diff options
Diffstat (limited to 'fs/btrfs/reada.c')
-rw-r--r-- | fs/btrfs/reada.c | 951 |
1 files changed, 951 insertions, 0 deletions
diff --git a/fs/btrfs/reada.c b/fs/btrfs/reada.c new file mode 100644 index 000000000000..2373b39a132b --- /dev/null +++ b/fs/btrfs/reada.c | |||
@@ -0,0 +1,951 @@ | |||
1 | /* | ||
2 | * Copyright (C) 2011 STRATO. All rights reserved. | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or | ||
5 | * modify it under the terms of the GNU General Public | ||
6 | * License v2 as published by the Free Software Foundation. | ||
7 | * | ||
8 | * This program is distributed in the hope that it will be useful, | ||
9 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | ||
11 | * General Public License for more details. | ||
12 | * | ||
13 | * You should have received a copy of the GNU General Public | ||
14 | * License along with this program; if not, write to the | ||
15 | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | ||
16 | * Boston, MA 021110-1307, USA. | ||
17 | */ | ||
18 | |||
19 | #include <linux/sched.h> | ||
20 | #include <linux/pagemap.h> | ||
21 | #include <linux/writeback.h> | ||
22 | #include <linux/blkdev.h> | ||
23 | #include <linux/rbtree.h> | ||
24 | #include <linux/slab.h> | ||
25 | #include <linux/workqueue.h> | ||
26 | #include "ctree.h" | ||
27 | #include "volumes.h" | ||
28 | #include "disk-io.h" | ||
29 | #include "transaction.h" | ||
30 | |||
31 | #undef DEBUG | ||
32 | |||
33 | /* | ||
34 | * This is the implementation for the generic read ahead framework. | ||
35 | * | ||
36 | * To trigger a readahead, btrfs_reada_add must be called. It will start | ||
37 | * a read ahead for the given range [start, end) on tree root. The returned | ||
38 | * handle can either be used to wait on the readahead to finish | ||
39 | * (btrfs_reada_wait), or to send it to the background (btrfs_reada_detach). | ||
40 | * | ||
41 | * The read ahead works as follows: | ||
42 | * On btrfs_reada_add, the root of the tree is inserted into a radix_tree. | ||
43 | * reada_start_machine will then search for extents to prefetch and trigger | ||
44 | * some reads. When a read finishes for a node, all contained node/leaf | ||
45 | * pointers that lie in the given range will also be enqueued. The reads will | ||
46 | * be triggered in sequential order, thus giving a big win over a naive | ||
47 | * enumeration. It will also make use of multi-device layouts. Each disk | ||
48 | * will have its on read pointer and all disks will by utilized in parallel. | ||
49 | * Also will no two disks read both sides of a mirror simultaneously, as this | ||
50 | * would waste seeking capacity. Instead both disks will read different parts | ||
51 | * of the filesystem. | ||
52 | * Any number of readaheads can be started in parallel. The read order will be | ||
53 | * determined globally, i.e. 2 parallel readaheads will normally finish faster | ||
54 | * than the 2 started one after another. | ||
55 | */ | ||
56 | |||
57 | #define MAX_MIRRORS 2 | ||
58 | #define MAX_IN_FLIGHT 6 | ||
59 | |||
60 | struct reada_extctl { | ||
61 | struct list_head list; | ||
62 | struct reada_control *rc; | ||
63 | u64 generation; | ||
64 | }; | ||
65 | |||
66 | struct reada_extent { | ||
67 | u64 logical; | ||
68 | struct btrfs_key top; | ||
69 | u32 blocksize; | ||
70 | int err; | ||
71 | struct list_head extctl; | ||
72 | struct kref refcnt; | ||
73 | spinlock_t lock; | ||
74 | struct reada_zone *zones[MAX_MIRRORS]; | ||
75 | int nzones; | ||
76 | struct btrfs_device *scheduled_for; | ||
77 | }; | ||
78 | |||
79 | struct reada_zone { | ||
80 | u64 start; | ||
81 | u64 end; | ||
82 | u64 elems; | ||
83 | struct list_head list; | ||
84 | spinlock_t lock; | ||
85 | int locked; | ||
86 | struct btrfs_device *device; | ||
87 | struct btrfs_device *devs[MAX_MIRRORS]; /* full list, incl self */ | ||
88 | int ndevs; | ||
89 | struct kref refcnt; | ||
90 | }; | ||
91 | |||
92 | struct reada_machine_work { | ||
93 | struct btrfs_work work; | ||
94 | struct btrfs_fs_info *fs_info; | ||
