | btrfs_end_transaction(trans, root); | ||
142 | btrfs_free_path(path); | ||
143 | return ret; | ||
144 | } | ||
145 | |||
146 | ssize_t btrfs_listxattr(struct dentry *dentry, char *buffer, size_t size) | ||
147 | { | ||
148 | struct btrfs_key key, found_key; | ||
149 | struct inode *inode = dentry->d_inode; | ||
150 | struct btrfs_root *root = BTRFS_I(inode)->root; | ||
151 | struct btrfs_path *path; | ||
152 | struct btrfs_item *item; | ||
153 | struct extent_buffer *leaf; | ||
154 | struct btrfs_dir_item *di; | ||
155 | int ret = 0, slot, advance; | ||
156 | size_t total_size = 0, size_left = size; | ||
157 | unsigned long name_ptr; | ||
158 | size_t name_len; | ||
159 | u32 nritems; | ||
160 | |||
161 | /* | ||
162 | * ok we want all objects associated with this id. | ||
163 | * NOTE: we set key.offset = 0; because we want to start with the | ||
164 | * first xattr that we find and walk forward | ||
165 | */ | ||
166 | key.objectid = inode->i_ino; | ||
167 | btrfs_set_key_type(&key, BTRFS_XATTR_ITEM_KEY); | ||
168 | key.offset = 0; | ||
169 | |||
170 | path = btrfs_alloc_path(); | ||
171 | if (!path) | ||
172 | return -ENOMEM; | ||
173 | path->reada = 2; | ||
174 | |||
175 | /* search for our xattrs */ | ||
176 | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | ||
177 | if (ret < 0) | ||
178 | goto err; | ||
179 | ret = 0; | ||
180 | advance = 0; | ||
181 | while (1) { | ||
182 | leaf = path->nodes[0]; | ||
183 | nritems = btrfs_header_nritems(leaf); | ||
184 | slot = path->slots[0]; | ||
185 | |||
186 | /* this is where we start walking through the path */ | ||
187 | if (advance || slot >= nritems) { | ||
188 | /* | ||
189 | * if we've reached the last slot in this leaf we need | ||
190 | * to go to the next leaf and reset everything | ||
191 | */ | ||
192 | if (slot >= nritems-1) { | ||
193 | ret = btrfs_next_leaf(root, path); | ||
194 | if (ret) | ||
195 | break; | ||
196 | leaf = path->nodes[0]; | ||
197 | nritems = btrfs_header_nritems(leaf); | ||
198 | slot = path->slots[0]; | ||
199 | } else { | ||
200 | /* | ||
201 | * just walking through the slots on this leaf | ||
202 | */ | ||
203 | slot++; | ||
204 | path->slots[0]++; | ||
205 | } | ||
206 | } | ||
207 | advance = 1; | ||
208 | |||
209 | item = btrfs_item_nr(leaf, slot); | ||
210 | btrfs_item_key_to_cpu(leaf, &found_key, slot); | ||
211 | |||
212 | /* check to make sure this item is what we want */ | ||
213 | if (found_key.objectid != key.objectid) | ||
214 | break; | ||
215 | if (btrfs_key_type(&found_key) != BTRFS_XATTR_ITEM_KEY) | ||
216 | break; | ||
217 | |||
218 | di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); | ||
219 | |||
220 | name_len = btrfs_dir_name_len(leaf, di); | ||
221 | total_size += name_len + 1; | ||
222 | |||
223 | /* we are just looking for how big our buffer needs to be */ | ||
224 | if (!size) | ||
225 | continue; | ||
226 | |||
227 | if (!buffer || (name_len + 1) > size_left) { | ||
228 | ret = -ERANGE; | ||
229 | goto err; | ||
230 | } | ||
231 | |||
232 | name_ptr = (unsigned long)(di + 1); | ||
233 | read_extent_buffer(leaf, buffer, name_ptr, name_len); | ||
234 | buffer[name_len] = '\0'; | ||
235 | |||
236 | size_left -= name_len + 1; | ||
237 | buffer += name_len + 1; | ||
238 | } | ||
239 | ret = total_size; | ||
240 | |||
241 | err: | ||
242 | btrfs_free_path(path); | ||
243 | |||
244 | return ret; | ||
245 | } | ||
246 | |||
247 | /* | ||
248 | * List of handlers for synthetic system.* attributes. All real ondisk | ||
249 | * attributes are handled directly. | ||
250 | */ | ||
251 | struct xattr_handler *btrfs_xattr_handlers[] = { | ||
252 | #ifdef CONFIG_FS_POSIX_ACL | ||
253 | &btrfs_xattr_acl_access_handler, | ||
254 | &btrfs_xattr_acl_default_handler, | ||
255 | #endif | ||
256 | NULL, | ||
257 | }; | ||
258 | |||
259 | /* | ||
