diff options
Diffstat (limited to 'fs/btrfs/tree-log.c')
-rw-r--r-- | fs/btrfs/tree-log.c | 2892 |
1 files changed, 2892 insertions, 0 deletions
diff --git a/fs/btrfs/tree-log.c b/fs/btrfs/tree-log.c new file mode 100644 index 000000000000..88bbfd959f18 --- /dev/null +++ b/fs/btrfs/tree-log.c | |||
@@ -0,0 +1,2892 @@ | |||
1 | /* | ||
2 | * Copyright (C) 2008 Oracle. All rights reserved. | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or | ||
5 | * modify it under the terms of the GNU General Public | ||
6 | * License v2 as published by the Free Software Foundation. | ||
7 | * | ||
8 | * This program is distributed in the hope that it will be useful, | ||
9 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | ||
11 | * General Public License for more details. | ||
12 | * | ||
13 | * You should have received a copy of the GNU General Public | ||
14 | * License along with this program; if not, write to the | ||
15 | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | ||
16 | * Boston, MA 021110-1307, USA. | ||
17 | */ | ||
18 | |||
19 | #include <linux/sched.h> | ||
20 | #include "ctree.h" | ||
21 | #include "transaction.h" | ||
22 | #include "disk-io.h" | ||
23 | #include "locking.h" | ||
24 | #include "print-tree.h" | ||
25 | #include "compat.h" | ||
26 | |||
27 | /* magic values for the inode_only field in btrfs_log_inode: | ||
28 | * | ||
29 | * LOG_INODE_ALL means to log everything | ||
30 | * LOG_INODE_EXISTS means to log just enough to recreate the inode | ||
31 | * during log replay | ||
32 | */ | ||
33 | #define LOG_INODE_ALL 0 | ||
34 | #define LOG_INODE_EXISTS 1 | ||
35 | |||
36 | /* | ||
37 | * stages for the tree walking. The first | ||
38 | * stage (0) is to only pin down the blocks we find | ||
39 | * the second stage (1) is to make sure that all the inodes | ||
40 | * we find in the log are created in the subvolume. | ||
41 | * | ||
42 | * The last stage is to deal with directories and links and extents | ||
43 | * and all the other fun semantics | ||
44 | */ | ||
45 | #define LOG_WALK_PIN_ONLY 0 | ||
46 | #define LOG_WALK_REPLAY_INODES 1 | ||
47 | #define LOG_WALK_REPLAY_ALL 2 | ||
48 | |||
49 | static int __btrfs_log_inode(struct btrfs_trans_handle *trans, | ||
50 | struct btrfs_root *root, struct inode *inode, | ||
51 | int inode_only); | ||
52 | |||
53 | /* | ||
54 | * tree logging is a special write ahead log used to make sure that | ||
55 | * fsyncs and O_SYNCs can happen without doing full tree commits. | ||
56 | * | ||
57 | * Full tree commits are expensive because they require commonly | ||
58 | * modified blocks to be recowed, creating many dirty pages in the | ||
59 | * extent tree an 4x-6x higher write load than ext3. | ||
60 | * | ||
61 | * Instead of doing a tree commit on every fsync, we use the | ||
62 | * key ranges and transaction ids to find items for a given file or directory | ||
63 | * that have changed in this transaction. Those items are copied into | ||
64 | * a special tree (one per subvolume root), that tree is written to disk | ||
65 | * and then the fsync is considered complete. | ||
66 | * | ||
67 | * After a crash, items are copied out of the log-tree back into the | ||
68 | * subvolume tree. Any file data extents found are recorded in the extent | ||
69 | * allocation tree, and the log-tree freed. | ||
70 | * | ||
71 | * The log tree is read three times, once to pin down all the extents it is | ||
72 | * using in ram and once, once to create all the inodes logged in the tree | ||
73 | * and once to do all the other items. | ||
74 | */ | ||
75 | |||
76 | /* | ||
77 | * btrfs_add_log_tree adds a new per-subvolume log tree into the | ||
78 | * tree of log tree roots. This must be called with a tree log transaction | ||
79 | * running (see start_log_trans). | ||
80 | */ | ||
81 | int btrfs_add_log_tree(struct btrfs_trans_handle *trans, | ||
82 | struct btrfs_root *root) | ||
83 | { | ||
84 | struct btrfs_key key; | ||
85 | struct btrfs_root_item root_item; | ||
86 | struct btrfs_inode_item *inode_item; | ||
87 | struct extent_buffer *leaf; | ||
88 | struct btrfs_root *new_root = root; | ||
89 | int ret; | ||
90 | u64 objectid = root->root_key.objectid; | ||
91 | |||
92 | leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0, | ||
93 | BTRFS_TREE_LOG_OBJECTID, | ||
94 | trans->transid, 0, 0, 0); | ||
95 | if (IS_ERR(leaf)) { | ||
96 | ret = PTR_ERR(leaf); | ||
97 | return ret; | ||
98 | } | ||
99 | |||
100 | btrfs_set_header_nritems(leaf, 0); | ||
101 | btrfs_set_header_level(leaf, 0); | ||
102 | btrfs_set_header_bytenr(leaf, leaf->start); | ||
103 | btrfs_set_header_generation(leaf, trans->transid); | ||
104 | btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID); | ||
105 | |||
106 | write_extent_buffer(leaf, root->fs_info->fsid, | ||
107 | (unsigned long)btrfs_header_fsid(leaf), | ||
108 | BTRFS_FSID_SIZE); | ||
109 | btrfs_mark_buffer_dirty(leaf); | ||
110 | |||
111 | inode_item = &root_item.inode; | ||
112 | memset(inode_item, 0, sizeof(*inode_item)); | ||
113 | inode_item->generation = cpu_to_le64(1); | ||
114 | inode_item->size = cpu_to_le64(3); | ||
115 | inode_item->nlink = cpu_to_le32(1); | ||
116 | inode_item->nblocks = cpu_to_le64(1); | ||
117 | inode_item->mode = cpu_to_le32(S_IFDIR | 0755); | ||
118 | |||
119 | btrfs_set_root_bytenr(&root_item, leaf->start); | ||
120 | btrfs_set_root_level(&root_item, 0); | ||
121 | btrfs_set_root_refs(&root_item, 0); | ||
122 | btrfs_set_root_used(&root_item, 0); | ||
123 | |||
124 | memset(&root_item.drop_progress, 0, sizeof(root_item.drop_progress)); | ||
125 | root_item.drop_level = 0; | ||
126 | |||
127 | btrfs_tree_unlock(leaf); | ||
128 | free_extent_buffer(leaf); | ||
129 | leaf = NULL; | ||
130 | |||
131 | btrfs_set_root_dirid(&root_item, 0); | ||
132 | |||
133 | key.objectid = BTRFS_TREE_LOG_OBJECTID; | ||
134 | key.offset = objectid; | ||
135 | btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY); | ||
136 | ret = btrfs_insert_root(trans, root->fs_info->log_root_tree, &key, | ||
137 | &root_item); | ||
138 | if (ret) | ||
139 | goto fail; | ||
140 | |||
141 | new_root = btrfs_read_fs_root_no_radix(root->fs_info->log_root_tree, | ||
142 | &key); | ||
143 | BUG_ON(!new_root); | ||
144 | |||
145 | WARN_ON(root->log_root); | ||
146 | root->log_root = new_root; | ||
147 | |||
148 | /* | ||
149 | * log trees do not get reference counted because they go away | ||
150 | * before a real commit is actually done. They do store pointers | ||
151 | * to file data extents, and those reference counts still get | ||
152 | * updated (along with back refs to the log tree). | ||
153 | */ | ||
154 | new_root->ref_cows = 0; | ||
155 | new_root->last_trans = trans->transid; | ||
156 | fail: | ||
157 | return ret; | ||
158 | } | ||
159 | |||
160 | /* | ||
161 | * start a sub transaction and setup the log tree | ||
162 | * this increments the log tree writer count to make the people | ||
163 | * syncing the tree wait for us to finish | ||
164 | */ | ||
165 | static int start_log_trans(struct btrfs_trans_handle *trans, | ||
166 | struct btrfs_root *root) | ||
167 | { | ||
168 | int ret; | ||
169 | mutex_lock(&root->fs_info->tree_log_mutex); | ||
170 | if (!root->fs_info->log_root_tree) { | ||
171 | ret = btrfs_init_log_root_tree(trans, root->fs_info); | ||
172 | BUG_ON(ret); | ||
173 | } | ||
174 | if (!root->log_root) { | ||
175 | ret = btrfs_add_log_tree(trans, root); | ||
176 | BUG_ON(ret); | ||
177 | } | ||
178 | atomic_inc(&root->fs_info->tree_log_writers); | ||
179 | root->fs_info->tree_log_batch++; | ||
180 | mutex_unlock(&root->fs_info->tree_log_mutex); | ||
181 | return 0; | ||
182 | } | ||
183 | |||
184 | /* | ||
185 | * returns 0 if there was a log transaction running and we were able | ||
186 | * to join, or returns -ENOENT if there were not transactions | ||
187 | * in progress | ||
188 | */ | ||
189 | static int join_running_log_trans(struct btrfs_root *root) | ||
190 | { | ||
191 | int ret = -ENOENT; | ||
192 | |||
193 | smp_mb(); | ||
194 | if (!root->log_root) | ||
195 | return -ENOENT; | ||
196 | |||
197 | mutex_lock(&root->fs_info->tree_log_mutex); | ||
198 | if (root->log_root) { | ||
199 | ret = 0; | ||
200 | atomic_inc(&root->fs_info->tree_log_writers); | ||
201 | root->fs_info->tree_log_batch++; | ||
202 | } | ||
203 | mutex_unlock(&root->fs_info->tree_log_mutex); | ||
204 | return ret; | ||
205 | } | ||
206 | |||
207 | /* | ||
208 | * indicate we're done making changes to the log tree | ||
209 | * and wake up anyone waiting to do a sync | ||
210 | */ | ||
211 | static int end_log_trans(struct btrfs_root *root) | ||
212 | { | ||
213 | atomic_dec(&root->fs_info->tree_log_writers); | ||
214 | smp_mb(); | ||
215 | if (waitqueue_active(&root->fs_info->tree_log_wait)) | ||
216 | wake_up(&root->fs_info->tree_log_wait); | ||
217 | return 0; | ||
218 | } | ||
219 | |||
220 | |||
221 | /* | ||
222 | * the walk control struct is used to pass state down the chain when | ||
223 | * processing the log tree. The stage field tells us which part | ||
224 | * of the log tree processing we are currently doing. The others | ||
225 | * are state fields used for that specific part | ||
226 | */ | ||
227 | struct walk_control { | ||
228 | /* should we free the extent on disk when done? This is used | ||
229 | * at transaction commit time while freeing a log tree | ||
230 | */ | ||
231 | int free; | ||
232 | |||
233 | /* should we write out the extent buffer? This is used | ||
234 | * while flushing the log tree to disk during a sync | ||
235 | */ | ||
236 | int write; | ||
237 | |||
238 | /* should we wait for the extent buffer io to finish? Also used | ||
239 | * while flushing the log tree to disk for a sync | ||
240 | */ | ||
241 | int wait; | ||
242 | |||
243 | /* pin only walk, we record which extents on disk belong to the | ||
244 | * log trees | ||
245 | */ | ||
246 | int pin; | ||
247 | |||
248 | /* what stage of the replay code we're currently in */ | ||
249 | int stage; | ||
250 | |||
251 | /* the root we are currently replaying */ | ||
252 | struct btrfs_root *replay_dest; | ||
253 | |||
254 | /* the trans handle for the current replay */ | ||
255 | struct btrfs_trans_handle *trans; | ||
256 | |||
257 | /* the function that gets used to process blocks we find in the | ||
258 | * tree. Note the extent_buffer might not be up to date when it is | ||
259 | * passed in, and it must be checked or read if you need the data | ||
260 | * inside it | ||
261 | */ | ||
262 | int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb, | ||
263 | struct walk_control *wc, u64 gen); | ||
264 | }; | ||
265 | |||
266 | /* | ||
267 | * process_func used to pin down extents, write them or wait on them | ||
268 | */ | ||
269 | static int process_one_buffer(struct btrfs_root *log, | ||
270 | struct extent_buffer *eb, | ||
271 | struct walk_control *wc, u64 gen) | ||
272 | { | ||
273 | if (wc->pin) { | ||
274 | mutex_lock(&log->fs_info->alloc_mutex); | ||
275 | btrfs_update_pinned_extents(log->fs_info->extent_root, | ||
276 | eb->start, eb->len, 1); | ||
277 | mutex_unlock(&log->fs_info->alloc_mutex); | ||
278 | } | ||
279 | |||
280 | if (btrfs_buffer_uptodate(eb, gen)) { | ||
281 | if (wc->write) | ||
282 | btrfs_write_tree_block(eb); | ||
283 | if (wc->wait) | ||
284 | btrfs_wait_tree_block_writeback(eb); | ||
285 | } | ||
286 | return 0; | ||
287 | } | ||
288 | |||
289 | /* | ||
290 | * Item overwrite used by replay and tree logging. eb, slot and key all refer | ||
291 | * to the src data we are copying out. | ||
292 | * | ||
293 | * root is the tree we are copying into, and path is a scratch | ||
294 | * path for use in this function (it should be released on entry and | ||
295 | * will be released on exit). | ||
296 | * | ||
297 | * If the key is already in the destination tree the existing item is | ||
298 | * overwritten. If the existing item isn't big enough, it is extended. | ||
299 | * If it is too large, it is truncated. | ||
300 | * | ||
301 | * If the key isn't in the destination yet, a new item is inserted. | ||
302 | */ | ||
303 | static noinline int overwrite_item(struct btrfs_trans_handle *trans, | ||
304 | struct btrfs_root *root, | ||
305 | struct btrfs_path *path, | ||
306 | struct extent_buffer *eb, int slot, | ||
307 | struct btrfs_key *key) | ||
308 | { | ||
309 | int ret; | ||
310 | u32 item_size; | ||
311 | u64 saved_i_size = 0; | ||
312 | int save_old_i_size = 0; | ||
313 | unsigned long src_ptr; | ||
314 | unsigned long dst_ptr; | ||
315 | int overwrite_root = 0; | ||
316 | |||
317 | if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) | ||
318 | overwrite_root = 1; | ||
319 | |||
320 | item_size = btrfs_item_size_nr(eb, slot); | ||
321 | src_ptr = btrfs_item_ptr_offset(eb, slot); | ||
322 | |||
323 | /* look for the key in the destination tree */ | ||
324 | ret = btrfs_search_slot(NULL, root, key, path, 0, 0); | ||
325 | if (ret == 0) { | ||
326 | char *src_copy; | ||
327 | char *dst_copy; | ||
328 | u32 dst_size = btrfs_item_size_nr(path->nodes[0], | ||
329 | path->slots[0]); | ||
330 | if (dst_size != item_size) | ||
331 | goto insert; | ||
332 | |||
