diff options
Diffstat (limited to 'fs/btrfs/tree-log.c')
-rw-r--r-- | fs/btrfs/tree-log.c | 2890 |
1 files changed, 2890 insertions, 0 deletions
diff --git a/fs/btrfs/tree-log.c b/fs/btrfs/tree-log.c new file mode 100644 index 000000000000..cf618cc8b34a --- /dev/null +++ b/fs/btrfs/tree-log.c | |||
@@ -0,0 +1,2890 @@ | |||
1 | /* | ||
2 | * Copyright (C) 2008 Oracle. All rights reserved. | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or | ||
5 | * modify it under the terms of the GNU General Public | ||
6 | * License v2 as published by the Free Software Foundation. | ||
7 | * | ||
8 | * This program is distributed in the hope that it will be useful, | ||
9 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | ||
11 | * General Public License for more details. | ||
12 | * | ||
13 | * You should have received a copy of the GNU General Public | ||
14 | * License along with this program; if not, write to the | ||
15 | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | ||
16 | * Boston, MA 021110-1307, USA. | ||
17 | */ | ||
18 | |||
19 | #include <linux/sched.h> | ||
20 | #include "ctree.h" | ||
21 | #include "transaction.h" | ||
22 | #include "disk-io.h" | ||
23 | #include "locking.h" | ||
24 | #include "print-tree.h" | ||
25 | #include "compat.h" | ||
26 | |||
27 | /* magic values for the inode_only field in btrfs_log_inode: | ||
28 | * | ||
29 | * LOG_INODE_ALL means to log everything | ||
30 | * LOG_INODE_EXISTS means to log just enough to recreate the inode | ||
31 | * during log replay | ||
32 | */ | ||
33 | #define LOG_INODE_ALL 0 | ||
34 | #define LOG_INODE_EXISTS 1 | ||
35 | |||
36 | /* | ||
37 | * stages for the tree walking. The first | ||
38 | * stage (0) is to only pin down the blocks we find | ||
39 | * the second stage (1) is to make sure that all the inodes | ||
40 | * we find in the log are created in the subvolume. | ||
41 | * | ||
42 | * The last stage is to deal with directories and links and extents | ||
43 | * and all the other fun semantics | ||
44 | */ | ||
45 | #define LOG_WALK_PIN_ONLY 0 | ||
46 | #define LOG_WALK_REPLAY_INODES 1 | ||
47 | #define LOG_WALK_REPLAY_ALL 2 | ||
48 | |||
49 | static int __btrfs_log_inode(struct btrfs_trans_handle *trans, | ||
50 | struct btrfs_root *root, struct inode *inode, | ||
51 | int inode_only); | ||
52 | |||
53 | /* | ||
54 | * tree logging is a special write ahead log used to make sure that | ||
55 | * fsyncs and O_SYNCs can happen without doing full tree commits. | ||
56 | * | ||
57 | * Full tree commits are expensive because they require commonly | ||
58 | * modified blocks to be recowed, creating many dirty pages in the | ||
59 | * extent tree an 4x-6x higher write load than ext3. | ||
60 | * | ||
61 | * Instead of doing a tree commit on every fsync, we use the | ||
62 | * key ranges and transaction ids to find items for a given file or directory | ||
63 | * that have changed in this transaction. Those items are copied into | ||
64 | * a special tree (one per subvolume root), that tree is written to disk | ||
65 | * and then the fsync is considered complete. | ||
66 | * | ||
67 | * After a crash, items are copied out of the log-tree back into the | ||
68 | * subvolume tree. Any file data extents found are recorded in the extent | ||
69 | * allocation tree, and the log-tree freed. | ||
70 | * | ||
71 | * The log tree is read three times, once to pin down all the extents it is | ||
72 | * using in ram and once, once to create all the inodes logged in the tree | ||
73 | * and once to do all the other items. | ||
74 | */ | ||
75 | |||
76 | /* | ||
77 | * btrfs_add_log_tree adds a new per-subvolume log tree into the | ||
78 | * tree of log tree roots. This must be called with a tree log transaction | ||
79 | * running (see start_log_trans). | ||
80 | */ | ||
81 | int btrfs_add_log_tree(struct btrfs_trans_handle *trans, | ||
82 | struct btrfs_root *root) | ||
83 | { | ||
84 | struct btrfs_key key; | ||
85 | struct btrfs_root_item root_item; | ||
86 | struct btrfs_inode_item *inode_item; | ||
87 | struct extent_buffer *leaf; | ||
88 | struct btrfs_root *new_root = root; | ||
89 | int ret; | ||
90 | u64 objectid = root->root_key.objectid; | ||
91 | |||
92 | leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0, | ||
93 | BTRFS_TREE_LOG_OBJECTID, | ||
94 | trans->transid, 0, 0, 0); | ||
95 | if (IS_ERR(leaf)) { | ||
96 | ret = PTR_ERR(leaf); | ||
97 | return ret; | ||
98 | } | ||
99 | |||
100 | btrfs_set_header_nritems(leaf, 0); | ||
101 | btrfs_set_header_level(leaf, 0); | ||
102 | btrfs_set_header_bytenr(leaf, leaf->start); | ||
103 | btrfs_set_header_generation(leaf, trans->transid); | ||
104 | btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID); | ||
105 | |||
106 | write_extent_buffer(leaf, root->fs_info->fsid, | ||
107 | (unsigned long)btrfs_header_fsid(leaf), | ||
108 | BTRFS_FSID_SIZE); | ||
109 | btrfs_mark_buffer_dirty(leaf); | ||
110 | |||
111 | inode_item = &root_item.inode; | ||
112 | memset(inode_item, 0, sizeof(*inode_item)); | ||
113 | inode_item->generation = cpu_to_le64(1); | ||
114 | inode_item->size = cpu_to_le64(3); | ||
115 | inode_item->nlink = cpu_to_le32(1); | ||
116 | inode_item->nbytes = cpu_to_le64(root->leafsize); | ||
117 | inode_item->mode = cpu_to_le32(S_IFDIR | 0755); | ||
118 | |||
119 | btrfs_set_root_bytenr(&root_item, leaf->start); | ||
120 | btrfs_set_root_level(&root_item, 0); | ||
121 | btrfs_set_root_refs(&root_item, 0); | ||
122 | btrfs_set_root_used(&root_item, 0); | ||
123 | |||
124 | memset(&root_item.drop_progress, 0, sizeof(root_item.drop_progress)); | ||
125 | root_item.drop_level = 0; | ||
126 | |||
127 | btrfs_tree_unlock(leaf); | ||
128 | free_extent_buffer(leaf); | ||
129 | leaf = NULL; | ||
130 | |||
131 | btrfs_set_root_dirid(&root_item, 0); | ||
132 | |||
133 | key.objectid = BTRFS_TREE_LOG_OBJECTID; | ||
134 | key.offset = objectid; | ||
135 | btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY); | ||
136 | ret = btrfs_insert_root(trans, root->fs_info->log_root_tree, &key, | ||
137 | &root_item); | ||
138 | if (ret) | ||
139 | goto fail; | ||
140 | |||
141 | new_root = btrfs_read_fs_root_no_radix(root->fs_info->log_root_tree, | ||
142 | &key); | ||
143 | BUG_ON(!new_root); | ||
144 | |||
145 | WARN_ON(root->log_root); | ||
146 | root->log_root = new_root; | ||
147 | |||
148 | /* | ||
149 | * log trees do not get reference counted because they go away | ||
150 | * before a real commit is actually done. They do store pointers | ||
151 | * to file data extents, and those reference counts still get | ||
152 | * updated (along with back refs to the log tree). | ||
153 | */ | ||
154 | new_root->ref_cows = 0; | ||
155 | new_root->last_trans = trans->transid; | ||
156 | fail: | ||
157 | return ret; | ||
158 | } | ||
159 | |||
160 | /* | ||
161 | * start a sub transaction and setup the log tree | ||
162 | * this increments the log tree writer count to make the people | ||
163 | * syncing the tree wait for us to finish | ||
164 | */ | ||
165 | static int start_log_trans(struct btrfs_trans_handle *trans, | ||
166 | struct btrfs_root *root) | ||
167 | { | ||
168 | int ret; | ||
169 | mutex_lock(&root->fs_info->tree_log_mutex); | ||
170 | if (!root->fs_info->log_root_tree) { | ||
171 | ret = btrfs_init_log_root_tree(trans, root->fs_info); | ||
172 | BUG_ON(ret); | ||
173 | } | ||
174 | if (!root->log_root) { | ||
175 | ret = btrfs_add_log_tree(trans, root); | ||
176 | BUG_ON(ret); | ||
177 | } | ||
178 | atomic_inc(&root->fs_info->tree_log_writers); | ||
179 | root->fs_info->tree_log_batch++; | ||
180 | mutex_unlock(&root->fs_info->tree_log_mutex); | ||
181 | return 0; | ||
182 | } | ||
183 | |||
184 | /* | ||
185 | * returns 0 if there was a log transaction running and we were able | ||
186 | * to join, or returns -ENOENT if there were not transactions | ||
187 | * in progress | ||
188 | */ | ||
189 | static int join_running_log_trans(struct btrfs_root *root) | ||
190 | { | ||
191 | int ret = -ENOENT; | ||
192 | |||
193 | smp_mb(); | ||
194 | if (!root->log_root) | ||
195 | return -ENOENT; | ||
196 | |||
197 | mutex_lock(&root->fs_info->tree_log_mutex); | ||
198 | if (root->log_root) { | ||
199 | ret = 0; | ||
200 | atomic_inc(&root->fs_info->tree_log_writers); | ||
201 | root->fs_info->tree_log_batch++; | ||
202 | } | ||
203 | mutex_unlock(&root->fs_info->tree_log_mutex); | ||
204 | return ret; | ||
205 | } | ||
206 | |||
207 | /* | ||
208 | * indicate we're done making changes to the log tree | ||
209 | * and wake up anyone waiting to do a sync | ||
210 | */ | ||
211 | static int end_log_trans(struct btrfs_root *root) | ||
212 | { | ||
213 | atomic_dec(&root->fs_info->tree_log_writers); | ||
214 | smp_mb(); | ||
215 | if (waitqueue_active(&root->fs_info->tree_log_wait)) | ||
216 | wake_up(&root->fs_info->tree_log_wait); | ||
217 | return 0; | ||
218 | } | ||
219 | |||
220 | |||
221 | /* | ||
222 | * the walk control struct is used to pass state down the chain when | ||
223 | * processing the log tree. The stage field tells us which part | ||
224 | * of the log tree processing we are currently doing. The others | ||
225 | * are state fields used for that specific part | ||
226 | */ | ||
227 | struct walk_control { | ||
228 | /* should we free the extent on disk when done? This is used | ||
229 | * at transaction commit time while freeing a log tree | ||
230 | */ | ||
231 | int free; | ||
232 | |||
233 | /* should we write out the extent buffer? This is used | ||
234 | * while flushing the log tree to disk during a sync | ||
235 | */ | ||
236 | int write; | ||
237 | |||
238 | /* should we wait for the extent buffer io to finish? Also used | ||
239 | * while flushing the log tree to disk for a sync | ||
240 | */ | ||
241 | int wait; | ||
242 | |||
243 | /* pin only walk, we record which extents on disk belong to the | ||
244 | * log trees | ||
245 | */ | ||
246 | int pin; | ||
247 | |||
248 | /* what stage of the replay code we're currently in */ | ||
249 | int stage; | ||
250 | |||
251 | /* the root we are currently replaying */ | ||
252 | struct btrfs_root *replay_dest; | ||
253 | |||
254 | /* the trans handle for the current replay */ | ||
255 | struct btrfs_trans_handle *trans; | ||
256 | |||
257 | /* the function that gets used to process blocks we find in the | ||
258 | * tree. Note the extent_buffer might not be up to date when it is | ||
259 | * passed in, and it must be checked or read if you need the data | ||
260 | * inside it | ||
261 | */ | ||
262 | int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb, | ||
263 | struct walk_control *wc, u64 gen); | ||
264 | }; | ||
265 | |||
266 | /* | ||
267 | * process_func used to pin down extents, write them or wait on them | ||
268 | */ | ||
269 | static int process_one_buffer(struct btrfs_root *log, | ||
270 | struct extent_buffer *eb, | ||
271 | struct walk_control *wc, u64 gen) | ||
272 | { | ||
273 | if (wc->pin) { | ||
274 | mutex_lock(&log->fs_info->alloc_mutex); | ||
275 | btrfs_update_pinned_extents(log->fs_info->extent_root, | ||
276 | eb->start, eb->len, 1); | ||
277 | mutex_unlock(&log->fs_info->alloc_mutex); | ||
278 | } | ||
279 | |||
280 | if (btrfs_buffer_uptodate(eb, gen)) { | ||
281 | if (wc->write) | ||
282 | btrfs_write_tree_block(eb); | ||
283 | if (wc->wait) | ||
284 | btrfs_wait_tree_block_writeback(eb); | ||
285 | } | ||
286 | return 0; | ||
287 | } | ||
288 | |||
289 | /* | ||
290 | * Item overwrite used by replay and tree logging. eb, slot and key all refer | ||
291 | * to the src data we are copying out. | ||
292 | * | ||
293 | * root is the tree we are copying into, and path is a scratch | ||
294 | * path for use in this function (it should be released on entry and | ||
295 | * will be released on exit). | ||
296 | * | ||
297 | * If the key is already in the destination tree the existing item is | ||
298 | * overwritten. If the existing item isn't big enough, it is extended. | ||
299 | * If it is too large, it is truncated. | ||
300 | * | ||
301 | * If the key isn't in the destination yet, a new item is inserted. | ||
302 | */ | ||
303 | static noinline int overwrite_item(struct btrfs_trans_handle *trans, | ||
304 | struct btrfs_root *root, | ||
305 | struct btrfs_path *path, | ||
306 | struct extent_buffer *eb, int slot, | ||
307 | struct btrfs_key *key) | ||
308 | { | ||
309 | int ret; | ||
310 | u32 item_size; | ||
311 | u64 saved_i_size = 0; | ||
312 | int save_old_i_size = 0; | ||
313 | unsigned long src_ptr; | ||
314 | unsigned long dst_ptr; | ||
315 | int overwrite_root = 0; | ||
316 | |||
317 | if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) | ||
318 | overwrite_root = 1; | ||
319 | |||
320 | item_size = btrfs_item_size_nr(eb, slot); | ||
321 | src_ptr = btrfs_item_ptr_offset(eb, slot); | ||
322 | |||
323 | /* look for the key in the destination tree */ | ||
324 | ret = btrfs_search_slot(NULL, root, key, path, 0, 0); | ||
325 | if (ret == 0) { | ||
326 | char *src_copy; | ||
327 | char *dst_copy; | ||
328 | u32 dst_size = btrfs_item_size_nr(path->nodes[0], | ||
329 | path->slots[0]); | ||
330 | if (dst_size != item_size) | ||
331 | goto insert; | ||
