diff options
Diffstat (limited to 'fs/btrfs/tree-log.c')
-rw-r--r-- | fs/btrfs/tree-log.c | 2898 |
1 files changed, 2898 insertions, 0 deletions
diff --git a/fs/btrfs/tree-log.c b/fs/btrfs/tree-log.c new file mode 100644 index 000000000000..d81cda2e077c --- /dev/null +++ b/fs/btrfs/tree-log.c | |||
@@ -0,0 +1,2898 @@ | |||
1 | /* | ||
2 | * Copyright (C) 2008 Oracle. All rights reserved. | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or | ||
5 | * modify it under the terms of the GNU General Public | ||
6 | * License v2 as published by the Free Software Foundation. | ||
7 | * | ||
8 | * This program is distributed in the hope that it will be useful, | ||
9 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | ||
11 | * General Public License for more details. | ||
12 | * | ||
13 | * You should have received a copy of the GNU General Public | ||
14 | * License along with this program; if not, write to the | ||
15 | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | ||
16 | * Boston, MA 021110-1307, USA. | ||
17 | */ | ||
18 | |||
19 | #include <linux/sched.h> | ||
20 | #include "ctree.h" | ||
21 | #include "transaction.h" | ||
22 | #include "disk-io.h" | ||
23 | #include "locking.h" | ||
24 | #include "print-tree.h" | ||
25 | #include "compat.h" | ||
26 | #include "tree-log.h" | ||
27 | |||
28 | /* magic values for the inode_only field in btrfs_log_inode: | ||
29 | * | ||
30 | * LOG_INODE_ALL means to log everything | ||
31 | * LOG_INODE_EXISTS means to log just enough to recreate the inode | ||
32 | * during log replay | ||
33 | */ | ||
34 | #define LOG_INODE_ALL 0 | ||
35 | #define LOG_INODE_EXISTS 1 | ||
36 | |||
37 | /* | ||
38 | * stages for the tree walking. The first | ||
39 | * stage (0) is to only pin down the blocks we find | ||
40 | * the second stage (1) is to make sure that all the inodes | ||
41 | * we find in the log are created in the subvolume. | ||
42 | * | ||
43 | * The last stage is to deal with directories and links and extents | ||
44 | * and all the other fun semantics | ||
45 | */ | ||
46 | #define LOG_WALK_PIN_ONLY 0 | ||
47 | #define LOG_WALK_REPLAY_INODES 1 | ||
48 | #define LOG_WALK_REPLAY_ALL 2 | ||
49 | |||
50 | static int __btrfs_log_inode(struct btrfs_trans_handle *trans, | ||
51 | struct btrfs_root *root, struct inode *inode, | ||
52 | int inode_only); | ||
53 | static int link_to_fixup_dir(struct btrfs_trans_handle *trans, | ||
54 | struct btrfs_root *root, | ||
55 | struct btrfs_path *path, u64 objectid); | ||
56 | |||
57 | /* | ||
58 | * tree logging is a special write ahead log used to make sure that | ||
59 | * fsyncs and O_SYNCs can happen without doing full tree commits. | ||
60 | * | ||
61 | * Full tree commits are expensive because they require commonly | ||
62 | * modified blocks to be recowed, creating many dirty pages in the | ||
63 | * extent tree an 4x-6x higher write load than ext3. | ||
64 | * | ||
65 | * Instead of doing a tree commit on every fsync, we use the | ||
66 | * key ranges and transaction ids to find items for a given file or directory | ||
67 | * that have changed in this transaction. Those items are copied into | ||
68 | * a special tree (one per subvolume root), that tree is written to disk | ||
69 | * and then the fsync is considered complete. | ||
70 | * | ||
71 | * After a crash, items are copied out of the log-tree back into the | ||
72 | * subvolume tree. Any file data extents found are recorded in the extent | ||
73 | * allocation tree, and the log-tree freed. | ||
74 | * | ||
75 | * The log tree is read three times, once to pin down all the extents it is | ||
76 | * using in ram and once, once to create all the inodes logged in the tree | ||
77 | * and once to do all the other items. | ||
78 | */ | ||
79 | |||
80 | /* | ||
81 | * btrfs_add_log_tree adds a new per-subvolume log tree into the | ||
82 | * tree of log tree roots. This must be called with a tree log transaction | ||
83 | * running (see start_log_trans). | ||
84 | */ | ||
85 | static int btrfs_add_log_tree(struct btrfs_trans_handle *trans, | ||
86 | struct btrfs_root *root) | ||
87 | { | ||
88 | struct btrfs_key key; | ||
89 | struct btrfs_root_item root_item; | ||
90 | struct btrfs_inode_item *inode_item; | ||
91 | struct extent_buffer *leaf; | ||
92 | struct btrfs_root *new_root = root; | ||
93 | int ret; | ||
94 | u64 objectid = root->root_key.objectid; | ||
95 | |||
96 | leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0, | ||
97 | BTRFS_TREE_LOG_OBJECTID, | ||
98 | trans->transid, 0, 0, 0); | ||
99 | if (IS_ERR(leaf)) { | ||
100 | ret = PTR_ERR(leaf); | ||
101 | return ret; | ||
102 | } | ||
103 | |||
104 | btrfs_set_header_nritems(leaf, 0); | ||
105 | btrfs_set_header_level(leaf, 0); | ||
106 | btrfs_set_header_bytenr(leaf, leaf->start); | ||
107 | btrfs_set_header_generation(leaf, trans->transid); | ||
108 | btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID); | ||
109 | |||
110 | write_extent_buffer(leaf, root->fs_info->fsid, | ||
111 | (unsigned long)btrfs_header_fsid(leaf), | ||
112 | BTRFS_FSID_SIZE); | ||
113 | btrfs_mark_buffer_dirty(leaf); | ||
114 | |||
115 | inode_item = &root_item.inode; | ||
116 | memset(inode_item, 0, sizeof(*inode_item)); | ||
117 | inode_item->generation = cpu_to_le64(1); | ||
118 | inode_item->size = cpu_to_le64(3); | ||
119 | inode_item->nlink = cpu_to_le32(1); | ||
120 | inode_item->nbytes = cpu_to_le64(root->leafsize); | ||
121 | inode_item->mode = cpu_to_le32(S_IFDIR | 0755); | ||
122 | |||
123 | btrfs_set_root_bytenr(&root_item, leaf->start); | ||
124 | btrfs_set_root_generation(&root_item, trans->transid); | ||
125 | btrfs_set_root_level(&root_item, 0); | ||
126 | btrfs_set_root_refs(&root_item, 0); | ||
127 | btrfs_set_root_used(&root_item, 0); | ||
128 | |||
129 | memset(&root_item.drop_progress, 0, sizeof(root_item.drop_progress)); | ||
130 | root_item.drop_level = 0; | ||
131 | |||
132 | btrfs_tree_unlock(leaf); | ||
133 | free_extent_buffer(leaf); | ||
134 | leaf = NULL; | ||
135 | |||
136 | btrfs_set_root_dirid(&root_item, 0); | ||
137 | |||
138 | key.objectid = BTRFS_TREE_LOG_OBJECTID; | ||
139 | key.offset = objectid; | ||
140 | btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY); | ||
141 | ret = btrfs_insert_root(trans, root->fs_info->log_root_tree, &key, | ||
142 | &root_item); | ||
143 | if (ret) | ||
144 | goto fail; | ||
145 | |||
146 | new_root = btrfs_read_fs_root_no_radix(root->fs_info->log_root_tree, | ||
147 | &key); | ||
148 | BUG_ON(!new_root); | ||
149 | |||
150 | WARN_ON(root->log_root); | ||
151 | root->log_root = new_root; | ||
152 | |||
153 | /* | ||
154 | * log trees do not get reference counted because they go away | ||
155 | * before a real commit is actually done. They do store pointers | ||
156 | * to file data extents, and those reference counts still get | ||
157 | * updated (along with back refs to the log tree). | ||
158 | */ | ||
159 | new_root->ref_cows = 0; | ||
160 | new_root->last_trans = trans->transid; | ||
161 | |||
162 | /* | ||
163 | * we need to make sure the root block for this new tree | ||
164 | * is marked as dirty in the dirty_log_pages tree. This | ||
165 | * is how it gets flushed down to disk at tree log commit time. | ||
166 | * | ||
167 | * the tree logging mutex keeps others from coming in and changing | ||
168 | * the new_root->node, so we can safely access it here | ||
169 | */ | ||
170 | set_extent_dirty(&new_root->dirty_log_pages, new_root->node->start, | ||
171 | new_root->node->start + new_root->node->len - 1, | ||
172 | GFP_NOFS); | ||
173 | |||
174 | fail: | ||
175 | return ret; | ||
176 | } | ||
177 | |||
178 | /* | ||
179 | * start a sub transaction and setup the log tree | ||
180 | * this increments the log tree writer count to make the people | ||
181 | * syncing the tree wait for us to finish | ||
182 | */ | ||
183 | static int start_log_trans(struct btrfs_trans_handle *trans, | ||
184 | struct btrfs_root *root) | ||
185 | { | ||
186 | int ret; | ||
187 | mutex_lock(&root->fs_info->tree_log_mutex); | ||
188 | if (!root->fs_info->log_root_tree) { | ||
189 | ret = btrfs_init_log_root_tree(trans, root->fs_info); | ||
190 | BUG_ON(ret); | ||
191 | } | ||
192 | if (!root->log_root) { | ||
193 | ret = btrfs_add_log_tree(trans, root); | ||
194 | BUG_ON(ret); | ||
195 | } | ||
196 | atomic_inc(&root->fs_info->tree_log_writers); | ||
197 | root->fs_info->tree_log_batch++; | ||
198 | mutex_unlock(&root->fs_info->tree_log_mutex); | ||
199 | return 0; | ||
200 | } | ||
201 | |||
202 | /* | ||
203 | * returns 0 if there was a log transaction running and we were able | ||
204 | * to join, or returns -ENOENT if there were not transactions | ||
205 | * in progress | ||
206 | */ | ||
207 | static int join_running_log_trans(struct btrfs_root *root) | ||
208 | { | ||
209 | int ret = -ENOENT; | ||
210 | |||
211 | smp_mb(); | ||
212 | if (!root->log_root) | ||
213 | return -ENOENT; | ||
214 | |||
215 | mutex_lock(&root->fs_info->tree_log_mutex); | ||
216 | if (root->log_root) { | ||
217 | ret = 0; | ||
218 | atomic_inc(&root->fs_info->tree_log_writers); | ||
219 | root->fs_info->tree_log_batch++; | ||
220 | } | ||
221 | mutex_unlock(&root->fs_info->tree_log_mutex); | ||
222 | return ret; | ||
223 | } | ||
224 | |||
225 | /* | ||
226 | * indicate we're done making changes to the log tree | ||
227 | * and wake up anyone waiting to do a sync | ||
228 | */ | ||
229 | static int end_log_trans(struct btrfs_root *root) | ||
230 | { | ||
231 | atomic_dec(&root->fs_info->tree_log_writers); | ||
232 | smp_mb(); | ||
233 | if (waitqueue_active(&root->fs_info->tree_log_wait)) | ||
234 | wake_up(&root->fs_info->tree_log_wait); | ||
235 | return 0; | ||
236 | } | ||
237 | |||
238 | |||
239 | /* | ||
240 | * the walk control struct is used to pass state down the chain when | ||
241 | * processing the log tree. The stage field tells us which part | ||
242 | * of the log tree processing we are currently doing. The others | ||
243 | * are state fields used for that specific part | ||
244 | */ | ||
245 | struct walk_control { | ||
246 | /* should we free the extent on disk when done? This is used | ||
247 | * at transaction commit time while freeing a log tree | ||
248 | */ | ||
249 | int free; | ||
250 | |||
251 | /* should we write out the extent buffer? This is used | ||
252 | * while flushing the log tree to disk during a sync | ||
253 | */ | ||
254 | int write; | ||
255 | |||
256 | /* should we wait for the extent buffer io to finish? Also used | ||
257 | * while flushing the log tree to disk for a sync | ||
258 | */ | ||
259 | int wait; | ||
260 | |||
261 | /* pin only walk, we record which extents on disk belong to the | ||
262 | * log trees | ||
263 | */ | ||
264 | int pin; | ||
265 | |||
266 | /* what stage of the replay code we're currently in */ | ||
267 | int stage; | ||
268 | |||
269 | /* the root we are currently replaying */ | ||
270 | struct btrfs_root *replay_dest; | ||
271 | |||
272 | /* the trans handle for the current replay */ | ||
273 | struct btrfs_trans_handle *trans; | ||
274 | |||
275 | /* the function that gets used to process blocks we find in the | ||
276 | * tree. Note the extent_buffer might not be up to date when it is | ||
277 | * passed in, and it must be checked or read if you need the data | ||
278 | * inside it | ||
279 | */ | ||
280 | int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb, | ||
281 | struct walk_control *wc, u64 gen); | ||
282 | }; | ||
283 | |||
284 | /* | ||
285 | * process_func used to pin down extents, write them or wait on them | ||
286 | */ | ||
287 | static int process_one_buffer(struct btrfs_root *log, | ||
288 | struct extent_buffer *eb, | ||
289 | struct walk_control *wc, u64 gen) | ||
290 | { | ||
291 | if (wc->pin) { | ||
292 | mutex_lock(&log->fs_info->pinned_mutex); | ||
293 | btrfs_update_pinned_extents(log->fs_info->extent_root, | ||
294 | eb->start, eb->len, 1); | ||
295 | mutex_unlock(&log->fs_info->pinned_mutex); | ||
296 | } | ||
297 | |||
298 | if (btrfs_buffer_uptodate(eb, gen)) { | ||
299 | if (wc->write) | ||
300 | btrfs_write_tree_block(eb); | ||
301 | if (wc->wait) | ||
302 | btrfs_wait_tree_block_writeback(eb); | ||
303 | } | ||
304 | return 0; | ||
305 | } | ||
306 | |||
307 | /* | ||
308 | * Item overwrite used by replay and tree logging. eb, slot and key all refer | ||
309 | * to the src data we are copying out. | ||
310 | * | ||
311 | * root is the tree we are copying into, and path is a scratch | ||
312 | * path for use in this function (it should be released on entry and | ||
313 | * will be released on exit). | ||
314 | * | ||
315 | * If the key is already in the destination tree the existing item is | ||
316 | * overwritten. If the existing item isn't big enough, it is extended. | ||
317 | * If it is too large, it is truncated. | ||
318 | * | ||
319 | * If the key isn't in the destination yet, a new item is inserted. | ||
320 | */ | ||
321 | static noinline int overwrite_item(struct btrfs_trans_handle *trans, | ||
322 | struct btrfs_root *root, | ||
323 | struct btrfs_path *path, | ||
324 | struct extent_buffer *eb, int slot, | ||
325 | struct btrfs_key *key) | ||
326 | { | ||
327 | int ret; | ||