333 | if (item_size == 0) { | ||
334 | btrfs_release_path(root, path); | ||
335 | return 0; | ||
336 | } | ||
337 | dst_copy = kmalloc(item_size, GFP_NOFS); | ||
338 | src_copy = kmalloc(item_size, GFP_NOFS); | ||
339 | |||
340 | read_extent_buffer(eb, src_copy, src_ptr, item_size); | ||
341 | |||
342 | dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); | ||
343 | read_extent_buffer(path->nodes[0], dst_copy, dst_ptr, | ||
344 | item_size); | ||
345 | ret = memcmp(dst_copy, src_copy, item_size); | ||
346 | |||
347 | kfree(dst_copy); | ||
348 | kfree(src_copy); | ||
349 | /* | ||
350 | * they have the same contents, just return, this saves | ||
351 | * us from cowing blocks in the destination tree and doing | ||
352 | * extra writes that may not have been done by a previous | ||
353 | * sync | ||
354 | */ | ||
355 | if (ret == 0) { | ||
356 | btrfs_release_path(root, path); | ||
357 | return 0; | ||
358 | } | ||
359 | |||
360 | } | ||
361 | insert: | ||
362 | btrfs_release_path(root, path); | ||
363 | /* try to insert the key into the destination tree */ | ||
364 | ret = btrfs_insert_empty_item(trans, root, path, | ||
365 | key, item_size); | ||
366 | |||
367 | /* make sure any existing item is the correct size */ | ||
368 | if (ret == -EEXIST) { | ||
369 | u32 found_size; | ||
370 | found_size = btrfs_item_size_nr(path->nodes[0], | ||
371 | path->slots[0]); | ||
372 | if (found_size > item_size) { | ||
373 | btrfs_truncate_item(trans, root, path, item_size, 1); | ||
374 | } else if (found_size < item_size) { | ||
375 | ret = btrfs_del_item(trans, root, | ||
376 | path); | ||
377 | BUG_ON(ret); | ||
378 | |||
379 | btrfs_release_path(root, path); | ||
380 | ret = btrfs_insert_empty_item(trans, | ||
381 | root, path, key, item_size); | ||
382 | BUG_ON(ret); | ||
383 | } | ||
384 | } else if (ret) { | ||
385 | BUG(); | ||
386 | } | ||
387 | dst_ptr = btrfs_item_ptr_offset(path->nodes[0], | ||
388 | path->slots[0]); | ||
389 | |||
390 | /* don't overwrite an existing inode if the generation number | ||
391 | * was logged as zero. This is done when the tree logging code | ||
392 | * is just logging an inode to make sure it exists after recovery. | ||
393 | * | ||
394 | * Also, don't overwrite i_size on directories during replay. | ||
395 | * log replay inserts and removes directory items based on the | ||
396 | * state of the tree found in the subvolume, and i_size is modified | ||
397 | * as it goes | ||
398 | */ | ||
399 | if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) { | ||
400 | struct btrfs_inode_item *src_item; | ||
401 | struct btrfs_inode_item *dst_item; | ||
402 | |||
403 | src_item = (struct btrfs_inode_item *)src_ptr; | ||
404 | dst_item = (struct btrfs_inode_item *)dst_ptr; | ||
405 | |||
406 | if (btrfs_inode_generation(eb, src_item) == 0) | ||
407 | goto no_copy; | ||
408 | |||
409 | if (overwrite_root && | ||
410 | S_ISDIR(btrfs_inode_mode(eb, src_item)) && | ||
411 | S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) { | ||
412 | save_old_i_size = 1; | ||
413 | saved_i_size = btrfs_inode_size(path->nodes[0], | ||
414 | dst_item); | ||
415 | } | ||
416 | } | ||
417 | |||
418 | copy_extent_buffer(path->nodes[0], eb, dst_ptr, | ||
419 | src_ptr, item_size); | ||
420 | |||
421 | if (save_old_i_size) { | ||
422 | struct btrfs_inode_item *dst_item; | ||
423 | dst_item = (struct btrfs_inode_item *)dst_ptr; | ||
424 | btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size); | ||
425 | } | ||
426 | |||
427 | /* make sure the generation is filled in */ | ||
428 | if (key->type == BTRFS_INODE_ITEM_KEY) { | ||
429 | struct btrfs_inode_item *dst_item; | ||
430 | dst_item = (struct btrfs_inode_item *)dst_ptr; | ||
431 | if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) { | ||
432 | btrfs_set_inode_generation(path->nodes[0], dst_item, | ||
433 | trans->transid); | ||
434 | } | ||
435 | } | ||
436 | |||
437 | if (overwrite_root && | ||
438 | key->type == BTRFS_EXTENT_DATA_KEY) { | ||
439 | int extent_type; | ||
440 | struct btrfs_file_extent_item *fi; | ||
441 | |||
442 | fi = (struct btrfs_file_extent_item *)dst_ptr; | ||
443 | extent_type = btrfs_file_extent_type(path->nodes[0], fi); | ||
444 | if (extent_type == BTRFS_FILE_EXTENT_REG) { | ||
445 | struct btrfs_key ins; | ||
446 | ins.objectid = btrfs_file_extent_disk_bytenr( | ||
447 | path->nodes[0], fi); | ||
448 | ins.offset = btrfs_file_extent_disk_num_bytes( | ||
449 | path->nodes[0], fi); | ||
450 | ins.type = BTRFS_EXTENT_ITEM_KEY; | ||
451 | |||
452 | /* | ||
453 | * is this extent already allocated in the extent | ||
454 | * allocation tree? If so, just add a reference | ||
455 | */ | ||
456 | ret = btrfs_lookup_extent(root, ins.objectid, | ||
457 | ins.offset); | ||
458 | if (ret == 0) { | ||
459 | ret = btrfs_inc_extent_ref(trans, root, | ||
460 | ins.objectid, ins.offset, | ||
461 | path->nodes[0]->start, | ||
462 | root->root_key.objectid, | ||
463 | trans->transid, | ||
464 | key->objectid, key->offset); | ||
465 | } else { | ||
466 | /* | ||
467 | * insert the extent pointer in the extent | ||
468 | * allocation tree | ||
469 | */ | ||
470 | ret = btrfs_alloc_logged_extent(trans, root, | ||
471 | path->nodes[0]->start, | ||
472 | root->root_key.objectid, | ||
473 | trans->transid, key->objectid, | ||
474 | key->offset, &ins); | ||
475 | BUG_ON(ret); | ||
476 | } | ||
477 | } | ||
478 | } | ||
479 | no_copy: | ||
480 | btrfs_mark_buffer_dirty(path->nodes[0]); | ||
481 | btrfs_release_path(root, path); | ||
482 | return 0; | ||
483 | } | ||
484 | |||
485 | /* | ||
486 | * simple helper to read an inode off the disk from a given root | ||
487 | * This can only be called for subvolume roots and not for the log | ||
488 | */ | ||
489 | static noinline struct inode *read_one_inode(struct btrfs_root *root, | ||
490 | u64 objectid) | ||
491 | { | ||
492 | struct inode *inode; | ||
493 | inode = btrfs_iget_locked(root->fs_info->sb, objectid, root); | ||
494 | if (inode->i_state & I_NEW) { | ||
495 | BTRFS_I(inode)->root = root; | ||
496 | BTRFS_I(inode)->location.objectid = objectid; | ||
497 | BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY; | ||
498 | BTRFS_I(inode)->location.offset = 0; | ||
499 | btrfs_read_locked_inode(inode); | ||
500 | unlock_new_inode(inode); | ||
501 | |||
502 | } | ||
503 | if (is_bad_inode(inode)) { | ||
504 | iput(inode); | ||
505 | inode = NULL; | ||
506 | } | ||
507 | return inode; | ||
508 | } | ||
509 | |||
510 | /* replays a single extent in 'eb' at 'slot' with 'key' into the | ||
511 | * subvolume 'root'. path is released on entry and should be released | ||
512 | * on exit. | ||
513 | * | ||
514 | * extents in the log tree have not been allocated out of the extent | ||
515 | * tree yet. So, this completes the allocation, taking a reference | ||
516 | * as required if the extent already exists or creating a new extent | ||
517 | * if it isn't in the extent allocation tree yet. | ||
518 | * | ||
519 | * The extent is inserted into the file, dropping any existing extents | ||
520 | * from the file that overlap the new one. | ||
521 | */ | ||
522 | static noinline int replay_one_extent(struct btrfs_trans_handle *trans, | ||
523 | struct btrfs_root *root, | ||
524 | struct btrfs_path *path, | ||
525 | struct extent_buffer *eb, int slot, | ||
526 | struct btrfs_key *key) | ||
527 | { | ||
528 | int found_type; | ||
529 | u64 mask = root->sectorsize - 1; | ||
530 | u64 extent_end; | ||
531 | u64 alloc_hint; | ||
532 | u64 start = key->offset; | ||
533 | struct btrfs_file_extent_item *item; | ||
534 | struct inode *inode = NULL; | ||
535 | unsigned long size; | ||
536 | int ret = 0; | ||
537 | |||
538 | item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); | ||
539 | found_type = btrfs_file_extent_type(eb, item); | ||
540 | |||
541 | if (found_type == BTRFS_FILE_EXTENT_REG) | ||
542 | extent_end = start + btrfs_file_extent_num_bytes(eb, item); | ||
543 | else if (found_type == BTRFS_FILE_EXTENT_INLINE) { | ||
544 | size = btrfs_file_extent_inline_len(eb, | ||
545 | btrfs_item_nr(eb, slot)); | ||
546 | extent_end = (start + size + mask) & ~mask; | ||
547 | } else { | ||
548 | ret = 0; | ||
549 | goto out; | ||
550 | } | ||
551 | |||
552 | inode = read_one_inode(root, key->objectid); | ||
553 | if (!inode) { | ||
554 | ret = -EIO; | ||
555 | goto out; | ||
556 | } | ||
557 | |||
558 | /* | ||
559 | * first check to see if we already have this extent in the | ||
560 | * file. This must be done before the btrfs_drop_extents run | ||
561 | * so we don't try to drop this extent. | ||
562 | */ | ||
563 | ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino, | ||
564 | start, 0); | ||
565 | |||
566 | if (ret == 0 && found_type == BTRFS_FILE_EXTENT_REG) { | ||
567 | struct btrfs_file_extent_item cmp1; | ||
568 | struct btrfs_file_extent_item cmp2; | ||
569 | struct btrfs_file_extent_item *existing; | ||
570 | struct extent_buffer *leaf; | ||
571 | |||
572 | leaf = path->nodes[0]; | ||
573 | existing = btrfs_item_ptr(leaf, path->slots[0], | ||
574 | struct btrfs_file_extent_item); | ||
575 | |||
576 | read_extent_buffer(eb, &cmp1, (unsigned long)item, | ||
577 | sizeof(cmp1)); | ||
578 | read_extent_buffer(leaf, &cmp2, (unsigned long)existing, | ||
579 | sizeof(cmp2)); | ||
580 | |||
581 | /* | ||
582 | * we already have a pointer to this exact extent, | ||
583 | * we don't have to do anything | ||
584 | */ | ||
585 | if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) { | ||
586 | btrfs_release_path(root, path); | ||
587 | goto out; | ||
588 | } | ||
589 | } | ||
590 | btrfs_release_path(root, path); | ||
591 | |||
592 | /* drop any overlapping extents */ | ||
593 | ret = btrfs_drop_extents(trans, root, inode, | ||
594 | start, extent_end, start, &alloc_hint); | ||
595 | BUG_ON(ret); | ||
596 | |||
597 | /* insert the extent */ | ||
598 | ret = overwrite_item(trans, root, path, eb, slot, key); | ||
599 | BUG_ON(ret); | ||
600 | |||
601 | /* btrfs_drop_extents changes i_blocks, update it here */ | ||
602 | inode->i_blocks += (extent_end - start) >> 9; | ||
603 | btrfs_update_inode(trans, root, inode); | ||
604 | out: | ||
605 | if (inode) | ||
606 | iput(inode); | ||
607 | return ret; | ||
608 | } | ||
609 | |||
610 | /* | ||
611 | * when cleaning up conflicts between the directory names in the | ||
612 | * subvolume, directory names in the log and directory names in the | ||
613 | * inode back references, we may have to unlink inodes from directories. | ||
614 | * | ||
615 | * This is a helper function to do the unlink of a specific directory | ||
616 | * item | ||
617 | */ | ||
618 | static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans, | ||
619 | struct btrfs_root *root, | ||
620 | struct btrfs_path *path, | ||
621 | struct inode *dir, | ||
622 | struct btrfs_dir_item *di) | ||
623 | { | ||
624 | struct inode *inode; | ||
625 | char *name; | ||
626 | int name_len; | ||
627 | struct extent_buffer *leaf; | ||
628 | struct btrfs_key location; | ||
629 | int ret; | ||
630 | |||
631 | leaf = path->nodes[0]; | ||
632 | |||
633 | btrfs_dir_item_key_to_cpu(leaf, di, &location); | ||
634 | name_len = btrfs_dir_name_len(leaf, di); | ||
635 | name = kmalloc(name_len, GFP_NOFS); | ||
636 | read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len); | ||
637 | btrfs_release_path(root, path); | ||
638 | |||
639 | inode = read_one_inode(root, location.objectid); | ||
640 | BUG_ON(!inode); | ||
641 | |||
642 | btrfs_inc_nlink(inode); | ||
643 | ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len); | ||
644 | kfree(name); | ||
645 | |||
646 | iput(inode); | ||
647 | return ret; | ||
648 | } | ||
649 | |||
650 | /* | ||
651 | * helper function to see if a given name and sequence number found | ||
652 | * in an inode back reference are already in a directory and correctly | ||
653 | * point to this inode | ||
654 | */ | ||
655 | static noinline int inode_in_dir(struct btrfs_root *root, | ||
656 | struct btrfs_path *path, | ||
657 | u64 dirid, u64 objectid, u64 index, | ||
658 | const char *name, int name_len) | ||
659 | { | ||
660 | struct btrfs_dir_item *di; | ||
661 | struct btrfs_key location; | ||
662 | int match = 0; | ||
663 | |||
664 | di = btrfs_lookup_dir_index_item(NULL, root, path, dirid, | ||
665 | index, name, name_len, 0); | ||
666 | if (di && !IS_ERR(di)) { | ||
667 | btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); | ||
668 | if (location.objectid != objectid) | ||
669 | goto out; | ||
670 | } else | ||
671 | goto out; | ||
672 | btrfs_release_path(root, path); | ||
673 | |||
674 | di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0); | ||
675 | if (di && !IS_ERR(di)) { | ||
676 | btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); | ||
677 | if (location.objectid != objectid) | ||
678 | goto out; | ||
679 | } else | ||
680 | goto out; | ||
681 | match = 1; | ||
682 | out: | ||
683 | btrfs_release_path(root, path); | ||
684 | return match; | ||
685 | } | ||
686 | |||
687 | /* | ||
688 | * helper function to check a log tree for a named back reference in | ||
689 | * an inode. This is used to decide if a back reference that is | ||
