diff options
Diffstat (limited to 'fs/btrfs/volumes.c')
-rw-r--r-- | fs/btrfs/volumes.c | 2549 |
1 files changed, 2549 insertions, 0 deletions
diff --git a/fs/btrfs/volumes.c b/fs/btrfs/volumes.c new file mode 100644 index 000000000000..2eed7f91f51a --- /dev/null +++ b/fs/btrfs/volumes.c | |||
@@ -0,0 +1,2549 @@ | |||
1 | /* | ||
2 | * Copyright (C) 2007 Oracle. All rights reserved. | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or | ||
5 | * modify it under the terms of the GNU General Public | ||
6 | * License v2 as published by the Free Software Foundation. | ||
7 | * | ||
8 | * This program is distributed in the hope that it will be useful, | ||
9 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | ||
11 | * General Public License for more details. | ||
12 | * | ||
13 | * You should have received a copy of the GNU General Public | ||
14 | * License along with this program; if not, write to the | ||
15 | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | ||
16 | * Boston, MA 021110-1307, USA. | ||
17 | */ | ||
18 | #include <linux/sched.h> | ||
19 | #include <linux/bio.h> | ||
20 | #include <linux/buffer_head.h> | ||
21 | #include <linux/blkdev.h> | ||
22 | #include <linux/random.h> | ||
23 | #include <asm/div64.h> | ||
24 | #include "ctree.h" | ||
25 | #include "extent_map.h" | ||
26 | #include "disk-io.h" | ||
27 | #include "transaction.h" | ||
28 | #include "print-tree.h" | ||
29 | #include "volumes.h" | ||
30 | #include "async-thread.h" | ||
31 | |||
32 | struct map_lookup { | ||
33 | u64 type; | ||
34 | int io_align; | ||
35 | int io_width; | ||
36 | int stripe_len; | ||
37 | int sector_size; | ||
38 | int num_stripes; | ||
39 | int sub_stripes; | ||
40 | struct btrfs_bio_stripe stripes[]; | ||
41 | }; | ||
42 | |||
43 | #define map_lookup_size(n) (sizeof(struct map_lookup) + \ | ||
44 | (sizeof(struct btrfs_bio_stripe) * (n))) | ||
45 | |||
46 | static DEFINE_MUTEX(uuid_mutex); | ||
47 | static LIST_HEAD(fs_uuids); | ||
48 | |||
49 | void btrfs_lock_volumes(void) | ||
50 | { | ||
51 | mutex_lock(&uuid_mutex); | ||
52 | } | ||
53 | |||
54 | void btrfs_unlock_volumes(void) | ||
55 | { | ||
56 | mutex_unlock(&uuid_mutex); | ||
57 | } | ||
58 | |||
59 | static void lock_chunks(struct btrfs_root *root) | ||
60 | { | ||
61 | mutex_lock(&root->fs_info->alloc_mutex); | ||
62 | mutex_lock(&root->fs_info->chunk_mutex); | ||
63 | } | ||
64 | |||
65 | static void unlock_chunks(struct btrfs_root *root) | ||
66 | { | ||
67 | mutex_unlock(&root->fs_info->chunk_mutex); | ||
68 | mutex_unlock(&root->fs_info->alloc_mutex); | ||
69 | } | ||
70 | |||
71 | int btrfs_cleanup_fs_uuids(void) | ||
72 | { | ||
73 | struct btrfs_fs_devices *fs_devices; | ||
74 | struct list_head *uuid_cur; | ||
75 | struct list_head *devices_cur; | ||
76 | struct btrfs_device *dev; | ||
77 | |||
78 | list_for_each(uuid_cur, &fs_uuids) { | ||
79 | fs_devices = list_entry(uuid_cur, struct btrfs_fs_devices, | ||
80 | list); | ||
81 | while(!list_empty(&fs_devices->devices)) { | ||
82 | devices_cur = fs_devices->devices.next; | ||
83 | dev = list_entry(devices_cur, struct btrfs_device, | ||
84 | dev_list); | ||
85 | if (dev->bdev) { | ||
86 | close_bdev_excl(dev->bdev); | ||
87 | fs_devices->open_devices--; | ||
88 | } | ||
89 | list_del(&dev->dev_list); | ||
90 | kfree(dev->name); | ||
91 | kfree(dev); | ||
92 | } | ||
93 | } | ||
94 | return 0; | ||
95 | } | ||
96 | |||
97 | static noinline struct btrfs_device *__find_device(struct list_head *head, | ||
98 | u64 devid, u8 *uuid) | ||
99 | { | ||
100 | struct btrfs_device *dev; | ||
101 | struct list_head *cur; | ||
102 | |||
103 | list_for_each(cur, head) { | ||
104 | dev = list_entry(cur, struct btrfs_device, dev_list); | ||
105 | if (dev->devid == devid && | ||
106 | (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) { | ||
107 | return dev; | ||
108 | } | ||
109 | } | ||
110 | return NULL; | ||
111 | } | ||
112 | |||
113 | static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid) | ||
114 | { | ||
115 | struct list_head *cur; | ||
116 | struct btrfs_fs_devices *fs_devices; | ||
117 | |||
118 | list_for_each(cur, &fs_uuids) { | ||
119 | fs_devices = list_entry(cur, struct btrfs_fs_devices, list); | ||
120 | if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0) | ||
121 | return fs_devices; | ||
122 | } | ||
123 | return NULL; | ||
124 | } | ||
125 | |||
126 | /* | ||
127 | * we try to collect pending bios for a device so we don't get a large | ||
128 | * number of procs sending bios down to the same device. This greatly | ||
129 | * improves the schedulers ability to collect and merge the bios. | ||
130 | * | ||
131 | * But, it also turns into a long list of bios to process and that is sure | ||
132 | * to eventually make the worker thread block. The solution here is to | ||
133 | * make some progress and then put this work struct back at the end of | ||
134 | * the list if the block device is congested. This way, multiple devices | ||
135 | * can make progress from a single worker thread. | ||
136 | */ | ||
137 | static int noinline run_scheduled_bios(struct btrfs_device *device) | ||
138 | { | ||
139 | struct bio *pending; | ||
140 | struct backing_dev_info *bdi; | ||
141 | struct btrfs_fs_info *fs_info; | ||
142 | struct bio *tail; | ||
143 | struct bio *cur; | ||
144 | int again = 0; | ||
145 | unsigned long num_run = 0; | ||
146 | unsigned long limit; | ||
147 | |||
148 | bdi = device->bdev->bd_inode->i_mapping->backing_dev_info; | ||
149 | fs_info = device->dev_root->fs_info; | ||
150 | limit = btrfs_async_submit_limit(fs_info); | ||
151 | limit = limit * 2 / 3; | ||
152 | |||
153 | loop: | ||
154 | spin_lock(&device->io_lock); | ||
155 | |||
156 | /* take all the bios off the list at once and process them | ||
157 | * later on (without the lock held). But, remember the | ||
158 | * tail and other pointers so the bios can be properly reinserted | ||
159 | * into the list if we hit congestion | ||
160 | */ | ||
161 | pending = device->pending_bios; | ||
162 | tail = device->pending_bio_tail; | ||
163 | WARN_ON(pending && !tail); | ||
164 | device->pending_bios = NULL; | ||
165 | device->pending_bio_tail = NULL; | ||
166 | |||
167 | /* | ||
168 | * if pending was null this time around, no bios need processing | ||
169 | * at all and we can stop. Otherwise it'll loop back up again | ||
170 | * and do an additional check so no bios are missed. | ||
171 | * | ||
172 | * device->running_pending is used to synchronize with the | ||
173 | * schedule_bio code. | ||
174 | */ | ||
175 | if (pending) { | ||
176 | again = 1; | ||
177 | device->running_pending = 1; | ||
178 | } else { | ||
179 | again = 0; | ||
180 | device->running_pending = 0; | ||
181 | } | ||
182 | spin_unlock(&device->io_lock); | ||
183 | |||
184 | while(pending) { | ||
185 | cur = pending; | ||
186 | pending = pending->bi_next; | ||
187 | cur->bi_next = NULL; | ||
188 | atomic_dec(&fs_info->nr_async_bios); | ||
189 | |||
190 | if (atomic_read(&fs_info->nr_async_bios) < limit && | ||
191 | waitqueue_active(&fs_info->async_submit_wait)) | ||
192 | wake_up(&fs_info->async_submit_wait); | ||
193 | |||
194 | BUG_ON(atomic_read(&cur->bi_cnt) == 0); | ||
195 | bio_get(cur); | ||
196 | submit_bio(cur->bi_rw, cur); | ||
197 | bio_put(cur); | ||
198 | num_run++; | ||
199 | |||
200 | /* | ||
201 | * we made progress, there is more work to do and the bdi | ||
202 | * is now congested. Back off and let other work structs | ||
203 | * run instead | ||
204 | */ | ||
205 | if (pending && bdi_write_congested(bdi)) { | ||
206 | struct bio *old_head; | ||
207 | |||
208 | spin_lock(&device->io_lock); | ||
209 | |||
210 | old_head = device->pending_bios; | ||
211 | device->pending_bios = pending; | ||
212 | if (device->pending_bio_tail) | ||
213 | tail->bi_next = old_head; | ||
214 | else | ||
215 | device->pending_bio_tail = tail; | ||
216 | |||
217 | spin_unlock(&device->io_lock); | ||
218 | btrfs_requeue_work(&device->work); | ||
219 | goto done; | ||
220 | } | ||
221 | } | ||
222 | if (again) | ||
223 | goto loop; | ||
224 | done: | ||
225 | return 0; | ||
226 | } | ||
227 | |||
228 | void pending_bios_fn(struct btrfs_work *work) | ||
229 | { | ||
230 | struct btrfs_device *device; | ||
231 | |||
232 | device = container_of(work, struct btrfs_device, work); | ||
233 | run_scheduled_bios(device); | ||
234 | } | ||
235 | |||
236 | static noinline int device_list_add(const char *path, | ||
237 | struct btrfs_super_block *disk_super, | ||
238 | u64 devid, struct btrfs_fs_devices **fs_devices_ret) | ||
239 | { | ||
240 | struct btrfs_device *device; | ||
241 | struct btrfs_fs_devices *fs_devices; | ||
242 | u64 found_transid = btrfs_super_generation(disk_super); | ||
243 | |||
244 | fs_devices = find_fsid(disk_super->fsid); | ||
245 | if (!fs_devices) { | ||
246 | fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS); | ||
247 | if (!fs_devices) | ||
248 | return -ENOMEM; | ||
249 | INIT_LIST_HEAD(&fs_devices->devices); | ||
250 | INIT_LIST_HEAD(&fs_devices->alloc_list); | ||
251 | list_add(&fs_devices->list, &fs_uuids); | ||
252 | memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE); | ||
253 | fs_devices->latest_devid = devid; | ||
254 | fs_devices->latest_trans = found_transid; | ||
255 | device = NULL; | ||
256 | } else { | ||
257 | device = __find_device(&fs_devices->devices, devid, | ||
258 | disk_super->dev_item.uuid); | ||
259 | } | ||
260 | if (!device) { | ||
261 | device = kzalloc(sizeof(*device), GFP_NOFS); | ||
262 | if (!device) { | ||
263 | /* we can safely leave the fs_devices entry around */ | ||
264 | return -ENOMEM; | ||
265 | } | ||
266 | device->devid = devid; | ||
267 | device->work.func = pending_bios_fn; | ||
268 | memcpy(device->uuid, disk_super->dev_item.uuid, | ||
269 | BTRFS_UUID_SIZE); | ||
270 | device->barriers = 1; | ||
271 | spin_lock_init(&device->io_lock); | ||
272 | device->name = kstrdup(path, GFP_NOFS); | ||
273 | if (!device->name) { | ||
274 | kfree(device); | ||
275 | return -ENOMEM; | ||
276 | } | ||
277 | list_add(&device->dev_list, &fs_devices->devices); | ||
278 | list_add(&device->dev_alloc_list, &fs_devices->alloc_list); | ||
279 | fs_devices->num_devices++; | ||
280 | } | ||
281 | |||
282 | if (found_transid > fs_devices->latest_trans) { | ||
283 | fs_devices->latest_devid = devid; | ||
284 | fs_devices->latest_trans = found_transid; | ||
285 | } | ||
286 | *fs_devices_ret = fs_devices; | ||
287 | return 0; | ||
288 | } | ||
289 | |||
290 | int btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices) | ||
291 | { | ||
292 | struct list_head *head = &fs_devices->devices; | ||
293 | struct list_head *cur; | ||
294 | struct btrfs_device *device; | ||
295 | |||
296 | mutex_lock(&uuid_mutex); | ||
297 | again: | ||
298 | list_for_each(cur, head) { | ||
299 | device = list_entry(cur, struct btrfs_device, dev_list); | ||
300 | if (!device->in_fs_metadata) { | ||
301 | struct block_device *bdev; | ||
302 | list_del(&device->dev_list); | ||
303 | list_del(&device->dev_alloc_list); | ||
304 | fs_devices->num_devices--; | ||
305 | if (device->bdev) { | ||
306 | bdev = device->bdev; | ||
307 | fs_devices->open_devices--; | ||