95 | }; | ||
96 | |||
97 | static void reada_extent_put(struct btrfs_fs_info *, struct reada_extent *); | ||
98 | static void reada_control_release(struct kref *kref); | ||
99 | static void reada_zone_release(struct kref *kref); | ||
100 | static void reada_start_machine(struct btrfs_fs_info *fs_info); | ||
101 | static void __reada_start_machine(struct btrfs_fs_info *fs_info); | ||
102 | |||
103 | static int reada_add_block(struct reada_control *rc, u64 logical, | ||
104 | struct btrfs_key *top, int level, u64 generation); | ||
105 | |||
106 | /* recurses */ | ||
107 | /* in case of err, eb might be NULL */ | ||
108 | static int __readahead_hook(struct btrfs_root *root, struct extent_buffer *eb, | ||
109 | u64 start, int err) | ||
110 | { | ||
111 | int level = 0; | ||
112 | int nritems; | ||
113 | int i; | ||
114 | u64 bytenr; | ||
115 | u64 generation; | ||
116 | struct reada_extent *re; | ||
117 | struct btrfs_fs_info *fs_info = root->fs_info; | ||
118 | struct list_head list; | ||
119 | unsigned long index = start >> PAGE_CACHE_SHIFT; | ||
120 | struct btrfs_device *for_dev; | ||
121 | |||
122 | if (eb) | ||
123 | level = btrfs_header_level(eb); | ||
124 | |||
125 | /* find extent */ | ||
126 | spin_lock(&fs_info->reada_lock); | ||
127 | re = radix_tree_lookup(&fs_info->reada_tree, index); | ||
128 | if (re) | ||
129 | kref_get(&re->refcnt); | ||
130 | spin_unlock(&fs_info->reada_lock); | ||
131 | |||
132 | if (!re) | ||
133 | return -1; | ||
134 | |||
135 | spin_lock(&re->lock); | ||
136 | /* | ||
137 | * just take the full list from the extent. afterwards we | ||
138 | * don't need the lock anymore | ||
139 | */ | ||
140 | list_replace_init(&re->extctl, &list); | ||
141 | for_dev = re->scheduled_for; | ||
142 | re->scheduled_for = NULL; | ||
143 | spin_unlock(&re->lock); | ||
144 | |||
145 | if (err == 0) { | ||
146 | nritems = level ? btrfs_header_nritems(eb) : 0; | ||
147 | generation = btrfs_header_generation(eb); | ||
148 | /* | ||
149 | * FIXME: currently we just set nritems to 0 if this is a leaf, | ||
150 | * effectively ignoring the content. In a next step we could | ||
151 | * trigger more readahead depending from the content, e.g. | ||
152 | * fetch the checksums for the extents in the leaf. | ||
153 | */ | ||
154 | } else { | ||
155 | /* | ||
156 | * this is the error case, the extent buffer has not been | ||
157 | * read correctly. We won't access anything from it and | ||
158 | * just cleanup our data structures. Effectively this will | ||
159 | * cut the branch below this node from read ahead. | ||
160 | */ | ||
161 | nritems = 0; | ||
162 | generation = 0; | ||
163 | } | ||
164 | |||
165 | for (i = 0; i < nritems; i++) { | ||
166 | struct reada_extctl *rec; | ||
167 | u64 n_gen; | ||
168 | struct btrfs_key key; | ||
169 | struct btrfs_key next_key; | ||
170 | |||
171 | btrfs_node_key_to_cpu(eb, &key, i); | ||
172 | if (i + 1 < nritems) | ||
173 | btrfs_node_key_to_cpu(eb, &next_key, i + 1); | ||
174 | else | ||
175 | next_key = re->top; | ||
176 | bytenr = btrfs_node_blockptr(eb, i); | ||
177 | n_gen = btrfs_node_ptr_generation(eb, i); | ||
178 | |||
179 | list_for_each_entry(rec, &list, list) { | ||
180 | struct reada_control *rc = rec->rc; | ||
181 | |||
182 | /* | ||
183 | * if the generation doesn't match, just ignore this | ||
184 | * extctl. This will probably cut off a branch from | ||
185 | * prefetch. Alternatively one could start a new (sub-) | ||
186 | * prefetch for this branch, starting again from root. | ||
187 | * FIXME: move the generation check out of this loop | ||
188 | */ | ||
189 | #ifdef DEBUG | ||
190 | if (rec->generation != generation) { | ||
191 | printk(KERN_DEBUG "generation mismatch for " | ||
192 | "(%llu,%d,%llu) %llu != %llu\n", | ||
193 | key.objectid, key.type, key.offset, | ||
194 | rec->generation, generation); | ||
195 | } | ||
196 | #endif | ||
197 | if (rec->generation == generation && | ||
198 | btrfs_comp_cpu_keys(&key, &rc->key_end) < 0 && | ||
199 | btrfs_comp_cpu_keys(&next_key, &rc->key_start) > 0) | ||