690 | * found in the subvolume conflicts with what we find in the log. | ||
691 | * | ||
692 | * inode backreferences may have multiple refs in a single item, | ||
693 | * during replay we process one reference at a time, and we don't | ||
694 | * want to delete valid links to a file from the subvolume if that | ||
695 | * link is also in the log. | ||
696 | */ | ||
697 | static noinline int backref_in_log(struct btrfs_root *log, | ||
698 | struct btrfs_key *key, | ||
699 | char *name, int namelen) | ||
700 | { | ||
701 | struct btrfs_path *path; | ||
702 | struct btrfs_inode_ref *ref; | ||
703 | unsigned long ptr; | ||
704 | unsigned long ptr_end; | ||
705 | unsigned long name_ptr; | ||
706 | int found_name_len; | ||
707 | int item_size; | ||
708 | int ret; | ||
709 | int match = 0; | ||
710 | |||
711 | path = btrfs_alloc_path(); | ||
712 | ret = btrfs_search_slot(NULL, log, key, path, 0, 0); | ||
713 | if (ret != 0) | ||
714 | goto out; | ||
715 | |||
716 | item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]); | ||
717 | ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); | ||
718 | ptr_end = ptr + item_size; | ||
719 | while (ptr < ptr_end) { | ||
720 | ref = (struct btrfs_inode_ref *)ptr; | ||
721 | found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref); | ||
722 | if (found_name_len == namelen) { | ||
723 | name_ptr = (unsigned long)(ref + 1); | ||
724 | ret = memcmp_extent_buffer(path->nodes[0], name, | ||
725 | name_ptr, namelen); | ||
726 | if (ret == 0) { | ||
727 | match = 1; | ||
728 | goto out; | ||
729 | } | ||
730 | } | ||
731 | ptr = (unsigned long)(ref + 1) + found_name_len; | ||
732 | } | ||
733 | out: | ||
734 | btrfs_free_path(path); | ||
735 | return match; | ||
736 | } | ||
737 | |||
738 | |||
739 | /* | ||
740 | * replay one inode back reference item found in the log tree. | ||
741 | * eb, slot and key refer to the buffer and key found in the log tree. | ||
742 | * root is the destination we are replaying into, and path is for temp | ||
743 | * use by this function. (it should be released on return). | ||
744 | */ | ||
745 | static noinline int add_inode_ref(struct btrfs_trans_handle *trans, | ||
746 | struct btrfs_root *root, | ||
747 | struct btrfs_root *log, | ||
748 | struct btrfs_path *path, | ||
749 | struct extent_buffer *eb, int slot, | ||
750 | struct btrfs_key *key) | ||
751 | { | ||
752 | struct inode *dir; | ||
753 | int ret; | ||
754 | struct btrfs_key location; | ||
755 | struct btrfs_inode_ref *ref; | ||
756 | struct btrfs_dir_item *di; | ||
757 | struct inode *inode; | ||
758 | char *name; | ||
759 | int namelen; | ||
760 | unsigned long ref_ptr; | ||
761 | unsigned long ref_end; | ||
762 | |||
763 | location.objectid = key->objectid; | ||
764 | location.type = BTRFS_INODE_ITEM_KEY; | ||
765 | location.offset = 0; | ||
766 | |||
767 | /* | ||
768 | * it is possible that we didn't log all the parent directories | ||
769 | * for a given inode. If we don't find the dir, just don't | ||
770 | * copy the back ref in. The link count fixup code will take | ||
771 | * care of the rest | ||
772 | */ | ||
773 | dir = read_one_inode(root, key->offset); | ||
774 | if (!dir) | ||
775 | return -ENOENT; | ||
776 | |||
777 | inode = read_one_inode(root, key->objectid); | ||
778 | BUG_ON(!dir); | ||
779 | |||
780 | ref_ptr = btrfs_item_ptr_offset(eb, slot); | ||
781 | ref_end = ref_ptr + btrfs_item_size_nr(eb, slot); | ||
782 | |||
783 | again: | ||
784 | ref = (struct btrfs_inode_ref *)ref_ptr; | ||
785 | |||
786 | namelen = btrfs_inode_ref_name_len(eb, ref); | ||
787 | name = kmalloc(namelen, GFP_NOFS); | ||
788 | BUG_ON(!name); | ||
789 | |||
790 | read_extent_buffer(eb, name, (unsigned long)(ref + 1), namelen); | ||
791 | |||
792 | /* if we already have a perfect match, we're done */ | ||
793 | if (inode_in_dir(root, path, dir->i_ino, inode->i_ino, | ||
794 | btrfs_inode_ref_index(eb, ref), | ||
795 | name, namelen)) { | ||
796 | goto out; | ||
797 | } | ||
798 | |||
799 | /* | ||
800 | * look for a conflicting back reference in the metadata. | ||
801 | * if we find one we have to unlink that name of the file | ||
802 | * before we add our new link. Later on, we overwrite any | ||
803 | * existing back reference, and we don't want to create | ||
804 | * dangling pointers in the directory. | ||
805 | */ | ||
806 | conflict_again: | ||
807 | ret = btrfs_search_slot(NULL, root, key, path, 0, 0); | ||
808 | if (ret == 0) { | ||
809 | char *victim_name; | ||
810 | int victim_name_len; | ||
811 | struct btrfs_inode_ref *victim_ref; | ||
812 | unsigned long ptr; | ||
813 | unsigned long ptr_end; | ||
814 | struct extent_buffer *leaf = path->nodes[0]; | ||
815 | |||
816 | /* are we trying to overwrite a back ref for the root directory | ||
817 | * if so, just jump out, we're done | ||
818 | */ | ||
819 | if (key->objectid == key->offset) | ||
820 | goto out_nowrite; | ||
821 | |||
822 | /* check all the names in this back reference to see | ||
823 | * if they are in the log. if so, we allow them to stay | ||
824 | * otherwise they must be unlinked as a conflict | ||
825 | */ | ||
826 | ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); | ||
827 | ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]); | ||
828 | while(ptr < ptr_end) { | ||
829 | victim_ref = (struct btrfs_inode_ref *)ptr; | ||
830 | victim_name_len = btrfs_inode_ref_name_len(leaf, | ||
831 | victim_ref); | ||
832 | victim_name = kmalloc(victim_name_len, GFP_NOFS); | ||
833 | BUG_ON(!victim_name); | ||
834 | |||
835 | read_extent_buffer(leaf, victim_name, | ||
836 | (unsigned long)(victim_ref + 1), | ||
837 | victim_name_len); | ||
838 | |||
839 | if (!backref_in_log(log, key, victim_name, | ||
840 | victim_name_len)) { | ||
841 | btrfs_inc_nlink(inode); | ||
842 | btrfs_release_path(root, path); | ||
843 | ret = btrfs_unlink_inode(trans, root, dir, | ||
844 | inode, victim_name, | ||
845 | victim_name_len); | ||
846 | kfree(victim_name); | ||
847 | btrfs_release_path(root, path); | ||
848 | goto conflict_again; | ||
849 | } | ||
850 | kfree(victim_name); | ||
851 | ptr = (unsigned long)(victim_ref + 1) + victim_name_len; | ||
852 | } | ||
853 | BUG_ON(ret); | ||
854 | } | ||
855 | btrfs_release_path(root, path); | ||
856 | |||
857 | /* look for a conflicting sequence number */ | ||
858 | di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, | ||
859 | btrfs_inode_ref_index(eb, ref), | ||
860 | name, namelen, 0); | ||
861 | if (di && !IS_ERR(di)) { | ||
862 | ret = drop_one_dir_item(trans, root, path, dir, di); | ||
863 | BUG_ON(ret); | ||
864 | } | ||
865 | btrfs_release_path(root, path); | ||
866 | |||
867 | |||
868 | /* look for a conflicting name */ | ||
869 | di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino, | ||
870 | name, namelen, 0); | ||
871 | if (di && !IS_ERR(di)) { | ||
872 | ret = drop_one_dir_item(trans, root, path, dir, di); | ||
873 | BUG_ON(ret); | ||
874 | } | ||
875 | btrfs_release_path(root, path); | ||
876 | |||
877 | /* insert our name */ | ||
878 | ret = btrfs_add_link(trans, dir, inode, name, namelen, 0, | ||
879 | btrfs_inode_ref_index(eb, ref)); | ||
880 | BUG_ON(ret); | ||
881 | |||
882 | btrfs_update_inode(trans, root, inode); | ||
883 | |||
884 | out: | ||
885 | ref_ptr = (unsigned long)(ref + 1) + namelen; | ||
886 | kfree(name); | ||
887 | if (ref_ptr < ref_end) | ||
888 | goto again; | ||
889 | |||
890 | /* finally write the back reference in the inode */ | ||
891 | ret = overwrite_item(trans, root, path, eb, slot, key); | ||
892 | BUG_ON(ret); | ||
893 | |||
894 | out_nowrite: | ||
895 | btrfs_release_path(root, path); | ||
896 | iput(dir); | ||
897 | iput(inode); | ||
898 | return 0; | ||
899 | } | ||
900 | |||
901 | /* | ||
902 | * replay one csum item from the log tree into the subvolume 'root' | ||
903 | * eb, slot and key all refer to the log tree | ||
904 | * path is for temp use by this function and should be released on return | ||
905 | * | ||
906 | * This copies the checksums out of the log tree and inserts them into | ||
907 | * the subvolume. Any existing checksums for this range in the file | ||
908 | * are overwritten, and new items are added where required. | ||
909 | * | ||
910 | * We keep this simple by reusing the btrfs_ordered_sum code from | ||
911 | * the data=ordered mode. This basically means making a copy | ||
912 | * of all the checksums in ram, which we have to do anyway for kmap | ||
913 | * rules. | ||
914 | * | ||
915 | * The copy is then sent down to btrfs_csum_file_blocks, which | ||
916 | * does all the hard work of finding existing items in the file | ||
917 | * or adding new ones. | ||
918 | */ | ||
919 | static noinline int replay_one_csum(struct btrfs_trans_handle *trans, | ||
920 | struct btrfs_root *root, | ||
921 | struct btrfs_path *path, | ||
922 | struct extent_buffer *eb, int slot, | ||
923 | struct btrfs_key *key) | ||
924 | { | ||
925 | int ret; | ||
926 | u32 item_size = btrfs_item_size_nr(eb, slot); | ||
927 | u64 cur_offset; | ||
928 | unsigned long file_bytes; | ||
929 | struct btrfs_ordered_sum *sums; | ||
930 | struct btrfs_sector_sum *sector_sum; | ||
931 | struct inode *inode; | ||
932 | unsigned long ptr; | ||
933 | |||
934 | file_bytes = (item_size / BTRFS_CRC32_SIZE) * root->sectorsize; | ||
935 | inode = read_one_inode(root, key->objectid); | ||
936 | if (!inode) { | ||
937 | return -EIO; | ||
938 | } | ||
939 | |||
940 | sums = kzalloc(btrfs_ordered_sum_size(root, file_bytes), GFP_NOFS); | ||
941 | if (!sums) { | ||
942 | iput(inode); | ||
943 | return -ENOMEM; | ||
944 | } | ||
945 | |||
946 | INIT_LIST_HEAD(&sums->list); | ||
947 | sums->len = file_bytes; | ||
948 | sums->file_offset = key->offset; | ||
949 | |||
950 | /* | ||
951 | * copy all the sums into the ordered sum struct | ||
952 | */ | ||
953 | sector_sum = sums->sums; | ||
954 | cur_offset = key->offset; | ||
955 | ptr = btrfs_item_ptr_offset(eb, slot); | ||
956 | while(item_size > 0) { | ||
957 | sector_sum->offset = cur_offset; | ||
958 | read_extent_buffer(eb, §or_sum->sum, ptr, BTRFS_CRC32_SIZE); | ||
959 | sector_sum++; | ||
960 | item_size -= BTRFS_CRC32_SIZE; | ||
961 | ptr += BTRFS_CRC32_SIZE; | ||
962 | cur_offset += root->sectorsize; | ||
963 | } | ||
964 | |||
965 | /* let btrfs_csum_file_blocks add them into the file */ | ||
966 | ret = btrfs_csum_file_blocks(trans, root, inode, sums); | ||
967 | BUG_ON(ret); | ||
968 | kfree(sums); | ||
969 | iput(inode); | ||
970 | |||
971 | return 0; | ||
972 | } | ||
973 | /* | ||
974 | * There are a few corners where the link count of the file can't | ||
975 | * be properly maintained during replay. So, instead of adding | ||
976 | * lots of complexity to the log code, we just scan the backrefs | ||
977 | * for any file that has been through replay. | ||
978 | * | ||
979 | * The scan will update the link count on the inode to reflect the | ||
980 | * number of back refs found. If it goes down to zero, the iput | ||
981 | * will free the inode. | ||
982 | */ | ||
983 | static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans, | ||
984 | struct btrfs_root *root, | ||
985 | struct inode *inode) | ||
986 | { | ||
987 | struct btrfs_path *path; | ||
988 | int ret; | ||
989 | struct btrfs_key key; | ||
990 | u64 nlink = 0; | ||
991 | unsigned long ptr; | ||
992 | unsigned long ptr_end; | ||
993 | int name_len; | ||
994 | |||
995 | key.objectid = inode->i_ino; | ||
996 | key.type = BTRFS_INODE_REF_KEY; | ||
997 | key.offset = (u64)-1; | ||
998 | |||
999 | path = btrfs_alloc_path(); | ||
1000 | |||
1001 | while(1) { | ||
1002 | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | ||
1003 | if (ret < 0) | ||
1004 | break; | ||
1005 | if (ret > 0) { | ||
1006 | if (path->slots[0] == 0) | ||
1007 | break; | ||
1008 | path->slots[0]--; | ||
1009 | } | ||
1010 | btrfs_item_key_to_cpu(path->nodes[0], &key, | ||
1011 | path->slots[0]); | ||
1012 | if (key.objectid != inode->i_ino || | ||
1013 | key.type != BTRFS_INODE_REF_KEY) | ||
1014 | break; | ||
1015 | ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); | ||
1016 | ptr_end = ptr + btrfs_item_size_nr(path->nodes[0], | ||
1017 | path->slots[0]); | ||
1018 | while(ptr < ptr_end) { | ||
1019 | struct btrfs_inode_ref *ref; | ||
1020 | |||
1021 | ref = (struct btrfs_inode_ref *)ptr; | ||
1022 | name_len = btrfs_inode_ref_name_len(path->nodes[0], | ||
1023 | ref); | ||
1024 | ptr = (unsigned long)(ref + 1) + name_len; | ||
1025 | nlink++; | ||
1026 | } | ||
1027 | |||
1028 | if (key.offset == 0) | ||
1029 | break; | ||
1030 | key.offset--; | ||
1031 | btrfs_release_path(root, path); | ||
1032 | } | ||
1033 | btrfs_free_path(path); | ||
1034 | if (nlink != inode->i_nlink) { | ||
1035 | inode->i_nlink = nlink; | ||
1036 | btrfs_update_inode(trans, root, inode); | ||
1037 | } | ||
1038 | BTRFS_I(inode)->index_cnt = (u64)-1; | ||
1039 | |||
1040 | return 0; | ||
1041 | } | ||
1042 | |||
1043 | static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans, | ||
1044 | struct btrfs_root *root, | ||
1045 | struct btrfs_path *path) | ||
1046 | { | ||
1047 | int ret; | ||
1048 | struct btrfs_key key; | ||