328 | u32 item_size; | ||
329 | u64 saved_i_size = 0; | ||
330 | int save_old_i_size = 0; | ||
331 | unsigned long src_ptr; | ||
332 | unsigned long dst_ptr; | ||
333 | int overwrite_root = 0; | ||
334 | |||
335 | if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) | ||
336 | overwrite_root = 1; | ||
337 | |||
338 | item_size = btrfs_item_size_nr(eb, slot); | ||
339 | src_ptr = btrfs_item_ptr_offset(eb, slot); | ||
340 | |||
341 | /* look for the key in the destination tree */ | ||
342 | ret = btrfs_search_slot(NULL, root, key, path, 0, 0); | ||
343 | if (ret == 0) { | ||
344 | char *src_copy; | ||
345 | char *dst_copy; | ||
346 | u32 dst_size = btrfs_item_size_nr(path->nodes[0], | ||
347 | path->slots[0]); | ||
348 | if (dst_size != item_size) | ||
349 | goto insert; | ||
350 | |||
351 | if (item_size == 0) { | ||
352 | btrfs_release_path(root, path); | ||
353 | return 0; | ||
354 | } | ||
355 | dst_copy = kmalloc(item_size, GFP_NOFS); | ||
356 | src_copy = kmalloc(item_size, GFP_NOFS); | ||
357 | |||
358 | read_extent_buffer(eb, src_copy, src_ptr, item_size); | ||
359 | |||
360 | dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); | ||
361 | read_extent_buffer(path->nodes[0], dst_copy, dst_ptr, | ||
362 | item_size); | ||
363 | ret = memcmp(dst_copy, src_copy, item_size); | ||
364 | |||
365 | kfree(dst_copy); | ||
366 | kfree(src_copy); | ||
367 | /* | ||
368 | * they have the same contents, just return, this saves | ||
369 | * us from cowing blocks in the destination tree and doing | ||
370 | * extra writes that may not have been done by a previous | ||
371 | * sync | ||
372 | */ | ||
373 | if (ret == 0) { | ||
374 | btrfs_release_path(root, path); | ||
375 | return 0; | ||
376 | } | ||
377 | |||
378 | } | ||
379 | insert: | ||
380 | btrfs_release_path(root, path); | ||
381 | /* try to insert the key into the destination tree */ | ||
382 | ret = btrfs_insert_empty_item(trans, root, path, | ||
383 | key, item_size); | ||
384 | |||
385 | /* make sure any existing item is the correct size */ | ||
386 | if (ret == -EEXIST) { | ||
387 | u32 found_size; | ||
388 | found_size = btrfs_item_size_nr(path->nodes[0], | ||
389 | path->slots[0]); | ||
390 | if (found_size > item_size) { | ||
391 | btrfs_truncate_item(trans, root, path, item_size, 1); | ||
392 | } else if (found_size < item_size) { | ||
393 | ret = btrfs_extend_item(trans, root, path, | ||
394 | item_size - found_size); | ||
395 | BUG_ON(ret); | ||
396 | } | ||
397 | } else if (ret) { | ||
398 | BUG(); | ||
399 | } | ||
400 | dst_ptr = btrfs_item_ptr_offset(path->nodes[0], | ||
401 | path->slots[0]); | ||
402 | |||
403 | /* don't overwrite an existing inode if the generation number | ||
404 | * was logged as zero. This is done when the tree logging code | ||
405 | * is just logging an inode to make sure it exists after recovery. | ||
406 | * | ||
407 | * Also, don't overwrite i_size on directories during replay. | ||
408 | * log replay inserts and removes directory items based on the | ||
409 | * state of the tree found in the subvolume, and i_size is modified | ||
410 | * as it goes | ||
411 | */ | ||
412 | if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) { | ||
413 | struct btrfs_inode_item *src_item; | ||
414 | struct btrfs_inode_item *dst_item; | ||
415 | |||
416 | src_item = (struct btrfs_inode_item *)src_ptr; | ||
417 | dst_item = (struct btrfs_inode_item *)dst_ptr; | ||
418 | |||
419 | if (btrfs_inode_generation(eb, src_item) == 0) | ||
420 | goto no_copy; | ||
421 | |||
422 | if (overwrite_root && | ||
423 | S_ISDIR(btrfs_inode_mode(eb, src_item)) && | ||
424 | S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) { | ||
425 | save_old_i_size = 1; | ||
426 | saved_i_size = btrfs_inode_size(path->nodes[0], | ||
427 | dst_item); | ||
428 | } | ||
429 | } | ||
430 | |||
431 | copy_extent_buffer(path->nodes[0], eb, dst_ptr, | ||
432 | src_ptr, item_size); | ||
433 | |||
434 | if (save_old_i_size) { | ||
435 | struct btrfs_inode_item *dst_item; | ||
436 | dst_item = (struct btrfs_inode_item *)dst_ptr; | ||
437 | btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size); | ||
438 | } | ||
439 | |||
440 | /* make sure the generation is filled in */ | ||
441 | if (key->type == BTRFS_INODE_ITEM_KEY) { | ||
442 | struct btrfs_inode_item *dst_item; | ||
443 | dst_item = (struct btrfs_inode_item *)dst_ptr; | ||
444 | if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) { | ||
445 | btrfs_set_inode_generation(path->nodes[0], dst_item, | ||
446 | trans->transid); | ||
447 | } | ||
448 | } | ||
449 | no_copy: | ||
450 | btrfs_mark_buffer_dirty(path->nodes[0]); | ||
451 | btrfs_release_path(root, path); | ||
452 | return 0; | ||
453 | } | ||
454 | |||
455 | /* | ||
456 | * simple helper to read an inode off the disk from a given root | ||
457 | * This can only be called for subvolume roots and not for the log | ||
458 | */ | ||
459 | static noinline struct inode *read_one_inode(struct btrfs_root *root, | ||
460 | u64 objectid) | ||
461 | { | ||
462 | struct inode *inode; | ||
463 | inode = btrfs_iget_locked(root->fs_info->sb, objectid, root); | ||
464 | if (inode->i_state & I_NEW) { | ||
465 | BTRFS_I(inode)->root = root; | ||
466 | BTRFS_I(inode)->location.objectid = objectid; | ||
467 | BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY; | ||
468 | BTRFS_I(inode)->location.offset = 0; | ||
469 | btrfs_read_locked_inode(inode); | ||
470 | unlock_new_inode(inode); | ||
471 | |||
472 | } | ||
473 | if (is_bad_inode(inode)) { | ||
474 | iput(inode); | ||
475 | inode = NULL; | ||
476 | } | ||
477 | return inode; | ||
478 | } | ||
479 | |||
480 | /* replays a single extent in 'eb' at 'slot' with 'key' into the | ||
481 | * subvolume 'root'. path is released on entry and should be released | ||
482 | * on exit. | ||
483 | * | ||
484 | * extents in the log tree have not been allocated out of the extent | ||
485 | * tree yet. So, this completes the allocation, taking a reference | ||
486 | * as required if the extent already exists or creating a new extent | ||
487 | * if it isn't in the extent allocation tree yet. | ||
488 | * | ||
489 | * The extent is inserted into the file, dropping any existing extents | ||
490 | * from the file that overlap the new one. | ||
491 | */ | ||
492 | static noinline int replay_one_extent(struct btrfs_trans_handle *trans, | ||
493 | struct btrfs_root *root, | ||
494 | struct btrfs_path *path, | ||
495 | struct extent_buffer *eb, int slot, | ||
496 | struct btrfs_key *key) | ||
497 | { | ||
498 | int found_type; | ||
499 | u64 mask = root->sectorsize - 1; | ||
500 | u64 extent_end; | ||
501 | u64 alloc_hint; | ||
502 | u64 start = key->offset; | ||
503 | u64 saved_nbytes; | ||
504 | struct btrfs_file_extent_item *item; | ||
505 | struct inode *inode = NULL; | ||
506 | unsigned long size; | ||
507 | int ret = 0; | ||
508 | |||
509 | item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); | ||
510 | found_type = btrfs_file_extent_type(eb, item); | ||
511 | |||
512 | if (found_type == BTRFS_FILE_EXTENT_REG || | ||
513 | found_type == BTRFS_FILE_EXTENT_PREALLOC) | ||
514 | extent_end = start + btrfs_file_extent_num_bytes(eb, item); | ||
515 | else if (found_type == BTRFS_FILE_EXTENT_INLINE) { | ||
516 | size = btrfs_file_extent_inline_len(eb, item); | ||
517 | extent_end = (start + size + mask) & ~mask; | ||
518 | } else { | ||
519 | ret = 0; | ||
520 | goto out; | ||
521 | } | ||
522 | |||
523 | inode = read_one_inode(root, key->objectid); | ||
524 | if (!inode) { | ||
525 | ret = -EIO; | ||
526 | goto out; | ||
527 | } | ||
528 | |||
529 | /* | ||
530 | * first check to see if we already have this extent in the | ||
531 | * file. This must be done before the btrfs_drop_extents run | ||
532 | * so we don't try to drop this extent. | ||
533 | */ | ||
534 | ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino, | ||
535 | start, 0); | ||
536 | |||
537 | if (ret == 0 && | ||
538 | (found_type == BTRFS_FILE_EXTENT_REG || | ||
539 | found_type == BTRFS_FILE_EXTENT_PREALLOC)) { | ||
540 | struct btrfs_file_extent_item cmp1; | ||
541 | struct btrfs_file_extent_item cmp2; | ||
542 | struct btrfs_file_extent_item *existing; | ||
543 | struct extent_buffer *leaf; | ||
544 | |||
545 | leaf = path->nodes[0]; | ||
546 | existing = btrfs_item_ptr(leaf, path->slots[0], | ||
547 | struct btrfs_file_extent_item); | ||
548 | |||
549 | read_extent_buffer(eb, &cmp1, (unsigned long)item, | ||
550 | sizeof(cmp1)); | ||
551 | read_extent_buffer(leaf, &cmp2, (unsigned long)existing, | ||
552 | sizeof(cmp2)); | ||
553 | |||
554 | /* | ||
555 | * we already have a pointer to this exact extent, | ||
556 | * we don't have to do anything | ||
557 | */ | ||
558 | if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) { | ||
559 | btrfs_release_path(root, path); | ||
560 | goto out; | ||
561 | } | ||
562 | } | ||
563 | btrfs_release_path(root, path); | ||
564 | |||
565 | saved_nbytes = inode_get_bytes(inode); | ||
566 | /* drop any overlapping extents */ | ||
567 | ret = btrfs_drop_extents(trans, root, inode, | ||
568 | start, extent_end, start, &alloc_hint); | ||
569 | BUG_ON(ret); | ||
570 | |||
571 | if (found_type == BTRFS_FILE_EXTENT_REG || | ||
572 | found_type == BTRFS_FILE_EXTENT_PREALLOC) { | ||
573 | unsigned long dest_offset; | ||
574 | struct btrfs_key ins; | ||
575 | |||
576 | ret = btrfs_insert_empty_item(trans, root, path, key, | ||
577 | sizeof(*item)); | ||
578 | BUG_ON(ret); | ||
579 | dest_offset = btrfs_item_ptr_offset(path->nodes[0], | ||
580 | path->slots[0]); | ||
581 | copy_extent_buffer(path->nodes[0], eb, dest_offset, | ||
582 | (unsigned long)item, sizeof(*item)); | ||
583 | |||
584 | ins.objectid = btrfs_file_extent_disk_bytenr(eb, item); | ||
585 | ins.offset = btrfs_file_extent_disk_num_bytes(eb, item); | ||
586 | ins.type = BTRFS_EXTENT_ITEM_KEY; | ||
587 | |||
588 | if (ins.objectid > 0) { | ||
589 | u64 csum_start; | ||
590 | u64 csum_end; | ||
591 | LIST_HEAD(ordered_sums); | ||
592 | /* | ||
593 | * is this extent already allocated in the extent | ||
594 | * allocation tree? If so, just add a reference | ||
595 | */ | ||
596 | ret = btrfs_lookup_extent(root, ins.objectid, | ||
597 | ins.offset); | ||
598 | if (ret == 0) { | ||
599 | ret = btrfs_inc_extent_ref(trans, root, | ||
600 | ins.objectid, ins.offset, | ||
601 | path->nodes[0]->start, | ||
602 | root->root_key.objectid, | ||
603 | trans->transid, key->objectid); | ||
604 | } else { | ||
605 | /* | ||
606 | * insert the extent pointer in the extent | ||
607 | * allocation tree | ||
608 | */ | ||
609 | ret = btrfs_alloc_logged_extent(trans, root, | ||
610 | path->nodes[0]->start, | ||
611 | root->root_key.objectid, | ||
612 | trans->transid, key->objectid, | ||
613 | &ins); | ||
614 | BUG_ON(ret); | ||
615 | } | ||
616 | btrfs_release_path(root, path); | ||
617 | |||
618 | if (btrfs_file_extent_compression(eb, item)) { | ||
619 | csum_start = ins.objectid; | ||
620 | csum_end = csum_start + ins.offset; | ||
621 | } else { | ||
622 | csum_start = ins.objectid + | ||
623 | btrfs_file_extent_offset(eb, item); | ||
624 | csum_end = csum_start + | ||
625 | btrfs_file_extent_num_bytes(eb, item); | ||
626 | } | ||
627 | |||
628 | ret = btrfs_lookup_csums_range(root->log_root, | ||
629 | csum_start, csum_end - 1, | ||
630 | &ordered_sums); | ||
631 | BUG_ON(ret); | ||
632 | while (!list_empty(&ordered_sums)) { | ||
633 | struct btrfs_ordered_sum *sums; | ||
634 | sums = list_entry(ordered_sums.next, | ||
635 | struct btrfs_ordered_sum, | ||
636 | list); | ||
637 | ret = btrfs_csum_file_blocks(trans, | ||
638 | root->fs_info->csum_root, | ||
639 | sums); | ||
640 | BUG_ON(ret); | ||
641 | list_del(&sums->list); | ||
642 | kfree(sums); | ||
643 | } | ||
644 | } else { | ||
645 | btrfs_release_path(root, path); | ||
646 | } | ||
647 | } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { | ||
648 | /* inline extents are easy, we just overwrite them */ | ||
649 | ret = overwrite_item(trans, root, path, eb, slot, key); | ||
650 | BUG_ON(ret); | ||
651 | } | ||
652 | |||
653 | inode_set_bytes(inode, saved_nbytes); | ||
654 | btrfs_update_inode(trans, root, inode); | ||
655 | out: | ||
656 | if (inode) | ||
657 | iput(inode); | ||
658 | return ret; | ||
659 | } | ||
660 | |||
661 | /* | ||
662 | * when cleaning up conflicts between the directory names in the | ||
663 | * subvolume, directory names in the log and directory names in the | ||
664 | * inode back references, we may have to unlink inodes from directories. | ||
665 | * | ||
666 | * This is a helper function to do the unlink of a specific directory | ||
667 | * item | ||
668 | */ | ||
669 | static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans, | ||
670 | struct btrfs_root *root, | ||
671 | struct btrfs_path *path, | ||
672 | struct inode *dir, | ||
673 | struct btrfs_dir_item *di) | ||
674 | { | ||
675 | struct inode *inode; | ||
676 | char *name; | ||
677 | int name_len; | ||
678 | struct extent_buffer *leaf; | ||
679 | struct btrfs_key location; | ||
680 | int ret; | ||
681 | |||
682 | leaf = path->nodes[0]; | ||
683 | |||
684 | btrfs_dir_item_key_to_cpu(leaf, di, &location); | ||
685 | name_len = btrfs_dir_name_len(leaf, di); | ||