200 | reada_add_block(rc, bytenr, &next_key, | ||
201 | level - 1, n_gen); | ||
202 | } | ||
203 | } | ||
204 | /* | ||
205 | * free extctl records | ||
206 | */ | ||
207 | while (!list_empty(&list)) { | ||
208 | struct reada_control *rc; | ||
209 | struct reada_extctl *rec; | ||
210 | |||
211 | rec = list_first_entry(&list, struct reada_extctl, list); | ||
212 | list_del(&rec->list); | ||
213 | rc = rec->rc; | ||
214 | kfree(rec); | ||
215 | |||
216 | kref_get(&rc->refcnt); | ||
217 | if (atomic_dec_and_test(&rc->elems)) { | ||
218 | kref_put(&rc->refcnt, reada_control_release); | ||
219 | wake_up(&rc->wait); | ||
220 | } | ||
221 | kref_put(&rc->refcnt, reada_control_release); | ||
222 | |||
223 | reada_extent_put(fs_info, re); /* one ref for each entry */ | ||
224 | } | ||
225 | reada_extent_put(fs_info, re); /* our ref */ | ||
226 | if (for_dev) | ||
227 | atomic_dec(&for_dev->reada_in_flight); | ||
228 | |||
229 | return 0; | ||
230 | } | ||
231 | |||
232 | /* | ||
233 | * start is passed separately in case eb in NULL, which may be the case with | ||
234 | * failed I/O | ||
235 | */ | ||
236 | int btree_readahead_hook(struct btrfs_root *root, struct extent_buffer *eb, | ||
237 | u64 start, int err) | ||
238 | { | ||
239 | int ret; | ||
240 | |||
241 | ret = __readahead_hook(root, eb, start, err); | ||
242 | |||
243 | reada_start_machine(root->fs_info); | ||
244 | |||
245 | return ret; | ||
246 | } | ||
247 | |||
248 | static struct reada_zone *reada_find_zone(struct btrfs_fs_info *fs_info, | ||
249 | struct btrfs_device *dev, u64 logical, | ||
250 | struct btrfs_bio *bbio) | ||
251 | { | ||
252 | int ret; | ||
253 | int looped = 0; | ||
254 | struct reada_zone *zone; | ||
255 | struct btrfs_block_group_cache *cache = NULL; | ||
256 | u64 start; | ||
257 | u64 end; | ||
258 | int i; | ||
259 | |||
260 | again: | ||
261 | zone = NULL; | ||
262 | spin_lock(&fs_info->reada_lock); | ||
263 | ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone, | ||
264 | logical >> PAGE_CACHE_SHIFT, 1); | ||
265 | if (ret == 1) | ||
266 | kref_get(&zone->refcnt); | ||
267 | spin_unlock(&fs_info->reada_lock); | ||
268 | |||
269 | if (ret == 1) { | ||
270 | if (logical >= zone->start && logical < zone->end) | ||
271 | return zone; | ||
272 | spin_lock(&fs_info->reada_lock); | ||
273 | kref_put(&zone->refcnt, reada_zone_release); | ||
274 | spin_unlock(&fs_info->reada_lock); | ||
275 | } | ||
276 | |||
277 | if (looped) | ||
278 | return NULL; | ||
279 | |||
280 | cache = btrfs_lookup_block_group(fs_info, logical); | ||
281 | if (!cache) | ||
282 | return NULL; | ||
283 | |||
284 | start = cache->key.objectid; | ||
285 | end = start + cache->key.offset - 1; | ||
286 | btrfs_put_block_group(cache); | ||
287 | |||
288 | zone = kzalloc(sizeof(*zone), GFP_NOFS); | ||
289 | if (!zone) | ||
290 | return NULL; | ||
291 | |||
292 | zone->start = start; | ||
293 | zone->end = end; | ||
294 | INIT_LIST_HEAD(&zone->list); | ||
295 | spin_lock_init(&zone->lock); | ||
296 | zone->locked = 0; | ||
297 | kref_init(&zone->refcnt); | ||
298 | zone->elems = 0; | ||
299 | zone->device = dev; /* our device always sits at index 0 */ | ||
300 | for (i = 0; i < bbio->num_stripes; ++i) { | ||
301 | /* bounds have already been checked */ | ||
302 | zone->devs[i] = bbio->stripes[i].dev; | ||
303 | } | ||
304 | zone->ndevs = bbio->num_stripes; | ||
305 | |||
306 | spin_lock(&fs_info->reada_lock); | ||
307 | ret = radix_tree_insert(&dev->reada_zones, | ||
308 | (unsigned long)zone->end >> PAGE_CACHE_SHIFT, | ||
309 | zone); | ||
310 | spin_unlock(&fs_info->reada_lock); | ||
311 | |||
312 | if (ret) { | ||
313 | kfree(zone); | ||
314 | looped = 1; | ||
315 | goto again; | ||
316 | } | ||
317 | |||
318 | return zone; | ||
319 | } | ||
320 | |||
321 | static struct reada_extent *reada_find_extent(struct btrfs_root *root, | ||
322 | u64 logical, | ||
323 | struct btrfs_key *top, int level) | ||
324 | { | ||
325 | int ret; | ||
326 | int looped = 0; | ||
327 | struct reada_extent *re = NULL; | ||
328 | struct btrfs_fs_info *fs_info = root->fs_info; | ||
