diff options
Diffstat (limited to 'fs/btrfs/volumes.c')
-rw-r--r-- | fs/btrfs/volumes.c | 3219 |
1 files changed, 3219 insertions, 0 deletions
diff --git a/fs/btrfs/volumes.c b/fs/btrfs/volumes.c new file mode 100644 index 000000000000..3451e1cca2b5 --- /dev/null +++ b/fs/btrfs/volumes.c | |||
@@ -0,0 +1,3219 @@ | |||
1 | /* | ||
2 | * Copyright (C) 2007 Oracle. All rights reserved. | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or | ||
5 | * modify it under the terms of the GNU General Public | ||
6 | * License v2 as published by the Free Software Foundation. | ||
7 | * | ||
8 | * This program is distributed in the hope that it will be useful, | ||
9 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | ||
11 | * General Public License for more details. | ||
12 | * | ||
13 | * You should have received a copy of the GNU General Public | ||
14 | * License along with this program; if not, write to the | ||
15 | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | ||
16 | * Boston, MA 021110-1307, USA. | ||
17 | */ | ||
18 | #include <linux/sched.h> | ||
19 | #include <linux/bio.h> | ||
20 | #include <linux/buffer_head.h> | ||
21 | #include <linux/blkdev.h> | ||
22 | #include <linux/random.h> | ||
23 | #include <linux/version.h> | ||
24 | #include <asm/div64.h> | ||
25 | #include "compat.h" | ||
26 | #include "ctree.h" | ||
27 | #include "extent_map.h" | ||
28 | #include "disk-io.h" | ||
29 | #include "transaction.h" | ||
30 | #include "print-tree.h" | ||
31 | #include "volumes.h" | ||
32 | #include "async-thread.h" | ||
33 | |||
34 | struct map_lookup { | ||
35 | u64 type; | ||
36 | int io_align; | ||
37 | int io_width; | ||
38 | int stripe_len; | ||
39 | int sector_size; | ||
40 | int num_stripes; | ||
41 | int sub_stripes; | ||
42 | struct btrfs_bio_stripe stripes[]; | ||
43 | }; | ||
44 | |||
45 | static int init_first_rw_device(struct btrfs_trans_handle *trans, | ||
46 | struct btrfs_root *root, | ||
47 | struct btrfs_device *device); | ||
48 | static int btrfs_relocate_sys_chunks(struct btrfs_root *root); | ||
49 | |||
50 | #define map_lookup_size(n) (sizeof(struct map_lookup) + \ | ||
51 | (sizeof(struct btrfs_bio_stripe) * (n))) | ||
52 | |||
53 | static DEFINE_MUTEX(uuid_mutex); | ||
54 | static LIST_HEAD(fs_uuids); | ||
55 | |||
56 | void btrfs_lock_volumes(void) | ||
57 | { | ||
58 | mutex_lock(&uuid_mutex); | ||
59 | } | ||
60 | |||
61 | void btrfs_unlock_volumes(void) | ||
62 | { | ||
63 | mutex_unlock(&uuid_mutex); | ||
64 | } | ||
65 | |||
66 | static void lock_chunks(struct btrfs_root *root) | ||
67 | { | ||
68 | mutex_lock(&root->fs_info->chunk_mutex); | ||
69 | } | ||
70 | |||
71 | static void unlock_chunks(struct btrfs_root *root) | ||
72 | { | ||
73 | mutex_unlock(&root->fs_info->chunk_mutex); | ||
74 | } | ||
75 | |||
76 | static void free_fs_devices(struct btrfs_fs_devices *fs_devices) | ||
77 | { | ||
78 | struct btrfs_device *device; | ||
79 | WARN_ON(fs_devices->opened); | ||
80 | while (!list_empty(&fs_devices->devices)) { | ||
81 | device = list_entry(fs_devices->devices.next, | ||
82 | struct btrfs_device, dev_list); | ||
83 | list_del(&device->dev_list); | ||
84 | kfree(device->name); | ||
85 | kfree(device); | ||
86 | } | ||
87 | kfree(fs_devices); | ||
88 | } | ||
89 | |||
90 | int btrfs_cleanup_fs_uuids(void) | ||
91 | { | ||
92 | struct btrfs_fs_devices *fs_devices; | ||
93 | |||
94 | while (!list_empty(&fs_uuids)) { | ||
95 | fs_devices = list_entry(fs_uuids.next, | ||
96 | struct btrfs_fs_devices, list); | ||
97 | list_del(&fs_devices->list); | ||
98 | free_fs_devices(fs_devices); | ||
99 | } | ||
100 | return 0; | ||
101 | } | ||
102 | |||
103 | static noinline struct btrfs_device *__find_device(struct list_head *head, | ||
104 | u64 devid, u8 *uuid) | ||
105 | { | ||
106 | struct btrfs_device *dev; | ||
107 | struct list_head *cur; | ||
108 | |||
109 | list_for_each(cur, head) { | ||
110 | dev = list_entry(cur, struct btrfs_device, dev_list); | ||
111 | if (dev->devid == devid && | ||
112 | (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) { | ||
113 | return dev; | ||
114 | } | ||
115 | } | ||
116 | return NULL; | ||
117 | } | ||
118 | |||
119 | static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid) | ||
120 | { | ||
121 | struct list_head *cur; | ||
122 | struct btrfs_fs_devices *fs_devices; | ||
123 | |||
124 | list_for_each(cur, &fs_uuids) { | ||
125 | fs_devices = list_entry(cur, struct btrfs_fs_devices, list); | ||
126 | if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0) | ||
127 | return fs_devices; | ||
128 | } | ||
129 | return NULL; | ||
130 | } | ||
131 | |||
132 | /* | ||
133 | * we try to collect pending bios for a device so we don't get a large | ||
134 | * number of procs sending bios down to the same device. This greatly | ||
135 | * improves the schedulers ability to collect and merge the bios. | ||
136 | * | ||
137 | * But, it also turns into a long list of bios to process and that is sure | ||
138 | * to eventually make the worker thread block. The solution here is to | ||
139 | * make some progress and then put this work struct back at the end of | ||
140 | * the list if the block device is congested. This way, multiple devices | ||
141 | * can make progress from a single worker thread. | ||
142 | */ | ||
143 | static noinline int run_scheduled_bios(struct btrfs_device *device) | ||
144 | { | ||
145 | struct bio *pending; | ||
146 | struct backing_dev_info *bdi; | ||
147 | struct btrfs_fs_info *fs_info; | ||
148 | struct bio *tail; | ||
149 | struct bio *cur; | ||
150 | int again = 0; | ||
151 | unsigned long num_run = 0; | ||
152 | unsigned long limit; | ||
153 | |||
154 | bdi = device->bdev->bd_inode->i_mapping->backing_dev_info; | ||
155 | fs_info = device->dev_root->fs_info; | ||
156 | limit = btrfs_async_submit_limit(fs_info); | ||
157 | limit = limit * 2 / 3; | ||
158 | |||
159 | loop: | ||
160 | spin_lock(&device->io_lock); | ||
161 | |||
162 | /* take all the bios off the list at once and process them | ||
163 | * later on (without the lock held). But, remember the | ||
164 | * tail and other pointers so the bios can be properly reinserted | ||
165 | * into the list if we hit congestion | ||
166 | */ | ||
167 | pending = device->pending_bios; | ||
168 | tail = device->pending_bio_tail; | ||
169 | WARN_ON(pending && !tail); | ||
170 | device->pending_bios = NULL; | ||
171 | device->pending_bio_tail = NULL; | ||
172 | |||
173 | /* | ||
174 | * if pending was null this time around, no bios need processing | ||
175 | * at all and we can stop. Otherwise it'll loop back up again | ||
176 | * and do an additional check so no bios are missed. | ||
177 | * | ||
178 | * device->running_pending is used to synchronize with the | ||
179 | * schedule_bio code. | ||
180 | */ | ||
181 | if (pending) { | ||
182 | again = 1; | ||
183 | device->running_pending = 1; | ||
184 | } else { | ||
185 | again = 0; | ||
186 | device->running_pending = 0; | ||
187 | } | ||
188 | spin_unlock(&device->io_lock); | ||
189 | |||
190 | while (pending) { | ||
191 | cur = pending; | ||
192 | pending = pending->bi_next; | ||
193 | cur->bi_next = NULL; | ||
194 | atomic_dec(&fs_info->nr_async_bios); | ||
195 | |||
196 | if (atomic_read(&fs_info->nr_async_bios) < limit && | ||
197 | waitqueue_active(&fs_info->async_submit_wait)) | ||
198 | wake_up(&fs_info->async_submit_wait); | ||
199 | |||
200 | BUG_ON(atomic_read(&cur->bi_cnt) == 0); | ||
201 | bio_get(cur); | ||
202 | submit_bio(cur->bi_rw, cur); | ||
203 | bio_put(cur); | ||
204 | num_run++; | ||
205 | |||
206 | /* | ||
207 | * we made progress, there is more work to do and the bdi | ||
208 | * is now congested. Back off and let other work structs | ||
209 | * run instead | ||
210 | */ | ||
211 | if (pending && bdi_write_congested(bdi) && | ||
212 | fs_info->fs_devices->open_devices > 1) { | ||
213 | struct bio *old_head; | ||
214 | |||
215 | spin_lock(&device->io_lock); | ||
216 | |||
217 | old_head = device->pending_bios; | ||
218 | device->pending_bios = pending; | ||
219 | if (device->pending_bio_tail) | ||
220 | tail->bi_next = old_head; | ||
221 | else | ||
222 | device->pending_bio_tail = tail; | ||
223 | device->running_pending = 0; | ||
224 | |||
225 | spin_unlock(&device->io_lock); | ||
226 | btrfs_requeue_work(&device->work); | ||
227 | goto done; | ||
228 | } | ||
229 | } | ||
230 | if (again) | ||
231 | goto loop; | ||
232 | done: | ||
233 | return 0; | ||
234 | } | ||
235 | |||
236 | static void pending_bios_fn(struct btrfs_work *work) | ||
237 | { | ||
238 | struct btrfs_device *device; | ||
239 | |||
240 | device = container_of(work, struct btrfs_device, work); | ||
241 | run_scheduled_bios(device); | ||
242 | } | ||
243 | |||
244 | static noinline int device_list_add(const char *path, | ||
245 | struct btrfs_super_block *disk_super, | ||
246 | u64 devid, struct btrfs_fs_devices **fs_devices_ret) | ||
247 | { | ||
248 | struct btrfs_device *device; | ||
249 | struct btrfs_fs_devices *fs_devices; | ||
250 | u64 found_transid = btrfs_super_generation(disk_super); | ||
251 | |||
252 | fs_devices = find_fsid(disk_super->fsid); | ||
253 | if (!fs_devices) { | ||
254 | fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS); | ||
255 | if (!fs_devices) | ||
256 | return -ENOMEM; | ||
257 | INIT_LIST_HEAD(&fs_devices->devices); | ||
258 | INIT_LIST_HEAD(&fs_devices->alloc_list); | ||
259 | list_add(&fs_devices->list, &fs_uuids); | ||
260 | memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE); | ||
261 | fs_devices->latest_devid = devid; | ||
262 | fs_devices->latest_trans = found_transid; | ||
263 | device = NULL; | ||
264 | } else { | ||
265 | device = __find_device(&fs_devices->devices, devid, | ||
266 | disk_super->dev_item.uuid); | ||
267 | } | ||
268 | if (!device) { | ||
269 | if (fs_devices->opened) | ||
270 | return -EBUSY; | ||
271 | |||
272 | device = kzalloc(sizeof(*device), GFP_NOFS); | ||
273 | if (!device) { | ||
274 | /* we can safely leave the fs_devices entry around */ | ||
275 | return -ENOMEM; | ||
276 | } | ||
277 | device->devid = devid; | ||
278 | device->work.func = pending_bios_fn; | ||
279 | memcpy(device->uuid, disk_super->dev_item.uuid, | ||
280 | BTRFS_UUID_SIZE); | ||
281 | device->barriers = 1; | ||
282 | spin_lock_init(&device->io_lock); | ||
283 | device->name = kstrdup(path, GFP_NOFS); | ||
284 | if (!device->name) { | ||
285 | kfree(device); | ||
286 | return -ENOMEM; | ||
287 | } | ||
288 | INIT_LIST_HEAD(&device->dev_alloc_list); | ||
289 | list_add(&device->dev_list, &fs_devices->devices); | ||
290 | device->fs_devices = fs_devices; | ||
291 | fs_devices->num_devices++; | ||
292 | } | ||
293 | |||
294 | if (found_transid > fs_devices->latest_trans) { | ||
295 | fs_devices->latest_devid = devid; | ||
296 | fs_devices->latest_trans = found_transid; | ||
297 | } | ||
298 | *fs_devices_ret = fs_devices; | ||
299 | return 0; | ||
300 | } | ||
301 | |||
302 | static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig) | ||
303 | { | ||
304 | struct btrfs_fs_devices *fs_devices; | ||
305 | struct btrfs_device *device; | ||
306 | struct btrfs_device *orig_dev; | ||
307 | |||
308 | fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS); | ||
309 | if (!fs_devices) | ||
310 | return ERR_PTR(-ENOMEM); | ||
311 | |||
312 | INIT_LIST_HEAD(&fs_devices->devices); | ||
313 | INIT_LIST_HEAD(&fs_devices->alloc_list); | ||
314 | INIT_LIST_HEAD(&fs_devices->list); | ||
315 | fs_devices->latest_devid = orig->latest_devid; | ||
316 | fs_devices->latest_trans = orig->latest_trans; | ||
317 | memcpy(fs_devices->fsid, orig->fsid, sizeof(fs_devices->fsid)); | ||
318 | |||
319 | list_for_each_entry(orig_dev, &orig->devices, dev_list) { | ||
320 | device = kzalloc(sizeof(*device), GFP_NOFS); | ||
321 | if (!device) | ||
322 | goto error; | ||
323 | |||
324 | device->name = kstrdup(orig_dev->name, GFP_NOFS); | ||
325 | if (!device->name) | ||
326 | goto error; | ||
327 | |||
328 | device->devid = orig_dev->devid; | ||
329 | device->work.func = pending_bios_fn; | ||
330 | memcpy(device->uuid, orig_dev->uuid, sizeof(device->uuid)); | ||
331 | device->barriers = 1; | ||
332 | spin_lock_init(&device->io_lock); | ||
333 | INIT_LIST_HEAD(&device->dev_list); | ||
334 | INIT_LIST_HEAD(&device->dev_alloc_list); | ||
335 | |||
336 | list_add(&device->dev_list, &fs_devices->devices); | ||
337 | device->fs_devices = fs_devices; | ||
338 | fs_devices->num_devices++; | ||
339 | } | ||
340 | return fs_devices; | ||
341 | error: | ||
342 | free_fs_devices(fs_devices); | ||
343 | return ERR_PTR(-ENOMEM); | ||
344 | } | ||
345 | |||
346 | int btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices) | ||
347 | { | ||
348 | struct list_head *tmp; | ||
349 | struct list_head *cur; | ||
350 | struct btrfs_device *device; | ||
351 | |||
352 | mutex_lock(&uuid_mutex); | ||
353 | again: | ||
354 | list_for_each_safe(cur, tmp, &fs_devices->devices) { | ||
355 | device = list_entry(cur, struct btrfs_device, dev_list); | ||
356 | if (device->in_fs_metadata) | ||
357 | continue; | ||
358 | |||
359 | if (device->bdev) { | ||
360 | close_bdev_exclusive(device->bdev, device->mode); | ||
361 | device->bdev = NULL; | ||
362 | fs_devices->open_devices--; | ||
363 | } | ||
364 | if (device->writeable) { | ||
365 | list_del_init(&device->dev_alloc_list); | ||
366 | device->writeable = 0; | ||
367 | fs_devices->rw_devices--; | ||
368 | } | ||
369 | list_del_init(&device->dev_list); | ||
370 | fs_devices->num_devices--; | ||
371 | kfree(device->name); | ||
372 | kfree(device); | ||
373 | } | ||
374 | |||
375 | if (fs_devices->seed) { | ||
376 | fs_devices = fs_devices->seed; | ||
377 | goto again; | ||
378 | } | ||
379 | |||
380 | mutex_unlock(&uuid_mutex); | ||
381 | return 0; | ||
382 | } | ||
383 | |||
384 | static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices) | ||
385 | { | ||
386 | struct list_head *cur; | ||
387 | struct btrfs_device *device; | ||
388 | |||
389 | if (--fs_devices->opened > 0) | ||
390 | return 0; | ||
391 | |||
392 | list_for_each(cur, &fs_devices->devices) { | ||
393 | device = list_entry(cur, struct btrfs_device, dev_list); | ||
394 | if (device->bdev) { | ||
395 | close_bdev_exclusive(device->bdev, device->mode); | ||