686 | name = kmalloc(name_len, GFP_NOFS); | ||
687 | read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len); | ||
688 | btrfs_release_path(root, path); | ||
689 | |||
690 | inode = read_one_inode(root, location.objectid); | ||
691 | BUG_ON(!inode); | ||
692 | |||
693 | ret = link_to_fixup_dir(trans, root, path, location.objectid); | ||
694 | BUG_ON(ret); | ||
695 | ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len); | ||
696 | BUG_ON(ret); | ||
697 | kfree(name); | ||
698 | |||
699 | iput(inode); | ||
700 | return ret; | ||
701 | } | ||
702 | |||
703 | /* | ||
704 | * helper function to see if a given name and sequence number found | ||
705 | * in an inode back reference are already in a directory and correctly | ||
706 | * point to this inode | ||
707 | */ | ||
708 | static noinline int inode_in_dir(struct btrfs_root *root, | ||
709 | struct btrfs_path *path, | ||
710 | u64 dirid, u64 objectid, u64 index, | ||
711 | const char *name, int name_len) | ||
712 | { | ||
713 | struct btrfs_dir_item *di; | ||
714 | struct btrfs_key location; | ||
715 | int match = 0; | ||
716 | |||
717 | di = btrfs_lookup_dir_index_item(NULL, root, path, dirid, | ||
718 | index, name, name_len, 0); | ||
719 | if (di && !IS_ERR(di)) { | ||
720 | btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); | ||
721 | if (location.objectid != objectid) | ||
722 | goto out; | ||
723 | } else | ||
724 | goto out; | ||
725 | btrfs_release_path(root, path); | ||
726 | |||
727 | di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0); | ||
728 | if (di && !IS_ERR(di)) { | ||
729 | btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); | ||
730 | if (location.objectid != objectid) | ||
731 | goto out; | ||
732 | } else | ||
733 | goto out; | ||
734 | match = 1; | ||
735 | out: | ||
736 | btrfs_release_path(root, path); | ||
737 | return match; | ||
738 | } | ||
739 | |||
740 | /* | ||
741 | * helper function to check a log tree for a named back reference in | ||
742 | * an inode. This is used to decide if a back reference that is | ||
743 | * found in the subvolume conflicts with what we find in the log. | ||
744 | * | ||
745 | * inode backreferences may have multiple refs in a single item, | ||
746 | * during replay we process one reference at a time, and we don't | ||
747 | * want to delete valid links to a file from the subvolume if that | ||
748 | * link is also in the log. | ||
749 | */ | ||
750 | static noinline int backref_in_log(struct btrfs_root *log, | ||
751 | struct btrfs_key *key, | ||
752 | char *name, int namelen) | ||
753 | { | ||
754 | struct btrfs_path *path; | ||
755 | struct btrfs_inode_ref *ref; | ||
756 | unsigned long ptr; | ||
757 | unsigned long ptr_end; | ||
758 | unsigned long name_ptr; | ||
759 | int found_name_len; | ||
760 | int item_size; | ||
761 | int ret; | ||
762 | int match = 0; | ||
763 | |||
764 | path = btrfs_alloc_path(); | ||
765 | ret = btrfs_search_slot(NULL, log, key, path, 0, 0); | ||
766 | if (ret != 0) | ||
767 | goto out; | ||
768 | |||
769 | item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]); | ||
770 | ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); | ||
771 | ptr_end = ptr + item_size; | ||
772 | while (ptr < ptr_end) { | ||
773 | ref = (struct btrfs_inode_ref *)ptr; | ||
774 | found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref); | ||
775 | if (found_name_len == namelen) { | ||
776 | name_ptr = (unsigned long)(ref + 1); | ||
777 | ret = memcmp_extent_buffer(path->nodes[0], name, | ||
778 | name_ptr, namelen); | ||
779 | if (ret == 0) { | ||
780 | match = 1; | ||
781 | goto out; | ||
782 | } | ||
783 | } | ||
784 | ptr = (unsigned long)(ref + 1) + found_name_len; | ||
785 | } | ||
786 | out: | ||
787 | btrfs_free_path(path); | ||
788 | return match; | ||
789 | } | ||
790 | |||
791 | |||
792 | /* | ||
793 | * replay one inode back reference item found in the log tree. | ||
794 | * eb, slot and key refer to the buffer and key found in the log tree. | ||
795 | * root is the destination we are replaying into, and path is for temp | ||
796 | * use by this function. (it should be released on return). | ||
797 | */ | ||
798 | static noinline int add_inode_ref(struct btrfs_trans_handle *trans, | ||
799 | struct btrfs_root *root, | ||
800 | struct btrfs_root *log, | ||
801 | struct btrfs_path *path, | ||
802 | struct extent_buffer *eb, int slot, | ||
803 | struct btrfs_key *key) | ||
804 | { | ||
805 | struct inode *dir; | ||
806 | int ret; | ||
807 | struct btrfs_key location; | ||
808 | struct btrfs_inode_ref *ref; | ||
809 | struct btrfs_dir_item *di; | ||
810 | struct inode *inode; | ||
811 | char *name; | ||
812 | int namelen; | ||
813 | unsigned long ref_ptr; | ||
814 | unsigned long ref_end; | ||
815 | |||
816 | location.objectid = key->objectid; | ||
817 | location.type = BTRFS_INODE_ITEM_KEY; | ||
818 | location.offset = 0; | ||
819 | |||
820 | /* | ||
821 | * it is possible that we didn't log all the parent directories | ||
822 | * for a given inode. If we don't find the dir, just don't | ||
823 | * copy the back ref in. The link count fixup code will take | ||
824 | * care of the rest | ||
825 | */ | ||
826 | dir = read_one_inode(root, key->offset); | ||
827 | if (!dir) | ||
828 | return -ENOENT; | ||
829 | |||
830 | inode = read_one_inode(root, key->objectid); | ||
831 | BUG_ON(!dir); | ||
832 | |||
833 | ref_ptr = btrfs_item_ptr_offset(eb, slot); | ||
834 | ref_end = ref_ptr + btrfs_item_size_nr(eb, slot); | ||
835 | |||
836 | again: | ||
837 | ref = (struct btrfs_inode_ref *)ref_ptr; | ||
838 | |||
839 | namelen = btrfs_inode_ref_name_len(eb, ref); | ||
840 | name = kmalloc(namelen, GFP_NOFS); | ||
841 | BUG_ON(!name); | ||
842 | |||
843 | read_extent_buffer(eb, name, (unsigned long)(ref + 1), namelen); | ||
844 | |||
845 | /* if we already have a perfect match, we're done */ | ||
846 | if (inode_in_dir(root, path, dir->i_ino, inode->i_ino, | ||
847 | btrfs_inode_ref_index(eb, ref), | ||
848 | name, namelen)) { | ||
849 | goto out; | ||
850 | } | ||
851 | |||
852 | /* | ||
853 | * look for a conflicting back reference in the metadata. | ||
854 | * if we find one we have to unlink that name of the file | ||
855 | * before we add our new link. Later on, we overwrite any | ||
856 | * existing back reference, and we don't want to create | ||
857 | * dangling pointers in the directory. | ||
858 | */ | ||
859 | conflict_again: | ||
860 | ret = btrfs_search_slot(NULL, root, key, path, 0, 0); | ||
861 | if (ret == 0) { | ||
862 | char *victim_name; | ||
863 | int victim_name_len; | ||
864 | struct btrfs_inode_ref *victim_ref; | ||
865 | unsigned long ptr; | ||
866 | unsigned long ptr_end; | ||
867 | struct extent_buffer *leaf = path->nodes[0]; | ||
868 | |||
869 | /* are we trying to overwrite a back ref for the root directory | ||
870 | * if so, just jump out, we're done | ||
871 | */ | ||
872 | if (key->objectid == key->offset) | ||
873 | goto out_nowrite; | ||
874 | |||
875 | /* check all the names in this back reference to see | ||
876 | * if they are in the log. if so, we allow them to stay | ||
877 | * otherwise they must be unlinked as a conflict | ||
878 | */ | ||
879 | ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); | ||
880 | ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]); | ||
881 | while (ptr < ptr_end) { | ||
882 | victim_ref = (struct btrfs_inode_ref *)ptr; | ||
883 | victim_name_len = btrfs_inode_ref_name_len(leaf, | ||
884 | victim_ref); | ||
885 | victim_name = kmalloc(victim_name_len, GFP_NOFS); | ||
886 | BUG_ON(!victim_name); | ||
887 | |||
888 | read_extent_buffer(leaf, victim_name, | ||
889 | (unsigned long)(victim_ref + 1), | ||
890 | victim_name_len); | ||
891 | |||
892 | if (!backref_in_log(log, key, victim_name, | ||
893 | victim_name_len)) { | ||
894 | btrfs_inc_nlink(inode); | ||
895 | btrfs_release_path(root, path); | ||
896 | ret = btrfs_unlink_inode(trans, root, dir, | ||
897 | inode, victim_name, | ||
898 | victim_name_len); | ||
899 | kfree(victim_name); | ||
900 | btrfs_release_path(root, path); | ||
901 | goto conflict_again; | ||
902 | } | ||
903 | kfree(victim_name); | ||
904 | ptr = (unsigned long)(victim_ref + 1) + victim_name_len; | ||
905 | } | ||
906 | BUG_ON(ret); | ||
907 | } | ||
908 | btrfs_release_path(root, path); | ||
909 | |||
910 | /* look for a conflicting sequence number */ | ||
911 | di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, | ||
912 | btrfs_inode_ref_index(eb, ref), | ||
913 | name, namelen, 0); | ||
914 | if (di && !IS_ERR(di)) { | ||
915 | ret = drop_one_dir_item(trans, root, path, dir, di); | ||
916 | BUG_ON(ret); | ||
917 | } | ||
918 | btrfs_release_path(root, path); | ||
919 | |||
920 | |||
921 | /* look for a conflicting name */ | ||
922 | di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino, | ||
923 | name, namelen, 0); | ||
924 | if (di && !IS_ERR(di)) { | ||
925 | ret = drop_one_dir_item(trans, root, path, dir, di); | ||
926 | BUG_ON(ret); | ||
927 | } | ||
928 | btrfs_release_path(root, path); | ||
929 | |||
930 | /* insert our name */ | ||
931 | ret = btrfs_add_link(trans, dir, inode, name, namelen, 0, | ||
932 | btrfs_inode_ref_index(eb, ref)); | ||
933 | BUG_ON(ret); | ||
934 | |||
935 | btrfs_update_inode(trans, root, inode); | ||
936 | |||
937 | out: | ||
938 | ref_ptr = (unsigned long)(ref + 1) + namelen; | ||
939 | kfree(name); | ||
940 | if (ref_ptr < ref_end) | ||
941 | goto again; | ||
942 | |||
943 | /* finally write the back reference in the inode */ | ||
944 | ret = overwrite_item(trans, root, path, eb, slot, key); | ||
945 | BUG_ON(ret); | ||
946 | |||
947 | out_nowrite: | ||
948 | btrfs_release_path(root, path); | ||
949 | iput(dir); | ||
950 | iput(inode); | ||
951 | return 0; | ||
952 | } | ||
953 | |||
954 | /* | ||
955 | * There are a few corners where the link count of the file can't | ||
956 | * be properly maintained during replay. So, instead of adding | ||
957 | * lots of complexity to the log code, we just scan the backrefs | ||
958 | * for any file that has been through replay. | ||
959 | * | ||
960 | * The scan will update the link count on the inode to reflect the | ||
961 | * number of back refs found. If it goes down to zero, the iput | ||
962 | * will free the inode. | ||
963 | */ | ||
964 | static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans, | ||
965 | struct btrfs_root *root, | ||
966 | struct inode *inode) | ||
967 | { | ||
968 | struct btrfs_path *path; | ||
969 | int ret; | ||
970 | struct btrfs_key key; | ||
971 | u64 nlink = 0; | ||
972 | unsigned long ptr; | ||
973 | unsigned long ptr_end; | ||
974 | int name_len; | ||
975 | |||
976 | key.objectid = inode->i_ino; | ||
977 | key.type = BTRFS_INODE_REF_KEY; | ||
978 | key.offset = (u64)-1; | ||
979 | |||
980 | path = btrfs_alloc_path(); | ||
981 | |||
982 | while (1) { | ||
983 | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | ||
984 | if (ret < 0) | ||
985 | break; | ||
986 | if (ret > 0) { | ||
987 | if (path->slots[0] == 0) | ||
988 | break; | ||
989 | path->slots[0]--; | ||
990 | } | ||
991 | btrfs_item_key_to_cpu(path->nodes[0], &key, | ||
992 | path->slots[0]); | ||
993 | if (key.objectid != inode->i_ino || | ||
994 | key.type != BTRFS_INODE_REF_KEY) | ||
995 | break; | ||
996 | ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); | ||
997 | ptr_end = ptr + btrfs_item_size_nr(path->nodes[0], | ||
998 | path->slots[0]); | ||
999 | while (ptr < ptr_end) { | ||
1000 | struct btrfs_inode_ref *ref; | ||
1001 | |||
1002 | ref = (struct btrfs_inode_ref *)ptr; | ||
1003 | name_len = btrfs_inode_ref_name_len(path->nodes[0], | ||
1004 | ref); | ||
1005 | ptr = (unsigned long)(ref + 1) + name_len; | ||
1006 | nlink++; | ||
1007 | } | ||
1008 | |||
1009 | if (key.offset == 0) | ||
1010 | break; | ||
1011 | key.offset--; | ||
1012 | btrfs_release_path(root, path); | ||
1013 | } | ||
1014 | btrfs_free_path(path); | ||
1015 | if (nlink != inode->i_nlink) { | ||
1016 | inode->i_nlink = nlink; | ||
1017 | btrfs_update_inode(trans, root, inode); | ||
1018 | } | ||
1019 | BTRFS_I(inode)->index_cnt = (u64)-1; | ||
1020 | |||
1021 | return 0; | ||
1022 | } | ||
1023 | |||
1024 | static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans, | ||
1025 | struct btrfs_root *root, | ||
1026 | struct btrfs_path *path) | ||
1027 | { | ||
1028 | int ret; | ||
1029 | struct btrfs_key key; | ||
1030 | struct inode *inode; | ||
1031 | |||
1032 | key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; | ||
1033 | key.type = BTRFS_ORPHAN_ITEM_KEY; | ||
1034 | key.offset = (u64)-1; | ||
1035 | while (1) { | ||
1036 | ret = btrfs_search_slot(trans, root, &key, path, -1, 1); | ||
1037 | if (ret < 0) | ||
1038 | break; | ||
1039 | |||
1040 | if (ret == 1) { | ||
1041 | if (path->slots[0] == 0) | ||
1042 | break; | ||
1043 | path->slots[0]--; | ||
1044 | } | ||
1045 | |||
1046 | btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); | ||
1047 | if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID || | ||
1048 | key.type != BTRFS_ORPHAN_ITEM_KEY) | ||
1049 | break; | ||
1050 | |||
1051 | ret = btrfs_del_item(trans, root, path); | ||
1052 | BUG_ON(ret); | ||
1053 | |||