329 | struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; | ||
330 | struct btrfs_bio *bbio = NULL; | ||
331 | struct btrfs_device *dev; | ||
332 | u32 blocksize; | ||
333 | u64 length; | ||
334 | int nzones = 0; | ||
335 | int i; | ||
336 | unsigned long index = logical >> PAGE_CACHE_SHIFT; | ||
337 | |||
338 | again: | ||
339 | spin_lock(&fs_info->reada_lock); | ||
340 | re = radix_tree_lookup(&fs_info->reada_tree, index); | ||
341 | if (re) | ||
342 | kref_get(&re->refcnt); | ||
343 | spin_unlock(&fs_info->reada_lock); | ||
344 | |||
345 | if (re || looped) | ||
346 | return re; | ||
347 | |||
348 | re = kzalloc(sizeof(*re), GFP_NOFS); | ||
349 | if (!re) | ||
350 | return NULL; | ||
351 | |||
352 | blocksize = btrfs_level_size(root, level); | ||
353 | re->logical = logical; | ||
354 | re->blocksize = blocksize; | ||
355 | re->top = *top; | ||
356 | INIT_LIST_HEAD(&re->extctl); | ||
357 | spin_lock_init(&re->lock); | ||
358 | kref_init(&re->refcnt); | ||
359 | |||
360 | /* | ||
361 | * map block | ||
362 | */ | ||
363 | length = blocksize; | ||
364 | ret = btrfs_map_block(map_tree, REQ_WRITE, logical, &length, &bbio, 0); | ||
365 | if (ret || !bbio || length < blocksize) | ||
366 | goto error; | ||
367 | |||
368 | if (bbio->num_stripes > MAX_MIRRORS) { | ||
369 | printk(KERN_ERR "btrfs readahead: more than %d copies not " | ||
370 | "supported", MAX_MIRRORS); | ||
371 | goto error; | ||
372 | } | ||
373 | |||
374 | for (nzones = 0; nzones < bbio->num_stripes; ++nzones) { | ||
375 | struct reada_zone *zone; | ||
376 | |||
377 | dev = bbio->stripes[nzones].dev; | ||
378 | zone = reada_find_zone(fs_info, dev, logical, bbio); | ||
379 | if (!zone) | ||
380 | break; | ||
381 | |||
382 | re->zones[nzones] = zone; | ||
383 | spin_lock(&zone->lock); | ||
384 | if (!zone->elems) | ||
385 | kref_get(&zone->refcnt); | ||
386 | ++zone->elems; | ||
387 | spin_unlock(&zone->lock); | ||
388 | spin_lock(&fs_info->reada_lock); | ||
389 | kref_put(&zone->refcnt, reada_zone_release); | ||
390 | spin_unlock(&fs_info->reada_lock); | ||
391 | } | ||
392 | re->nzones = nzones; | ||
393 | if (nzones == 0) { | ||
394 | /* not a single zone found, error and out */ | ||
395 | goto error; | ||
396 | } | ||
397 | |||
398 | /* insert extent in reada_tree + all per-device trees, all or nothing */ | ||
399 | spin_lock(&fs_info->reada_lock); | ||
400 | ret = radix_tree_insert(&fs_info->reada_tree, index, re); | ||
401 | if (ret) { | ||
402 | spin_unlock(&fs_info->reada_lock); | ||
403 | if (ret != -ENOMEM) { | ||
404 | /* someone inserted the extent in the meantime */ | ||
405 | looped = 1; | ||
406 | } | ||
407 | goto error; | ||
408 | } | ||
409 | for (i = 0; i < nzones; ++i) { | ||
410 | dev = bbio->stripes[i].dev; | ||
411 | ret = radix_tree_insert(&dev->reada_extents, index, re); | ||
412 | if (ret) { | ||
413 | while (--i >= 0) { | ||
414 | dev = bbio->stripes[i].dev; | ||
415 | BUG_ON(dev == NULL); | ||
416 | radix_tree_delete(&dev->reada_extents, index); | ||
417 | } | ||
418 | BUG_ON(fs_info == NULL); | ||
419 | radix_tree_delete(&fs_info->reada_tree, index); | ||
420 | spin_unlock(&fs_info->reada_lock); | ||
421 | goto error; | ||
422 | } | ||
423 | } | ||
424 | spin_unlock(&fs_info->reada_lock); | ||
425 | |||
426 | kfree(bbio); | ||
427 | return re; | ||
428 | |||
429 | error: | ||
430 | while (nzones) { | ||
431 | struct reada_zone *zone; | ||
432 | |||
433 | --nzones; | ||
434 | zone = re->zones[nzones]; | ||
435 | kref_get(&zone->refcnt); | ||
436 | spin_lock(&zone->lock); | ||
437 | --zone->elems; | ||
438 | if (zone->elems == 0) { | ||
439 | /* | ||
440 | * no fs_info->reada_lock needed, as this can't be | ||
441 | * the last ref | ||
442 | */ | ||
443 | kref_put(&zone->refcnt, reada_zone_release); | ||
444 | } | ||
445 | spin_unlock(&zone->lock); | ||
446 | |||
447 | spin_lock(&fs_info->reada_lock); | ||
448 | kref_put(&zone->refcnt, reada_zone_release); | ||
449 | spin_unlock(&fs_info->reada_lock); | ||
450 | } | ||
451 | kfree(bbio); | ||
452 | kfree(re); | ||