396 | fs_devices->open_devices--; | ||
397 | } | ||
398 | if (device->writeable) { | ||
399 | list_del_init(&device->dev_alloc_list); | ||
400 | fs_devices->rw_devices--; | ||
401 | } | ||
402 | |||
403 | device->bdev = NULL; | ||
404 | device->writeable = 0; | ||
405 | device->in_fs_metadata = 0; | ||
406 | } | ||
407 | WARN_ON(fs_devices->open_devices); | ||
408 | WARN_ON(fs_devices->rw_devices); | ||
409 | fs_devices->opened = 0; | ||
410 | fs_devices->seeding = 0; | ||
411 | |||
412 | return 0; | ||
413 | } | ||
414 | |||
415 | int btrfs_close_devices(struct btrfs_fs_devices *fs_devices) | ||
416 | { | ||
417 | struct btrfs_fs_devices *seed_devices = NULL; | ||
418 | int ret; | ||
419 | |||
420 | mutex_lock(&uuid_mutex); | ||
421 | ret = __btrfs_close_devices(fs_devices); | ||
422 | if (!fs_devices->opened) { | ||
423 | seed_devices = fs_devices->seed; | ||
424 | fs_devices->seed = NULL; | ||
425 | } | ||
426 | mutex_unlock(&uuid_mutex); | ||
427 | |||
428 | while (seed_devices) { | ||
429 | fs_devices = seed_devices; | ||
430 | seed_devices = fs_devices->seed; | ||
431 | __btrfs_close_devices(fs_devices); | ||
432 | free_fs_devices(fs_devices); | ||
433 | } | ||
434 | return ret; | ||
435 | } | ||
436 | |||
437 | static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices, | ||
438 | fmode_t flags, void *holder) | ||
439 | { | ||
440 | struct block_device *bdev; | ||
441 | struct list_head *head = &fs_devices->devices; | ||
442 | struct list_head *cur; | ||
443 | struct btrfs_device *device; | ||
444 | struct block_device *latest_bdev = NULL; | ||
445 | struct buffer_head *bh; | ||
446 | struct btrfs_super_block *disk_super; | ||
447 | u64 latest_devid = 0; | ||
448 | u64 latest_transid = 0; | ||
449 | u64 devid; | ||
450 | int seeding = 1; | ||
451 | int ret = 0; | ||
452 | |||
453 | list_for_each(cur, head) { | ||
454 | device = list_entry(cur, struct btrfs_device, dev_list); | ||
455 | if (device->bdev) | ||
456 | continue; | ||
457 | if (!device->name) | ||
458 | continue; | ||
459 | |||
460 | bdev = open_bdev_exclusive(device->name, flags, holder); | ||
461 | if (IS_ERR(bdev)) { | ||
462 | printk(KERN_INFO "open %s failed\n", device->name); | ||
463 | goto error; | ||
464 | } | ||
465 | set_blocksize(bdev, 4096); | ||
466 | |||
467 | bh = btrfs_read_dev_super(bdev); | ||
468 | if (!bh) | ||
469 | goto error_close; | ||
470 | |||
471 | disk_super = (struct btrfs_super_block *)bh->b_data; | ||
472 | devid = le64_to_cpu(disk_super->dev_item.devid); | ||
473 | if (devid != device->devid) | ||
474 | goto error_brelse; | ||
475 | |||
476 | if (memcmp(device->uuid, disk_super->dev_item.uuid, | ||
477 | BTRFS_UUID_SIZE)) | ||
478 | goto error_brelse; | ||
479 | |||
480 | device->generation = btrfs_super_generation(disk_super); | ||
481 | if (!latest_transid || device->generation > latest_transid) { | ||
482 | latest_devid = devid; | ||
483 | latest_transid = device->generation; | ||
484 | latest_bdev = bdev; | ||
485 | } | ||
486 | |||
487 | if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) { | ||
488 | device->writeable = 0; | ||
489 | } else { | ||
490 | device->writeable = !bdev_read_only(bdev); | ||
491 | seeding = 0; | ||
492 | } | ||
493 | |||
494 | device->bdev = bdev; | ||
495 | device->in_fs_metadata = 0; | ||
496 | device->mode = flags; | ||
497 | |||
498 | fs_devices->open_devices++; | ||
499 | if (device->writeable) { | ||
500 | fs_devices->rw_devices++; | ||
501 | list_add(&device->dev_alloc_list, | ||
502 | &fs_devices->alloc_list); | ||
503 | } | ||
504 | continue; | ||
505 | |||
506 | error_brelse: | ||
507 | brelse(bh); | ||
508 | error_close: | ||
509 | close_bdev_exclusive(bdev, FMODE_READ); | ||
510 | error: | ||
511 | continue; | ||
512 | } | ||
513 | if (fs_devices->open_devices == 0) { | ||
514 | ret = -EIO; | ||
515 | goto out; | ||
516 | } | ||
517 | fs_devices->seeding = seeding; | ||
518 | fs_devices->opened = 1; | ||
519 | fs_devices->latest_bdev = latest_bdev; | ||
520 | fs_devices->latest_devid = latest_devid; | ||
521 | fs_devices->latest_trans = latest_transid; | ||
522 | fs_devices->total_rw_bytes = 0; | ||
523 | out: | ||
524 | return ret; | ||
525 | } | ||
526 | |||
527 | int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, | ||
528 | fmode_t flags, void *holder) | ||
529 | { | ||
530 | int ret; | ||
531 | |||
532 | mutex_lock(&uuid_mutex); | ||
533 | if (fs_devices->opened) { | ||
534 | fs_devices->opened++; | ||
535 | ret = 0; | ||
536 | } else { | ||
537 | ret = __btrfs_open_devices(fs_devices, flags, holder); | ||
538 | } | ||
539 | mutex_unlock(&uuid_mutex); | ||
540 | return ret; | ||
541 | } | ||
542 | |||
543 | int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder, | ||
544 | struct btrfs_fs_devices **fs_devices_ret) | ||
545 | { | ||
546 | struct btrfs_super_block *disk_super; | ||
547 | struct block_device *bdev; | ||
548 | struct buffer_head *bh; | ||
549 | int ret; | ||
550 | u64 devid; | ||
551 | u64 transid; | ||
552 | |||
553 | mutex_lock(&uuid_mutex); | ||
554 | |||
555 | bdev = open_bdev_exclusive(path, flags, holder); | ||
556 | |||
557 | if (IS_ERR(bdev)) { | ||
558 | ret = PTR_ERR(bdev); | ||
559 | goto error; | ||
560 | } | ||
561 | |||
562 | ret = set_blocksize(bdev, 4096); | ||
563 | if (ret) | ||
564 | goto error_close; | ||
565 | bh = btrfs_read_dev_super(bdev); | ||
566 | if (!bh) { | ||
567 | ret = -EIO; | ||
568 | goto error_close; | ||
569 | } | ||
570 | disk_super = (struct btrfs_super_block *)bh->b_data; | ||
571 | devid = le64_to_cpu(disk_super->dev_item.devid); | ||
572 | transid = btrfs_super_generation(disk_super); | ||
573 | if (disk_super->label[0]) | ||
574 | printk(KERN_INFO "device label %s ", disk_super->label); | ||
575 | else { | ||
576 | /* FIXME, make a readl uuid parser */ | ||
577 | printk(KERN_INFO "device fsid %llx-%llx ", | ||
578 | *(unsigned long long *)disk_super->fsid, | ||
579 | *(unsigned long long *)(disk_super->fsid + 8)); | ||
580 | } | ||
581 | printk(KERN_INFO "devid %llu transid %llu %s\n", | ||
582 | (unsigned long long)devid, (unsigned long long)transid, path); | ||
583 | ret = device_list_add(path, disk_super, devid, fs_devices_ret); | ||
584 | |||
585 | brelse(bh); | ||
586 | error_close: | ||
587 | close_bdev_exclusive(bdev, flags); | ||
588 | error: | ||
589 | mutex_unlock(&uuid_mutex); | ||
590 | return ret; | ||
591 | } | ||
592 | |||
593 | /* | ||
594 | * this uses a pretty simple search, the expectation is that it is | ||
595 | * called very infrequently and that a given device has a small number | ||
596 | * of extents | ||
597 | */ | ||
598 | static noinline int find_free_dev_extent(struct btrfs_trans_handle *trans, | ||
599 | struct btrfs_device *device, | ||
600 | u64 num_bytes, u64 *start) | ||
601 | { | ||
602 | struct btrfs_key key; | ||
603 | struct btrfs_root *root = device->dev_root; | ||
604 | struct btrfs_dev_extent *dev_extent = NULL; | ||
605 | struct btrfs_path *path; | ||
606 | u64 hole_size = 0; | ||
607 | u64 last_byte = 0; | ||
608 | u64 search_start = 0; | ||
609 | u64 search_end = device->total_bytes; | ||
610 | int ret; | ||
611 | int slot = 0; | ||
612 | int start_found; | ||
613 | struct extent_buffer *l; | ||
614 | |||
615 | path = btrfs_alloc_path(); | ||
616 | if (!path) | ||
617 | return -ENOMEM; | ||
618 | path->reada = 2; | ||
619 | start_found = 0; | ||
620 | |||
621 | /* FIXME use last free of some kind */ | ||
622 | |||
623 | /* we don't want to overwrite the superblock on the drive, | ||
624 | * so we make sure to start at an offset of at least 1MB | ||
625 | */ | ||
626 | search_start = max((u64)1024 * 1024, search_start); | ||
627 | |||
628 | if (root->fs_info->alloc_start + num_bytes <= device->total_bytes) | ||
629 | search_start = max(root->fs_info->alloc_start, search_start); | ||
630 | |||
631 | key.objectid = device->devid; | ||
632 | key.offset = search_start; | ||
633 | key.type = BTRFS_DEV_EXTENT_KEY; | ||
634 | ret = btrfs_search_slot(trans, root, &key, path, 0, 0); | ||
635 | if (ret < 0) | ||
636 | goto error; | ||
637 | ret = btrfs_previous_item(root, path, 0, key.type); | ||
638 | if (ret < 0) | ||
639 | goto error; | ||
640 | l = path->nodes[0]; | ||
641 | btrfs_item_key_to_cpu(l, &key, path->slots[0]); | ||
642 | while (1) { | ||
643 | l = path->nodes[0]; | ||
644 | slot = path->slots[0]; | ||
645 | if (slot >= btrfs_header_nritems(l)) { | ||
646 | ret = btrfs_next_leaf(root, path); | ||
647 | if (ret == 0) | ||
648 | continue; | ||
649 | if (ret < 0) | ||
650 | goto error; | ||
651 | no_more_items: | ||
652 | if (!start_found) { | ||
653 | if (search_start >= search_end) { | ||
654 | ret = -ENOSPC; | ||
655 | goto error; | ||
656 | } | ||
657 | *start = search_start; | ||
658 | start_found = 1; | ||
659 | goto check_pending; | ||
660 | } | ||
661 | *start = last_byte > search_start ? | ||
662 | last_byte : search_start; | ||
663 | if (search_end <= *start) { | ||
664 | ret = -ENOSPC; | ||
665 | goto error; | ||
666 | } | ||
667 | goto check_pending; | ||
668 | } | ||
669 | btrfs_item_key_to_cpu(l, &key, slot); | ||
670 | |||
671 | if (key.objectid < device->devid) | ||
672 | goto next; | ||
673 | |||
674 | if (key.objectid > device->devid) | ||
675 | goto no_more_items; | ||
676 | |||
677 | if (key.offset >= search_start && key.offset > last_byte && | ||
678 | start_found) { | ||
679 | if (last_byte < search_start) | ||
680 | last_byte = search_start; | ||
681 | hole_size = key.offset - last_byte; | ||
682 | if (key.offset > last_byte && | ||
683 | hole_size >= num_bytes) { | ||
684 | *start = last_byte; | ||
685 | goto check_pending; | ||
686 | } | ||
687 | } | ||
688 | if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY) | ||
689 | goto next; | ||
690 | |||
691 | start_found = 1; | ||
692 | dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); | ||
693 | last_byte = key.offset + btrfs_dev_extent_length(l, dev_extent); | ||
694 | next: | ||
695 | path->slots[0]++; | ||
696 | cond_resched(); | ||
697 | } | ||
698 | check_pending: | ||
699 | /* we have to make sure we didn't find an extent that has already | ||
700 | * been allocated by the map tree or the original allocation | ||
701 | */ | ||
702 | BUG_ON(*start < search_start); | ||
703 | |||
704 | if (*start + num_bytes > search_end) { | ||
705 | ret = -ENOSPC; | ||
706 | goto error; | ||
707 | } | ||
708 | /* check for pending inserts here */ | ||
709 | ret = 0; | ||
710 | |||
711 | error: | ||
712 | btrfs_free_path(path); | ||
713 | return ret; | ||
714 | } | ||
715 | |||
716 | static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans, | ||
717 | struct btrfs_device *device, | ||
718 | u64 start) | ||
719 | { | ||
720 | int ret; | ||
721 | struct btrfs_path *path; | ||
722 | struct btrfs_root *root = device->dev_root; | ||
723 | struct btrfs_key key; | ||
724 | struct btrfs_key found_key; | ||
725 | struct extent_buffer *leaf = NULL; | ||
726 | struct btrfs_dev_extent *extent = NULL; | ||
727 | |||
728 | path = btrfs_alloc_path(); | ||
729 | if (!path) | ||
730 | return -ENOMEM; | ||
731 | |||
732 | key.objectid = device->devid; | ||
733 | key.offset = start; | ||
734 | key.type = BTRFS_DEV_EXTENT_KEY; | ||
735 | |||
736 | ret = btrfs_search_slot(trans, root, &key, path, -1, 1); | ||
737 | if (ret > 0) { | ||
738 | ret = btrfs_previous_item(root, path, key.objectid, | ||
739 | BTRFS_DEV_EXTENT_KEY); | ||
740 | BUG_ON(ret); | ||
741 | leaf = path->nodes[0]; | ||
742 | btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); | ||
743 | extent = btrfs_item_ptr(leaf, path->slots[0], | ||
744 | struct btrfs_dev_extent); | ||
745 | BUG_ON(found_key.offset > start || found_key.offset + | ||
746 | btrfs_dev_extent_length(leaf, extent) < start); | ||
747 | ret = 0; | ||
748 | } else if (ret == 0) { | ||
749 | leaf = path->nodes[0]; | ||
750 | extent = btrfs_item_ptr(leaf, path->slots[0], | ||
751 | struct btrfs_dev_extent); | ||
752 | } | ||
753 | BUG_ON(ret); | ||
754 | |||
755 | if (device->bytes_used > 0) | ||
756 | device->bytes_used -= btrfs_dev_extent_length(leaf, extent); | ||
757 | ret = btrfs_del_item(trans, root, path); | ||
758 | BUG_ON(ret); | ||
759 | |||
760 | btrfs_free_path(path); | ||
761 | return ret; | ||
762 | } | ||
763 | |||
764 | int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans, | ||
765 | struct btrfs_device *device, | ||
766 | u64 chunk_tree, u64 chunk_objectid, | ||
767 | u64 chunk_offset, u64 start, u64 num_bytes) | ||
768 | { | ||
769 | int ret; | ||
770 | struct btrfs_path *path; | ||
771 | struct btrfs_root *root = device->dev_root; | ||
772 | struct btrfs_dev_extent *extent; | ||
773 | struct extent_buffer *leaf; | ||
774 | struct btrfs_key key; | ||
775 | |||
776 | WARN_ON(!device->in_fs_metadata); | ||
777 | path = btrfs_alloc_path(); | ||
778 | if (!path) | ||
779 | return -ENOMEM; | ||
780 | |||
781 | key.objectid = device->devid; | ||
782 | key.offset = start; | ||
783 | key.type = BTRFS_DEV_EXTENT_KEY; | ||
784 | ret = btrfs_insert_empty_item(trans, root, path, &key, | ||
785 | sizeof(*extent)); | ||
786 | BUG_ON(ret); | ||
787 | |||
788 | leaf = path->nodes[0]; | ||
789 | extent = btrfs_item_ptr(leaf, path->slots[0], | ||
790 | struct btrfs_dev_extent); | ||
791 | btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree); | ||
792 | btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid); | ||
793 | btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset); | ||
794 | |||
795 | write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid, | ||
796 | (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent), | ||
797 | BTRFS_UUID_SIZE); | ||
798 | |||
799 | btrfs_set_dev_extent_length(leaf, extent, num_bytes); | ||
800 | btrfs_mark_buffer_dirty(leaf); | ||
801 | btrfs_free_path(path); | ||
802 | return ret; | ||
803 | } | ||
804 | |||
805 | static noinline int find_next_chunk(struct btrfs_root *root, | ||
806 | u64 objectid, u64 *offset) | ||
807 | { | ||
808 | struct btrfs_path *path; | ||
809 | int ret; | ||
810 | struct btrfs_key key; | ||
811 | struct btrfs_chunk *chunk; | ||
812 | struct btrfs_key found_key; | ||
813 | |||
814 | path = btrfs_alloc_path(); | ||
815 | BUG_ON(!path); | ||
816 | |||
817 | key.objectid = objectid; | ||