1049 | struct inode *inode; | ||
1050 | |||
1051 | key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; | ||
1052 | key.type = BTRFS_ORPHAN_ITEM_KEY; | ||
1053 | key.offset = (u64)-1; | ||
1054 | while(1) { | ||
1055 | ret = btrfs_search_slot(trans, root, &key, path, -1, 1); | ||
1056 | if (ret < 0) | ||
1057 | break; | ||
1058 | |||
1059 | if (ret == 1) { | ||
1060 | if (path->slots[0] == 0) | ||
1061 | break; | ||
1062 | path->slots[0]--; | ||
1063 | } | ||
1064 | |||
1065 | btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); | ||
1066 | if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID || | ||
1067 | key.type != BTRFS_ORPHAN_ITEM_KEY) | ||
1068 | break; | ||
1069 | |||
1070 | ret = btrfs_del_item(trans, root, path); | ||
1071 | BUG_ON(ret); | ||
1072 | |||
1073 | btrfs_release_path(root, path); | ||
1074 | inode = read_one_inode(root, key.offset); | ||
1075 | BUG_ON(!inode); | ||
1076 | |||
1077 | ret = fixup_inode_link_count(trans, root, inode); | ||
1078 | BUG_ON(ret); | ||
1079 | |||
1080 | iput(inode); | ||
1081 | |||
1082 | if (key.offset == 0) | ||
1083 | break; | ||
1084 | key.offset--; | ||
1085 | } | ||
1086 | btrfs_release_path(root, path); | ||
1087 | return 0; | ||
1088 | } | ||
1089 | |||
1090 | |||
1091 | /* | ||
1092 | * record a given inode in the fixup dir so we can check its link | ||
1093 | * count when replay is done. The link count is incremented here | ||
1094 | * so the inode won't go away until we check it | ||
1095 | */ | ||
1096 | static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans, | ||
1097 | struct btrfs_root *root, | ||
1098 | struct btrfs_path *path, | ||
1099 | u64 objectid) | ||
1100 | { | ||
1101 | struct btrfs_key key; | ||
1102 | int ret = 0; | ||
1103 | struct inode *inode; | ||
1104 | |||
1105 | inode = read_one_inode(root, objectid); | ||
1106 | BUG_ON(!inode); | ||
1107 | |||
1108 | key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; | ||
1109 | btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY); | ||
1110 | key.offset = objectid; | ||
1111 | |||
1112 | ret = btrfs_insert_empty_item(trans, root, path, &key, 0); | ||
1113 | |||
1114 | btrfs_release_path(root, path); | ||
1115 | if (ret == 0) { | ||
1116 | btrfs_inc_nlink(inode); | ||
1117 | btrfs_update_inode(trans, root, inode); | ||
1118 | } else if (ret == -EEXIST) { | ||
1119 | ret = 0; | ||
1120 | } else { | ||
1121 | BUG(); | ||
1122 | } | ||
1123 | iput(inode); | ||
1124 | |||
1125 | return ret; | ||
1126 | } | ||
1127 | |||
1128 | /* | ||
1129 | * when replaying the log for a directory, we only insert names | ||
1130 | * for inodes that actually exist. This means an fsync on a directory | ||
1131 | * does not implicitly fsync all the new files in it | ||
1132 | */ | ||
1133 | static noinline int insert_one_name(struct btrfs_trans_handle *trans, | ||
1134 | struct btrfs_root *root, | ||
1135 | struct btrfs_path *path, | ||
1136 | u64 dirid, u64 index, | ||
1137 | char *name, int name_len, u8 type, | ||
1138 | struct btrfs_key *location) | ||
1139 | { | ||
1140 | struct inode *inode; | ||
1141 | struct inode *dir; | ||
1142 | int ret; | ||
1143 | |||
1144 | inode = read_one_inode(root, location->objectid); | ||
1145 | if (!inode) | ||
1146 | return -ENOENT; | ||
1147 | |||
1148 | dir = read_one_inode(root, dirid); | ||
1149 | if (!dir) { | ||
1150 | iput(inode); | ||
1151 | return -EIO; | ||
1152 | } | ||
1153 | ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index); | ||
1154 | |||
1155 | /* FIXME, put inode into FIXUP list */ | ||
1156 | |||
1157 | iput(inode); | ||
1158 | iput(dir); | ||
1159 | return ret; | ||
1160 | } | ||
1161 | |||
1162 | /* | ||
1163 | * take a single entry in a log directory item and replay it into | ||
1164 | * the subvolume. | ||
1165 | * | ||
1166 | * if a conflicting item exists in the subdirectory already, | ||
1167 | * the inode it points to is unlinked and put into the link count | ||
1168 | * fix up tree. | ||
1169 | * | ||
1170 | * If a name from the log points to a file or directory that does | ||
1171 | * not exist in the FS, it is skipped. fsyncs on directories | ||
1172 | * do not force down inodes inside that directory, just changes to the | ||
1173 | * names or unlinks in a directory. | ||
1174 | */ | ||
1175 | static noinline int replay_one_name(struct btrfs_trans_handle *trans, | ||
1176 | struct btrfs_root *root, | ||
1177 | struct btrfs_path *path, | ||
1178 | struct extent_buffer *eb, | ||
1179 | struct btrfs_dir_item *di, | ||
1180 | struct btrfs_key *key) | ||
1181 | { | ||
1182 | char *name; | ||
1183 | int name_len; | ||
1184 | struct btrfs_dir_item *dst_di; | ||
1185 | struct btrfs_key found_key; | ||
1186 | struct btrfs_key log_key; | ||
1187 | struct inode *dir; | ||
1188 | u8 log_type; | ||
1189 | int exists; | ||
1190 | int ret; | ||
1191 | |||
1192 | dir = read_one_inode(root, key->objectid); | ||
1193 | BUG_ON(!dir); | ||
1194 | |||
1195 | name_len = btrfs_dir_name_len(eb, di); | ||
1196 | name = kmalloc(name_len, GFP_NOFS); | ||
1197 | log_type = btrfs_dir_type(eb, di); | ||
1198 | read_extent_buffer(eb, name, (unsigned long)(di + 1), | ||
1199 | name_len); | ||
1200 | |||
1201 | btrfs_dir_item_key_to_cpu(eb, di, &log_key); | ||
1202 | exists = btrfs_lookup_inode(trans, root, path, &log_key, 0); | ||
1203 | if (exists == 0) | ||
1204 | exists = 1; | ||
1205 | else | ||
1206 | exists = 0; | ||
1207 | btrfs_release_path(root, path); | ||
1208 | |||
1209 | if (key->type == BTRFS_DIR_ITEM_KEY) { | ||
1210 | dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid, | ||
1211 | name, name_len, 1); | ||
1212 | } | ||
1213 | else if (key->type == BTRFS_DIR_INDEX_KEY) { | ||
1214 | dst_di = btrfs_lookup_dir_index_item(trans, root, path, | ||
1215 | key->objectid, | ||
1216 | key->offset, name, | ||
1217 | name_len, 1); | ||
1218 | } else { | ||
1219 | BUG(); | ||
1220 | } | ||
1221 | if (!dst_di || IS_ERR(dst_di)) { | ||
1222 | /* we need a sequence number to insert, so we only | ||
1223 | * do inserts for the BTRFS_DIR_INDEX_KEY types | ||
1224 | */ | ||
1225 | if (key->type != BTRFS_DIR_INDEX_KEY) | ||
1226 | goto out; | ||
1227 | goto insert; | ||
1228 | } | ||
1229 | |||
1230 | btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key); | ||
1231 | /* the existing item matches the logged item */ | ||
1232 | if (found_key.objectid == log_key.objectid && | ||
1233 | found_key.type == log_key.type && | ||
1234 | found_key.offset == log_key.offset && | ||
1235 | btrfs_dir_type(path->nodes[0], dst_di) == log_type) { | ||
1236 | goto out; | ||
1237 | } | ||
1238 | |||
1239 | /* | ||
1240 | * don't drop the conflicting directory entry if the inode | ||
1241 | * for the new entry doesn't exist | ||
1242 | */ | ||
1243 | if (!exists) | ||
1244 | goto out; | ||
1245 | |||
1246 | ret = drop_one_dir_item(trans, root, path, dir, dst_di); | ||
1247 | BUG_ON(ret); | ||
1248 | |||
1249 | if (key->type == BTRFS_DIR_INDEX_KEY) | ||
1250 | goto insert; | ||
1251 | out: | ||
1252 | btrfs_release_path(root, path); | ||
1253 | kfree(name); | ||
1254 | iput(dir); | ||
1255 | return 0; | ||
1256 | |||
1257 | insert: | ||
1258 | btrfs_release_path(root, path); | ||
1259 | ret = insert_one_name(trans, root, path, key->objectid, key->offset, | ||
1260 | name, name_len, log_type, &log_key); | ||
1261 | |||
1262 | if (ret && ret != -ENOENT) | ||
1263 | BUG(); | ||
1264 | goto out; | ||
1265 | } | ||
1266 | |||
1267 | /* | ||
1268 | * find all the names in a directory item and reconcile them into | ||
1269 | * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than | ||
1270 | * one name in a directory item, but the same code gets used for | ||
1271 | * both directory index types | ||
1272 | */ | ||
1273 | static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans, | ||
1274 | struct btrfs_root *root, | ||
1275 | struct btrfs_path *path, | ||
1276 | struct extent_buffer *eb, int slot, | ||
1277 | struct btrfs_key *key) | ||
1278 | { | ||
1279 | int ret; | ||
1280 | u32 item_size = btrfs_item_size_nr(eb, slot); | ||
1281 | struct btrfs_dir_item *di; | ||
1282 | int name_len; | ||
1283 | unsigned long ptr; | ||
1284 | unsigned long ptr_end; | ||
1285 | |||
1286 | ptr = btrfs_item_ptr_offset(eb, slot); | ||
1287 | ptr_end = ptr + item_size; | ||
1288 | while(ptr < ptr_end) { | ||
1289 | di = (struct btrfs_dir_item *)ptr; | ||
1290 | name_len = btrfs_dir_name_len(eb, di); | ||
1291 | ret = replay_one_name(trans, root, path, eb, di, key); | ||
1292 | BUG_ON(ret); | ||
1293 | ptr = (unsigned long)(di + 1); | ||
1294 | ptr += name_len; | ||
1295 | } | ||
1296 | return 0; | ||
1297 | } | ||
1298 | |||
1299 | /* | ||
1300 | * directory replay has two parts. There are the standard directory | ||
1301 | * items in the log copied from the subvolume, and range items | ||
1302 | * created in the log while the subvolume was logged. | ||
1303 | * | ||
1304 | * The range items tell us which parts of the key space the log | ||
1305 | * is authoritative for. During replay, if a key in the subvolume | ||
1306 | * directory is in a logged range item, but not actually in the log | ||
1307 | * that means it was deleted from the directory before the fsync | ||
1308 | * and should be removed. | ||
1309 | */ | ||
1310 | static noinline int find_dir_range(struct btrfs_root *root, | ||
1311 | struct btrfs_path *path, | ||
1312 | u64 dirid, int key_type, | ||
1313 | u64 *start_ret, u64 *end_ret) | ||
1314 | { | ||
1315 | struct btrfs_key key; | ||
1316 | u64 found_end; | ||
1317 | struct btrfs_dir_log_item *item; | ||
1318 | int ret; | ||
1319 | int nritems; | ||
1320 | |||
1321 | if (*start_ret == (u64)-1) | ||
1322 | return 1; | ||
1323 | |||
1324 | key.objectid = dirid; | ||
1325 | key.type = key_type; | ||
1326 | key.offset = *start_ret; | ||
1327 | |||
1328 | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | ||
1329 | if (ret < 0) | ||
1330 | goto out; | ||
1331 | if (ret > 0) { | ||
1332 | if (path->slots[0] == 0) | ||
1333 | goto out; | ||
1334 | path->slots[0]--; | ||
1335 | } | ||
1336 | if (ret != 0) | ||
1337 | btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); | ||
1338 | |||
1339 | if (key.type != key_type || key.objectid != dirid) { | ||
1340 | ret = 1; | ||
1341 | goto next; | ||
1342 | } | ||
1343 | item = btrfs_item_ptr(path->nodes[0], path->slots[0], | ||
1344 | struct btrfs_dir_log_item); | ||
1345 | found_end = btrfs_dir_log_end(path->nodes[0], item); | ||
1346 | |||
1347 | if (*start_ret >= key.offset && *start_ret <= found_end) { | ||
1348 | ret = 0; | ||
1349 | *start_ret = key.offset; | ||
1350 | *end_ret = found_end; | ||
1351 | goto out; | ||
1352 | } | ||
1353 | ret = 1; | ||
1354 | next: | ||
1355 | /* check the next slot in the tree to see if it is a valid item */ | ||
1356 | nritems = btrfs_header_nritems(path->nodes[0]); | ||
1357 | if (path->slots[0] >= nritems) { | ||
1358 | ret = btrfs_next_leaf(root, path); | ||
1359 | if (ret) | ||
1360 | goto out; | ||
1361 | } else { | ||
1362 | path->slots[0]++; | ||
1363 | } | ||
1364 | |||
1365 | btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); | ||
1366 | |||
1367 | if (key.type != key_type || key.objectid != dirid) { | ||
1368 | ret = 1; | ||
1369 | goto out; | ||
1370 | } | ||
1371 | item = btrfs_item_ptr(path->nodes[0], path->slots[0], | ||
1372 | struct btrfs_dir_log_item); | ||
1373 | found_end = btrfs_dir_log_end(path->nodes[0], item); | ||
1374 | *start_ret = key.offset; | ||
1375 | *end_ret = found_end; | ||
1376 | ret = 0; | ||
1377 | out: | ||
1378 | btrfs_release_path(root, path); | ||
1379 | return ret; | ||
1380 | } | ||
1381 | |||
1382 | /* | ||
1383 | * this looks for a given directory item in the log. If the directory | ||
1384 | * item is not in the log, the item is removed and the inode it points | ||
1385 | * to is unlinked | ||
1386 | */ | ||
1387 | static noinline int check_item_in_log(struct btrfs_trans_handle *trans, | ||
1388 | struct btrfs_root *root, | ||
1389 | struct btrfs_root *log, | ||
1390 | struct btrfs_path *path, | ||
1391 | struct btrfs_path *log_path, | ||
1392 | struct inode *dir, | ||
1393 | struct btrfs_key *dir_key) | ||
1394 | { | ||
1395 | int ret; | ||
1396 | struct extent_buffer *eb; | ||
1397 | int slot; | ||
1398 | u32 item_size; | ||
1399 | struct btrfs_dir_item *di; | ||
1400 | struct btrfs_dir_item *log_di; | ||
1401 | int name_len; | ||
1402 | unsigned long ptr; | ||
1403 | unsigned long ptr_end; | ||
1404 | char *name; | ||
1405 | struct inode *inode; | ||
1406 | struct btrfs_key location; | ||
1407 | |||
1408 | again: | ||
1409 | eb = path->nodes[0]; | ||
1410 | slot = path->slots[0]; | ||
1411 | item_size = btrfs_item_size_nr(eb, slot); | ||
1412 | ptr = btrfs_item_ptr_offset(eb, slot); | ||
1413 | ptr_end = ptr + item_size; | ||
1414 | while(ptr < ptr_end) { | ||
1415 | di = (struct btrfs_dir_item *)ptr; | ||
1416 | name_len = btrfs_dir_name_len(eb, di); | ||
1417 | name = kmalloc(name_len, GFP_NOFS); | ||
1418 | if (!name) { | ||
1419 | ret = -ENOMEM; | ||
1420 | goto out; | ||
1421 | } | ||
1422 | read_extent_buffer(eb, name, (unsigned long)(di + 1), | ||
1423 | name_len); | ||