332 | |||
333 | if (item_size == 0) { | ||
334 | btrfs_release_path(root, path); | ||
335 | return 0; | ||
336 | } | ||
337 | dst_copy = kmalloc(item_size, GFP_NOFS); | ||
338 | src_copy = kmalloc(item_size, GFP_NOFS); | ||
339 | |||
340 | read_extent_buffer(eb, src_copy, src_ptr, item_size); | ||
341 | |||
342 | dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); | ||
343 | read_extent_buffer(path->nodes[0], dst_copy, dst_ptr, | ||
344 | item_size); | ||
345 | ret = memcmp(dst_copy, src_copy, item_size); | ||
346 | |||
347 | kfree(dst_copy); | ||
348 | kfree(src_copy); | ||
349 | /* | ||
350 | * they have the same contents, just return, this saves | ||
351 | * us from cowing blocks in the destination tree and doing | ||
352 | * extra writes that may not have been done by a previous | ||
353 | * sync | ||
354 | */ | ||
355 | if (ret == 0) { | ||
356 | btrfs_release_path(root, path); | ||
357 | return 0; | ||
358 | } | ||
359 | |||
360 | } | ||
361 | insert: | ||
362 | btrfs_release_path(root, path); | ||
363 | /* try to insert the key into the destination tree */ | ||
364 | ret = btrfs_insert_empty_item(trans, root, path, | ||
365 | key, item_size); | ||
366 | |||
367 | /* make sure any existing item is the correct size */ | ||
368 | if (ret == -EEXIST) { | ||
369 | u32 found_size; | ||
370 | found_size = btrfs_item_size_nr(path->nodes[0], | ||
371 | path->slots[0]); | ||
372 | if (found_size > item_size) { | ||
373 | btrfs_truncate_item(trans, root, path, item_size, 1); | ||
374 | } else if (found_size < item_size) { | ||
375 | ret = btrfs_del_item(trans, root, | ||
376 | path); | ||
377 | BUG_ON(ret); | ||
378 | |||
379 | btrfs_release_path(root, path); | ||
380 | ret = btrfs_insert_empty_item(trans, | ||
381 | root, path, key, item_size); | ||
382 | BUG_ON(ret); | ||
383 | } | ||
384 | } else if (ret) { | ||
385 | BUG(); | ||
386 | } | ||
387 | dst_ptr = btrfs_item_ptr_offset(path->nodes[0], | ||
388 | path->slots[0]); | ||
389 | |||
390 | /* don't overwrite an existing inode if the generation number | ||
391 | * was logged as zero. This is done when the tree logging code | ||
392 | * is just logging an inode to make sure it exists after recovery. | ||
393 | * | ||
394 | * Also, don't overwrite i_size on directories during replay. | ||
395 | * log replay inserts and removes directory items based on the | ||
396 | * state of the tree found in the subvolume, and i_size is modified | ||
397 | * as it goes | ||
398 | */ | ||
399 | if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) { | ||
400 | struct btrfs_inode_item *src_item; | ||
401 | struct btrfs_inode_item *dst_item; | ||
402 | |||
403 | src_item = (struct btrfs_inode_item *)src_ptr; | ||
404 | dst_item = (struct btrfs_inode_item *)dst_ptr; | ||
405 | |||
406 | if (btrfs_inode_generation(eb, src_item) == 0) | ||
407 | goto no_copy; | ||
408 | |||
409 | if (overwrite_root && | ||
410 | S_ISDIR(btrfs_inode_mode(eb, src_item)) && | ||
411 | S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) { | ||
412 | save_old_i_size = 1; | ||
413 | saved_i_size = btrfs_inode_size(path->nodes[0], | ||
414 | dst_item); | ||
415 | } | ||
416 | } | ||
417 | |||
418 | copy_extent_buffer(path->nodes[0], eb, dst_ptr, | ||
419 | src_ptr, item_size); | ||
420 | |||
421 | if (save_old_i_size) { | ||
422 | struct btrfs_inode_item *dst_item; | ||
423 | dst_item = (struct btrfs_inode_item *)dst_ptr; | ||
424 | btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size); | ||
425 | } | ||
426 | |||
427 | /* make sure the generation is filled in */ | ||
428 | if (key->type == BTRFS_INODE_ITEM_KEY) { | ||
429 | struct btrfs_inode_item *dst_item; | ||
430 | dst_item = (struct btrfs_inode_item *)dst_ptr; | ||
431 | if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) { | ||
432 | btrfs_set_inode_generation(path->nodes[0], dst_item, | ||
433 | trans->transid); | ||
434 | } | ||
435 | } | ||
436 | |||
437 | if (overwrite_root && | ||
438 | key->type == BTRFS_EXTENT_DATA_KEY) { | ||
439 | int extent_type; | ||
440 | struct btrfs_file_extent_item *fi; | ||
441 | |||
442 | fi = (struct btrfs_file_extent_item *)dst_ptr; | ||
443 | extent_type = btrfs_file_extent_type(path->nodes[0], fi); | ||
444 | if (extent_type == BTRFS_FILE_EXTENT_REG) { | ||
445 | struct btrfs_key ins; | ||
446 | ins.objectid = btrfs_file_extent_disk_bytenr( | ||
447 | path->nodes[0], fi); | ||
448 | ins.offset = btrfs_file_extent_disk_num_bytes( | ||
449 | path->nodes[0], fi); | ||
450 | ins.type = BTRFS_EXTENT_ITEM_KEY; | ||
451 | |||
452 | /* | ||
453 | * is this extent already allocated in the extent | ||
454 | * allocation tree? If so, just add a reference | ||
455 | */ | ||
456 | ret = btrfs_lookup_extent(root, ins.objectid, | ||
457 | ins.offset); | ||
458 | if (ret == 0) { | ||
459 | ret = btrfs_inc_extent_ref(trans, root, | ||
460 | ins.objectid, ins.offset, | ||
461 | path->nodes[0]->start, | ||
462 | root->root_key.objectid, | ||
463 | trans->transid, key->objectid); | ||
464 | } else { | ||
465 | /* | ||
466 | * insert the extent pointer in the extent | ||
467 | * allocation tree | ||
468 | */ | ||
469 | ret = btrfs_alloc_logged_extent(trans, root, | ||
470 | path->nodes[0]->start, | ||
471 | root->root_key.objectid, | ||
472 | trans->transid, key->objectid, | ||
473 | &ins); | ||
474 | BUG_ON(ret); | ||
475 | } | ||
476 | } | ||
477 | } | ||
478 | no_copy: | ||
479 | btrfs_mark_buffer_dirty(path->nodes[0]); | ||
480 | btrfs_release_path(root, path); | ||
481 | return 0; | ||
482 | } | ||
483 | |||
484 | /* | ||
485 | * simple helper to read an inode off the disk from a given root | ||
486 | * This can only be called for subvolume roots and not for the log | ||
487 | */ | ||
488 | static noinline struct inode *read_one_inode(struct btrfs_root *root, | ||
489 | u64 objectid) | ||
490 | { | ||
491 | struct inode *inode; | ||
492 | inode = btrfs_iget_locked(root->fs_info->sb, objectid, root); | ||
493 | if (inode->i_state & I_NEW) { | ||
494 | BTRFS_I(inode)->root = root; | ||
495 | BTRFS_I(inode)->location.objectid = objectid; | ||
496 | BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY; | ||
497 | BTRFS_I(inode)->location.offset = 0; | ||
498 | btrfs_read_locked_inode(inode); | ||
499 | unlock_new_inode(inode); | ||
500 | |||
501 | } | ||
502 | if (is_bad_inode(inode)) { | ||
503 | iput(inode); | ||
504 | inode = NULL; | ||
505 | } | ||
506 | return inode; | ||
507 | } | ||
508 | |||
509 | /* replays a single extent in 'eb' at 'slot' with 'key' into the | ||
510 | * subvolume 'root'. path is released on entry and should be released | ||
511 | * on exit. | ||
512 | * | ||
513 | * extents in the log tree have not been allocated out of the extent | ||
514 | * tree yet. So, this completes the allocation, taking a reference | ||
515 | * as required if the extent already exists or creating a new extent | ||
516 | * if it isn't in the extent allocation tree yet. | ||
517 | * | ||
518 | * The extent is inserted into the file, dropping any existing extents | ||
519 | * from the file that overlap the new one. | ||
520 | */ | ||
521 | static noinline int replay_one_extent(struct btrfs_trans_handle *trans, | ||
522 | struct btrfs_root *root, | ||
523 | struct btrfs_path *path, | ||
524 | struct extent_buffer *eb, int slot, | ||
525 | struct btrfs_key *key) | ||
526 | { | ||
527 | int found_type; | ||
528 | u64 mask = root->sectorsize - 1; | ||
529 | u64 extent_end; | ||
530 | u64 alloc_hint; | ||
531 | u64 start = key->offset; | ||
532 | struct btrfs_file_extent_item *item; | ||
533 | struct inode *inode = NULL; | ||
534 | unsigned long size; | ||
535 | int ret = 0; | ||
536 | |||
537 | item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); | ||
538 | found_type = btrfs_file_extent_type(eb, item); | ||
539 | |||
540 | if (found_type == BTRFS_FILE_EXTENT_REG) | ||
541 | extent_end = start + btrfs_file_extent_num_bytes(eb, item); | ||
542 | else if (found_type == BTRFS_FILE_EXTENT_INLINE) { | ||
543 | size = btrfs_file_extent_inline_len(eb, | ||
544 | btrfs_item_nr(eb, slot)); | ||
545 | extent_end = (start + size + mask) & ~mask; | ||
546 | } else { | ||
547 | ret = 0; | ||
548 | goto out; | ||
549 | } | ||
550 | |||
551 | inode = read_one_inode(root, key->objectid); | ||
552 | if (!inode) { | ||
553 | ret = -EIO; | ||
554 | goto out; | ||
555 | } | ||
556 | |||
557 | /* | ||
558 | * first check to see if we already have this extent in the | ||
559 | * file. This must be done before the btrfs_drop_extents run | ||
560 | * so we don't try to drop this extent. | ||
561 | */ | ||
562 | ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino, | ||
563 | start, 0); | ||
564 | |||
565 | if (ret == 0 && found_type == BTRFS_FILE_EXTENT_REG) { | ||
566 | struct btrfs_file_extent_item cmp1; | ||
567 | struct btrfs_file_extent_item cmp2; | ||
568 | struct btrfs_file_extent_item *existing; | ||
569 | struct extent_buffer *leaf; | ||
570 | |||
571 | leaf = path->nodes[0]; | ||
572 | existing = btrfs_item_ptr(leaf, path->slots[0], | ||
573 | struct btrfs_file_extent_item); | ||
574 | |||
575 | read_extent_buffer(eb, &cmp1, (unsigned long)item, | ||
576 | sizeof(cmp1)); | ||
577 | read_extent_buffer(leaf, &cmp2, (unsigned long)existing, | ||
578 | sizeof(cmp2)); | ||
579 | |||
580 | /* | ||
581 | * we already have a pointer to this exact extent, | ||
582 | * we don't have to do anything | ||
583 | */ | ||
584 | if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) { | ||
585 | btrfs_release_path(root, path); | ||
586 | goto out; | ||
587 | } | ||
588 | } | ||
589 | btrfs_release_path(root, path); | ||
590 | |||
591 | /* drop any overlapping extents */ | ||
592 | ret = btrfs_drop_extents(trans, root, inode, | ||
593 | start, extent_end, start, &alloc_hint); | ||
594 | BUG_ON(ret); | ||
595 | |||
596 | /* insert the extent */ | ||
597 | ret = overwrite_item(trans, root, path, eb, slot, key); | ||
598 | BUG_ON(ret); | ||
599 | |||
600 | /* btrfs_drop_extents changes i_bytes & i_blocks, update it here */ | ||
601 | inode_add_bytes(inode, extent_end - start); | ||
602 | btrfs_update_inode(trans, root, inode); | ||
603 | out: | ||
604 | if (inode) | ||
605 | iput(inode); | ||
606 | return ret; | ||
607 | } | ||
608 | |||
609 | /* | ||
610 | * when cleaning up conflicts between the directory names in the | ||
611 | * subvolume, directory names in the log and directory names in the | ||
612 | * inode back references, we may have to unlink inodes from directories. | ||
613 | * | ||
614 | * This is a helper function to do the unlink of a specific directory | ||
615 | * item | ||
616 | */ | ||
617 | static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans, | ||
618 | struct btrfs_root *root, | ||
619 | struct btrfs_path *path, | ||
620 | struct inode *dir, | ||
621 | struct btrfs_dir_item *di) | ||
622 | { | ||
623 | struct inode *inode; | ||
624 | char *name; | ||
625 | int name_len; | ||
626 | struct extent_buffer *leaf; | ||
627 | struct btrfs_key location; | ||
628 | int ret; | ||
629 | |||
630 | leaf = path->nodes[0]; | ||
631 | |||
632 | btrfs_dir_item_key_to_cpu(leaf, di, &location); | ||
633 | name_len = btrfs_dir_name_len(leaf, di); | ||
634 | name = kmalloc(name_len, GFP_NOFS); | ||
635 | read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len); | ||
636 | btrfs_release_path(root, path); | ||
637 | |||
638 | inode = read_one_inode(root, location.objectid); | ||
639 | BUG_ON(!inode); | ||
640 | |||
641 | btrfs_inc_nlink(inode); | ||
642 | ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len); | ||
643 | kfree(name); | ||
644 | |||
645 | iput(inode); | ||
646 | return ret; | ||
647 | } | ||
648 | |||
649 | /* | ||
650 | * helper function to see if a given name and sequence number found | ||
651 | * in an inode back reference are already in a directory and correctly | ||
652 | * point to this inode | ||
653 | */ | ||
654 | static noinline int inode_in_dir(struct btrfs_root *root, | ||
655 | struct btrfs_path *path, | ||
656 | u64 dirid, u64 objectid, u64 index, | ||
657 | const char *name, int name_len) | ||
658 | { | ||
659 | struct btrfs_dir_item *di; | ||
660 | struct btrfs_key location; | ||
661 | int match = 0; | ||
662 | |||
663 | di = btrfs_lookup_dir_index_item(NULL, root, path, dirid, | ||
664 | index, name, name_len, 0); | ||
665 | if (di && !IS_ERR(di)) { | ||
666 | btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); | ||
667 | if (location.objectid != objectid) | ||
668 | goto out; | ||
669 | } else | ||
670 | goto out; | ||
671 | btrfs_release_path(root, path); | ||
672 | |||
673 | di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0); | ||
674 | if (di && !IS_ERR(di)) { | ||
675 | btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); | ||
676 | if (location.objectid != objectid) | ||
677 | goto out; | ||
678 | } else | ||
679 | goto out; | ||
680 | match = 1; | ||
681 | out: | ||
682 | btrfs_release_path(root, path); | ||
683 | return match; | ||
684 | } | ||
685 | |||
686 | /* | ||
687 | * helper function to check a log tree for a named back reference in | ||
688 | * an inode. This is used to decide if a back reference that is | ||