818 | key.offset = (u64)-1; | ||
819 | key.type = BTRFS_CHUNK_ITEM_KEY; | ||
820 | |||
821 | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | ||
822 | if (ret < 0) | ||
823 | goto error; | ||
824 | |||
825 | BUG_ON(ret == 0); | ||
826 | |||
827 | ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY); | ||
828 | if (ret) { | ||
829 | *offset = 0; | ||
830 | } else { | ||
831 | btrfs_item_key_to_cpu(path->nodes[0], &found_key, | ||
832 | path->slots[0]); | ||
833 | if (found_key.objectid != objectid) | ||
834 | *offset = 0; | ||
835 | else { | ||
836 | chunk = btrfs_item_ptr(path->nodes[0], path->slots[0], | ||
837 | struct btrfs_chunk); | ||
838 | *offset = found_key.offset + | ||
839 | btrfs_chunk_length(path->nodes[0], chunk); | ||
840 | } | ||
841 | } | ||
842 | ret = 0; | ||
843 | error: | ||
844 | btrfs_free_path(path); | ||
845 | return ret; | ||
846 | } | ||
847 | |||
848 | static noinline int find_next_devid(struct btrfs_root *root, u64 *objectid) | ||
849 | { | ||
850 | int ret; | ||
851 | struct btrfs_key key; | ||
852 | struct btrfs_key found_key; | ||
853 | struct btrfs_path *path; | ||
854 | |||
855 | root = root->fs_info->chunk_root; | ||
856 | |||
857 | path = btrfs_alloc_path(); | ||
858 | if (!path) | ||
859 | return -ENOMEM; | ||
860 | |||
861 | key.objectid = BTRFS_DEV_ITEMS_OBJECTID; | ||
862 | key.type = BTRFS_DEV_ITEM_KEY; | ||
863 | key.offset = (u64)-1; | ||
864 | |||
865 | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | ||
866 | if (ret < 0) | ||
867 | goto error; | ||
868 | |||
869 | BUG_ON(ret == 0); | ||
870 | |||
871 | ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID, | ||
872 | BTRFS_DEV_ITEM_KEY); | ||
873 | if (ret) { | ||
874 | *objectid = 1; | ||
875 | } else { | ||
876 | btrfs_item_key_to_cpu(path->nodes[0], &found_key, | ||
877 | path->slots[0]); | ||
878 | *objectid = found_key.offset + 1; | ||
879 | } | ||
880 | ret = 0; | ||
881 | error: | ||
882 | btrfs_free_path(path); | ||
883 | return ret; | ||
884 | } | ||
885 | |||
886 | /* | ||
887 | * the device information is stored in the chunk root | ||
888 | * the btrfs_device struct should be fully filled in | ||
889 | */ | ||
890 | int btrfs_add_device(struct btrfs_trans_handle *trans, | ||
891 | struct btrfs_root *root, | ||
892 | struct btrfs_device *device) | ||
893 | { | ||
894 | int ret; | ||
895 | struct btrfs_path *path; | ||
896 | struct btrfs_dev_item *dev_item; | ||
897 | struct extent_buffer *leaf; | ||
898 | struct btrfs_key key; | ||
899 | unsigned long ptr; | ||
900 | |||
901 | root = root->fs_info->chunk_root; | ||
902 | |||
903 | path = btrfs_alloc_path(); | ||
904 | if (!path) | ||
905 | return -ENOMEM; | ||
906 | |||
907 | key.objectid = BTRFS_DEV_ITEMS_OBJECTID; | ||
908 | key.type = BTRFS_DEV_ITEM_KEY; | ||
909 | key.offset = device->devid; | ||
910 | |||
911 | ret = btrfs_insert_empty_item(trans, root, path, &key, | ||
912 | sizeof(*dev_item)); | ||
913 | if (ret) | ||
914 | goto out; | ||
915 | |||
916 | leaf = path->nodes[0]; | ||
917 | dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); | ||
918 | |||
919 | btrfs_set_device_id(leaf, dev_item, device->devid); | ||
920 | btrfs_set_device_generation(leaf, dev_item, 0); | ||
921 | btrfs_set_device_type(leaf, dev_item, device->type); | ||
922 | btrfs_set_device_io_align(leaf, dev_item, device->io_align); | ||
923 | btrfs_set_device_io_width(leaf, dev_item, device->io_width); | ||
924 | btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); | ||
925 | btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes); | ||
926 | btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used); | ||
927 | btrfs_set_device_group(leaf, dev_item, 0); | ||
928 | btrfs_set_device_seek_speed(leaf, dev_item, 0); | ||
929 | btrfs_set_device_bandwidth(leaf, dev_item, 0); | ||
930 | btrfs_set_device_start_offset(leaf, dev_item, 0); | ||
931 | |||
932 | ptr = (unsigned long)btrfs_device_uuid(dev_item); | ||
933 | write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); | ||
934 | ptr = (unsigned long)btrfs_device_fsid(dev_item); | ||
935 | write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE); | ||
936 | btrfs_mark_buffer_dirty(leaf); | ||
937 | |||
938 | ret = 0; | ||
939 | out: | ||
940 | btrfs_free_path(path); | ||
941 | return ret; | ||
942 | } | ||
943 | |||
944 | static int btrfs_rm_dev_item(struct btrfs_root *root, | ||
945 | struct btrfs_device *device) | ||
946 | { | ||
947 | int ret; | ||
948 | struct btrfs_path *path; | ||
949 | struct btrfs_key key; | ||
950 | struct btrfs_trans_handle *trans; | ||
951 | |||
952 | root = root->fs_info->chunk_root; | ||
953 | |||
954 | path = btrfs_alloc_path(); | ||
955 | if (!path) | ||
956 | return -ENOMEM; | ||
957 | |||
958 | trans = btrfs_start_transaction(root, 1); | ||
959 | key.objectid = BTRFS_DEV_ITEMS_OBJECTID; | ||
960 | key.type = BTRFS_DEV_ITEM_KEY; | ||
961 | key.offset = device->devid; | ||
962 | lock_chunks(root); | ||
963 | |||
964 | ret = btrfs_search_slot(trans, root, &key, path, -1, 1); | ||
965 | if (ret < 0) | ||
966 | goto out; | ||
967 | |||
968 | if (ret > 0) { | ||
969 | ret = -ENOENT; | ||
970 | goto out; | ||
971 | } | ||
972 | |||
973 | ret = btrfs_del_item(trans, root, path); | ||
974 | if (ret) | ||
975 | goto out; | ||
976 | out: | ||
977 | btrfs_free_path(path); | ||
978 | unlock_chunks(root); | ||
979 | btrfs_commit_transaction(trans, root); | ||
980 | return ret; | ||
981 | } | ||
982 | |||
983 | int btrfs_rm_device(struct btrfs_root *root, char *device_path) | ||
984 | { | ||
985 | struct btrfs_device *device; | ||
986 | struct btrfs_device *next_device; | ||
987 | struct block_device *bdev; | ||
988 | struct buffer_head *bh = NULL; | ||
989 | struct btrfs_super_block *disk_super; | ||
990 | u64 all_avail; | ||
991 | u64 devid; | ||
992 | u64 num_devices; | ||
993 | u8 *dev_uuid; | ||
994 | int ret = 0; | ||
995 | |||
996 | mutex_lock(&uuid_mutex); | ||
997 | mutex_lock(&root->fs_info->volume_mutex); | ||
998 | |||
999 | all_avail = root->fs_info->avail_data_alloc_bits | | ||
1000 | root->fs_info->avail_system_alloc_bits | | ||
1001 | root->fs_info->avail_metadata_alloc_bits; | ||
1002 | |||
1003 | if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && | ||
1004 | root->fs_info->fs_devices->rw_devices <= 4) { | ||
1005 | printk(KERN_ERR "btrfs: unable to go below four devices " | ||
1006 | "on raid10\n"); | ||
1007 | ret = -EINVAL; | ||
1008 | goto out; | ||
1009 | } | ||
1010 | |||
1011 | if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && | ||
1012 | root->fs_info->fs_devices->rw_devices <= 2) { | ||
1013 | printk(KERN_ERR "btrfs: unable to go below two " | ||
1014 | "devices on raid1\n"); | ||
1015 | ret = -EINVAL; | ||
1016 | goto out; | ||
1017 | } | ||
1018 | |||
1019 | if (strcmp(device_path, "missing") == 0) { | ||
1020 | struct list_head *cur; | ||
1021 | struct list_head *devices; | ||
1022 | struct btrfs_device *tmp; | ||
1023 | |||
1024 | device = NULL; | ||
1025 | devices = &root->fs_info->fs_devices->devices; | ||
1026 | list_for_each(cur, devices) { | ||
1027 | tmp = list_entry(cur, struct btrfs_device, dev_list); | ||
1028 | if (tmp->in_fs_metadata && !tmp->bdev) { | ||
1029 | device = tmp; | ||
1030 | break; | ||
1031 | } | ||
1032 | } | ||
1033 | bdev = NULL; | ||
1034 | bh = NULL; | ||
1035 | disk_super = NULL; | ||
1036 | if (!device) { | ||
1037 | printk(KERN_ERR "btrfs: no missing devices found to " | ||
1038 | "remove\n"); | ||
1039 | goto out; | ||
1040 | } | ||
1041 | } else { | ||
1042 | bdev = open_bdev_exclusive(device_path, FMODE_READ, | ||
1043 | root->fs_info->bdev_holder); | ||
1044 | if (IS_ERR(bdev)) { | ||
1045 | ret = PTR_ERR(bdev); | ||
1046 | goto out; | ||
1047 | } | ||
1048 | |||
1049 | set_blocksize(bdev, 4096); | ||
1050 | bh = btrfs_read_dev_super(bdev); | ||
1051 | if (!bh) { | ||
1052 | ret = -EIO; | ||
1053 | goto error_close; | ||
1054 | } | ||
1055 | disk_super = (struct btrfs_super_block *)bh->b_data; | ||
1056 | devid = le64_to_cpu(disk_super->dev_item.devid); | ||
1057 | dev_uuid = disk_super->dev_item.uuid; | ||
1058 | device = btrfs_find_device(root, devid, dev_uuid, | ||
1059 | disk_super->fsid); | ||
1060 | if (!device) { | ||
1061 | ret = -ENOENT; | ||
1062 | goto error_brelse; | ||
1063 | } | ||
1064 | } | ||
1065 | |||
1066 | if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) { | ||
1067 | printk(KERN_ERR "btrfs: unable to remove the only writeable " | ||
1068 | "device\n"); | ||
1069 | ret = -EINVAL; | ||
1070 | goto error_brelse; | ||
1071 | } | ||
1072 | |||
1073 | if (device->writeable) { | ||
1074 | list_del_init(&device->dev_alloc_list); | ||
1075 | root->fs_info->fs_devices->rw_devices--; | ||
1076 | } | ||
1077 | |||
1078 | ret = btrfs_shrink_device(device, 0); | ||
1079 | if (ret) | ||
1080 | goto error_brelse; | ||
1081 | |||
1082 | ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device); | ||
1083 | if (ret) | ||
1084 | goto error_brelse; | ||
1085 | |||
1086 | device->in_fs_metadata = 0; | ||
1087 | list_del_init(&device->dev_list); | ||
1088 | device->fs_devices->num_devices--; | ||
1089 | |||
1090 | next_device = list_entry(root->fs_info->fs_devices->devices.next, | ||
1091 | struct btrfs_device, dev_list); | ||
1092 | if (device->bdev == root->fs_info->sb->s_bdev) | ||
1093 | root->fs_info->sb->s_bdev = next_device->bdev; | ||
1094 | if (device->bdev == root->fs_info->fs_devices->latest_bdev) | ||
1095 | root->fs_info->fs_devices->latest_bdev = next_device->bdev; | ||
1096 | |||
1097 | if (device->bdev) { | ||
1098 | close_bdev_exclusive(device->bdev, device->mode); | ||
1099 | device->bdev = NULL; | ||
1100 | device->fs_devices->open_devices--; | ||
1101 | } | ||
1102 | |||
1103 | num_devices = btrfs_super_num_devices(&root->fs_info->super_copy) - 1; | ||
1104 | btrfs_set_super_num_devices(&root->fs_info->super_copy, num_devices); | ||
1105 | |||
1106 | if (device->fs_devices->open_devices == 0) { | ||
1107 | struct btrfs_fs_devices *fs_devices; | ||
1108 | fs_devices = root->fs_info->fs_devices; | ||
1109 | while (fs_devices) { | ||
1110 | if (fs_devices->seed == device->fs_devices) | ||
1111 | break; | ||
1112 | fs_devices = fs_devices->seed; | ||
1113 | } | ||
1114 | fs_devices->seed = device->fs_devices->seed; | ||
1115 | device->fs_devices->seed = NULL; | ||
1116 | __btrfs_close_devices(device->fs_devices); | ||
1117 | free_fs_devices(device->fs_devices); | ||
1118 | } | ||
1119 | |||
1120 | /* | ||
1121 | * at this point, the device is zero sized. We want to | ||
1122 | * remove it from the devices list and zero out the old super | ||
1123 | */ | ||
1124 | if (device->writeable) { | ||
1125 | /* make sure this device isn't detected as part of | ||
1126 | * the FS anymore | ||
1127 | */ | ||
1128 | memset(&disk_super->magic, 0, sizeof(disk_super->magic)); | ||
1129 | set_buffer_dirty(bh); | ||
1130 | sync_dirty_buffer(bh); | ||
1131 | } | ||
1132 | |||
1133 | kfree(device->name); | ||
1134 | kfree(device); | ||
1135 | ret = 0; | ||
1136 | |||
1137 | error_brelse: | ||
1138 | brelse(bh); | ||
1139 | error_close: | ||
1140 | if (bdev) | ||
1141 | close_bdev_exclusive(bdev, FMODE_READ); | ||
1142 | out: | ||
1143 | mutex_unlock(&root->fs_info->volume_mutex); | ||
1144 | mutex_unlock(&uuid_mutex); | ||
1145 | return ret; | ||
1146 | } | ||
1147 | |||
1148 | /* | ||
1149 | * does all the dirty work required for changing file system's UUID. | ||
1150 | */ | ||
1151 | static int btrfs_prepare_sprout(struct btrfs_trans_handle *trans, | ||
1152 | struct btrfs_root *root) | ||
1153 | { | ||
1154 | struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; | ||
1155 | struct btrfs_fs_devices *old_devices; | ||
1156 | struct btrfs_fs_devices *seed_devices; | ||
1157 | struct btrfs_super_block *disk_super = &root->fs_info->super_copy; | ||
1158 | struct btrfs_device *device; | ||
1159 | u64 super_flags; | ||
1160 | |||
1161 | BUG_ON(!mutex_is_locked(&uuid_mutex)); | ||
1162 | if (!fs_devices->seeding) | ||
1163 | return -EINVAL; | ||
1164 | |||
1165 | seed_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS); | ||
1166 | if (!seed_devices) | ||
1167 | return -ENOMEM; | ||
1168 | |||
1169 | old_devices = clone_fs_devices(fs_devices); | ||
1170 | if (IS_ERR(old_devices)) { | ||
1171 | kfree(seed_devices); | ||
1172 | return PTR_ERR(old_devices); | ||
1173 | } | ||
1174 | |||
1175 | list_add(&old_devices->list, &fs_uuids); | ||
1176 | |||
1177 | memcpy(seed_devices, fs_devices, sizeof(*seed_devices)); | ||
1178 | seed_devices->opened = 1; | ||
1179 | INIT_LIST_HEAD(&seed_devices->devices); | ||
1180 | INIT_LIST_HEAD(&seed_devices->alloc_list); | ||
1181 | list_splice_init(&fs_devices->devices, &seed_devices->devices); | ||
1182 | list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list); | ||
1183 | list_for_each_entry(device, &seed_devices->devices, dev_list) { | ||
1184 | device->fs_devices = seed_devices; | ||
1185 | } | ||
1186 | |||
1187 | fs_devices->seeding = 0; | ||
1188 | fs_devices->num_devices = 0; | ||
1189 | fs_devices->open_devices = 0; | ||
1190 | fs_devices->seed = seed_devices; | ||
1191 | |||
1192 | generate_random_uuid(fs_devices->fsid); | ||
1193 | memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); | ||
1194 | memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); | ||
1195 | super_flags = btrfs_super_flags(disk_super) & | ||
1196 | ~BTRFS_SUPER_FLAG_SEEDING; | ||
1197 | btrfs_set_super_flags(disk_super, super_flags); | ||
1198 | |||
1199 | return 0; | ||
1200 | } | ||
1201 | |||
1202 | /* | ||
1203 | * strore the expected generation for seed devices in device items. | ||
1204 | */ | ||
1205 | static int btrfs_finish_sprout(struct btrfs_trans_handle *trans, | ||
1206 | struct btrfs_root *root) | ||
1207 | { | ||
1208 | struct btrfs_path *path; | ||
1209 | struct extent_buffer *leaf; | ||
1210 | struct btrfs_dev_item *dev_item; | ||
1211 | struct btrfs_device *device; | ||
1212 | struct btrfs_key key; | ||
1213 | u8 fs_uuid[BTRFS_UUID_SIZE]; | ||
1214 | u8 dev_uuid[BTRFS_UUID_SIZE]; | ||
1215 | u64 devid; | ||
1216 | int ret; | ||
1217 | |||
1218 | path = btrfs_alloc_path(); | ||
1219 | if (!path) | ||
1220 | return -ENOMEM; | ||
1221 | |||