1054 | btrfs_release_path(root, path); | ||
1055 | inode = read_one_inode(root, key.offset); | ||
1056 | BUG_ON(!inode); | ||
1057 | |||
1058 | ret = fixup_inode_link_count(trans, root, inode); | ||
1059 | BUG_ON(ret); | ||
1060 | |||
1061 | iput(inode); | ||
1062 | |||
1063 | if (key.offset == 0) | ||
1064 | break; | ||
1065 | key.offset--; | ||
1066 | } | ||
1067 | btrfs_release_path(root, path); | ||
1068 | return 0; | ||
1069 | } | ||
1070 | |||
1071 | |||
1072 | /* | ||
1073 | * record a given inode in the fixup dir so we can check its link | ||
1074 | * count when replay is done. The link count is incremented here | ||
1075 | * so the inode won't go away until we check it | ||
1076 | */ | ||
1077 | static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans, | ||
1078 | struct btrfs_root *root, | ||
1079 | struct btrfs_path *path, | ||
1080 | u64 objectid) | ||
1081 | { | ||
1082 | struct btrfs_key key; | ||
1083 | int ret = 0; | ||
1084 | struct inode *inode; | ||
1085 | |||
1086 | inode = read_one_inode(root, objectid); | ||
1087 | BUG_ON(!inode); | ||
1088 | |||
1089 | key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; | ||
1090 | btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY); | ||
1091 | key.offset = objectid; | ||
1092 | |||
1093 | ret = btrfs_insert_empty_item(trans, root, path, &key, 0); | ||
1094 | |||
1095 | btrfs_release_path(root, path); | ||
1096 | if (ret == 0) { | ||
1097 | btrfs_inc_nlink(inode); | ||
1098 | btrfs_update_inode(trans, root, inode); | ||
1099 | } else if (ret == -EEXIST) { | ||
1100 | ret = 0; | ||
1101 | } else { | ||
1102 | BUG(); | ||
1103 | } | ||
1104 | iput(inode); | ||
1105 | |||
1106 | return ret; | ||
1107 | } | ||
1108 | |||
1109 | /* | ||
1110 | * when replaying the log for a directory, we only insert names | ||
1111 | * for inodes that actually exist. This means an fsync on a directory | ||
1112 | * does not implicitly fsync all the new files in it | ||
1113 | */ | ||
1114 | static noinline int insert_one_name(struct btrfs_trans_handle *trans, | ||
1115 | struct btrfs_root *root, | ||
1116 | struct btrfs_path *path, | ||
1117 | u64 dirid, u64 index, | ||
1118 | char *name, int name_len, u8 type, | ||
1119 | struct btrfs_key *location) | ||
1120 | { | ||
1121 | struct inode *inode; | ||
1122 | struct inode *dir; | ||
1123 | int ret; | ||
1124 | |||
1125 | inode = read_one_inode(root, location->objectid); | ||
1126 | if (!inode) | ||
1127 | return -ENOENT; | ||
1128 | |||
1129 | dir = read_one_inode(root, dirid); | ||
1130 | if (!dir) { | ||
1131 | iput(inode); | ||
1132 | return -EIO; | ||
1133 | } | ||
1134 | ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index); | ||
1135 | |||
1136 | /* FIXME, put inode into FIXUP list */ | ||
1137 | |||
1138 | iput(inode); | ||
1139 | iput(dir); | ||
1140 | return ret; | ||
1141 | } | ||
1142 | |||
1143 | /* | ||
1144 | * take a single entry in a log directory item and replay it into | ||
1145 | * the subvolume. | ||
1146 | * | ||
1147 | * if a conflicting item exists in the subdirectory already, | ||
1148 | * the inode it points to is unlinked and put into the link count | ||
1149 | * fix up tree. | ||
1150 | * | ||
1151 | * If a name from the log points to a file or directory that does | ||
1152 | * not exist in the FS, it is skipped. fsyncs on directories | ||
1153 | * do not force down inodes inside that directory, just changes to the | ||
1154 | * names or unlinks in a directory. | ||
1155 | */ | ||
1156 | static noinline int replay_one_name(struct btrfs_trans_handle *trans, | ||
1157 | struct btrfs_root *root, | ||
1158 | struct btrfs_path *path, | ||
1159 | struct extent_buffer *eb, | ||
1160 | struct btrfs_dir_item *di, | ||
1161 | struct btrfs_key *key) | ||
1162 | { | ||
1163 | char *name; | ||
1164 | int name_len; | ||
1165 | struct btrfs_dir_item *dst_di; | ||
1166 | struct btrfs_key found_key; | ||
1167 | struct btrfs_key log_key; | ||
1168 | struct inode *dir; | ||
1169 | u8 log_type; | ||
1170 | int exists; | ||
1171 | int ret; | ||
1172 | |||
1173 | dir = read_one_inode(root, key->objectid); | ||
1174 | BUG_ON(!dir); | ||
1175 | |||
1176 | name_len = btrfs_dir_name_len(eb, di); | ||
1177 | name = kmalloc(name_len, GFP_NOFS); | ||
1178 | log_type = btrfs_dir_type(eb, di); | ||
1179 | read_extent_buffer(eb, name, (unsigned long)(di + 1), | ||
1180 | name_len); | ||
1181 | |||
1182 | btrfs_dir_item_key_to_cpu(eb, di, &log_key); | ||
1183 | exists = btrfs_lookup_inode(trans, root, path, &log_key, 0); | ||
1184 | if (exists == 0) | ||
1185 | exists = 1; | ||
1186 | else | ||
1187 | exists = 0; | ||
1188 | btrfs_release_path(root, path); | ||
1189 | |||
1190 | if (key->type == BTRFS_DIR_ITEM_KEY) { | ||
1191 | dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid, | ||
1192 | name, name_len, 1); | ||
1193 | } else if (key->type == BTRFS_DIR_INDEX_KEY) { | ||
1194 | dst_di = btrfs_lookup_dir_index_item(trans, root, path, | ||
1195 | key->objectid, | ||
1196 | key->offset, name, | ||
1197 | name_len, 1); | ||
1198 | } else { | ||
1199 | BUG(); | ||
1200 | } | ||
1201 | if (!dst_di || IS_ERR(dst_di)) { | ||
1202 | /* we need a sequence number to insert, so we only | ||
1203 | * do inserts for the BTRFS_DIR_INDEX_KEY types | ||
1204 | */ | ||
1205 | if (key->type != BTRFS_DIR_INDEX_KEY) | ||
1206 | goto out; | ||
1207 | goto insert; | ||
1208 | } | ||
1209 | |||
1210 | btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key); | ||
1211 | /* the existing item matches the logged item */ | ||
1212 | if (found_key.objectid == log_key.objectid && | ||
1213 | found_key.type == log_key.type && | ||
1214 | found_key.offset == log_key.offset && | ||
1215 | btrfs_dir_type(path->nodes[0], dst_di) == log_type) { | ||
1216 | goto out; | ||
1217 | } | ||
1218 | |||
1219 | /* | ||
1220 | * don't drop the conflicting directory entry if the inode | ||
1221 | * for the new entry doesn't exist | ||
1222 | */ | ||
1223 | if (!exists) | ||
1224 | goto out; | ||
1225 | |||
1226 | ret = drop_one_dir_item(trans, root, path, dir, dst_di); | ||
1227 | BUG_ON(ret); | ||
1228 | |||
1229 | if (key->type == BTRFS_DIR_INDEX_KEY) | ||
1230 | goto insert; | ||
1231 | out: | ||
1232 | btrfs_release_path(root, path); | ||
1233 | kfree(name); | ||
1234 | iput(dir); | ||
1235 | return 0; | ||
1236 | |||
1237 | insert: | ||
1238 | btrfs_release_path(root, path); | ||
1239 | ret = insert_one_name(trans, root, path, key->objectid, key->offset, | ||
1240 | name, name_len, log_type, &log_key); | ||
1241 | |||
1242 | if (ret && ret != -ENOENT) | ||
1243 | BUG(); | ||
1244 | goto out; | ||
1245 | } | ||
1246 | |||
1247 | /* | ||
1248 | * find all the names in a directory item and reconcile them into | ||
1249 | * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than | ||
1250 | * one name in a directory item, but the same code gets used for | ||
1251 | * both directory index types | ||
1252 | */ | ||
1253 | static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans, | ||
1254 | struct btrfs_root *root, | ||
1255 | struct btrfs_path *path, | ||
1256 | struct extent_buffer *eb, int slot, | ||
1257 | struct btrfs_key *key) | ||
1258 | { | ||
1259 | int ret; | ||
1260 | u32 item_size = btrfs_item_size_nr(eb, slot); | ||
1261 | struct btrfs_dir_item *di; | ||
1262 | int name_len; | ||
1263 | unsigned long ptr; | ||
1264 | unsigned long ptr_end; | ||
1265 | |||
1266 | ptr = btrfs_item_ptr_offset(eb, slot); | ||
1267 | ptr_end = ptr + item_size; | ||
1268 | while (ptr < ptr_end) { | ||
1269 | di = (struct btrfs_dir_item *)ptr; | ||
1270 | name_len = btrfs_dir_name_len(eb, di); | ||
1271 | ret = replay_one_name(trans, root, path, eb, di, key); | ||
1272 | BUG_ON(ret); | ||
1273 | ptr = (unsigned long)(di + 1); | ||
1274 | ptr += name_len; | ||
1275 | } | ||
1276 | return 0; | ||
1277 | } | ||
1278 | |||
1279 | /* | ||
1280 | * directory replay has two parts. There are the standard directory | ||
1281 | * items in the log copied from the subvolume, and range items | ||
1282 | * created in the log while the subvolume was logged. | ||
1283 | * | ||
1284 | * The range items tell us which parts of the key space the log | ||
1285 | * is authoritative for. During replay, if a key in the subvolume | ||
1286 | * directory is in a logged range item, but not actually in the log | ||
1287 | * that means it was deleted from the directory before the fsync | ||
1288 | * and should be removed. | ||
1289 | */ | ||
1290 | static noinline int find_dir_range(struct btrfs_root *root, | ||
1291 | struct btrfs_path *path, | ||
1292 | u64 dirid, int key_type, | ||
1293 | u64 *start_ret, u64 *end_ret) | ||
1294 | { | ||
1295 | struct btrfs_key key; | ||
1296 | u64 found_end; | ||
1297 | struct btrfs_dir_log_item *item; | ||
1298 | int ret; | ||
1299 | int nritems; | ||
1300 | |||
1301 | if (*start_ret == (u64)-1) | ||
1302 | return 1; | ||
1303 | |||
1304 | key.objectid = dirid; | ||
1305 | key.type = key_type; | ||
1306 | key.offset = *start_ret; | ||
1307 | |||
1308 | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | ||
1309 | if (ret < 0) | ||
1310 | goto out; | ||
1311 | if (ret > 0) { | ||
1312 | if (path->slots[0] == 0) | ||
1313 | goto out; | ||
1314 | path->slots[0]--; | ||
1315 | } | ||
1316 | if (ret != 0) | ||
1317 | btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); | ||
1318 | |||
1319 | if (key.type != key_type || key.objectid != dirid) { | ||
1320 | ret = 1; | ||
1321 | goto next; | ||
1322 | } | ||
1323 | item = btrfs_item_ptr(path->nodes[0], path->slots[0], | ||
1324 | struct btrfs_dir_log_item); | ||
1325 | found_end = btrfs_dir_log_end(path->nodes[0], item); | ||
1326 | |||
1327 | if (*start_ret >= key.offset && *start_ret <= found_end) { | ||
1328 | ret = 0; | ||
1329 | *start_ret = key.offset; | ||
1330 | *end_ret = found_end; | ||
1331 | goto out; | ||
1332 | } | ||
1333 | ret = 1; | ||
1334 | next: | ||
1335 | /* check the next slot in the tree to see if it is a valid item */ | ||
1336 | nritems = btrfs_header_nritems(path->nodes[0]); | ||
1337 | if (path->slots[0] >= nritems) { | ||
1338 | ret = btrfs_next_leaf(root, path); | ||
1339 | if (ret) | ||
1340 | goto out; | ||
1341 | } else { | ||
1342 | path->slots[0]++; | ||
1343 | } | ||
1344 | |||
1345 | btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); | ||
1346 | |||
1347 | if (key.type != key_type || key.objectid != dirid) { | ||
1348 | ret = 1; | ||
1349 | goto out; | ||
1350 | } | ||
1351 | item = btrfs_item_ptr(path->nodes[0], path->slots[0], | ||
1352 | struct btrfs_dir_log_item); | ||
1353 | found_end = btrfs_dir_log_end(path->nodes[0], item); | ||
1354 | *start_ret = key.offset; | ||
1355 | *end_ret = found_end; | ||
1356 | ret = 0; | ||
1357 | out: | ||
1358 | btrfs_release_path(root, path); | ||
1359 | return ret; | ||
1360 | } | ||
1361 | |||
1362 | /* | ||
1363 | * this looks for a given directory item in the log. If the directory | ||
1364 | * item is not in the log, the item is removed and the inode it points | ||
1365 | * to is unlinked | ||
1366 | */ | ||
1367 | static noinline int check_item_in_log(struct btrfs_trans_handle *trans, | ||
1368 | struct btrfs_root *root, | ||
1369 | struct btrfs_root *log, | ||
1370 | struct btrfs_path *path, | ||
1371 | struct btrfs_path *log_path, | ||
1372 | struct inode *dir, | ||
1373 | struct btrfs_key *dir_key) | ||
1374 | { | ||
1375 | int ret; | ||
1376 | struct extent_buffer *eb; | ||
1377 | int slot; | ||
1378 | u32 item_size; | ||
1379 | struct btrfs_dir_item *di; | ||
1380 | struct btrfs_dir_item *log_di; | ||
1381 | int name_len; | ||
1382 | unsigned long ptr; | ||
1383 | unsigned long ptr_end; | ||
1384 | char *name; | ||
1385 | struct inode *inode; | ||
1386 | struct btrfs_key location; | ||
1387 | |||
1388 | again: | ||
1389 | eb = path->nodes[0]; | ||
1390 | slot = path->slots[0]; | ||
1391 | item_size = btrfs_item_size_nr(eb, slot); | ||
1392 | ptr = btrfs_item_ptr_offset(eb, slot); | ||
1393 | ptr_end = ptr + item_size; | ||
1394 | while (ptr < ptr_end) { | ||
1395 | di = (struct btrfs_dir_item *)ptr; | ||
1396 | name_len = btrfs_dir_name_len(eb, di); | ||
1397 | name = kmalloc(name_len, GFP_NOFS); | ||
1398 | if (!name) { | ||
1399 | ret = -ENOMEM; | ||
1400 | goto out; | ||
1401 | } | ||
1402 | read_extent_buffer(eb, name, (unsigned long)(di + 1), | ||
1403 | name_len); | ||
1404 | log_di = NULL; | ||
1405 | if (dir_key->type == BTRFS_DIR_ITEM_KEY) { | ||
1406 | log_di = btrfs_lookup_dir_item(trans, log, log_path, | ||
1407 | dir_key->objectid, | ||
1408 | name, name_len, 0); | ||
1409 | } else if (dir_key->type == BTRFS_DIR_INDEX_KEY) { | ||
1410 | log_di = btrfs_lookup_dir_index_item(trans, log, | ||
1411 | log_path, | ||
1412 | dir_key->objectid, | ||
1413 | dir_key->offset, | ||
1414 | name, name_len, 0); | ||
1415 | } | ||
1416 | if (!log_di || IS_ERR(log_di)) { | ||
1417 | btrfs_dir_item_key_to_cpu(eb, di, &location); | ||
1418 | btrfs_release_path(root, path); | ||
1419 | btrfs_release_path(log, log_path); | ||
1420 | inode = read_one_inode(root, location.objectid); | ||
1421 | BUG_ON(!inode); | ||
1422 | |||
1423 | ret = link_to_fixup_dir(trans, root, | ||
1424 | path, location.objectid); | ||