1424 | log_di = NULL; | ||
1425 | if (dir_key->type == BTRFS_DIR_ITEM_KEY) { | ||
1426 | log_di = btrfs_lookup_dir_item(trans, log, log_path, | ||
1427 | dir_key->objectid, | ||
1428 | name, name_len, 0); | ||
1429 | } else if (dir_key->type == BTRFS_DIR_INDEX_KEY) { | ||
1430 | log_di = btrfs_lookup_dir_index_item(trans, log, | ||
1431 | log_path, | ||
1432 | dir_key->objectid, | ||
1433 | dir_key->offset, | ||
1434 | name, name_len, 0); | ||
1435 | } | ||
1436 | if (!log_di || IS_ERR(log_di)) { | ||
1437 | btrfs_dir_item_key_to_cpu(eb, di, &location); | ||
1438 | btrfs_release_path(root, path); | ||
1439 | btrfs_release_path(log, log_path); | ||
1440 | inode = read_one_inode(root, location.objectid); | ||
1441 | BUG_ON(!inode); | ||
1442 | |||
1443 | ret = link_to_fixup_dir(trans, root, | ||
1444 | path, location.objectid); | ||
1445 | BUG_ON(ret); | ||
1446 | btrfs_inc_nlink(inode); | ||
1447 | ret = btrfs_unlink_inode(trans, root, dir, inode, | ||
1448 | name, name_len); | ||
1449 | BUG_ON(ret); | ||
1450 | kfree(name); | ||
1451 | iput(inode); | ||
1452 | |||
1453 | /* there might still be more names under this key | ||
1454 | * check and repeat if required | ||
1455 | */ | ||
1456 | ret = btrfs_search_slot(NULL, root, dir_key, path, | ||
1457 | 0, 0); | ||
1458 | if (ret == 0) | ||
1459 | goto again; | ||
1460 | ret = 0; | ||
1461 | goto out; | ||
1462 | } | ||
1463 | btrfs_release_path(log, log_path); | ||
1464 | kfree(name); | ||
1465 | |||
1466 | ptr = (unsigned long)(di + 1); | ||
1467 | ptr += name_len; | ||
1468 | } | ||
1469 | ret = 0; | ||
1470 | out: | ||
1471 | btrfs_release_path(root, path); | ||
1472 | btrfs_release_path(log, log_path); | ||
1473 | return ret; | ||
1474 | } | ||
1475 | |||
1476 | /* | ||
1477 | * deletion replay happens before we copy any new directory items | ||
1478 | * out of the log or out of backreferences from inodes. It | ||
1479 | * scans the log to find ranges of keys that log is authoritative for, | ||
1480 | * and then scans the directory to find items in those ranges that are | ||
1481 | * not present in the log. | ||
1482 | * | ||
1483 | * Anything we don't find in the log is unlinked and removed from the | ||
1484 | * directory. | ||
1485 | */ | ||
1486 | static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans, | ||
1487 | struct btrfs_root *root, | ||
1488 | struct btrfs_root *log, | ||
1489 | struct btrfs_path *path, | ||
1490 | u64 dirid) | ||
1491 | { | ||
1492 | u64 range_start; | ||
1493 | u64 range_end; | ||
1494 | int key_type = BTRFS_DIR_LOG_ITEM_KEY; | ||
1495 | int ret = 0; | ||
1496 | struct btrfs_key dir_key; | ||
1497 | struct btrfs_key found_key; | ||
1498 | struct btrfs_path *log_path; | ||
1499 | struct inode *dir; | ||
1500 | |||
1501 | dir_key.objectid = dirid; | ||
1502 | dir_key.type = BTRFS_DIR_ITEM_KEY; | ||
1503 | log_path = btrfs_alloc_path(); | ||
1504 | if (!log_path) | ||
1505 | return -ENOMEM; | ||
1506 | |||
1507 | dir = read_one_inode(root, dirid); | ||
1508 | /* it isn't an error if the inode isn't there, that can happen | ||
1509 | * because we replay the deletes before we copy in the inode item | ||
1510 | * from the log | ||
1511 | */ | ||
1512 | if (!dir) { | ||
1513 | btrfs_free_path(log_path); | ||
1514 | return 0; | ||
1515 | } | ||
1516 | again: | ||
1517 | range_start = 0; | ||
1518 | range_end = 0; | ||
1519 | while(1) { | ||
1520 | ret = find_dir_range(log, path, dirid, key_type, | ||
1521 | &range_start, &range_end); | ||
1522 | if (ret != 0) | ||
1523 | break; | ||
1524 | |||
1525 | dir_key.offset = range_start; | ||
1526 | while(1) { | ||
1527 | int nritems; | ||
1528 | ret = btrfs_search_slot(NULL, root, &dir_key, path, | ||
1529 | 0, 0); | ||
1530 | if (ret < 0) | ||
1531 | goto out; | ||
1532 | |||
1533 | nritems = btrfs_header_nritems(path->nodes[0]); | ||
1534 | if (path->slots[0] >= nritems) { | ||
1535 | ret = btrfs_next_leaf(root, path); | ||
1536 | if (ret) | ||
1537 | break; | ||
1538 | } | ||
1539 | btrfs_item_key_to_cpu(path->nodes[0], &found_key, | ||
1540 | path->slots[0]); | ||
1541 | if (found_key.objectid != dirid || | ||
1542 | found_key.type != dir_key.type) | ||
1543 | goto next_type; | ||
1544 | |||
1545 | if (found_key.offset > range_end) | ||
1546 | break; | ||
1547 | |||
1548 | ret = check_item_in_log(trans, root, log, path, | ||
1549 | log_path, dir, &found_key); | ||
1550 | BUG_ON(ret); | ||
1551 | if (found_key.offset == (u64)-1) | ||
1552 | break; | ||
1553 | dir_key.offset = found_key.offset + 1; | ||
1554 | } | ||
1555 | btrfs_release_path(root, path); | ||
1556 | if (range_end == (u64)-1) | ||
1557 | break; | ||
1558 | range_start = range_end + 1; | ||
1559 | } | ||
1560 | |||
1561 | next_type: | ||
1562 | ret = 0; | ||
1563 | if (key_type == BTRFS_DIR_LOG_ITEM_KEY) { | ||
1564 | key_type = BTRFS_DIR_LOG_INDEX_KEY; | ||
1565 | dir_key.type = BTRFS_DIR_INDEX_KEY; | ||
1566 | btrfs_release_path(root, path); | ||
1567 | goto again; | ||
1568 | } | ||
1569 | out: | ||
1570 | btrfs_release_path(root, path); | ||
1571 | btrfs_free_path(log_path); | ||
1572 | iput(dir); | ||
1573 | return ret; | ||
1574 | } | ||
1575 | |||
1576 | /* | ||
1577 | * the process_func used to replay items from the log tree. This | ||
1578 | * gets called in two different stages. The first stage just looks | ||
1579 | * for inodes and makes sure they are all copied into the subvolume. | ||
1580 | * | ||
1581 | * The second stage copies all the other item types from the log into | ||
1582 | * the subvolume. The two stage approach is slower, but gets rid of | ||
1583 | * lots of complexity around inodes referencing other inodes that exist | ||
1584 | * only in the log (references come from either directory items or inode | ||
1585 | * back refs). | ||
1586 | */ | ||
1587 | static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb, | ||
1588 | struct walk_control *wc, u64 gen) | ||
1589 | { | ||
1590 | int nritems; | ||
1591 | struct btrfs_path *path; | ||
1592 | struct btrfs_root *root = wc->replay_dest; | ||
1593 | struct btrfs_key key; | ||
1594 | u32 item_size; | ||
1595 | int level; | ||
1596 | int i; | ||
1597 | int ret; | ||
1598 | |||
1599 | btrfs_read_buffer(eb, gen); | ||
1600 | |||
1601 | level = btrfs_header_level(eb); | ||
1602 | |||
1603 | if (level != 0) | ||
1604 | return 0; | ||
1605 | |||
1606 | path = btrfs_alloc_path(); | ||
1607 | BUG_ON(!path); | ||
1608 | |||
1609 | nritems = btrfs_header_nritems(eb); | ||
1610 | for (i = 0; i < nritems; i++) { | ||
1611 | btrfs_item_key_to_cpu(eb, &key, i); | ||
1612 | item_size = btrfs_item_size_nr(eb, i); | ||
1613 | |||
1614 | /* inode keys are done during the first stage */ | ||
1615 | if (key.type == BTRFS_INODE_ITEM_KEY && | ||
1616 | wc->stage == LOG_WALK_REPLAY_INODES) { | ||
1617 | struct inode *inode; | ||
1618 | struct btrfs_inode_item *inode_item; | ||
1619 | u32 mode; | ||
1620 | |||
1621 | inode_item = btrfs_item_ptr(eb, i, | ||
1622 | struct btrfs_inode_item); | ||
1623 | mode = btrfs_inode_mode(eb, inode_item); | ||
1624 | if (S_ISDIR(mode)) { | ||
1625 | ret = replay_dir_deletes(wc->trans, | ||
1626 | root, log, path, key.objectid); | ||
1627 | BUG_ON(ret); | ||
1628 | } | ||
1629 | ret = overwrite_item(wc->trans, root, path, | ||
1630 | eb, i, &key); | ||
1631 | BUG_ON(ret); | ||
1632 | |||
1633 | /* for regular files, truncate away | ||
1634 | * extents past the new EOF | ||
1635 | */ | ||
1636 | if (S_ISREG(mode)) { | ||
1637 | inode = read_one_inode(root, | ||
1638 | key.objectid); | ||
1639 | BUG_ON(!inode); | ||
1640 | |||
1641 | ret = btrfs_truncate_inode_items(wc->trans, | ||
1642 | root, inode, inode->i_size, | ||
1643 | BTRFS_EXTENT_DATA_KEY); | ||
1644 | BUG_ON(ret); | ||
1645 | iput(inode); | ||
1646 | } | ||
1647 | ret = link_to_fixup_dir(wc->trans, root, | ||
1648 | path, key.objectid); | ||
1649 | BUG_ON(ret); | ||
1650 | } | ||
1651 | if (wc->stage < LOG_WALK_REPLAY_ALL) | ||
1652 | continue; | ||
1653 | |||
1654 | /* these keys are simply copied */ | ||
1655 | if (key.type == BTRFS_XATTR_ITEM_KEY) { | ||
1656 | ret = overwrite_item(wc->trans, root, path, | ||
1657 | eb, i, &key); | ||
1658 | BUG_ON(ret); | ||
1659 | } else if (key.type == BTRFS_INODE_REF_KEY) { | ||
1660 | ret = add_inode_ref(wc->trans, root, log, path, | ||
1661 | eb, i, &key); | ||
1662 | BUG_ON(ret && ret != -ENOENT); | ||
1663 | } else if (key.type == BTRFS_EXTENT_DATA_KEY) { | ||
1664 | ret = replay_one_extent(wc->trans, root, path, | ||
1665 | eb, i, &key); | ||
1666 | BUG_ON(ret); | ||
1667 | } else if (key.type == BTRFS_CSUM_ITEM_KEY) { | ||
1668 | ret = replay_one_csum(wc->trans, root, path, | ||
1669 | eb, i, &key); | ||
1670 | BUG_ON(ret); | ||
1671 | } else if (key.type == BTRFS_DIR_ITEM_KEY || | ||
1672 | key.type == BTRFS_DIR_INDEX_KEY) { | ||
1673 | ret = replay_one_dir_item(wc->trans, root, path, | ||
1674 | eb, i, &key); | ||
1675 | BUG_ON(ret); | ||
1676 | } | ||
1677 | } | ||
1678 | btrfs_free_path(path); | ||
1679 | return 0; | ||
1680 | } | ||
1681 | |||
1682 | static int noinline walk_down_log_tree(struct btrfs_trans_handle *trans, | ||
1683 | struct btrfs_root *root, | ||
1684 | struct btrfs_path *path, int *level, | ||
1685 | struct walk_control *wc) | ||
1686 | { | ||
1687 | u64 root_owner; | ||
1688 | u64 root_gen; | ||
1689 | u64 bytenr; | ||
1690 | u64 ptr_gen; | ||
1691 | struct extent_buffer *next; | ||
1692 | struct extent_buffer *cur; | ||
1693 | struct extent_buffer *parent; | ||
1694 | u32 blocksize; | ||
1695 | int ret = 0; | ||
1696 | |||
1697 | WARN_ON(*level < 0); | ||
1698 | WARN_ON(*level >= BTRFS_MAX_LEVEL); | ||
1699 | |||
1700 | while(*level > 0) { | ||
1701 | WARN_ON(*level < 0); | ||
1702 | WARN_ON(*level >= BTRFS_MAX_LEVEL); | ||
1703 | cur = path->nodes[*level]; | ||
1704 | |||
1705 | if (btrfs_header_level(cur) != *level) | ||
1706 | WARN_ON(1); | ||
1707 | |||
1708 | if (path->slots[*level] >= | ||
1709 | btrfs_header_nritems(cur)) | ||
1710 | break; | ||
1711 | |||
1712 | bytenr = btrfs_node_blockptr(cur, path->slots[*level]); | ||
1713 | ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]); | ||
1714 | blocksize = btrfs_level_size(root, *level - 1); | ||
1715 | |||
1716 | parent = path->nodes[*level]; | ||
1717 | root_owner = btrfs_header_owner(parent); | ||
1718 | root_gen = btrfs_header_generation(parent); | ||
1719 | |||
1720 | next = btrfs_find_create_tree_block(root, bytenr, blocksize); | ||
1721 | |||
1722 | wc->process_func(root, next, wc, ptr_gen); | ||
1723 | |||
1724 | if (*level == 1) { | ||
1725 | path->slots[*level]++; | ||
1726 | if (wc->free) { | ||
1727 | btrfs_read_buffer(next, ptr_gen); | ||
1728 | |||
1729 | btrfs_tree_lock(next); | ||
1730 | clean_tree_block(trans, root, next); | ||
1731 | btrfs_wait_tree_block_writeback(next); | ||
1732 | btrfs_tree_unlock(next); | ||
1733 | |||
1734 | ret = btrfs_drop_leaf_ref(trans, root, next); | ||
1735 | BUG_ON(ret); | ||
1736 | |||
1737 | WARN_ON(root_owner != | ||
1738 | BTRFS_TREE_LOG_OBJECTID); | ||
1739 | ret = btrfs_free_reserved_extent(root, | ||
1740 | bytenr, blocksize); | ||
1741 | BUG_ON(ret); | ||
1742 | } | ||
1743 | free_extent_buffer(next); | ||
1744 | continue; | ||
1745 | } | ||
1746 | btrfs_read_buffer(next, ptr_gen); | ||
1747 | |||
1748 | WARN_ON(*level <= 0); | ||
1749 | if (path->nodes[*level-1]) | ||
1750 | free_extent_buffer(path->nodes[*level-1]); | ||
1751 | path->nodes[*level-1] = next; | ||
1752 | *level = btrfs_header_level(next); | ||
1753 | path->slots[*level] = 0; | ||
1754 | cond_resched(); | ||
1755 | } | ||
1756 | WARN_ON(*level < 0); | ||
1757 | WARN_ON(*level >= BTRFS_MAX_LEVEL); | ||
1758 | |||
1759 | if (path->nodes[*level] == root->node) { | ||
1760 | parent = path->nodes[*level]; | ||
1761 | } else { | ||
1762 | parent = path->nodes[*level + 1]; | ||
1763 | } | ||
1764 | bytenr = path->nodes[*level]->start; | ||
1765 | |||
1766 | blocksize = btrfs_level_size(root, *level); | ||
1767 | root_owner = btrfs_header_owner(parent); | ||
1768 | root_gen = btrfs_header_generation(parent); | ||
1769 | |||
1770 | wc->process_func(root, path->nodes[*level], wc, | ||
1771 | btrfs_header_generation(path->nodes[*level])); | ||
1772 | |||
1773 | if (wc->free) { | ||
1774 | next = path->nodes[*level]; | ||
1775 | btrfs_tree_lock(next); | ||
1776 | clean_tree_block(trans, root, next); | ||
1777 | btrfs_wait_tree_block_writeback(next); | ||
1778 | btrfs_tree_unlock(next); | ||
1779 | |||
1780 | if (*level == 0) { | ||
1781 | ret = btrfs_drop_leaf_ref(trans, root, next); | ||
1782 | BUG_ON(ret); | ||
1783 | } | ||
1784 | WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID); | ||
1785 | ret = btrfs_free_reserved_extent(root, bytenr, blocksize); | ||
1786 | BUG_ON(ret); | ||
1787 | } | ||
1788 | free_extent_buffer(path->nodes[*level]); | ||
1789 | path->nodes[*level] = NULL; | ||
1790 | *level += 1; | ||
1791 | |||
1792 | cond_resched(); | ||
1793 | return 0; | ||
1794 | } | ||
1795 | |||
1796 | static int noinline walk_up_log_tree(struct btrfs_trans_handle *trans, | ||
1797 | struct btrfs_root *root, | ||
1798 | struct btrfs_path *path, int *level, | ||
1799 | struct walk_control *wc) | ||