260 | * Check if the attribute is in a supported namespace. | ||
261 | * | ||
262 | * This applied after the check for the synthetic attributes in the system | ||
263 | * namespace. | ||
264 | */ | ||
265 | static bool btrfs_is_valid_xattr(const char *name) | ||
266 | { | ||
267 | return !strncmp(name, XATTR_SECURITY_PREFIX, | ||
268 | XATTR_SECURITY_PREFIX_LEN) || | ||
269 | !strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN) || | ||
270 | !strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN) || | ||
271 | !strncmp(name, XATTR_USER_PREFIX, XATTR_USER_PREFIX_LEN); | ||
272 | } | ||
273 | |||
274 | ssize_t btrfs_getxattr(struct dentry *dentry, const char *name, | ||
275 | void *buffer, size_t size) | ||
276 | { | ||
277 | /* | ||
278 | * If this is a request for a synthetic attribute in the system.* | ||
279 | * namespace use the generic infrastructure to resolve a handler | ||
280 | * for it via sb->s_xattr. | ||
281 | */ | ||
282 | if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN)) | ||
283 | return generic_getxattr(dentry, name, buffer, size); | ||
284 | |||
285 | if (!btrfs_is_valid_xattr(name)) | ||
286 | return -EOPNOTSUPP; | ||
287 | return __btrfs_getxattr(dentry->d_inode, name, buffer, size); | ||
288 | } | ||
289 | |||
290 | int btrfs_setxattr(struct dentry *dentry, const char *name, const void *value, | ||
291 | size_t size, int flags) | ||
292 | { | ||
293 | /* | ||
294 | * If this is a request for a synthetic attribute in the system.* | ||
295 | * namespace use the generic infrastructure to resolve a handler | ||
296 | * for it via sb->s_xattr. | ||
297 | */ | ||
298 | if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN)) | ||
299 | return generic_setxattr(dentry, name, value, size, flags); | ||
300 | |||
301 | if (!btrfs_is_valid_xattr(name)) | ||
302 | return -EOPNOTSUPP; | ||
303 | |||
304 | if (size == 0) | ||
305 | value = ""; /* empty EA, do not remove */ | ||
306 | return __btrfs_setxattr(dentry->d_inode, name, value, size, flags); | ||
307 | } | ||
308 | |||
309 | int btrfs_removexattr(struct dentry *dentry, const char *name) | ||
310 | { | ||
311 | /* | ||
312 | * If this is a request for a synthetic attribute in the system.* | ||
313 | * namespace use the generic infrastructure to resolve a handler | ||
314 | * for it via sb->s_xattr. | ||
315 | */ | ||
316 | if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN)) | ||
317 | return generic_removexattr(dentry, name); | ||
318 | |||
319 | if (!btrfs_is_valid_xattr(name)) | ||
320 | return -EOPNOTSUPP; | ||
321 | return __btrfs_setxattr(dentry->d_inode, name, NULL, 0, XATTR_REPLACE); | ||
322 | } | ||
diff --git a/fs/btrfs/xattr.h b/fs/btrfs/xattr.h new file mode 100644 index 000000000000..5b1d08f8e68d --- /dev/null +++ b/fs/btrfs/xattr.h | |||
@@ -0,0 +1,39 @@ | |||
1 | /* | ||
2 | * Copyright (C) 2007 Red Hat. All rights reserved. | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or | ||
5 | * modify it under the terms of the GNU General Public | ||
6 | * License v2 as published by the Free Software Foundation. | ||
7 | * | ||
8 | * This program is distributed in the hope that it will be useful, | ||
9 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | ||
11 | * General Public License for more details. | ||
12 | * | ||
13 | * You should have received a copy of the GNU General Public | ||
14 | * License along with this program; if not, write to the | ||
15 | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | ||
16 | * Boston, MA 021110-1307, USA. | ||
17 | */ | ||
18 | |||
19 | #ifndef __XATTR__ | ||
20 | #define __XATTR__ | ||
21 | |||
22 | #include <linux/xattr.h> | ||
23 | |||
24 | extern struct xattr_handler btrfs_xattr_acl_access_handler; | ||
25 | extern struct xattr_handler btrfs_xattr_acl_default_handler; | ||