308 | mutex_unlock(&uuid_mutex); | ||
309 | close_bdev_excl(bdev); | ||
310 | mutex_lock(&uuid_mutex); | ||
311 | } | ||
312 | kfree(device->name); | ||
313 | kfree(device); | ||
314 | goto again; | ||
315 | } | ||
316 | } | ||
317 | mutex_unlock(&uuid_mutex); | ||
318 | return 0; | ||
319 | } | ||
320 | |||
321 | int btrfs_close_devices(struct btrfs_fs_devices *fs_devices) | ||
322 | { | ||
323 | struct list_head *head = &fs_devices->devices; | ||
324 | struct list_head *cur; | ||
325 | struct btrfs_device *device; | ||
326 | |||
327 | mutex_lock(&uuid_mutex); | ||
328 | list_for_each(cur, head) { | ||
329 | device = list_entry(cur, struct btrfs_device, dev_list); | ||
330 | if (device->bdev) { | ||
331 | close_bdev_excl(device->bdev); | ||
332 | fs_devices->open_devices--; | ||
333 | } | ||
334 | device->bdev = NULL; | ||
335 | device->in_fs_metadata = 0; | ||
336 | } | ||
337 | fs_devices->mounted = 0; | ||
338 | mutex_unlock(&uuid_mutex); | ||
339 | return 0; | ||
340 | } | ||
341 | |||
342 | int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, | ||
343 | int flags, void *holder) | ||
344 | { | ||
345 | struct block_device *bdev; | ||
346 | struct list_head *head = &fs_devices->devices; | ||
347 | struct list_head *cur; | ||
348 | struct btrfs_device *device; | ||
349 | struct block_device *latest_bdev = NULL; | ||
350 | struct buffer_head *bh; | ||
351 | struct btrfs_super_block *disk_super; | ||
352 | u64 latest_devid = 0; | ||
353 | u64 latest_transid = 0; | ||
354 | u64 transid; | ||
355 | u64 devid; | ||
356 | int ret = 0; | ||
357 | |||
358 | mutex_lock(&uuid_mutex); | ||
359 | if (fs_devices->mounted) | ||
360 | goto out; | ||
361 | |||
362 | list_for_each(cur, head) { | ||
363 | device = list_entry(cur, struct btrfs_device, dev_list); | ||
364 | if (device->bdev) | ||
365 | continue; | ||
366 | |||
367 | if (!device->name) | ||
368 | continue; | ||
369 | |||
370 | bdev = open_bdev_excl(device->name, flags, holder); | ||
371 | |||
372 | if (IS_ERR(bdev)) { | ||
373 | printk("open %s failed\n", device->name); | ||
374 | goto error; | ||
375 | } | ||
376 | set_blocksize(bdev, 4096); | ||
377 | |||
378 | bh = __bread(bdev, BTRFS_SUPER_INFO_OFFSET / 4096, 4096); | ||
379 | if (!bh) | ||
380 | goto error_close; | ||
381 | |||
382 | disk_super = (struct btrfs_super_block *)bh->b_data; | ||
383 | if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC, | ||
384 | sizeof(disk_super->magic))) | ||
385 | goto error_brelse; | ||
386 | |||
387 | devid = le64_to_cpu(disk_super->dev_item.devid); | ||
388 | if (devid != device->devid) | ||
389 | goto error_brelse; | ||
390 | |||
391 | transid = btrfs_super_generation(disk_super); | ||
392 | if (!latest_transid || transid > latest_transid) { | ||
393 | latest_devid = devid; | ||
394 | latest_transid = transid; | ||
395 | latest_bdev = bdev; | ||
396 | } | ||
397 | |||
398 | device->bdev = bdev; | ||
399 | device->in_fs_metadata = 0; | ||
400 | fs_devices->open_devices++; | ||
401 | continue; | ||
402 | |||
403 | error_brelse: | ||
404 | brelse(bh); | ||
405 | error_close: | ||
406 | close_bdev_excl(bdev); | ||
407 | error: | ||
408 | continue; | ||
409 | } | ||
410 | if (fs_devices->open_devices == 0) { | ||
411 | ret = -EIO; | ||
412 | goto out; | ||
413 | } | ||
414 | fs_devices->mounted = 1; | ||
415 | fs_devices->latest_bdev = latest_bdev; | ||
416 | fs_devices->latest_devid = latest_devid; | ||
417 | fs_devices->latest_trans = latest_transid; | ||
418 | out: | ||
419 | mutex_unlock(&uuid_mutex); | ||
420 | return ret; | ||
421 | } | ||
422 | |||
423 | int btrfs_scan_one_device(const char *path, int flags, void *holder, | ||
424 | struct btrfs_fs_devices **fs_devices_ret) | ||
425 | { | ||
426 | struct btrfs_super_block *disk_super; | ||
427 | struct block_device *bdev; | ||
428 | struct buffer_head *bh; | ||
429 | int ret; | ||
430 | u64 devid; | ||
431 | u64 transid; | ||
432 | |||
433 | mutex_lock(&uuid_mutex); | ||
434 | |||
435 | bdev = open_bdev_excl(path, flags, holder); | ||
436 | |||
437 | if (IS_ERR(bdev)) { | ||
438 | ret = PTR_ERR(bdev); | ||
439 | goto error; | ||
440 | } | ||
441 | |||
442 | ret = set_blocksize(bdev, 4096); | ||
443 | if (ret) | ||
444 | goto error_close; | ||
445 | bh = __bread(bdev, BTRFS_SUPER_INFO_OFFSET / 4096, 4096); | ||
446 | if (!bh) { | ||
447 | ret = -EIO; | ||
448 | goto error_close; | ||
449 | } | ||
450 | disk_super = (struct btrfs_super_block *)bh->b_data; | ||
451 | if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC, | ||
452 | sizeof(disk_super->magic))) { | ||
453 | ret = -EINVAL; | ||
454 | goto error_brelse; | ||
455 | } | ||
456 | devid = le64_to_cpu(disk_super->dev_item.devid); | ||
457 | transid = btrfs_super_generation(disk_super); | ||
458 | if (disk_super->label[0]) | ||
459 | printk("device label %s ", disk_super->label); | ||
460 | else { | ||
461 | /* FIXME, make a readl uuid parser */ | ||
462 | printk("device fsid %llx-%llx ", | ||
463 | *(unsigned long long *)disk_super->fsid, | ||
464 | *(unsigned long long *)(disk_super->fsid + 8)); | ||
465 | } | ||
466 | printk("devid %Lu transid %Lu %s\n", devid, transid, path); | ||
467 | ret = device_list_add(path, disk_super, devid, fs_devices_ret); | ||
468 | |||
469 | error_brelse: | ||
470 | brelse(bh); | ||
471 | error_close: | ||
472 | close_bdev_excl(bdev); | ||
473 | error: | ||
474 | mutex_unlock(&uuid_mutex); | ||
475 | return ret; | ||
476 | } | ||
477 | |||
478 | /* | ||
479 | * this uses a pretty simple search, the expectation is that it is | ||
480 | * called very infrequently and that a given device has a small number | ||
481 | * of extents | ||
482 | */ | ||
483 | static noinline int find_free_dev_extent(struct btrfs_trans_handle *trans, | ||
484 | struct btrfs_device *device, | ||
485 | struct btrfs_path *path, | ||
486 | u64 num_bytes, u64 *start) | ||
487 | { | ||
488 | struct btrfs_key key; | ||
489 | struct btrfs_root *root = device->dev_root; | ||
490 | struct btrfs_dev_extent *dev_extent = NULL; | ||
491 | u64 hole_size = 0; | ||
492 | u64 last_byte = 0; | ||
493 | u64 search_start = 0; | ||
494 | u64 search_end = device->total_bytes; | ||
495 | int ret; | ||
496 | int slot = 0; | ||
497 | int start_found; | ||
498 | struct extent_buffer *l; | ||
499 | |||
500 | start_found = 0; | ||
501 | path->reada = 2; | ||
502 | |||
503 | /* FIXME use last free of some kind */ | ||
504 | |||
505 | /* we don't want to overwrite the superblock on the drive, | ||
506 | * so we make sure to start at an offset of at least 1MB | ||
507 | */ | ||
508 | search_start = max((u64)1024 * 1024, search_start); | ||
509 | |||
510 | if (root->fs_info->alloc_start + num_bytes <= device->total_bytes) | ||
511 | search_start = max(root->fs_info->alloc_start, search_start); | ||
512 | |||
513 | key.objectid = device->devid; | ||
514 | key.offset = search_start; | ||
515 | key.type = BTRFS_DEV_EXTENT_KEY; | ||
516 | ret = btrfs_search_slot(trans, root, &key, path, 0, 0); | ||
517 | if (ret < 0) | ||
518 | goto error; | ||
519 | ret = btrfs_previous_item(root, path, 0, key.type); | ||
520 | if (ret < 0) | ||
521 | goto error; | ||
522 | l = path->nodes[0]; | ||
523 | btrfs_item_key_to_cpu(l, &key, path->slots[0]); | ||
524 | while (1) { | ||
525 | l = path->nodes[0]; | ||
526 | slot = path->slots[0]; | ||
527 | if (slot >= btrfs_header_nritems(l)) { | ||
528 | ret = btrfs_next_leaf(root, path); | ||
529 | if (ret == 0) | ||
530 | continue; | ||
531 | if (ret < 0) | ||
532 | goto error; | ||
533 | no_more_items: | ||
534 | if (!start_found) { | ||
535 | if (search_start >= search_end) { | ||
536 | ret = -ENOSPC; | ||
537 | goto error; | ||
538 | } | ||
539 | *start = search_start; | ||
540 | start_found = 1; | ||
541 | goto check_pending; | ||
542 | } | ||
543 | *start = last_byte > search_start ? | ||
544 | last_byte : search_start; | ||
545 | if (search_end <= *start) { | ||
546 | ret = -ENOSPC; | ||
547 | goto error; | ||
548 | } | ||
549 | goto check_pending; | ||
550 | } | ||
551 | btrfs_item_key_to_cpu(l, &key, slot); | ||
552 | |||
553 | if (key.objectid < device->devid) | ||
554 | goto next; | ||
555 | |||
556 | if (key.objectid > device->devid) | ||
557 | goto no_more_items; | ||
558 | |||
559 | if (key.offset >= search_start && key.offset > last_byte && | ||
560 | start_found) { | ||
561 | if (last_byte < search_start) | ||
562 | last_byte = search_start; | ||
563 | hole_size = key.offset - last_byte; | ||
564 | if (key.offset > last_byte && | ||
565 | hole_size >= num_bytes) { | ||
566 | *start = last_byte; | ||
567 | goto check_pending; | ||
568 | } | ||
569 | } | ||
570 | if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY) { | ||
571 | goto next; | ||
572 | } | ||
573 | |||
574 | start_found = 1; | ||
575 | dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); | ||
576 | last_byte = key.offset + btrfs_dev_extent_length(l, dev_extent); | ||
577 | next: | ||
578 | path->slots[0]++; | ||
579 | cond_resched(); | ||
580 | } | ||
581 | check_pending: | ||
582 | /* we have to make sure we didn't find an extent that has already | ||
583 | * been allocated by the map tree or the original allocation | ||
584 | */ | ||
585 | btrfs_release_path(root, path); | ||
586 | BUG_ON(*start < search_start); | ||
587 | |||
588 | if (*start + num_bytes > search_end) { | ||
589 | ret = -ENOSPC; | ||
590 | goto error; | ||
591 | } | ||
592 | /* check for pending inserts here */ | ||
593 | return 0; | ||
594 | |||
595 | error: | ||
596 | btrfs_release_path(root, path); | ||
597 | return ret; | ||
598 | } | ||
599 | |||
600 | int btrfs_free_dev_extent(struct btrfs_trans_handle *trans, | ||
601 | struct btrfs_device *device, | ||
602 | u64 start) | ||
603 | { | ||
604 | int ret; | ||
605 | struct btrfs_path *path; | ||
606 | struct btrfs_root *root = device->dev_root; | ||
607 | struct btrfs_key key; | ||
608 | struct btrfs_key found_key; | ||
609 | struct extent_buffer *leaf = NULL; | ||
610 | struct btrfs_dev_extent *extent = NULL; | ||
611 | |||
612 | path = btrfs_alloc_path(); | ||
613 | if (!path) | ||
614 | return -ENOMEM; | ||
615 | |||
616 | key.objectid = device->devid; | ||
617 | key.offset = start; | ||
618 | key.type = BTRFS_DEV_EXTENT_KEY; | ||
619 | |||
620 | ret = btrfs_search_slot(trans, root, &key, path, -1, 1); | ||
621 | if (ret > 0) { | ||
622 | ret = btrfs_previous_item(root, path, key.objectid, | ||
623 | BTRFS_DEV_EXTENT_KEY); | ||
624 | BUG_ON(ret); | ||
625 | leaf = path->nodes[0]; | ||
626 | btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); | ||
627 | extent = btrfs_item_ptr(leaf, path->slots[0], | ||
628 | struct btrfs_dev_extent); | ||
629 | BUG_ON(found_key.offset > start || found_key.offset + | ||
630 | btrfs_dev_extent_length(leaf, extent) < start); | ||
631 | ret = 0; | ||
632 | } else if (ret == 0) { | ||
633 | leaf = path->nodes[0]; | ||
634 | extent = btrfs_item_ptr(leaf, path->slots[0], | ||
635 | struct btrfs_dev_extent); | ||
636 | } | ||
637 | BUG_ON(ret); | ||
638 | |||
639 | if (device->bytes_used > 0) | ||
640 | device->bytes_used -= btrfs_dev_extent_length(leaf, extent); | ||
641 | ret = btrfs_del_item(trans, root, path); | ||
642 | BUG_ON(ret); | ||
643 | |||