453 | if (looped) | ||
454 | goto again; | ||
455 | return NULL; | ||
456 | } | ||
457 | |||
458 | static void reada_kref_dummy(struct kref *kr) | ||
459 | { | ||
460 | } | ||
461 | |||
462 | static void reada_extent_put(struct btrfs_fs_info *fs_info, | ||
463 | struct reada_extent *re) | ||
464 | { | ||
465 | int i; | ||
466 | unsigned long index = re->logical >> PAGE_CACHE_SHIFT; | ||
467 | |||
468 | spin_lock(&fs_info->reada_lock); | ||
469 | if (!kref_put(&re->refcnt, reada_kref_dummy)) { | ||
470 | spin_unlock(&fs_info->reada_lock); | ||
471 | return; | ||
472 | } | ||
473 | |||
474 | radix_tree_delete(&fs_info->reada_tree, index); | ||
475 | for (i = 0; i < re->nzones; ++i) { | ||
476 | struct reada_zone *zone = re->zones[i]; | ||
477 | |||
478 | radix_tree_delete(&zone->device->reada_extents, index); | ||
479 | } | ||
480 | |||
481 | spin_unlock(&fs_info->reada_lock); | ||
482 | |||
483 | for (i = 0; i < re->nzones; ++i) { | ||
484 | struct reada_zone *zone = re->zones[i]; | ||
485 | |||
486 | kref_get(&zone->refcnt); | ||
487 | spin_lock(&zone->lock); | ||
488 | --zone->elems; | ||
489 | if (zone->elems == 0) { | ||
490 | /* no fs_info->reada_lock needed, as this can't be | ||
491 | * the last ref */ | ||
492 | kref_put(&zone->refcnt, reada_zone_release); | ||
493 | } | ||
494 | spin_unlock(&zone->lock); | ||
495 | |||
496 | spin_lock(&fs_info->reada_lock); | ||
497 | kref_put(&zone->refcnt, reada_zone_release); | ||
498 | spin_unlock(&fs_info->reada_lock); | ||
499 | } | ||
500 | if (re->scheduled_for) | ||
501 | atomic_dec(&re->scheduled_for->reada_in_flight); | ||
502 | |||
503 | kfree(re); | ||
504 | } | ||
505 | |||
506 | static void reada_zone_release(struct kref *kref) | ||
507 | { | ||
508 | struct reada_zone *zone = container_of(kref, struct reada_zone, refcnt); | ||
509 | |||
510 | radix_tree_delete(&zone->device->reada_zones, | ||
511 | zone->end >> PAGE_CACHE_SHIFT); | ||
512 | |||
513 | kfree(zone); | ||
514 | } | ||
515 | |||
516 | static void reada_control_release(struct kref *kref) | ||
517 | { | ||
518 | struct reada_control *rc = container_of(kref, struct reada_control, | ||
519 | refcnt); | ||
520 | |||
521 | kfree(rc); | ||
522 | } | ||
523 | |||
524 | static int reada_add_block(struct reada_control *rc, u64 logical, | ||
525 | struct btrfs_key *top, int level, u64 generation) | ||
526 | { | ||
527 | struct btrfs_root *root = rc->root; | ||
528 | struct reada_extent *re; | ||
529 | struct reada_extctl *rec; | ||
530 | |||
531 | re = reada_find_extent(root, logical, top, level); /* takes one ref */ | ||
532 | if (!re) | ||
533 | return -1; | ||
534 | |||
535 | rec = kzalloc(sizeof(*rec), GFP_NOFS); | ||
536 | if (!rec) { | ||
537 | reada_extent_put(root->fs_info, re); | ||
538 | return -1; | ||
539 | } | ||
540 | |||
541 | rec->rc = rc; | ||
542 | rec->generation = generation; | ||
543 | atomic_inc(&rc->elems); | ||
544 | |||
545 | spin_lock(&re->lock); | ||
546 | list_add_tail(&rec->list, &re->extctl); | ||
547 | spin_unlock(&re->lock); | ||
548 | |||
549 | /* leave the ref on the extent */ | ||
550 | |||
551 | return 0; | ||
552 | } | ||
553 | |||
554 | /* | ||
555 | * called with fs_info->reada_lock held | ||
556 | */ | ||
557 | static void reada_peer_zones_set_lock(struct reada_zone *zone, int lock) | ||
558 | { | ||
559 | int i; | ||
560 | unsigned long index = zone->end >> PAGE_CACHE_SHIFT; | ||
561 | |||
562 | for (i = 0; i < zone->ndevs; ++i) { | ||
563 | struct reada_zone *peer; | ||
564 | peer = radix_tree_lookup(&zone->devs[i]->reada_zones, index); | ||
565 | if (peer && peer->device != zone->device) | ||
566 | peer->locked = lock; | ||
567 | } | ||
568 | } | ||
569 | |||
570 | /* | ||
571 | * called with fs_info->reada_lock held | ||
572 | */ | ||
573 | static int reada_pick_zone(struct btrfs_device *dev) | ||
574 | { | ||
575 | struct reada_zone *top_zone = NULL; | ||
576 | struct reada_zone *top_locked_zone = NULL; | ||
577 | u64 top_elems = 0; | ||
578 | u64 top_locked_elems = 0; | ||
579 | unsigned long index = 0; | ||
580 | int ret; | ||