26 | extern struct xattr_handler *btrfs_xattr_handlers[]; | ||
27 | |||
28 | extern ssize_t __btrfs_getxattr(struct inode *inode, const char *name, | ||
29 | void *buffer, size_t size); | ||
30 | extern int __btrfs_setxattr(struct inode *inode, const char *name, | ||
31 | const void *value, size_t size, int flags); | ||
32 | |||
33 | extern ssize_t btrfs_getxattr(struct dentry *dentry, const char *name, | ||
34 | void *buffer, size_t size); | ||
35 | extern int btrfs_setxattr(struct dentry *dentry, const char *name, | ||
36 | const void *value, size_t size, int flags); | ||
37 | extern int btrfs_removexattr(struct dentry *dentry, const char *name); | ||
38 | |||
39 | #endif /* __XATTR__ */ | ||
diff --git a/fs/btrfs/zlib.c b/fs/btrfs/zlib.c new file mode 100644 index 000000000000..ecfbce836d32 --- /dev/null +++ b/fs/btrfs/zlib.c | |||
@@ -0,0 +1,632 @@ | |||
1 | /* | ||
2 | * Copyright (C) 2008 Oracle. All rights reserved. | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or | ||
5 | * modify it under the terms of the GNU General Public | ||
6 | * License v2 as published by the Free Software Foundation. | ||
7 | * | ||
8 | * This program is distributed in the hope that it will be useful, | ||
9 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | ||
11 | * General Public License for more details. | ||
12 | * | ||
13 | * You should have received a copy of the GNU General Public | ||
14 | * License along with this program; if not, write to the | ||
15 | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | ||
16 | * Boston, MA 021110-1307, USA. | ||
17 | * | ||
18 | * Based on jffs2 zlib code: | ||
19 | * Copyright © 2001-2007 Red Hat, Inc. | ||
20 | * Created by David Woodhouse <dwmw2@infradead.org> | ||
21 | */ | ||
22 | |||
23 | #include <linux/kernel.h> | ||
24 | #include <linux/slab.h> | ||
25 | #include <linux/zlib.h> | ||
26 | #include <linux/zutil.h> | ||
27 | #include <linux/vmalloc.h> | ||
28 | #include <linux/init.h> | ||
29 | #include <linux/err.h> | ||
30 | #include <linux/sched.h> | ||
31 | #include <linux/pagemap.h> | ||
32 | #include <linux/bio.h> | ||
33 | #include "compression.h" | ||
34 | |||
35 | /* Plan: call deflate() with avail_in == *sourcelen, | ||
36 | avail_out = *dstlen - 12 and flush == Z_FINISH. | ||
37 | If it doesn't manage to finish, call it again with | ||
38 | avail_in == 0 and avail_out set to the remaining 12 | ||
39 | bytes for it to clean up. | ||
40 | Q: Is 12 bytes sufficient? | ||
41 | */ | ||
42 | #define STREAM_END_SPACE 12 | ||
43 | |||
44 | struct workspace { | ||
45 | z_stream inf_strm; | ||
46 | z_stream def_strm; | ||
47 | char *buf; | ||
48 | struct list_head list; | ||
49 | }; | ||
50 | |||
51 | static LIST_HEAD(idle_workspace); | ||
52 | static DEFINE_SPINLOCK(workspace_lock); | ||
53 | static unsigned long num_workspace; | ||
54 | static atomic_t alloc_workspace = ATOMIC_INIT(0); | ||
55 | static DECLARE_WAIT_QUEUE_HEAD(workspace_wait); | ||
56 | |||
57 | /* | ||
58 | * this finds an available zlib workspace or allocates a new one | ||
59 | * NULL or an ERR_PTR is returned if things go bad. | ||
60 | */ | ||
61 | static struct workspace *find_zlib_workspace(void) | ||
62 | { | ||
63 | struct workspace *workspace; | ||
64 | int ret; | ||
65 | int cpus = num_online_cpus(); | ||
66 | |||
67 | again: | ||
68 | spin_lock(&workspace_lock); | ||
69 | if (!list_empty(&idle_workspace)) { | ||
70 | workspace = list_entry(idle_workspace.next, struct workspace, | ||
71 | list); | ||
72 | list_del(&workspace->list); | ||
73 | num_workspace--; | ||
74 | spin_unlock(&workspace_lock); | ||
75 | return workspace; | ||
76 | |||
77 | } | ||
78 | spin_unlock(&workspace_lock); | ||
79 | if (atomic_read(&alloc_workspace) > cpus) { | ||
80 | DEFINE_WAIT(wait); | ||
81 | prepare_to_wait(&workspace_wait, &wait, TASK_UNINTERRUPTIBLE); | ||