1425 | BUG_ON(ret); | ||
1426 | btrfs_inc_nlink(inode); | ||
1427 | ret = btrfs_unlink_inode(trans, root, dir, inode, | ||
1428 | name, name_len); | ||
1429 | BUG_ON(ret); | ||
1430 | kfree(name); | ||
1431 | iput(inode); | ||
1432 | |||
1433 | /* there might still be more names under this key | ||
1434 | * check and repeat if required | ||
1435 | */ | ||
1436 | ret = btrfs_search_slot(NULL, root, dir_key, path, | ||
1437 | 0, 0); | ||
1438 | if (ret == 0) | ||
1439 | goto again; | ||
1440 | ret = 0; | ||
1441 | goto out; | ||
1442 | } | ||
1443 | btrfs_release_path(log, log_path); | ||
1444 | kfree(name); | ||
1445 | |||
1446 | ptr = (unsigned long)(di + 1); | ||
1447 | ptr += name_len; | ||
1448 | } | ||
1449 | ret = 0; | ||
1450 | out: | ||
1451 | btrfs_release_path(root, path); | ||
1452 | btrfs_release_path(log, log_path); | ||
1453 | return ret; | ||
1454 | } | ||
1455 | |||
1456 | /* | ||
1457 | * deletion replay happens before we copy any new directory items | ||
1458 | * out of the log or out of backreferences from inodes. It | ||
1459 | * scans the log to find ranges of keys that log is authoritative for, | ||
1460 | * and then scans the directory to find items in those ranges that are | ||
1461 | * not present in the log. | ||
1462 | * | ||
1463 | * Anything we don't find in the log is unlinked and removed from the | ||
1464 | * directory. | ||
1465 | */ | ||
1466 | static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans, | ||
1467 | struct btrfs_root *root, | ||
1468 | struct btrfs_root *log, | ||
1469 | struct btrfs_path *path, | ||
1470 | u64 dirid) | ||
1471 | { | ||
1472 | u64 range_start; | ||
1473 | u64 range_end; | ||
1474 | int key_type = BTRFS_DIR_LOG_ITEM_KEY; | ||
1475 | int ret = 0; | ||
1476 | struct btrfs_key dir_key; | ||
1477 | struct btrfs_key found_key; | ||
1478 | struct btrfs_path *log_path; | ||
1479 | struct inode *dir; | ||
1480 | |||
1481 | dir_key.objectid = dirid; | ||
1482 | dir_key.type = BTRFS_DIR_ITEM_KEY; | ||
1483 | log_path = btrfs_alloc_path(); | ||
1484 | if (!log_path) | ||
1485 | return -ENOMEM; | ||
1486 | |||
1487 | dir = read_one_inode(root, dirid); | ||
1488 | /* it isn't an error if the inode isn't there, that can happen | ||
1489 | * because we replay the deletes before we copy in the inode item | ||
1490 | * from the log | ||
1491 | */ | ||
1492 | if (!dir) { | ||
1493 | btrfs_free_path(log_path); | ||
1494 | return 0; | ||
1495 | } | ||
1496 | again: | ||
1497 | range_start = 0; | ||
1498 | range_end = 0; | ||
1499 | while (1) { | ||
1500 | ret = find_dir_range(log, path, dirid, key_type, | ||
1501 | &range_start, &range_end); | ||
1502 | if (ret != 0) | ||
1503 | break; | ||
1504 | |||
1505 | dir_key.offset = range_start; | ||
1506 | while (1) { | ||
1507 | int nritems; | ||
1508 | ret = btrfs_search_slot(NULL, root, &dir_key, path, | ||
1509 | 0, 0); | ||
1510 | if (ret < 0) | ||
1511 | goto out; | ||
1512 | |||
1513 | nritems = btrfs_header_nritems(path->nodes[0]); | ||
1514 | if (path->slots[0] >= nritems) { | ||
1515 | ret = btrfs_next_leaf(root, path); | ||
1516 | if (ret) | ||
1517 | break; | ||
1518 | } | ||
1519 | btrfs_item_key_to_cpu(path->nodes[0], &found_key, | ||
1520 | path->slots[0]); | ||
1521 | if (found_key.objectid != dirid || | ||
1522 | found_key.type != dir_key.type) | ||
1523 | goto next_type; | ||
1524 | |||
1525 | if (found_key.offset > range_end) | ||
1526 | break; | ||
1527 | |||
1528 | ret = check_item_in_log(trans, root, log, path, | ||
1529 | log_path, dir, &found_key); | ||
1530 | BUG_ON(ret); | ||
1531 | if (found_key.offset == (u64)-1) | ||
1532 | break; | ||
1533 | dir_key.offset = found_key.offset + 1; | ||
1534 | } | ||
1535 | btrfs_release_path(root, path); | ||
1536 | if (range_end == (u64)-1) | ||
1537 | break; | ||
1538 | range_start = range_end + 1; | ||
1539 | } | ||
1540 | |||
1541 | next_type: | ||
1542 | ret = 0; | ||
1543 | if (key_type == BTRFS_DIR_LOG_ITEM_KEY) { | ||
1544 | key_type = BTRFS_DIR_LOG_INDEX_KEY; | ||
1545 | dir_key.type = BTRFS_DIR_INDEX_KEY; | ||
1546 | btrfs_release_path(root, path); | ||
1547 | goto again; | ||
1548 | } | ||
1549 | out: | ||
1550 | btrfs_release_path(root, path); | ||
1551 | btrfs_free_path(log_path); | ||
1552 | iput(dir); | ||
1553 | return ret; | ||
1554 | } | ||
1555 | |||
1556 | /* | ||
1557 | * the process_func used to replay items from the log tree. This | ||
1558 | * gets called in two different stages. The first stage just looks | ||
1559 | * for inodes and makes sure they are all copied into the subvolume. | ||
1560 | * | ||
1561 | * The second stage copies all the other item types from the log into | ||
1562 | * the subvolume. The two stage approach is slower, but gets rid of | ||
1563 | * lots of complexity around inodes referencing other inodes that exist | ||
1564 | * only in the log (references come from either directory items or inode | ||
1565 | * back refs). | ||
1566 | */ | ||
1567 | static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb, | ||
1568 | struct walk_control *wc, u64 gen) | ||
1569 | { | ||
1570 | int nritems; | ||
1571 | struct btrfs_path *path; | ||
1572 | struct btrfs_root *root = wc->replay_dest; | ||
1573 | struct btrfs_key key; | ||
1574 | u32 item_size; | ||
1575 | int level; | ||
1576 | int i; | ||
1577 | int ret; | ||
1578 | |||
1579 | btrfs_read_buffer(eb, gen); | ||
1580 | |||
1581 | level = btrfs_header_level(eb); | ||
1582 | |||
1583 | if (level != 0) | ||
1584 | return 0; | ||
1585 | |||
1586 | path = btrfs_alloc_path(); | ||
1587 | BUG_ON(!path); | ||
1588 | |||
1589 | nritems = btrfs_header_nritems(eb); | ||
1590 | for (i = 0; i < nritems; i++) { | ||
1591 | btrfs_item_key_to_cpu(eb, &key, i); | ||
1592 | item_size = btrfs_item_size_nr(eb, i); | ||
1593 | |||
1594 | /* inode keys are done during the first stage */ | ||
1595 | if (key.type == BTRFS_INODE_ITEM_KEY && | ||
1596 | wc->stage == LOG_WALK_REPLAY_INODES) { | ||
1597 | struct inode *inode; | ||
1598 | struct btrfs_inode_item *inode_item; | ||
1599 | u32 mode; | ||
1600 | |||
1601 | inode_item = btrfs_item_ptr(eb, i, | ||
1602 | struct btrfs_inode_item); | ||
1603 | mode = btrfs_inode_mode(eb, inode_item); | ||
1604 | if (S_ISDIR(mode)) { | ||
1605 | ret = replay_dir_deletes(wc->trans, | ||
1606 | root, log, path, key.objectid); | ||
1607 | BUG_ON(ret); | ||
1608 | } | ||
1609 | ret = overwrite_item(wc->trans, root, path, | ||
1610 | eb, i, &key); | ||
1611 | BUG_ON(ret); | ||
1612 | |||
1613 | /* for regular files, truncate away | ||
1614 | * extents past the new EOF | ||
1615 | */ | ||
1616 | if (S_ISREG(mode)) { | ||
1617 | inode = read_one_inode(root, | ||
1618 | key.objectid); | ||
1619 | BUG_ON(!inode); | ||
1620 | |||
1621 | ret = btrfs_truncate_inode_items(wc->trans, | ||
1622 | root, inode, inode->i_size, | ||
1623 | BTRFS_EXTENT_DATA_KEY); | ||
1624 | BUG_ON(ret); | ||
1625 | iput(inode); | ||
1626 | } | ||
1627 | ret = link_to_fixup_dir(wc->trans, root, | ||
1628 | path, key.objectid); | ||
1629 | BUG_ON(ret); | ||
1630 | } | ||
1631 | if (wc->stage < LOG_WALK_REPLAY_ALL) | ||
1632 | continue; | ||
1633 | |||
1634 | /* these keys are simply copied */ | ||
1635 | if (key.type == BTRFS_XATTR_ITEM_KEY) { | ||
1636 | ret = overwrite_item(wc->trans, root, path, | ||
1637 | eb, i, &key); | ||
1638 | BUG_ON(ret); | ||
1639 | } else if (key.type == BTRFS_INODE_REF_KEY) { | ||
1640 | ret = add_inode_ref(wc->trans, root, log, path, | ||
1641 | eb, i, &key); | ||
1642 | BUG_ON(ret && ret != -ENOENT); | ||
1643 | } else if (key.type == BTRFS_EXTENT_DATA_KEY) { | ||
1644 | ret = replay_one_extent(wc->trans, root, path, | ||
1645 | eb, i, &key); | ||
1646 | BUG_ON(ret); | ||
1647 | } else if (key.type == BTRFS_DIR_ITEM_KEY || | ||
1648 | key.type == BTRFS_DIR_INDEX_KEY) { | ||
1649 | ret = replay_one_dir_item(wc->trans, root, path, | ||
1650 | eb, i, &key); | ||
1651 | BUG_ON(ret); | ||
1652 | } | ||
1653 | } | ||
1654 | btrfs_free_path(path); | ||
1655 | return 0; | ||
1656 | } | ||
1657 | |||
1658 | static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans, | ||
1659 | struct btrfs_root *root, | ||
1660 | struct btrfs_path *path, int *level, | ||
1661 | struct walk_control *wc) | ||
1662 | { | ||
1663 | u64 root_owner; | ||
1664 | u64 root_gen; | ||
1665 | u64 bytenr; | ||
1666 | u64 ptr_gen; | ||
1667 | struct extent_buffer *next; | ||
1668 | struct extent_buffer *cur; | ||
1669 | struct extent_buffer *parent; | ||
1670 | u32 blocksize; | ||
1671 | int ret = 0; | ||
1672 | |||
1673 | WARN_ON(*level < 0); | ||
1674 | WARN_ON(*level >= BTRFS_MAX_LEVEL); | ||
1675 | |||
1676 | while (*level > 0) { | ||
1677 | WARN_ON(*level < 0); | ||
1678 | WARN_ON(*level >= BTRFS_MAX_LEVEL); | ||
1679 | cur = path->nodes[*level]; | ||
1680 | |||
1681 | if (btrfs_header_level(cur) != *level) | ||
1682 | WARN_ON(1); | ||
1683 | |||
1684 | if (path->slots[*level] >= | ||
1685 | btrfs_header_nritems(cur)) | ||
1686 | break; | ||
1687 | |||
1688 | bytenr = btrfs_node_blockptr(cur, path->slots[*level]); | ||
1689 | ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]); | ||
1690 | blocksize = btrfs_level_size(root, *level - 1); | ||
1691 | |||
1692 | parent = path->nodes[*level]; | ||
1693 | root_owner = btrfs_header_owner(parent); | ||
1694 | root_gen = btrfs_header_generation(parent); | ||
1695 | |||
1696 | next = btrfs_find_create_tree_block(root, bytenr, blocksize); | ||
1697 | |||
1698 | wc->process_func(root, next, wc, ptr_gen); | ||
1699 | |||
1700 | if (*level == 1) { | ||
1701 | path->slots[*level]++; | ||
1702 | if (wc->free) { | ||
1703 | btrfs_read_buffer(next, ptr_gen); | ||
1704 | |||
1705 | btrfs_tree_lock(next); | ||
1706 | clean_tree_block(trans, root, next); | ||
1707 | btrfs_wait_tree_block_writeback(next); | ||
1708 | btrfs_tree_unlock(next); | ||
1709 | |||
1710 | ret = btrfs_drop_leaf_ref(trans, root, next); | ||
1711 | BUG_ON(ret); | ||
1712 | |||
1713 | WARN_ON(root_owner != | ||
1714 | BTRFS_TREE_LOG_OBJECTID); | ||
1715 | ret = btrfs_free_reserved_extent(root, | ||
1716 | bytenr, blocksize); | ||
1717 | BUG_ON(ret); | ||
1718 | } | ||
1719 | free_extent_buffer(next); | ||
1720 | continue; | ||
1721 | } | ||
1722 | btrfs_read_buffer(next, ptr_gen); | ||
1723 | |||
1724 | WARN_ON(*level <= 0); | ||
1725 | if (path->nodes[*level-1]) | ||
1726 | free_extent_buffer(path->nodes[*level-1]); | ||
1727 | path->nodes[*level-1] = next; | ||
1728 | *level = btrfs_header_level(next); | ||
1729 | path->slots[*level] = 0; | ||
1730 | cond_resched(); | ||
1731 | } | ||
1732 | WARN_ON(*level < 0); | ||
1733 | WARN_ON(*level >= BTRFS_MAX_LEVEL); | ||
1734 | |||
1735 | if (path->nodes[*level] == root->node) | ||
1736 | parent = path->nodes[*level]; | ||
1737 | else | ||
1738 | parent = path->nodes[*level + 1]; | ||
1739 | |||
1740 | bytenr = path->nodes[*level]->start; | ||
1741 | |||
1742 | blocksize = btrfs_level_size(root, *level); | ||
1743 | root_owner = btrfs_header_owner(parent); | ||
1744 | root_gen = btrfs_header_generation(parent); | ||
1745 | |||
1746 | wc->process_func(root, path->nodes[*level], wc, | ||
1747 | btrfs_header_generation(path->nodes[*level])); | ||
1748 | |||
1749 | if (wc->free) { | ||
1750 | next = path->nodes[*level]; | ||
1751 | btrfs_tree_lock(next); | ||
1752 | clean_tree_block(trans, root, next); | ||
1753 | btrfs_wait_tree_block_writeback(next); | ||
1754 | btrfs_tree_unlock(next); | ||
1755 | |||
1756 | if (*level == 0) { | ||
1757 | ret = btrfs_drop_leaf_ref(trans, root, next); | ||
1758 | BUG_ON(ret); | ||
1759 | } | ||
1760 | WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID); | ||
1761 | ret = btrfs_free_reserved_extent(root, bytenr, blocksize); | ||
1762 | BUG_ON(ret); | ||
1763 | } | ||
1764 | free_extent_buffer(path->nodes[*level]); | ||
1765 | path->nodes[*level] = NULL; | ||
1766 | *level += 1; | ||
1767 | |||
1768 | cond_resched(); | ||
1769 | return 0; | ||
1770 | } | ||
1771 | |||
1772 | static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans, | ||
1773 | struct btrfs_root *root, | ||
1774 | struct btrfs_path *path, int *level, | ||
1775 | struct walk_control *wc) | ||
1776 | { | ||
1777 | u64 root_owner; | ||
1778 | u64 root_gen; | ||
1779 | int i; | ||
1780 | int slot; | ||
1781 | int ret; | ||
1782 | |||
1783 | for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) { | ||
1784 | slot = path->slots[i]; | ||
1785 | if (slot < btrfs_header_nritems(path->nodes[i]) - 1) { | ||
1786 | struct extent_buffer *node; | ||
1787 | node = path->nodes[i]; | ||
1788 | path->slots[i]++; | ||
1789 | *level = i; | ||
1790 | WARN_ON(*level == 0); | ||
1791 | return 0; | ||
1792 | } else { | ||
1793 | struct extent_buffer *parent; | ||
1794 | if (path->nodes[*level] == root->node) | ||
1795 | parent = path->nodes[*level]; | ||
1796 | else | ||
1797 | parent = path->nodes[*level + 1]; | ||
1798 | |||
1799 | root_owner = btrfs_header_owner(parent); | ||
1800 | root_gen = btrfs_header_generation(parent); | ||
1801 | wc->process_func(root, path->nodes[*level], wc, | ||
1802 | btrfs_header_generation(path->nodes[*level])); | ||
1803 | if (wc->free) { | ||
1804 | struct extent_buffer *next; | ||
1805 | |||
1806 | next = path->nodes[*level]; | ||
1807 | |||