644 | btrfs_free_path(path); | ||
645 | return ret; | ||
646 | } | ||
647 | |||
648 | int noinline btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans, | ||
649 | struct btrfs_device *device, | ||
650 | u64 chunk_tree, u64 chunk_objectid, | ||
651 | u64 chunk_offset, | ||
652 | u64 num_bytes, u64 *start) | ||
653 | { | ||
654 | int ret; | ||
655 | struct btrfs_path *path; | ||
656 | struct btrfs_root *root = device->dev_root; | ||
657 | struct btrfs_dev_extent *extent; | ||
658 | struct extent_buffer *leaf; | ||
659 | struct btrfs_key key; | ||
660 | |||
661 | WARN_ON(!device->in_fs_metadata); | ||
662 | path = btrfs_alloc_path(); | ||
663 | if (!path) | ||
664 | return -ENOMEM; | ||
665 | |||
666 | ret = find_free_dev_extent(trans, device, path, num_bytes, start); | ||
667 | if (ret) { | ||
668 | goto err; | ||
669 | } | ||
670 | |||
671 | key.objectid = device->devid; | ||
672 | key.offset = *start; | ||
673 | key.type = BTRFS_DEV_EXTENT_KEY; | ||
674 | ret = btrfs_insert_empty_item(trans, root, path, &key, | ||
675 | sizeof(*extent)); | ||
676 | BUG_ON(ret); | ||
677 | |||
678 | leaf = path->nodes[0]; | ||
679 | extent = btrfs_item_ptr(leaf, path->slots[0], | ||
680 | struct btrfs_dev_extent); | ||
681 | btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree); | ||
682 | btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid); | ||
683 | btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset); | ||
684 | |||
685 | write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid, | ||
686 | (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent), | ||
687 | BTRFS_UUID_SIZE); | ||
688 | |||
689 | btrfs_set_dev_extent_length(leaf, extent, num_bytes); | ||
690 | btrfs_mark_buffer_dirty(leaf); | ||
691 | err: | ||
692 | btrfs_free_path(path); | ||
693 | return ret; | ||
694 | } | ||
695 | |||
696 | static noinline int find_next_chunk(struct btrfs_root *root, | ||
697 | u64 objectid, u64 *offset) | ||
698 | { | ||
699 | struct btrfs_path *path; | ||
700 | int ret; | ||
701 | struct btrfs_key key; | ||
702 | struct btrfs_chunk *chunk; | ||
703 | struct btrfs_key found_key; | ||
704 | |||
705 | path = btrfs_alloc_path(); | ||
706 | BUG_ON(!path); | ||
707 | |||
708 | key.objectid = objectid; | ||
709 | key.offset = (u64)-1; | ||
710 | key.type = BTRFS_CHUNK_ITEM_KEY; | ||
711 | |||
712 | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | ||
713 | if (ret < 0) | ||
714 | goto error; | ||
715 | |||
716 | BUG_ON(ret == 0); | ||
717 | |||
718 | ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY); | ||
719 | if (ret) { | ||
720 | *offset = 0; | ||
721 | } else { | ||
722 | btrfs_item_key_to_cpu(path->nodes[0], &found_key, | ||
723 | path->slots[0]); | ||
724 | if (found_key.objectid != objectid) | ||
725 | *offset = 0; | ||
726 | else { | ||
727 | chunk = btrfs_item_ptr(path->nodes[0], path->slots[0], | ||
728 | struct btrfs_chunk); | ||
729 | *offset = found_key.offset + | ||
730 | btrfs_chunk_length(path->nodes[0], chunk); | ||
731 | } | ||
732 | } | ||
733 | ret = 0; | ||
734 | error: | ||
735 | btrfs_free_path(path); | ||
736 | return ret; | ||
737 | } | ||
738 | |||
739 | static noinline int find_next_devid(struct btrfs_root *root, | ||
740 | struct btrfs_path *path, u64 *objectid) | ||
741 | { | ||
742 | int ret; | ||
743 | struct btrfs_key key; | ||
744 | struct btrfs_key found_key; | ||
745 | |||
746 | key.objectid = BTRFS_DEV_ITEMS_OBJECTID; | ||
747 | key.type = BTRFS_DEV_ITEM_KEY; | ||
748 | key.offset = (u64)-1; | ||
749 | |||
750 | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | ||
751 | if (ret < 0) | ||
752 | goto error; | ||
753 | |||
754 | BUG_ON(ret == 0); | ||
755 | |||
756 | ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID, | ||
757 | BTRFS_DEV_ITEM_KEY); | ||
758 | if (ret) { | ||
759 | *objectid = 1; | ||
760 | } else { | ||
761 | btrfs_item_key_to_cpu(path->nodes[0], &found_key, | ||
762 | path->slots[0]); | ||
763 | *objectid = found_key.offset + 1; | ||
764 | } | ||
765 | ret = 0; | ||
766 | error: | ||
767 | btrfs_release_path(root, path); | ||
768 | return ret; | ||
769 | } | ||
770 | |||
771 | /* | ||
772 | * the device information is stored in the chunk root | ||
773 | * the btrfs_device struct should be fully filled in | ||
774 | */ | ||
775 | int btrfs_add_device(struct btrfs_trans_handle *trans, | ||
776 | struct btrfs_root *root, | ||
777 | struct btrfs_device *device) | ||
778 | { | ||
779 | int ret; | ||
780 | struct btrfs_path *path; | ||
781 | struct btrfs_dev_item *dev_item; | ||
782 | struct extent_buffer *leaf; | ||
783 | struct btrfs_key key; | ||
784 | unsigned long ptr; | ||
785 | u64 free_devid = 0; | ||
786 | |||
787 | root = root->fs_info->chunk_root; | ||
788 | |||
789 | path = btrfs_alloc_path(); | ||
790 | if (!path) | ||
791 | return -ENOMEM; | ||
792 | |||
793 | ret = find_next_devid(root, path, &free_devid); | ||
794 | if (ret) | ||
795 | goto out; | ||
796 | |||
797 | key.objectid = BTRFS_DEV_ITEMS_OBJECTID; | ||
798 | key.type = BTRFS_DEV_ITEM_KEY; | ||
799 | key.offset = free_devid; | ||
800 | |||
801 | ret = btrfs_insert_empty_item(trans, root, path, &key, | ||
802 | sizeof(*dev_item)); | ||
803 | if (ret) | ||
804 | goto out; | ||
805 | |||
806 | leaf = path->nodes[0]; | ||
807 | dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); | ||
808 | |||
809 | device->devid = free_devid; | ||
810 | btrfs_set_device_id(leaf, dev_item, device->devid); | ||
811 | btrfs_set_device_type(leaf, dev_item, device->type); | ||
812 | btrfs_set_device_io_align(leaf, dev_item, device->io_align); | ||
813 | btrfs_set_device_io_width(leaf, dev_item, device->io_width); | ||
814 | btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); | ||
815 | btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes); | ||
816 | btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used); | ||
817 | btrfs_set_device_group(leaf, dev_item, 0); | ||
818 | btrfs_set_device_seek_speed(leaf, dev_item, 0); | ||
819 | btrfs_set_device_bandwidth(leaf, dev_item, 0); | ||
820 | |||
821 | ptr = (unsigned long)btrfs_device_uuid(dev_item); | ||
822 | write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); | ||
823 | btrfs_mark_buffer_dirty(leaf); | ||
824 | ret = 0; | ||
825 | |||
826 | out: | ||
827 | btrfs_free_path(path); | ||
828 | return ret; | ||
829 | } | ||
830 | |||
831 | static int btrfs_rm_dev_item(struct btrfs_root *root, | ||
832 | struct btrfs_device *device) | ||
833 | { | ||
834 | int ret; | ||
835 | struct btrfs_path *path; | ||
836 | struct block_device *bdev = device->bdev; | ||
837 | struct btrfs_device *next_dev; | ||
838 | struct btrfs_key key; | ||
839 | u64 total_bytes; | ||
840 | struct btrfs_fs_devices *fs_devices; | ||
841 | struct btrfs_trans_handle *trans; | ||
842 | |||
843 | root = root->fs_info->chunk_root; | ||
844 | |||
845 | path = btrfs_alloc_path(); | ||
846 | if (!path) | ||
847 | return -ENOMEM; | ||
848 | |||
849 | trans = btrfs_start_transaction(root, 1); | ||
850 | key.objectid = BTRFS_DEV_ITEMS_OBJECTID; | ||
851 | key.type = BTRFS_DEV_ITEM_KEY; | ||
852 | key.offset = device->devid; | ||
853 | lock_chunks(root); | ||
854 | |||
855 | ret = btrfs_search_slot(trans, root, &key, path, -1, 1); | ||
856 | if (ret < 0) | ||
857 | goto out; | ||
858 | |||
859 | if (ret > 0) { | ||
860 | ret = -ENOENT; | ||
861 | goto out; | ||
862 | } | ||
863 | |||
864 | ret = btrfs_del_item(trans, root, path); | ||
865 | if (ret) | ||
866 | goto out; | ||
867 | |||
868 | /* | ||
869 | * at this point, the device is zero sized. We want to | ||
870 | * remove it from the devices list and zero out the old super | ||
871 | */ | ||
872 | list_del_init(&device->dev_list); | ||
873 | list_del_init(&device->dev_alloc_list); | ||
874 | fs_devices = root->fs_info->fs_devices; | ||
875 | |||
876 | next_dev = list_entry(fs_devices->devices.next, struct btrfs_device, | ||
877 | dev_list); | ||
878 | if (bdev == root->fs_info->sb->s_bdev) | ||
879 | root->fs_info->sb->s_bdev = next_dev->bdev; | ||
880 | if (bdev == fs_devices->latest_bdev) | ||
881 | fs_devices->latest_bdev = next_dev->bdev; | ||
882 | |||
883 | total_bytes = btrfs_super_num_devices(&root->fs_info->super_copy); | ||
884 | btrfs_set_super_num_devices(&root->fs_info->super_copy, | ||
885 | total_bytes - 1); | ||
886 | out: | ||
887 | btrfs_free_path(path); | ||
888 | unlock_chunks(root); | ||
889 | btrfs_commit_transaction(trans, root); | ||
890 | return ret; | ||
891 | } | ||
892 | |||
893 | int btrfs_rm_device(struct btrfs_root *root, char *device_path) | ||
894 | { | ||
895 | struct btrfs_device *device; | ||
896 | struct block_device *bdev; | ||
897 | struct buffer_head *bh = NULL; | ||
898 | struct btrfs_super_block *disk_super; | ||
899 | u64 all_avail; | ||
900 | u64 devid; | ||
901 | int ret = 0; | ||
902 | |||
903 | mutex_lock(&uuid_mutex); | ||
904 | mutex_lock(&root->fs_info->volume_mutex); | ||
905 | |||
906 | all_avail = root->fs_info->avail_data_alloc_bits | | ||
907 | root->fs_info->avail_system_alloc_bits | | ||
908 | root->fs_info->avail_metadata_alloc_bits; | ||
909 | |||
910 | if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && | ||
911 | btrfs_super_num_devices(&root->fs_info->super_copy) <= 4) { | ||
912 | printk("btrfs: unable to go below four devices on raid10\n"); | ||
913 | ret = -EINVAL; | ||
914 | goto out; | ||
915 | } | ||
916 | |||
917 | if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && | ||
918 | btrfs_super_num_devices(&root->fs_info->super_copy) <= 2) { | ||
919 | printk("btrfs: unable to go below two devices on raid1\n"); | ||
920 | ret = -EINVAL; | ||
921 | goto out; | ||
922 | } | ||
923 | |||
924 | if (strcmp(device_path, "missing") == 0) { | ||
925 | struct list_head *cur; | ||
926 | struct list_head *devices; | ||
927 | struct btrfs_device *tmp; | ||
928 | |||
929 | device = NULL; | ||
930 | devices = &root->fs_info->fs_devices->devices; | ||
931 | list_for_each(cur, devices) { | ||
932 | tmp = list_entry(cur, struct btrfs_device, dev_list); | ||
933 | if (tmp->in_fs_metadata && !tmp->bdev) { | ||
934 | device = tmp; | ||
935 | break; | ||
936 | } | ||
937 | } | ||
938 | bdev = NULL; | ||
939 | bh = NULL; | ||
940 | disk_super = NULL; | ||
941 | if (!device) { | ||
942 | printk("btrfs: no missing devices found to remove\n"); | ||
943 | goto out; | ||
944 | } | ||
945 | |||
946 | } else { | ||
947 | bdev = open_bdev_excl(device_path, 0, | ||
948 | root->fs_info->bdev_holder); | ||
949 | if (IS_ERR(bdev)) { | ||
950 | ret = PTR_ERR(bdev); | ||
951 | goto out; | ||
952 | } | ||
953 | |||
954 | bh = __bread(bdev, BTRFS_SUPER_INFO_OFFSET / 4096, 4096); | ||
955 | if (!bh) { | ||
956 | ret = -EIO; | ||
957 | goto error_close; | ||
958 | } | ||
959 | disk_super = (struct btrfs_super_block *)bh->b_data; | ||
960 | if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC, | ||
961 | sizeof(disk_super->magic))) { | ||
962 | ret = -ENOENT; | ||
963 | goto error_brelse; | ||
964 | } | ||
965 | if (memcmp(disk_super->fsid, root->fs_info->fsid, | ||
966 | BTRFS_FSID_SIZE)) { | ||
967 | ret = -ENOENT; | ||
968 | goto error_brelse; | ||
969 | } | ||
970 | devid = le64_to_cpu(disk_super->dev_item.devid); | ||