82 | if (atomic_read(&alloc_workspace) > cpus) | ||
83 | schedule(); | ||
84 | finish_wait(&workspace_wait, &wait); | ||
85 | goto again; | ||
86 | } | ||
87 | atomic_inc(&alloc_workspace); | ||
88 | workspace = kzalloc(sizeof(*workspace), GFP_NOFS); | ||
89 | if (!workspace) { | ||
90 | ret = -ENOMEM; | ||
91 | goto fail; | ||
92 | } | ||
93 | |||
94 | workspace->def_strm.workspace = vmalloc(zlib_deflate_workspacesize()); | ||
95 | if (!workspace->def_strm.workspace) { | ||
96 | ret = -ENOMEM; | ||
97 | goto fail; | ||
98 | } | ||
99 | workspace->inf_strm.workspace = vmalloc(zlib_inflate_workspacesize()); | ||
100 | if (!workspace->inf_strm.workspace) { | ||
101 | ret = -ENOMEM; | ||
102 | goto fail_inflate; | ||
103 | } | ||
104 | workspace->buf = kmalloc(PAGE_CACHE_SIZE, GFP_NOFS); | ||
105 | if (!workspace->buf) { | ||
106 | ret = -ENOMEM; | ||
107 | goto fail_kmalloc; | ||
108 | } | ||
109 | return workspace; | ||
110 | |||
111 | fail_kmalloc: | ||
112 | vfree(workspace->inf_strm.workspace); | ||
113 | fail_inflate: | ||
114 | vfree(workspace->def_strm.workspace); | ||
115 | fail: | ||
116 | kfree(workspace); | ||
117 | atomic_dec(&alloc_workspace); | ||
118 | wake_up(&workspace_wait); | ||
119 | return ERR_PTR(ret); | ||
120 | } | ||
121 | |||
122 | /* | ||
123 | * put a workspace struct back on the list or free it if we have enough | ||
124 | * idle ones sitting around | ||
125 | */ | ||
126 | static int free_workspace(struct workspace *workspace) | ||
127 | { | ||
128 | spin_lock(&workspace_lock); | ||
129 | if (num_workspace < num_online_cpus()) { | ||
130 | list_add_tail(&workspace->list, &idle_workspace); | ||
131 | num_workspace++; | ||
132 | spin_unlock(&workspace_lock); | ||
133 | if (waitqueue_active(&workspace_wait)) | ||
134 | wake_up(&workspace_wait); | ||
135 | return 0; | ||
136 | } | ||
137 | spin_unlock(&workspace_lock); | ||
138 | vfree(workspace->def_strm.workspace); | ||
139 | vfree(workspace->inf_strm.workspace); | ||
140 | kfree(workspace->buf); | ||
141 | kfree(workspace); | ||
142 | |||
143 | atomic_dec(&alloc_workspace); | ||
144 | if (waitqueue_active(&workspace_wait)) | ||
145 | wake_up(&workspace_wait); | ||
146 | return 0; | ||
147 | } | ||
148 | |||
149 | /* | ||
150 | * cleanup function for module exit | ||
151 | */ | ||
152 | static void free_workspaces(void) | ||
153 | { | ||
154 | struct workspace *workspace; | ||
155 | while (!list_empty(&idle_workspace)) { | ||
156 | workspace = list_entry(idle_workspace.next, struct workspace, | ||
157 | list); | ||
158 | list_del(&workspace->list); | ||
159 | vfree(workspace->def_strm.workspace); | ||
160 | vfree(workspace->inf_strm.workspace); | ||
161 | kfree(workspace->buf); | ||
162 | kfree(workspace); | ||
163 | atomic_dec(&alloc_workspace); | ||
164 | } | ||
165 | } | ||
166 | |||
167 | /* | ||
168 | * given an address space and start/len, compress the bytes. | ||
169 | * | ||
170 | * pages are allocated to hold the compressed result and stored | ||
171 | * in 'pages' | ||
172 | * | ||
173 | * out_pages is used to return the number of pages allocated. There | ||
174 | * may be pages allocated even if we return an error | ||
175 | * | ||
176 | * total_in is used to return the number of bytes actually read. It | ||
177 | * may be smaller then len if we had to exit early because we | ||
178 | * ran out of room in the pages array or because we cross the | ||
179 | * max_out threshold. | ||
180 | * | ||
181 | * total_out is used to return the total number of compressed bytes | ||
182 | * | ||
183 | * max_out tells us the max number of bytes that we're allowed to | ||
184 | * stuff into pages | ||
185 | */ | ||
186 | int btrfs_zlib_compress_pages(struct address_space *mapping, | ||
187 | u64 start, unsigned long len, | ||
188 | struct page **pages, | ||
189 | unsigned long nr_dest_pages, | ||