1222 | root = root->fs_info->chunk_root; | ||
1223 | key.objectid = BTRFS_DEV_ITEMS_OBJECTID; | ||
1224 | key.offset = 0; | ||
1225 | key.type = BTRFS_DEV_ITEM_KEY; | ||
1226 | |||
1227 | while (1) { | ||
1228 | ret = btrfs_search_slot(trans, root, &key, path, 0, 1); | ||
1229 | if (ret < 0) | ||
1230 | goto error; | ||
1231 | |||
1232 | leaf = path->nodes[0]; | ||
1233 | next_slot: | ||
1234 | if (path->slots[0] >= btrfs_header_nritems(leaf)) { | ||
1235 | ret = btrfs_next_leaf(root, path); | ||
1236 | if (ret > 0) | ||
1237 | break; | ||
1238 | if (ret < 0) | ||
1239 | goto error; | ||
1240 | leaf = path->nodes[0]; | ||
1241 | btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); | ||
1242 | btrfs_release_path(root, path); | ||
1243 | continue; | ||
1244 | } | ||
1245 | |||
1246 | btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); | ||
1247 | if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID || | ||
1248 | key.type != BTRFS_DEV_ITEM_KEY) | ||
1249 | break; | ||
1250 | |||
1251 | dev_item = btrfs_item_ptr(leaf, path->slots[0], | ||
1252 | struct btrfs_dev_item); | ||
1253 | devid = btrfs_device_id(leaf, dev_item); | ||
1254 | read_extent_buffer(leaf, dev_uuid, | ||
1255 | (unsigned long)btrfs_device_uuid(dev_item), | ||
1256 | BTRFS_UUID_SIZE); | ||
1257 | read_extent_buffer(leaf, fs_uuid, | ||
1258 | (unsigned long)btrfs_device_fsid(dev_item), | ||
1259 | BTRFS_UUID_SIZE); | ||
1260 | device = btrfs_find_device(root, devid, dev_uuid, fs_uuid); | ||
1261 | BUG_ON(!device); | ||
1262 | |||
1263 | if (device->fs_devices->seeding) { | ||
1264 | btrfs_set_device_generation(leaf, dev_item, | ||
1265 | device->generation); | ||
1266 | btrfs_mark_buffer_dirty(leaf); | ||
1267 | } | ||
1268 | |||
1269 | path->slots[0]++; | ||
1270 | goto next_slot; | ||
1271 | } | ||
1272 | ret = 0; | ||
1273 | error: | ||
1274 | btrfs_free_path(path); | ||
1275 | return ret; | ||
1276 | } | ||
1277 | |||
1278 | int btrfs_init_new_device(struct btrfs_root *root, char *device_path) | ||
1279 | { | ||
1280 | struct btrfs_trans_handle *trans; | ||
1281 | struct btrfs_device *device; | ||
1282 | struct block_device *bdev; | ||
1283 | struct list_head *cur; | ||
1284 | struct list_head *devices; | ||
1285 | struct super_block *sb = root->fs_info->sb; | ||
1286 | u64 total_bytes; | ||
1287 | int seeding_dev = 0; | ||
1288 | int ret = 0; | ||
1289 | |||
1290 | if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding) | ||
1291 | return -EINVAL; | ||
1292 | |||
1293 | bdev = open_bdev_exclusive(device_path, 0, root->fs_info->bdev_holder); | ||
1294 | if (!bdev) | ||
1295 | return -EIO; | ||
1296 | |||
1297 | if (root->fs_info->fs_devices->seeding) { | ||
1298 | seeding_dev = 1; | ||
1299 | down_write(&sb->s_umount); | ||
1300 | mutex_lock(&uuid_mutex); | ||
1301 | } | ||
1302 | |||
1303 | filemap_write_and_wait(bdev->bd_inode->i_mapping); | ||
1304 | mutex_lock(&root->fs_info->volume_mutex); | ||
1305 | |||
1306 | devices = &root->fs_info->fs_devices->devices; | ||
1307 | list_for_each(cur, devices) { | ||
1308 | device = list_entry(cur, struct btrfs_device, dev_list); | ||
1309 | if (device->bdev == bdev) { | ||
1310 | ret = -EEXIST; | ||
1311 | goto error; | ||
1312 | } | ||
1313 | } | ||
1314 | |||
1315 | device = kzalloc(sizeof(*device), GFP_NOFS); | ||
1316 | if (!device) { | ||
1317 | /* we can safely leave the fs_devices entry around */ | ||
1318 | ret = -ENOMEM; | ||
1319 | goto error; | ||
1320 | } | ||
1321 | |||
1322 | device->name = kstrdup(device_path, GFP_NOFS); | ||
1323 | if (!device->name) { | ||
1324 | kfree(device); | ||
1325 | ret = -ENOMEM; | ||
1326 | goto error; | ||
1327 | } | ||
1328 | |||
1329 | ret = find_next_devid(root, &device->devid); | ||
1330 | if (ret) { | ||
1331 | kfree(device); | ||
1332 | goto error; | ||
1333 | } | ||
1334 | |||
1335 | trans = btrfs_start_transaction(root, 1); | ||
1336 | lock_chunks(root); | ||
1337 | |||
1338 | device->barriers = 1; | ||
1339 | device->writeable = 1; | ||
1340 | device->work.func = pending_bios_fn; | ||
1341 | generate_random_uuid(device->uuid); | ||
1342 | spin_lock_init(&device->io_lock); | ||
1343 | device->generation = trans->transid; | ||
1344 | device->io_width = root->sectorsize; | ||
1345 | device->io_align = root->sectorsize; | ||
1346 | device->sector_size = root->sectorsize; | ||
1347 | device->total_bytes = i_size_read(bdev->bd_inode); | ||
1348 | device->dev_root = root->fs_info->dev_root; | ||
1349 | device->bdev = bdev; | ||
1350 | device->in_fs_metadata = 1; | ||
1351 | device->mode = 0; | ||
1352 | set_blocksize(device->bdev, 4096); | ||
1353 | |||
1354 | if (seeding_dev) { | ||
1355 | sb->s_flags &= ~MS_RDONLY; | ||
1356 | ret = btrfs_prepare_sprout(trans, root); | ||
1357 | BUG_ON(ret); | ||
1358 | } | ||
1359 | |||
1360 | device->fs_devices = root->fs_info->fs_devices; | ||
1361 | list_add(&device->dev_list, &root->fs_info->fs_devices->devices); | ||
1362 | list_add(&device->dev_alloc_list, | ||
1363 | &root->fs_info->fs_devices->alloc_list); | ||
1364 | root->fs_info->fs_devices->num_devices++; | ||
1365 | root->fs_info->fs_devices->open_devices++; | ||
1366 | root->fs_info->fs_devices->rw_devices++; | ||
1367 | root->fs_info->fs_devices->total_rw_bytes += device->total_bytes; | ||
1368 | |||
1369 | total_bytes = btrfs_super_total_bytes(&root->fs_info->super_copy); | ||
1370 | btrfs_set_super_total_bytes(&root->fs_info->super_copy, | ||
1371 | total_bytes + device->total_bytes); | ||
1372 | |||
1373 | total_bytes = btrfs_super_num_devices(&root->fs_info->super_copy); | ||
1374 | btrfs_set_super_num_devices(&root->fs_info->super_copy, | ||
1375 | total_bytes + 1); | ||
1376 | |||
1377 | if (seeding_dev) { | ||
1378 | ret = init_first_rw_device(trans, root, device); | ||
1379 | BUG_ON(ret); | ||
1380 | ret = btrfs_finish_sprout(trans, root); | ||
1381 | BUG_ON(ret); | ||
1382 | } else { | ||
1383 | ret = btrfs_add_device(trans, root, device); | ||
1384 | } | ||
1385 | |||
1386 | unlock_chunks(root); | ||
1387 | btrfs_commit_transaction(trans, root); | ||
1388 | |||
1389 | if (seeding_dev) { | ||
1390 | mutex_unlock(&uuid_mutex); | ||
1391 | up_write(&sb->s_umount); | ||
1392 | |||
1393 | ret = btrfs_relocate_sys_chunks(root); | ||
1394 | BUG_ON(ret); | ||
1395 | } | ||
1396 | out: | ||
1397 | mutex_unlock(&root->fs_info->volume_mutex); | ||
1398 | return ret; | ||
1399 | error: | ||
1400 | close_bdev_exclusive(bdev, 0); | ||
1401 | if (seeding_dev) { | ||
1402 | mutex_unlock(&uuid_mutex); | ||
1403 | up_write(&sb->s_umount); | ||
1404 | } | ||
1405 | goto out; | ||
1406 | } | ||
1407 | |||
1408 | static noinline int btrfs_update_device(struct btrfs_trans_handle *trans, | ||
1409 | struct btrfs_device *device) | ||
1410 | { | ||
1411 | int ret; | ||
1412 | struct btrfs_path *path; | ||
1413 | struct btrfs_root *root; | ||
1414 | struct btrfs_dev_item *dev_item; | ||
1415 | struct extent_buffer *leaf; | ||
1416 | struct btrfs_key key; | ||
1417 | |||
1418 | root = device->dev_root->fs_info->chunk_root; | ||
1419 | |||
1420 | path = btrfs_alloc_path(); | ||
1421 | if (!path) | ||
1422 | return -ENOMEM; | ||
1423 | |||
1424 | key.objectid = BTRFS_DEV_ITEMS_OBJECTID; | ||
1425 | key.type = BTRFS_DEV_ITEM_KEY; | ||
1426 | key.offset = device->devid; | ||
1427 | |||
1428 | ret = btrfs_search_slot(trans, root, &key, path, 0, 1); | ||
1429 | if (ret < 0) | ||
1430 | goto out; | ||
1431 | |||
1432 | if (ret > 0) { | ||
1433 | ret = -ENOENT; | ||
1434 | goto out; | ||
1435 | } | ||
1436 | |||
1437 | leaf = path->nodes[0]; | ||
1438 | dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); | ||
1439 | |||
1440 | btrfs_set_device_id(leaf, dev_item, device->devid); | ||
1441 | btrfs_set_device_type(leaf, dev_item, device->type); | ||
1442 | btrfs_set_device_io_align(leaf, dev_item, device->io_align); | ||
1443 | btrfs_set_device_io_width(leaf, dev_item, device->io_width); | ||
1444 | btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); | ||
1445 | btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes); | ||
1446 | btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used); | ||
1447 | btrfs_mark_buffer_dirty(leaf); | ||
1448 | |||
1449 | out: | ||
1450 | btrfs_free_path(path); | ||
1451 | return ret; | ||
1452 | } | ||
1453 | |||
1454 | static int __btrfs_grow_device(struct btrfs_trans_handle *trans, | ||
1455 | struct btrfs_device *device, u64 new_size) | ||
1456 | { | ||
1457 | struct btrfs_super_block *super_copy = | ||
1458 | &device->dev_root->fs_info->super_copy; | ||
1459 | u64 old_total = btrfs_super_total_bytes(super_copy); | ||
1460 | u64 diff = new_size - device->total_bytes; | ||
1461 | |||
1462 | if (!device->writeable) | ||
1463 | return -EACCES; | ||
1464 | if (new_size <= device->total_bytes) | ||
1465 | return -EINVAL; | ||
1466 | |||
1467 | btrfs_set_super_total_bytes(super_copy, old_total + diff); | ||
1468 | device->fs_devices->total_rw_bytes += diff; | ||
1469 | |||
1470 | device->total_bytes = new_size; | ||
1471 | return btrfs_update_device(trans, device); | ||
1472 | } | ||
1473 | |||
1474 | int btrfs_grow_device(struct btrfs_trans_handle *trans, | ||
1475 | struct btrfs_device *device, u64 new_size) | ||
1476 | { | ||
1477 | int ret; | ||
1478 | lock_chunks(device->dev_root); | ||
1479 | ret = __btrfs_grow_device(trans, device, new_size); | ||
1480 | unlock_chunks(device->dev_root); | ||
1481 | return ret; | ||
1482 | } | ||
1483 | |||
1484 | static int btrfs_free_chunk(struct btrfs_trans_handle *trans, | ||
1485 | struct btrfs_root *root, | ||
1486 | u64 chunk_tree, u64 chunk_objectid, | ||
1487 | u64 chunk_offset) | ||
1488 | { | ||
1489 | int ret; | ||
1490 | struct btrfs_path *path; | ||
1491 | struct btrfs_key key; | ||
1492 | |||
1493 | root = root->fs_info->chunk_root; | ||
1494 | path = btrfs_alloc_path(); | ||
1495 | if (!path) | ||
1496 | return -ENOMEM; | ||
1497 | |||
1498 | key.objectid = chunk_objectid; | ||
1499 | key.offset = chunk_offset; | ||
1500 | key.type = BTRFS_CHUNK_ITEM_KEY; | ||
1501 | |||
1502 | ret = btrfs_search_slot(trans, root, &key, path, -1, 1); | ||
1503 | BUG_ON(ret); | ||
1504 | |||
1505 | ret = btrfs_del_item(trans, root, path); | ||
1506 | BUG_ON(ret); | ||
1507 | |||
1508 | btrfs_free_path(path); | ||
1509 | return 0; | ||
1510 | } | ||
1511 | |||
1512 | static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64 | ||
1513 | chunk_offset) | ||
1514 | { | ||
1515 | struct btrfs_super_block *super_copy = &root->fs_info->super_copy; | ||
1516 | struct btrfs_disk_key *disk_key; | ||
1517 | struct btrfs_chunk *chunk; | ||
1518 | u8 *ptr; | ||
1519 | int ret = 0; | ||
1520 | u32 num_stripes; | ||
1521 | u32 array_size; | ||
1522 | u32 len = 0; | ||
1523 | u32 cur; | ||
1524 | struct btrfs_key key; | ||
1525 | |||
1526 | array_size = btrfs_super_sys_array_size(super_copy); | ||
1527 | |||
1528 | ptr = super_copy->sys_chunk_array; | ||
1529 | cur = 0; | ||
1530 | |||
1531 | while (cur < array_size) { | ||
1532 | disk_key = (struct btrfs_disk_key *)ptr; | ||
1533 | btrfs_disk_key_to_cpu(&key, disk_key); | ||
1534 | |||
1535 | len = sizeof(*disk_key); | ||
1536 | |||
1537 | if (key.type == BTRFS_CHUNK_ITEM_KEY) { | ||
1538 | chunk = (struct btrfs_chunk *)(ptr + len); | ||
1539 | num_stripes = btrfs_stack_chunk_num_stripes(chunk); | ||
1540 | len += btrfs_chunk_item_size(num_stripes); | ||
1541 | } else { | ||
1542 | ret = -EIO; | ||
1543 | break; | ||
1544 | } | ||
1545 | if (key.objectid == chunk_objectid && | ||
1546 | key.offset == chunk_offset) { | ||
1547 | memmove(ptr, ptr + len, array_size - (cur + len)); | ||
1548 | array_size -= len; | ||
1549 | btrfs_set_super_sys_array_size(super_copy, array_size); | ||
1550 | } else { | ||
1551 | ptr += len; | ||
1552 | cur += len; | ||
1553 | } | ||
1554 | } | ||
1555 | return ret; | ||
1556 | } | ||
1557 | |||
1558 | static int btrfs_relocate_chunk(struct btrfs_root *root, | ||
1559 | u64 chunk_tree, u64 chunk_objectid, | ||
1560 | u64 chunk_offset) | ||
1561 | { | ||
1562 | struct extent_map_tree *em_tree; | ||
1563 | struct btrfs_root *extent_root; | ||
1564 | struct btrfs_trans_handle *trans; | ||
1565 | struct extent_map *em; | ||
1566 | struct map_lookup *map; | ||
1567 | int ret; | ||
1568 | int i; | ||
1569 | |||
1570 | printk(KERN_INFO "btrfs relocating chunk %llu\n", | ||
1571 | (unsigned long long)chunk_offset); | ||
1572 | root = root->fs_info->chunk_root; | ||
1573 | extent_root = root->fs_info->extent_root; | ||
1574 | em_tree = &root->fs_info->mapping_tree.map_tree; | ||
1575 | |||
1576 | /* step one, relocate all the extents inside this chunk */ | ||
1577 | ret = btrfs_relocate_block_group(extent_root, chunk_offset); | ||
1578 | BUG_ON(ret); | ||
1579 | |||
1580 | trans = btrfs_start_transaction(root, 1); | ||
1581 | BUG_ON(!trans); | ||
1582 | |||
1583 | lock_chunks(root); | ||
1584 | |||
1585 | /* | ||
1586 | * step two, delete the device extents and the | ||
1587 | * chunk tree entries | ||
1588 | */ | ||
1589 | spin_lock(&em_tree->lock); | ||
1590 | em = lookup_extent_mapping(em_tree, chunk_offset, 1); | ||
1591 | spin_unlock(&em_tree->lock); | ||
1592 | |||
1593 | BUG_ON(em->start > chunk_offset || | ||
1594 | em->start + em->len < chunk_offset); | ||
1595 | map = (struct map_lookup *)em->bdev; | ||
1596 | |||
1597 | for (i = 0; i < map->num_stripes; i++) { | ||
1598 | ret = btrfs_free_dev_extent(trans, map->stripes[i].dev, | ||
1599 | map->stripes[i].physical); | ||
1600 | BUG_ON(ret); | ||
1601 | |||
1602 | if (map->stripes[i].dev) { | ||
1603 | ret = btrfs_update_device(trans, map->stripes[i].dev); | ||
1604 | BUG_ON(ret); | ||
1605 | } | ||
1606 | } | ||
1607 | ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid, | ||
1608 | chunk_offset); | ||
1609 | |||
1610 | BUG_ON(ret); | ||
1611 | |||
1612 | if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { | ||
1613 | ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset); | ||
1614 | BUG_ON(ret); | ||
1615 | } | ||
1616 | |||
1617 | ret = btrfs_remove_block_group(trans, extent_root, chunk_offset); | ||
1618 | BUG_ON(ret); | ||
1619 | |||
1620 | spin_lock(&em_tree->lock); | ||
1621 | remove_extent_mapping(em_tree, em); | ||
1622 | spin_unlock(&em_tree->lock); | ||
1623 | |||
1624 | kfree(map); | ||