1800 | { | ||
1801 | u64 root_owner; | ||
1802 | u64 root_gen; | ||
1803 | int i; | ||
1804 | int slot; | ||
1805 | int ret; | ||
1806 | |||
1807 | for(i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) { | ||
1808 | slot = path->slots[i]; | ||
1809 | if (slot < btrfs_header_nritems(path->nodes[i]) - 1) { | ||
1810 | struct extent_buffer *node; | ||
1811 | node = path->nodes[i]; | ||
1812 | path->slots[i]++; | ||
1813 | *level = i; | ||
1814 | WARN_ON(*level == 0); | ||
1815 | return 0; | ||
1816 | } else { | ||
1817 | struct extent_buffer *parent; | ||
1818 | if (path->nodes[*level] == root->node) | ||
1819 | parent = path->nodes[*level]; | ||
1820 | else | ||
1821 | parent = path->nodes[*level + 1]; | ||
1822 | |||
1823 | root_owner = btrfs_header_owner(parent); | ||
1824 | root_gen = btrfs_header_generation(parent); | ||
1825 | wc->process_func(root, path->nodes[*level], wc, | ||
1826 | btrfs_header_generation(path->nodes[*level])); | ||
1827 | if (wc->free) { | ||
1828 | struct extent_buffer *next; | ||
1829 | |||
1830 | next = path->nodes[*level]; | ||
1831 | |||
1832 | btrfs_tree_lock(next); | ||
1833 | clean_tree_block(trans, root, next); | ||
1834 | btrfs_wait_tree_block_writeback(next); | ||
1835 | btrfs_tree_unlock(next); | ||
1836 | |||
1837 | if (*level == 0) { | ||
1838 | ret = btrfs_drop_leaf_ref(trans, root, | ||
1839 | next); | ||
1840 | BUG_ON(ret); | ||
1841 | } | ||
1842 | |||
1843 | WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID); | ||
1844 | ret = btrfs_free_reserved_extent(root, | ||
1845 | path->nodes[*level]->start, | ||
1846 | path->nodes[*level]->len); | ||
1847 | BUG_ON(ret); | ||
1848 | } | ||
1849 | free_extent_buffer(path->nodes[*level]); | ||
1850 | path->nodes[*level] = NULL; | ||
1851 | *level = i + 1; | ||
1852 | } | ||
1853 | } | ||
1854 | return 1; | ||
1855 | } | ||
1856 | |||
1857 | /* | ||
1858 | * drop the reference count on the tree rooted at 'snap'. This traverses | ||
1859 | * the tree freeing any blocks that have a ref count of zero after being | ||
1860 | * decremented. | ||
1861 | */ | ||
1862 | static int walk_log_tree(struct btrfs_trans_handle *trans, | ||
1863 | struct btrfs_root *log, struct walk_control *wc) | ||
1864 | { | ||
1865 | int ret = 0; | ||
1866 | int wret; | ||
1867 | int level; | ||
1868 | struct btrfs_path *path; | ||
1869 | int i; | ||
1870 | int orig_level; | ||
1871 | |||
1872 | path = btrfs_alloc_path(); | ||
1873 | BUG_ON(!path); | ||
1874 | |||
1875 | level = btrfs_header_level(log->node); | ||
1876 | orig_level = level; | ||
1877 | path->nodes[level] = log->node; | ||
1878 | extent_buffer_get(log->node); | ||
1879 | path->slots[level] = 0; | ||
1880 | |||
1881 | while(1) { | ||
1882 | wret = walk_down_log_tree(trans, log, path, &level, wc); | ||
1883 | if (wret > 0) | ||
1884 | break; | ||
1885 | if (wret < 0) | ||
1886 | ret = wret; | ||
1887 | |||
1888 | wret = walk_up_log_tree(trans, log, path, &level, wc); | ||
1889 | if (wret > 0) | ||
1890 | break; | ||
1891 | if (wret < 0) | ||
1892 | ret = wret; | ||
1893 | } | ||
1894 | |||
1895 | /* was the root node processed? if not, catch it here */ | ||
1896 | if (path->nodes[orig_level]) { | ||
1897 | wc->process_func(log, path->nodes[orig_level], wc, | ||
1898 | btrfs_header_generation(path->nodes[orig_level])); | ||
1899 | if (wc->free) { | ||
1900 | struct extent_buffer *next; | ||
1901 | |||
1902 | next = path->nodes[orig_level]; | ||
1903 | |||
1904 | btrfs_tree_lock(next); | ||
1905 | clean_tree_block(trans, log, next); | ||
1906 | btrfs_wait_tree_block_writeback(next); | ||
1907 | btrfs_tree_unlock(next); | ||
1908 | |||
1909 | if (orig_level == 0) { | ||
1910 | ret = btrfs_drop_leaf_ref(trans, log, | ||
1911 | next); | ||
1912 | BUG_ON(ret); | ||
1913 | } | ||
1914 | WARN_ON(log->root_key.objectid != | ||
1915 | BTRFS_TREE_LOG_OBJECTID); | ||
1916 | ret = btrfs_free_reserved_extent(log, next->start, | ||
1917 | next->len); | ||
1918 | BUG_ON(ret); | ||
1919 | } | ||
1920 | } | ||
1921 | |||
1922 | for (i = 0; i <= orig_level; i++) { | ||
1923 | if (path->nodes[i]) { | ||
1924 | free_extent_buffer(path->nodes[i]); | ||
1925 | path->nodes[i] = NULL; | ||
1926 | } | ||
1927 | } | ||
1928 | btrfs_free_path(path); | ||
1929 | if (wc->free) | ||
1930 | free_extent_buffer(log->node); | ||
1931 | return ret; | ||
1932 | } | ||
1933 | |||
1934 | int wait_log_commit(struct btrfs_root *log) | ||
1935 | { | ||
1936 | DEFINE_WAIT(wait); | ||
1937 | u64 transid = log->fs_info->tree_log_transid; | ||
1938 | |||
1939 | do { | ||
1940 | prepare_to_wait(&log->fs_info->tree_log_wait, &wait, | ||
1941 | TASK_UNINTERRUPTIBLE); | ||
1942 | mutex_unlock(&log->fs_info->tree_log_mutex); | ||
1943 | if (atomic_read(&log->fs_info->tree_log_commit)) | ||
1944 | schedule(); | ||
1945 | finish_wait(&log->fs_info->tree_log_wait, &wait); | ||
1946 | mutex_lock(&log->fs_info->tree_log_mutex); | ||
1947 | } while(transid == log->fs_info->tree_log_transid && | ||
1948 | atomic_read(&log->fs_info->tree_log_commit)); | ||
1949 | return 0; | ||
1950 | } | ||
1951 | |||
1952 | /* | ||
1953 | * btrfs_sync_log does sends a given tree log down to the disk and | ||
1954 | * updates the super blocks to record it. When this call is done, | ||
1955 | * you know that any inodes previously logged are safely on disk | ||
1956 | */ | ||
1957 | int btrfs_sync_log(struct btrfs_trans_handle *trans, | ||
1958 | struct btrfs_root *root) | ||
1959 | { | ||
1960 | int ret; | ||
1961 | unsigned long batch; | ||
1962 | struct btrfs_root *log = root->log_root; | ||
1963 | |||
1964 | mutex_lock(&log->fs_info->tree_log_mutex); | ||
1965 | if (atomic_read(&log->fs_info->tree_log_commit)) { | ||
1966 | wait_log_commit(log); | ||
1967 | goto out; | ||
1968 | } | ||
1969 | atomic_set(&log->fs_info->tree_log_commit, 1); | ||
1970 | |||
1971 | while(1) { | ||
1972 | batch = log->fs_info->tree_log_batch; | ||
1973 | mutex_unlock(&log->fs_info->tree_log_mutex); | ||
1974 | schedule_timeout_uninterruptible(1); | ||
1975 | mutex_lock(&log->fs_info->tree_log_mutex); | ||
1976 | |||
1977 | while(atomic_read(&log->fs_info->tree_log_writers)) { | ||
1978 | DEFINE_WAIT(wait); | ||
1979 | prepare_to_wait(&log->fs_info->tree_log_wait, &wait, | ||
1980 | TASK_UNINTERRUPTIBLE); | ||
1981 | mutex_unlock(&log->fs_info->tree_log_mutex); | ||
1982 | if (atomic_read(&log->fs_info->tree_log_writers)) | ||
1983 | schedule(); | ||
1984 | mutex_lock(&log->fs_info->tree_log_mutex); | ||
1985 | finish_wait(&log->fs_info->tree_log_wait, &wait); | ||
1986 | } | ||
1987 | if (batch == log->fs_info->tree_log_batch) | ||
1988 | break; | ||
1989 | } | ||
1990 | |||
1991 | ret = btrfs_write_and_wait_marked_extents(log, &log->dirty_log_pages); | ||
1992 | BUG_ON(ret); | ||
1993 | ret = btrfs_write_and_wait_marked_extents(root->fs_info->log_root_tree, | ||
1994 | &root->fs_info->log_root_tree->dirty_log_pages); | ||
1995 | BUG_ON(ret); | ||
1996 | |||
1997 | btrfs_set_super_log_root(&root->fs_info->super_for_commit, | ||
1998 | log->fs_info->log_root_tree->node->start); | ||
1999 | btrfs_set_super_log_root_level(&root->fs_info->super_for_commit, | ||
2000 | btrfs_header_level(log->fs_info->log_root_tree->node)); | ||
2001 | |||
2002 | write_ctree_super(trans, log->fs_info->tree_root); | ||
2003 | log->fs_info->tree_log_transid++; | ||
2004 | log->fs_info->tree_log_batch = 0; | ||
2005 | atomic_set(&log->fs_info->tree_log_commit, 0); | ||
2006 | smp_mb(); | ||
2007 | if (waitqueue_active(&log->fs_info->tree_log_wait)) | ||
2008 | wake_up(&log->fs_info->tree_log_wait); | ||
2009 | out: | ||
2010 | mutex_unlock(&log->fs_info->tree_log_mutex); | ||
2011 | return 0; | ||
2012 | |||
2013 | } | ||
2014 | |||
2015 | /* * free all the extents used by the tree log. This should be called | ||
2016 | * at commit time of the full transaction | ||
2017 | */ | ||
2018 | int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root) | ||
2019 | { | ||
2020 | int ret; | ||
2021 | struct btrfs_root *log; | ||
2022 | struct key; | ||
2023 | u64 start; | ||
2024 | u64 end; | ||
2025 | struct walk_control wc = { | ||
2026 | .free = 1, | ||
2027 | .process_func = process_one_buffer | ||
2028 | }; | ||
2029 | |||
2030 | if (!root->log_root) | ||
2031 | return 0; | ||
2032 | |||
2033 | log = root->log_root; | ||
2034 | ret = walk_log_tree(trans, log, &wc); | ||
2035 | BUG_ON(ret); | ||
2036 | |||
2037 | while(1) { | ||
2038 | ret = find_first_extent_bit(&log->dirty_log_pages, | ||
2039 | 0, &start, &end, EXTENT_DIRTY); | ||
2040 | if (ret) | ||
2041 | break; | ||
2042 | |||
2043 | clear_extent_dirty(&log->dirty_log_pages, | ||
2044 | start, end, GFP_NOFS); | ||
2045 | } | ||
2046 | |||
2047 | log = root->log_root; | ||
2048 | ret = btrfs_del_root(trans, root->fs_info->log_root_tree, | ||
2049 | &log->root_key); | ||
2050 | BUG_ON(ret); | ||
2051 | root->log_root = NULL; | ||
2052 | kfree(root->log_root); | ||
2053 | return 0; | ||
2054 | } | ||
2055 | |||
2056 | /* | ||
2057 | * helper function to update the item for a given subvolumes log root | ||
2058 | * in the tree of log roots | ||
2059 | */ | ||
2060 | static int update_log_root(struct btrfs_trans_handle *trans, | ||
2061 | struct btrfs_root *log) | ||
2062 | { | ||
2063 | u64 bytenr = btrfs_root_bytenr(&log->root_item); | ||
2064 | int ret; | ||
2065 | |||
2066 | if (log->node->start == bytenr) | ||
2067 | return 0; | ||
2068 | |||
2069 | btrfs_set_root_bytenr(&log->root_item, log->node->start); | ||
2070 | btrfs_set_root_level(&log->root_item, btrfs_header_level(log->node)); | ||
2071 | ret = btrfs_update_root(trans, log->fs_info->log_root_tree, | ||
2072 | &log->root_key, &log->root_item); | ||
2073 | BUG_ON(ret); | ||
2074 | return ret; | ||
2075 | } | ||
2076 | |||
2077 | /* | ||
2078 | * If both a file and directory are logged, and unlinks or renames are | ||
2079 | * mixed in, we have a few interesting corners: | ||
2080 | * | ||
2081 | * create file X in dir Y | ||
2082 | * link file X to X.link in dir Y | ||
2083 | * fsync file X | ||
2084 | * unlink file X but leave X.link | ||
2085 | * fsync dir Y | ||
2086 | * | ||
2087 | * After a crash we would expect only X.link to exist. But file X | ||
2088 | * didn't get fsync'd again so the log has back refs for X and X.link. | ||
2089 | * | ||
2090 | * We solve this by removing directory entries and inode backrefs from the | ||
2091 | * log when a file that was logged in the current transaction is | ||
2092 | * unlinked. Any later fsync will include the updated log entries, and | ||
2093 | * we'll be able to reconstruct the proper directory items from backrefs. | ||
2094 | * | ||
2095 | * This optimizations allows us to avoid relogging the entire inode | ||
2096 | * or the entire directory. | ||
2097 | */ | ||
2098 | int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans, | ||
2099 | struct btrfs_root *root, | ||
2100 | const char *name, int name_len, | ||
2101 | struct inode *dir, u64 index) | ||
2102 | { | ||
2103 | struct btrfs_root *log; | ||
2104 | struct btrfs_dir_item *di; | ||
2105 | struct btrfs_path *path; | ||
2106 | int ret; | ||
2107 | int bytes_del = 0; | ||
2108 | |||
2109 | if (BTRFS_I(dir)->logged_trans < trans->transid) | ||
2110 | return 0; | ||
2111 | |||
2112 | ret = join_running_log_trans(root); | ||
2113 | if (ret) | ||
2114 | return 0; | ||
2115 | |||
2116 | mutex_lock(&BTRFS_I(dir)->log_mutex); | ||
2117 | |||
2118 | log = root->log_root; | ||
2119 | path = btrfs_alloc_path(); | ||
2120 | di = btrfs_lookup_dir_item(trans, log, path, dir->i_ino, | ||
2121 | name, name_len, -1); | ||
2122 | if (di && !IS_ERR(di)) { | ||
2123 | ret = btrfs_delete_one_dir_name(trans, log, path, di); | ||
2124 | bytes_del += name_len; | ||
2125 | BUG_ON(ret); | ||
2126 | } | ||
2127 | btrfs_release_path(log, path); | ||
2128 | di = btrfs_lookup_dir_index_item(trans, log, path, dir->i_ino, | ||
2129 | index, name, name_len, -1); | ||
2130 | if (di && !IS_ERR(di)) { | ||
2131 | ret = btrfs_delete_one_dir_name(trans, log, path, di); | ||
2132 | bytes_del += name_len; | ||
2133 | BUG_ON(ret); | ||
2134 | } | ||
2135 | |||
2136 | /* update the directory size in the log to reflect the names | ||
2137 | * we have removed | ||
2138 | */ | ||
2139 | if (bytes_del) { | ||
2140 | struct btrfs_key key; | ||
2141 | |||
2142 | key.objectid = dir->i_ino; | ||
2143 | key.offset = 0; | ||
2144 | key.type = BTRFS_INODE_ITEM_KEY; | ||
2145 | btrfs_release_path(log, path); | ||
2146 | |||
2147 | ret = btrfs_search_slot(trans, log, &key, path, 0, 1); | ||
2148 | if (ret == 0) { | ||
2149 | struct btrfs_inode_item *item; | ||
2150 | u64 i_size; | ||
2151 | |||
2152 | item = btrfs_item_ptr(path->nodes[0], path->slots[0], | ||
2153 | struct btrfs_inode_item); | ||
2154 | i_size = btrfs_inode_size(path->nodes[0], item); | ||
2155 | if (i_size > bytes_del) | ||
2156 | i_size -= bytes_del; | ||
2157 | else | ||
2158 | i_size = 0; | ||
2159 | btrfs_set_inode_size(path->nodes[0], item, i_size); | ||
2160 | btrfs_mark_buffer_dirty(path->nodes[0]); | ||
2161 | } else | ||
2162 | ret = 0; | ||
2163 | btrfs_release_path(log, path); | ||
2164 | } | ||
2165 | |||