689 | * found in the subvolume conflicts with what we find in the log. | ||
690 | * | ||
691 | * inode backreferences may have multiple refs in a single item, | ||
692 | * during replay we process one reference at a time, and we don't | ||
693 | * want to delete valid links to a file from the subvolume if that | ||
694 | * link is also in the log. | ||
695 | */ | ||
696 | static noinline int backref_in_log(struct btrfs_root *log, | ||
697 | struct btrfs_key *key, | ||
698 | char *name, int namelen) | ||
699 | { | ||
700 | struct btrfs_path *path; | ||
701 | struct btrfs_inode_ref *ref; | ||
702 | unsigned long ptr; | ||
703 | unsigned long ptr_end; | ||
704 | unsigned long name_ptr; | ||
705 | int found_name_len; | ||
706 | int item_size; | ||
707 | int ret; | ||
708 | int match = 0; | ||
709 | |||
710 | path = btrfs_alloc_path(); | ||
711 | ret = btrfs_search_slot(NULL, log, key, path, 0, 0); | ||
712 | if (ret != 0) | ||
713 | goto out; | ||
714 | |||
715 | item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]); | ||
716 | ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); | ||
717 | ptr_end = ptr + item_size; | ||
718 | while (ptr < ptr_end) { | ||
719 | ref = (struct btrfs_inode_ref *)ptr; | ||
720 | found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref); | ||
721 | if (found_name_len == namelen) { | ||
722 | name_ptr = (unsigned long)(ref + 1); | ||
723 | ret = memcmp_extent_buffer(path->nodes[0], name, | ||
724 | name_ptr, namelen); | ||
725 | if (ret == 0) { | ||
726 | match = 1; | ||
727 | goto out; | ||
728 | } | ||
729 | } | ||
730 | ptr = (unsigned long)(ref + 1) + found_name_len; | ||
731 | } | ||
732 | out: | ||
733 | btrfs_free_path(path); | ||
734 | return match; | ||
735 | } | ||
736 | |||
737 | |||
738 | /* | ||
739 | * replay one inode back reference item found in the log tree. | ||
740 | * eb, slot and key refer to the buffer and key found in the log tree. | ||
741 | * root is the destination we are replaying into, and path is for temp | ||
742 | * use by this function. (it should be released on return). | ||
743 | */ | ||
744 | static noinline int add_inode_ref(struct btrfs_trans_handle *trans, | ||
745 | struct btrfs_root *root, | ||
746 | struct btrfs_root *log, | ||
747 | struct btrfs_path *path, | ||
748 | struct extent_buffer *eb, int slot, | ||
749 | struct btrfs_key *key) | ||
750 | { | ||
751 | struct inode *dir; | ||
752 | int ret; | ||
753 | struct btrfs_key location; | ||
754 | struct btrfs_inode_ref *ref; | ||
755 | struct btrfs_dir_item *di; | ||
756 | struct inode *inode; | ||
757 | char *name; | ||
758 | int namelen; | ||
759 | unsigned long ref_ptr; | ||
760 | unsigned long ref_end; | ||
761 | |||
762 | location.objectid = key->objectid; | ||
763 | location.type = BTRFS_INODE_ITEM_KEY; | ||
764 | location.offset = 0; | ||
765 | |||
766 | /* | ||
767 | * it is possible that we didn't log all the parent directories | ||
768 | * for a given inode. If we don't find the dir, just don't | ||
769 | * copy the back ref in. The link count fixup code will take | ||
770 | * care of the rest | ||
771 | */ | ||
772 | dir = read_one_inode(root, key->offset); | ||
773 | if (!dir) | ||
774 | return -ENOENT; | ||
775 | |||
776 | inode = read_one_inode(root, key->objectid); | ||
777 | BUG_ON(!dir); | ||
778 | |||
779 | ref_ptr = btrfs_item_ptr_offset(eb, slot); | ||
780 | ref_end = ref_ptr + btrfs_item_size_nr(eb, slot); | ||
781 | |||
782 | again: | ||
783 | ref = (struct btrfs_inode_ref *)ref_ptr; | ||
784 | |||
785 | namelen = btrfs_inode_ref_name_len(eb, ref); | ||
786 | name = kmalloc(namelen, GFP_NOFS); | ||
787 | BUG_ON(!name); | ||
788 | |||
789 | read_extent_buffer(eb, name, (unsigned long)(ref + 1), namelen); | ||
790 | |||
791 | /* if we already have a perfect match, we're done */ | ||
792 | if (inode_in_dir(root, path, dir->i_ino, inode->i_ino, | ||
793 | btrfs_inode_ref_index(eb, ref), | ||
794 | name, namelen)) { | ||
795 | goto out; | ||
796 | } | ||
797 | |||
798 | /* | ||
799 | * look for a conflicting back reference in the metadata. | ||
800 | * if we find one we have to unlink that name of the file | ||
801 | * before we add our new link. Later on, we overwrite any | ||
802 | * existing back reference, and we don't want to create | ||
803 | * dangling pointers in the directory. | ||
804 | */ | ||
805 | conflict_again: | ||
806 | ret = btrfs_search_slot(NULL, root, key, path, 0, 0); | ||
807 | if (ret == 0) { | ||
808 | char *victim_name; | ||
809 | int victim_name_len; | ||
810 | struct btrfs_inode_ref *victim_ref; | ||
811 | unsigned long ptr; | ||
812 | unsigned long ptr_end; | ||
813 | struct extent_buffer *leaf = path->nodes[0]; | ||
814 | |||
815 | /* are we trying to overwrite a back ref for the root directory | ||
816 | * if so, just jump out, we're done | ||
817 | */ | ||
818 | if (key->objectid == key->offset) | ||
819 | goto out_nowrite; | ||
820 | |||
821 | /* check all the names in this back reference to see | ||
822 | * if they are in the log. if so, we allow them to stay | ||
823 | * otherwise they must be unlinked as a conflict | ||
824 | */ | ||
825 | ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); | ||
826 | ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]); | ||
827 | while(ptr < ptr_end) { | ||
828 | victim_ref = (struct btrfs_inode_ref *)ptr; | ||
829 | victim_name_len = btrfs_inode_ref_name_len(leaf, | ||
830 | victim_ref); | ||
831 | victim_name = kmalloc(victim_name_len, GFP_NOFS); | ||
832 | BUG_ON(!victim_name); | ||
833 | |||
834 | read_extent_buffer(leaf, victim_name, | ||
835 | (unsigned long)(victim_ref + 1), | ||
836 | victim_name_len); | ||
837 | |||
838 | if (!backref_in_log(log, key, victim_name, | ||
839 | victim_name_len)) { | ||
840 | btrfs_inc_nlink(inode); | ||
841 | btrfs_release_path(root, path); | ||
842 | ret = btrfs_unlink_inode(trans, root, dir, | ||
843 | inode, victim_name, | ||
844 | victim_name_len); | ||
845 | kfree(victim_name); | ||
846 | btrfs_release_path(root, path); | ||
847 | goto conflict_again; | ||
848 | } | ||
849 | kfree(victim_name); | ||
850 | ptr = (unsigned long)(victim_ref + 1) + victim_name_len; | ||
851 | } | ||
852 | BUG_ON(ret); | ||
853 | } | ||
854 | btrfs_release_path(root, path); | ||
855 | |||
856 | /* look for a conflicting sequence number */ | ||
857 | di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, | ||
858 | btrfs_inode_ref_index(eb, ref), | ||
859 | name, namelen, 0); | ||
860 | if (di && !IS_ERR(di)) { | ||
861 | ret = drop_one_dir_item(trans, root, path, dir, di); | ||
862 | BUG_ON(ret); | ||
863 | } | ||
864 | btrfs_release_path(root, path); | ||
865 | |||
866 | |||
867 | /* look for a conflicting name */ | ||
868 | di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino, | ||
869 | name, namelen, 0); | ||
870 | if (di && !IS_ERR(di)) { | ||
871 | ret = drop_one_dir_item(trans, root, path, dir, di); | ||
872 | BUG_ON(ret); | ||
873 | } | ||
874 | btrfs_release_path(root, path); | ||
875 | |||
876 | /* insert our name */ | ||
877 | ret = btrfs_add_link(trans, dir, inode, name, namelen, 0, | ||
878 | btrfs_inode_ref_index(eb, ref)); | ||
879 | BUG_ON(ret); | ||
880 | |||
881 | btrfs_update_inode(trans, root, inode); | ||
882 | |||
883 | out: | ||
884 | ref_ptr = (unsigned long)(ref + 1) + namelen; | ||
885 | kfree(name); | ||
886 | if (ref_ptr < ref_end) | ||
887 | goto again; | ||
888 | |||
889 | /* finally write the back reference in the inode */ | ||
890 | ret = overwrite_item(trans, root, path, eb, slot, key); | ||
891 | BUG_ON(ret); | ||
892 | |||
893 | out_nowrite: | ||
894 | btrfs_release_path(root, path); | ||
895 | iput(dir); | ||
896 | iput(inode); | ||
897 | return 0; | ||
898 | } | ||
899 | |||
900 | /* | ||
901 | * replay one csum item from the log tree into the subvolume 'root' | ||
902 | * eb, slot and key all refer to the log tree | ||
903 | * path is for temp use by this function and should be released on return | ||
904 | * | ||
905 | * This copies the checksums out of the log tree and inserts them into | ||
906 | * the subvolume. Any existing checksums for this range in the file | ||
907 | * are overwritten, and new items are added where required. | ||
908 | * | ||
909 | * We keep this simple by reusing the btrfs_ordered_sum code from | ||
910 | * the data=ordered mode. This basically means making a copy | ||
911 | * of all the checksums in ram, which we have to do anyway for kmap | ||
912 | * rules. | ||
913 | * | ||
914 | * The copy is then sent down to btrfs_csum_file_blocks, which | ||
915 | * does all the hard work of finding existing items in the file | ||
916 | * or adding new ones. | ||
917 | */ | ||
918 | static noinline int replay_one_csum(struct btrfs_trans_handle *trans, | ||
919 | struct btrfs_root *root, | ||
920 | struct btrfs_path *path, | ||
921 | struct extent_buffer *eb, int slot, | ||
922 | struct btrfs_key *key) | ||
923 | { | ||
924 | int ret; | ||
925 | u32 item_size = btrfs_item_size_nr(eb, slot); | ||
926 | u64 cur_offset; | ||
927 | unsigned long file_bytes; | ||
928 | struct btrfs_ordered_sum *sums; | ||
929 | struct btrfs_sector_sum *sector_sum; | ||
930 | struct inode *inode; | ||
931 | unsigned long ptr; | ||
932 | |||
933 | file_bytes = (item_size / BTRFS_CRC32_SIZE) * root->sectorsize; | ||
934 | inode = read_one_inode(root, key->objectid); | ||
935 | if (!inode) { | ||
936 | return -EIO; | ||
937 | } | ||
938 | |||
939 | sums = kzalloc(btrfs_ordered_sum_size(root, file_bytes), GFP_NOFS); | ||
940 | if (!sums) { | ||
941 | iput(inode); | ||
942 | return -ENOMEM; | ||
943 | } | ||
944 | |||
945 | INIT_LIST_HEAD(&sums->list); | ||
946 | sums->len = file_bytes; | ||
947 | sums->file_offset = key->offset; | ||
948 | |||
949 | /* | ||
950 | * copy all the sums into the ordered sum struct | ||
951 | */ | ||
952 | sector_sum = sums->sums; | ||
953 | cur_offset = key->offset; | ||
954 | ptr = btrfs_item_ptr_offset(eb, slot); | ||
955 | while(item_size > 0) { | ||
956 | sector_sum->offset = cur_offset; | ||
957 | read_extent_buffer(eb, §or_sum->sum, ptr, BTRFS_CRC32_SIZE); | ||
958 | sector_sum++; | ||
959 | item_size -= BTRFS_CRC32_SIZE; | ||
960 | ptr += BTRFS_CRC32_SIZE; | ||
961 | cur_offset += root->sectorsize; | ||
962 | } | ||
963 | |||
964 | /* let btrfs_csum_file_blocks add them into the file */ | ||
965 | ret = btrfs_csum_file_blocks(trans, root, inode, sums); | ||
966 | BUG_ON(ret); | ||
967 | kfree(sums); | ||
968 | iput(inode); | ||
969 | |||
970 | return 0; | ||
971 | } | ||
972 | /* | ||
973 | * There are a few corners where the link count of the file can't | ||
974 | * be properly maintained during replay. So, instead of adding | ||
975 | * lots of complexity to the log code, we just scan the backrefs | ||
976 | * for any file that has been through replay. | ||
977 | * | ||
978 | * The scan will update the link count on the inode to reflect the | ||
979 | * number of back refs found. If it goes down to zero, the iput | ||
980 | * will free the inode. | ||
981 | */ | ||
982 | static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans, | ||
983 | struct btrfs_root *root, | ||
984 | struct inode *inode) | ||
985 | { | ||
986 | struct btrfs_path *path; | ||
987 | int ret; | ||
988 | struct btrfs_key key; | ||
989 | u64 nlink = 0; | ||
990 | unsigned long ptr; | ||
991 | unsigned long ptr_end; | ||
992 | int name_len; | ||
993 | |||
994 | key.objectid = inode->i_ino; | ||
995 | key.type = BTRFS_INODE_REF_KEY; | ||
996 | key.offset = (u64)-1; | ||
997 | |||
998 | path = btrfs_alloc_path(); | ||
999 | |||
1000 | while(1) { | ||
1001 | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | ||
1002 | if (ret < 0) | ||
1003 | break; | ||
1004 | if (ret > 0) { | ||
1005 | if (path->slots[0] == 0) | ||
1006 | break; | ||
1007 | path->slots[0]--; | ||
1008 | } | ||
1009 | btrfs_item_key_to_cpu(path->nodes[0], &key, | ||
1010 | path->slots[0]); | ||
1011 | if (key.objectid != inode->i_ino || | ||
1012 | key.type != BTRFS_INODE_REF_KEY) | ||
1013 | break; | ||
1014 | ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); | ||
1015 | ptr_end = ptr + btrfs_item_size_nr(path->nodes[0], | ||
1016 | path->slots[0]); | ||
1017 | while(ptr < ptr_end) { | ||
1018 | struct btrfs_inode_ref *ref; | ||
1019 | |||
1020 | ref = (struct btrfs_inode_ref *)ptr; | ||
1021 | name_len = btrfs_inode_ref_name_len(path->nodes[0], | ||
1022 | ref); | ||
1023 | ptr = (unsigned long)(ref + 1) + name_len; | ||
1024 | nlink++; | ||
1025 | } | ||
1026 | |||
1027 | if (key.offset == 0) | ||
1028 | break; | ||
1029 | key.offset--; | ||
1030 | btrfs_release_path(root, path); | ||
1031 | } | ||
1032 | btrfs_free_path(path); | ||
1033 | if (nlink != inode->i_nlink) { | ||
1034 | inode->i_nlink = nlink; | ||
1035 | btrfs_update_inode(trans, root, inode); | ||
1036 | } | ||
1037 | BTRFS_I(inode)->index_cnt = (u64)-1; | ||
1038 | |||
1039 | return 0; | ||
1040 | } | ||
1041 | |||
1042 | static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans, | ||
1043 | struct btrfs_root *root, | ||
1044 | struct btrfs_path *path) | ||
1045 | { | ||
1046 | int ret; | ||
1047 | struct btrfs_key key; | ||