1808 | btrfs_tree_lock(next); | ||
1809 | clean_tree_block(trans, root, next); | ||
1810 | btrfs_wait_tree_block_writeback(next); | ||
1811 | btrfs_tree_unlock(next); | ||
1812 | |||
1813 | if (*level == 0) { | ||
1814 | ret = btrfs_drop_leaf_ref(trans, root, | ||
1815 | next); | ||
1816 | BUG_ON(ret); | ||
1817 | } | ||
1818 | |||
1819 | WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID); | ||
1820 | ret = btrfs_free_reserved_extent(root, | ||
1821 | path->nodes[*level]->start, | ||
1822 | path->nodes[*level]->len); | ||
1823 | BUG_ON(ret); | ||
1824 | } | ||
1825 | free_extent_buffer(path->nodes[*level]); | ||
1826 | path->nodes[*level] = NULL; | ||
1827 | *level = i + 1; | ||
1828 | } | ||
1829 | } | ||
1830 | return 1; | ||
1831 | } | ||
1832 | |||
1833 | /* | ||
1834 | * drop the reference count on the tree rooted at 'snap'. This traverses | ||
1835 | * the tree freeing any blocks that have a ref count of zero after being | ||
1836 | * decremented. | ||
1837 | */ | ||
1838 | static int walk_log_tree(struct btrfs_trans_handle *trans, | ||
1839 | struct btrfs_root *log, struct walk_control *wc) | ||
1840 | { | ||
1841 | int ret = 0; | ||
1842 | int wret; | ||
1843 | int level; | ||
1844 | struct btrfs_path *path; | ||
1845 | int i; | ||
1846 | int orig_level; | ||
1847 | |||
1848 | path = btrfs_alloc_path(); | ||
1849 | BUG_ON(!path); | ||
1850 | |||
1851 | level = btrfs_header_level(log->node); | ||
1852 | orig_level = level; | ||
1853 | path->nodes[level] = log->node; | ||
1854 | extent_buffer_get(log->node); | ||
1855 | path->slots[level] = 0; | ||
1856 | |||
1857 | while (1) { | ||
1858 | wret = walk_down_log_tree(trans, log, path, &level, wc); | ||
1859 | if (wret > 0) | ||
1860 | break; | ||
1861 | if (wret < 0) | ||
1862 | ret = wret; | ||
1863 | |||
1864 | wret = walk_up_log_tree(trans, log, path, &level, wc); | ||
1865 | if (wret > 0) | ||
1866 | break; | ||
1867 | if (wret < 0) | ||
1868 | ret = wret; | ||
1869 | } | ||
1870 | |||
1871 | /* was the root node processed? if not, catch it here */ | ||
1872 | if (path->nodes[orig_level]) { | ||
1873 | wc->process_func(log, path->nodes[orig_level], wc, | ||
1874 | btrfs_header_generation(path->nodes[orig_level])); | ||
1875 | if (wc->free) { | ||
1876 | struct extent_buffer *next; | ||
1877 | |||
1878 | next = path->nodes[orig_level]; | ||
1879 | |||
1880 | btrfs_tree_lock(next); | ||
1881 | clean_tree_block(trans, log, next); | ||
1882 | btrfs_wait_tree_block_writeback(next); | ||
1883 | btrfs_tree_unlock(next); | ||
1884 | |||
1885 | if (orig_level == 0) { | ||
1886 | ret = btrfs_drop_leaf_ref(trans, log, | ||
1887 | next); | ||
1888 | BUG_ON(ret); | ||
1889 | } | ||
1890 | WARN_ON(log->root_key.objectid != | ||
1891 | BTRFS_TREE_LOG_OBJECTID); | ||
1892 | ret = btrfs_free_reserved_extent(log, next->start, | ||
1893 | next->len); | ||
1894 | BUG_ON(ret); | ||
1895 | } | ||
1896 | } | ||
1897 | |||
1898 | for (i = 0; i <= orig_level; i++) { | ||
1899 | if (path->nodes[i]) { | ||
1900 | free_extent_buffer(path->nodes[i]); | ||
1901 | path->nodes[i] = NULL; | ||
1902 | } | ||
1903 | } | ||
1904 | btrfs_free_path(path); | ||
1905 | if (wc->free) | ||
1906 | free_extent_buffer(log->node); | ||
1907 | return ret; | ||
1908 | } | ||
1909 | |||
1910 | static int wait_log_commit(struct btrfs_root *log) | ||
1911 | { | ||
1912 | DEFINE_WAIT(wait); | ||
1913 | u64 transid = log->fs_info->tree_log_transid; | ||
1914 | |||
1915 | do { | ||
1916 | prepare_to_wait(&log->fs_info->tree_log_wait, &wait, | ||
1917 | TASK_UNINTERRUPTIBLE); | ||
1918 | mutex_unlock(&log->fs_info->tree_log_mutex); | ||
1919 | if (atomic_read(&log->fs_info->tree_log_commit)) | ||
1920 | schedule(); | ||
1921 | finish_wait(&log->fs_info->tree_log_wait, &wait); | ||
1922 | mutex_lock(&log->fs_info->tree_log_mutex); | ||
1923 | } while (transid == log->fs_info->tree_log_transid && | ||
1924 | atomic_read(&log->fs_info->tree_log_commit)); | ||
1925 | return 0; | ||
1926 | } | ||
1927 | |||
1928 | /* | ||
1929 | * btrfs_sync_log does sends a given tree log down to the disk and | ||
1930 | * updates the super blocks to record it. When this call is done, | ||
1931 | * you know that any inodes previously logged are safely on disk | ||
1932 | */ | ||
1933 | int btrfs_sync_log(struct btrfs_trans_handle *trans, | ||
1934 | struct btrfs_root *root) | ||
1935 | { | ||
1936 | int ret; | ||
1937 | unsigned long batch; | ||
1938 | struct btrfs_root *log = root->log_root; | ||
1939 | |||
1940 | mutex_lock(&log->fs_info->tree_log_mutex); | ||
1941 | if (atomic_read(&log->fs_info->tree_log_commit)) { | ||
1942 | wait_log_commit(log); | ||
1943 | goto out; | ||
1944 | } | ||
1945 | atomic_set(&log->fs_info->tree_log_commit, 1); | ||
1946 | |||
1947 | while (1) { | ||
1948 | batch = log->fs_info->tree_log_batch; | ||
1949 | mutex_unlock(&log->fs_info->tree_log_mutex); | ||
1950 | schedule_timeout_uninterruptible(1); | ||
1951 | mutex_lock(&log->fs_info->tree_log_mutex); | ||
1952 | |||
1953 | while (atomic_read(&log->fs_info->tree_log_writers)) { | ||
1954 | DEFINE_WAIT(wait); | ||
1955 | prepare_to_wait(&log->fs_info->tree_log_wait, &wait, | ||
1956 | TASK_UNINTERRUPTIBLE); | ||
1957 | mutex_unlock(&log->fs_info->tree_log_mutex); | ||
1958 | if (atomic_read(&log->fs_info->tree_log_writers)) | ||
1959 | schedule(); | ||
1960 | mutex_lock(&log->fs_info->tree_log_mutex); | ||
1961 | finish_wait(&log->fs_info->tree_log_wait, &wait); | ||
1962 | } | ||
1963 | if (batch == log->fs_info->tree_log_batch) | ||
1964 | break; | ||
1965 | } | ||
1966 | |||
1967 | ret = btrfs_write_and_wait_marked_extents(log, &log->dirty_log_pages); | ||
1968 | BUG_ON(ret); | ||
1969 | ret = btrfs_write_and_wait_marked_extents(root->fs_info->log_root_tree, | ||
1970 | &root->fs_info->log_root_tree->dirty_log_pages); | ||
1971 | BUG_ON(ret); | ||
1972 | |||
1973 | btrfs_set_super_log_root(&root->fs_info->super_for_commit, | ||
1974 | log->fs_info->log_root_tree->node->start); | ||
1975 | btrfs_set_super_log_root_level(&root->fs_info->super_for_commit, | ||
1976 | btrfs_header_level(log->fs_info->log_root_tree->node)); | ||
1977 | |||
1978 | write_ctree_super(trans, log->fs_info->tree_root, 2); | ||
1979 | log->fs_info->tree_log_transid++; | ||
1980 | log->fs_info->tree_log_batch = 0; | ||
1981 | atomic_set(&log->fs_info->tree_log_commit, 0); | ||
1982 | smp_mb(); | ||
1983 | if (waitqueue_active(&log->fs_info->tree_log_wait)) | ||
1984 | wake_up(&log->fs_info->tree_log_wait); | ||
1985 | out: | ||
1986 | mutex_unlock(&log->fs_info->tree_log_mutex); | ||
1987 | return 0; | ||
1988 | } | ||
1989 | |||
1990 | /* * free all the extents used by the tree log. This should be called | ||
1991 | * at commit time of the full transaction | ||
1992 | */ | ||
1993 | int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root) | ||
1994 | { | ||
1995 | int ret; | ||
1996 | struct btrfs_root *log; | ||
1997 | struct key; | ||
1998 | u64 start; | ||
1999 | u64 end; | ||
2000 | struct walk_control wc = { | ||
2001 | .free = 1, | ||
2002 | .process_func = process_one_buffer | ||
2003 | }; | ||
2004 | |||
2005 | if (!root->log_root || root->fs_info->log_root_recovering) | ||
2006 | return 0; | ||
2007 | |||
2008 | log = root->log_root; | ||
2009 | ret = walk_log_tree(trans, log, &wc); | ||
2010 | BUG_ON(ret); | ||
2011 | |||
2012 | while (1) { | ||
2013 | ret = find_first_extent_bit(&log->dirty_log_pages, | ||
2014 | 0, &start, &end, EXTENT_DIRTY); | ||
2015 | if (ret) | ||
2016 | break; | ||
2017 | |||
2018 | clear_extent_dirty(&log->dirty_log_pages, | ||
2019 | start, end, GFP_NOFS); | ||
2020 | } | ||
2021 | |||
2022 | log = root->log_root; | ||
2023 | ret = btrfs_del_root(trans, root->fs_info->log_root_tree, | ||
2024 | &log->root_key); | ||
2025 | BUG_ON(ret); | ||
2026 | root->log_root = NULL; | ||
2027 | kfree(root->log_root); | ||
2028 | return 0; | ||
2029 | } | ||
2030 | |||
2031 | /* | ||
2032 | * helper function to update the item for a given subvolumes log root | ||
2033 | * in the tree of log roots | ||
2034 | */ | ||
2035 | static int update_log_root(struct btrfs_trans_handle *trans, | ||
2036 | struct btrfs_root *log) | ||
2037 | { | ||
2038 | u64 bytenr = btrfs_root_bytenr(&log->root_item); | ||
2039 | int ret; | ||
2040 | |||
2041 | if (log->node->start == bytenr) | ||
2042 | return 0; | ||
2043 | |||
2044 | btrfs_set_root_bytenr(&log->root_item, log->node->start); | ||
2045 | btrfs_set_root_generation(&log->root_item, trans->transid); | ||
2046 | btrfs_set_root_level(&log->root_item, btrfs_header_level(log->node)); | ||
2047 | ret = btrfs_update_root(trans, log->fs_info->log_root_tree, | ||
2048 | &log->root_key, &log->root_item); | ||
2049 | BUG_ON(ret); | ||
2050 | return ret; | ||
2051 | } | ||
2052 | |||
2053 | /* | ||
2054 | * If both a file and directory are logged, and unlinks or renames are | ||
2055 | * mixed in, we have a few interesting corners: | ||
2056 | * | ||
2057 | * create file X in dir Y | ||
2058 | * link file X to X.link in dir Y | ||
2059 | * fsync file X | ||
2060 | * unlink file X but leave X.link | ||
2061 | * fsync dir Y | ||
2062 | * | ||
2063 | * After a crash we would expect only X.link to exist. But file X | ||
2064 | * didn't get fsync'd again so the log has back refs for X and X.link. | ||
2065 | * | ||
2066 | * We solve this by removing directory entries and inode backrefs from the | ||
2067 | * log when a file that was logged in the current transaction is | ||
2068 | * unlinked. Any later fsync will include the updated log entries, and | ||
2069 | * we'll be able to reconstruct the proper directory items from backrefs. | ||
2070 | * | ||
2071 | * This optimizations allows us to avoid relogging the entire inode | ||
2072 | * or the entire directory. | ||
2073 | */ | ||
2074 | int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans, | ||
2075 | struct btrfs_root *root, | ||
2076 | const char *name, int name_len, | ||
2077 | struct inode *dir, u64 index) | ||
2078 | { | ||
2079 | struct btrfs_root *log; | ||
2080 | struct btrfs_dir_item *di; | ||
2081 | struct btrfs_path *path; | ||
2082 | int ret; | ||
2083 | int bytes_del = 0; | ||
2084 | |||
2085 | if (BTRFS_I(dir)->logged_trans < trans->transid) | ||
2086 | return 0; | ||
2087 | |||
2088 | ret = join_running_log_trans(root); | ||
2089 | if (ret) | ||
2090 | return 0; | ||
2091 | |||
2092 | mutex_lock(&BTRFS_I(dir)->log_mutex); | ||
2093 | |||
2094 | log = root->log_root; | ||
2095 | path = btrfs_alloc_path(); | ||
2096 | di = btrfs_lookup_dir_item(trans, log, path, dir->i_ino, | ||
2097 | name, name_len, -1); | ||
2098 | if (di && !IS_ERR(di)) { | ||
2099 | ret = btrfs_delete_one_dir_name(trans, log, path, di); | ||
2100 | bytes_del += name_len; | ||
2101 | BUG_ON(ret); | ||
2102 | } | ||
2103 | btrfs_release_path(log, path); | ||
2104 | di = btrfs_lookup_dir_index_item(trans, log, path, dir->i_ino, | ||
2105 | index, name, name_len, -1); | ||
2106 | if (di && !IS_ERR(di)) { | ||
2107 | ret = btrfs_delete_one_dir_name(trans, log, path, di); | ||
2108 | bytes_del += name_len; | ||
2109 | BUG_ON(ret); | ||
2110 | } | ||
2111 | |||
2112 | /* update the directory size in the log to reflect the names | ||
2113 | * we have removed | ||
2114 | */ | ||
2115 | if (bytes_del) { | ||
2116 | struct btrfs_key key; | ||
2117 | |||
2118 | key.objectid = dir->i_ino; | ||
2119 | key.offset = 0; | ||
2120 | key.type = BTRFS_INODE_ITEM_KEY; | ||
2121 | btrfs_release_path(log, path); | ||
2122 | |||
2123 | ret = btrfs_search_slot(trans, log, &key, path, 0, 1); | ||
2124 | if (ret == 0) { | ||
2125 | struct btrfs_inode_item *item; | ||
2126 | u64 i_size; | ||
2127 | |||
2128 | item = btrfs_item_ptr(path->nodes[0], path->slots[0], | ||
2129 | struct btrfs_inode_item); | ||
2130 | i_size = btrfs_inode_size(path->nodes[0], item); | ||
2131 | if (i_size > bytes_del) | ||
2132 | i_size -= bytes_del; | ||
2133 | else | ||
2134 | i_size = 0; | ||
2135 | btrfs_set_inode_size(path->nodes[0], item, i_size); | ||
2136 | btrfs_mark_buffer_dirty(path->nodes[0]); | ||
2137 | } else | ||
2138 | ret = 0; | ||
2139 | btrfs_release_path(log, path); | ||
2140 | } | ||
2141 | |||
2142 | btrfs_free_path(path); | ||
2143 | mutex_unlock(&BTRFS_I(dir)->log_mutex); | ||
2144 | end_log_trans(root); | ||
2145 | |||
2146 | return 0; | ||
2147 | } | ||
2148 | |||
2149 | /* see comments for btrfs_del_dir_entries_in_log */ | ||
2150 | int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans, | ||
2151 | struct btrfs_root *root, | ||
2152 | const char *name, int name_len, | ||
2153 | struct inode *inode, u64 dirid) | ||
2154 | { | ||
2155 | struct btrfs_root *log; | ||
2156 | u64 index; | ||
2157 | int ret; | ||
2158 | |||
2159 | if (BTRFS_I(inode)->logged_trans < trans->transid) | ||
2160 | return 0; | ||
2161 | |||
2162 | ret = join_running_log_trans(root); | ||
2163 | if (ret) | ||
2164 | return 0; | ||
2165 | log = root->log_root; | ||
2166 | mutex_lock(&BTRFS_I(inode)->log_mutex); | ||
2167 | |||
2168 | ret = btrfs_del_inode_ref(trans, log, name, name_len, inode->i_ino, | ||
2169 | dirid, &index); | ||
2170 | mutex_unlock(&BTRFS_I(inode)->log_mutex); | ||
2171 | end_log_trans(root); | ||
2172 | |||