190 | unsigned long *out_pages, | ||
191 | unsigned long *total_in, | ||
192 | unsigned long *total_out, | ||
193 | unsigned long max_out) | ||
194 | { | ||
195 | int ret; | ||
196 | struct workspace *workspace; | ||
197 | char *data_in; | ||
198 | char *cpage_out; | ||
199 | int nr_pages = 0; | ||
200 | struct page *in_page = NULL; | ||
201 | struct page *out_page = NULL; | ||
202 | int out_written = 0; | ||
203 | int in_read = 0; | ||
204 | unsigned long bytes_left; | ||
205 | |||
206 | *out_pages = 0; | ||
207 | *total_out = 0; | ||
208 | *total_in = 0; | ||
209 | |||
210 | workspace = find_zlib_workspace(); | ||
211 | if (!workspace) | ||
212 | return -1; | ||
213 | |||
214 | if (Z_OK != zlib_deflateInit(&workspace->def_strm, 3)) { | ||
215 | printk(KERN_WARNING "deflateInit failed\n"); | ||
216 | ret = -1; | ||
217 | goto out; | ||
218 | } | ||
219 | |||
220 | workspace->def_strm.total_in = 0; | ||
221 | workspace->def_strm.total_out = 0; | ||
222 | |||
223 | in_page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT); | ||
224 | data_in = kmap(in_page); | ||
225 | |||
226 | out_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); | ||
227 | cpage_out = kmap(out_page); | ||
228 | pages[0] = out_page; | ||
229 | nr_pages = 1; | ||
230 | |||
231 | workspace->def_strm.next_in = data_in; | ||
232 | workspace->def_strm.next_out = cpage_out; | ||
233 | workspace->def_strm.avail_out = PAGE_CACHE_SIZE; | ||
234 | workspace->def_strm.avail_in = min(len, PAGE_CACHE_SIZE); | ||
235 | |||
236 | out_written = 0; | ||
237 | in_read = 0; | ||
238 | |||
239 | while (workspace->def_strm.total_in < len) { | ||
240 | ret = zlib_deflate(&workspace->def_strm, Z_SYNC_FLUSH); | ||
241 | if (ret != Z_OK) { | ||
242 | printk(KERN_DEBUG "btrfs deflate in loop returned %d\n", | ||
243 | ret); | ||
244 | zlib_deflateEnd(&workspace->def_strm); | ||
245 | ret = -1; | ||
246 | goto out; | ||
247 | } | ||
248 | |||
249 | /* we're making it bigger, give up */ | ||
250 | if (workspace->def_strm.total_in > 8192 && | ||
251 | workspace->def_strm.total_in < | ||
252 | workspace->def_strm.total_out) { | ||
253 | ret = -1; | ||
254 | goto out; | ||
255 | } | ||
256 | /* we need another page for writing out. Test this | ||
257 | * before the total_in so we will pull in a new page for | ||
258 | * the stream end if required | ||
259 | */ | ||
260 | if (workspace->def_strm.avail_out == 0) { | ||
261 | kunmap(out_page); | ||
262 | if (nr_pages == nr_dest_pages) { | ||
263 | out_page = NULL; | ||
264 | ret = -1; | ||
265 | goto out; | ||
266 | } | ||
267 | out_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); | ||
268 | cpage_out = kmap(out_page); | ||
269 | pages[nr_pages] = out_page; | ||
270 | nr_pages++; | ||
271 | workspace->def_strm.avail_out = PAGE_CACHE_SIZE; | ||
272 | workspace->def_strm.next_out = cpage_out; | ||
273 | } | ||
274 | /* we're all done */ | ||
275 | if (workspace->def_strm.total_in >= len) | ||
276 | break; | ||
277 | |||
278 | /* we've read in a full page, get a new one */ | ||
279 | if (workspace->def_strm.avail_in == 0) { | ||
280 | if (workspace->def_strm.total_out > max_out) | ||
281 | break; | ||
282 | |||
283 | bytes_left = len - workspace->def_strm.total_in; | ||
284 | kunmap(in_page); | ||
285 | page_cache_release(in_page); | ||
286 | |||
287 | start += PAGE_CACHE_SIZE; | ||
288 | in_page = find_get_page(mapping, | ||
289 | start >> PAGE_CACHE_SHIFT); | ||
290 | data_in = kmap(in_page); | ||
291 | workspace->def_strm.avail_in = min(bytes_left, | ||
292 | PAGE_CACHE_SIZE); | ||
293 | workspace->def_strm.next_in = data_in; | ||
294 | } | ||
295 | } | ||
296 | workspace->def_strm.avail_in = 0; | ||
297 | ret = zlib_deflate(&workspace->def_strm, Z_FINISH); | ||
298 | zlib_deflateEnd(&workspace->def_strm); | ||
299 | |||