971 | device = btrfs_find_device(root, devid, NULL); | ||
972 | if (!device) { | ||
973 | ret = -ENOENT; | ||
974 | goto error_brelse; | ||
975 | } | ||
976 | |||
977 | } | ||
978 | root->fs_info->fs_devices->num_devices--; | ||
979 | root->fs_info->fs_devices->open_devices--; | ||
980 | |||
981 | ret = btrfs_shrink_device(device, 0); | ||
982 | if (ret) | ||
983 | goto error_brelse; | ||
984 | |||
985 | |||
986 | ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device); | ||
987 | if (ret) | ||
988 | goto error_brelse; | ||
989 | |||
990 | if (bh) { | ||
991 | /* make sure this device isn't detected as part of | ||
992 | * the FS anymore | ||
993 | */ | ||
994 | memset(&disk_super->magic, 0, sizeof(disk_super->magic)); | ||
995 | set_buffer_dirty(bh); | ||
996 | sync_dirty_buffer(bh); | ||
997 | |||
998 | brelse(bh); | ||
999 | } | ||
1000 | |||
1001 | if (device->bdev) { | ||
1002 | /* one close for the device struct or super_block */ | ||
1003 | close_bdev_excl(device->bdev); | ||
1004 | } | ||
1005 | if (bdev) { | ||
1006 | /* one close for us */ | ||
1007 | close_bdev_excl(bdev); | ||
1008 | } | ||
1009 | kfree(device->name); | ||
1010 | kfree(device); | ||
1011 | ret = 0; | ||
1012 | goto out; | ||
1013 | |||
1014 | error_brelse: | ||
1015 | brelse(bh); | ||
1016 | error_close: | ||
1017 | if (bdev) | ||
1018 | close_bdev_excl(bdev); | ||
1019 | out: | ||
1020 | mutex_unlock(&root->fs_info->volume_mutex); | ||
1021 | mutex_unlock(&uuid_mutex); | ||
1022 | return ret; | ||
1023 | } | ||
1024 | |||
1025 | int btrfs_init_new_device(struct btrfs_root *root, char *device_path) | ||
1026 | { | ||
1027 | struct btrfs_trans_handle *trans; | ||
1028 | struct btrfs_device *device; | ||
1029 | struct block_device *bdev; | ||
1030 | struct list_head *cur; | ||
1031 | struct list_head *devices; | ||
1032 | u64 total_bytes; | ||
1033 | int ret = 0; | ||
1034 | |||
1035 | |||
1036 | bdev = open_bdev_excl(device_path, 0, root->fs_info->bdev_holder); | ||
1037 | if (!bdev) { | ||
1038 | return -EIO; | ||
1039 | } | ||
1040 | |||
1041 | filemap_write_and_wait(bdev->bd_inode->i_mapping); | ||
1042 | mutex_lock(&root->fs_info->volume_mutex); | ||
1043 | |||
1044 | trans = btrfs_start_transaction(root, 1); | ||
1045 | lock_chunks(root); | ||
1046 | devices = &root->fs_info->fs_devices->devices; | ||
1047 | list_for_each(cur, devices) { | ||
1048 | device = list_entry(cur, struct btrfs_device, dev_list); | ||
1049 | if (device->bdev == bdev) { | ||
1050 | ret = -EEXIST; | ||
1051 | goto out; | ||
1052 | } | ||
1053 | } | ||
1054 | |||
1055 | device = kzalloc(sizeof(*device), GFP_NOFS); | ||
1056 | if (!device) { | ||
1057 | /* we can safely leave the fs_devices entry around */ | ||
1058 | ret = -ENOMEM; | ||
1059 | goto out_close_bdev; | ||
1060 | } | ||
1061 | |||
1062 | device->barriers = 1; | ||
1063 | device->work.func = pending_bios_fn; | ||
1064 | generate_random_uuid(device->uuid); | ||
1065 | spin_lock_init(&device->io_lock); | ||
1066 | device->name = kstrdup(device_path, GFP_NOFS); | ||
1067 | if (!device->name) { | ||
1068 | kfree(device); | ||
1069 | goto out_close_bdev; | ||
1070 | } | ||
1071 | device->io_width = root->sectorsize; | ||
1072 | device->io_align = root->sectorsize; | ||
1073 | device->sector_size = root->sectorsize; | ||
1074 | device->total_bytes = i_size_read(bdev->bd_inode); | ||
1075 | device->dev_root = root->fs_info->dev_root; | ||
1076 | device->bdev = bdev; | ||
1077 | device->in_fs_metadata = 1; | ||
1078 | |||
1079 | ret = btrfs_add_device(trans, root, device); | ||
1080 | if (ret) | ||
1081 | goto out_close_bdev; | ||
1082 | |||
1083 | set_blocksize(device->bdev, 4096); | ||
1084 | |||
1085 | total_bytes = btrfs_super_total_bytes(&root->fs_info->super_copy); | ||
1086 | btrfs_set_super_total_bytes(&root->fs_info->super_copy, | ||
1087 | total_bytes + device->total_bytes); | ||
1088 | |||
1089 | total_bytes = btrfs_super_num_devices(&root->fs_info->super_copy); | ||
1090 | btrfs_set_super_num_devices(&root->fs_info->super_copy, | ||
1091 | total_bytes + 1); | ||
1092 | |||
1093 | list_add(&device->dev_list, &root->fs_info->fs_devices->devices); | ||
1094 | list_add(&device->dev_alloc_list, | ||
1095 | &root->fs_info->fs_devices->alloc_list); | ||
1096 | root->fs_info->fs_devices->num_devices++; | ||
1097 | root->fs_info->fs_devices->open_devices++; | ||
1098 | out: | ||
1099 | unlock_chunks(root); | ||
1100 | btrfs_end_transaction(trans, root); | ||
1101 | mutex_unlock(&root->fs_info->volume_mutex); | ||
1102 | |||
1103 | return ret; | ||
1104 | |||
1105 | out_close_bdev: | ||
1106 | close_bdev_excl(bdev); | ||
1107 | goto out; | ||
1108 | } | ||
1109 | |||
1110 | int noinline btrfs_update_device(struct btrfs_trans_handle *trans, | ||
1111 | struct btrfs_device *device) | ||
1112 | { | ||
1113 | int ret; | ||
1114 | struct btrfs_path *path; | ||
1115 | struct btrfs_root *root; | ||
1116 | struct btrfs_dev_item *dev_item; | ||
1117 | struct extent_buffer *leaf; | ||
1118 | struct btrfs_key key; | ||
1119 | |||
1120 | root = device->dev_root->fs_info->chunk_root; | ||
1121 | |||
1122 | path = btrfs_alloc_path(); | ||
1123 | if (!path) | ||
1124 | return -ENOMEM; | ||
1125 | |||
1126 | key.objectid = BTRFS_DEV_ITEMS_OBJECTID; | ||
1127 | key.type = BTRFS_DEV_ITEM_KEY; | ||
1128 | key.offset = device->devid; | ||
1129 | |||
1130 | ret = btrfs_search_slot(trans, root, &key, path, 0, 1); | ||
1131 | if (ret < 0) | ||
1132 | goto out; | ||
1133 | |||
1134 | if (ret > 0) { | ||
1135 | ret = -ENOENT; | ||
1136 | goto out; | ||
1137 | } | ||
1138 | |||
1139 | leaf = path->nodes[0]; | ||
1140 | dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); | ||
1141 | |||
1142 | btrfs_set_device_id(leaf, dev_item, device->devid); | ||
1143 | btrfs_set_device_type(leaf, dev_item, device->type); | ||
1144 | btrfs_set_device_io_align(leaf, dev_item, device->io_align); | ||
1145 | btrfs_set_device_io_width(leaf, dev_item, device->io_width); | ||
1146 | btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); | ||
1147 | btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes); | ||
1148 | btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used); | ||
1149 | btrfs_mark_buffer_dirty(leaf); | ||
1150 | |||
1151 | out: | ||
1152 | btrfs_free_path(path); | ||
1153 | return ret; | ||
1154 | } | ||
1155 | |||
1156 | static int __btrfs_grow_device(struct btrfs_trans_handle *trans, | ||
1157 | struct btrfs_device *device, u64 new_size) | ||
1158 | { | ||
1159 | struct btrfs_super_block *super_copy = | ||
1160 | &device->dev_root->fs_info->super_copy; | ||
1161 | u64 old_total = btrfs_super_total_bytes(super_copy); | ||
1162 | u64 diff = new_size - device->total_bytes; | ||
1163 | |||
1164 | btrfs_set_super_total_bytes(super_copy, old_total + diff); | ||
1165 | return btrfs_update_device(trans, device); | ||
1166 | } | ||
1167 | |||
1168 | int btrfs_grow_device(struct btrfs_trans_handle *trans, | ||
1169 | struct btrfs_device *device, u64 new_size) | ||
1170 | { | ||
1171 | int ret; | ||
1172 | lock_chunks(device->dev_root); | ||
1173 | ret = __btrfs_grow_device(trans, device, new_size); | ||
1174 | unlock_chunks(device->dev_root); | ||
1175 | return ret; | ||
1176 | } | ||
1177 | |||
1178 | static int btrfs_free_chunk(struct btrfs_trans_handle *trans, | ||
1179 | struct btrfs_root *root, | ||
1180 | u64 chunk_tree, u64 chunk_objectid, | ||
1181 | u64 chunk_offset) | ||
1182 | { | ||
1183 | int ret; | ||
1184 | struct btrfs_path *path; | ||
1185 | struct btrfs_key key; | ||
1186 | |||
1187 | root = root->fs_info->chunk_root; | ||
1188 | path = btrfs_alloc_path(); | ||
1189 | if (!path) | ||
1190 | return -ENOMEM; | ||
1191 | |||
1192 | key.objectid = chunk_objectid; | ||
1193 | key.offset = chunk_offset; | ||
1194 | key.type = BTRFS_CHUNK_ITEM_KEY; | ||
1195 | |||
1196 | ret = btrfs_search_slot(trans, root, &key, path, -1, 1); | ||
1197 | BUG_ON(ret); | ||
1198 | |||
1199 | ret = btrfs_del_item(trans, root, path); | ||
1200 | BUG_ON(ret); | ||
1201 | |||
1202 | btrfs_free_path(path); | ||
1203 | return 0; | ||
1204 | } | ||
1205 | |||
1206 | int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64 | ||
1207 | chunk_offset) | ||
1208 | { | ||
1209 | struct btrfs_super_block *super_copy = &root->fs_info->super_copy; | ||
1210 | struct btrfs_disk_key *disk_key; | ||
1211 | struct btrfs_chunk *chunk; | ||
1212 | u8 *ptr; | ||
1213 | int ret = 0; | ||
1214 | u32 num_stripes; | ||
1215 | u32 array_size; | ||
1216 | u32 len = 0; | ||
1217 | u32 cur; | ||
1218 | struct btrfs_key key; | ||
1219 | |||
1220 | array_size = btrfs_super_sys_array_size(super_copy); | ||
1221 | |||
1222 | ptr = super_copy->sys_chunk_array; | ||
1223 | cur = 0; | ||
1224 | |||
1225 | while (cur < array_size) { | ||
1226 | disk_key = (struct btrfs_disk_key *)ptr; | ||
1227 | btrfs_disk_key_to_cpu(&key, disk_key); | ||
1228 | |||
1229 | len = sizeof(*disk_key); | ||
1230 | |||
1231 | if (key.type == BTRFS_CHUNK_ITEM_KEY) { | ||
1232 | chunk = (struct btrfs_chunk *)(ptr + len); | ||
1233 | num_stripes = btrfs_stack_chunk_num_stripes(chunk); | ||
1234 | len += btrfs_chunk_item_size(num_stripes); | ||
1235 | } else { | ||
1236 | ret = -EIO; | ||
1237 | break; | ||
1238 | } | ||
1239 | if (key.objectid == chunk_objectid && | ||
1240 | key.offset == chunk_offset) { | ||
1241 | memmove(ptr, ptr + len, array_size - (cur + len)); | ||
1242 | array_size -= len; | ||
1243 | btrfs_set_super_sys_array_size(super_copy, array_size); | ||
1244 | } else { | ||
1245 | ptr += len; | ||
1246 | cur += len; | ||
1247 | } | ||
1248 | } | ||
1249 | return ret; | ||
1250 | } | ||
1251 | |||
1252 | |||
1253 | int btrfs_relocate_chunk(struct btrfs_root *root, | ||
1254 | u64 chunk_tree, u64 chunk_objectid, | ||
1255 | u64 chunk_offset) | ||
1256 | { | ||
1257 | struct extent_map_tree *em_tree; | ||
1258 | struct btrfs_root *extent_root; | ||
1259 | struct btrfs_trans_handle *trans; | ||
1260 | struct extent_map *em; | ||
1261 | struct map_lookup *map; | ||
1262 | int ret; | ||
1263 | int i; | ||
1264 | |||
1265 | printk("btrfs relocating chunk %llu\n", | ||
1266 | (unsigned long long)chunk_offset); | ||
1267 | root = root->fs_info->chunk_root; | ||
1268 | extent_root = root->fs_info->extent_root; | ||
1269 | em_tree = &root->fs_info->mapping_tree.map_tree; | ||
1270 | |||
1271 | /* step one, relocate all the extents inside this chunk */ | ||
1272 | ret = btrfs_relocate_block_group(extent_root, chunk_offset); | ||
1273 | BUG_ON(ret); | ||
1274 | |||
1275 | trans = btrfs_start_transaction(root, 1); | ||
1276 | BUG_ON(!trans); | ||
1277 | |||
1278 | lock_chunks(root); | ||
1279 | |||
1280 | /* | ||
1281 | * step two, delete the device extents and the | ||
1282 | * chunk tree entries | ||
1283 | */ | ||
1284 | spin_lock(&em_tree->lock); | ||
1285 | em = lookup_extent_mapping(em_tree, chunk_offset, 1); | ||
1286 | spin_unlock(&em_tree->lock); | ||
1287 | |||
1288 | BUG_ON(em->start > chunk_offset || | ||
1289 | em->start + em->len < chunk_offset); | ||
1290 | map = (struct map_lookup *)em->bdev; | ||
1291 | |||
1292 | for (i = 0; i < map->num_stripes; i++) { | ||
1293 | ret = btrfs_free_dev_extent(trans, map->stripes[i].dev, | ||