1048 | struct inode *inode; | ||
1049 | |||
1050 | key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; | ||
1051 | key.type = BTRFS_ORPHAN_ITEM_KEY; | ||
1052 | key.offset = (u64)-1; | ||
1053 | while(1) { | ||
1054 | ret = btrfs_search_slot(trans, root, &key, path, -1, 1); | ||
1055 | if (ret < 0) | ||
1056 | break; | ||
1057 | |||
1058 | if (ret == 1) { | ||
1059 | if (path->slots[0] == 0) | ||
1060 | break; | ||
1061 | path->slots[0]--; | ||
1062 | } | ||
1063 | |||
1064 | btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); | ||
1065 | if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID || | ||
1066 | key.type != BTRFS_ORPHAN_ITEM_KEY) | ||
1067 | break; | ||
1068 | |||
1069 | ret = btrfs_del_item(trans, root, path); | ||
1070 | BUG_ON(ret); | ||
1071 | |||
1072 | btrfs_release_path(root, path); | ||
1073 | inode = read_one_inode(root, key.offset); | ||
1074 | BUG_ON(!inode); | ||
1075 | |||
1076 | ret = fixup_inode_link_count(trans, root, inode); | ||
1077 | BUG_ON(ret); | ||
1078 | |||
1079 | iput(inode); | ||
1080 | |||
1081 | if (key.offset == 0) | ||
1082 | break; | ||
1083 | key.offset--; | ||
1084 | } | ||
1085 | btrfs_release_path(root, path); | ||
1086 | return 0; | ||
1087 | } | ||
1088 | |||
1089 | |||
1090 | /* | ||
1091 | * record a given inode in the fixup dir so we can check its link | ||
1092 | * count when replay is done. The link count is incremented here | ||
1093 | * so the inode won't go away until we check it | ||
1094 | */ | ||
1095 | static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans, | ||
1096 | struct btrfs_root *root, | ||
1097 | struct btrfs_path *path, | ||
1098 | u64 objectid) | ||
1099 | { | ||
1100 | struct btrfs_key key; | ||
1101 | int ret = 0; | ||
1102 | struct inode *inode; | ||
1103 | |||
1104 | inode = read_one_inode(root, objectid); | ||
1105 | BUG_ON(!inode); | ||
1106 | |||
1107 | key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; | ||
1108 | btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY); | ||
1109 | key.offset = objectid; | ||
1110 | |||
1111 | ret = btrfs_insert_empty_item(trans, root, path, &key, 0); | ||
1112 | |||
1113 | btrfs_release_path(root, path); | ||
1114 | if (ret == 0) { | ||
1115 | btrfs_inc_nlink(inode); | ||
1116 | btrfs_update_inode(trans, root, inode); | ||
1117 | } else if (ret == -EEXIST) { | ||
1118 | ret = 0; | ||
1119 | } else { | ||
1120 | BUG(); | ||
1121 | } | ||
1122 | iput(inode); | ||
1123 | |||
1124 | return ret; | ||
1125 | } | ||
1126 | |||
1127 | /* | ||
1128 | * when replaying the log for a directory, we only insert names | ||
1129 | * for inodes that actually exist. This means an fsync on a directory | ||
1130 | * does not implicitly fsync all the new files in it | ||
1131 | */ | ||
1132 | static noinline int insert_one_name(struct btrfs_trans_handle *trans, | ||
1133 | struct btrfs_root *root, | ||
1134 | struct btrfs_path *path, | ||
1135 | u64 dirid, u64 index, | ||
1136 | char *name, int name_len, u8 type, | ||
1137 | struct btrfs_key *location) | ||
1138 | { | ||
1139 | struct inode *inode; | ||
1140 | struct inode *dir; | ||
1141 | int ret; | ||
1142 | |||
1143 | inode = read_one_inode(root, location->objectid); | ||
1144 | if (!inode) | ||
1145 | return -ENOENT; | ||
1146 | |||
1147 | dir = read_one_inode(root, dirid); | ||
1148 | if (!dir) { | ||
1149 | iput(inode); | ||
1150 | return -EIO; | ||
1151 | } | ||
1152 | ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index); | ||
1153 | |||
1154 | /* FIXME, put inode into FIXUP list */ | ||
1155 | |||
1156 | iput(inode); | ||
1157 | iput(dir); | ||
1158 | return ret; | ||
1159 | } | ||
1160 | |||
1161 | /* | ||
1162 | * take a single entry in a log directory item and replay it into | ||
1163 | * the subvolume. | ||
1164 | * | ||
1165 | * if a conflicting item exists in the subdirectory already, | ||
1166 | * the inode it points to is unlinked and put into the link count | ||
1167 | * fix up tree. | ||
1168 | * | ||
1169 | * If a name from the log points to a file or directory that does | ||
1170 | * not exist in the FS, it is skipped. fsyncs on directories | ||
1171 | * do not force down inodes inside that directory, just changes to the | ||
1172 | * names or unlinks in a directory. | ||
1173 | */ | ||
1174 | static noinline int replay_one_name(struct btrfs_trans_handle *trans, | ||
1175 | struct btrfs_root *root, | ||
1176 | struct btrfs_path *path, | ||
1177 | struct extent_buffer *eb, | ||
1178 | struct btrfs_dir_item *di, | ||
1179 | struct btrfs_key *key) | ||
1180 | { | ||
1181 | char *name; | ||
1182 | int name_len; | ||
1183 | struct btrfs_dir_item *dst_di; | ||
1184 | struct btrfs_key found_key; | ||
1185 | struct btrfs_key log_key; | ||
1186 | struct inode *dir; | ||
1187 | u8 log_type; | ||
1188 | int exists; | ||
1189 | int ret; | ||
1190 | |||
1191 | dir = read_one_inode(root, key->objectid); | ||
1192 | BUG_ON(!dir); | ||
1193 | |||
1194 | name_len = btrfs_dir_name_len(eb, di); | ||
1195 | name = kmalloc(name_len, GFP_NOFS); | ||
1196 | log_type = btrfs_dir_type(eb, di); | ||
1197 | read_extent_buffer(eb, name, (unsigned long)(di + 1), | ||
1198 | name_len); | ||
1199 | |||
1200 | btrfs_dir_item_key_to_cpu(eb, di, &log_key); | ||
1201 | exists = btrfs_lookup_inode(trans, root, path, &log_key, 0); | ||
1202 | if (exists == 0) | ||
1203 | exists = 1; | ||
1204 | else | ||
1205 | exists = 0; | ||
1206 | btrfs_release_path(root, path); | ||
1207 | |||
1208 | if (key->type == BTRFS_DIR_ITEM_KEY) { | ||
1209 | dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid, | ||
1210 | name, name_len, 1); | ||
1211 | } | ||
1212 | else if (key->type == BTRFS_DIR_INDEX_KEY) { | ||
1213 | dst_di = btrfs_lookup_dir_index_item(trans, root, path, | ||
1214 | key->objectid, | ||
1215 | key->offset, name, | ||
1216 | name_len, 1); | ||
1217 | } else { | ||
1218 | BUG(); | ||
1219 | } | ||
1220 | if (!dst_di || IS_ERR(dst_di)) { | ||
1221 | /* we need a sequence number to insert, so we only | ||
1222 | * do inserts for the BTRFS_DIR_INDEX_KEY types | ||
1223 | */ | ||
1224 | if (key->type != BTRFS_DIR_INDEX_KEY) | ||
1225 | goto out; | ||
1226 | goto insert; | ||
1227 | } | ||
1228 | |||
1229 | btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key); | ||
1230 | /* the existing item matches the logged item */ | ||
1231 | if (found_key.objectid == log_key.objectid && | ||
1232 | found_key.type == log_key.type && | ||
1233 | found_key.offset == log_key.offset && | ||
1234 | btrfs_dir_type(path->nodes[0], dst_di) == log_type) { | ||
1235 | goto out; | ||
1236 | } | ||
1237 | |||
1238 | /* | ||
1239 | * don't drop the conflicting directory entry if the inode | ||
1240 | * for the new entry doesn't exist | ||
1241 | */ | ||
1242 | if (!exists) | ||
1243 | goto out; | ||
1244 | |||
1245 | ret = drop_one_dir_item(trans, root, path, dir, dst_di); | ||
1246 | BUG_ON(ret); | ||
1247 | |||
1248 | if (key->type == BTRFS_DIR_INDEX_KEY) | ||
1249 | goto insert; | ||
1250 | out: | ||
1251 | btrfs_release_path(root, path); | ||
1252 | kfree(name); | ||
1253 | iput(dir); | ||
1254 | return 0; | ||
1255 | |||
1256 | insert: | ||
1257 | btrfs_release_path(root, path); | ||
1258 | ret = insert_one_name(trans, root, path, key->objectid, key->offset, | ||
1259 | name, name_len, log_type, &log_key); | ||
1260 | |||
1261 | if (ret && ret != -ENOENT) | ||
1262 | BUG(); | ||
1263 | goto out; | ||
1264 | } | ||
1265 | |||
1266 | /* | ||
1267 | * find all the names in a directory item and reconcile them into | ||
1268 | * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than | ||
1269 | * one name in a directory item, but the same code gets used for | ||
1270 | * both directory index types | ||
1271 | */ | ||
1272 | static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans, | ||
1273 | struct btrfs_root *root, | ||
1274 | struct btrfs_path *path, | ||
1275 | struct extent_buffer *eb, int slot, | ||
1276 | struct btrfs_key *key) | ||
1277 | { | ||
1278 | int ret; | ||
1279 | u32 item_size = btrfs_item_size_nr(eb, slot); | ||
1280 | struct btrfs_dir_item *di; | ||
1281 | int name_len; | ||
1282 | unsigned long ptr; | ||
1283 | unsigned long ptr_end; | ||
1284 | |||
1285 | ptr = btrfs_item_ptr_offset(eb, slot); | ||
1286 | ptr_end = ptr + item_size; | ||
1287 | while(ptr < ptr_end) { | ||
1288 | di = (struct btrfs_dir_item *)ptr; | ||
1289 | name_len = btrfs_dir_name_len(eb, di); | ||
1290 | ret = replay_one_name(trans, root, path, eb, di, key); | ||
1291 | BUG_ON(ret); | ||
1292 | ptr = (unsigned long)(di + 1); | ||
1293 | ptr += name_len; | ||
1294 | } | ||
1295 | return 0; | ||
1296 | } | ||
1297 | |||
1298 | /* | ||
1299 | * directory replay has two parts. There are the standard directory | ||
1300 | * items in the log copied from the subvolume, and range items | ||
1301 | * created in the log while the subvolume was logged. | ||
1302 | * | ||
1303 | * The range items tell us which parts of the key space the log | ||
1304 | * is authoritative for. During replay, if a key in the subvolume | ||
1305 | * directory is in a logged range item, but not actually in the log | ||
1306 | * that means it was deleted from the directory before the fsync | ||
1307 | * and should be removed. | ||
1308 | */ | ||
1309 | static noinline int find_dir_range(struct btrfs_root *root, | ||
1310 | struct btrfs_path *path, | ||
1311 | u64 dirid, int key_type, | ||
1312 | u64 *start_ret, u64 *end_ret) | ||
1313 | { | ||
1314 | struct btrfs_key key; | ||
1315 | u64 found_end; | ||
1316 | struct btrfs_dir_log_item *item; | ||
1317 | int ret; | ||
1318 | int nritems; | ||
1319 | |||
1320 | if (*start_ret == (u64)-1) | ||
1321 | return 1; | ||
1322 | |||
1323 | key.objectid = dirid; | ||
1324 | key.type = key_type; | ||
1325 | key.offset = *start_ret; | ||
1326 | |||
1327 | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | ||
1328 | if (ret < 0) | ||
1329 | goto out; | ||
1330 | if (ret > 0) { | ||
1331 | if (path->slots[0] == 0) | ||
1332 | goto out; | ||
1333 | path->slots[0]--; | ||
1334 | } | ||
1335 | if (ret != 0) | ||
1336 | btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); | ||
1337 | |||
1338 | if (key.type != key_type || key.objectid != dirid) { | ||
1339 | ret = 1; | ||
1340 | goto next; | ||
1341 | } | ||
1342 | item = btrfs_item_ptr(path->nodes[0], path->slots[0], | ||
1343 | struct btrfs_dir_log_item); | ||
1344 | found_end = btrfs_dir_log_end(path->nodes[0], item); | ||
1345 | |||
1346 | if (*start_ret >= key.offset && *start_ret <= found_end) { | ||
1347 | ret = 0; | ||
1348 | *start_ret = key.offset; | ||
1349 | *end_ret = found_end; | ||
1350 | goto out; | ||
1351 | } | ||
1352 | ret = 1; | ||
1353 | next: | ||
1354 | /* check the next slot in the tree to see if it is a valid item */ | ||
1355 | nritems = btrfs_header_nritems(path->nodes[0]); | ||
1356 | if (path->slots[0] >= nritems) { | ||
1357 | ret = btrfs_next_leaf(root, path); | ||
1358 | if (ret) | ||
1359 | goto out; | ||
1360 | } else { | ||
1361 | path->slots[0]++; | ||
1362 | } | ||
1363 | |||
1364 | btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); | ||
1365 | |||
1366 | if (key.type != key_type || key.objectid != dirid) { | ||
1367 | ret = 1; | ||
1368 | goto out; | ||
1369 | } | ||
1370 | item = btrfs_item_ptr(path->nodes[0], path->slots[0], | ||
1371 | struct btrfs_dir_log_item); | ||
1372 | found_end = btrfs_dir_log_end(path->nodes[0], item); | ||
1373 | *start_ret = key.offset; | ||
1374 | *end_ret = found_end; | ||
1375 | ret = 0; | ||
1376 | out: | ||
1377 | btrfs_release_path(root, path); | ||
1378 | return ret; | ||
1379 | } | ||
1380 | |||
1381 | /* | ||
1382 | * this looks for a given directory item in the log. If the directory | ||
1383 | * item is not in the log, the item is removed and the inode it points | ||
1384 | * to is unlinked | ||
1385 | */ | ||
1386 | static noinline int check_item_in_log(struct btrfs_trans_handle *trans, | ||
1387 | struct btrfs_root *root, | ||
1388 | struct btrfs_root *log, | ||
1389 | struct btrfs_path *path, | ||
1390 | struct btrfs_path *log_path, | ||
1391 | struct inode *dir, | ||
1392 | struct btrfs_key *dir_key) | ||
1393 | { | ||
1394 | int ret; | ||
1395 | struct extent_buffer *eb; | ||
1396 | int slot; | ||
1397 | u32 item_size; | ||
1398 | struct btrfs_dir_item *di; | ||
1399 | struct btrfs_dir_item *log_di; | ||
1400 | int name_len; | ||
1401 | unsigned long ptr; | ||
1402 | unsigned long ptr_end; | ||
1403 | char *name; | ||
1404 | struct inode *inode; | ||
1405 | struct btrfs_key location; | ||
1406 | |||
1407 | again: | ||
1408 | eb = path->nodes[0]; | ||
1409 | slot = path->slots[0]; | ||
1410 | item_size = btrfs_item_size_nr(eb, slot); | ||
1411 | ptr = btrfs_item_ptr_offset(eb, slot); | ||
1412 | ptr_end = ptr + item_size; | ||
1413 | while(ptr < ptr_end) { | ||
1414 | di = (struct btrfs_dir_item *)ptr; | ||
1415 | name_len = btrfs_dir_name_len(eb, di); | ||
1416 | name = kmalloc(name_len, GFP_NOFS); | ||
1417 | if (!name) { | ||
1418 | ret = -ENOMEM; | ||
1419 | goto out; | ||
1420 | } | ||
1421 | read_extent_buffer(eb, name, (unsigned long)(di + 1), | ||
1422 | name_len); | ||