300 | if (ret != Z_STREAM_END) { | ||
301 | ret = -1; | ||
302 | goto out; | ||
303 | } | ||
304 | |||
305 | if (workspace->def_strm.total_out >= workspace->def_strm.total_in) { | ||
306 | ret = -1; | ||
307 | goto out; | ||
308 | } | ||
309 | |||
310 | ret = 0; | ||
311 | *total_out = workspace->def_strm.total_out; | ||
312 | *total_in = workspace->def_strm.total_in; | ||
313 | out: | ||
314 | *out_pages = nr_pages; | ||
315 | if (out_page) | ||
316 | kunmap(out_page); | ||
317 | |||
318 | if (in_page) { | ||
319 | kunmap(in_page); | ||
320 | page_cache_release(in_page); | ||
321 | } | ||
322 | free_workspace(workspace); | ||
323 | return ret; | ||
324 | } | ||
325 | |||
326 | /* | ||
327 | * pages_in is an array of pages with compressed data. | ||
328 | * | ||
329 | * disk_start is the starting logical offset of this array in the file | ||
330 | * | ||
331 | * bvec is a bio_vec of pages from the file that we want to decompress into | ||
332 | * | ||
333 | * vcnt is the count of pages in the biovec | ||
334 | * | ||
335 | * srclen is the number of bytes in pages_in | ||
336 | * | ||
337 | * The basic idea is that we have a bio that was created by readpages. | ||
338 | * The pages in the bio are for the uncompressed data, and they may not | ||
339 | * be contiguous. They all correspond to the range of bytes covered by | ||
340 | * the compressed extent. | ||
341 | */ | ||
342 | int btrfs_zlib_decompress_biovec(struct page **pages_in, | ||
343 | u64 disk_start, | ||
344 | struct bio_vec *bvec, | ||
345 | int vcnt, | ||
346 | size_t srclen) | ||
347 | { | ||
348 | int ret = 0; | ||
349 | int wbits = MAX_WBITS; | ||
350 | struct workspace *workspace; | ||
351 | char *data_in; | ||
352 | size_t total_out = 0; | ||
353 | unsigned long page_bytes_left; | ||
354 | unsigned long page_in_index = 0; | ||
355 | unsigned long page_out_index = 0; | ||
356 | struct page *page_out; | ||
357 | unsigned long total_pages_in = (srclen + PAGE_CACHE_SIZE - 1) / | ||
358 | PAGE_CACHE_SIZE; | ||
359 | unsigned long buf_start; | ||
360 | unsigned long buf_offset; | ||
361 | unsigned long bytes; | ||
362 | unsigned long working_bytes; | ||
363 | unsigned long pg_offset; | ||
364 | unsigned long start_byte; | ||
365 | unsigned long current_buf_start; | ||
366 | char *kaddr; | ||
367 | |||
368 | workspace = find_zlib_workspace(); | ||
369 | if (!workspace) | ||
370 | return -ENOMEM; | ||
371 | |||
372 | data_in = kmap(pages_in[page_in_index]); | ||
373 | workspace->inf_strm.next_in = data_in; | ||
374 | workspace->inf_strm.avail_in = min_t(size_t, srclen, PAGE_CACHE_SIZE); | ||
375 | workspace->inf_strm.total_in = 0; | ||
376 | |||
377 | workspace->inf_strm.total_out = 0; | ||
378 | workspace->inf_strm.next_out = workspace->buf; | ||
379 | workspace->inf_strm.avail_out = PAGE_CACHE_SIZE; | ||
380 | page_out = bvec[page_out_index].bv_page; | ||
381 | page_bytes_left = PAGE_CACHE_SIZE; | ||
382 | pg_offset = 0; | ||
383 | |||
384 | /* If it's deflate, and it's got no preset dictionary, then | ||
385 | we can tell zlib to skip the adler32 check. */ | ||
386 | if (srclen > 2 && !(data_in[1] & PRESET_DICT) && | ||
387 | ((data_in[0] & 0x0f) == Z_DEFLATED) && | ||
388 | !(((data_in[0]<<8) + data_in[1]) % 31)) { | ||
389 | |||
390 | wbits = -((data_in[0] >> 4) + 8); | ||
391 | workspace->inf_strm.next_in += 2; | ||
392 | workspace->inf_strm.avail_in -= 2; | ||
393 | } | ||
394 | |||
395 | if (Z_OK != zlib_inflateInit2(&workspace->inf_strm, wbits)) { | ||
396 | printk(KERN_WARNING "inflateInit failed\n"); | ||
397 | ret = -1; | ||
398 | goto out; | ||
399 | } | ||
400 | while (workspace->inf_strm.total_in < srclen) { | ||
401 | ret = zlib_inflate(&workspace->inf_strm, Z_NO_FLUSH); | ||
402 | if (ret != Z_OK && ret != Z_STREAM_END) | ||
403 | break; | ||
404 | /* | ||