1625 | em->bdev = NULL; | ||
1626 | |||
1627 | /* once for the tree */ | ||
1628 | free_extent_map(em); | ||
1629 | /* once for us */ | ||
1630 | free_extent_map(em); | ||
1631 | |||
1632 | unlock_chunks(root); | ||
1633 | btrfs_end_transaction(trans, root); | ||
1634 | return 0; | ||
1635 | } | ||
1636 | |||
1637 | static int btrfs_relocate_sys_chunks(struct btrfs_root *root) | ||
1638 | { | ||
1639 | struct btrfs_root *chunk_root = root->fs_info->chunk_root; | ||
1640 | struct btrfs_path *path; | ||
1641 | struct extent_buffer *leaf; | ||
1642 | struct btrfs_chunk *chunk; | ||
1643 | struct btrfs_key key; | ||
1644 | struct btrfs_key found_key; | ||
1645 | u64 chunk_tree = chunk_root->root_key.objectid; | ||
1646 | u64 chunk_type; | ||
1647 | int ret; | ||
1648 | |||
1649 | path = btrfs_alloc_path(); | ||
1650 | if (!path) | ||
1651 | return -ENOMEM; | ||
1652 | |||
1653 | key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; | ||
1654 | key.offset = (u64)-1; | ||
1655 | key.type = BTRFS_CHUNK_ITEM_KEY; | ||
1656 | |||
1657 | while (1) { | ||
1658 | ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); | ||
1659 | if (ret < 0) | ||
1660 | goto error; | ||
1661 | BUG_ON(ret == 0); | ||
1662 | |||
1663 | ret = btrfs_previous_item(chunk_root, path, key.objectid, | ||
1664 | key.type); | ||
1665 | if (ret < 0) | ||
1666 | goto error; | ||
1667 | if (ret > 0) | ||
1668 | break; | ||
1669 | |||
1670 | leaf = path->nodes[0]; | ||
1671 | btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); | ||
1672 | |||
1673 | chunk = btrfs_item_ptr(leaf, path->slots[0], | ||
1674 | struct btrfs_chunk); | ||
1675 | chunk_type = btrfs_chunk_type(leaf, chunk); | ||
1676 | btrfs_release_path(chunk_root, path); | ||
1677 | |||
1678 | if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) { | ||
1679 | ret = btrfs_relocate_chunk(chunk_root, chunk_tree, | ||
1680 | found_key.objectid, | ||
1681 | found_key.offset); | ||
1682 | BUG_ON(ret); | ||
1683 | } | ||
1684 | |||
1685 | if (found_key.offset == 0) | ||
1686 | break; | ||
1687 | key.offset = found_key.offset - 1; | ||
1688 | } | ||
1689 | ret = 0; | ||
1690 | error: | ||
1691 | btrfs_free_path(path); | ||
1692 | return ret; | ||
1693 | } | ||
1694 | |||
1695 | static u64 div_factor(u64 num, int factor) | ||
1696 | { | ||
1697 | if (factor == 10) | ||
1698 | return num; | ||
1699 | num *= factor; | ||
1700 | do_div(num, 10); | ||
1701 | return num; | ||
1702 | } | ||
1703 | |||
1704 | int btrfs_balance(struct btrfs_root *dev_root) | ||
1705 | { | ||
1706 | int ret; | ||
1707 | struct list_head *cur; | ||
1708 | struct list_head *devices = &dev_root->fs_info->fs_devices->devices; | ||
1709 | struct btrfs_device *device; | ||
1710 | u64 old_size; | ||
1711 | u64 size_to_free; | ||
1712 | struct btrfs_path *path; | ||
1713 | struct btrfs_key key; | ||
1714 | struct btrfs_chunk *chunk; | ||
1715 | struct btrfs_root *chunk_root = dev_root->fs_info->chunk_root; | ||
1716 | struct btrfs_trans_handle *trans; | ||
1717 | struct btrfs_key found_key; | ||
1718 | |||
1719 | if (dev_root->fs_info->sb->s_flags & MS_RDONLY) | ||
1720 | return -EROFS; | ||
1721 | |||
1722 | mutex_lock(&dev_root->fs_info->volume_mutex); | ||
1723 | dev_root = dev_root->fs_info->dev_root; | ||
1724 | |||
1725 | /* step one make some room on all the devices */ | ||
1726 | list_for_each(cur, devices) { | ||
1727 | device = list_entry(cur, struct btrfs_device, dev_list); | ||
1728 | old_size = device->total_bytes; | ||
1729 | size_to_free = div_factor(old_size, 1); | ||
1730 | size_to_free = min(size_to_free, (u64)1 * 1024 * 1024); | ||
1731 | if (!device->writeable || | ||
1732 | device->total_bytes - device->bytes_used > size_to_free) | ||
1733 | continue; | ||
1734 | |||
1735 | ret = btrfs_shrink_device(device, old_size - size_to_free); | ||
1736 | BUG_ON(ret); | ||
1737 | |||
1738 | trans = btrfs_start_transaction(dev_root, 1); | ||
1739 | BUG_ON(!trans); | ||
1740 | |||
1741 | ret = btrfs_grow_device(trans, device, old_size); | ||
1742 | BUG_ON(ret); | ||
1743 | |||
1744 | btrfs_end_transaction(trans, dev_root); | ||
1745 | } | ||
1746 | |||
1747 | /* step two, relocate all the chunks */ | ||
1748 | path = btrfs_alloc_path(); | ||
1749 | BUG_ON(!path); | ||
1750 | |||
1751 | key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; | ||
1752 | key.offset = (u64)-1; | ||
1753 | key.type = BTRFS_CHUNK_ITEM_KEY; | ||
1754 | |||
1755 | while (1) { | ||
1756 | ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); | ||
1757 | if (ret < 0) | ||
1758 | goto error; | ||
1759 | |||
1760 | /* | ||
1761 | * this shouldn't happen, it means the last relocate | ||
1762 | * failed | ||
1763 | */ | ||
1764 | if (ret == 0) | ||
1765 | break; | ||
1766 | |||
1767 | ret = btrfs_previous_item(chunk_root, path, 0, | ||
1768 | BTRFS_CHUNK_ITEM_KEY); | ||
1769 | if (ret) | ||
1770 | break; | ||
1771 | |||
1772 | btrfs_item_key_to_cpu(path->nodes[0], &found_key, | ||
1773 | path->slots[0]); | ||
1774 | if (found_key.objectid != key.objectid) | ||
1775 | break; | ||
1776 | |||
1777 | chunk = btrfs_item_ptr(path->nodes[0], | ||
1778 | path->slots[0], | ||
1779 | struct btrfs_chunk); | ||
1780 | key.offset = found_key.offset; | ||
1781 | /* chunk zero is special */ | ||
1782 | if (key.offset == 0) | ||
1783 | break; | ||
1784 | |||
1785 | btrfs_release_path(chunk_root, path); | ||
1786 | ret = btrfs_relocate_chunk(chunk_root, | ||
1787 | chunk_root->root_key.objectid, | ||
1788 | found_key.objectid, | ||
1789 | found_key.offset); | ||
1790 | BUG_ON(ret); | ||
1791 | } | ||
1792 | ret = 0; | ||
1793 | error: | ||
1794 | btrfs_free_path(path); | ||
1795 | mutex_unlock(&dev_root->fs_info->volume_mutex); | ||
1796 | return ret; | ||
1797 | } | ||
1798 | |||
1799 | /* | ||
1800 | * shrinking a device means finding all of the device extents past | ||
1801 | * the new size, and then following the back refs to the chunks. | ||
1802 | * The chunk relocation code actually frees the device extent | ||
1803 | */ | ||
1804 | int btrfs_shrink_device(struct btrfs_device *device, u64 new_size) | ||
1805 | { | ||
1806 | struct btrfs_trans_handle *trans; | ||
1807 | struct btrfs_root *root = device->dev_root; | ||
1808 | struct btrfs_dev_extent *dev_extent = NULL; | ||
1809 | struct btrfs_path *path; | ||
1810 | u64 length; | ||
1811 | u64 chunk_tree; | ||
1812 | u64 chunk_objectid; | ||
1813 | u64 chunk_offset; | ||
1814 | int ret; | ||
1815 | int slot; | ||
1816 | struct extent_buffer *l; | ||
1817 | struct btrfs_key key; | ||
1818 | struct btrfs_super_block *super_copy = &root->fs_info->super_copy; | ||
1819 | u64 old_total = btrfs_super_total_bytes(super_copy); | ||
1820 | u64 diff = device->total_bytes - new_size; | ||
1821 | |||
1822 | if (new_size >= device->total_bytes) | ||
1823 | return -EINVAL; | ||
1824 | |||
1825 | path = btrfs_alloc_path(); | ||
1826 | if (!path) | ||
1827 | return -ENOMEM; | ||
1828 | |||
1829 | trans = btrfs_start_transaction(root, 1); | ||
1830 | if (!trans) { | ||
1831 | ret = -ENOMEM; | ||
1832 | goto done; | ||
1833 | } | ||
1834 | |||
1835 | path->reada = 2; | ||
1836 | |||
1837 | lock_chunks(root); | ||
1838 | |||
1839 | device->total_bytes = new_size; | ||
1840 | if (device->writeable) | ||
1841 | device->fs_devices->total_rw_bytes -= diff; | ||
1842 | ret = btrfs_update_device(trans, device); | ||
1843 | if (ret) { | ||
1844 | unlock_chunks(root); | ||
1845 | btrfs_end_transaction(trans, root); | ||
1846 | goto done; | ||
1847 | } | ||
1848 | WARN_ON(diff > old_total); | ||
1849 | btrfs_set_super_total_bytes(super_copy, old_total - diff); | ||
1850 | unlock_chunks(root); | ||
1851 | btrfs_end_transaction(trans, root); | ||
1852 | |||
1853 | key.objectid = device->devid; | ||
1854 | key.offset = (u64)-1; | ||
1855 | key.type = BTRFS_DEV_EXTENT_KEY; | ||
1856 | |||
1857 | while (1) { | ||
1858 | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | ||
1859 | if (ret < 0) | ||
1860 | goto done; | ||
1861 | |||
1862 | ret = btrfs_previous_item(root, path, 0, key.type); | ||
1863 | if (ret < 0) | ||
1864 | goto done; | ||
1865 | if (ret) { | ||
1866 | ret = 0; | ||
1867 | goto done; | ||
1868 | } | ||
1869 | |||
1870 | l = path->nodes[0]; | ||
1871 | slot = path->slots[0]; | ||
1872 | btrfs_item_key_to_cpu(l, &key, path->slots[0]); | ||
1873 | |||
1874 | if (key.objectid != device->devid) | ||
1875 | goto done; | ||
1876 | |||
1877 | dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); | ||
1878 | length = btrfs_dev_extent_length(l, dev_extent); | ||
1879 | |||
1880 | if (key.offset + length <= new_size) | ||
1881 | goto done; | ||
1882 | |||
1883 | chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent); | ||
1884 | chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent); | ||
1885 | chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); | ||
1886 | btrfs_release_path(root, path); | ||
1887 | |||
1888 | ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid, | ||
1889 | chunk_offset); | ||
1890 | if (ret) | ||
1891 | goto done; | ||
1892 | } | ||
1893 | |||
1894 | done: | ||
1895 | btrfs_free_path(path); | ||
1896 | return ret; | ||
1897 | } | ||
1898 | |||
1899 | static int btrfs_add_system_chunk(struct btrfs_trans_handle *trans, | ||
1900 | struct btrfs_root *root, | ||
1901 | struct btrfs_key *key, | ||
1902 | struct btrfs_chunk *chunk, int item_size) | ||
1903 | { | ||
1904 | struct btrfs_super_block *super_copy = &root->fs_info->super_copy; | ||
1905 | struct btrfs_disk_key disk_key; | ||
1906 | u32 array_size; | ||
1907 | u8 *ptr; | ||
1908 | |||
1909 | array_size = btrfs_super_sys_array_size(super_copy); | ||
1910 | if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) | ||
1911 | return -EFBIG; | ||
1912 | |||
1913 | ptr = super_copy->sys_chunk_array + array_size; | ||
1914 | btrfs_cpu_key_to_disk(&disk_key, key); | ||
1915 | memcpy(ptr, &disk_key, sizeof(disk_key)); | ||
1916 | ptr += sizeof(disk_key); | ||
1917 | memcpy(ptr, chunk, item_size); | ||
1918 | item_size += sizeof(disk_key); | ||
1919 | btrfs_set_super_sys_array_size(super_copy, array_size + item_size); | ||
1920 | return 0; | ||
1921 | } | ||
1922 | |||
1923 | static noinline u64 chunk_bytes_by_type(u64 type, u64 calc_size, | ||
1924 | int num_stripes, int sub_stripes) | ||
1925 | { | ||
1926 | if (type & (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_DUP)) | ||
1927 | return calc_size; | ||
1928 | else if (type & BTRFS_BLOCK_GROUP_RAID10) | ||
1929 | return calc_size * (num_stripes / sub_stripes); | ||
1930 | else | ||
1931 | return calc_size * num_stripes; | ||
1932 | } | ||
1933 | |||
1934 | static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans, | ||
1935 | struct btrfs_root *extent_root, | ||
1936 | struct map_lookup **map_ret, | ||
1937 | u64 *num_bytes, u64 *stripe_size, | ||
1938 | u64 start, u64 type) | ||
1939 | { | ||
1940 | struct btrfs_fs_info *info = extent_root->fs_info; | ||
1941 | struct btrfs_device *device = NULL; | ||
1942 | struct btrfs_fs_devices *fs_devices = info->fs_devices; | ||
1943 | struct list_head *cur; | ||
1944 | struct map_lookup *map = NULL; | ||
1945 | struct extent_map_tree *em_tree; | ||
1946 | struct extent_map *em; | ||
1947 | struct list_head private_devs; | ||
1948 | int min_stripe_size = 1 * 1024 * 1024; | ||
1949 | u64 calc_size = 1024 * 1024 * 1024; | ||
1950 | u64 max_chunk_size = calc_size; | ||
1951 | u64 min_free; | ||
1952 | u64 avail; | ||
1953 | u64 max_avail = 0; | ||
1954 | u64 dev_offset; | ||
1955 | int num_stripes = 1; | ||
1956 | int min_stripes = 1; | ||
1957 | int sub_stripes = 0; | ||
1958 | int looped = 0; | ||
1959 | int ret; | ||
1960 | int index; | ||
1961 | int stripe_len = 64 * 1024; | ||
1962 | |||
1963 | if ((type & BTRFS_BLOCK_GROUP_RAID1) && | ||
1964 | (type & BTRFS_BLOCK_GROUP_DUP)) { | ||
1965 | WARN_ON(1); | ||
1966 | type &= ~BTRFS_BLOCK_GROUP_DUP; | ||
1967 | } | ||
1968 | if (list_empty(&fs_devices->alloc_list)) | ||
1969 | return -ENOSPC; | ||
1970 | |||
1971 | if (type & (BTRFS_BLOCK_GROUP_RAID0)) { | ||
1972 | num_stripes = fs_devices->rw_devices; | ||
1973 | min_stripes = 2; | ||
1974 | } | ||
1975 | if (type & (BTRFS_BLOCK_GROUP_DUP)) { | ||
1976 | num_stripes = 2; | ||
1977 | min_stripes = 2; | ||
1978 | } | ||
1979 | if (type & (BTRFS_BLOCK_GROUP_RAID1)) { | ||
1980 | num_stripes = min_t(u64, 2, fs_devices->rw_devices); | ||
1981 | if (num_stripes < 2) | ||
1982 | return -ENOSPC; | ||
1983 | min_stripes = 2; | ||
1984 | } | ||
1985 | if (type & (BTRFS_BLOCK_GROUP_RAID10)) { | ||
1986 | num_stripes = fs_devices->rw_devices; | ||
1987 | if (num_stripes < 4) | ||
1988 | return -ENOSPC; | ||
1989 | num_stripes &= ~(u32)1; | ||
1990 | sub_stripes = 2; | ||
1991 | min_stripes = 4; | ||
1992 | } | ||
1993 | |||
1994 | if (type & BTRFS_BLOCK_GROUP_DATA) { | ||
1995 | max_chunk_size = 10 * calc_size; | ||
1996 | min_stripe_size = 64 * 1024 * 1024; | ||
1997 | } else if (type & BTRFS_BLOCK_GROUP_METADATA) { | ||
1998 | max_chunk_size = 4 * calc_size; | ||
1999 | min_stripe_size = 32 * 1024 * 1024; | ||
2000 | } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { | ||
2001 | calc_size = 8 * 1024 * 1024; | ||
2002 | max_chunk_size = calc_size * 2; | ||
2003 | min_stripe_size = 1 * 1024 * 1024; | ||
2004 | } | ||
2005 | |||
2006 | /* we don't want a chunk larger than 10% of writeable space */ | ||
2007 | max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1), | ||
2008 | max_chunk_size); | ||
2009 | |||
2010 | again: | ||
2011 | if (!map || map->num_stripes != num_stripes) { | ||
2012 | kfree(map); | ||
2013 | map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); | ||
2014 | if (!map) | ||
2015 | return -ENOMEM; | ||
2016 | map->num_stripes = num_stripes; | ||
2017 | } | ||
2018 | |||
2019 | if (calc_size * num_stripes > max_chunk_size) { | ||
2020 | calc_size = max_chunk_size; | ||
2021 | do_div(calc_size, num_stripes); | ||
2022 | do_div(calc_size, stripe_len); | ||
2023 | calc_size *= stripe_len; | ||
2024 | } | ||
2025 | /* we don't want tiny stripes */ | ||
2026 | calc_size = max_t(u64, min_stripe_size, calc_size); | ||
2027 | |||
2028 | do_div(calc_size, stripe_len); | ||
2029 | calc_size *= stripe_len; | ||
2030 | |||