2173 | return ret; | ||
2174 | } | ||
2175 | |||
2176 | /* | ||
2177 | * creates a range item in the log for 'dirid'. first_offset and | ||
2178 | * last_offset tell us which parts of the key space the log should | ||
2179 | * be considered authoritative for. | ||
2180 | */ | ||
2181 | static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans, | ||
2182 | struct btrfs_root *log, | ||
2183 | struct btrfs_path *path, | ||
2184 | int key_type, u64 dirid, | ||
2185 | u64 first_offset, u64 last_offset) | ||
2186 | { | ||
2187 | int ret; | ||
2188 | struct btrfs_key key; | ||
2189 | struct btrfs_dir_log_item *item; | ||
2190 | |||
2191 | key.objectid = dirid; | ||
2192 | key.offset = first_offset; | ||
2193 | if (key_type == BTRFS_DIR_ITEM_KEY) | ||
2194 | key.type = BTRFS_DIR_LOG_ITEM_KEY; | ||
2195 | else | ||
2196 | key.type = BTRFS_DIR_LOG_INDEX_KEY; | ||
2197 | ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item)); | ||
2198 | BUG_ON(ret); | ||
2199 | |||
2200 | item = btrfs_item_ptr(path->nodes[0], path->slots[0], | ||
2201 | struct btrfs_dir_log_item); | ||
2202 | btrfs_set_dir_log_end(path->nodes[0], item, last_offset); | ||
2203 | btrfs_mark_buffer_dirty(path->nodes[0]); | ||
2204 | btrfs_release_path(log, path); | ||
2205 | return 0; | ||
2206 | } | ||
2207 | |||
2208 | /* | ||
2209 | * log all the items included in the current transaction for a given | ||
2210 | * directory. This also creates the range items in the log tree required | ||
2211 | * to replay anything deleted before the fsync | ||
2212 | */ | ||
2213 | static noinline int log_dir_items(struct btrfs_trans_handle *trans, | ||
2214 | struct btrfs_root *root, struct inode *inode, | ||
2215 | struct btrfs_path *path, | ||
2216 | struct btrfs_path *dst_path, int key_type, | ||
2217 | u64 min_offset, u64 *last_offset_ret) | ||
2218 | { | ||
2219 | struct btrfs_key min_key; | ||
2220 | struct btrfs_key max_key; | ||
2221 | struct btrfs_root *log = root->log_root; | ||
2222 | struct extent_buffer *src; | ||
2223 | int ret; | ||
2224 | int i; | ||
2225 | int nritems; | ||
2226 | u64 first_offset = min_offset; | ||
2227 | u64 last_offset = (u64)-1; | ||
2228 | |||
2229 | log = root->log_root; | ||
2230 | max_key.objectid = inode->i_ino; | ||
2231 | max_key.offset = (u64)-1; | ||
2232 | max_key.type = key_type; | ||
2233 | |||
2234 | min_key.objectid = inode->i_ino; | ||
2235 | min_key.type = key_type; | ||
2236 | min_key.offset = min_offset; | ||
2237 | |||
2238 | path->keep_locks = 1; | ||
2239 | |||
2240 | ret = btrfs_search_forward(root, &min_key, &max_key, | ||
2241 | path, 0, trans->transid); | ||
2242 | |||
2243 | /* | ||
2244 | * we didn't find anything from this transaction, see if there | ||
2245 | * is anything at all | ||
2246 | */ | ||
2247 | if (ret != 0 || min_key.objectid != inode->i_ino || | ||
2248 | min_key.type != key_type) { | ||
2249 | min_key.objectid = inode->i_ino; | ||
2250 | min_key.type = key_type; | ||
2251 | min_key.offset = (u64)-1; | ||
2252 | btrfs_release_path(root, path); | ||
2253 | ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); | ||
2254 | if (ret < 0) { | ||
2255 | btrfs_release_path(root, path); | ||
2256 | return ret; | ||
2257 | } | ||
2258 | ret = btrfs_previous_item(root, path, inode->i_ino, key_type); | ||
2259 | |||
2260 | /* if ret == 0 there are items for this type, | ||
2261 | * create a range to tell us the last key of this type. | ||
2262 | * otherwise, there are no items in this directory after | ||
2263 | * *min_offset, and we create a range to indicate that. | ||
2264 | */ | ||
2265 | if (ret == 0) { | ||
2266 | struct btrfs_key tmp; | ||
2267 | btrfs_item_key_to_cpu(path->nodes[0], &tmp, | ||
2268 | path->slots[0]); | ||
2269 | if (key_type == tmp.type) | ||
2270 | first_offset = max(min_offset, tmp.offset) + 1; | ||
2271 | } | ||
2272 | goto done; | ||
2273 | } | ||
2274 | |||
2275 | /* go backward to find any previous key */ | ||
2276 | ret = btrfs_previous_item(root, path, inode->i_ino, key_type); | ||
2277 | if (ret == 0) { | ||
2278 | struct btrfs_key tmp; | ||
2279 | btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]); | ||
2280 | if (key_type == tmp.type) { | ||
2281 | first_offset = tmp.offset; | ||
2282 | ret = overwrite_item(trans, log, dst_path, | ||
2283 | path->nodes[0], path->slots[0], | ||
2284 | &tmp); | ||
2285 | } | ||
2286 | } | ||
2287 | btrfs_release_path(root, path); | ||
2288 | |||
2289 | /* find the first key from this transaction again */ | ||
2290 | ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); | ||
2291 | if (ret != 0) { | ||
2292 | WARN_ON(1); | ||
2293 | goto done; | ||
2294 | } | ||
2295 | |||
2296 | /* | ||
2297 | * we have a block from this transaction, log every item in it | ||
2298 | * from our directory | ||
2299 | */ | ||
2300 | while (1) { | ||
2301 | struct btrfs_key tmp; | ||
2302 | src = path->nodes[0]; | ||
2303 | nritems = btrfs_header_nritems(src); | ||
2304 | for (i = path->slots[0]; i < nritems; i++) { | ||
2305 | btrfs_item_key_to_cpu(src, &min_key, i); | ||
2306 | |||
2307 | if (min_key.objectid != inode->i_ino || | ||
2308 | min_key.type != key_type) | ||
2309 | goto done; | ||
2310 | ret = overwrite_item(trans, log, dst_path, src, i, | ||
2311 | &min_key); | ||
2312 | BUG_ON(ret); | ||
2313 | } | ||
2314 | path->slots[0] = nritems; | ||
2315 | |||
2316 | /* | ||
2317 | * look ahead to the next item and see if it is also | ||
2318 | * from this directory and from this transaction | ||
2319 | */ | ||
2320 | ret = btrfs_next_leaf(root, path); | ||
2321 | if (ret == 1) { | ||
2322 | last_offset = (u64)-1; | ||
2323 | goto done; | ||
2324 | } | ||
2325 | btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]); | ||
2326 | if (tmp.objectid != inode->i_ino || tmp.type != key_type) { | ||
2327 | last_offset = (u64)-1; | ||
2328 | goto done; | ||
2329 | } | ||
2330 | if (btrfs_header_generation(path->nodes[0]) != trans->transid) { | ||
2331 | ret = overwrite_item(trans, log, dst_path, | ||
2332 | path->nodes[0], path->slots[0], | ||
2333 | &tmp); | ||
2334 | |||
2335 | BUG_ON(ret); | ||
2336 | last_offset = tmp.offset; | ||
2337 | goto done; | ||
2338 | } | ||
2339 | } | ||
2340 | done: | ||
2341 | *last_offset_ret = last_offset; | ||
2342 | btrfs_release_path(root, path); | ||
2343 | btrfs_release_path(log, dst_path); | ||
2344 | |||
2345 | /* insert the log range keys to indicate where the log is valid */ | ||
2346 | ret = insert_dir_log_key(trans, log, path, key_type, inode->i_ino, | ||
2347 | first_offset, last_offset); | ||
2348 | BUG_ON(ret); | ||
2349 | return 0; | ||
2350 | } | ||
2351 | |||
2352 | /* | ||
2353 | * logging directories is very similar to logging inodes, We find all the items | ||
2354 | * from the current transaction and write them to the log. | ||
2355 | * | ||
2356 | * The recovery code scans the directory in the subvolume, and if it finds a | ||
2357 | * key in the range logged that is not present in the log tree, then it means | ||
2358 | * that dir entry was unlinked during the transaction. | ||
2359 | * | ||
2360 | * In order for that scan to work, we must include one key smaller than | ||
2361 | * the smallest logged by this transaction and one key larger than the largest | ||
2362 | * key logged by this transaction. | ||
2363 | */ | ||
2364 | static noinline int log_directory_changes(struct btrfs_trans_handle *trans, | ||
2365 | struct btrfs_root *root, struct inode *inode, | ||
2366 | struct btrfs_path *path, | ||
2367 | struct btrfs_path *dst_path) | ||
2368 | { | ||
2369 | u64 min_key; | ||
2370 | u64 max_key; | ||
2371 | int ret; | ||
2372 | int key_type = BTRFS_DIR_ITEM_KEY; | ||
2373 | |||
2374 | again: | ||
2375 | min_key = 0; | ||
2376 | max_key = 0; | ||
2377 | while (1) { | ||
2378 | ret = log_dir_items(trans, root, inode, path, | ||
2379 | dst_path, key_type, min_key, | ||
2380 | &max_key); | ||
2381 | BUG_ON(ret); | ||
2382 | if (max_key == (u64)-1) | ||
2383 | break; | ||
2384 | min_key = max_key + 1; | ||
2385 | } | ||
2386 | |||
2387 | if (key_type == BTRFS_DIR_ITEM_KEY) { | ||
2388 | key_type = BTRFS_DIR_INDEX_KEY; | ||
2389 | goto again; | ||
2390 | } | ||
2391 | return 0; | ||
2392 | } | ||
2393 | |||
2394 | /* | ||
2395 | * a helper function to drop items from the log before we relog an | ||
2396 | * inode. max_key_type indicates the highest item type to remove. | ||
2397 | * This cannot be run for file data extents because it does not | ||
2398 | * free the extents they point to. | ||
2399 | */ | ||
2400 | static int drop_objectid_items(struct btrfs_trans_handle *trans, | ||
2401 | struct btrfs_root *log, | ||
2402 | struct btrfs_path *path, | ||
2403 | u64 objectid, int max_key_type) | ||
2404 | { | ||
2405 | int ret; | ||
2406 | struct btrfs_key key; | ||
2407 | struct btrfs_key found_key; | ||
2408 | |||
2409 | key.objectid = objectid; | ||
2410 | key.type = max_key_type; | ||
2411 | key.offset = (u64)-1; | ||
2412 | |||
2413 | while (1) { | ||
2414 | ret = btrfs_search_slot(trans, log, &key, path, -1, 1); | ||
2415 | |||
2416 | if (ret != 1) | ||
2417 | break; | ||
2418 | |||
2419 | if (path->slots[0] == 0) | ||
2420 | break; | ||
2421 | |||
2422 | path->slots[0]--; | ||
2423 | btrfs_item_key_to_cpu(path->nodes[0], &found_key, | ||
2424 | path->slots[0]); | ||
2425 | |||
2426 | if (found_key.objectid != objectid) | ||
2427 | break; | ||
2428 | |||
2429 | ret = btrfs_del_item(trans, log, path); | ||
2430 | BUG_ON(ret); | ||
2431 | btrfs_release_path(log, path); | ||
2432 | } | ||
2433 | btrfs_release_path(log, path); | ||
2434 | return 0; | ||
2435 | } | ||
2436 | |||
2437 | static noinline int copy_items(struct btrfs_trans_handle *trans, | ||
2438 | struct btrfs_root *log, | ||
2439 | struct btrfs_path *dst_path, | ||
2440 | struct extent_buffer *src, | ||
2441 | int start_slot, int nr, int inode_only) | ||
2442 | { | ||
2443 | unsigned long src_offset; | ||
2444 | unsigned long dst_offset; | ||
2445 | struct btrfs_file_extent_item *extent; | ||
2446 | struct btrfs_inode_item *inode_item; | ||
2447 | int ret; | ||
2448 | struct btrfs_key *ins_keys; | ||
2449 | u32 *ins_sizes; | ||
2450 | char *ins_data; | ||
2451 | int i; | ||
2452 | struct list_head ordered_sums; | ||
2453 | |||
2454 | INIT_LIST_HEAD(&ordered_sums); | ||
2455 | |||
2456 | ins_data = kmalloc(nr * sizeof(struct btrfs_key) + | ||
2457 | nr * sizeof(u32), GFP_NOFS); | ||
2458 | ins_sizes = (u32 *)ins_data; | ||
2459 | ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32)); | ||
2460 | |||
2461 | for (i = 0; i < nr; i++) { | ||
2462 | ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot); | ||
2463 | btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot); | ||
2464 | } | ||
2465 | ret = btrfs_insert_empty_items(trans, log, dst_path, | ||
2466 | ins_keys, ins_sizes, nr); | ||
2467 | BUG_ON(ret); | ||
2468 | |||
2469 | for (i = 0; i < nr; i++) { | ||
2470 | dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], | ||
2471 | dst_path->slots[0]); | ||
2472 | |||
2473 | src_offset = btrfs_item_ptr_offset(src, start_slot + i); | ||
2474 | |||
2475 | copy_extent_buffer(dst_path->nodes[0], src, dst_offset, | ||
2476 | src_offset, ins_sizes[i]); | ||
2477 | |||
2478 | if (inode_only == LOG_INODE_EXISTS && | ||
2479 | ins_keys[i].type == BTRFS_INODE_ITEM_KEY) { | ||
2480 | inode_item = btrfs_item_ptr(dst_path->nodes[0], | ||
2481 | dst_path->slots[0], | ||
2482 | struct btrfs_inode_item); | ||
2483 | btrfs_set_inode_size(dst_path->nodes[0], inode_item, 0); | ||
2484 | |||
2485 | /* set the generation to zero so the recover code | ||
2486 | * can tell the difference between an logging | ||
2487 | * just to say 'this inode exists' and a logging | ||
2488 | * to say 'update this inode with these values' | ||
2489 | */ | ||
2490 | btrfs_set_inode_generation(dst_path->nodes[0], | ||
2491 | inode_item, 0); | ||
2492 | } | ||
2493 | /* take a reference on file data extents so that truncates | ||
2494 | * or deletes of this inode don't have to relog the inode | ||
2495 | * again | ||
2496 | */ | ||
2497 | if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY) { | ||
2498 | int found_type; | ||
2499 | extent = btrfs_item_ptr(src, start_slot + i, | ||
2500 | struct btrfs_file_extent_item); | ||
2501 | |||
2502 | found_type = btrfs_file_extent_type(src, extent); | ||
2503 | if (found_type == BTRFS_FILE_EXTENT_REG || | ||
2504 | found_type == BTRFS_FILE_EXTENT_PREALLOC) { | ||
2505 | u64 ds = btrfs_file_extent_disk_bytenr(src, | ||
2506 | extent); | ||
2507 | u64 dl = btrfs_file_extent_disk_num_bytes(src, | ||
2508 | extent); | ||
2509 | u64 cs = btrfs_file_extent_offset(src, extent); | ||
2510 | u64 cl = btrfs_file_extent_num_bytes(src, | ||
2511 | extent);; | ||
2512 | if (btrfs_file_extent_compression(src, | ||
2513 | extent)) { | ||
2514 | cs = 0; | ||
2515 | cl = dl; | ||
2516 | } | ||
2517 | /* ds == 0 is a hole */ | ||
2518 | if (ds != 0) { | ||
2519 | ret = btrfs_inc_extent_ref(trans, log, | ||
2520 | ds, dl, | ||
2521 | dst_path->nodes[0]->start, | ||
2522 | BTRFS_TREE_LOG_OBJECTID, | ||
2523 | trans->transid, | ||
2524 | ins_keys[i].objectid); | ||
2525 | BUG_ON(ret); | ||
2526 | ret = btrfs_lookup_csums_range( | ||