405 | * buf start is the byte offset we're of the start of | ||
406 | * our workspace buffer | ||
407 | */ | ||
408 | buf_start = total_out; | ||
409 | |||
410 | /* total_out is the last byte of the workspace buffer */ | ||
411 | total_out = workspace->inf_strm.total_out; | ||
412 | |||
413 | working_bytes = total_out - buf_start; | ||
414 | |||
415 | /* | ||
416 | * start byte is the first byte of the page we're currently | ||
417 | * copying into relative to the start of the compressed data. | ||
418 | */ | ||
419 | start_byte = page_offset(page_out) - disk_start; | ||
420 | |||
421 | if (working_bytes == 0) { | ||
422 | /* we didn't make progress in this inflate | ||
423 | * call, we're done | ||
424 | */ | ||
425 | if (ret != Z_STREAM_END) | ||
426 | ret = -1; | ||
427 | break; | ||
428 | } | ||
429 | |||
430 | /* we haven't yet hit data corresponding to this page */ | ||
431 | if (total_out <= start_byte) | ||
432 | goto next; | ||
433 | |||
434 | /* | ||
435 | * the start of the data we care about is offset into | ||
436 | * the middle of our working buffer | ||
437 | */ | ||
438 | if (total_out > start_byte && buf_start < start_byte) { | ||
439 | buf_offset = start_byte - buf_start; | ||
440 | working_bytes -= buf_offset; | ||
441 | } else { | ||
442 | buf_offset = 0; | ||
443 | } | ||
444 | current_buf_start = buf_start; | ||
445 | |||
446 | /* copy bytes from the working buffer into the pages */ | ||
447 | while (working_bytes > 0) { | ||
448 | bytes = min(PAGE_CACHE_SIZE - pg_offset, | ||
449 | PAGE_CACHE_SIZE - buf_offset); | ||
450 | bytes = min(bytes, working_bytes); | ||
451 | kaddr = kmap_atomic(page_out, KM_USER0); | ||
452 | memcpy(kaddr + pg_offset, workspace->buf + buf_offset, | ||
453 | bytes); | ||
454 | kunmap_atomic(kaddr, KM_USER0); | ||
455 | flush_dcache_page(page_out); | ||
456 | |||
457 | pg_offset += bytes; | ||
458 | page_bytes_left -= bytes; | ||
459 | buf_offset += bytes; | ||
460 | working_bytes -= bytes; | ||
461 | current_buf_start += bytes; | ||
462 | |||
463 | /* check if we need to pick another page */ | ||
464 | if (page_bytes_left == 0) { | ||
465 | page_out_index++; | ||
466 | if (page_out_index >= vcnt) { | ||
467 | ret = 0; | ||
468 | goto done; | ||
469 | } | ||
470 | |||
471 | page_out = bvec[page_out_index].bv_page; | ||
472 | pg_offset = 0; | ||
473 | page_bytes_left = PAGE_CACHE_SIZE; | ||
474 | start_byte = page_offset(page_out) - disk_start; | ||
475 | |||
476 | /* | ||
477 | * make sure our new page is covered by this | ||
478 | * working buffer | ||
479 | */ | ||
480 | if (total_out <= start_byte) | ||
481 | goto next; | ||
482 | |||
483 | /* the next page in the biovec might not | ||
484 | * be adjacent to the last page, but it | ||
485 | * might still be found inside this working | ||
486 | * buffer. bump our offset pointer | ||
487 | */ | ||
488 | if (total_out > start_byte && | ||
489 | current_buf_start < start_byte) { | ||
490 | buf_offset = start_byte - buf_start; | ||
491 | working_bytes = total_out - start_byte; | ||
492 | current_buf_start = buf_start + | ||
493 | buf_offset; | ||
494 | } | ||
495 | } | ||
496 | } | ||
497 | next: | ||
498 | workspace->inf_strm.next_out = workspace->buf; | ||
499 | workspace->inf_strm.avail_out = PAGE_CACHE_SIZE; | ||
500 | |||
501 | if (workspace->inf_strm.avail_in == 0) { | ||
502 | unsigned long tmp; | ||
503 | kunmap(pages_in[page_in_index]); | ||
504 | page_in_index++; | ||
505 | if (page_in_index >= total_pages_in) { | ||
506 | data_in = NULL; | ||
507 | break; | ||
508 | } | ||
509 | data_in = kmap(pages_in[page_in_index]); | ||
510 | workspace->inf_strm.next_in = data_in; | ||
511 | tmp = srclen - workspace->inf_strm.total_in; | ||
512 | workspace->inf_strm.avail_in = min(tmp, | ||
513 | PAGE_CACHE_SIZE); | ||
514 | } | ||
515 | } | ||
516 | if (ret != Z_STREAM_END) | ||