1423 | log_di = NULL; | ||
1424 | if (dir_key->type == BTRFS_DIR_ITEM_KEY) { | ||
1425 | log_di = btrfs_lookup_dir_item(trans, log, log_path, | ||
1426 | dir_key->objectid, | ||
1427 | name, name_len, 0); | ||
1428 | } else if (dir_key->type == BTRFS_DIR_INDEX_KEY) { | ||
1429 | log_di = btrfs_lookup_dir_index_item(trans, log, | ||
1430 | log_path, | ||
1431 | dir_key->objectid, | ||
1432 | dir_key->offset, | ||
1433 | name, name_len, 0); | ||
1434 | } | ||
1435 | if (!log_di || IS_ERR(log_di)) { | ||
1436 | btrfs_dir_item_key_to_cpu(eb, di, &location); | ||
1437 | btrfs_release_path(root, path); | ||
1438 | btrfs_release_path(log, log_path); | ||
1439 | inode = read_one_inode(root, location.objectid); | ||
1440 | BUG_ON(!inode); | ||
1441 | |||
1442 | ret = link_to_fixup_dir(trans, root, | ||
1443 | path, location.objectid); | ||
1444 | BUG_ON(ret); | ||
1445 | btrfs_inc_nlink(inode); | ||
1446 | ret = btrfs_unlink_inode(trans, root, dir, inode, | ||
1447 | name, name_len); | ||
1448 | BUG_ON(ret); | ||
1449 | kfree(name); | ||
1450 | iput(inode); | ||
1451 | |||
1452 | /* there might still be more names under this key | ||
1453 | * check and repeat if required | ||
1454 | */ | ||
1455 | ret = btrfs_search_slot(NULL, root, dir_key, path, | ||
1456 | 0, 0); | ||
1457 | if (ret == 0) | ||
1458 | goto again; | ||
1459 | ret = 0; | ||
1460 | goto out; | ||
1461 | } | ||
1462 | btrfs_release_path(log, log_path); | ||
1463 | kfree(name); | ||
1464 | |||
1465 | ptr = (unsigned long)(di + 1); | ||
1466 | ptr += name_len; | ||
1467 | } | ||
1468 | ret = 0; | ||
1469 | out: | ||
1470 | btrfs_release_path(root, path); | ||
1471 | btrfs_release_path(log, log_path); | ||
1472 | return ret; | ||
1473 | } | ||
1474 | |||
1475 | /* | ||
1476 | * deletion replay happens before we copy any new directory items | ||
1477 | * out of the log or out of backreferences from inodes. It | ||
1478 | * scans the log to find ranges of keys that log is authoritative for, | ||
1479 | * and then scans the directory to find items in those ranges that are | ||
1480 | * not present in the log. | ||
1481 | * | ||
1482 | * Anything we don't find in the log is unlinked and removed from the | ||
1483 | * directory. | ||
1484 | */ | ||
1485 | static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans, | ||
1486 | struct btrfs_root *root, | ||
1487 | struct btrfs_root *log, | ||
1488 | struct btrfs_path *path, | ||
1489 | u64 dirid) | ||
1490 | { | ||
1491 | u64 range_start; | ||
1492 | u64 range_end; | ||
1493 | int key_type = BTRFS_DIR_LOG_ITEM_KEY; | ||
1494 | int ret = 0; | ||
1495 | struct btrfs_key dir_key; | ||
1496 | struct btrfs_key found_key; | ||
1497 | struct btrfs_path *log_path; | ||
1498 | struct inode *dir; | ||
1499 | |||
1500 | dir_key.objectid = dirid; | ||
1501 | dir_key.type = BTRFS_DIR_ITEM_KEY; | ||
1502 | log_path = btrfs_alloc_path(); | ||
1503 | if (!log_path) | ||
1504 | return -ENOMEM; | ||
1505 | |||
1506 | dir = read_one_inode(root, dirid); | ||
1507 | /* it isn't an error if the inode isn't there, that can happen | ||
1508 | * because we replay the deletes before we copy in the inode item | ||
1509 | * from the log | ||
1510 | */ | ||
1511 | if (!dir) { | ||
1512 | btrfs_free_path(log_path); | ||
1513 | return 0; | ||
1514 | } | ||
1515 | again: | ||
1516 | range_start = 0; | ||
1517 | range_end = 0; | ||
1518 | while(1) { | ||
1519 | ret = find_dir_range(log, path, dirid, key_type, | ||
1520 | &range_start, &range_end); | ||
1521 | if (ret != 0) | ||
1522 | break; | ||
1523 | |||
1524 | dir_key.offset = range_start; | ||
1525 | while(1) { | ||
1526 | int nritems; | ||
1527 | ret = btrfs_search_slot(NULL, root, &dir_key, path, | ||
1528 | 0, 0); | ||
1529 | if (ret < 0) | ||
1530 | goto out; | ||
1531 | |||
1532 | nritems = btrfs_header_nritems(path->nodes[0]); | ||
1533 | if (path->slots[0] >= nritems) { | ||
1534 | ret = btrfs_next_leaf(root, path); | ||
1535 | if (ret) | ||
1536 | break; | ||
1537 | } | ||
1538 | btrfs_item_key_to_cpu(path->nodes[0], &found_key, | ||
1539 | path->slots[0]); | ||
1540 | if (found_key.objectid != dirid || | ||
1541 | found_key.type != dir_key.type) | ||
1542 | goto next_type; | ||
1543 | |||
1544 | if (found_key.offset > range_end) | ||
1545 | break; | ||
1546 | |||
1547 | ret = check_item_in_log(trans, root, log, path, | ||
1548 | log_path, dir, &found_key); | ||
1549 | BUG_ON(ret); | ||
1550 | if (found_key.offset == (u64)-1) | ||
1551 | break; | ||
1552 | dir_key.offset = found_key.offset + 1; | ||
1553 | } | ||
1554 | btrfs_release_path(root, path); | ||
1555 | if (range_end == (u64)-1) | ||
1556 | break; | ||
1557 | range_start = range_end + 1; | ||
1558 | } | ||
1559 | |||
1560 | next_type: | ||
1561 | ret = 0; | ||
1562 | if (key_type == BTRFS_DIR_LOG_ITEM_KEY) { | ||
1563 | key_type = BTRFS_DIR_LOG_INDEX_KEY; | ||
1564 | dir_key.type = BTRFS_DIR_INDEX_KEY; | ||
1565 | btrfs_release_path(root, path); | ||
1566 | goto again; | ||
1567 | } | ||
1568 | out: | ||
1569 | btrfs_release_path(root, path); | ||
1570 | btrfs_free_path(log_path); | ||
1571 | iput(dir); | ||
1572 | return ret; | ||
1573 | } | ||
1574 | |||
1575 | /* | ||
1576 | * the process_func used to replay items from the log tree. This | ||
1577 | * gets called in two different stages. The first stage just looks | ||
1578 | * for inodes and makes sure they are all copied into the subvolume. | ||
1579 | * | ||
1580 | * The second stage copies all the other item types from the log into | ||
1581 | * the subvolume. The two stage approach is slower, but gets rid of | ||
1582 | * lots of complexity around inodes referencing other inodes that exist | ||
1583 | * only in the log (references come from either directory items or inode | ||
1584 | * back refs). | ||
1585 | */ | ||
1586 | static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb, | ||
1587 | struct walk_control *wc, u64 gen) | ||
1588 | { | ||
1589 | int nritems; | ||
1590 | struct btrfs_path *path; | ||
1591 | struct btrfs_root *root = wc->replay_dest; | ||
1592 | struct btrfs_key key; | ||
1593 | u32 item_size; | ||
1594 | int level; | ||
1595 | int i; | ||
1596 | int ret; | ||
1597 | |||
1598 | btrfs_read_buffer(eb, gen); | ||
1599 | |||
1600 | level = btrfs_header_level(eb); | ||
1601 | |||
1602 | if (level != 0) | ||
1603 | return 0; | ||
1604 | |||
1605 | path = btrfs_alloc_path(); | ||
1606 | BUG_ON(!path); | ||
1607 | |||
1608 | nritems = btrfs_header_nritems(eb); | ||
1609 | for (i = 0; i < nritems; i++) { | ||
1610 | btrfs_item_key_to_cpu(eb, &key, i); | ||
1611 | item_size = btrfs_item_size_nr(eb, i); | ||
1612 | |||
1613 | /* inode keys are done during the first stage */ | ||
1614 | if (key.type == BTRFS_INODE_ITEM_KEY && | ||
1615 | wc->stage == LOG_WALK_REPLAY_INODES) { | ||
1616 | struct inode *inode; | ||
1617 | struct btrfs_inode_item *inode_item; | ||
1618 | u32 mode; | ||
1619 | |||
1620 | inode_item = btrfs_item_ptr(eb, i, | ||
1621 | struct btrfs_inode_item); | ||
1622 | mode = btrfs_inode_mode(eb, inode_item); | ||
1623 | if (S_ISDIR(mode)) { | ||
1624 | ret = replay_dir_deletes(wc->trans, | ||
1625 | root, log, path, key.objectid); | ||
1626 | BUG_ON(ret); | ||
1627 | } | ||
1628 | ret = overwrite_item(wc->trans, root, path, | ||
1629 | eb, i, &key); | ||
1630 | BUG_ON(ret); | ||
1631 | |||
1632 | /* for regular files, truncate away | ||
1633 | * extents past the new EOF | ||
1634 | */ | ||
1635 | if (S_ISREG(mode)) { | ||
1636 | inode = read_one_inode(root, | ||
1637 | key.objectid); | ||
1638 | BUG_ON(!inode); | ||
1639 | |||
1640 | ret = btrfs_truncate_inode_items(wc->trans, | ||
1641 | root, inode, inode->i_size, | ||
1642 | BTRFS_EXTENT_DATA_KEY); | ||
1643 | BUG_ON(ret); | ||
1644 | iput(inode); | ||
1645 | } | ||
1646 | ret = link_to_fixup_dir(wc->trans, root, | ||
1647 | path, key.objectid); | ||
1648 | BUG_ON(ret); | ||
1649 | } | ||
1650 | if (wc->stage < LOG_WALK_REPLAY_ALL) | ||
1651 | continue; | ||
1652 | |||
1653 | /* these keys are simply copied */ | ||
1654 | if (key.type == BTRFS_XATTR_ITEM_KEY) { | ||
1655 | ret = overwrite_item(wc->trans, root, path, | ||
1656 | eb, i, &key); | ||
1657 | BUG_ON(ret); | ||
1658 | } else if (key.type == BTRFS_INODE_REF_KEY) { | ||
1659 | ret = add_inode_ref(wc->trans, root, log, path, | ||
1660 | eb, i, &key); | ||
1661 | BUG_ON(ret && ret != -ENOENT); | ||
1662 | } else if (key.type == BTRFS_EXTENT_DATA_KEY) { | ||
1663 | ret = replay_one_extent(wc->trans, root, path, | ||
1664 | eb, i, &key); | ||
1665 | BUG_ON(ret); | ||
1666 | } else if (key.type == BTRFS_CSUM_ITEM_KEY) { | ||
1667 | ret = replay_one_csum(wc->trans, root, path, | ||
1668 | eb, i, &key); | ||
1669 | BUG_ON(ret); | ||
1670 | } else if (key.type == BTRFS_DIR_ITEM_KEY || | ||
1671 | key.type == BTRFS_DIR_INDEX_KEY) { | ||
1672 | ret = replay_one_dir_item(wc->trans, root, path, | ||
1673 | eb, i, &key); | ||
1674 | BUG_ON(ret); | ||
1675 | } | ||
1676 | } | ||
1677 | btrfs_free_path(path); | ||
1678 | return 0; | ||
1679 | } | ||
1680 | |||
1681 | static int noinline walk_down_log_tree(struct btrfs_trans_handle *trans, | ||
1682 | struct btrfs_root *root, | ||
1683 | struct btrfs_path *path, int *level, | ||
1684 | struct walk_control *wc) | ||
1685 | { | ||
1686 | u64 root_owner; | ||
1687 | u64 root_gen; | ||
1688 | u64 bytenr; | ||
1689 | u64 ptr_gen; | ||
1690 | struct extent_buffer *next; | ||
1691 | struct extent_buffer *cur; | ||
1692 | struct extent_buffer *parent; | ||
1693 | u32 blocksize; | ||
1694 | int ret = 0; | ||
1695 | |||
1696 | WARN_ON(*level < 0); | ||
1697 | WARN_ON(*level >= BTRFS_MAX_LEVEL); | ||
1698 | |||
1699 | while(*level > 0) { | ||
1700 | WARN_ON(*level < 0); | ||
1701 | WARN_ON(*level >= BTRFS_MAX_LEVEL); | ||
1702 | cur = path->nodes[*level]; | ||
1703 | |||
1704 | if (btrfs_header_level(cur) != *level) | ||
1705 | WARN_ON(1); | ||
1706 | |||
1707 | if (path->slots[*level] >= | ||
1708 | btrfs_header_nritems(cur)) | ||
1709 | break; | ||
1710 | |||
1711 | bytenr = btrfs_node_blockptr(cur, path->slots[*level]); | ||
1712 | ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]); | ||
1713 | blocksize = btrfs_level_size(root, *level - 1); | ||
1714 | |||
1715 | parent = path->nodes[*level]; | ||
1716 | root_owner = btrfs_header_owner(parent); | ||
1717 | root_gen = btrfs_header_generation(parent); | ||
1718 | |||
1719 | next = btrfs_find_create_tree_block(root, bytenr, blocksize); | ||
1720 | |||
1721 | wc->process_func(root, next, wc, ptr_gen); | ||
1722 | |||
1723 | if (*level == 1) { | ||
1724 | path->slots[*level]++; | ||
1725 | if (wc->free) { | ||
1726 | btrfs_read_buffer(next, ptr_gen); | ||
1727 | |||
1728 | btrfs_tree_lock(next); | ||
1729 | clean_tree_block(trans, root, next); | ||
1730 | btrfs_wait_tree_block_writeback(next); | ||
1731 | btrfs_tree_unlock(next); | ||
1732 | |||
1733 | ret = btrfs_drop_leaf_ref(trans, root, next); | ||
1734 | BUG_ON(ret); | ||
1735 | |||
1736 | WARN_ON(root_owner != | ||
1737 | BTRFS_TREE_LOG_OBJECTID); | ||
1738 | ret = btrfs_free_reserved_extent(root, | ||
1739 | bytenr, blocksize); | ||
1740 | BUG_ON(ret); | ||
1741 | } | ||
1742 | free_extent_buffer(next); | ||
1743 | continue; | ||
1744 | } | ||
1745 | btrfs_read_buffer(next, ptr_gen); | ||
1746 | |||
1747 | WARN_ON(*level <= 0); | ||
1748 | if (path->nodes[*level-1]) | ||
1749 | free_extent_buffer(path->nodes[*level-1]); | ||
1750 | path->nodes[*level-1] = next; | ||
1751 | *level = btrfs_header_level(next); | ||
1752 | path->slots[*level] = 0; | ||
1753 | cond_resched(); | ||
1754 | } | ||
1755 | WARN_ON(*level < 0); | ||
1756 | WARN_ON(*level >= BTRFS_MAX_LEVEL); | ||
1757 | |||
1758 | if (path->nodes[*level] == root->node) { | ||
1759 | parent = path->nodes[*level]; | ||
1760 | } else { | ||
1761 | parent = path->nodes[*level + 1]; | ||
1762 | } | ||
1763 | bytenr = path->nodes[*level]->start; | ||
1764 | |||
1765 | blocksize = btrfs_level_size(root, *level); | ||
1766 | root_owner = btrfs_header_owner(parent); | ||
1767 | root_gen = btrfs_header_generation(parent); | ||
1768 | |||
1769 | wc->process_func(root, path->nodes[*level], wc, | ||
1770 | btrfs_header_generation(path->nodes[*level])); | ||
1771 | |||
1772 | if (wc->free) { | ||
1773 | next = path->nodes[*level]; | ||
1774 | btrfs_tree_lock(next); | ||
1775 | clean_tree_block(trans, root, next); | ||
1776 | btrfs_wait_tree_block_writeback(next); | ||
1777 | btrfs_tree_unlock(next); | ||
1778 | |||
1779 | if (*level == 0) { | ||
1780 | ret = btrfs_drop_leaf_ref(trans, root, next); | ||
1781 | BUG_ON(ret); | ||
1782 | } | ||
1783 | WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID); | ||
1784 | ret = btrfs_free_reserved_extent(root, bytenr, blocksize); | ||
1785 | BUG_ON(ret); | ||
1786 | } | ||
1787 | free_extent_buffer(path->nodes[*level]); | ||
1788 | path->nodes[*level] = NULL; | ||
1789 | *level += 1; | ||
1790 | |||
1791 | cond_resched(); | ||
1792 | return 0; | ||
1793 | } | ||
1794 | |||
1795 | static int noinline walk_up_log_tree(struct btrfs_trans_handle *trans, | ||
1796 | struct btrfs_root *root, | ||
1797 | struct btrfs_path *path, int *level, | ||
1798 | struct walk_control *wc) | ||