1294 | map->stripes[i].physical); | ||
1295 | BUG_ON(ret); | ||
1296 | |||
1297 | if (map->stripes[i].dev) { | ||
1298 | ret = btrfs_update_device(trans, map->stripes[i].dev); | ||
1299 | BUG_ON(ret); | ||
1300 | } | ||
1301 | } | ||
1302 | ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid, | ||
1303 | chunk_offset); | ||
1304 | |||
1305 | BUG_ON(ret); | ||
1306 | |||
1307 | if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { | ||
1308 | ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset); | ||
1309 | BUG_ON(ret); | ||
1310 | } | ||
1311 | |||
1312 | ret = btrfs_remove_block_group(trans, extent_root, chunk_offset); | ||
1313 | BUG_ON(ret); | ||
1314 | |||
1315 | spin_lock(&em_tree->lock); | ||
1316 | remove_extent_mapping(em_tree, em); | ||
1317 | spin_unlock(&em_tree->lock); | ||
1318 | |||
1319 | kfree(map); | ||
1320 | em->bdev = NULL; | ||
1321 | |||
1322 | /* once for the tree */ | ||
1323 | free_extent_map(em); | ||
1324 | /* once for us */ | ||
1325 | free_extent_map(em); | ||
1326 | |||
1327 | unlock_chunks(root); | ||
1328 | btrfs_end_transaction(trans, root); | ||
1329 | return 0; | ||
1330 | } | ||
1331 | |||
1332 | static u64 div_factor(u64 num, int factor) | ||
1333 | { | ||
1334 | if (factor == 10) | ||
1335 | return num; | ||
1336 | num *= factor; | ||
1337 | do_div(num, 10); | ||
1338 | return num; | ||
1339 | } | ||
1340 | |||
1341 | |||
1342 | int btrfs_balance(struct btrfs_root *dev_root) | ||
1343 | { | ||
1344 | int ret; | ||
1345 | struct list_head *cur; | ||
1346 | struct list_head *devices = &dev_root->fs_info->fs_devices->devices; | ||
1347 | struct btrfs_device *device; | ||
1348 | u64 old_size; | ||
1349 | u64 size_to_free; | ||
1350 | struct btrfs_path *path; | ||
1351 | struct btrfs_key key; | ||
1352 | struct btrfs_chunk *chunk; | ||
1353 | struct btrfs_root *chunk_root = dev_root->fs_info->chunk_root; | ||
1354 | struct btrfs_trans_handle *trans; | ||
1355 | struct btrfs_key found_key; | ||
1356 | |||
1357 | |||
1358 | mutex_lock(&dev_root->fs_info->volume_mutex); | ||
1359 | dev_root = dev_root->fs_info->dev_root; | ||
1360 | |||
1361 | /* step one make some room on all the devices */ | ||
1362 | list_for_each(cur, devices) { | ||
1363 | device = list_entry(cur, struct btrfs_device, dev_list); | ||
1364 | old_size = device->total_bytes; | ||
1365 | size_to_free = div_factor(old_size, 1); | ||
1366 | size_to_free = min(size_to_free, (u64)1 * 1024 * 1024); | ||
1367 | if (device->total_bytes - device->bytes_used > size_to_free) | ||
1368 | continue; | ||
1369 | |||
1370 | ret = btrfs_shrink_device(device, old_size - size_to_free); | ||
1371 | BUG_ON(ret); | ||
1372 | |||
1373 | trans = btrfs_start_transaction(dev_root, 1); | ||
1374 | BUG_ON(!trans); | ||
1375 | |||
1376 | ret = btrfs_grow_device(trans, device, old_size); | ||
1377 | BUG_ON(ret); | ||
1378 | |||
1379 | btrfs_end_transaction(trans, dev_root); | ||
1380 | } | ||
1381 | |||
1382 | /* step two, relocate all the chunks */ | ||
1383 | path = btrfs_alloc_path(); | ||
1384 | BUG_ON(!path); | ||
1385 | |||
1386 | key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; | ||
1387 | key.offset = (u64)-1; | ||
1388 | key.type = BTRFS_CHUNK_ITEM_KEY; | ||
1389 | |||
1390 | while(1) { | ||
1391 | ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); | ||
1392 | if (ret < 0) | ||
1393 | goto error; | ||
1394 | |||
1395 | /* | ||
1396 | * this shouldn't happen, it means the last relocate | ||
1397 | * failed | ||
1398 | */ | ||
1399 | if (ret == 0) | ||
1400 | break; | ||
1401 | |||
1402 | ret = btrfs_previous_item(chunk_root, path, 0, | ||
1403 | BTRFS_CHUNK_ITEM_KEY); | ||
1404 | if (ret) | ||
1405 | break; | ||
1406 | |||
1407 | btrfs_item_key_to_cpu(path->nodes[0], &found_key, | ||
1408 | path->slots[0]); | ||
1409 | if (found_key.objectid != key.objectid) | ||
1410 | break; | ||
1411 | |||
1412 | chunk = btrfs_item_ptr(path->nodes[0], | ||
1413 | path->slots[0], | ||
1414 | struct btrfs_chunk); | ||
1415 | key.offset = found_key.offset; | ||
1416 | /* chunk zero is special */ | ||
1417 | if (key.offset == 0) | ||
1418 | break; | ||
1419 | |||
1420 | btrfs_release_path(chunk_root, path); | ||
1421 | ret = btrfs_relocate_chunk(chunk_root, | ||
1422 | chunk_root->root_key.objectid, | ||
1423 | found_key.objectid, | ||
1424 | found_key.offset); | ||
1425 | BUG_ON(ret); | ||
1426 | } | ||
1427 | ret = 0; | ||
1428 | error: | ||
1429 | btrfs_free_path(path); | ||
1430 | mutex_unlock(&dev_root->fs_info->volume_mutex); | ||
1431 | return ret; | ||
1432 | } | ||
1433 | |||
1434 | /* | ||
1435 | * shrinking a device means finding all of the device extents past | ||
1436 | * the new size, and then following the back refs to the chunks. | ||
1437 | * The chunk relocation code actually frees the device extent | ||
1438 | */ | ||
1439 | int btrfs_shrink_device(struct btrfs_device *device, u64 new_size) | ||
1440 | { | ||
1441 | struct btrfs_trans_handle *trans; | ||
1442 | struct btrfs_root *root = device->dev_root; | ||
1443 | struct btrfs_dev_extent *dev_extent = NULL; | ||
1444 | struct btrfs_path *path; | ||
1445 | u64 length; | ||
1446 | u64 chunk_tree; | ||
1447 | u64 chunk_objectid; | ||
1448 | u64 chunk_offset; | ||
1449 | int ret; | ||
1450 | int slot; | ||
1451 | struct extent_buffer *l; | ||
1452 | struct btrfs_key key; | ||
1453 | struct btrfs_super_block *super_copy = &root->fs_info->super_copy; | ||
1454 | u64 old_total = btrfs_super_total_bytes(super_copy); | ||
1455 | u64 diff = device->total_bytes - new_size; | ||
1456 | |||
1457 | |||
1458 | path = btrfs_alloc_path(); | ||
1459 | if (!path) | ||
1460 | return -ENOMEM; | ||
1461 | |||
1462 | trans = btrfs_start_transaction(root, 1); | ||
1463 | if (!trans) { | ||
1464 | ret = -ENOMEM; | ||
1465 | goto done; | ||
1466 | } | ||
1467 | |||
1468 | path->reada = 2; | ||
1469 | |||
1470 | lock_chunks(root); | ||
1471 | |||
1472 | device->total_bytes = new_size; | ||
1473 | ret = btrfs_update_device(trans, device); | ||
1474 | if (ret) { | ||
1475 | unlock_chunks(root); | ||
1476 | btrfs_end_transaction(trans, root); | ||
1477 | goto done; | ||
1478 | } | ||
1479 | WARN_ON(diff > old_total); | ||
1480 | btrfs_set_super_total_bytes(super_copy, old_total - diff); | ||
1481 | unlock_chunks(root); | ||
1482 | btrfs_end_transaction(trans, root); | ||
1483 | |||
1484 | key.objectid = device->devid; | ||
1485 | key.offset = (u64)-1; | ||
1486 | key.type = BTRFS_DEV_EXTENT_KEY; | ||
1487 | |||
1488 | while (1) { | ||
1489 | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | ||
1490 | if (ret < 0) | ||
1491 | goto done; | ||
1492 | |||
1493 | ret = btrfs_previous_item(root, path, 0, key.type); | ||
1494 | if (ret < 0) | ||
1495 | goto done; | ||
1496 | if (ret) { | ||
1497 | ret = 0; | ||
1498 | goto done; | ||
1499 | } | ||
1500 | |||
1501 | l = path->nodes[0]; | ||
1502 | slot = path->slots[0]; | ||
1503 | btrfs_item_key_to_cpu(l, &key, path->slots[0]); | ||
1504 | |||
1505 | if (key.objectid != device->devid) | ||
1506 | goto done; | ||
1507 | |||
1508 | dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); | ||
1509 | length = btrfs_dev_extent_length(l, dev_extent); | ||
1510 | |||
1511 | if (key.offset + length <= new_size) | ||
1512 | goto done; | ||
1513 | |||
1514 | chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent); | ||
1515 | chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent); | ||
1516 | chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); | ||
1517 | btrfs_release_path(root, path); | ||
1518 | |||
1519 | ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid, | ||
1520 | chunk_offset); | ||
1521 | if (ret) | ||
1522 | goto done; | ||
1523 | } | ||
1524 | |||
1525 | done: | ||
1526 | btrfs_free_path(path); | ||
1527 | return ret; | ||
1528 | } | ||
1529 | |||
1530 | int btrfs_add_system_chunk(struct btrfs_trans_handle *trans, | ||
1531 | struct btrfs_root *root, | ||
1532 | struct btrfs_key *key, | ||
1533 | struct btrfs_chunk *chunk, int item_size) | ||
1534 | { | ||
1535 | struct btrfs_super_block *super_copy = &root->fs_info->super_copy; | ||
1536 | struct btrfs_disk_key disk_key; | ||
1537 | u32 array_size; | ||
1538 | u8 *ptr; | ||
1539 | |||
1540 | array_size = btrfs_super_sys_array_size(super_copy); | ||
1541 | if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) | ||
1542 | return -EFBIG; | ||
1543 | |||
1544 | ptr = super_copy->sys_chunk_array + array_size; | ||
1545 | btrfs_cpu_key_to_disk(&disk_key, key); | ||
1546 | memcpy(ptr, &disk_key, sizeof(disk_key)); | ||
1547 | ptr += sizeof(disk_key); | ||
1548 | memcpy(ptr, chunk, item_size); | ||
1549 | item_size += sizeof(disk_key); | ||
1550 | btrfs_set_super_sys_array_size(super_copy, array_size + item_size); | ||
1551 | return 0; | ||
1552 | } | ||
1553 | |||
1554 | static u64 noinline chunk_bytes_by_type(u64 type, u64 calc_size, | ||
1555 | int num_stripes, int sub_stripes) | ||
1556 | { | ||
1557 | if (type & (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_DUP)) | ||
1558 | return calc_size; | ||
1559 | else if (type & BTRFS_BLOCK_GROUP_RAID10) | ||
1560 | return calc_size * (num_stripes / sub_stripes); | ||
1561 | else | ||
1562 | return calc_size * num_stripes; | ||
1563 | } | ||
1564 | |||
1565 | |||
1566 | int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, | ||
1567 | struct btrfs_root *extent_root, u64 *start, | ||
1568 | u64 *num_bytes, u64 type) | ||
1569 | { | ||
1570 | u64 dev_offset; | ||
1571 | struct btrfs_fs_info *info = extent_root->fs_info; | ||
1572 | struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root; | ||
1573 | struct btrfs_path *path; | ||
1574 | struct btrfs_stripe *stripes; | ||
1575 | struct btrfs_device *device = NULL; | ||
1576 | struct btrfs_chunk *chunk; | ||
1577 | struct list_head private_devs; | ||
1578 | struct list_head *dev_list; | ||
1579 | struct list_head *cur; | ||
1580 | struct extent_map_tree *em_tree; | ||
1581 | struct map_lookup *map; | ||
1582 | struct extent_map *em; | ||
1583 | int min_stripe_size = 1 * 1024 * 1024; | ||
1584 | u64 physical; | ||
1585 | u64 calc_size = 1024 * 1024 * 1024; | ||
1586 | u64 max_chunk_size = calc_size; | ||
1587 | u64 min_free; | ||
1588 | u64 avail; | ||
1589 | u64 max_avail = 0; | ||
1590 | u64 percent_max; | ||
1591 | int num_stripes = 1; | ||
1592 | int min_stripes = 1; | ||
1593 | int sub_stripes = 0; | ||
1594 | int looped = 0; | ||
1595 | int ret; | ||
1596 | int index; | ||
1597 | int stripe_len = 64 * 1024; | ||
1598 | struct btrfs_key key; | ||
1599 | |||
1600 | if ((type & BTRFS_BLOCK_GROUP_RAID1) && | ||
1601 | (type & BTRFS_BLOCK_GROUP_DUP)) { | ||
1602 | WARN_ON(1); | ||
1603 | type &= ~BTRFS_BLOCK_GROUP_DUP; | ||
1604 | } | ||
1605 | dev_list = &extent_root->fs_info->fs_devices->alloc_list; | ||
1606 | if (list_empty(dev_list)) | ||
1607 | return -ENOSPC; | ||
1608 | |||
1609 | if (type & (BTRFS_BLOCK_GROUP_RAID0)) { | ||
1610 | num_stripes = extent_root->fs_info->fs_devices->open_devices; | ||
1611 | min_stripes = 2; | ||
1612 | } | ||
1613 | if (type & (BTRFS_BLOCK_GROUP_DUP)) { | ||
1614 | num_stripes = 2; | ||
1615 | min_stripes = 2; | ||
1616 | } | ||
1617 | if (type & (BTRFS_BLOCK_GROUP_RAID1)) { | ||