2527 | log->fs_info->csum_root, | ||
2528 | ds + cs, ds + cs + cl - 1, | ||
2529 | &ordered_sums); | ||
2530 | BUG_ON(ret); | ||
2531 | } | ||
2532 | } | ||
2533 | } | ||
2534 | dst_path->slots[0]++; | ||
2535 | } | ||
2536 | |||
2537 | btrfs_mark_buffer_dirty(dst_path->nodes[0]); | ||
2538 | btrfs_release_path(log, dst_path); | ||
2539 | kfree(ins_data); | ||
2540 | |||
2541 | /* | ||
2542 | * we have to do this after the loop above to avoid changing the | ||
2543 | * log tree while trying to change the log tree. | ||
2544 | */ | ||
2545 | while (!list_empty(&ordered_sums)) { | ||
2546 | struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next, | ||
2547 | struct btrfs_ordered_sum, | ||
2548 | list); | ||
2549 | ret = btrfs_csum_file_blocks(trans, log, sums); | ||
2550 | BUG_ON(ret); | ||
2551 | list_del(&sums->list); | ||
2552 | kfree(sums); | ||
2553 | } | ||
2554 | return 0; | ||
2555 | } | ||
2556 | |||
2557 | /* log a single inode in the tree log. | ||
2558 | * At least one parent directory for this inode must exist in the tree | ||
2559 | * or be logged already. | ||
2560 | * | ||
2561 | * Any items from this inode changed by the current transaction are copied | ||
2562 | * to the log tree. An extra reference is taken on any extents in this | ||
2563 | * file, allowing us to avoid a whole pile of corner cases around logging | ||
2564 | * blocks that have been removed from the tree. | ||
2565 | * | ||
2566 | * See LOG_INODE_ALL and related defines for a description of what inode_only | ||
2567 | * does. | ||
2568 | * | ||
2569 | * This handles both files and directories. | ||
2570 | */ | ||
2571 | static int __btrfs_log_inode(struct btrfs_trans_handle *trans, | ||
2572 | struct btrfs_root *root, struct inode *inode, | ||
2573 | int inode_only) | ||
2574 | { | ||
2575 | struct btrfs_path *path; | ||
2576 | struct btrfs_path *dst_path; | ||
2577 | struct btrfs_key min_key; | ||
2578 | struct btrfs_key max_key; | ||
2579 | struct btrfs_root *log = root->log_root; | ||
2580 | struct extent_buffer *src = NULL; | ||
2581 | u32 size; | ||
2582 | int ret; | ||
2583 | int nritems; | ||
2584 | int ins_start_slot = 0; | ||
2585 | int ins_nr; | ||
2586 | |||
2587 | log = root->log_root; | ||
2588 | |||
2589 | path = btrfs_alloc_path(); | ||
2590 | dst_path = btrfs_alloc_path(); | ||
2591 | |||
2592 | min_key.objectid = inode->i_ino; | ||
2593 | min_key.type = BTRFS_INODE_ITEM_KEY; | ||
2594 | min_key.offset = 0; | ||
2595 | |||
2596 | max_key.objectid = inode->i_ino; | ||
2597 | if (inode_only == LOG_INODE_EXISTS || S_ISDIR(inode->i_mode)) | ||
2598 | max_key.type = BTRFS_XATTR_ITEM_KEY; | ||
2599 | else | ||
2600 | max_key.type = (u8)-1; | ||
2601 | max_key.offset = (u64)-1; | ||
2602 | |||
2603 | /* | ||
2604 | * if this inode has already been logged and we're in inode_only | ||
2605 | * mode, we don't want to delete the things that have already | ||
2606 | * been written to the log. | ||
2607 | * | ||
2608 | * But, if the inode has been through an inode_only log, | ||
2609 | * the logged_trans field is not set. This allows us to catch | ||
2610 | * any new names for this inode in the backrefs by logging it | ||
2611 | * again | ||
2612 | */ | ||
2613 | if (inode_only == LOG_INODE_EXISTS && | ||
2614 | BTRFS_I(inode)->logged_trans == trans->transid) { | ||
2615 | btrfs_free_path(path); | ||
2616 | btrfs_free_path(dst_path); | ||
2617 | goto out; | ||
2618 | } | ||
2619 | mutex_lock(&BTRFS_I(inode)->log_mutex); | ||
2620 | |||
2621 | /* | ||
2622 | * a brute force approach to making sure we get the most uptodate | ||
2623 | * copies of everything. | ||
2624 | */ | ||
2625 | if (S_ISDIR(inode->i_mode)) { | ||
2626 | int max_key_type = BTRFS_DIR_LOG_INDEX_KEY; | ||
2627 | |||
2628 | if (inode_only == LOG_INODE_EXISTS) | ||
2629 | max_key_type = BTRFS_XATTR_ITEM_KEY; | ||
2630 | ret = drop_objectid_items(trans, log, path, | ||
2631 | inode->i_ino, max_key_type); | ||
2632 | } else { | ||
2633 | ret = btrfs_truncate_inode_items(trans, log, inode, 0, 0); | ||
2634 | } | ||
2635 | BUG_ON(ret); | ||
2636 | path->keep_locks = 1; | ||
2637 | |||
2638 | while (1) { | ||
2639 | ins_nr = 0; | ||
2640 | ret = btrfs_search_forward(root, &min_key, &max_key, | ||
2641 | path, 0, trans->transid); | ||
2642 | if (ret != 0) | ||
2643 | break; | ||
2644 | again: | ||
2645 | /* note, ins_nr might be > 0 here, cleanup outside the loop */ | ||
2646 | if (min_key.objectid != inode->i_ino) | ||
2647 | break; | ||
2648 | if (min_key.type > max_key.type) | ||
2649 | break; | ||
2650 | |||
2651 | src = path->nodes[0]; | ||
2652 | size = btrfs_item_size_nr(src, path->slots[0]); | ||
2653 | if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) { | ||
2654 | ins_nr++; | ||
2655 | goto next_slot; | ||
2656 | } else if (!ins_nr) { | ||
2657 | ins_start_slot = path->slots[0]; | ||
2658 | ins_nr = 1; | ||
2659 | goto next_slot; | ||
2660 | } | ||
2661 | |||
2662 | ret = copy_items(trans, log, dst_path, src, ins_start_slot, | ||
2663 | ins_nr, inode_only); | ||
2664 | BUG_ON(ret); | ||
2665 | ins_nr = 1; | ||
2666 | ins_start_slot = path->slots[0]; | ||
2667 | next_slot: | ||
2668 | |||
2669 | nritems = btrfs_header_nritems(path->nodes[0]); | ||
2670 | path->slots[0]++; | ||
2671 | if (path->slots[0] < nritems) { | ||
2672 | btrfs_item_key_to_cpu(path->nodes[0], &min_key, | ||
2673 | path->slots[0]); | ||
2674 | goto again; | ||
2675 | } | ||
2676 | if (ins_nr) { | ||
2677 | ret = copy_items(trans, log, dst_path, src, | ||
2678 | ins_start_slot, | ||
2679 | ins_nr, inode_only); | ||
2680 | BUG_ON(ret); | ||
2681 | ins_nr = 0; | ||
2682 | } | ||
2683 | btrfs_release_path(root, path); | ||
2684 | |||
2685 | if (min_key.offset < (u64)-1) | ||
2686 | min_key.offset++; | ||
2687 | else if (min_key.type < (u8)-1) | ||
2688 | min_key.type++; | ||
2689 | else if (min_key.objectid < (u64)-1) | ||
2690 | min_key.objectid++; | ||
2691 | else | ||
2692 | break; | ||
2693 | } | ||
2694 | if (ins_nr) { | ||
2695 | ret = copy_items(trans, log, dst_path, src, | ||
2696 | ins_start_slot, | ||
2697 | ins_nr, inode_only); | ||
2698 | BUG_ON(ret); | ||
2699 | ins_nr = 0; | ||
2700 | } | ||
2701 | WARN_ON(ins_nr); | ||
2702 | if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) { | ||
2703 | btrfs_release_path(root, path); | ||
2704 | btrfs_release_path(log, dst_path); | ||
2705 | BTRFS_I(inode)->log_dirty_trans = 0; | ||
2706 | ret = log_directory_changes(trans, root, inode, path, dst_path); | ||
2707 | BUG_ON(ret); | ||
2708 | } | ||
2709 | BTRFS_I(inode)->logged_trans = trans->transid; | ||
2710 | mutex_unlock(&BTRFS_I(inode)->log_mutex); | ||
2711 | |||
2712 | btrfs_free_path(path); | ||
2713 | btrfs_free_path(dst_path); | ||
2714 | |||
2715 | mutex_lock(&root->fs_info->tree_log_mutex); | ||
2716 | ret = update_log_root(trans, log); | ||
2717 | BUG_ON(ret); | ||
2718 | mutex_unlock(&root->fs_info->tree_log_mutex); | ||
2719 | out: | ||
2720 | return 0; | ||
2721 | } | ||
2722 | |||
2723 | int btrfs_log_inode(struct btrfs_trans_handle *trans, | ||
2724 | struct btrfs_root *root, struct inode *inode, | ||
2725 | int inode_only) | ||
2726 | { | ||
2727 | int ret; | ||
2728 | |||
2729 | start_log_trans(trans, root); | ||
2730 | ret = __btrfs_log_inode(trans, root, inode, inode_only); | ||
2731 | end_log_trans(root); | ||
2732 | return ret; | ||
2733 | } | ||
2734 | |||
2735 | /* | ||
2736 | * helper function around btrfs_log_inode to make sure newly created | ||
2737 | * parent directories also end up in the log. A minimal inode and backref | ||
2738 | * only logging is done of any parent directories that are older than | ||
2739 | * the last committed transaction | ||
2740 | */ | ||
2741 | int btrfs_log_dentry(struct btrfs_trans_handle *trans, | ||
2742 | struct btrfs_root *root, struct dentry *dentry) | ||
2743 | { | ||
2744 | int inode_only = LOG_INODE_ALL; | ||
2745 | struct super_block *sb; | ||
2746 | int ret; | ||
2747 | |||
2748 | start_log_trans(trans, root); | ||
2749 | sb = dentry->d_inode->i_sb; | ||
2750 | while (1) { | ||
2751 | ret = __btrfs_log_inode(trans, root, dentry->d_inode, | ||
2752 | inode_only); | ||
2753 | BUG_ON(ret); | ||
2754 | inode_only = LOG_INODE_EXISTS; | ||
2755 | |||
2756 | dentry = dentry->d_parent; | ||
2757 | if (!dentry || !dentry->d_inode || sb != dentry->d_inode->i_sb) | ||
2758 | break; | ||
2759 | |||
2760 | if (BTRFS_I(dentry->d_inode)->generation <= | ||
2761 | root->fs_info->last_trans_committed) | ||
2762 | break; | ||
2763 | } | ||
2764 | end_log_trans(root); | ||
2765 | return 0; | ||
2766 | } | ||
2767 | |||
2768 | /* | ||
2769 | * it is not safe to log dentry if the chunk root has added new | ||
2770 | * chunks. This returns 0 if the dentry was logged, and 1 otherwise. | ||
2771 | * If this returns 1, you must commit the transaction to safely get your | ||
2772 | * data on disk. | ||
2773 | */ | ||
2774 | int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans, | ||
2775 | struct btrfs_root *root, struct dentry *dentry) | ||
2776 | { | ||
2777 | u64 gen; | ||
2778 | gen = root->fs_info->last_trans_new_blockgroup; | ||
2779 | if (gen > root->fs_info->last_trans_committed) | ||
2780 | return 1; | ||
2781 | else | ||
2782 | return btrfs_log_dentry(trans, root, dentry); | ||
2783 | } | ||
2784 | |||
2785 | /* | ||
2786 | * should be called during mount to recover any replay any log trees | ||
2787 | * from the FS | ||
2788 | */ | ||
2789 | int btrfs_recover_log_trees(struct btrfs_root *log_root_tree) | ||
2790 | { | ||
2791 | int ret; | ||
2792 | struct btrfs_path *path; | ||
2793 | struct btrfs_trans_handle *trans; | ||
2794 | struct btrfs_key key; | ||
2795 | struct btrfs_key found_key; | ||
2796 | struct btrfs_key tmp_key; | ||
2797 | struct btrfs_root *log; | ||
2798 | struct btrfs_fs_info *fs_info = log_root_tree->fs_info; | ||
2799 | u64 highest_inode; | ||
2800 | struct walk_control wc = { | ||
2801 | .process_func = process_one_buffer, | ||
2802 | .stage = 0, | ||
2803 | }; | ||
2804 | |||
2805 | fs_info->log_root_recovering = 1; | ||
2806 | path = btrfs_alloc_path(); | ||
2807 | BUG_ON(!path); | ||
2808 | |||
2809 | trans = btrfs_start_transaction(fs_info->tree_root, 1); | ||
2810 | |||
2811 | wc.trans = trans; | ||
2812 | wc.pin = 1; | ||
2813 | |||
2814 | walk_log_tree(trans, log_root_tree, &wc); | ||
2815 | |||
2816 | again: | ||
2817 | key.objectid = BTRFS_TREE_LOG_OBJECTID; | ||
2818 | key.offset = (u64)-1; | ||
2819 | btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY); | ||
2820 | |||
2821 | while (1) { | ||
2822 | ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0); | ||
2823 | if (ret < 0) | ||
2824 | break; | ||
2825 | if (ret > 0) { | ||
2826 | if (path->slots[0] == 0) | ||
2827 | break; | ||
2828 | path->slots[0]--; | ||
2829 | } | ||
2830 | btrfs_item_key_to_cpu(path->nodes[0], &found_key, | ||
2831 | path->slots[0]); | ||
2832 | btrfs_release_path(log_root_tree, path); | ||
2833 | if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID) | ||
2834 | break; | ||
2835 | |||
2836 | log = btrfs_read_fs_root_no_radix(log_root_tree, | ||
2837 | &found_key); | ||
2838 | BUG_ON(!log); | ||
2839 | |||
2840 | |||
2841 | tmp_key.objectid = found_key.offset; | ||
2842 | tmp_key.type = BTRFS_ROOT_ITEM_KEY; | ||
2843 | tmp_key.offset = (u64)-1; | ||
2844 | |||
2845 | wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key); | ||
2846 | BUG_ON(!wc.replay_dest); | ||
2847 | |||
2848 | wc.replay_dest->log_root = log; | ||
2849 | btrfs_record_root_in_trans(wc.replay_dest); | ||
2850 | ret = walk_log_tree(trans, log, &wc); | ||
2851 | BUG_ON(ret); | ||
2852 | |||
2853 | if (wc.stage == LOG_WALK_REPLAY_ALL) { | ||
2854 | ret = fixup_inode_link_counts(trans, wc.replay_dest, | ||
2855 | path); | ||
2856 | BUG_ON(ret); | ||
2857 | } | ||
2858 | ret = btrfs_find_highest_inode(wc.replay_dest, &highest_inode); | ||
2859 | if (ret == 0) { | ||
2860 | wc.replay_dest->highest_inode = highest_inode; | ||
2861 | wc.replay_dest->last_inode_alloc = highest_inode; | ||
2862 | } | ||
2863 | |||
2864 | key.offset = found_key.offset - 1; | ||
2865 | wc.replay_dest->log_root = NULL; | ||
2866 | free_extent_buffer(log->node); | ||
2867 | kfree(log); | ||
2868 | |||
2869 | if (found_key.offset == 0) | ||
2870 | break; | ||
2871 | } | ||
2872 | btrfs_release_path(log_root_tree, path); | ||
2873 | |||
2874 | /* step one is to pin it all, step two is to replay just inodes */ | ||
2875 | if (wc.pin) { | ||
2876 | wc.pin = 0; | ||
2877 | wc.process_func = replay_one_buffer; | ||
2878 | wc.stage = LOG_WALK_REPLAY_INODES; | ||
2879 | goto again; | ||
2880 | } | ||
2881 | /* step three is to replay everything */ | ||
2882 | if (wc.stage < LOG_WALK_REPLAY_ALL) { | ||
2883 | wc.stage++; | ||
2884 | goto again; | ||
2885 | } | ||
2886 | |||
2887 | btrfs_free_path(path); | ||
2888 | |||
2889 | free_extent_buffer(log_root_tree->node); | ||
2890 | log_root_tree->log_root = NULL; | ||
2891 | fs_info->log_root_recovering = 0; | ||
2892 | |||
2893 | /* step 4: commit the transaction, which also unpins the blocks */ | ||
2894 | btrfs_commit_transaction(trans, fs_info->tree_root); | ||
2895 | |||
2896 | kfree(log_root_tree); | ||
2897 | return 0; | ||
2898 | } | ||