2166 | btrfs_free_path(path); | ||
2167 | mutex_unlock(&BTRFS_I(dir)->log_mutex); | ||
2168 | end_log_trans(root); | ||
2169 | |||
2170 | return 0; | ||
2171 | } | ||
2172 | |||
2173 | /* see comments for btrfs_del_dir_entries_in_log */ | ||
2174 | int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans, | ||
2175 | struct btrfs_root *root, | ||
2176 | const char *name, int name_len, | ||
2177 | struct inode *inode, u64 dirid) | ||
2178 | { | ||
2179 | struct btrfs_root *log; | ||
2180 | u64 index; | ||
2181 | int ret; | ||
2182 | |||
2183 | if (BTRFS_I(inode)->logged_trans < trans->transid) | ||
2184 | return 0; | ||
2185 | |||
2186 | ret = join_running_log_trans(root); | ||
2187 | if (ret) | ||
2188 | return 0; | ||
2189 | log = root->log_root; | ||
2190 | mutex_lock(&BTRFS_I(inode)->log_mutex); | ||
2191 | |||
2192 | ret = btrfs_del_inode_ref(trans, log, name, name_len, inode->i_ino, | ||
2193 | dirid, &index); | ||
2194 | mutex_unlock(&BTRFS_I(inode)->log_mutex); | ||
2195 | end_log_trans(root); | ||
2196 | |||
2197 | return ret; | ||
2198 | } | ||
2199 | |||
2200 | /* | ||
2201 | * creates a range item in the log for 'dirid'. first_offset and | ||
2202 | * last_offset tell us which parts of the key space the log should | ||
2203 | * be considered authoritative for. | ||
2204 | */ | ||
2205 | static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans, | ||
2206 | struct btrfs_root *log, | ||
2207 | struct btrfs_path *path, | ||
2208 | int key_type, u64 dirid, | ||
2209 | u64 first_offset, u64 last_offset) | ||
2210 | { | ||
2211 | int ret; | ||
2212 | struct btrfs_key key; | ||
2213 | struct btrfs_dir_log_item *item; | ||
2214 | |||
2215 | key.objectid = dirid; | ||
2216 | key.offset = first_offset; | ||
2217 | if (key_type == BTRFS_DIR_ITEM_KEY) | ||
2218 | key.type = BTRFS_DIR_LOG_ITEM_KEY; | ||
2219 | else | ||
2220 | key.type = BTRFS_DIR_LOG_INDEX_KEY; | ||
2221 | ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item)); | ||
2222 | BUG_ON(ret); | ||
2223 | |||
2224 | item = btrfs_item_ptr(path->nodes[0], path->slots[0], | ||
2225 | struct btrfs_dir_log_item); | ||
2226 | btrfs_set_dir_log_end(path->nodes[0], item, last_offset); | ||
2227 | btrfs_mark_buffer_dirty(path->nodes[0]); | ||
2228 | btrfs_release_path(log, path); | ||
2229 | return 0; | ||
2230 | } | ||
2231 | |||
2232 | /* | ||
2233 | * log all the items included in the current transaction for a given | ||
2234 | * directory. This also creates the range items in the log tree required | ||
2235 | * to replay anything deleted before the fsync | ||
2236 | */ | ||
2237 | static noinline int log_dir_items(struct btrfs_trans_handle *trans, | ||
2238 | struct btrfs_root *root, struct inode *inode, | ||
2239 | struct btrfs_path *path, | ||
2240 | struct btrfs_path *dst_path, int key_type, | ||
2241 | u64 min_offset, u64 *last_offset_ret) | ||
2242 | { | ||
2243 | struct btrfs_key min_key; | ||
2244 | struct btrfs_key max_key; | ||
2245 | struct btrfs_root *log = root->log_root; | ||
2246 | struct extent_buffer *src; | ||
2247 | int ret; | ||
2248 | int i; | ||
2249 | int nritems; | ||
2250 | u64 first_offset = min_offset; | ||
2251 | u64 last_offset = (u64)-1; | ||
2252 | |||
2253 | log = root->log_root; | ||
2254 | max_key.objectid = inode->i_ino; | ||
2255 | max_key.offset = (u64)-1; | ||
2256 | max_key.type = key_type; | ||
2257 | |||
2258 | min_key.objectid = inode->i_ino; | ||
2259 | min_key.type = key_type; | ||
2260 | min_key.offset = min_offset; | ||
2261 | |||
2262 | path->keep_locks = 1; | ||
2263 | |||
2264 | ret = btrfs_search_forward(root, &min_key, &max_key, | ||
2265 | path, 0, trans->transid); | ||
2266 | |||
2267 | /* | ||
2268 | * we didn't find anything from this transaction, see if there | ||
2269 | * is anything at all | ||
2270 | */ | ||
2271 | if (ret != 0 || min_key.objectid != inode->i_ino || | ||
2272 | min_key.type != key_type) { | ||
2273 | min_key.objectid = inode->i_ino; | ||
2274 | min_key.type = key_type; | ||
2275 | min_key.offset = (u64)-1; | ||
2276 | btrfs_release_path(root, path); | ||
2277 | ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); | ||
2278 | if (ret < 0) { | ||
2279 | btrfs_release_path(root, path); | ||
2280 | return ret; | ||
2281 | } | ||
2282 | ret = btrfs_previous_item(root, path, inode->i_ino, key_type); | ||
2283 | |||
2284 | /* if ret == 0 there are items for this type, | ||
2285 | * create a range to tell us the last key of this type. | ||
2286 | * otherwise, there are no items in this directory after | ||
2287 | * *min_offset, and we create a range to indicate that. | ||
2288 | */ | ||
2289 | if (ret == 0) { | ||
2290 | struct btrfs_key tmp; | ||
2291 | btrfs_item_key_to_cpu(path->nodes[0], &tmp, | ||
2292 | path->slots[0]); | ||
2293 | if (key_type == tmp.type) { | ||
2294 | first_offset = max(min_offset, tmp.offset) + 1; | ||
2295 | } | ||
2296 | } | ||
2297 | goto done; | ||
2298 | } | ||
2299 | |||
2300 | /* go backward to find any previous key */ | ||
2301 | ret = btrfs_previous_item(root, path, inode->i_ino, key_type); | ||
2302 | if (ret == 0) { | ||
2303 | struct btrfs_key tmp; | ||
2304 | btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]); | ||
2305 | if (key_type == tmp.type) { | ||
2306 | first_offset = tmp.offset; | ||
2307 | ret = overwrite_item(trans, log, dst_path, | ||
2308 | path->nodes[0], path->slots[0], | ||
2309 | &tmp); | ||
2310 | } | ||
2311 | } | ||
2312 | btrfs_release_path(root, path); | ||
2313 | |||
2314 | /* find the first key from this transaction again */ | ||
2315 | ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); | ||
2316 | if (ret != 0) { | ||
2317 | WARN_ON(1); | ||
2318 | goto done; | ||
2319 | } | ||
2320 | |||
2321 | /* | ||
2322 | * we have a block from this transaction, log every item in it | ||
2323 | * from our directory | ||
2324 | */ | ||
2325 | while(1) { | ||
2326 | struct btrfs_key tmp; | ||
2327 | src = path->nodes[0]; | ||
2328 | nritems = btrfs_header_nritems(src); | ||
2329 | for (i = path->slots[0]; i < nritems; i++) { | ||
2330 | btrfs_item_key_to_cpu(src, &min_key, i); | ||
2331 | |||
2332 | if (min_key.objectid != inode->i_ino || | ||
2333 | min_key.type != key_type) | ||
2334 | goto done; | ||
2335 | ret = overwrite_item(trans, log, dst_path, src, i, | ||
2336 | &min_key); | ||
2337 | BUG_ON(ret); | ||
2338 | } | ||
2339 | path->slots[0] = nritems; | ||
2340 | |||
2341 | /* | ||
2342 | * look ahead to the next item and see if it is also | ||
2343 | * from this directory and from this transaction | ||
2344 | */ | ||
2345 | ret = btrfs_next_leaf(root, path); | ||
2346 | if (ret == 1) { | ||
2347 | last_offset = (u64)-1; | ||
2348 | goto done; | ||
2349 | } | ||
2350 | btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]); | ||
2351 | if (tmp.objectid != inode->i_ino || tmp.type != key_type) { | ||
2352 | last_offset = (u64)-1; | ||
2353 | goto done; | ||
2354 | } | ||
2355 | if (btrfs_header_generation(path->nodes[0]) != trans->transid) { | ||
2356 | ret = overwrite_item(trans, log, dst_path, | ||
2357 | path->nodes[0], path->slots[0], | ||
2358 | &tmp); | ||
2359 | |||
2360 | BUG_ON(ret); | ||
2361 | last_offset = tmp.offset; | ||
2362 | goto done; | ||
2363 | } | ||
2364 | } | ||
2365 | done: | ||
2366 | *last_offset_ret = last_offset; | ||
2367 | btrfs_release_path(root, path); | ||
2368 | btrfs_release_path(log, dst_path); | ||
2369 | |||
2370 | /* insert the log range keys to indicate where the log is valid */ | ||
2371 | ret = insert_dir_log_key(trans, log, path, key_type, inode->i_ino, | ||
2372 | first_offset, last_offset); | ||
2373 | BUG_ON(ret); | ||
2374 | return 0; | ||
2375 | } | ||
2376 | |||
2377 | /* | ||
2378 | * logging directories is very similar to logging inodes, We find all the items | ||
2379 | * from the current transaction and write them to the log. | ||
2380 | * | ||
2381 | * The recovery code scans the directory in the subvolume, and if it finds a | ||
2382 | * key in the range logged that is not present in the log tree, then it means | ||
2383 | * that dir entry was unlinked during the transaction. | ||
2384 | * | ||
2385 | * In order for that scan to work, we must include one key smaller than | ||
2386 | * the smallest logged by this transaction and one key larger than the largest | ||
2387 | * key logged by this transaction. | ||
2388 | */ | ||
2389 | static noinline int log_directory_changes(struct btrfs_trans_handle *trans, | ||
2390 | struct btrfs_root *root, struct inode *inode, | ||
2391 | struct btrfs_path *path, | ||
2392 | struct btrfs_path *dst_path) | ||
2393 | { | ||
2394 | u64 min_key; | ||
2395 | u64 max_key; | ||
2396 | int ret; | ||
2397 | int key_type = BTRFS_DIR_ITEM_KEY; | ||
2398 | |||
2399 | again: | ||
2400 | min_key = 0; | ||
2401 | max_key = 0; | ||
2402 | while(1) { | ||
2403 | ret = log_dir_items(trans, root, inode, path, | ||
2404 | dst_path, key_type, min_key, | ||
2405 | &max_key); | ||
2406 | BUG_ON(ret); | ||
2407 | if (max_key == (u64)-1) | ||
2408 | break; | ||
2409 | min_key = max_key + 1; | ||
2410 | } | ||
2411 | |||
2412 | if (key_type == BTRFS_DIR_ITEM_KEY) { | ||
2413 | key_type = BTRFS_DIR_INDEX_KEY; | ||
2414 | goto again; | ||
2415 | } | ||
2416 | return 0; | ||
2417 | } | ||
2418 | |||
2419 | /* | ||
2420 | * a helper function to drop items from the log before we relog an | ||
2421 | * inode. max_key_type indicates the highest item type to remove. | ||
2422 | * This cannot be run for file data extents because it does not | ||
2423 | * free the extents they point to. | ||
2424 | */ | ||
2425 | static int drop_objectid_items(struct btrfs_trans_handle *trans, | ||
2426 | struct btrfs_root *log, | ||
2427 | struct btrfs_path *path, | ||
2428 | u64 objectid, int max_key_type) | ||
2429 | { | ||
2430 | int ret; | ||
2431 | struct btrfs_key key; | ||
2432 | struct btrfs_key found_key; | ||
2433 | |||
2434 | key.objectid = objectid; | ||
2435 | key.type = max_key_type; | ||
2436 | key.offset = (u64)-1; | ||
2437 | |||
2438 | while(1) { | ||
2439 | ret = btrfs_search_slot(trans, log, &key, path, -1, 1); | ||
2440 | |||
2441 | if (ret != 1) | ||
2442 | break; | ||
2443 | |||
2444 | if (path->slots[0] == 0) | ||
2445 | break; | ||
2446 | |||
2447 | path->slots[0]--; | ||
2448 | btrfs_item_key_to_cpu(path->nodes[0], &found_key, | ||
2449 | path->slots[0]); | ||
2450 | |||
2451 | if (found_key.objectid != objectid) | ||
2452 | break; | ||
2453 | |||
2454 | ret = btrfs_del_item(trans, log, path); | ||
2455 | BUG_ON(ret); | ||
2456 | btrfs_release_path(log, path); | ||
2457 | } | ||
2458 | btrfs_release_path(log, path); | ||
2459 | return 0; | ||
2460 | } | ||
2461 | |||
2462 | static noinline int copy_items(struct btrfs_trans_handle *trans, | ||
2463 | struct btrfs_root *log, | ||
2464 | struct btrfs_path *dst_path, | ||
2465 | struct extent_buffer *src, | ||
2466 | int start_slot, int nr, int inode_only) | ||
2467 | { | ||
2468 | unsigned long src_offset; | ||
2469 | unsigned long dst_offset; | ||
2470 | struct btrfs_file_extent_item *extent; | ||
2471 | struct btrfs_inode_item *inode_item; | ||
2472 | int ret; | ||
2473 | struct btrfs_key *ins_keys; | ||
2474 | u32 *ins_sizes; | ||
2475 | char *ins_data; | ||
2476 | int i; | ||
2477 | |||
2478 | ins_data = kmalloc(nr * sizeof(struct btrfs_key) + | ||
2479 | nr * sizeof(u32), GFP_NOFS); | ||
2480 | ins_sizes = (u32 *)ins_data; | ||
2481 | ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32)); | ||
2482 | |||
2483 | for (i = 0; i < nr; i++) { | ||
2484 | ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot); | ||
2485 | btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot); | ||
2486 | } | ||
2487 | ret = btrfs_insert_empty_items(trans, log, dst_path, | ||
2488 | ins_keys, ins_sizes, nr); | ||
2489 | BUG_ON(ret); | ||
2490 | |||
2491 | for (i = 0; i < nr; i++) { | ||
2492 | dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], | ||
2493 | dst_path->slots[0]); | ||
2494 | |||
2495 | src_offset = btrfs_item_ptr_offset(src, start_slot + i); | ||
2496 | |||
2497 | copy_extent_buffer(dst_path->nodes[0], src, dst_offset, | ||
2498 | src_offset, ins_sizes[i]); | ||
2499 | |||
2500 | if (inode_only == LOG_INODE_EXISTS && | ||
2501 | ins_keys[i].type == BTRFS_INODE_ITEM_KEY) { | ||
2502 | inode_item = btrfs_item_ptr(dst_path->nodes[0], | ||
2503 | dst_path->slots[0], | ||
2504 | struct btrfs_inode_item); | ||
2505 | btrfs_set_inode_size(dst_path->nodes[0], inode_item, 0); | ||
2506 | |||
2507 | /* set the generation to zero so the recover code | ||
2508 | * can tell the difference between an logging | ||
2509 | * just to say 'this inode exists' and a logging | ||
2510 | * to say 'update this inode with these values' | ||
2511 | */ | ||
2512 | btrfs_set_inode_generation(dst_path->nodes[0], | ||
2513 | inode_item, 0); | ||
2514 | } | ||
2515 | /* take a reference on file data extents so that truncates | ||
2516 | * or deletes of this inode don't have to relog the inode | ||
2517 | * again | ||
2518 | */ | ||
2519 | if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY) { | ||
2520 | int found_type; | ||
2521 | extent = btrfs_item_ptr(src, start_slot + i, | ||