1618 | num_stripes = min_t(u64, 2, | ||
1619 | extent_root->fs_info->fs_devices->open_devices); | ||
1620 | if (num_stripes < 2) | ||
1621 | return -ENOSPC; | ||
1622 | min_stripes = 2; | ||
1623 | } | ||
1624 | if (type & (BTRFS_BLOCK_GROUP_RAID10)) { | ||
1625 | num_stripes = extent_root->fs_info->fs_devices->open_devices; | ||
1626 | if (num_stripes < 4) | ||
1627 | return -ENOSPC; | ||
1628 | num_stripes &= ~(u32)1; | ||
1629 | sub_stripes = 2; | ||
1630 | min_stripes = 4; | ||
1631 | } | ||
1632 | |||
1633 | if (type & BTRFS_BLOCK_GROUP_DATA) { | ||
1634 | max_chunk_size = 10 * calc_size; | ||
1635 | min_stripe_size = 64 * 1024 * 1024; | ||
1636 | } else if (type & BTRFS_BLOCK_GROUP_METADATA) { | ||
1637 | max_chunk_size = 4 * calc_size; | ||
1638 | min_stripe_size = 32 * 1024 * 1024; | ||
1639 | } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { | ||
1640 | calc_size = 8 * 1024 * 1024; | ||
1641 | max_chunk_size = calc_size * 2; | ||
1642 | min_stripe_size = 1 * 1024 * 1024; | ||
1643 | } | ||
1644 | |||
1645 | path = btrfs_alloc_path(); | ||
1646 | if (!path) | ||
1647 | return -ENOMEM; | ||
1648 | |||
1649 | /* we don't want a chunk larger than 10% of the FS */ | ||
1650 | percent_max = div_factor(btrfs_super_total_bytes(&info->super_copy), 1); | ||
1651 | max_chunk_size = min(percent_max, max_chunk_size); | ||
1652 | |||
1653 | again: | ||
1654 | if (calc_size * num_stripes > max_chunk_size) { | ||
1655 | calc_size = max_chunk_size; | ||
1656 | do_div(calc_size, num_stripes); | ||
1657 | do_div(calc_size, stripe_len); | ||
1658 | calc_size *= stripe_len; | ||
1659 | } | ||
1660 | /* we don't want tiny stripes */ | ||
1661 | calc_size = max_t(u64, min_stripe_size, calc_size); | ||
1662 | |||
1663 | do_div(calc_size, stripe_len); | ||
1664 | calc_size *= stripe_len; | ||
1665 | |||
1666 | INIT_LIST_HEAD(&private_devs); | ||
1667 | cur = dev_list->next; | ||
1668 | index = 0; | ||
1669 | |||
1670 | if (type & BTRFS_BLOCK_GROUP_DUP) | ||
1671 | min_free = calc_size * 2; | ||
1672 | else | ||
1673 | min_free = calc_size; | ||
1674 | |||
1675 | /* | ||
1676 | * we add 1MB because we never use the first 1MB of the device, unless | ||
1677 | * we've looped, then we are likely allocating the maximum amount of | ||
1678 | * space left already | ||
1679 | */ | ||
1680 | if (!looped) | ||
1681 | min_free += 1024 * 1024; | ||
1682 | |||
1683 | /* build a private list of devices we will allocate from */ | ||
1684 | while(index < num_stripes) { | ||
1685 | device = list_entry(cur, struct btrfs_device, dev_alloc_list); | ||
1686 | |||
1687 | if (device->total_bytes > device->bytes_used) | ||
1688 | avail = device->total_bytes - device->bytes_used; | ||
1689 | else | ||
1690 | avail = 0; | ||
1691 | cur = cur->next; | ||
1692 | |||
1693 | if (device->in_fs_metadata && avail >= min_free) { | ||
1694 | u64 ignored_start = 0; | ||
1695 | ret = find_free_dev_extent(trans, device, path, | ||
1696 | min_free, | ||
1697 | &ignored_start); | ||
1698 | if (ret == 0) { | ||
1699 | list_move_tail(&device->dev_alloc_list, | ||
1700 | &private_devs); | ||
1701 | index++; | ||
1702 | if (type & BTRFS_BLOCK_GROUP_DUP) | ||
1703 | index++; | ||
1704 | } | ||
1705 | } else if (device->in_fs_metadata && avail > max_avail) | ||
1706 | max_avail = avail; | ||
1707 | if (cur == dev_list) | ||
1708 | break; | ||
1709 | } | ||
1710 | if (index < num_stripes) { | ||
1711 | list_splice(&private_devs, dev_list); | ||
1712 | if (index >= min_stripes) { | ||
1713 | num_stripes = index; | ||
1714 | if (type & (BTRFS_BLOCK_GROUP_RAID10)) { | ||
1715 | num_stripes /= sub_stripes; | ||
1716 | num_stripes *= sub_stripes; | ||
1717 | } | ||
1718 | looped = 1; | ||
1719 | goto again; | ||
1720 | } | ||
1721 | if (!looped && max_avail > 0) { | ||
1722 | looped = 1; | ||
1723 | calc_size = max_avail; | ||
1724 | goto again; | ||
1725 | } | ||
1726 | btrfs_free_path(path); | ||
1727 | return -ENOSPC; | ||
1728 | } | ||
1729 | key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; | ||
1730 | key.type = BTRFS_CHUNK_ITEM_KEY; | ||
1731 | ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID, | ||
1732 | &key.offset); | ||
1733 | if (ret) { | ||
1734 | btrfs_free_path(path); | ||
1735 | return ret; | ||
1736 | } | ||
1737 | |||
1738 | chunk = kmalloc(btrfs_chunk_item_size(num_stripes), GFP_NOFS); | ||
1739 | if (!chunk) { | ||
1740 | btrfs_free_path(path); | ||
1741 | return -ENOMEM; | ||
1742 | } | ||
1743 | |||
1744 | map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); | ||
1745 | if (!map) { | ||
1746 | kfree(chunk); | ||
1747 | btrfs_free_path(path); | ||
1748 | return -ENOMEM; | ||
1749 | } | ||
1750 | btrfs_free_path(path); | ||
1751 | path = NULL; | ||
1752 | |||
1753 | stripes = &chunk->stripe; | ||
1754 | *num_bytes = chunk_bytes_by_type(type, calc_size, | ||
1755 | num_stripes, sub_stripes); | ||
1756 | |||
1757 | index = 0; | ||
1758 | while(index < num_stripes) { | ||
1759 | struct btrfs_stripe *stripe; | ||
1760 | BUG_ON(list_empty(&private_devs)); | ||
1761 | cur = private_devs.next; | ||
1762 | device = list_entry(cur, struct btrfs_device, dev_alloc_list); | ||
1763 | |||
1764 | /* loop over this device again if we're doing a dup group */ | ||
1765 | if (!(type & BTRFS_BLOCK_GROUP_DUP) || | ||
1766 | (index == num_stripes - 1)) | ||
1767 | list_move_tail(&device->dev_alloc_list, dev_list); | ||
1768 | |||
1769 | ret = btrfs_alloc_dev_extent(trans, device, | ||
1770 | info->chunk_root->root_key.objectid, | ||
1771 | BTRFS_FIRST_CHUNK_TREE_OBJECTID, key.offset, | ||
1772 | calc_size, &dev_offset); | ||
1773 | BUG_ON(ret); | ||
1774 | device->bytes_used += calc_size; | ||
1775 | ret = btrfs_update_device(trans, device); | ||
1776 | BUG_ON(ret); | ||
1777 | |||
1778 | map->stripes[index].dev = device; | ||
1779 | map->stripes[index].physical = dev_offset; | ||
1780 | stripe = stripes + index; | ||
1781 | btrfs_set_stack_stripe_devid(stripe, device->devid); | ||
1782 | btrfs_set_stack_stripe_offset(stripe, dev_offset); | ||
1783 | memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE); | ||
1784 | physical = dev_offset; | ||
1785 | index++; | ||
1786 | } | ||
1787 | BUG_ON(!list_empty(&private_devs)); | ||
1788 | |||
1789 | /* key was set above */ | ||
1790 | btrfs_set_stack_chunk_length(chunk, *num_bytes); | ||
1791 | btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid); | ||
1792 | btrfs_set_stack_chunk_stripe_len(chunk, stripe_len); | ||
1793 | btrfs_set_stack_chunk_type(chunk, type); | ||
1794 | btrfs_set_stack_chunk_num_stripes(chunk, num_stripes); | ||
1795 | btrfs_set_stack_chunk_io_align(chunk, stripe_len); | ||
1796 | btrfs_set_stack_chunk_io_width(chunk, stripe_len); | ||
1797 | btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize); | ||
1798 | btrfs_set_stack_chunk_sub_stripes(chunk, sub_stripes); | ||
1799 | map->sector_size = extent_root->sectorsize; | ||
1800 | map->stripe_len = stripe_len; | ||
1801 | map->io_align = stripe_len; | ||
1802 | map->io_width = stripe_len; | ||
1803 | map->type = type; | ||
1804 | map->num_stripes = num_stripes; | ||
1805 | map->sub_stripes = sub_stripes; | ||
1806 | |||
1807 | ret = btrfs_insert_item(trans, chunk_root, &key, chunk, | ||
1808 | btrfs_chunk_item_size(num_stripes)); | ||
1809 | BUG_ON(ret); | ||
1810 | *start = key.offset;; | ||
1811 | |||
1812 | em = alloc_extent_map(GFP_NOFS); | ||
1813 | if (!em) | ||
1814 | return -ENOMEM; | ||
1815 | em->bdev = (struct block_device *)map; | ||
1816 | em->start = key.offset; | ||
1817 | em->len = *num_bytes; | ||
1818 | em->block_start = 0; | ||
1819 | |||
1820 | if (type & BTRFS_BLOCK_GROUP_SYSTEM) { | ||
1821 | ret = btrfs_add_system_chunk(trans, chunk_root, &key, | ||
1822 | chunk, btrfs_chunk_item_size(num_stripes)); | ||
1823 | BUG_ON(ret); | ||
1824 | } | ||
1825 | kfree(chunk); | ||
1826 | |||
1827 | em_tree = &extent_root->fs_info->mapping_tree.map_tree; | ||
1828 | spin_lock(&em_tree->lock); | ||
1829 | ret = add_extent_mapping(em_tree, em); | ||
1830 | spin_unlock(&em_tree->lock); | ||
1831 | BUG_ON(ret); | ||
1832 | free_extent_map(em); | ||
1833 | return ret; | ||
1834 | } | ||
1835 | |||
1836 | void btrfs_mapping_init(struct btrfs_mapping_tree *tree) | ||
1837 | { | ||
1838 | extent_map_tree_init(&tree->map_tree, GFP_NOFS); | ||
1839 | } | ||
1840 | |||
1841 | void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree) | ||
1842 | { | ||
1843 | struct extent_map *em; | ||
1844 | |||
1845 | while(1) { | ||
1846 | spin_lock(&tree->map_tree.lock); | ||
1847 | em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1); | ||
1848 | if (em) | ||
1849 | remove_extent_mapping(&tree->map_tree, em); | ||
1850 | spin_unlock(&tree->map_tree.lock); | ||
1851 | if (!em) | ||
1852 | break; | ||
1853 | kfree(em->bdev); | ||
1854 | /* once for us */ | ||
1855 | free_extent_map(em); | ||
1856 | /* once for the tree */ | ||
1857 | free_extent_map(em); | ||
1858 | } | ||
1859 | } | ||
1860 | |||
1861 | int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len) | ||
1862 | { | ||
1863 | struct extent_map *em; | ||
1864 | struct map_lookup *map; | ||
1865 | struct extent_map_tree *em_tree = &map_tree->map_tree; | ||
1866 | int ret; | ||
1867 | |||
1868 | spin_lock(&em_tree->lock); | ||
1869 | em = lookup_extent_mapping(em_tree, logical, len); | ||
1870 | spin_unlock(&em_tree->lock); | ||
1871 | BUG_ON(!em); | ||
1872 | |||
1873 | BUG_ON(em->start > logical || em->start + em->len < logical); | ||
1874 | map = (struct map_lookup *)em->bdev; | ||
1875 | if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1)) | ||
1876 | ret = map->num_stripes; | ||
1877 | else if (map->type & BTRFS_BLOCK_GROUP_RAID10) | ||
1878 | ret = map->sub_stripes; | ||
1879 | else | ||
1880 | ret = 1; | ||
1881 | free_extent_map(em); | ||
1882 | return ret; | ||
1883 | } | ||
1884 | |||
1885 | static int find_live_mirror(struct map_lookup *map, int first, int num, | ||
1886 | int optimal) | ||
1887 | { | ||
1888 | int i; | ||
1889 | if (map->stripes[optimal].dev->bdev) | ||
1890 | return optimal; | ||
1891 | for (i = first; i < first + num; i++) { | ||
1892 | if (map->stripes[i].dev->bdev) | ||
1893 | return i; | ||
1894 | } | ||
1895 | /* we couldn't find one that doesn't fail. Just return something | ||
1896 | * and the io error handling code will clean up eventually | ||
1897 | */ | ||
1898 | return optimal; | ||
1899 | } | ||
1900 | |||
1901 | static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw, | ||
1902 | u64 logical, u64 *length, | ||
1903 | struct btrfs_multi_bio **multi_ret, | ||
1904 | int mirror_num, struct page *unplug_page) | ||
1905 | { | ||
1906 | struct extent_map *em; | ||
1907 | struct map_lookup *map; | ||
1908 | struct extent_map_tree *em_tree = &map_tree->map_tree; | ||
1909 | u64 offset; | ||
1910 | u64 stripe_offset; | ||
1911 | u64 stripe_nr; | ||
1912 | int stripes_allocated = 8; | ||
1913 | int stripes_required = 1; | ||
1914 | int stripe_index; | ||
1915 | int i; | ||
1916 | int num_stripes; | ||
1917 | int max_errors = 0; | ||
1918 | struct btrfs_multi_bio *multi = NULL; | ||
1919 | |||
1920 | if (multi_ret && !(rw & (1 << BIO_RW))) { | ||
1921 | stripes_allocated = 1; | ||
