aboutsummaryrefslogtreecommitdiffstats
path: root/fs/btrfs/ordered-data.c
diff options
context:
space:
mode:
Diffstat (limited to 'fs/btrfs/ordered-data.c')
-rw-r--r--fs/btrfs/ordered-data.c727
1 files changed, 727 insertions, 0 deletions
diff --git a/fs/btrfs/ordered-data.c b/fs/btrfs/ordered-data.c
new file mode 100644
index 000000000000..2eb6caba57c2
--- /dev/null
+++ b/fs/btrfs/ordered-data.c
@@ -0,0 +1,727 @@
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/gfp.h>
20#include <linux/slab.h>
21#include <linux/blkdev.h>
22#include <linux/writeback.h>
23#include <linux/pagevec.h>
24#include "ctree.h"
25#include "transaction.h"
26#include "btrfs_inode.h"
27#include "extent_io.h"
28
29static u64 entry_end(struct btrfs_ordered_extent *entry)
30{
31 if (entry->file_offset + entry->len < entry->file_offset)
32 return (u64)-1;
33 return entry->file_offset + entry->len;
34}
35
36/* returns NULL if the insertion worked, or it returns the node it did find
37 * in the tree
38 */
39static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
40 struct rb_node *node)
41{
42 struct rb_node ** p = &root->rb_node;
43 struct rb_node * parent = NULL;
44 struct btrfs_ordered_extent *entry;
45
46 while(*p) {
47 parent = *p;
48 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
49
50 if (file_offset < entry->file_offset)
51 p = &(*p)->rb_left;
52 else if (file_offset >= entry_end(entry))
53 p = &(*p)->rb_right;
54 else
55 return parent;
56 }
57
58 rb_link_node(node, parent, p);
59 rb_insert_color(node, root);
60 return NULL;
61}
62
63/*
64 * look for a given offset in the tree, and if it can't be found return the
65 * first lesser offset
66 */
67static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
68 struct rb_node **prev_ret)
69{
70 struct rb_node * n = root->rb_node;
71 struct rb_node *prev = NULL;
72 struct rb_node *test;
73 struct btrfs_ordered_extent *entry;
74 struct btrfs_ordered_extent *prev_entry = NULL;
75
76 while(n) {
77 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
78 prev = n;
79 prev_entry = entry;
80
81 if (file_offset < entry->file_offset)
82 n = n->rb_left;
83 else if (file_offset >= entry_end(entry))
84 n = n->rb_right;
85 else
86 return n;
87 }
88 if (!prev_ret)
89 return NULL;
90
91 while(prev && file_offset >= entry_end(prev_entry)) {
92 test = rb_next(prev);
93 if (!test)
94 break;
95 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
96 rb_node);
97 if (file_offset < entry_end(prev_entry))
98 break;
99
100 prev = test;
101 }
102 if (prev)
103 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
104 rb_node);
105 while(prev && file_offset < entry_end(prev_entry)) {
106 test = rb_prev(prev);
107 if (!test)
108 break;
109 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
110 rb_node);
111 prev = test;
112 }
113 *prev_ret = prev;
114 return NULL;
115}
116
117/*
118 * helper to check if a given offset is inside a given entry
119 */
120static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
121{
122 if (file_offset < entry->file_offset ||
123 entry->file_offset + entry->len <= file_offset)
124 return 0;
125 return 1;
126}
127
128/*
129 * look find the first ordered struct that has this offset, otherwise
130 * the first one less than this offset
131 */
132static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
133 u64 file_offset)
134{
135 struct rb_root *root = &tree->tree;
136 struct rb_node *prev;
137 struct rb_node *ret;
138 struct btrfs_ordered_extent *entry;
139
140 if (tree->last) {
141 entry = rb_entry(tree->last, struct btrfs_ordered_extent,
142 rb_node);
143 if (offset_in_entry(entry, file_offset))
144 return tree->last;
145 }
146 ret = __tree_search(root, file_offset, &prev);
147 if (!ret)
148 ret = prev;
149 if (ret)
150 tree->last = ret;
151 return ret;
152}
153
154/* allocate and add a new ordered_extent into the per-inode tree.
155 * file_offset is the logical offset in the file
156 *
157 * start is the disk block number of an extent already reserved in the
158 * extent allocation tree
159 *
160 * len is the length of the extent
161 *
162 * This also sets the EXTENT_ORDERED bit on the range in the inode.
163 *
164 * The tree is given a single reference on the ordered extent that was
165 * inserted.