2031 | cur = fs_devices->alloc_list.next; | ||
2032 | index = 0; | ||
2033 | |||
2034 | if (type & BTRFS_BLOCK_GROUP_DUP) | ||
2035 | min_free = calc_size * 2; | ||
2036 | else | ||
2037 | min_free = calc_size; | ||
2038 | |||
2039 | /* | ||
2040 | * we add 1MB because we never use the first 1MB of the device, unless | ||
2041 | * we've looped, then we are likely allocating the maximum amount of | ||
2042 | * space left already | ||
2043 | */ | ||
2044 | if (!looped) | ||
2045 | min_free += 1024 * 1024; | ||
2046 | |||
2047 | INIT_LIST_HEAD(&private_devs); | ||
2048 | while (index < num_stripes) { | ||
2049 | device = list_entry(cur, struct btrfs_device, dev_alloc_list); | ||
2050 | BUG_ON(!device->writeable); | ||
2051 | if (device->total_bytes > device->bytes_used) | ||
2052 | avail = device->total_bytes - device->bytes_used; | ||
2053 | else | ||
2054 | avail = 0; | ||
2055 | cur = cur->next; | ||
2056 | |||
2057 | if (device->in_fs_metadata && avail >= min_free) { | ||
2058 | ret = find_free_dev_extent(trans, device, | ||
2059 | min_free, &dev_offset); | ||
2060 | if (ret == 0) { | ||
2061 | list_move_tail(&device->dev_alloc_list, | ||
2062 | &private_devs); | ||
2063 | map->stripes[index].dev = device; | ||
2064 | map->stripes[index].physical = dev_offset; | ||
2065 | index++; | ||
2066 | if (type & BTRFS_BLOCK_GROUP_DUP) { | ||
2067 | map->stripes[index].dev = device; | ||
2068 | map->stripes[index].physical = | ||
2069 | dev_offset + calc_size; | ||
2070 | index++; | ||
2071 | } | ||
2072 | } | ||
2073 | } else if (device->in_fs_metadata && avail > max_avail) | ||
2074 | max_avail = avail; | ||
2075 | if (cur == &fs_devices->alloc_list) | ||
2076 | break; | ||
2077 | } | ||
2078 | list_splice(&private_devs, &fs_devices->alloc_list); | ||
2079 | if (index < num_stripes) { | ||
2080 | if (index >= min_stripes) { | ||
2081 | num_stripes = index; | ||
2082 | if (type & (BTRFS_BLOCK_GROUP_RAID10)) { | ||
2083 | num_stripes /= sub_stripes; | ||
2084 | num_stripes *= sub_stripes; | ||
2085 | } | ||
2086 | looped = 1; | ||
2087 | goto again; | ||
2088 | } | ||
2089 | if (!looped && max_avail > 0) { | ||
2090 | looped = 1; | ||
2091 | calc_size = max_avail; | ||
2092 | goto again; | ||
2093 | } | ||
2094 | kfree(map); | ||
2095 | return -ENOSPC; | ||
2096 | } | ||
2097 | map->sector_size = extent_root->sectorsize; | ||
2098 | map->stripe_len = stripe_len; | ||
2099 | map->io_align = stripe_len; | ||
2100 | map->io_width = stripe_len; | ||
2101 | map->type = type; | ||
2102 | map->num_stripes = num_stripes; | ||
2103 | map->sub_stripes = sub_stripes; | ||
2104 | |||
2105 | *map_ret = map; | ||
2106 | *stripe_size = calc_size; | ||
2107 | *num_bytes = chunk_bytes_by_type(type, calc_size, | ||
2108 | num_stripes, sub_stripes); | ||
2109 | |||
2110 | em = alloc_extent_map(GFP_NOFS); | ||
2111 | if (!em) { | ||
2112 | kfree(map); | ||
2113 | return -ENOMEM; | ||
2114 | } | ||
2115 | em->bdev = (struct block_device *)map; | ||
2116 | em->start = start; | ||
2117 | em->len = *num_bytes; | ||
2118 | em->block_start = 0; | ||
2119 | em->block_len = em->len; | ||
2120 | |||
2121 | em_tree = &extent_root->fs_info->mapping_tree.map_tree; | ||
2122 | spin_lock(&em_tree->lock); | ||
2123 | ret = add_extent_mapping(em_tree, em); | ||
2124 | spin_unlock(&em_tree->lock); | ||
2125 | BUG_ON(ret); | ||
2126 | free_extent_map(em); | ||
2127 | |||
2128 | ret = btrfs_make_block_group(trans, extent_root, 0, type, | ||
2129 | BTRFS_FIRST_CHUNK_TREE_OBJECTID, | ||
2130 | start, *num_bytes); | ||
2131 | BUG_ON(ret); | ||
2132 | |||
2133 | index = 0; | ||
2134 | while (index < map->num_stripes) { | ||
2135 | device = map->stripes[index].dev; | ||
2136 | dev_offset = map->stripes[index].physical; | ||
2137 | |||
2138 | ret = btrfs_alloc_dev_extent(trans, device, | ||
2139 | info->chunk_root->root_key.objectid, | ||
2140 | BTRFS_FIRST_CHUNK_TREE_OBJECTID, | ||
2141 | start, dev_offset, calc_size); | ||
2142 | BUG_ON(ret); | ||
2143 | index++; | ||
2144 | } | ||
2145 | |||
2146 | return 0; | ||
2147 | } | ||
2148 | |||
2149 | static int __finish_chunk_alloc(struct btrfs_trans_handle *trans, | ||
2150 | struct btrfs_root *extent_root, | ||
2151 | struct map_lookup *map, u64 chunk_offset, | ||
2152 | u64 chunk_size, u64 stripe_size) | ||
2153 | { | ||
2154 | u64 dev_offset; | ||
2155 | struct btrfs_key key; | ||
2156 | struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root; | ||
2157 | struct btrfs_device *device; | ||
2158 | struct btrfs_chunk *chunk; | ||
2159 | struct btrfs_stripe *stripe; | ||
2160 | size_t item_size = btrfs_chunk_item_size(map->num_stripes); | ||
2161 | int index = 0; | ||
2162 | int ret; | ||
2163 | |||
2164 | chunk = kzalloc(item_size, GFP_NOFS); | ||
2165 | if (!chunk) | ||
2166 | return -ENOMEM; | ||
2167 | |||
2168 | index = 0; | ||
2169 | while (index < map->num_stripes) { | ||
2170 | device = map->stripes[index].dev; | ||
2171 | device->bytes_used += stripe_size; | ||
2172 | ret = btrfs_update_device(trans, device); | ||
2173 | BUG_ON(ret); | ||
2174 | index++; | ||
2175 | } | ||
2176 | |||
2177 | index = 0; | ||
2178 | stripe = &chunk->stripe; | ||
2179 | while (index < map->num_stripes) { | ||
2180 | device = map->stripes[index].dev; | ||
2181 | dev_offset = map->stripes[index].physical; | ||
2182 | |||
2183 | btrfs_set_stack_stripe_devid(stripe, device->devid); | ||
2184 | btrfs_set_stack_stripe_offset(stripe, dev_offset); | ||
2185 | memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE); | ||
2186 | stripe++; | ||
2187 | index++; | ||
2188 | } | ||
2189 | |||
2190 | btrfs_set_stack_chunk_length(chunk, chunk_size); | ||
2191 | btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid); | ||
2192 | btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len); | ||
2193 | btrfs_set_stack_chunk_type(chunk, map->type); | ||
2194 | btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes); | ||
2195 | btrfs_set_stack_chunk_io_align(chunk, map->stripe_len); | ||
2196 | btrfs_set_stack_chunk_io_width(chunk, map->stripe_len); | ||
2197 | btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize); | ||
2198 | btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes); | ||
2199 | |||
2200 | key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; | ||
2201 | key.type = BTRFS_CHUNK_ITEM_KEY; | ||
2202 | key.offset = chunk_offset; | ||
2203 | |||
2204 | ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size); | ||
2205 | BUG_ON(ret); | ||
2206 | |||
2207 | if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { | ||
2208 | ret = btrfs_add_system_chunk(trans, chunk_root, &key, chunk, | ||
2209 | item_size); | ||
2210 | BUG_ON(ret); | ||
2211 | } | ||
2212 | kfree(chunk); | ||
2213 | return 0; | ||
2214 | } | ||
2215 | |||
2216 | /* | ||
2217 | * Chunk allocation falls into two parts. The first part does works | ||
2218 | * that make the new allocated chunk useable, but not do any operation | ||
2219 | * that modifies the chunk tree. The second part does the works that | ||
2220 | * require modifying the chunk tree. This division is important for the | ||
2221 | * bootstrap process of adding storage to a seed btrfs. | ||
2222 | */ | ||
2223 | int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, | ||
2224 | struct btrfs_root *extent_root, u64 type) | ||
2225 | { | ||
2226 | u64 chunk_offset; | ||
2227 | u64 chunk_size; | ||
2228 | u64 stripe_size; | ||
2229 | struct map_lookup *map; | ||
2230 | struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root; | ||
2231 | int ret; | ||
2232 | |||
2233 | ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID, | ||
2234 | &chunk_offset); | ||
2235 | if (ret) | ||
2236 | return ret; | ||
2237 | |||
2238 | ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size, | ||
2239 | &stripe_size, chunk_offset, type); | ||
2240 | if (ret) | ||
2241 | return ret; | ||
2242 | |||
2243 | ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset, | ||
2244 | chunk_size, stripe_size); | ||
2245 | BUG_ON(ret); | ||
2246 | return 0; | ||
2247 | } | ||
2248 | |||
2249 | static noinline int init_first_rw_device(struct btrfs_trans_handle *trans, | ||
2250 | struct btrfs_root *root, | ||
2251 | struct btrfs_device *device) | ||
2252 | { | ||
2253 | u64 chunk_offset; | ||
2254 | u64 sys_chunk_offset; | ||
2255 | u64 chunk_size; | ||
2256 | u64 sys_chunk_size; | ||
2257 | u64 stripe_size; | ||
2258 | u64 sys_stripe_size; | ||
2259 | u64 alloc_profile; | ||
2260 | struct map_lookup *map; | ||
2261 | struct map_lookup *sys_map; | ||
2262 | struct btrfs_fs_info *fs_info = root->fs_info; | ||
2263 | struct btrfs_root *extent_root = fs_info->extent_root; | ||
2264 | int ret; | ||
2265 | |||
2266 | ret = find_next_chunk(fs_info->chunk_root, | ||
2267 | BTRFS_FIRST_CHUNK_TREE_OBJECTID, &chunk_offset); | ||
2268 | BUG_ON(ret); | ||
2269 | |||
2270 | alloc_profile = BTRFS_BLOCK_GROUP_METADATA | | ||
2271 | (fs_info->metadata_alloc_profile & | ||
2272 | fs_info->avail_metadata_alloc_bits); | ||
2273 | alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile); | ||
2274 | |||
2275 | ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size, | ||
2276 | &stripe_size, chunk_offset, alloc_profile); | ||
2277 | BUG_ON(ret); | ||
2278 | |||
2279 | sys_chunk_offset = chunk_offset + chunk_size; | ||
2280 | |||
2281 | alloc_profile = BTRFS_BLOCK_GROUP_SYSTEM | | ||
2282 | (fs_info->system_alloc_profile & | ||
2283 | fs_info->avail_system_alloc_bits); | ||
2284 | alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile); | ||
2285 | |||
2286 | ret = __btrfs_alloc_chunk(trans, extent_root, &sys_map, | ||
2287 | &sys_chunk_size, &sys_stripe_size, | ||
2288 | sys_chunk_offset, alloc_profile); | ||
2289 | BUG_ON(ret); | ||
2290 | |||
2291 | ret = btrfs_add_device(trans, fs_info->chunk_root, device); | ||
2292 | BUG_ON(ret); | ||
2293 | |||
2294 | /* | ||
2295 | * Modifying chunk tree needs allocating new blocks from both | ||
2296 | * system block group and metadata block group. So we only can | ||
2297 | * do operations require modifying the chunk tree after both | ||
2298 | * block groups were created. | ||
2299 | */ | ||
2300 | ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset, | ||
2301 | chunk_size, stripe_size); | ||
2302 | BUG_ON(ret); | ||
2303 | |||
2304 | ret = __finish_chunk_alloc(trans, extent_root, sys_map, | ||
2305 | sys_chunk_offset, sys_chunk_size, | ||
2306 | sys_stripe_size); | ||
2307 | BUG_ON(ret); | ||
2308 | return 0; | ||
2309 | } | ||
2310 | |||
2311 | int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset) | ||
2312 | { | ||
2313 | struct extent_map *em; | ||
2314 | struct map_lookup *map; | ||
2315 | struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree; | ||
2316 | int readonly = 0; | ||
2317 | int i; | ||
2318 | |||
2319 | spin_lock(&map_tree->map_tree.lock); | ||
2320 | em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1); | ||
2321 | spin_unlock(&map_tree->map_tree.lock); | ||
2322 | if (!em) | ||
2323 | return 1; | ||
2324 | |||
2325 | map = (struct map_lookup *)em->bdev; | ||
2326 | for (i = 0; i < map->num_stripes; i++) { | ||
2327 | if (!map->stripes[i].dev->writeable) { | ||
2328 | readonly = 1; | ||
2329 | break; | ||
2330 | } | ||
2331 | } | ||
2332 | free_extent_map(em); | ||
2333 | return readonly; | ||
2334 | } | ||
2335 | |||
2336 | void btrfs_mapping_init(struct btrfs_mapping_tree *tree) | ||
2337 | { | ||
2338 | extent_map_tree_init(&tree->map_tree, GFP_NOFS); | ||
2339 | } | ||
2340 | |||
2341 | void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree) | ||
2342 | { | ||
2343 | struct extent_map *em; | ||
2344 | |||
2345 | while (1) { | ||
2346 | spin_lock(&tree->map_tree.lock); | ||
2347 | em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1); | ||
2348 | if (em) | ||
2349 | remove_extent_mapping(&tree->map_tree, em); | ||
2350 | spin_unlock(&tree->map_tree.lock); | ||
2351 | if (!em) | ||
2352 | break; | ||
2353 | kfree(em->bdev); | ||
2354 | /* once for us */ | ||
2355 | free_extent_map(em); | ||
2356 | /* once for the tree */ | ||
2357 | free_extent_map(em); | ||
2358 | } | ||
2359 | } | ||
2360 | |||
2361 | int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len) | ||
2362 | { | ||
2363 | struct extent_map *em; | ||
2364 | struct map_lookup *map; | ||
2365 | struct extent_map_tree *em_tree = &map_tree->map_tree; | ||
2366 | int ret; | ||
2367 | |||
2368 | spin_lock(&em_tree->lock); | ||
2369 | em = lookup_extent_mapping(em_tree, logical, len); | ||
2370 | spin_unlock(&em_tree->lock); | ||
2371 | BUG_ON(!em); | ||
2372 | |||
2373 | BUG_ON(em->start > logical || em->start + em->len < logical); | ||
2374 | map = (struct map_lookup *)em->bdev; | ||
2375 | if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1)) | ||
2376 | ret = map->num_stripes; | ||
2377 | else if (map->type & BTRFS_BLOCK_GROUP_RAID10) | ||
2378 | ret = map->sub_stripes; | ||
2379 | else | ||
2380 | ret = 1; | ||
2381 | free_extent_map(em); | ||
2382 | return ret; | ||
2383 | } | ||
2384 | |||
2385 | static int find_live_mirror(struct map_lookup *map, int first, int num, | ||
2386 | int optimal) | ||
2387 | { | ||
2388 | int i; | ||
2389 | if (map->stripes[optimal].dev->bdev) | ||
2390 | return optimal; | ||
2391 | for (i = first; i < first + num; i++) { | ||
2392 | if (map->stripes[i].dev->bdev) | ||
2393 | return i; | ||
2394 | } | ||
2395 | /* we couldn't find one that doesn't fail. Just return something | ||
2396 | * and the io error handling code will clean up eventually | ||
2397 | */ | ||
2398 | return optimal; | ||
2399 | } | ||
2400 | |||
2401 | static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw, | ||
2402 | u64 logical, u64 *length, | ||
2403 | struct btrfs_multi_bio **multi_ret, | ||
2404 | int mirror_num, struct page *unplug_page) | ||
2405 | { | ||
2406 | struct extent_map *em; | ||
2407 | struct map_lookup *map; | ||
2408 | struct extent_map_tree *em_tree = &map_tree->map_tree; | ||
2409 | u64 offset; | ||
2410 | u64 stripe_offset; | ||
2411 | u64 stripe_nr; | ||
2412 | int stripes_allocated = 8; | ||
2413 | int stripes_required = 1; | ||
2414 | int stripe_index; | ||
2415 | int i; | ||
2416 | int num_stripes; | ||
2417 | int max_errors = 0; | ||
2418 | struct btrfs_multi_bio *multi = NULL; | ||