1922 | } | ||
1923 | again: | ||
1924 | if (multi_ret) { | ||
1925 | multi = kzalloc(btrfs_multi_bio_size(stripes_allocated), | ||
1926 | GFP_NOFS); | ||
1927 | if (!multi) | ||
1928 | return -ENOMEM; | ||
1929 | |||
1930 | atomic_set(&multi->error, 0); | ||
1931 | } | ||
1932 | |||
1933 | spin_lock(&em_tree->lock); | ||
1934 | em = lookup_extent_mapping(em_tree, logical, *length); | ||
1935 | spin_unlock(&em_tree->lock); | ||
1936 | |||
1937 | if (!em && unplug_page) | ||
1938 | return 0; | ||
1939 | |||
1940 | if (!em) { | ||
1941 | printk("unable to find logical %Lu len %Lu\n", logical, *length); | ||
1942 | BUG(); | ||
1943 | } | ||
1944 | |||
1945 | BUG_ON(em->start > logical || em->start + em->len < logical); | ||
1946 | map = (struct map_lookup *)em->bdev; | ||
1947 | offset = logical - em->start; | ||
1948 | |||
1949 | if (mirror_num > map->num_stripes) | ||
1950 | mirror_num = 0; | ||
1951 | |||
1952 | /* if our multi bio struct is too small, back off and try again */ | ||
1953 | if (rw & (1 << BIO_RW)) { | ||
1954 | if (map->type & (BTRFS_BLOCK_GROUP_RAID1 | | ||
1955 | BTRFS_BLOCK_GROUP_DUP)) { | ||
1956 | stripes_required = map->num_stripes; | ||
1957 | max_errors = 1; | ||
1958 | } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { | ||
1959 | stripes_required = map->sub_stripes; | ||
1960 | max_errors = 1; | ||
1961 | } | ||
1962 | } | ||
1963 | if (multi_ret && rw == WRITE && | ||
1964 | stripes_allocated < stripes_required) { | ||
1965 | stripes_allocated = map->num_stripes; | ||
1966 | free_extent_map(em); | ||
1967 | kfree(multi); | ||
1968 | goto again; | ||
1969 | } | ||
1970 | stripe_nr = offset; | ||
1971 | /* | ||
1972 | * stripe_nr counts the total number of stripes we have to stride | ||
1973 | * to get to this block | ||
1974 | */ | ||
1975 | do_div(stripe_nr, map->stripe_len); | ||
1976 | |||
1977 | stripe_offset = stripe_nr * map->stripe_len; | ||
1978 | BUG_ON(offset < stripe_offset); | ||
1979 | |||
1980 | /* stripe_offset is the offset of this block in its stripe*/ | ||
1981 | stripe_offset = offset - stripe_offset; | ||
1982 | |||
1983 | if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 | | ||
1984 | BTRFS_BLOCK_GROUP_RAID10 | | ||
1985 | BTRFS_BLOCK_GROUP_DUP)) { | ||
1986 | /* we limit the length of each bio to what fits in a stripe */ | ||
1987 | *length = min_t(u64, em->len - offset, | ||
1988 | map->stripe_len - stripe_offset); | ||
1989 | } else { | ||
1990 | *length = em->len - offset; | ||
1991 | } | ||
1992 | |||
1993 | if (!multi_ret && !unplug_page) | ||
1994 | goto out; | ||
1995 | |||
1996 | num_stripes = 1; | ||
1997 | stripe_index = 0; | ||
1998 | if (map->type & BTRFS_BLOCK_GROUP_RAID1) { | ||
1999 | if (unplug_page || (rw & (1 << BIO_RW))) | ||
2000 | num_stripes = map->num_stripes; | ||
2001 | else if (mirror_num) | ||
2002 | stripe_index = mirror_num - 1; | ||
2003 | else { | ||
2004 | stripe_index = find_live_mirror(map, 0, | ||
2005 | map->num_stripes, | ||
2006 | current->pid % map->num_stripes); | ||
2007 | } | ||
2008 | |||
2009 | } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { | ||
2010 | if (rw & (1 << BIO_RW)) | ||
2011 | num_stripes = map->num_stripes; | ||
2012 | else if (mirror_num) | ||
2013 | stripe_index = mirror_num - 1; | ||
2014 | |||
2015 | } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { | ||
2016 | int factor = map->num_stripes / map->sub_stripes; | ||
2017 | |||
2018 | stripe_index = do_div(stripe_nr, factor); | ||
2019 | stripe_index *= map->sub_stripes; | ||
2020 | |||
2021 | if (unplug_page || (rw & (1 << BIO_RW))) | ||
2022 | num_stripes = map->sub_stripes; | ||
2023 | else if (mirror_num) | ||
2024 | stripe_index += mirror_num - 1; | ||
2025 | else { | ||
2026 | stripe_index = find_live_mirror(map, stripe_index, | ||
2027 | map->sub_stripes, stripe_index + | ||
2028 | current->pid % map->sub_stripes); | ||
2029 | } | ||
2030 | } else { | ||
2031 | /* | ||
2032 | * after this do_div call, stripe_nr is the number of stripes | ||
2033 | * on this device we have to walk to find the data, and | ||
2034 | * stripe_index is the number of our device in the stripe array | ||
2035 | */ | ||
2036 | stripe_index = do_div(stripe_nr, map->num_stripes); | ||
2037 | } | ||
2038 | BUG_ON(stripe_index >= map->num_stripes); | ||
2039 | |||
2040 | for (i = 0; i < num_stripes; i++) { | ||
2041 | if (unplug_page) { | ||
2042 | struct btrfs_device *device; | ||
2043 | struct backing_dev_info *bdi; | ||
2044 | |||
2045 | device = map->stripes[stripe_index].dev; | ||
2046 | if (device->bdev) { | ||
2047 | bdi = blk_get_backing_dev_info(device->bdev); | ||
2048 | if (bdi->unplug_io_fn) { | ||
2049 | bdi->unplug_io_fn(bdi, unplug_page); | ||
2050 | } | ||
2051 | } | ||
2052 | } else { | ||
2053 | multi->stripes[i].physical = | ||
2054 | map->stripes[stripe_index].physical + | ||
2055 | stripe_offset + stripe_nr * map->stripe_len; | ||
2056 | multi->stripes[i].dev = map->stripes[stripe_index].dev; | ||
2057 | } | ||
2058 | stripe_index++; | ||
2059 | } | ||
2060 | if (multi_ret) { | ||
2061 | *multi_ret = multi; | ||
2062 | multi->num_stripes = num_stripes; | ||
2063 | multi->max_errors = max_errors; | ||
2064 | } | ||
2065 | out: | ||
2066 | free_extent_map(em); | ||
2067 | return 0; | ||
2068 | } | ||
2069 | |||
2070 | int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw, | ||
2071 | u64 logical, u64 *length, | ||
2072 | struct btrfs_multi_bio **multi_ret, int mirror_num) | ||
2073 | { | ||
2074 | return __btrfs_map_block(map_tree, rw, logical, length, multi_ret, | ||
2075 | mirror_num, NULL); | ||
2076 | } | ||
2077 | |||
2078 | int btrfs_unplug_page(struct btrfs_mapping_tree *map_tree, | ||
2079 | u64 logical, struct page *page) | ||
2080 | { | ||
2081 | u64 length = PAGE_CACHE_SIZE; | ||
2082 | return __btrfs_map_block(map_tree, READ, logical, &length, | ||
2083 | NULL, 0, page); | ||
2084 | } | ||
2085 | |||
2086 | |||
2087 | static void end_bio_multi_stripe(struct bio *bio, int err) | ||
2088 | { | ||
2089 | struct btrfs_multi_bio *multi = bio->bi_private; | ||
2090 | int is_orig_bio = 0; | ||
2091 | |||
2092 | if (err) | ||
2093 | atomic_inc(&multi->error); | ||
2094 | |||
2095 | if (bio == multi->orig_bio) | ||
2096 | is_orig_bio = 1; | ||
2097 | |||
2098 | if (atomic_dec_and_test(&multi->stripes_pending)) { | ||
2099 | if (!is_orig_bio) { | ||
2100 | bio_put(bio); | ||
2101 | bio = multi->orig_bio; | ||
2102 | } | ||
2103 | bio->bi_private = multi->private; | ||
2104 | bio->bi_end_io = multi->end_io; | ||
2105 | /* only send an error to the higher layers if it is | ||
2106 | * beyond the tolerance of the multi-bio | ||
2107 | */ | ||
2108 | if (atomic_read(&multi->error) > multi->max_errors) { | ||
2109 | err = -EIO; | ||
2110 | } else if (err) { | ||
2111 | /* | ||
2112 | * this bio is actually up to date, we didn't | ||
2113 | * go over the max number of errors | ||
2114 | */ | ||
2115 | set_bit(BIO_UPTODATE, &bio->bi_flags); | ||
2116 | err = 0; | ||
2117 | } | ||
2118 | kfree(multi); | ||
2119 | |||
2120 | bio_endio(bio, err); | ||
2121 | } else if (!is_orig_bio) { | ||
2122 | bio_put(bio); | ||
2123 | } | ||
2124 | } | ||
2125 | |||
2126 | struct async_sched { | ||
2127 | struct bio *bio; | ||
2128 | int rw; | ||
2129 | struct btrfs_fs_info *info; | ||
2130 | struct btrfs_work work; | ||
2131 | }; | ||
2132 | |||
2133 | /* | ||
2134 | * see run_scheduled_bios for a description of why bios are collected for | ||
2135 | * async submit. | ||
2136 | * | ||
2137 | * This will add one bio to the pending list for a device and make sure | ||
2138 | * the work struct is scheduled. | ||
2139 | */ | ||
2140 | static int noinline schedule_bio(struct btrfs_root *root, | ||
2141 | struct btrfs_device *device, | ||
2142 | int rw, struct bio *bio) | ||
2143 | { | ||
2144 | int should_queue = 1; | ||
2145 | |||
2146 | /* don't bother with additional async steps for reads, right now */ | ||
2147 | if (!(rw & (1 << BIO_RW))) { | ||
2148 | bio_get(bio); | ||
2149 | submit_bio(rw, bio); | ||
2150 | bio_put(bio); | ||
2151 | return 0; | ||
2152 | } | ||
2153 | |||
2154 | /* | ||
2155 | * nr_async_bios allows us to reliably return congestion to the | ||
2156 | * higher layers. Otherwise, the async bio makes it appear we have | ||
2157 | * made progress against dirty pages when we've really just put it | ||
2158 | * on a queue for later | ||
2159 | */ | ||
2160 | atomic_inc(&root->fs_info->nr_async_bios); | ||
2161 | WARN_ON(bio->bi_next); | ||
2162 | bio->bi_next = NULL; | ||
2163 | bio->bi_rw |= rw; | ||
2164 | |||
2165 | spin_lock(&device->io_lock); | ||
2166 | |||
2167 | if (device->pending_bio_tail) | ||
2168 | device->pending_bio_tail->bi_next = bio; | ||
2169 | |||
2170 | device->pending_bio_tail = bio; | ||
2171 | if (!device->pending_bios) | ||
2172 | device->pending_bios = bio; | ||
2173 | if (device->running_pending) | ||
2174 | should_queue = 0; | ||
2175 | |||
2176 | spin_unlock(&device->io_lock); | ||
2177 | |||
2178 | if (should_queue) | ||
2179 | btrfs_queue_worker(&root->fs_info->submit_workers, | ||
2180 | &device->work); | ||
2181 | return 0; | ||
2182 | } | ||
2183 | |||
2184 | int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio, | ||
2185 | int mirror_num, int async_submit) | ||
2186 | { | ||
2187 | struct btrfs_mapping_tree *map_tree; | ||
2188 | struct btrfs_device *dev; | ||
2189 | struct bio *first_bio = bio; | ||
2190 | u64 logical = (u64)bio->bi_sector << 9; | ||
2191 | u64 length = 0; | ||
2192 | u64 map_length; | ||
2193 | struct btrfs_multi_bio *multi = NULL; | ||
2194 | int ret; | ||
2195 | int dev_nr = 0; | ||
2196 | int total_devs = 1; | ||
2197 | |||
2198 | length = bio->bi_size; | ||
2199 | map_tree = &root->fs_info->mapping_tree; | ||
2200 | map_length = length; | ||
2201 | |||
2202 | ret = btrfs_map_block(map_tree, rw, logical, &map_length, &multi, | ||
2203 | mirror_num); | ||
2204 | BUG_ON(ret); | ||
2205 | |||
2206 | total_devs = multi->num_stripes; | ||
2207 | if (map_length < length) { | ||
2208 | printk("mapping failed logical %Lu bio len %Lu " | ||
2209 | "len %Lu\n", logical, length, map_length); | ||
2210 | BUG(); | ||
2211 | } | ||
2212 | multi->end_io = first_bio->bi_end_io; | ||
2213 | multi->private = first_bio->bi_private; | ||
2214 | multi->orig_bio = first_bio; | ||
2215 | atomic_set(&multi->stripes_pending, multi->num_stripes); | ||
2216 | |||
2217 | while(dev_nr < total_devs) { | ||
2218 | if (total_devs > 1) { | ||
2219 | if (dev_nr < total_devs - 1) { | ||
2220 | bio = bio_clone(first_bio, GFP_NOFS); | ||
2221 | BUG_ON(!bio); | ||
2222 | } else { | ||
2223 | bio = first_bio; | ||
2224 | } | ||
2225 | bio->bi_private = multi; | ||
2226 | bio->bi_end_io = end_bio_multi_stripe; | ||
2227 | } | ||
2228 | bio->bi_sector = multi->stripes[dev_nr].physical >> 9; | ||
2229 | dev = multi->stripes[dev_nr].dev; | ||
2230 | if (dev && dev->bdev) { | ||
2231 | bio->bi_bdev = dev->bdev; | ||
2232 | if (async_submit) | ||
2233 | schedule_bio(root, dev, rw, bio); | ||
2234 | else | ||
2235 | submit_bio(rw, bio); | ||
2236 | } else { | ||
2237 | bio->bi_bdev = root->fs_info->fs_devices->latest_bdev; | ||
2238 | bio->bi_sector = logical >> 9; | ||