581 | |||
582 | if (dev->reada_curr_zone) { | ||
583 | reada_peer_zones_set_lock(dev->reada_curr_zone, 0); | ||
584 | kref_put(&dev->reada_curr_zone->refcnt, reada_zone_release); | ||
585 | dev->reada_curr_zone = NULL; | ||
586 | } | ||
587 | /* pick the zone with the most elements */ | ||
588 | while (1) { | ||
589 | struct reada_zone *zone; | ||
590 | |||
591 | ret = radix_tree_gang_lookup(&dev->reada_zones, | ||
592 | (void **)&zone, index, 1); | ||
593 | if (ret == 0) | ||
594 | break; | ||
595 | index = (zone->end >> PAGE_CACHE_SHIFT) + 1; | ||
596 | if (zone->locked) { | ||
597 | if (zone->elems > top_locked_elems) { | ||
598 | top_locked_elems = zone->elems; | ||
599 | top_locked_zone = zone; | ||
600 | } | ||
601 | } else { | ||
602 | if (zone->elems > top_elems) { | ||
603 | top_elems = zone->elems; | ||
604 | top_zone = zone; | ||
605 | } | ||
606 | } | ||
607 | } | ||
608 | if (top_zone) | ||
609 | dev->reada_curr_zone = top_zone; | ||
610 | else if (top_locked_zone) | ||
611 | dev->reada_curr_zone = top_locked_zone; | ||
612 | else | ||
613 | return 0; | ||
614 | |||
615 | dev->reada_next = dev->reada_curr_zone->start; | ||
616 | kref_get(&dev->reada_curr_zone->refcnt); | ||
617 | reada_peer_zones_set_lock(dev->reada_curr_zone, 1); | ||
618 | |||
619 | return 1; | ||
620 | } | ||
621 | |||
622 | static int reada_start_machine_dev(struct btrfs_fs_info *fs_info, | ||
623 | struct btrfs_device *dev) | ||
624 | { | ||
625 | struct reada_extent *re = NULL; | ||
626 | int mirror_num = 0; | ||
627 | struct extent_buffer *eb = NULL; | ||
628 | u64 logical; | ||
629 | u32 blocksize; | ||
630 | int ret; | ||
631 | int i; | ||
632 | int need_kick = 0; | ||
633 | |||
634 | spin_lock(&fs_info->reada_lock); | ||
635 | if (dev->reada_curr_zone == NULL) { | ||
636 | ret = reada_pick_zone(dev); | ||
637 | if (!ret) { | ||
638 | spin_unlock(&fs_info->reada_lock); | ||
639 | return 0; | ||
640 | } | ||
641 | } | ||
642 | /* | ||
643 | * FIXME currently we issue the reads one extent at a time. If we have | ||
644 | * a contiguous block of extents, we could also coagulate them or use | ||
645 | * plugging to speed things up | ||
646 | */ | ||
647 | ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re, | ||
648 | dev->reada_next >> PAGE_CACHE_SHIFT, 1); | ||
649 | if (ret == 0 || re->logical >= dev->reada_curr_zone->end) { | ||
650 | ret = reada_pick_zone(dev); | ||
651 | if (!ret) { | ||
652 | spin_unlock(&fs_info->reada_lock); | ||
653 | return 0; | ||
654 | } | ||
655 | re = NULL; | ||
656 | ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re, | ||
657 | dev->reada_next >> PAGE_CACHE_SHIFT, 1); | ||
658 | } | ||
659 | if (ret == 0) { | ||
660 | spin_unlock(&fs_info->reada_lock); | ||
661 | return 0; | ||
662 | } | ||
663 | dev->reada_next = re->logical + re->blocksize; | ||
664 | kref_get(&re->refcnt); | ||
665 | |||
666 | spin_unlock(&fs_info->reada_lock); | ||
667 | |||
668 | /* | ||
669 | * find mirror num | ||
670 | */ | ||
671 | for (i = 0; i < re->nzones; ++i) { | ||
672 | if (re->zones[i]->device == dev) { | ||
673 | mirror_num = i + 1; | ||
674 | break; | ||
675 | } | ||
676 | } | ||
677 | logical = re->logical; | ||
678 | blocksize = re->blocksize; | ||
679 | |||
680 | spin_lock(&re->lock); | ||
681 | if (re->scheduled_for == NULL) { | ||
682 | re->scheduled_for = dev; | ||
683 | need_kick = 1; | ||
684 | } | ||
685 | spin_unlock(&re->lock); | ||
686 | |||
687 | reada_extent_put(fs_info, re); | ||
688 | |||
689 | if (!need_kick) | ||
690 | return 0; | ||
691 | |||
692 | atomic_inc(&dev->reada_in_flight); | ||
693 | ret = reada_tree_block_flagged(fs_info->extent_root, logical, blocksize, | ||
694 | mirror_num, &eb); | ||
695 | if (ret) | ||
696 | __readahead_hook(fs_info->extent_root, NULL, logical, ret); | ||
697 | else if (eb) | ||
698 | __readahead_hook(fs_info->extent_root, eb, eb->start, ret); | ||
699 | |||
700 | if (eb) | ||
701 | free_extent_buffer(eb); | ||
702 | |||
703 | return 1; | ||
704 | |||
705 | } | ||
706 | |||