1799 | { | ||
1800 | u64 root_owner; | ||
1801 | u64 root_gen; | ||
1802 | int i; | ||
1803 | int slot; | ||
1804 | int ret; | ||
1805 | |||
1806 | for(i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) { | ||
1807 | slot = path->slots[i]; | ||
1808 | if (slot < btrfs_header_nritems(path->nodes[i]) - 1) { | ||
1809 | struct extent_buffer *node; | ||
1810 | node = path->nodes[i]; | ||
1811 | path->slots[i]++; | ||
1812 | *level = i; | ||
1813 | WARN_ON(*level == 0); | ||
1814 | return 0; | ||
1815 | } else { | ||
1816 | struct extent_buffer *parent; | ||
1817 | if (path->nodes[*level] == root->node) | ||
1818 | parent = path->nodes[*level]; | ||
1819 | else | ||
1820 | parent = path->nodes[*level + 1]; | ||
1821 | |||
1822 | root_owner = btrfs_header_owner(parent); | ||
1823 | root_gen = btrfs_header_generation(parent); | ||
1824 | wc->process_func(root, path->nodes[*level], wc, | ||
1825 | btrfs_header_generation(path->nodes[*level])); | ||
1826 | if (wc->free) { | ||
1827 | struct extent_buffer *next; | ||
1828 | |||
1829 | next = path->nodes[*level]; | ||
1830 | |||
1831 | btrfs_tree_lock(next); | ||
1832 | clean_tree_block(trans, root, next); | ||
1833 | btrfs_wait_tree_block_writeback(next); | ||
1834 | btrfs_tree_unlock(next); | ||
1835 | |||
1836 | if (*level == 0) { | ||
1837 | ret = btrfs_drop_leaf_ref(trans, root, | ||
1838 | next); | ||
1839 | BUG_ON(ret); | ||
1840 | } | ||
1841 | |||
1842 | WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID); | ||
1843 | ret = btrfs_free_reserved_extent(root, | ||
1844 | path->nodes[*level]->start, | ||
1845 | path->nodes[*level]->len); | ||
1846 | BUG_ON(ret); | ||
1847 | } | ||
1848 | free_extent_buffer(path->nodes[*level]); | ||
1849 | path->nodes[*level] = NULL; | ||
1850 | *level = i + 1; | ||
1851 | } | ||
1852 | } | ||
1853 | return 1; | ||
1854 | } | ||
1855 | |||
1856 | /* | ||
1857 | * drop the reference count on the tree rooted at 'snap'. This traverses | ||
1858 | * the tree freeing any blocks that have a ref count of zero after being | ||
1859 | * decremented. | ||
1860 | */ | ||
1861 | static int walk_log_tree(struct btrfs_trans_handle *trans, | ||
1862 | struct btrfs_root *log, struct walk_control *wc) | ||
1863 | { | ||
1864 | int ret = 0; | ||
1865 | int wret; | ||
1866 | int level; | ||
1867 | struct btrfs_path *path; | ||
1868 | int i; | ||
1869 | int orig_level; | ||
1870 | |||
1871 | path = btrfs_alloc_path(); | ||
1872 | BUG_ON(!path); | ||
1873 | |||
1874 | level = btrfs_header_level(log->node); | ||
1875 | orig_level = level; | ||
1876 | path->nodes[level] = log->node; | ||
1877 | extent_buffer_get(log->node); | ||
1878 | path->slots[level] = 0; | ||
1879 | |||
1880 | while(1) { | ||
1881 | wret = walk_down_log_tree(trans, log, path, &level, wc); | ||
1882 | if (wret > 0) | ||
1883 | break; | ||
1884 | if (wret < 0) | ||
1885 | ret = wret; | ||
1886 | |||
1887 | wret = walk_up_log_tree(trans, log, path, &level, wc); | ||
1888 | if (wret > 0) | ||
1889 | break; | ||
1890 | if (wret < 0) | ||
1891 | ret = wret; | ||
1892 | } | ||
1893 | |||
1894 | /* was the root node processed? if not, catch it here */ | ||
1895 | if (path->nodes[orig_level]) { | ||
1896 | wc->process_func(log, path->nodes[orig_level], wc, | ||
1897 | btrfs_header_generation(path->nodes[orig_level])); | ||
1898 | if (wc->free) { | ||
1899 | struct extent_buffer *next; | ||
1900 | |||
1901 | next = path->nodes[orig_level]; | ||
1902 | |||
1903 | btrfs_tree_lock(next); | ||
1904 | clean_tree_block(trans, log, next); | ||
1905 | btrfs_wait_tree_block_writeback(next); | ||
1906 | btrfs_tree_unlock(next); | ||
1907 | |||
1908 | if (orig_level == 0) { | ||
1909 | ret = btrfs_drop_leaf_ref(trans, log, | ||
1910 | next); | ||
1911 | BUG_ON(ret); | ||
1912 | } | ||
1913 | WARN_ON(log->root_key.objectid != | ||
1914 | BTRFS_TREE_LOG_OBJECTID); | ||
1915 | ret = btrfs_free_reserved_extent(log, next->start, | ||
1916 | next->len); | ||
1917 | BUG_ON(ret); | ||
1918 | } | ||
1919 | } | ||
1920 | |||
1921 | for (i = 0; i <= orig_level; i++) { | ||
1922 | if (path->nodes[i]) { | ||
1923 | free_extent_buffer(path->nodes[i]); | ||
1924 | path->nodes[i] = NULL; | ||
1925 | } | ||
1926 | } | ||
1927 | btrfs_free_path(path); | ||
1928 | if (wc->free) | ||
1929 | free_extent_buffer(log->node); | ||
1930 | return ret; | ||
1931 | } | ||
1932 | |||
1933 | int wait_log_commit(struct btrfs_root *log) | ||
1934 | { | ||
1935 | DEFINE_WAIT(wait); | ||
1936 | u64 transid = log->fs_info->tree_log_transid; | ||
1937 | |||
1938 | do { | ||
1939 | prepare_to_wait(&log->fs_info->tree_log_wait, &wait, | ||
1940 | TASK_UNINTERRUPTIBLE); | ||
1941 | mutex_unlock(&log->fs_info->tree_log_mutex); | ||
1942 | if (atomic_read(&log->fs_info->tree_log_commit)) | ||
1943 | schedule(); | ||
1944 | finish_wait(&log->fs_info->tree_log_wait, &wait); | ||
1945 | mutex_lock(&log->fs_info->tree_log_mutex); | ||
1946 | } while(transid == log->fs_info->tree_log_transid && | ||
1947 | atomic_read(&log->fs_info->tree_log_commit)); | ||
1948 | return 0; | ||
1949 | } | ||
1950 | |||
1951 | /* | ||
1952 | * btrfs_sync_log does sends a given tree log down to the disk and | ||
1953 | * updates the super blocks to record it. When this call is done, | ||
1954 | * you know that any inodes previously logged are safely on disk | ||
1955 | */ | ||
1956 | int btrfs_sync_log(struct btrfs_trans_handle *trans, | ||
1957 | struct btrfs_root *root) | ||
1958 | { | ||
1959 | int ret; | ||
1960 | unsigned long batch; | ||
1961 | struct btrfs_root *log = root->log_root; | ||
1962 | |||
1963 | mutex_lock(&log->fs_info->tree_log_mutex); | ||
1964 | if (atomic_read(&log->fs_info->tree_log_commit)) { | ||
1965 | wait_log_commit(log); | ||
1966 | goto out; | ||
1967 | } | ||
1968 | atomic_set(&log->fs_info->tree_log_commit, 1); | ||
1969 | |||
1970 | while(1) { | ||
1971 | batch = log->fs_info->tree_log_batch; | ||
1972 | mutex_unlock(&log->fs_info->tree_log_mutex); | ||
1973 | schedule_timeout_uninterruptible(1); | ||
1974 | mutex_lock(&log->fs_info->tree_log_mutex); | ||
1975 | |||
1976 | while(atomic_read(&log->fs_info->tree_log_writers)) { | ||
1977 | DEFINE_WAIT(wait); | ||
1978 | prepare_to_wait(&log->fs_info->tree_log_wait, &wait, | ||
1979 | TASK_UNINTERRUPTIBLE); | ||
1980 | mutex_unlock(&log->fs_info->tree_log_mutex); | ||
1981 | if (atomic_read(&log->fs_info->tree_log_writers)) | ||
1982 | schedule(); | ||
1983 | mutex_lock(&log->fs_info->tree_log_mutex); | ||
1984 | finish_wait(&log->fs_info->tree_log_wait, &wait); | ||
1985 | } | ||
1986 | if (batch == log->fs_info->tree_log_batch) | ||
1987 | break; | ||
1988 | } | ||
1989 | |||
1990 | ret = btrfs_write_and_wait_marked_extents(log, &log->dirty_log_pages); | ||
1991 | BUG_ON(ret); | ||
1992 | ret = btrfs_write_and_wait_marked_extents(root->fs_info->log_root_tree, | ||
1993 | &root->fs_info->log_root_tree->dirty_log_pages); | ||
1994 | BUG_ON(ret); | ||
1995 | |||
1996 | btrfs_set_super_log_root(&root->fs_info->super_for_commit, | ||
1997 | log->fs_info->log_root_tree->node->start); | ||
1998 | btrfs_set_super_log_root_level(&root->fs_info->super_for_commit, | ||
1999 | btrfs_header_level(log->fs_info->log_root_tree->node)); | ||
2000 | |||
2001 | write_ctree_super(trans, log->fs_info->tree_root); | ||
2002 | log->fs_info->tree_log_transid++; | ||
2003 | log->fs_info->tree_log_batch = 0; | ||
2004 | atomic_set(&log->fs_info->tree_log_commit, 0); | ||
2005 | smp_mb(); | ||
2006 | if (waitqueue_active(&log->fs_info->tree_log_wait)) | ||
2007 | wake_up(&log->fs_info->tree_log_wait); | ||
2008 | out: | ||
2009 | mutex_unlock(&log->fs_info->tree_log_mutex); | ||
2010 | return 0; | ||
2011 | |||
2012 | } | ||
2013 | |||
2014 | /* * free all the extents used by the tree log. This should be called | ||
2015 | * at commit time of the full transaction | ||
2016 | */ | ||
2017 | int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root) | ||
2018 | { | ||
2019 | int ret; | ||
2020 | struct btrfs_root *log; | ||
2021 | struct key; | ||
2022 | u64 start; | ||
2023 | u64 end; | ||
2024 | struct walk_control wc = { | ||
2025 | .free = 1, | ||
2026 | .process_func = process_one_buffer | ||
2027 | }; | ||
2028 | |||
2029 | if (!root->log_root) | ||
2030 | return 0; | ||
2031 | |||
2032 | log = root->log_root; | ||
2033 | ret = walk_log_tree(trans, log, &wc); | ||
2034 | BUG_ON(ret); | ||
2035 | |||
2036 | while(1) { | ||
2037 | ret = find_first_extent_bit(&log->dirty_log_pages, | ||
2038 | 0, &start, &end, EXTENT_DIRTY); | ||
2039 | if (ret) | ||
2040 | break; | ||
2041 | |||
2042 | clear_extent_dirty(&log->dirty_log_pages, | ||
2043 | start, end, GFP_NOFS); | ||
2044 | } | ||
2045 | |||
2046 | log = root->log_root; | ||
2047 | ret = btrfs_del_root(trans, root->fs_info->log_root_tree, | ||
2048 | &log->root_key); | ||
2049 | BUG_ON(ret); | ||
2050 | root->log_root = NULL; | ||
2051 | kfree(root->log_root); | ||
2052 | return 0; | ||
2053 | } | ||
2054 | |||
2055 | /* | ||
2056 | * helper function to update the item for a given subvolumes log root | ||
2057 | * in the tree of log roots | ||
2058 | */ | ||
2059 | static int update_log_root(struct btrfs_trans_handle *trans, | ||
2060 | struct btrfs_root *log) | ||
2061 | { | ||
2062 | u64 bytenr = btrfs_root_bytenr(&log->root_item); | ||
2063 | int ret; | ||
2064 | |||
2065 | if (log->node->start == bytenr) | ||
2066 | return 0; | ||
2067 | |||
2068 | btrfs_set_root_bytenr(&log->root_item, log->node->start); | ||
2069 | btrfs_set_root_level(&log->root_item, btrfs_header_level(log->node)); | ||
2070 | ret = btrfs_update_root(trans, log->fs_info->log_root_tree, | ||
2071 | &log->root_key, &log->root_item); | ||
2072 | BUG_ON(ret); | ||
2073 | return ret; | ||
2074 | } | ||
2075 | |||
2076 | /* | ||
2077 | * If both a file and directory are logged, and unlinks or renames are | ||
2078 | * mixed in, we have a few interesting corners: | ||
2079 | * | ||
2080 | * create file X in dir Y | ||
2081 | * link file X to X.link in dir Y | ||
2082 | * fsync file X | ||
2083 | * unlink file X but leave X.link | ||
2084 | * fsync dir Y | ||
2085 | * | ||
2086 | * After a crash we would expect only X.link to exist. But file X | ||
2087 | * didn't get fsync'd again so the log has back refs for X and X.link. | ||
2088 | * | ||
2089 | * We solve this by removing directory entries and inode backrefs from the | ||
2090 | * log when a file that was logged in the current transaction is | ||
2091 | * unlinked. Any later fsync will include the updated log entries, and | ||
2092 | * we'll be able to reconstruct the proper directory items from backrefs. | ||
2093 | * | ||
2094 | * This optimizations allows us to avoid relogging the entire inode | ||
2095 | * or the entire directory. | ||
2096 | */ | ||
2097 | int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans, | ||
2098 | struct btrfs_root *root, | ||
2099 | const char *name, int name_len, | ||
2100 | struct inode *dir, u64 index) | ||
2101 | { | ||
2102 | struct btrfs_root *log; | ||
2103 | struct btrfs_dir_item *di; | ||
2104 | struct btrfs_path *path; | ||
2105 | int ret; | ||
2106 | int bytes_del = 0; | ||
2107 | |||
2108 | if (BTRFS_I(dir)->logged_trans < trans->transid) | ||
2109 | return 0; | ||
2110 | |||
2111 | ret = join_running_log_trans(root); | ||
2112 | if (ret) | ||
2113 | return 0; | ||
2114 | |||
2115 | mutex_lock(&BTRFS_I(dir)->log_mutex); | ||
2116 | |||
2117 | log = root->log_root; | ||
2118 | path = btrfs_alloc_path(); | ||
2119 | di = btrfs_lookup_dir_item(trans, log, path, dir->i_ino, | ||
2120 | name, name_len, -1); | ||
2121 | if (di && !IS_ERR(di)) { | ||
2122 | ret = btrfs_delete_one_dir_name(trans, log, path, di); | ||
2123 | bytes_del += name_len; | ||
2124 | BUG_ON(ret); | ||
2125 | } | ||
2126 | btrfs_release_path(log, path); | ||
2127 | di = btrfs_lookup_dir_index_item(trans, log, path, dir->i_ino, | ||
2128 | index, name, name_len, -1); | ||
2129 | if (di && !IS_ERR(di)) { | ||
2130 | ret = btrfs_delete_one_dir_name(trans, log, path, di); | ||
2131 | bytes_del += name_len; | ||
2132 | BUG_ON(ret); | ||
2133 | } | ||
2134 | |||
2135 | /* update the directory size in the log to reflect the names | ||
2136 | * we have removed | ||
2137 | */ | ||
2138 | if (bytes_del) { | ||
2139 | struct btrfs_key key; | ||
2140 | |||
2141 | key.objectid = dir->i_ino; | ||
2142 | key.offset = 0; | ||
2143 | key.type = BTRFS_INODE_ITEM_KEY; | ||
2144 | btrfs_release_path(log, path); | ||
2145 | |||
2146 | ret = btrfs_search_slot(trans, log, &key, path, 0, 1); | ||
2147 | if (ret == 0) { | ||
2148 | struct btrfs_inode_item *item; | ||
2149 | u64 i_size; | ||
2150 | |||
2151 | item = btrfs_item_ptr(path->nodes[0], path->slots[0], | ||
2152 | struct btrfs_inode_item); | ||
2153 | i_size = btrfs_inode_size(path->nodes[0], item); | ||
2154 | if (i_size > bytes_del) | ||
2155 | i_size -= bytes_del; | ||
2156 | else | ||
2157 | i_size = 0; | ||
2158 | btrfs_set_inode_size(path->nodes[0], item, i_size); | ||
2159 | btrfs_mark_buffer_dirty(path->nodes[0]); | ||
2160 | } else | ||
2161 | ret = 0; | ||
2162 | btrfs_release_path(log, path); | ||
2163 | } | ||