2419 | |||
2420 | if (multi_ret && !(rw & (1 << BIO_RW))) | ||
2421 | stripes_allocated = 1; | ||
2422 | again: | ||
2423 | if (multi_ret) { | ||
2424 | multi = kzalloc(btrfs_multi_bio_size(stripes_allocated), | ||
2425 | GFP_NOFS); | ||
2426 | if (!multi) | ||
2427 | return -ENOMEM; | ||
2428 | |||
2429 | atomic_set(&multi->error, 0); | ||
2430 | } | ||
2431 | |||
2432 | spin_lock(&em_tree->lock); | ||
2433 | em = lookup_extent_mapping(em_tree, logical, *length); | ||
2434 | spin_unlock(&em_tree->lock); | ||
2435 | |||
2436 | if (!em && unplug_page) | ||
2437 | return 0; | ||
2438 | |||
2439 | if (!em) { | ||
2440 | printk(KERN_CRIT "unable to find logical %llu len %llu\n", | ||
2441 | (unsigned long long)logical, | ||
2442 | (unsigned long long)*length); | ||
2443 | BUG(); | ||
2444 | } | ||
2445 | |||
2446 | BUG_ON(em->start > logical || em->start + em->len < logical); | ||
2447 | map = (struct map_lookup *)em->bdev; | ||
2448 | offset = logical - em->start; | ||
2449 | |||
2450 | if (mirror_num > map->num_stripes) | ||
2451 | mirror_num = 0; | ||
2452 | |||
2453 | /* if our multi bio struct is too small, back off and try again */ | ||
2454 | if (rw & (1 << BIO_RW)) { | ||
2455 | if (map->type & (BTRFS_BLOCK_GROUP_RAID1 | | ||
2456 | BTRFS_BLOCK_GROUP_DUP)) { | ||
2457 | stripes_required = map->num_stripes; | ||
2458 | max_errors = 1; | ||
2459 | } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { | ||
2460 | stripes_required = map->sub_stripes; | ||
2461 | max_errors = 1; | ||
2462 | } | ||
2463 | } | ||
2464 | if (multi_ret && rw == WRITE && | ||
2465 | stripes_allocated < stripes_required) { | ||
2466 | stripes_allocated = map->num_stripes; | ||
2467 | free_extent_map(em); | ||
2468 | kfree(multi); | ||
2469 | goto again; | ||
2470 | } | ||
2471 | stripe_nr = offset; | ||
2472 | /* | ||
2473 | * stripe_nr counts the total number of stripes we have to stride | ||
2474 | * to get to this block | ||
2475 | */ | ||
2476 | do_div(stripe_nr, map->stripe_len); | ||
2477 | |||
2478 | stripe_offset = stripe_nr * map->stripe_len; | ||
2479 | BUG_ON(offset < stripe_offset); | ||
2480 | |||
2481 | /* stripe_offset is the offset of this block in its stripe*/ | ||
2482 | stripe_offset = offset - stripe_offset; | ||
2483 | |||
2484 | if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 | | ||
2485 | BTRFS_BLOCK_GROUP_RAID10 | | ||
2486 | BTRFS_BLOCK_GROUP_DUP)) { | ||
2487 | /* we limit the length of each bio to what fits in a stripe */ | ||
2488 | *length = min_t(u64, em->len - offset, | ||
2489 | map->stripe_len - stripe_offset); | ||
2490 | } else { | ||
2491 | *length = em->len - offset; | ||
2492 | } | ||
2493 | |||
2494 | if (!multi_ret && !unplug_page) | ||
2495 | goto out; | ||
2496 | |||
2497 | num_stripes = 1; | ||
2498 | stripe_index = 0; | ||
2499 | if (map->type & BTRFS_BLOCK_GROUP_RAID1) { | ||
2500 | if (unplug_page || (rw & (1 << BIO_RW))) | ||
2501 | num_stripes = map->num_stripes; | ||
2502 | else if (mirror_num) | ||
2503 | stripe_index = mirror_num - 1; | ||
2504 | else { | ||
2505 | stripe_index = find_live_mirror(map, 0, | ||
2506 | map->num_stripes, | ||
2507 | current->pid % map->num_stripes); | ||
2508 | } | ||
2509 | |||
2510 | } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { | ||
2511 | if (rw & (1 << BIO_RW)) | ||
2512 | num_stripes = map->num_stripes; | ||
2513 | else if (mirror_num) | ||
2514 | stripe_index = mirror_num - 1; | ||
2515 | |||
2516 | } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { | ||
2517 | int factor = map->num_stripes / map->sub_stripes; | ||
2518 | |||
2519 | stripe_index = do_div(stripe_nr, factor); | ||
2520 | stripe_index *= map->sub_stripes; | ||
2521 | |||
2522 | if (unplug_page || (rw & (1 << BIO_RW))) | ||
2523 | num_stripes = map->sub_stripes; | ||
2524 | else if (mirror_num) | ||
2525 | stripe_index += mirror_num - 1; | ||
2526 | else { | ||
2527 | stripe_index = find_live_mirror(map, stripe_index, | ||
2528 | map->sub_stripes, stripe_index + | ||
2529 | current->pid % map->sub_stripes); | ||
2530 | } | ||
2531 | } else { | ||
2532 | /* | ||
2533 | * after this do_div call, stripe_nr is the number of stripes | ||
2534 | * on this device we have to walk to find the data, and | ||
2535 | * stripe_index is the number of our device in the stripe array | ||
2536 | */ | ||
2537 | stripe_index = do_div(stripe_nr, map->num_stripes); | ||
2538 | } | ||
2539 | BUG_ON(stripe_index >= map->num_stripes); | ||
2540 | |||
2541 | for (i = 0; i < num_stripes; i++) { | ||
2542 | if (unplug_page) { | ||
2543 | struct btrfs_device *device; | ||
2544 | struct backing_dev_info *bdi; | ||
2545 | |||
2546 | device = map->stripes[stripe_index].dev; | ||
2547 | if (device->bdev) { | ||
2548 | bdi = blk_get_backing_dev_info(device->bdev); | ||
2549 | if (bdi->unplug_io_fn) | ||
2550 | bdi->unplug_io_fn(bdi, unplug_page); | ||
2551 | } | ||
2552 | } else { | ||
2553 | multi->stripes[i].physical = | ||
2554 | map->stripes[stripe_index].physical + | ||
2555 | stripe_offset + stripe_nr * map->stripe_len; | ||
2556 | multi->stripes[i].dev = map->stripes[stripe_index].dev; | ||
2557 | } | ||
2558 | stripe_index++; | ||
2559 | } | ||
2560 | if (multi_ret) { | ||
2561 | *multi_ret = multi; | ||
2562 | multi->num_stripes = num_stripes; | ||
2563 | multi->max_errors = max_errors; | ||
2564 | } | ||
2565 | out: | ||
2566 | free_extent_map(em); | ||
2567 | return 0; | ||
2568 | } | ||
2569 | |||
2570 | int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw, | ||
2571 | u64 logical, u64 *length, | ||
2572 | struct btrfs_multi_bio **multi_ret, int mirror_num) | ||
2573 | { | ||
2574 | return __btrfs_map_block(map_tree, rw, logical, length, multi_ret, | ||
2575 | mirror_num, NULL); | ||
2576 | } | ||
2577 | |||
2578 | int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree, | ||
2579 | u64 chunk_start, u64 physical, u64 devid, | ||
2580 | u64 **logical, int *naddrs, int *stripe_len) | ||
2581 | { | ||
2582 | struct extent_map_tree *em_tree = &map_tree->map_tree; | ||
2583 | struct extent_map *em; | ||
2584 | struct map_lookup *map; | ||
2585 | u64 *buf; | ||
2586 | u64 bytenr; | ||
2587 | u64 length; | ||
2588 | u64 stripe_nr; | ||
2589 | int i, j, nr = 0; | ||
2590 | |||
2591 | spin_lock(&em_tree->lock); | ||
2592 | em = lookup_extent_mapping(em_tree, chunk_start, 1); | ||
2593 | spin_unlock(&em_tree->lock); | ||
2594 | |||
2595 | BUG_ON(!em || em->start != chunk_start); | ||
2596 | map = (struct map_lookup *)em->bdev; | ||
2597 | |||
2598 | length = em->len; | ||
2599 | if (map->type & BTRFS_BLOCK_GROUP_RAID10) | ||
2600 | do_div(length, map->num_stripes / map->sub_stripes); | ||
2601 | else if (map->type & BTRFS_BLOCK_GROUP_RAID0) | ||
2602 | do_div(length, map->num_stripes); | ||
2603 | |||
2604 | buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS); | ||
2605 | BUG_ON(!buf); | ||
2606 | |||
2607 | for (i = 0; i < map->num_stripes; i++) { | ||
2608 | if (devid && map->stripes[i].dev->devid != devid) | ||
2609 | continue; | ||
2610 | if (map->stripes[i].physical > physical || | ||
2611 | map->stripes[i].physical + length <= physical) | ||
2612 | continue; | ||
2613 | |||
2614 | stripe_nr = physical - map->stripes[i].physical; | ||
2615 | do_div(stripe_nr, map->stripe_len); | ||
2616 | |||
2617 | if (map->type & BTRFS_BLOCK_GROUP_RAID10) { | ||
2618 | stripe_nr = stripe_nr * map->num_stripes + i; | ||
2619 | do_div(stripe_nr, map->sub_stripes); | ||
2620 | } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) { | ||
2621 | stripe_nr = stripe_nr * map->num_stripes + i; | ||
2622 | } | ||
2623 | bytenr = chunk_start + stripe_nr * map->stripe_len; | ||
2624 | WARN_ON(nr >= map->num_stripes); | ||
2625 | for (j = 0; j < nr; j++) { | ||
2626 | if (buf[j] == bytenr) | ||
2627 | break; | ||
2628 | } | ||
2629 | if (j == nr) { | ||
2630 | WARN_ON(nr >= map->num_stripes); | ||
2631 | buf[nr++] = bytenr; | ||
2632 | } | ||
2633 | } | ||
2634 | |||
2635 | for (i = 0; i > nr; i++) { | ||
2636 | struct btrfs_multi_bio *multi; | ||
2637 | struct btrfs_bio_stripe *stripe; | ||
2638 | int ret; | ||
2639 | |||
2640 | length = 1; | ||
2641 | ret = btrfs_map_block(map_tree, WRITE, buf[i], | ||
2642 | &length, &multi, 0); | ||
2643 | BUG_ON(ret); | ||
2644 | |||
2645 | stripe = multi->stripes; | ||
2646 | for (j = 0; j < multi->num_stripes; j++) { | ||
2647 | if (stripe->physical >= physical && | ||
2648 | physical < stripe->physical + length) | ||
2649 | break; | ||
2650 | } | ||
2651 | BUG_ON(j >= multi->num_stripes); | ||
2652 | kfree(multi); | ||
2653 | } | ||
2654 | |||
2655 | *logical = buf; | ||
2656 | *naddrs = nr; | ||
2657 | *stripe_len = map->stripe_len; | ||
2658 | |||
2659 | free_extent_map(em); | ||
2660 | return 0; | ||
2661 | } | ||
2662 | |||
2663 | int btrfs_unplug_page(struct btrfs_mapping_tree *map_tree, | ||
2664 | u64 logical, struct page *page) | ||
2665 | { | ||
2666 | u64 length = PAGE_CACHE_SIZE; | ||
2667 | return __btrfs_map_block(map_tree, READ, logical, &length, | ||
2668 | NULL, 0, page); | ||
2669 | } | ||
2670 | |||
2671 | static void end_bio_multi_stripe(struct bio *bio, int err) | ||
2672 | { | ||
2673 | struct btrfs_multi_bio *multi = bio->bi_private; | ||
2674 | int is_orig_bio = 0; | ||
2675 | |||
2676 | if (err) | ||
2677 | atomic_inc(&multi->error); | ||
2678 | |||
2679 | if (bio == multi->orig_bio) | ||
2680 | is_orig_bio = 1; | ||
2681 | |||
2682 | if (atomic_dec_and_test(&multi->stripes_pending)) { | ||
2683 | if (!is_orig_bio) { | ||
2684 | bio_put(bio); | ||
2685 | bio = multi->orig_bio; | ||
2686 | } | ||
2687 | bio->bi_private = multi->private; | ||
2688 | bio->bi_end_io = multi->end_io; | ||
2689 | /* only send an error to the higher layers if it is | ||
2690 | * beyond the tolerance of the multi-bio | ||
2691 | */ | ||
2692 | if (atomic_read(&multi->error) > multi->max_errors) { | ||
2693 | err = -EIO; | ||
2694 | } else if (err) { | ||
2695 | /* | ||
2696 | * this bio is actually up to date, we didn't | ||
2697 | * go over the max number of errors | ||
2698 | */ | ||
2699 | set_bit(BIO_UPTODATE, &bio->bi_flags); | ||
2700 | err = 0; | ||
2701 | } | ||
2702 | kfree(multi); | ||
2703 | |||
2704 | bio_endio(bio, err); | ||
2705 | } else if (!is_orig_bio) { | ||
2706 | bio_put(bio); | ||
2707 | } | ||
2708 | } | ||
2709 | |||
2710 | struct async_sched { | ||
2711 | struct bio *bio; | ||
2712 | int rw; | ||
2713 | struct btrfs_fs_info *info; | ||
2714 | struct btrfs_work work; | ||
2715 | }; | ||
2716 | |||
2717 | /* | ||
2718 | * see run_scheduled_bios for a description of why bios are collected for | ||
2719 | * async submit. | ||
2720 | * | ||
2721 | * This will add one bio to the pending list for a device and make sure | ||
2722 | * the work struct is scheduled. | ||
2723 | */ | ||
2724 | static noinline int schedule_bio(struct btrfs_root *root, | ||
2725 | struct btrfs_device *device, | ||
2726 | int rw, struct bio *bio) | ||
2727 | { | ||
2728 | int should_queue = 1; | ||
2729 | |||
2730 | /* don't bother with additional async steps for reads, right now */ | ||
2731 | if (!(rw & (1 << BIO_RW))) { | ||
2732 | bio_get(bio); | ||
2733 | submit_bio(rw, bio); | ||
2734 | bio_put(bio); | ||
2735 | return 0; | ||
2736 | } | ||
2737 | |||
2738 | /* | ||
2739 | * nr_async_bios allows us to reliably return congestion to the | ||
2740 | * higher layers. Otherwise, the async bio makes it appear we have | ||
2741 | * made progress against dirty pages when we've really just put it | ||
2742 | * on a queue for later | ||
2743 | */ | ||
2744 | atomic_inc(&root->fs_info->nr_async_bios); | ||
2745 | WARN_ON(bio->bi_next); | ||
2746 | bio->bi_next = NULL; | ||
2747 | bio->bi_rw |= rw; | ||
2748 | |||
2749 | spin_lock(&device->io_lock); | ||
2750 | |||
2751 | if (device->pending_bio_tail) | ||
2752 | device->pending_bio_tail->bi_next = bio; | ||
2753 | |||
2754 | device->pending_bio_tail = bio; | ||
2755 | if (!device->pending_bios) | ||
2756 | device->pending_bios = bio; | ||
2757 | if (device->running_pending) | ||
2758 | should_queue = 0; | ||
2759 | |||
2760 | spin_unlock(&device->io_lock); | ||
2761 | |||
2762 | if (should_queue) | ||
2763 | btrfs_queue_worker(&root->fs_info->submit_workers, | ||
2764 | &device->work); | ||
2765 | return 0; | ||
2766 | } | ||
2767 | |||
2768 | int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio, | ||
2769 | int mirror_num, int async_submit) | ||
2770 | { | ||
2771 | struct btrfs_mapping_tree *map_tree; | ||
2772 | struct btrfs_device *dev; | ||
2773 | struct bio *first_bio = bio; | ||
2774 | u64 logical = (u64)bio->bi_sector << 9; | ||
2775 | u64 length = 0; | ||
2776 | u64 map_length; | ||
2777 | struct btrfs_multi_bio *multi = NULL; | ||
2778 | int ret; | ||
2779 | int dev_nr = 0; | ||
2780 | int total_devs = 1; | ||
2781 | |||
2782 | length = bio->bi_size; | ||
2783 | map_tree = &root->fs_info->mapping_tree; | ||
2784 | map_length = length; | ||
2785 | |||
2786 | ret = btrfs_map_block(map_tree, rw, logical, &map_length, &multi, | ||
2787 | mirror_num); | ||
2788 | BUG_ON(ret); | ||
2789 | |||
2790 | total_devs = multi->num_stripes; | ||
2791 | if (map_length < length) { | ||
2792 | printk(KERN_CRIT "mapping failed logical %llu bio len %llu " | ||
2793 | "len %llu\n", (unsigned long long)logical, | ||
2794 | (unsigned long long)length, | ||
2795 | (unsigned long long)map_length); | ||
2796 | BUG(); | ||
2797 | } | ||
2798 | multi->end_io = first_bio->bi_end_io; | ||
2799 | multi->private = first_bio->bi_private; | ||
2800 | multi->orig_bio = first_bio; | ||
2801 | atomic_set(&multi->stripes_pending, multi->num_stripes); | ||
2802 | |||
2803 | while (dev_nr < total_devs) { | ||
2804 | if (total_devs > 1) { | ||
2805 | if (dev_nr < total_devs - 1) { | ||
2806 | bio = bio_clone(first_bio, GFP_NOFS); | ||
2807 | BUG_ON(!bio); | ||
2808 | } else { | ||
2809 | bio = first_bio; | ||
2810 | } | ||
2811 | bio->bi_private = multi; | ||
2812 | bio->bi_end_io = end_bio_multi_stripe; | ||
2813 | } | ||
2814 | bio->bi_sector = multi->stripes[dev_nr].physical >> 9; | ||
2815 | dev = multi->stripes[dev_nr].dev; | ||
2816 | BUG_ON(rw == WRITE && !dev->writeable); | ||
2817 | if (dev && dev->bdev) { | ||
2818 | bio->bi_bdev = dev->bdev; | ||