707 | static void reada_start_machine_worker(struct btrfs_work *work) | ||
708 | { | ||
709 | struct reada_machine_work *rmw; | ||
710 | struct btrfs_fs_info *fs_info; | ||
711 | |||
712 | rmw = container_of(work, struct reada_machine_work, work); | ||
713 | fs_info = rmw->fs_info; | ||
714 | |||
715 | kfree(rmw); | ||
716 | |||
717 | __reada_start_machine(fs_info); | ||
718 | } | ||
719 | |||
720 | static void __reada_start_machine(struct btrfs_fs_info *fs_info) | ||
721 | { | ||
722 | struct btrfs_device *device; | ||
723 | struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; | ||
724 | u64 enqueued; | ||
725 | u64 total = 0; | ||
726 | int i; | ||
727 | |||
728 | do { | ||
729 | enqueued = 0; | ||
730 | list_for_each_entry(device, &fs_devices->devices, dev_list) { | ||
731 | if (atomic_read(&device->reada_in_flight) < | ||
732 | MAX_IN_FLIGHT) | ||
733 | enqueued += reada_start_machine_dev(fs_info, | ||
734 | device); | ||
735 | } | ||
736 | total += enqueued; | ||
737 | } while (enqueued && total < 10000); | ||
738 | |||
739 | if (enqueued == 0) | ||
740 | return; | ||
741 | |||
742 | /* | ||
743 | * If everything is already in the cache, this is effectively single | ||
744 | * threaded. To a) not hold the caller for too long and b) to utilize | ||
745 | * more cores, we broke the loop above after 10000 iterations and now | ||
746 | * enqueue to workers to finish it. This will distribute the load to | ||
747 | * the cores. | ||
748 | */ | ||
749 | for (i = 0; i < 2; ++i) | ||
750 | reada_start_machine(fs_info); | ||
751 | } | ||
752 | |||
753 | static void reada_start_machine(struct btrfs_fs_info *fs_info) | ||
754 | { | ||
755 | struct reada_machine_work *rmw; | ||
756 | |||
757 | rmw = kzalloc(sizeof(*rmw), GFP_NOFS); | ||
758 | if (!rmw) { | ||
759 | /* FIXME we cannot handle this properly right now */ | ||
760 | BUG(); | ||
761 | } | ||
762 | rmw->work.func = reada_start_machine_worker; | ||
763 | rmw->fs_info = fs_info; | ||
764 | |||
765 | btrfs_queue_worker(&fs_info->readahead_workers, &rmw->work); | ||
766 | } | ||
767 | |||
768 | #ifdef DEBUG | ||
769 | static void dump_devs(struct btrfs_fs_info *fs_info, int all) | ||
770 | { | ||
771 | struct btrfs_device *device; | ||
772 | struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; | ||
773 | unsigned long index; | ||
774 | int ret; | ||
775 | int i; | ||
776 | int j; | ||
777 | int cnt; | ||
778 | |||
779 | spin_lock(&fs_info->reada_lock); | ||
780 | list_for_each_entry(device, &fs_devices->devices, dev_list) { | ||
781 | printk(KERN_DEBUG "dev %lld has %d in flight\n", device->devid, | ||
782 | atomic_read(&device->reada_in_flight)); | ||
783 | index = 0; | ||
784 | while (1) { | ||
785 | struct reada_zone *zone; | ||
786 | ret = radix_tree_gang_lookup(&device->reada_zones, | ||
787 | (void **)&zone, index, 1); | ||
788 | if (ret == 0) | ||
789 | break; | ||
790 | printk(KERN_DEBUG " zone %llu-%llu elems %llu locked " | ||
791 | "%d devs", zone->start, zone->end, zone->elems, | ||
792 | zone->locked); | ||
793 | for (j = 0; j < zone->ndevs; ++j) { | ||
794 | printk(KERN_CONT " %lld", | ||
795 | zone->devs[j]->devid); | ||
796 | } | ||
797 | if (device->reada_curr_zone == zone) | ||
798 | printk(KERN_CONT " curr off %llu", | ||
799 | device->reada_next - zone->start); | ||
800 | printk(KERN_CONT "\n"); | ||
801 | index = (zone->end >> PAGE_CACHE_SHIFT) + 1; | ||
802 | } | ||
803 | cnt = 0; | ||
804 | index = 0; | ||
805 | while (all) { | ||
806 | struct reada_extent *re = NULL; | ||
807 | |||
808 | ret = radix_tree_gang_lookup(&device->reada_extents, | ||
809 | (void **)&re, index, 1); | ||
810 | if (ret == 0) | ||
811 | break; | ||
812 | printk(KERN_DEBUG | ||
813 | " re: logical %llu size %u empty %d for %lld", | ||
814 | re->logical, re->blocksize, | ||
815 | list_empty(&re->extctl), re->scheduled_for ? | ||
816 | re->scheduled_for->devid : -1); | ||
817 | |||
818 | for (i = 0; i < re->nzones; ++i) { | ||
819 | printk(KERN_CONT " zone %llu-%llu devs", | ||
820 | re->zones[i]->start, | ||
821 | re->zones[i]->end); | ||