2164 | |||
2165 | btrfs_free_path(path); | ||
2166 | mutex_unlock(&BTRFS_I(dir)->log_mutex); | ||
2167 | end_log_trans(root); | ||
2168 | |||
2169 | return 0; | ||
2170 | } | ||
2171 | |||
2172 | /* see comments for btrfs_del_dir_entries_in_log */ | ||
2173 | int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans, | ||
2174 | struct btrfs_root *root, | ||
2175 | const char *name, int name_len, | ||
2176 | struct inode *inode, u64 dirid) | ||
2177 | { | ||
2178 | struct btrfs_root *log; | ||
2179 | u64 index; | ||
2180 | int ret; | ||
2181 | |||
2182 | if (BTRFS_I(inode)->logged_trans < trans->transid) | ||
2183 | return 0; | ||
2184 | |||
2185 | ret = join_running_log_trans(root); | ||
2186 | if (ret) | ||
2187 | return 0; | ||
2188 | log = root->log_root; | ||
2189 | mutex_lock(&BTRFS_I(inode)->log_mutex); | ||
2190 | |||
2191 | ret = btrfs_del_inode_ref(trans, log, name, name_len, inode->i_ino, | ||
2192 | dirid, &index); | ||
2193 | mutex_unlock(&BTRFS_I(inode)->log_mutex); | ||
2194 | end_log_trans(root); | ||
2195 | |||
2196 | return ret; | ||
2197 | } | ||
2198 | |||
2199 | /* | ||
2200 | * creates a range item in the log for 'dirid'. first_offset and | ||
2201 | * last_offset tell us which parts of the key space the log should | ||
2202 | * be considered authoritative for. | ||
2203 | */ | ||
2204 | static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans, | ||
2205 | struct btrfs_root *log, | ||
2206 | struct btrfs_path *path, | ||
2207 | int key_type, u64 dirid, | ||
2208 | u64 first_offset, u64 last_offset) | ||
2209 | { | ||
2210 | int ret; | ||
2211 | struct btrfs_key key; | ||
2212 | struct btrfs_dir_log_item *item; | ||
2213 | |||
2214 | key.objectid = dirid; | ||
2215 | key.offset = first_offset; | ||
2216 | if (key_type == BTRFS_DIR_ITEM_KEY) | ||
2217 | key.type = BTRFS_DIR_LOG_ITEM_KEY; | ||
2218 | else | ||
2219 | key.type = BTRFS_DIR_LOG_INDEX_KEY; | ||
2220 | ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item)); | ||
2221 | BUG_ON(ret); | ||
2222 | |||
2223 | item = btrfs_item_ptr(path->nodes[0], path->slots[0], | ||
2224 | struct btrfs_dir_log_item); | ||
2225 | btrfs_set_dir_log_end(path->nodes[0], item, last_offset); | ||
2226 | btrfs_mark_buffer_dirty(path->nodes[0]); | ||
2227 | btrfs_release_path(log, path); | ||
2228 | return 0; | ||
2229 | } | ||
2230 | |||
2231 | /* | ||
2232 | * log all the items included in the current transaction for a given | ||
2233 | * directory. This also creates the range items in the log tree required | ||
2234 | * to replay anything deleted before the fsync | ||
2235 | */ | ||
2236 | static noinline int log_dir_items(struct btrfs_trans_handle *trans, | ||
2237 | struct btrfs_root *root, struct inode *inode, | ||
2238 | struct btrfs_path *path, | ||
2239 | struct btrfs_path *dst_path, int key_type, | ||
2240 | u64 min_offset, u64 *last_offset_ret) | ||
2241 | { | ||
2242 | struct btrfs_key min_key; | ||
2243 | struct btrfs_key max_key; | ||
2244 | struct btrfs_root *log = root->log_root; | ||
2245 | struct extent_buffer *src; | ||
2246 | int ret; | ||
2247 | int i; | ||
2248 | int nritems; | ||
2249 | u64 first_offset = min_offset; | ||
2250 | u64 last_offset = (u64)-1; | ||
2251 | |||
2252 | log = root->log_root; | ||
2253 | max_key.objectid = inode->i_ino; | ||
2254 | max_key.offset = (u64)-1; | ||
2255 | max_key.type = key_type; | ||
2256 | |||
2257 | min_key.objectid = inode->i_ino; | ||
2258 | min_key.type = key_type; | ||
2259 | min_key.offset = min_offset; | ||
2260 | |||
2261 | path->keep_locks = 1; | ||
2262 | |||
2263 | ret = btrfs_search_forward(root, &min_key, &max_key, | ||
2264 | path, 0, trans->transid); | ||
2265 | |||
2266 | /* | ||
2267 | * we didn't find anything from this transaction, see if there | ||
2268 | * is anything at all | ||
2269 | */ | ||
2270 | if (ret != 0 || min_key.objectid != inode->i_ino || | ||
2271 | min_key.type != key_type) { | ||
2272 | min_key.objectid = inode->i_ino; | ||
2273 | min_key.type = key_type; | ||
2274 | min_key.offset = (u64)-1; | ||
2275 | btrfs_release_path(root, path); | ||
2276 | ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); | ||
2277 | if (ret < 0) { | ||
2278 | btrfs_release_path(root, path); | ||
2279 | return ret; | ||
2280 | } | ||
2281 | ret = btrfs_previous_item(root, path, inode->i_ino, key_type); | ||
2282 | |||
2283 | /* if ret == 0 there are items for this type, | ||
2284 | * create a range to tell us the last key of this type. | ||
2285 | * otherwise, there are no items in this directory after | ||
2286 | * *min_offset, and we create a range to indicate that. | ||
2287 | */ | ||
2288 | if (ret == 0) { | ||
2289 | struct btrfs_key tmp; | ||
2290 | btrfs_item_key_to_cpu(path->nodes[0], &tmp, | ||
2291 | path->slots[0]); | ||
2292 | if (key_type == tmp.type) { | ||
2293 | first_offset = max(min_offset, tmp.offset) + 1; | ||
2294 | } | ||
2295 | } | ||
2296 | goto done; | ||
2297 | } | ||
2298 | |||
2299 | /* go backward to find any previous key */ | ||
2300 | ret = btrfs_previous_item(root, path, inode->i_ino, key_type); | ||
2301 | if (ret == 0) { | ||
2302 | struct btrfs_key tmp; | ||
2303 | btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]); | ||
2304 | if (key_type == tmp.type) { | ||
2305 | first_offset = tmp.offset; | ||
2306 | ret = overwrite_item(trans, log, dst_path, | ||
2307 | path->nodes[0], path->slots[0], | ||
2308 | &tmp); | ||
2309 | } | ||
2310 | } | ||
2311 | btrfs_release_path(root, path); | ||
2312 | |||
2313 | /* find the first key from this transaction again */ | ||
2314 | ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); | ||
2315 | if (ret != 0) { | ||
2316 | WARN_ON(1); | ||
2317 | goto done; | ||
2318 | } | ||
2319 | |||
2320 | /* | ||
2321 | * we have a block from this transaction, log every item in it | ||
2322 | * from our directory | ||
2323 | */ | ||
2324 | while(1) { | ||
2325 | struct btrfs_key tmp; | ||
2326 | src = path->nodes[0]; | ||
2327 | nritems = btrfs_header_nritems(src); | ||
2328 | for (i = path->slots[0]; i < nritems; i++) { | ||
2329 | btrfs_item_key_to_cpu(src, &min_key, i); | ||
2330 | |||
2331 | if (min_key.objectid != inode->i_ino || | ||
2332 | min_key.type != key_type) | ||
2333 | goto done; | ||
2334 | ret = overwrite_item(trans, log, dst_path, src, i, | ||
2335 | &min_key); | ||
2336 | BUG_ON(ret); | ||
2337 | } | ||
2338 | path->slots[0] = nritems; | ||
2339 | |||
2340 | /* | ||
2341 | * look ahead to the next item and see if it is also | ||
2342 | * from this directory and from this transaction | ||
2343 | */ | ||
2344 | ret = btrfs_next_leaf(root, path); | ||
2345 | if (ret == 1) { | ||
2346 | last_offset = (u64)-1; | ||
2347 | goto done; | ||
2348 | } | ||
2349 | btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]); | ||
2350 | if (tmp.objectid != inode->i_ino || tmp.type != key_type) { | ||
2351 | last_offset = (u64)-1; | ||
2352 | goto done; | ||
2353 | } | ||
2354 | if (btrfs_header_generation(path->nodes[0]) != trans->transid) { | ||
2355 | ret = overwrite_item(trans, log, dst_path, | ||
2356 | path->nodes[0], path->slots[0], | ||
2357 | &tmp); | ||
2358 | |||
2359 | BUG_ON(ret); | ||
2360 | last_offset = tmp.offset; | ||
2361 | goto done; | ||
2362 | } | ||
2363 | } | ||
2364 | done: | ||
2365 | *last_offset_ret = last_offset; | ||
2366 | btrfs_release_path(root, path); | ||
2367 | btrfs_release_path(log, dst_path); | ||
2368 | |||
2369 | /* insert the log range keys to indicate where the log is valid */ | ||
2370 | ret = insert_dir_log_key(trans, log, path, key_type, inode->i_ino, | ||
2371 | first_offset, last_offset); | ||
2372 | BUG_ON(ret); | ||
2373 | return 0; | ||
2374 | } | ||
2375 | |||
2376 | /* | ||
2377 | * logging directories is very similar to logging inodes, We find all the items | ||
2378 | * from the current transaction and write them to the log. | ||
2379 | * | ||
2380 | * The recovery code scans the directory in the subvolume, and if it finds a | ||
2381 | * key in the range logged that is not present in the log tree, then it means | ||
2382 | * that dir entry was unlinked during the transaction. | ||
2383 | * | ||
2384 | * In order for that scan to work, we must include one key smaller than | ||
2385 | * the smallest logged by this transaction and one key larger than the largest | ||
2386 | * key logged by this transaction. | ||
2387 | */ | ||
2388 | static noinline int log_directory_changes(struct btrfs_trans_handle *trans, | ||
2389 | struct btrfs_root *root, struct inode *inode, | ||
2390 | struct btrfs_path *path, | ||
2391 | struct btrfs_path *dst_path) | ||
2392 | { | ||
2393 | u64 min_key; | ||
2394 | u64 max_key; | ||
2395 | int ret; | ||
2396 | int key_type = BTRFS_DIR_ITEM_KEY; | ||
2397 | |||
2398 | again: | ||
2399 | min_key = 0; | ||
2400 | max_key = 0; | ||
2401 | while(1) { | ||
2402 | ret = log_dir_items(trans, root, inode, path, | ||
2403 | dst_path, key_type, min_key, | ||
2404 | &max_key); | ||
2405 | BUG_ON(ret); | ||
2406 | if (max_key == (u64)-1) | ||
2407 | break; | ||
2408 | min_key = max_key + 1; | ||
2409 | } | ||
2410 | |||
2411 | if (key_type == BTRFS_DIR_ITEM_KEY) { | ||
2412 | key_type = BTRFS_DIR_INDEX_KEY; | ||
2413 | goto again; | ||
2414 | } | ||
2415 | return 0; | ||
2416 | } | ||
2417 | |||
2418 | /* | ||
2419 | * a helper function to drop items from the log before we relog an | ||
2420 | * inode. max_key_type indicates the highest item type to remove. | ||
2421 | * This cannot be run for file data extents because it does not | ||
2422 | * free the extents they point to. | ||
2423 | */ | ||
2424 | static int drop_objectid_items(struct btrfs_trans_handle *trans, | ||
2425 | struct btrfs_root *log, | ||
2426 | struct btrfs_path *path, | ||
2427 | u64 objectid, int max_key_type) | ||
2428 | { | ||
2429 | int ret; | ||
2430 | struct btrfs_key key; | ||
2431 | struct btrfs_key found_key; | ||
2432 | |||
2433 | key.objectid = objectid; | ||
2434 | key.type = max_key_type; | ||
2435 | key.offset = (u64)-1; | ||
2436 | |||
2437 | while(1) { | ||
2438 | ret = btrfs_search_slot(trans, log, &key, path, -1, 1); | ||
2439 | |||
2440 | if (ret != 1) | ||
2441 | break; | ||
2442 | |||
2443 | if (path->slots[0] == 0) | ||
2444 | break; | ||
2445 | |||
2446 | path->slots[0]--; | ||
2447 | btrfs_item_key_to_cpu(path->nodes[0], &found_key, | ||
2448 | path->slots[0]); | ||
2449 | |||
2450 | if (found_key.objectid != objectid) | ||
2451 | break; | ||
2452 | |||
2453 | ret = btrfs_del_item(trans, log, path); | ||
2454 | BUG_ON(ret); | ||
2455 | btrfs_release_path(log, path); | ||
2456 | } | ||
2457 | btrfs_release_path(log, path); | ||
2458 | return 0; | ||
2459 | } | ||
2460 | |||
2461 | static noinline int copy_items(struct btrfs_trans_handle *trans, | ||
2462 | struct btrfs_root *log, | ||
2463 | struct btrfs_path *dst_path, | ||
2464 | struct extent_buffer *src, | ||
2465 | int start_slot, int nr, int inode_only) | ||
2466 | { | ||
2467 | unsigned long src_offset; | ||
2468 | unsigned long dst_offset; | ||
2469 | struct btrfs_file_extent_item *extent; | ||
2470 | struct btrfs_inode_item *inode_item; | ||
2471 | int ret; | ||
2472 | struct btrfs_key *ins_keys; | ||
2473 | u32 *ins_sizes; | ||
2474 | char *ins_data; | ||
2475 | int i; | ||
2476 | |||
2477 | ins_data = kmalloc(nr * sizeof(struct btrfs_key) + | ||
2478 | nr * sizeof(u32), GFP_NOFS); | ||
2479 | ins_sizes = (u32 *)ins_data; | ||
2480 | ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32)); | ||
2481 | |||
2482 | for (i = 0; i < nr; i++) { | ||
2483 | ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot); | ||
2484 | btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot); | ||
2485 | } | ||
2486 | ret = btrfs_insert_empty_items(trans, log, dst_path, | ||
2487 | ins_keys, ins_sizes, nr); | ||
2488 | BUG_ON(ret); | ||
2489 | |||
2490 | for (i = 0; i < nr; i++) { | ||
2491 | dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], | ||
2492 | dst_path->slots[0]); | ||
2493 | |||
2494 | src_offset = btrfs_item_ptr_offset(src, start_slot + i); | ||
2495 | |||
2496 | copy_extent_buffer(dst_path->nodes[0], src, dst_offset, | ||
2497 | src_offset, ins_sizes[i]); | ||
2498 | |||
2499 | if (inode_only == LOG_INODE_EXISTS && | ||
2500 | ins_keys[i].type == BTRFS_INODE_ITEM_KEY) { | ||
2501 | inode_item = btrfs_item_ptr(dst_path->nodes[0], | ||
2502 | dst_path->slots[0], | ||
2503 | struct btrfs_inode_item); | ||
2504 | btrfs_set_inode_size(dst_path->nodes[0], inode_item, 0); | ||
2505 | |||
2506 | /* set the generation to zero so the recover code | ||
2507 | * can tell the difference between an logging | ||
2508 | * just to say 'this inode exists' and a logging | ||
2509 | * to say 'update this inode with these values' | ||
2510 | */ | ||
2511 | btrfs_set_inode_generation(dst_path->nodes[0], | ||
2512 | inode_item, 0); | ||
2513 | } | ||
2514 | /* take a reference on file data extents so that truncates | ||
2515 | * or deletes of this inode don't have to relog the inode | ||
2516 | * again | ||
2517 | */ | ||
2518 | if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY) { | ||
2519 | int found_type; | ||
2520 | extent = btrfs_item_ptr(src, start_slot + i, | ||