2522 | struct btrfs_file_extent_item); | ||
2523 | |||
2524 | found_type = btrfs_file_extent_type(src, extent); | ||
2525 | if (found_type == BTRFS_FILE_EXTENT_REG) { | ||
2526 | u64 ds = btrfs_file_extent_disk_bytenr(src, | ||
2527 | extent); | ||
2528 | u64 dl = btrfs_file_extent_disk_num_bytes(src, | ||
2529 | extent); | ||
2530 | /* ds == 0 is a hole */ | ||
2531 | if (ds != 0) { | ||
2532 | ret = btrfs_inc_extent_ref(trans, log, | ||
2533 | ds, dl, | ||
2534 | dst_path->nodes[0]->start, | ||
2535 | BTRFS_TREE_LOG_OBJECTID, | ||
2536 | trans->transid, | ||
2537 | ins_keys[i].objectid, | ||
2538 | ins_keys[i].offset); | ||
2539 | BUG_ON(ret); | ||
2540 | } | ||
2541 | } | ||
2542 | } | ||
2543 | dst_path->slots[0]++; | ||
2544 | } | ||
2545 | |||
2546 | btrfs_mark_buffer_dirty(dst_path->nodes[0]); | ||
2547 | btrfs_release_path(log, dst_path); | ||
2548 | kfree(ins_data); | ||
2549 | return 0; | ||
2550 | } | ||
2551 | |||
2552 | /* log a single inode in the tree log. | ||
2553 | * At least one parent directory for this inode must exist in the tree | ||
2554 | * or be logged already. | ||
2555 | * | ||
2556 | * Any items from this inode changed by the current transaction are copied | ||
2557 | * to the log tree. An extra reference is taken on any extents in this | ||
2558 | * file, allowing us to avoid a whole pile of corner cases around logging | ||
2559 | * blocks that have been removed from the tree. | ||
2560 | * | ||
2561 | * See LOG_INODE_ALL and related defines for a description of what inode_only | ||
2562 | * does. | ||
2563 | * | ||
2564 | * This handles both files and directories. | ||
2565 | */ | ||
2566 | static int __btrfs_log_inode(struct btrfs_trans_handle *trans, | ||
2567 | struct btrfs_root *root, struct inode *inode, | ||
2568 | int inode_only) | ||
2569 | { | ||
2570 | struct btrfs_path *path; | ||
2571 | struct btrfs_path *dst_path; | ||
2572 | struct btrfs_key min_key; | ||
2573 | struct btrfs_key max_key; | ||
2574 | struct btrfs_root *log = root->log_root; | ||
2575 | struct extent_buffer *src = NULL; | ||
2576 | u32 size; | ||
2577 | int ret; | ||
2578 | int nritems; | ||
2579 | int ins_start_slot = 0; | ||
2580 | int ins_nr; | ||
2581 | |||
2582 | log = root->log_root; | ||
2583 | |||
2584 | path = btrfs_alloc_path(); | ||
2585 | dst_path = btrfs_alloc_path(); | ||
2586 | |||
2587 | min_key.objectid = inode->i_ino; | ||
2588 | min_key.type = BTRFS_INODE_ITEM_KEY; | ||
2589 | min_key.offset = 0; | ||
2590 | |||
2591 | max_key.objectid = inode->i_ino; | ||
2592 | if (inode_only == LOG_INODE_EXISTS || S_ISDIR(inode->i_mode)) | ||
2593 | max_key.type = BTRFS_XATTR_ITEM_KEY; | ||
2594 | else | ||
2595 | max_key.type = (u8)-1; | ||
2596 | max_key.offset = (u64)-1; | ||
2597 | |||
2598 | /* | ||
2599 | * if this inode has already been logged and we're in inode_only | ||
2600 | * mode, we don't want to delete the things that have already | ||
2601 | * been written to the log. | ||
2602 | * | ||
2603 | * But, if the inode has been through an inode_only log, | ||
2604 | * the logged_trans field is not set. This allows us to catch | ||
2605 | * any new names for this inode in the backrefs by logging it | ||
2606 | * again | ||
2607 | */ | ||
2608 | if (inode_only == LOG_INODE_EXISTS && | ||
2609 | BTRFS_I(inode)->logged_trans == trans->transid) { | ||
2610 | btrfs_free_path(path); | ||
2611 | btrfs_free_path(dst_path); | ||
2612 | goto out; | ||
2613 | } | ||
2614 | mutex_lock(&BTRFS_I(inode)->log_mutex); | ||
2615 | |||
2616 | /* | ||
2617 | * a brute force approach to making sure we get the most uptodate | ||
2618 | * copies of everything. | ||
2619 | */ | ||
2620 | if (S_ISDIR(inode->i_mode)) { | ||
2621 | int max_key_type = BTRFS_DIR_LOG_INDEX_KEY; | ||
2622 | |||
2623 | if (inode_only == LOG_INODE_EXISTS) | ||
2624 | max_key_type = BTRFS_XATTR_ITEM_KEY; | ||
2625 | ret = drop_objectid_items(trans, log, path, | ||
2626 | inode->i_ino, max_key_type); | ||
2627 | } else { | ||
2628 | ret = btrfs_truncate_inode_items(trans, log, inode, 0, 0); | ||
2629 | } | ||
2630 | BUG_ON(ret); | ||
2631 | path->keep_locks = 1; | ||
2632 | |||
2633 | while(1) { | ||
2634 | ins_nr = 0; | ||
2635 | ret = btrfs_search_forward(root, &min_key, &max_key, | ||
2636 | path, 0, trans->transid); | ||
2637 | if (ret != 0) | ||
2638 | break; | ||
2639 | again: | ||
2640 | /* note, ins_nr might be > 0 here, cleanup outside the loop */ | ||
2641 | if (min_key.objectid != inode->i_ino) | ||
2642 | break; | ||
2643 | if (min_key.type > max_key.type) | ||
2644 | break; | ||
2645 | |||
2646 | src = path->nodes[0]; | ||
2647 | size = btrfs_item_size_nr(src, path->slots[0]); | ||
2648 | if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) { | ||
2649 | ins_nr++; | ||
2650 | goto next_slot; | ||
2651 | } else if (!ins_nr) { | ||
2652 | ins_start_slot = path->slots[0]; | ||
2653 | ins_nr = 1; | ||
2654 | goto next_slot; | ||
2655 | } | ||
2656 | |||
2657 | ret = copy_items(trans, log, dst_path, src, ins_start_slot, | ||
2658 | ins_nr, inode_only); | ||
2659 | BUG_ON(ret); | ||
2660 | ins_nr = 1; | ||
2661 | ins_start_slot = path->slots[0]; | ||
2662 | next_slot: | ||
2663 | |||
2664 | nritems = btrfs_header_nritems(path->nodes[0]); | ||
2665 | path->slots[0]++; | ||
2666 | if (path->slots[0] < nritems) { | ||
2667 | btrfs_item_key_to_cpu(path->nodes[0], &min_key, | ||
2668 | path->slots[0]); | ||
2669 | goto again; | ||
2670 | } | ||
2671 | if (ins_nr) { | ||
2672 | ret = copy_items(trans, log, dst_path, src, | ||
2673 | ins_start_slot, | ||
2674 | ins_nr, inode_only); | ||
2675 | BUG_ON(ret); | ||
2676 | ins_nr = 0; | ||
2677 | } | ||
2678 | btrfs_release_path(root, path); | ||
2679 | |||
2680 | if (min_key.offset < (u64)-1) | ||
2681 | min_key.offset++; | ||
2682 | else if (min_key.type < (u8)-1) | ||
2683 | min_key.type++; | ||
2684 | else if (min_key.objectid < (u64)-1) | ||
2685 | min_key.objectid++; | ||
2686 | else | ||
2687 | break; | ||
2688 | } | ||
2689 | if (ins_nr) { | ||
2690 | ret = copy_items(trans, log, dst_path, src, | ||
2691 | ins_start_slot, | ||
2692 | ins_nr, inode_only); | ||
2693 | BUG_ON(ret); | ||
2694 | ins_nr = 0; | ||
2695 | } | ||
2696 | WARN_ON(ins_nr); | ||
2697 | if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) { | ||
2698 | btrfs_release_path(root, path); | ||
2699 | btrfs_release_path(log, dst_path); | ||
2700 | BTRFS_I(inode)->log_dirty_trans = 0; | ||
2701 | ret = log_directory_changes(trans, root, inode, path, dst_path); | ||
2702 | BUG_ON(ret); | ||
2703 | } | ||
2704 | BTRFS_I(inode)->logged_trans = trans->transid; | ||
2705 | mutex_unlock(&BTRFS_I(inode)->log_mutex); | ||
2706 | |||
2707 | btrfs_free_path(path); | ||
2708 | btrfs_free_path(dst_path); | ||
2709 | |||
2710 | mutex_lock(&root->fs_info->tree_log_mutex); | ||
2711 | ret = update_log_root(trans, log); | ||
2712 | BUG_ON(ret); | ||
2713 | mutex_unlock(&root->fs_info->tree_log_mutex); | ||
2714 | out: | ||
2715 | return 0; | ||
2716 | } | ||
2717 | |||
2718 | int btrfs_log_inode(struct btrfs_trans_handle *trans, | ||
2719 | struct btrfs_root *root, struct inode *inode, | ||
2720 | int inode_only) | ||
2721 | { | ||
2722 | int ret; | ||
2723 | |||
2724 | start_log_trans(trans, root); | ||
2725 | ret = __btrfs_log_inode(trans, root, inode, inode_only); | ||
2726 | end_log_trans(root); | ||
2727 | return ret; | ||
2728 | } | ||
2729 | |||
2730 | /* | ||
2731 | * helper function around btrfs_log_inode to make sure newly created | ||
2732 | * parent directories also end up in the log. A minimal inode and backref | ||
2733 | * only logging is done of any parent directories that are older than | ||
2734 | * the last committed transaction | ||
2735 | */ | ||
2736 | int btrfs_log_dentry(struct btrfs_trans_handle *trans, | ||
2737 | struct btrfs_root *root, struct dentry *dentry) | ||
2738 | { | ||
2739 | int inode_only = LOG_INODE_ALL; | ||
2740 | struct super_block *sb; | ||
2741 | int ret; | ||
2742 | |||
2743 | start_log_trans(trans, root); | ||
2744 | sb = dentry->d_inode->i_sb; | ||
2745 | while(1) { | ||
2746 | ret = __btrfs_log_inode(trans, root, dentry->d_inode, | ||
2747 | inode_only); | ||
2748 | BUG_ON(ret); | ||
2749 | inode_only = LOG_INODE_EXISTS; | ||
2750 | |||
2751 | dentry = dentry->d_parent; | ||
2752 | if (!dentry || !dentry->d_inode || sb != dentry->d_inode->i_sb) | ||
2753 | break; | ||
2754 | |||
2755 | if (BTRFS_I(dentry->d_inode)->generation <= | ||
2756 | root->fs_info->last_trans_committed) | ||
2757 | break; | ||
2758 | } | ||
2759 | end_log_trans(root); | ||
2760 | return 0; | ||
2761 | } | ||
2762 | |||
2763 | /* | ||
2764 | * it is not safe to log dentry if the chunk root has added new | ||
2765 | * chunks. This returns 0 if the dentry was logged, and 1 otherwise. | ||
2766 | * If this returns 1, you must commit the transaction to safely get your | ||
2767 | * data on disk. | ||
2768 | */ | ||
2769 | int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans, | ||
2770 | struct btrfs_root *root, struct dentry *dentry) | ||
2771 | { | ||
2772 | u64 gen; | ||
2773 | gen = root->fs_info->last_trans_new_blockgroup; | ||
2774 | if (gen > root->fs_info->last_trans_committed) | ||
2775 | return 1; | ||
2776 | else | ||
2777 | return btrfs_log_dentry(trans, root, dentry); | ||
2778 | } | ||
2779 | |||
2780 | /* | ||
2781 | * should be called during mount to recover any replay any log trees | ||
2782 | * from the FS | ||
2783 | */ | ||
2784 | int btrfs_recover_log_trees(struct btrfs_root *log_root_tree) | ||
2785 | { | ||
2786 | int ret; | ||
2787 | struct btrfs_path *path; | ||
2788 | struct btrfs_trans_handle *trans; | ||
2789 | struct btrfs_key key; | ||
2790 | struct btrfs_key found_key; | ||
2791 | struct btrfs_key tmp_key; | ||
2792 | struct btrfs_root *log; | ||
2793 | struct btrfs_fs_info *fs_info = log_root_tree->fs_info; | ||
2794 | u64 highest_inode; | ||
2795 | struct walk_control wc = { | ||
2796 | .process_func = process_one_buffer, | ||
2797 | .stage = 0, | ||
2798 | }; | ||
2799 | |||
2800 | fs_info->log_root_recovering = 1; | ||
2801 | path = btrfs_alloc_path(); | ||
2802 | BUG_ON(!path); | ||
2803 | |||
2804 | trans = btrfs_start_transaction(fs_info->tree_root, 1); | ||
2805 | |||
2806 | wc.trans = trans; | ||
2807 | wc.pin = 1; | ||
2808 | |||
2809 | walk_log_tree(trans, log_root_tree, &wc); | ||
2810 | |||
2811 | again: | ||
2812 | key.objectid = BTRFS_TREE_LOG_OBJECTID; | ||
2813 | key.offset = (u64)-1; | ||
2814 | btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY); | ||
2815 | |||
2816 | while(1) { | ||
2817 | ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0); | ||
2818 | if (ret < 0) | ||
2819 | break; | ||
2820 | if (ret > 0) { | ||
2821 | if (path->slots[0] == 0) | ||
2822 | break; | ||
2823 | path->slots[0]--; | ||
2824 | } | ||
2825 | btrfs_item_key_to_cpu(path->nodes[0], &found_key, | ||
2826 | path->slots[0]); | ||
2827 | btrfs_release_path(log_root_tree, path); | ||
2828 | if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID) | ||
2829 | break; | ||
2830 | |||
2831 | log = btrfs_read_fs_root_no_radix(log_root_tree, | ||
2832 | &found_key); | ||
2833 | BUG_ON(!log); | ||
2834 | |||
2835 | |||
2836 | tmp_key.objectid = found_key.offset; | ||
2837 | tmp_key.type = BTRFS_ROOT_ITEM_KEY; | ||
2838 | tmp_key.offset = (u64)-1; | ||
2839 | |||
2840 | wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key); | ||
2841 | |||
2842 | BUG_ON(!wc.replay_dest); | ||
2843 | |||
2844 | btrfs_record_root_in_trans(wc.replay_dest); | ||
2845 | ret = walk_log_tree(trans, log, &wc); | ||
2846 | BUG_ON(ret); | ||
2847 | |||
2848 | if (wc.stage == LOG_WALK_REPLAY_ALL) { | ||
2849 | ret = fixup_inode_link_counts(trans, wc.replay_dest, | ||
2850 | path); | ||
2851 | BUG_ON(ret); | ||
2852 | } | ||
2853 | ret = btrfs_find_highest_inode(wc.replay_dest, &highest_inode); | ||
2854 | if (ret == 0) { | ||
2855 | wc.replay_dest->highest_inode = highest_inode; | ||
2856 | wc.replay_dest->last_inode_alloc = highest_inode; | ||
2857 | } | ||
2858 | |||
2859 | key.offset = found_key.offset - 1; | ||
2860 | free_extent_buffer(log->node); | ||
2861 | kfree(log); | ||
2862 | |||
2863 | if (found_key.offset == 0) | ||
2864 | break; | ||
2865 | } | ||
2866 | btrfs_release_path(log_root_tree, path); | ||
2867 | |||
2868 | /* step one is to pin it all, step two is to replay just inodes */ | ||
2869 | if (wc.pin) { | ||
2870 | wc.pin = 0; | ||
2871 | wc.process_func = replay_one_buffer; | ||
2872 | wc.stage = LOG_WALK_REPLAY_INODES; | ||
2873 | goto again; | ||
2874 | } | ||
2875 | /* step three is to replay everything */ | ||
2876 | if (wc.stage < LOG_WALK_REPLAY_ALL) { | ||
2877 | wc.stage++; | ||
2878 | goto again; | ||
2879 | } | ||
2880 | |||
2881 | btrfs_free_path(path); | ||
2882 | |||
2883 | free_extent_buffer(log_root_tree->node); | ||
2884 | log_root_tree->log_root = NULL; | ||
2885 | fs_info->log_root_recovering = 0; | ||
2886 | |||
2887 | /* step 4: commit the transaction, which also unpins the blocks */ | ||
2888 | btrfs_commit_transaction(trans, fs_info->tree_root); | ||
2889 | |||
2890 | kfree(log_root_tree); | ||
2891 | return 0; | ||
2892 | } | ||