2819 | if (async_submit) | ||
2820 | schedule_bio(root, dev, rw, bio); | ||
2821 | else | ||
2822 | submit_bio(rw, bio); | ||
2823 | } else { | ||
2824 | bio->bi_bdev = root->fs_info->fs_devices->latest_bdev; | ||
2825 | bio->bi_sector = logical >> 9; | ||
2826 | bio_endio(bio, -EIO); | ||
2827 | } | ||
2828 | dev_nr++; | ||
2829 | } | ||
2830 | if (total_devs == 1) | ||
2831 | kfree(multi); | ||
2832 | return 0; | ||
2833 | } | ||
2834 | |||
2835 | struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid, | ||
2836 | u8 *uuid, u8 *fsid) | ||
2837 | { | ||
2838 | struct btrfs_device *device; | ||
2839 | struct btrfs_fs_devices *cur_devices; | ||
2840 | |||
2841 | cur_devices = root->fs_info->fs_devices; | ||
2842 | while (cur_devices) { | ||
2843 | if (!fsid || | ||
2844 | !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) { | ||
2845 | device = __find_device(&cur_devices->devices, | ||
2846 | devid, uuid); | ||
2847 | if (device) | ||
2848 | return device; | ||
2849 | } | ||
2850 | cur_devices = cur_devices->seed; | ||
2851 | } | ||
2852 | return NULL; | ||
2853 | } | ||
2854 | |||
2855 | static struct btrfs_device *add_missing_dev(struct btrfs_root *root, | ||
2856 | u64 devid, u8 *dev_uuid) | ||
2857 | { | ||
2858 | struct btrfs_device *device; | ||
2859 | struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; | ||
2860 | |||
2861 | device = kzalloc(sizeof(*device), GFP_NOFS); | ||
2862 | if (!device) | ||
2863 | return NULL; | ||
2864 | list_add(&device->dev_list, | ||
2865 | &fs_devices->devices); | ||
2866 | device->barriers = 1; | ||
2867 | device->dev_root = root->fs_info->dev_root; | ||
2868 | device->devid = devid; | ||
2869 | device->work.func = pending_bios_fn; | ||
2870 | device->fs_devices = fs_devices; | ||
2871 | fs_devices->num_devices++; | ||
2872 | spin_lock_init(&device->io_lock); | ||
2873 | INIT_LIST_HEAD(&device->dev_alloc_list); | ||
2874 | memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE); | ||
2875 | return device; | ||
2876 | } | ||
2877 | |||
2878 | static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key, | ||
2879 | struct extent_buffer *leaf, | ||
2880 | struct btrfs_chunk *chunk) | ||
2881 | { | ||
2882 | struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree; | ||
2883 | struct map_lookup *map; | ||
2884 | struct extent_map *em; | ||
2885 | u64 logical; | ||
2886 | u64 length; | ||
2887 | u64 devid; | ||
2888 | u8 uuid[BTRFS_UUID_SIZE]; | ||
2889 | int num_stripes; | ||
2890 | int ret; | ||
2891 | int i; | ||
2892 | |||
2893 | logical = key->offset; | ||
2894 | length = btrfs_chunk_length(leaf, chunk); | ||
2895 | |||
2896 | spin_lock(&map_tree->map_tree.lock); | ||
2897 | em = lookup_extent_mapping(&map_tree->map_tree, logical, 1); | ||
2898 | spin_unlock(&map_tree->map_tree.lock); | ||
2899 | |||
2900 | /* already mapped? */ | ||
2901 | if (em && em->start <= logical && em->start + em->len > logical) { | ||
2902 | free_extent_map(em); | ||
2903 | return 0; | ||
2904 | } else if (em) { | ||
2905 | free_extent_map(em); | ||
2906 | } | ||
2907 | |||
2908 | map = kzalloc(sizeof(*map), GFP_NOFS); | ||
2909 | if (!map) | ||
2910 | return -ENOMEM; | ||
2911 | |||
2912 | em = alloc_extent_map(GFP_NOFS); | ||
2913 | if (!em) | ||
2914 | return -ENOMEM; | ||
2915 | num_stripes = btrfs_chunk_num_stripes(leaf, chunk); | ||
2916 | map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); | ||
2917 | if (!map) { | ||
2918 | free_extent_map(em); | ||
2919 | return -ENOMEM; | ||
2920 | } | ||
2921 | |||
2922 | em->bdev = (struct block_device *)map; | ||
2923 | em->start = logical; | ||
2924 | em->len = length; | ||
2925 | em->block_start = 0; | ||
2926 | em->block_len = em->len; | ||
2927 | |||
2928 | map->num_stripes = num_stripes; | ||
2929 | map->io_width = btrfs_chunk_io_width(leaf, chunk); | ||
2930 | map->io_align = btrfs_chunk_io_align(leaf, chunk); | ||
2931 | map->sector_size = btrfs_chunk_sector_size(leaf, chunk); | ||
2932 | map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk); | ||
2933 | map->type = btrfs_chunk_type(leaf, chunk); | ||
2934 | map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk); | ||
2935 | for (i = 0; i < num_stripes; i++) { | ||
2936 | map->stripes[i].physical = | ||
2937 | btrfs_stripe_offset_nr(leaf, chunk, i); | ||
2938 | devid = btrfs_stripe_devid_nr(leaf, chunk, i); | ||
2939 | read_extent_buffer(leaf, uuid, (unsigned long) | ||
2940 | btrfs_stripe_dev_uuid_nr(chunk, i), | ||
2941 | BTRFS_UUID_SIZE); | ||
2942 | map->stripes[i].dev = btrfs_find_device(root, devid, uuid, | ||
2943 | NULL); | ||
2944 | if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) { | ||
2945 | kfree(map); | ||
2946 | free_extent_map(em); | ||
2947 | return -EIO; | ||
2948 | } | ||
2949 | if (!map->stripes[i].dev) { | ||
2950 | map->stripes[i].dev = | ||
2951 | add_missing_dev(root, devid, uuid); | ||
2952 | if (!map->stripes[i].dev) { | ||
2953 | kfree(map); | ||
2954 | free_extent_map(em); | ||
2955 | return -EIO; | ||
2956 | } | ||
2957 | } | ||
2958 | map->stripes[i].dev->in_fs_metadata = 1; | ||
2959 | } | ||
2960 | |||
2961 | spin_lock(&map_tree->map_tree.lock); | ||
2962 | ret = add_extent_mapping(&map_tree->map_tree, em); | ||
2963 | spin_unlock(&map_tree->map_tree.lock); | ||
2964 | BUG_ON(ret); | ||
2965 | free_extent_map(em); | ||
2966 | |||
2967 | return 0; | ||
2968 | } | ||
2969 | |||
2970 | static int fill_device_from_item(struct extent_buffer *leaf, | ||
2971 | struct btrfs_dev_item *dev_item, | ||
2972 | struct btrfs_device *device) | ||
2973 | { | ||
2974 | unsigned long ptr; | ||
2975 | |||
2976 | device->devid = btrfs_device_id(leaf, dev_item); | ||
2977 | device->total_bytes = btrfs_device_total_bytes(leaf, dev_item); | ||
2978 | device->bytes_used = btrfs_device_bytes_used(leaf, dev_item); | ||
2979 | device->type = btrfs_device_type(leaf, dev_item); | ||
2980 | device->io_align = btrfs_device_io_align(leaf, dev_item); | ||
2981 | device->io_width = btrfs_device_io_width(leaf, dev_item); | ||
2982 | device->sector_size = btrfs_device_sector_size(leaf, dev_item); | ||
2983 | |||
2984 | ptr = (unsigned long)btrfs_device_uuid(dev_item); | ||
2985 | read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); | ||
2986 | |||
2987 | return 0; | ||
2988 | } | ||
2989 | |||
2990 | static int open_seed_devices(struct btrfs_root *root, u8 *fsid) | ||
2991 | { | ||
2992 | struct btrfs_fs_devices *fs_devices; | ||
2993 | int ret; | ||
2994 | |||
2995 | mutex_lock(&uuid_mutex); | ||
2996 | |||
2997 | fs_devices = root->fs_info->fs_devices->seed; | ||
2998 | while (fs_devices) { | ||
2999 | if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) { | ||
3000 | ret = 0; | ||
3001 | goto out; | ||
3002 | } | ||
3003 | fs_devices = fs_devices->seed; | ||
3004 | } | ||
3005 | |||
3006 | fs_devices = find_fsid(fsid); | ||
3007 | if (!fs_devices) { | ||
3008 | ret = -ENOENT; | ||
3009 | goto out; | ||
3010 | } | ||
3011 | |||
3012 | fs_devices = clone_fs_devices(fs_devices); | ||
3013 | if (IS_ERR(fs_devices)) { | ||
3014 | ret = PTR_ERR(fs_devices); | ||
3015 | goto out; | ||
3016 | } | ||
3017 | |||
3018 | ret = __btrfs_open_devices(fs_devices, FMODE_READ, | ||
3019 | root->fs_info->bdev_holder); | ||
3020 | if (ret) | ||
3021 | goto out; | ||
3022 | |||
3023 | if (!fs_devices->seeding) { | ||
3024 | __btrfs_close_devices(fs_devices); | ||
3025 | free_fs_devices(fs_devices); | ||
3026 | ret = -EINVAL; | ||
3027 | goto out; | ||
3028 | } | ||
3029 | |||
3030 | fs_devices->seed = root->fs_info->fs_devices->seed; | ||
3031 | root->fs_info->fs_devices->seed = fs_devices; | ||
3032 | out: | ||
3033 | mutex_unlock(&uuid_mutex); | ||
3034 | return ret; | ||
3035 | } | ||
3036 | |||
3037 | static int read_one_dev(struct btrfs_root *root, | ||
3038 | struct extent_buffer *leaf, | ||
3039 | struct btrfs_dev_item *dev_item) | ||
3040 | { | ||
3041 | struct btrfs_device *device; | ||
3042 | u64 devid; | ||
3043 | int ret; | ||
3044 | u8 fs_uuid[BTRFS_UUID_SIZE]; | ||
3045 | u8 dev_uuid[BTRFS_UUID_SIZE]; | ||
3046 | |||
3047 | devid = btrfs_device_id(leaf, dev_item); | ||
3048 | read_extent_buffer(leaf, dev_uuid, | ||
3049 | (unsigned long)btrfs_device_uuid(dev_item), | ||
3050 | BTRFS_UUID_SIZE); | ||
3051 | read_extent_buffer(leaf, fs_uuid, | ||
3052 | (unsigned long)btrfs_device_fsid(dev_item), | ||
3053 | BTRFS_UUID_SIZE); | ||
3054 | |||
3055 | if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) { | ||
3056 | ret = open_seed_devices(root, fs_uuid); | ||
3057 | if (ret && !btrfs_test_opt(root, DEGRADED)) | ||
3058 | return ret; | ||
3059 | } | ||
3060 | |||
3061 | device = btrfs_find_device(root, devid, dev_uuid, fs_uuid); | ||
3062 | if (!device || !device->bdev) { | ||
3063 | if (!btrfs_test_opt(root, DEGRADED)) | ||
3064 | return -EIO; | ||
3065 | |||
3066 | if (!device) { | ||
3067 | printk(KERN_WARNING "warning devid %llu missing\n", | ||
3068 | (unsigned long long)devid); | ||
3069 | device = add_missing_dev(root, devid, dev_uuid); | ||
3070 | if (!device) | ||
3071 | return -ENOMEM; | ||
3072 | } | ||
3073 | } | ||
3074 | |||
3075 | if (device->fs_devices != root->fs_info->fs_devices) { | ||
3076 | BUG_ON(device->writeable); | ||
3077 | if (device->generation != | ||
3078 | btrfs_device_generation(leaf, dev_item)) | ||
3079 | return -EINVAL; | ||
3080 | } | ||
3081 | |||
3082 | fill_device_from_item(leaf, dev_item, device); | ||
3083 | device->dev_root = root->fs_info->dev_root; | ||
3084 | device->in_fs_metadata = 1; | ||
3085 | if (device->writeable) | ||
3086 | device->fs_devices->total_rw_bytes += device->total_bytes; | ||
3087 | ret = 0; | ||
3088 | return ret; | ||
3089 | } | ||
3090 | |||
3091 | int btrfs_read_super_device(struct btrfs_root *root, struct extent_buffer *buf) | ||
3092 | { | ||
3093 | struct btrfs_dev_item *dev_item; | ||
3094 | |||
3095 | dev_item = (struct btrfs_dev_item *)offsetof(struct btrfs_super_block, | ||
3096 | dev_item); | ||
3097 | return read_one_dev(root, buf, dev_item); | ||
3098 | } | ||
3099 | |||
3100 | int btrfs_read_sys_array(struct btrfs_root *root) | ||
3101 | { | ||
3102 | struct btrfs_super_block *super_copy = &root->fs_info->super_copy; | ||
3103 | struct extent_buffer *sb; | ||
3104 | struct btrfs_disk_key *disk_key; | ||
3105 | struct btrfs_chunk *chunk; | ||
3106 | u8 *ptr; | ||
3107 | unsigned long sb_ptr; | ||
3108 | int ret = 0; | ||
3109 | u32 num_stripes; | ||
3110 | u32 array_size; | ||
3111 | u32 len = 0; | ||
3112 | u32 cur; | ||
3113 | struct btrfs_key key; | ||
3114 | |||
3115 | sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET, | ||
3116 | BTRFS_SUPER_INFO_SIZE); | ||
3117 | if (!sb) | ||
3118 | return -ENOMEM; | ||
3119 | btrfs_set_buffer_uptodate(sb); | ||
3120 | write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE); | ||
3121 | array_size = btrfs_super_sys_array_size(super_copy); | ||
3122 | |||
3123 | ptr = super_copy->sys_chunk_array; | ||
3124 | sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array); | ||
3125 | cur = 0; | ||
3126 | |||
3127 | while (cur < array_size) { | ||
3128 | disk_key = (struct btrfs_disk_key *)ptr; | ||
3129 | btrfs_disk_key_to_cpu(&key, disk_key); | ||
3130 | |||
3131 | len = sizeof(*disk_key); ptr += len; | ||
3132 | sb_ptr += len; | ||
3133 | cur += len; | ||
3134 | |||
3135 | if (key.type == BTRFS_CHUNK_ITEM_KEY) { | ||
3136 | chunk = (struct btrfs_chunk *)sb_ptr; | ||
3137 | ret = read_one_chunk(root, &key, sb, chunk); | ||
3138 | if (ret) | ||
3139 | break; | ||
3140 | num_stripes = btrfs_chunk_num_stripes(sb, chunk); | ||
3141 | len = btrfs_chunk_item_size(num_stripes); | ||
3142 | } else { | ||
3143 | ret = -EIO; | ||
3144 | break; | ||
3145 | } | ||
3146 | ptr += len; | ||
3147 | sb_ptr += len; | ||
3148 | cur += len; | ||
3149 | } | ||
3150 | free_extent_buffer(sb); | ||
3151 | return ret; | ||
3152 | } | ||
3153 | |||
3154 | int btrfs_read_chunk_tree(struct btrfs_root *root) | ||
3155 | { | ||
3156 | struct btrfs_path *path; | ||
3157 | struct extent_buffer *leaf; | ||
3158 | struct btrfs_key key; | ||
3159 | struct btrfs_key found_key; | ||
3160 | int ret; | ||
3161 | int slot; | ||
3162 | |||
3163 | root = root->fs_info->chunk_root; | ||
3164 | |||
3165 | path = btrfs_alloc_path(); | ||
3166 | if (!path) | ||
3167 | return -ENOMEM; | ||
3168 | |||
3169 | /* first we search for all of the device items, and then we | ||
3170 | * read in all of the chunk items. This way we can create chunk | ||
3171 | * mappings that reference all of the devices that are afound | ||
3172 | */ | ||
3173 | key.objectid = BTRFS_DEV_ITEMS_OBJECTID; | ||
3174 | key.offset = 0; | ||
3175 | key.type = 0; | ||
3176 | again: | ||
3177 | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | ||
3178 | while (1) { | ||
3179 | leaf = path->nodes[0]; | ||
3180 | slot = path->slots[0]; | ||
3181 | if (slot >= btrfs_header_nritems(leaf)) { | ||
3182 | ret = btrfs_next_leaf(root, path); | ||
3183 | if (ret == 0) | ||
3184 | continue; | ||
3185 | if (ret < 0) | ||
3186 | goto error; | ||
3187 | break; | ||
3188 | } | ||
3189 | btrfs_item_key_to_cpu(leaf, &found_key, slot); | ||
3190 | if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) { | ||
3191 | if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID) | ||
3192 | break; | ||
3193 | if (found_key.type == BTRFS_DEV_ITEM_KEY) { | ||
3194 | struct btrfs_dev_item *dev_item; | ||
3195 | dev_item = btrfs_item_ptr(leaf, slot, | ||
3196 | struct btrfs_dev_item); | ||
3197 | ret = read_one_dev(root, leaf, dev_item); | ||
3198 | if (ret) | ||
3199 | goto error; | ||
3200 | } | ||
3201 | } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) { | ||
3202 | struct btrfs_chunk *chunk; | ||
3203 | chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); | ||
3204 | ret = read_one_chunk(root, &found_key, leaf, chunk); | ||
3205 | if (ret) | ||
3206 | goto error; | ||
3207 | } | ||
3208 | path->slots[0]++; | ||
3209 | } | ||
3210 | if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) { | ||
3211 | key.objectid = 0; | ||
3212 | btrfs_release_path(root, path); | ||
3213 | goto again; | ||
3214 | } | ||
3215 | ret = 0; | ||
3216 | error: | ||
3217 | btrfs_free_path(path); | ||
3218 | return ret; | ||
3219 | } | ||