822 | for (j = 0; j < re->zones[i]->ndevs; ++j) { | ||
823 | printk(KERN_CONT " %lld", | ||
824 | re->zones[i]->devs[j]->devid); | ||
825 | } | ||
826 | } | ||
827 | printk(KERN_CONT "\n"); | ||
828 | index = (re->logical >> PAGE_CACHE_SHIFT) + 1; | ||
829 | if (++cnt > 15) | ||
830 | break; | ||
831 | } | ||
832 | } | ||
833 | |||
834 | index = 0; | ||
835 | cnt = 0; | ||
836 | while (all) { | ||
837 | struct reada_extent *re = NULL; | ||
838 | |||
839 | ret = radix_tree_gang_lookup(&fs_info->reada_tree, (void **)&re, | ||
840 | index, 1); | ||
841 | if (ret == 0) | ||
842 | break; | ||
843 | if (!re->scheduled_for) { | ||
844 | index = (re->logical >> PAGE_CACHE_SHIFT) + 1; | ||
845 | continue; | ||
846 | } | ||
847 | printk(KERN_DEBUG | ||
848 | "re: logical %llu size %u list empty %d for %lld", | ||
849 | re->logical, re->blocksize, list_empty(&re->extctl), | ||
850 | re->scheduled_for ? re->scheduled_for->devid : -1); | ||
851 | for (i = 0; i < re->nzones; ++i) { | ||
852 | printk(KERN_CONT " zone %llu-%llu devs", | ||
853 | re->zones[i]->start, | ||
854 | re->zones[i]->end); | ||
855 | for (i = 0; i < re->nzones; ++i) { | ||
856 | printk(KERN_CONT " zone %llu-%llu devs", | ||
857 | re->zones[i]->start, | ||
858 | re->zones[i]->end); | ||
859 | for (j = 0; j < re->zones[i]->ndevs; ++j) { | ||
860 | printk(KERN_CONT " %lld", | ||
861 | re->zones[i]->devs[j]->devid); | ||
862 | } | ||
863 | } | ||
864 | } | ||
865 | printk(KERN_CONT "\n"); | ||
866 | index = (re->logical >> PAGE_CACHE_SHIFT) + 1; | ||
867 | } | ||
868 | spin_unlock(&fs_info->reada_lock); | ||
869 | } | ||
870 | #endif | ||
871 | |||
872 | /* | ||
873 | * interface | ||
874 | */ | ||
875 | struct reada_control *btrfs_reada_add(struct btrfs_root *root, | ||
876 | struct btrfs_key *key_start, struct btrfs_key *key_end) | ||
877 | { | ||
878 | struct reada_control *rc; | ||
879 | u64 start; | ||
880 | u64 generation; | ||
881 | int level; | ||
882 | struct extent_buffer *node; | ||
883 | static struct btrfs_key max_key = { | ||
884 | .objectid = (u64)-1, | ||
885 | .type = (u8)-1, | ||
886 | .offset = (u64)-1 | ||
887 | }; | ||
888 | |||
889 | rc = kzalloc(sizeof(*rc), GFP_NOFS); | ||
890 | if (!rc) | ||
891 | return ERR_PTR(-ENOMEM); | ||
892 | |||
893 | rc->root = root; | ||
894 | rc->key_start = *key_start; | ||
895 | rc->key_end = *key_end; | ||
896 | atomic_set(&rc->elems, 0); | ||
897 | init_waitqueue_head(&rc->wait); | ||
898 | kref_init(&rc->refcnt); | ||
899 | kref_get(&rc->refcnt); /* one ref for having elements */ | ||
900 | |||
901 | node = btrfs_root_node(root); | ||
902 | start = node->start; | ||
903 | level = btrfs_header_level(node); | ||
904 | generation = btrfs_header_generation(node); | ||
905 | free_extent_buffer(node); | ||
906 | |||
907 | reada_add_block(rc, start, &max_key, level, generation); | ||
908 | |||
909 | reada_start_machine(root->fs_info); | ||
910 | |||
911 | return rc; | ||
912 | } | ||
913 | |||
914 | #ifdef DEBUG | ||
915 | int btrfs_reada_wait(void *handle) | ||
916 | { | ||
917 | struct reada_control *rc = handle; | ||
918 | |||
919 | while (atomic_read(&rc->elems)) { | ||
920 | wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0, | ||
921 | 5 * HZ); | ||
922 | dump_devs(rc->root->fs_info, rc->elems < 10 ? 1 : 0); | ||
923 | } | ||
924 | |||
925 | dump_devs(rc->root->fs_info, rc->elems < 10 ? 1 : 0); | ||
926 | |||
927 | kref_put(&rc->refcnt, reada_control_release); | ||
928 | |||
929 | return 0; | ||
930 | } | ||
931 | #else | ||
932 | int btrfs_reada_wait(void *handle) | ||
933 | { | ||
934 | struct reada_control *rc = handle; | ||
935 | |||
936 | while (atomic_read(&rc->elems)) { | ||
937 | wait_event(rc->wait, atomic_read(&rc->elems) == 0); | ||
938 | } | ||
939 | |||
940 | kref_put(&rc->refcnt, reada_control_release); | ||
941 | |||
942 | return 0; | ||
943 | } | ||
944 | #endif | ||
945 | |||
946 | void btrfs_reada_detach(void *handle) | ||
947 | { | ||
948 | struct reada_control *rc = handle; | ||
949 | |||
950 | kref_put(&rc->refcnt, reada_control_release); | ||
951 | } | ||