2239 | bio_endio(bio, -EIO); | ||
2240 | } | ||
2241 | dev_nr++; | ||
2242 | } | ||
2243 | if (total_devs == 1) | ||
2244 | kfree(multi); | ||
2245 | return 0; | ||
2246 | } | ||
2247 | |||
2248 | struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid, | ||
2249 | u8 *uuid) | ||
2250 | { | ||
2251 | struct list_head *head = &root->fs_info->fs_devices->devices; | ||
2252 | |||
2253 | return __find_device(head, devid, uuid); | ||
2254 | } | ||
2255 | |||
2256 | static struct btrfs_device *add_missing_dev(struct btrfs_root *root, | ||
2257 | u64 devid, u8 *dev_uuid) | ||
2258 | { | ||
2259 | struct btrfs_device *device; | ||
2260 | struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; | ||
2261 | |||
2262 | device = kzalloc(sizeof(*device), GFP_NOFS); | ||
2263 | list_add(&device->dev_list, | ||
2264 | &fs_devices->devices); | ||
2265 | list_add(&device->dev_alloc_list, | ||
2266 | &fs_devices->alloc_list); | ||
2267 | device->barriers = 1; | ||
2268 | device->dev_root = root->fs_info->dev_root; | ||
2269 | device->devid = devid; | ||
2270 | device->work.func = pending_bios_fn; | ||
2271 | fs_devices->num_devices++; | ||
2272 | spin_lock_init(&device->io_lock); | ||
2273 | memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE); | ||
2274 | return device; | ||
2275 | } | ||
2276 | |||
2277 | |||
2278 | static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key, | ||
2279 | struct extent_buffer *leaf, | ||
2280 | struct btrfs_chunk *chunk) | ||
2281 | { | ||
2282 | struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree; | ||
2283 | struct map_lookup *map; | ||
2284 | struct extent_map *em; | ||
2285 | u64 logical; | ||
2286 | u64 length; | ||
2287 | u64 devid; | ||
2288 | u8 uuid[BTRFS_UUID_SIZE]; | ||
2289 | int num_stripes; | ||
2290 | int ret; | ||
2291 | int i; | ||
2292 | |||
2293 | logical = key->offset; | ||
2294 | length = btrfs_chunk_length(leaf, chunk); | ||
2295 | |||
2296 | spin_lock(&map_tree->map_tree.lock); | ||
2297 | em = lookup_extent_mapping(&map_tree->map_tree, logical, 1); | ||
2298 | spin_unlock(&map_tree->map_tree.lock); | ||
2299 | |||
2300 | /* already mapped? */ | ||
2301 | if (em && em->start <= logical && em->start + em->len > logical) { | ||
2302 | free_extent_map(em); | ||
2303 | return 0; | ||
2304 | } else if (em) { | ||
2305 | free_extent_map(em); | ||
2306 | } | ||
2307 | |||
2308 | map = kzalloc(sizeof(*map), GFP_NOFS); | ||
2309 | if (!map) | ||
2310 | return -ENOMEM; | ||
2311 | |||
2312 | em = alloc_extent_map(GFP_NOFS); | ||
2313 | if (!em) | ||
2314 | return -ENOMEM; | ||
2315 | num_stripes = btrfs_chunk_num_stripes(leaf, chunk); | ||
2316 | map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); | ||
2317 | if (!map) { | ||
2318 | free_extent_map(em); | ||
2319 | return -ENOMEM; | ||
2320 | } | ||
2321 | |||
2322 | em->bdev = (struct block_device *)map; | ||
2323 | em->start = logical; | ||
2324 | em->len = length; | ||
2325 | em->block_start = 0; | ||
2326 | |||
2327 | map->num_stripes = num_stripes; | ||
2328 | map->io_width = btrfs_chunk_io_width(leaf, chunk); | ||
2329 | map->io_align = btrfs_chunk_io_align(leaf, chunk); | ||
2330 | map->sector_size = btrfs_chunk_sector_size(leaf, chunk); | ||
2331 | map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk); | ||
2332 | map->type = btrfs_chunk_type(leaf, chunk); | ||
2333 | map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk); | ||
2334 | for (i = 0; i < num_stripes; i++) { | ||
2335 | map->stripes[i].physical = | ||
2336 | btrfs_stripe_offset_nr(leaf, chunk, i); | ||
2337 | devid = btrfs_stripe_devid_nr(leaf, chunk, i); | ||
2338 | read_extent_buffer(leaf, uuid, (unsigned long) | ||
2339 | btrfs_stripe_dev_uuid_nr(chunk, i), | ||
2340 | BTRFS_UUID_SIZE); | ||
2341 | map->stripes[i].dev = btrfs_find_device(root, devid, uuid); | ||
2342 | |||
2343 | if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) { | ||
2344 | kfree(map); | ||
2345 | free_extent_map(em); | ||
2346 | return -EIO; | ||
2347 | } | ||
2348 | if (!map->stripes[i].dev) { | ||
2349 | map->stripes[i].dev = | ||
2350 | add_missing_dev(root, devid, uuid); | ||
2351 | if (!map->stripes[i].dev) { | ||
2352 | kfree(map); | ||
2353 | free_extent_map(em); | ||
2354 | return -EIO; | ||
2355 | } | ||
2356 | } | ||
2357 | map->stripes[i].dev->in_fs_metadata = 1; | ||
2358 | } | ||
2359 | |||
2360 | spin_lock(&map_tree->map_tree.lock); | ||
2361 | ret = add_extent_mapping(&map_tree->map_tree, em); | ||
2362 | spin_unlock(&map_tree->map_tree.lock); | ||
2363 | BUG_ON(ret); | ||
2364 | free_extent_map(em); | ||
2365 | |||
2366 | return 0; | ||
2367 | } | ||
2368 | |||
2369 | static int fill_device_from_item(struct extent_buffer *leaf, | ||
2370 | struct btrfs_dev_item *dev_item, | ||
2371 | struct btrfs_device *device) | ||
2372 | { | ||
2373 | unsigned long ptr; | ||
2374 | |||
2375 | device->devid = btrfs_device_id(leaf, dev_item); | ||
2376 | device->total_bytes = btrfs_device_total_bytes(leaf, dev_item); | ||
2377 | device->bytes_used = btrfs_device_bytes_used(leaf, dev_item); | ||
2378 | device->type = btrfs_device_type(leaf, dev_item); | ||
2379 | device->io_align = btrfs_device_io_align(leaf, dev_item); | ||
2380 | device->io_width = btrfs_device_io_width(leaf, dev_item); | ||
2381 | device->sector_size = btrfs_device_sector_size(leaf, dev_item); | ||
2382 | |||
2383 | ptr = (unsigned long)btrfs_device_uuid(dev_item); | ||
2384 | read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); | ||
2385 | |||
2386 | return 0; | ||
2387 | } | ||
2388 | |||
2389 | static int read_one_dev(struct btrfs_root *root, | ||
2390 | struct extent_buffer *leaf, | ||
2391 | struct btrfs_dev_item *dev_item) | ||
2392 | { | ||
2393 | struct btrfs_device *device; | ||
2394 | u64 devid; | ||
2395 | int ret; | ||
2396 | u8 dev_uuid[BTRFS_UUID_SIZE]; | ||
2397 | |||
2398 | devid = btrfs_device_id(leaf, dev_item); | ||
2399 | read_extent_buffer(leaf, dev_uuid, | ||
2400 | (unsigned long)btrfs_device_uuid(dev_item), | ||
2401 | BTRFS_UUID_SIZE); | ||
2402 | device = btrfs_find_device(root, devid, dev_uuid); | ||
2403 | if (!device) { | ||
2404 | printk("warning devid %Lu missing\n", devid); | ||
2405 | device = add_missing_dev(root, devid, dev_uuid); | ||
2406 | if (!device) | ||
2407 | return -ENOMEM; | ||
2408 | } | ||
2409 | |||
2410 | fill_device_from_item(leaf, dev_item, device); | ||
2411 | device->dev_root = root->fs_info->dev_root; | ||
2412 | device->in_fs_metadata = 1; | ||
2413 | ret = 0; | ||
2414 | #if 0 | ||
2415 | ret = btrfs_open_device(device); | ||
2416 | if (ret) { | ||
2417 | kfree(device); | ||
2418 | } | ||
2419 | #endif | ||
2420 | return ret; | ||
2421 | } | ||
2422 | |||
2423 | int btrfs_read_super_device(struct btrfs_root *root, struct extent_buffer *buf) | ||
2424 | { | ||
2425 | struct btrfs_dev_item *dev_item; | ||
2426 | |||
2427 | dev_item = (struct btrfs_dev_item *)offsetof(struct btrfs_super_block, | ||
2428 | dev_item); | ||
2429 | return read_one_dev(root, buf, dev_item); | ||
2430 | } | ||
2431 | |||
2432 | int btrfs_read_sys_array(struct btrfs_root *root) | ||
2433 | { | ||
2434 | struct btrfs_super_block *super_copy = &root->fs_info->super_copy; | ||
2435 | struct extent_buffer *sb; | ||
2436 | struct btrfs_disk_key *disk_key; | ||
2437 | struct btrfs_chunk *chunk; | ||
2438 | u8 *ptr; | ||
2439 | unsigned long sb_ptr; | ||
2440 | int ret = 0; | ||
2441 | u32 num_stripes; | ||
2442 | u32 array_size; | ||
2443 | u32 len = 0; | ||
2444 | u32 cur; | ||
2445 | struct btrfs_key key; | ||
2446 | |||
2447 | sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET, | ||
2448 | BTRFS_SUPER_INFO_SIZE); | ||
2449 | if (!sb) | ||
2450 | return -ENOMEM; | ||
2451 | btrfs_set_buffer_uptodate(sb); | ||
2452 | write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE); | ||
2453 | array_size = btrfs_super_sys_array_size(super_copy); | ||
2454 | |||
2455 | ptr = super_copy->sys_chunk_array; | ||
2456 | sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array); | ||
2457 | cur = 0; | ||
2458 | |||
2459 | while (cur < array_size) { | ||
2460 | disk_key = (struct btrfs_disk_key *)ptr; | ||
2461 | btrfs_disk_key_to_cpu(&key, disk_key); | ||
2462 | |||
2463 | len = sizeof(*disk_key); ptr += len; | ||
2464 | sb_ptr += len; | ||
2465 | cur += len; | ||
2466 | |||
2467 | if (key.type == BTRFS_CHUNK_ITEM_KEY) { | ||
2468 | chunk = (struct btrfs_chunk *)sb_ptr; | ||
2469 | ret = read_one_chunk(root, &key, sb, chunk); | ||
2470 | if (ret) | ||
2471 | break; | ||
2472 | num_stripes = btrfs_chunk_num_stripes(sb, chunk); | ||
2473 | len = btrfs_chunk_item_size(num_stripes); | ||
2474 | } else { | ||
2475 | ret = -EIO; | ||
2476 | break; | ||
2477 | } | ||
2478 | ptr += len; | ||
2479 | sb_ptr += len; | ||
2480 | cur += len; | ||
2481 | } | ||
2482 | free_extent_buffer(sb); | ||
2483 | return ret; | ||
2484 | } | ||
2485 | |||
2486 | int btrfs_read_chunk_tree(struct btrfs_root *root) | ||
2487 | { | ||
2488 | struct btrfs_path *path; | ||
2489 | struct extent_buffer *leaf; | ||
2490 | struct btrfs_key key; | ||
2491 | struct btrfs_key found_key; | ||
2492 | int ret; | ||
2493 | int slot; | ||
2494 | |||
2495 | root = root->fs_info->chunk_root; | ||
2496 | |||
2497 | path = btrfs_alloc_path(); | ||
2498 | if (!path) | ||
2499 | return -ENOMEM; | ||
2500 | |||
2501 | /* first we search for all of the device items, and then we | ||
2502 | * read in all of the chunk items. This way we can create chunk | ||
2503 | * mappings that reference all of the devices that are afound | ||
2504 | */ | ||
2505 | key.objectid = BTRFS_DEV_ITEMS_OBJECTID; | ||
2506 | key.offset = 0; | ||
2507 | key.type = 0; | ||
2508 | again: | ||
2509 | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | ||
2510 | while(1) { | ||
2511 | leaf = path->nodes[0]; | ||
2512 | slot = path->slots[0]; | ||
2513 | if (slot >= btrfs_header_nritems(leaf)) { | ||
2514 | ret = btrfs_next_leaf(root, path); | ||
2515 | if (ret == 0) | ||
2516 | continue; | ||
2517 | if (ret < 0) | ||
2518 | goto error; | ||
2519 | break; | ||
2520 | } | ||
2521 | btrfs_item_key_to_cpu(leaf, &found_key, slot); | ||
2522 | if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) { | ||
2523 | if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID) | ||
2524 | break; | ||
2525 | if (found_key.type == BTRFS_DEV_ITEM_KEY) { | ||
2526 | struct btrfs_dev_item *dev_item; | ||
2527 | dev_item = btrfs_item_ptr(leaf, slot, | ||
2528 | struct btrfs_dev_item); | ||
2529 | ret = read_one_dev(root, leaf, dev_item); | ||
2530 | BUG_ON(ret); | ||
2531 | } | ||
2532 | } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) { | ||
2533 | struct btrfs_chunk *chunk; | ||
2534 | chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); | ||
2535 | ret = read_one_chunk(root, &found_key, leaf, chunk); | ||
2536 | } | ||
2537 | path->slots[0]++; | ||
2538 | } | ||
2539 | if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) { | ||
2540 | key.objectid = 0; | ||
2541 | btrfs_release_path(root, path); | ||
2542 | goto again; | ||
2543 | } | ||
2544 | |||
2545 | btrfs_free_path(path); | ||
2546 | ret = 0; | ||
2547 | error: | ||
2548 | return ret; | ||
2549 | } | ||