2521 | struct btrfs_file_extent_item); | ||
2522 | |||
2523 | found_type = btrfs_file_extent_type(src, extent); | ||
2524 | if (found_type == BTRFS_FILE_EXTENT_REG) { | ||
2525 | u64 ds = btrfs_file_extent_disk_bytenr(src, | ||
2526 | extent); | ||
2527 | u64 dl = btrfs_file_extent_disk_num_bytes(src, | ||
2528 | extent); | ||
2529 | /* ds == 0 is a hole */ | ||
2530 | if (ds != 0) { | ||
2531 | ret = btrfs_inc_extent_ref(trans, log, | ||
2532 | ds, dl, | ||
2533 | dst_path->nodes[0]->start, | ||
2534 | BTRFS_TREE_LOG_OBJECTID, | ||
2535 | trans->transid, | ||
2536 | ins_keys[i].objectid); | ||
2537 | BUG_ON(ret); | ||
2538 | } | ||
2539 | } | ||
2540 | } | ||
2541 | dst_path->slots[0]++; | ||
2542 | } | ||
2543 | |||
2544 | btrfs_mark_buffer_dirty(dst_path->nodes[0]); | ||
2545 | btrfs_release_path(log, dst_path); | ||
2546 | kfree(ins_data); | ||
2547 | return 0; | ||
2548 | } | ||
2549 | |||
2550 | /* log a single inode in the tree log. | ||
2551 | * At least one parent directory for this inode must exist in the tree | ||
2552 | * or be logged already. | ||
2553 | * | ||
2554 | * Any items from this inode changed by the current transaction are copied | ||
2555 | * to the log tree. An extra reference is taken on any extents in this | ||
2556 | * file, allowing us to avoid a whole pile of corner cases around logging | ||
2557 | * blocks that have been removed from the tree. | ||
2558 | * | ||
2559 | * See LOG_INODE_ALL and related defines for a description of what inode_only | ||
2560 | * does. | ||
2561 | * | ||
2562 | * This handles both files and directories. | ||
2563 | */ | ||
2564 | static int __btrfs_log_inode(struct btrfs_trans_handle *trans, | ||
2565 | struct btrfs_root *root, struct inode *inode, | ||
2566 | int inode_only) | ||
2567 | { | ||
2568 | struct btrfs_path *path; | ||
2569 | struct btrfs_path *dst_path; | ||
2570 | struct btrfs_key min_key; | ||
2571 | struct btrfs_key max_key; | ||
2572 | struct btrfs_root *log = root->log_root; | ||
2573 | struct extent_buffer *src = NULL; | ||
2574 | u32 size; | ||
2575 | int ret; | ||
2576 | int nritems; | ||
2577 | int ins_start_slot = 0; | ||
2578 | int ins_nr; | ||
2579 | |||
2580 | log = root->log_root; | ||
2581 | |||
2582 | path = btrfs_alloc_path(); | ||
2583 | dst_path = btrfs_alloc_path(); | ||
2584 | |||
2585 | min_key.objectid = inode->i_ino; | ||
2586 | min_key.type = BTRFS_INODE_ITEM_KEY; | ||
2587 | min_key.offset = 0; | ||
2588 | |||
2589 | max_key.objectid = inode->i_ino; | ||
2590 | if (inode_only == LOG_INODE_EXISTS || S_ISDIR(inode->i_mode)) | ||
2591 | max_key.type = BTRFS_XATTR_ITEM_KEY; | ||
2592 | else | ||
2593 | max_key.type = (u8)-1; | ||
2594 | max_key.offset = (u64)-1; | ||
2595 | |||
2596 | /* | ||
2597 | * if this inode has already been logged and we're in inode_only | ||
2598 | * mode, we don't want to delete the things that have already | ||
2599 | * been written to the log. | ||
2600 | * | ||
2601 | * But, if the inode has been through an inode_only log, | ||
2602 | * the logged_trans field is not set. This allows us to catch | ||
2603 | * any new names for this inode in the backrefs by logging it | ||
2604 | * again | ||
2605 | */ | ||
2606 | if (inode_only == LOG_INODE_EXISTS && | ||
2607 | BTRFS_I(inode)->logged_trans == trans->transid) { | ||
2608 | btrfs_free_path(path); | ||
2609 | btrfs_free_path(dst_path); | ||
2610 | goto out; | ||
2611 | } | ||
2612 | mutex_lock(&BTRFS_I(inode)->log_mutex); | ||
2613 | |||
2614 | /* | ||
2615 | * a brute force approach to making sure we get the most uptodate | ||
2616 | * copies of everything. | ||
2617 | */ | ||
2618 | if (S_ISDIR(inode->i_mode)) { | ||
2619 | int max_key_type = BTRFS_DIR_LOG_INDEX_KEY; | ||
2620 | |||
2621 | if (inode_only == LOG_INODE_EXISTS) | ||
2622 | max_key_type = BTRFS_XATTR_ITEM_KEY; | ||
2623 | ret = drop_objectid_items(trans, log, path, | ||
2624 | inode->i_ino, max_key_type); | ||
2625 | } else { | ||
2626 | ret = btrfs_truncate_inode_items(trans, log, inode, 0, 0); | ||
2627 | } | ||
2628 | BUG_ON(ret); | ||
2629 | path->keep_locks = 1; | ||
2630 | |||
2631 | while(1) { | ||
2632 | ins_nr = 0; | ||
2633 | ret = btrfs_search_forward(root, &min_key, &max_key, | ||
2634 | path, 0, trans->transid); | ||
2635 | if (ret != 0) | ||
2636 | break; | ||
2637 | again: | ||
2638 | /* note, ins_nr might be > 0 here, cleanup outside the loop */ | ||
2639 | if (min_key.objectid != inode->i_ino) | ||
2640 | break; | ||
2641 | if (min_key.type > max_key.type) | ||
2642 | break; | ||
2643 | |||
2644 | src = path->nodes[0]; | ||
2645 | size = btrfs_item_size_nr(src, path->slots[0]); | ||
2646 | if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) { | ||
2647 | ins_nr++; | ||
2648 | goto next_slot; | ||
2649 | } else if (!ins_nr) { | ||
2650 | ins_start_slot = path->slots[0]; | ||
2651 | ins_nr = 1; | ||
2652 | goto next_slot; | ||
2653 | } | ||
2654 | |||
2655 | ret = copy_items(trans, log, dst_path, src, ins_start_slot, | ||
2656 | ins_nr, inode_only); | ||
2657 | BUG_ON(ret); | ||
2658 | ins_nr = 1; | ||
2659 | ins_start_slot = path->slots[0]; | ||
2660 | next_slot: | ||
2661 | |||
2662 | nritems = btrfs_header_nritems(path->nodes[0]); | ||
2663 | path->slots[0]++; | ||
2664 | if (path->slots[0] < nritems) { | ||
2665 | btrfs_item_key_to_cpu(path->nodes[0], &min_key, | ||
2666 | path->slots[0]); | ||
2667 | goto again; | ||
2668 | } | ||
2669 | if (ins_nr) { | ||
2670 | ret = copy_items(trans, log, dst_path, src, | ||
2671 | ins_start_slot, | ||
2672 | ins_nr, inode_only); | ||
2673 | BUG_ON(ret); | ||
2674 | ins_nr = 0; | ||
2675 | } | ||
2676 | btrfs_release_path(root, path); | ||
2677 | |||
2678 | if (min_key.offset < (u64)-1) | ||
2679 | min_key.offset++; | ||
2680 | else if (min_key.type < (u8)-1) | ||
2681 | min_key.type++; | ||
2682 | else if (min_key.objectid < (u64)-1) | ||
2683 | min_key.objectid++; | ||
2684 | else | ||
2685 | break; | ||
2686 | } | ||
2687 | if (ins_nr) { | ||
2688 | ret = copy_items(trans, log, dst_path, src, | ||
2689 | ins_start_slot, | ||
2690 | ins_nr, inode_only); | ||
2691 | BUG_ON(ret); | ||
2692 | ins_nr = 0; | ||
2693 | } | ||
2694 | WARN_ON(ins_nr); | ||
2695 | if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) { | ||
2696 | btrfs_release_path(root, path); | ||
2697 | btrfs_release_path(log, dst_path); | ||
2698 | BTRFS_I(inode)->log_dirty_trans = 0; | ||
2699 | ret = log_directory_changes(trans, root, inode, path, dst_path); | ||
2700 | BUG_ON(ret); | ||
2701 | } | ||
2702 | BTRFS_I(inode)->logged_trans = trans->transid; | ||
2703 | mutex_unlock(&BTRFS_I(inode)->log_mutex); | ||
2704 | |||
2705 | btrfs_free_path(path); | ||
2706 | btrfs_free_path(dst_path); | ||
2707 | |||
2708 | mutex_lock(&root->fs_info->tree_log_mutex); | ||
2709 | ret = update_log_root(trans, log); | ||
2710 | BUG_ON(ret); | ||
2711 | mutex_unlock(&root->fs_info->tree_log_mutex); | ||
2712 | out: | ||
2713 | return 0; | ||
2714 | } | ||
2715 | |||
2716 | int btrfs_log_inode(struct btrfs_trans_handle *trans, | ||
2717 | struct btrfs_root *root, struct inode *inode, | ||
2718 | int inode_only) | ||
2719 | { | ||
2720 | int ret; | ||
2721 | |||
2722 | start_log_trans(trans, root); | ||
2723 | ret = __btrfs_log_inode(trans, root, inode, inode_only); | ||
2724 | end_log_trans(root); | ||
2725 | return ret; | ||
2726 | } | ||
2727 | |||
2728 | /* | ||
2729 | * helper function around btrfs_log_inode to make sure newly created | ||
2730 | * parent directories also end up in the log. A minimal inode and backref | ||
2731 | * only logging is done of any parent directories that are older than | ||
2732 | * the last committed transaction | ||
2733 | */ | ||
2734 | int btrfs_log_dentry(struct btrfs_trans_handle *trans, | ||
2735 | struct btrfs_root *root, struct dentry *dentry) | ||
2736 | { | ||
2737 | int inode_only = LOG_INODE_ALL; | ||
2738 | struct super_block *sb; | ||
2739 | int ret; | ||
2740 | |||
2741 | start_log_trans(trans, root); | ||
2742 | sb = dentry->d_inode->i_sb; | ||
2743 | while(1) { | ||
2744 | ret = __btrfs_log_inode(trans, root, dentry->d_inode, | ||
2745 | inode_only); | ||
2746 | BUG_ON(ret); | ||
2747 | inode_only = LOG_INODE_EXISTS; | ||
2748 | |||
2749 | dentry = dentry->d_parent; | ||
2750 | if (!dentry || !dentry->d_inode || sb != dentry->d_inode->i_sb) | ||
2751 | break; | ||
2752 | |||
2753 | if (BTRFS_I(dentry->d_inode)->generation <= | ||
2754 | root->fs_info->last_trans_committed) | ||
2755 | break; | ||
2756 | } | ||
2757 | end_log_trans(root); | ||
2758 | return 0; | ||
2759 | } | ||
2760 | |||
2761 | /* | ||
2762 | * it is not safe to log dentry if the chunk root has added new | ||
2763 | * chunks. This returns 0 if the dentry was logged, and 1 otherwise. | ||
2764 | * If this returns 1, you must commit the transaction to safely get your | ||
2765 | * data on disk. | ||
2766 | */ | ||
2767 | int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans, | ||
2768 | struct btrfs_root *root, struct dentry *dentry) | ||
2769 | { | ||
2770 | u64 gen; | ||
2771 | gen = root->fs_info->last_trans_new_blockgroup; | ||
2772 | if (gen > root->fs_info->last_trans_committed) | ||
2773 | return 1; | ||
2774 | else | ||
2775 | return btrfs_log_dentry(trans, root, dentry); | ||
2776 | } | ||
2777 | |||
2778 | /* | ||
2779 | * should be called during mount to recover any replay any log trees | ||
2780 | * from the FS | ||
2781 | */ | ||
2782 | int btrfs_recover_log_trees(struct btrfs_root *log_root_tree) | ||
2783 | { | ||
2784 | int ret; | ||
2785 | struct btrfs_path *path; | ||
2786 | struct btrfs_trans_handle *trans; | ||
2787 | struct btrfs_key key; | ||
2788 | struct btrfs_key found_key; | ||
2789 | struct btrfs_key tmp_key; | ||
2790 | struct btrfs_root *log; | ||
2791 | struct btrfs_fs_info *fs_info = log_root_tree->fs_info; | ||
2792 | u64 highest_inode; | ||
2793 | struct walk_control wc = { | ||
2794 | .process_func = process_one_buffer, | ||
2795 | .stage = 0, | ||
2796 | }; | ||
2797 | |||
2798 | fs_info->log_root_recovering = 1; | ||
2799 | path = btrfs_alloc_path(); | ||
2800 | BUG_ON(!path); | ||
2801 | |||
2802 | trans = btrfs_start_transaction(fs_info->tree_root, 1); | ||
2803 | |||
2804 | wc.trans = trans; | ||
2805 | wc.pin = 1; | ||
2806 | |||
2807 | walk_log_tree(trans, log_root_tree, &wc); | ||
2808 | |||
2809 | again: | ||
2810 | key.objectid = BTRFS_TREE_LOG_OBJECTID; | ||
2811 | key.offset = (u64)-1; | ||
2812 | btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY); | ||
2813 | |||
2814 | while(1) { | ||
2815 | ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0); | ||
2816 | if (ret < 0) | ||
2817 | break; | ||
2818 | if (ret > 0) { | ||
2819 | if (path->slots[0] == 0) | ||
2820 | break; | ||
2821 | path->slots[0]--; | ||
2822 | } | ||
2823 | btrfs_item_key_to_cpu(path->nodes[0], &found_key, | ||
2824 | path->slots[0]); | ||
2825 | btrfs_release_path(log_root_tree, path); | ||
2826 | if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID) | ||
2827 | break; | ||
2828 | |||
2829 | log = btrfs_read_fs_root_no_radix(log_root_tree, | ||
2830 | &found_key); | ||
2831 | BUG_ON(!log); | ||
2832 | |||
2833 | |||
2834 | tmp_key.objectid = found_key.offset; | ||
2835 | tmp_key.type = BTRFS_ROOT_ITEM_KEY; | ||
2836 | tmp_key.offset = (u64)-1; | ||
2837 | |||
2838 | wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key); | ||
2839 | |||
2840 | BUG_ON(!wc.replay_dest); | ||
2841 | |||
2842 | btrfs_record_root_in_trans(wc.replay_dest); | ||
2843 | ret = walk_log_tree(trans, log, &wc); | ||
2844 | BUG_ON(ret); | ||
2845 | |||
2846 | if (wc.stage == LOG_WALK_REPLAY_ALL) { | ||
2847 | ret = fixup_inode_link_counts(trans, wc.replay_dest, | ||
2848 | path); | ||
2849 | BUG_ON(ret); | ||
2850 | } | ||
2851 | ret = btrfs_find_highest_inode(wc.replay_dest, &highest_inode); | ||
2852 | if (ret == 0) { | ||
2853 | wc.replay_dest->highest_inode = highest_inode; | ||
2854 | wc.replay_dest->last_inode_alloc = highest_inode; | ||
2855 | } | ||
2856 | |||
2857 | key.offset = found_key.offset - 1; | ||
2858 | free_extent_buffer(log->node); | ||
2859 | kfree(log); | ||
2860 | |||
2861 | if (found_key.offset == 0) | ||
2862 | break; | ||
2863 | } | ||
2864 | btrfs_release_path(log_root_tree, path); | ||
2865 | |||
2866 | /* step one is to pin it all, step two is to replay just inodes */ | ||
2867 | if (wc.pin) { | ||
2868 | wc.pin = 0; | ||
2869 | wc.process_func = replay_one_buffer; | ||
2870 | wc.stage = LOG_WALK_REPLAY_INODES; | ||
2871 | goto again; | ||
2872 | } | ||
2873 | /* step three is to replay everything */ | ||
2874 | if (wc.stage < LOG_WALK_REPLAY_ALL) { | ||
2875 | wc.stage++; | ||
2876 | goto again; | ||
2877 | } | ||
2878 | |||
2879 | btrfs_free_path(path); | ||
2880 | |||
2881 | free_extent_buffer(log_root_tree->node); | ||
2882 | log_root_tree->log_root = NULL; | ||
2883 | fs_info->log_root_recovering = 0; | ||
2884 | |||
2885 | /* step 4: commit the transaction, which also unpins the blocks */ | ||
2886 | btrfs_commit_transaction(trans, fs_info->tree_root); | ||
2887 | |||
2888 | kfree(log_root_tree); | ||
2889 | return 0; | ||
2890 | } | ||