517 | ret = -1; | ||
518 | else | ||
519 | ret = 0; | ||
520 | done: | ||
521 | zlib_inflateEnd(&workspace->inf_strm); | ||
522 | if (data_in) | ||
523 | kunmap(pages_in[page_in_index]); | ||
524 | out: | ||
525 | free_workspace(workspace); | ||
526 | return ret; | ||
527 | } | ||
528 | |||
529 | /* | ||
530 | * a less complex decompression routine. Our compressed data fits in a | ||
531 | * single page, and we want to read a single page out of it. | ||
532 | * start_byte tells us the offset into the compressed data we're interested in | ||
533 | */ | ||
534 | int btrfs_zlib_decompress(unsigned char *data_in, | ||
535 | struct page *dest_page, | ||
536 | unsigned long start_byte, | ||
537 | size_t srclen, size_t destlen) | ||
538 | { | ||
539 | int ret = 0; | ||
540 | int wbits = MAX_WBITS; | ||
541 | struct workspace *workspace; | ||
542 | unsigned long bytes_left = destlen; | ||
543 | unsigned long total_out = 0; | ||
544 | char *kaddr; | ||
545 | |||
546 | if (destlen > PAGE_CACHE_SIZE) | ||
547 | return -ENOMEM; | ||
548 | |||
549 | workspace = find_zlib_workspace(); | ||
550 | if (!workspace) | ||
551 | return -ENOMEM; | ||
552 | |||
553 | workspace->inf_strm.next_in = data_in; | ||
554 | workspace->inf_strm.avail_in = srclen; | ||
555 | workspace->inf_strm.total_in = 0; | ||
556 | |||
557 | workspace->inf_strm.next_out = workspace->buf; | ||
558 | workspace->inf_strm.avail_out = PAGE_CACHE_SIZE; | ||
559 | workspace->inf_strm.total_out = 0; | ||
560 | /* If it's deflate, and it's got no preset dictionary, then | ||
561 | we can tell zlib to skip the adler32 check. */ | ||
562 | if (srclen > 2 && !(data_in[1] & PRESET_DICT) && | ||
563 | ((data_in[0] & 0x0f) == Z_DEFLATED) && | ||
564 | !(((data_in[0]<<8) + data_in[1]) % 31)) { | ||
565 | |||
566 | wbits = -((data_in[0] >> 4) + 8); | ||
567 | workspace->inf_strm.next_in += 2; | ||
568 | workspace->inf_strm.avail_in -= 2; | ||
569 | } | ||
570 | |||
571 | if (Z_OK != zlib_inflateInit2(&workspace->inf_strm, wbits)) { | ||
572 | printk(KERN_WARNING "inflateInit failed\n"); | ||
573 | ret = -1; | ||
574 | goto out; | ||
575 | } | ||
576 | |||
577 | while (bytes_left > 0) { | ||
578 | unsigned long buf_start; | ||
579 | unsigned long buf_offset; | ||
580 | unsigned long bytes; | ||
581 | unsigned long pg_offset = 0; | ||
582 | |||
583 | ret = zlib_inflate(&workspace->inf_strm, Z_NO_FLUSH); | ||
584 | if (ret != Z_OK && ret != Z_STREAM_END) | ||
585 | break; | ||
586 | |||
587 | buf_start = total_out; | ||
588 | total_out = workspace->inf_strm.total_out; | ||
589 | |||
590 | if (total_out == buf_start) { | ||
591 | ret = -1; | ||
592 | break; | ||
593 | } | ||
594 | |||
595 | if (total_out <= start_byte) | ||
596 | goto next; | ||
597 | |||
598 | if (total_out > start_byte && buf_start < start_byte) | ||
599 | buf_offset = start_byte - buf_start; | ||
600 | else | ||
601 | buf_offset = 0; | ||
602 | |||
603 | bytes = min(PAGE_CACHE_SIZE - pg_offset, | ||
604 | PAGE_CACHE_SIZE - buf_offset); | ||
605 | bytes = min(bytes, bytes_left); | ||
606 | |||
607 | kaddr = kmap_atomic(dest_page, KM_USER0); | ||
608 | memcpy(kaddr + pg_offset, workspace->buf + buf_offset, bytes); | ||
609 | kunmap_atomic(kaddr, KM_USER0); | ||
610 | |||
611 | pg_offset += bytes; | ||
612 | bytes_left -= bytes; | ||
613 | next: | ||
614 | workspace->inf_strm.next_out = workspace->buf; | ||
615 | workspace->inf_strm.avail_out = PAGE_CACHE_SIZE; | ||
616 | } | ||
617 | |||
618 | if (ret != Z_STREAM_END && bytes_left != 0) | ||
619 | ret = -1; | ||
620 | else | ||
621 | ret = 0; | ||
622 | |||
623 | zlib_inflateEnd(&workspace->inf_strm); | ||
624 | out: | ||
625 | free_workspace(workspace); | ||
626 | return ret; | ||
627 | } | ||
628 | |||
629 | void btrfs_zlib_exit(void) | ||
630 | { | ||
631 | free_workspaces(); | ||
632 | } | ||