166 */
167int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
168 u64 start, u64 len, int nocow)
169{
170 struct btrfs_ordered_inode_tree *tree;
171 struct rb_node *node;
172 struct btrfs_ordered_extent *entry;
173
174 tree = &BTRFS_I(inode)->ordered_tree;
175 entry = kzalloc(sizeof(*entry), GFP_NOFS);
176 if (!entry)
177 return -ENOMEM;
178
179 mutex_lock(&tree->mutex);
180 entry->file_offset = file_offset;
181 entry->start = start;
182 entry->len = len;
183 entry->inode = inode;
184 if (nocow)
185 set_bit(BTRFS_ORDERED_NOCOW, &entry->flags);
186
187 /* one ref for the tree */
188 atomic_set(&entry->refs, 1);
189 init_waitqueue_head(&entry->wait);
190 INIT_LIST_HEAD(&entry->list);
191 INIT_LIST_HEAD(&entry->root_extent_list);
192
193 node = tree_insert(&tree->tree, file_offset,
194 &entry->rb_node);
195 if (node) {
196 printk("warning dup entry from add_ordered_extent\n");
197 BUG();
198 }
199 set_extent_ordered(&BTRFS_I(inode)->io_tree, file_offset,
200 entry_end(entry) - 1, GFP_NOFS);
201
202 spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
203 list_add_tail(&entry->root_extent_list,
204 &BTRFS_I(inode)->root->fs_info->ordered_extents);
205 spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
206
207 mutex_unlock(&tree->mutex);
208 BUG_ON(node);
209 return 0;
210}
211
212/*
213 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
214 * when an ordered extent is finished. If the list covers more than one
215 * ordered extent, it is split across multiples.
216 */
217int btrfs_add_ordered_sum(struct inode *inode,
218 struct btrfs_ordered_extent *entry,
219 struct btrfs_ordered_sum *sum)
220{
221 struct btrfs_ordered_inode_tree *tree;
222
223 tree = &BTRFS_I(inode)->ordered_tree;
224 mutex_lock(&tree->mutex);
225 list_add_tail(&sum->list, &entry->list);
226 mutex_unlock(&tree->mutex);
227 return 0;
228}
229
230/*
231 * this is used to account for finished IO across a given range
232 * of the file. The IO should not span ordered extents. If
233 * a given ordered_extent is completely done, 1 is returned, otherwise
234 * 0.
235 *
236 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
237 * to make sure this function only returns 1 once for a given ordered extent.
238 */
239int btrfs_dec_test_ordered_pending(struct inode *inode,
240 u64 file_offset, u64 io_size)
241{
242 struct btrfs_ordered_inode_tree *tree;
243 struct rb_node *node;
244 struct btrfs_ordered_extent *entry;
245 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
246 int ret;
247
248 tree = &BTRFS_I(inode)->ordered_tree;
249 mutex_lock(&tree->mutex);
250 clear_extent_ordered(io_tree, file_offset, file_offset + io_size - 1,
251 GFP_NOFS);
252 node = tree_search(tree, file_offset);
253 if (!node) {
254 ret = 1;
255 goto out;
256 }
257
258 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
259 if (!offset_in_entry(entry, file_offset)) {
260 ret = 1;
261 goto out;
262 }
263
264 ret = test_range_bit(io_tree, entry->file_offset,
265 entry->file_offset + entry->len - 1,
266 EXTENT_ORDERED, 0);
267 if (ret == 0)
268 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
269out:
270 mutex_unlock(&tree->mutex);
271 return ret == 0;
272}
273
274/*
275 * used to drop a reference on an ordered extent. This will free
276 * the extent if the last reference is dropped
277 */
278int btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
279{
280 struct list_head *cur;
281 struct btrfs_ordered_sum *sum;
282
283 if (atomic_dec_and_test(&entry->refs)) {
284 while(!list_empty(&entry->list)) {
285 cur = entry->list.next;
286 sum = list_entry(cur, struct btrfs_ordered_sum, list);
287 list_del(&sum->list);
288 kfree(sum);
289 }
290 kfree(entry);
291 }
292 return 0;
293}
294
295/*
296 * remove an ordered extent from the tree. No references are dropped
297 * but, anyone waiting on this extent is woken up.
298 */
299int btrfs_remove_ordered_extent(struct inode *inode,
300 struct btrfs_ordered_extent *entry)
301{
302 struct btrfs_ordered_inode_tree *tree;
303 struct rb_node *node;
304
305 tree = &BTRFS_I(inode)->ordered_tree;
306 mutex_lock(&tree->mutex);
307 node = &entry->rb_node;
308 rb_erase(node, &tree->tree);
309 tree->last = NULL;
310 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
311
312 spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
313 list_del_init(&entry->root_extent_list);
314 spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
315
316 mutex_unlock(&tree->mutex);
317 wake_up(&entry->wait);
318 return 0;
319}
320
321/*
322 * wait for all the ordered extents in a root. This is done when balancing
323 * space between drives.
324 */
325int btrfs_wait_ordered_extents(struct btrfs_root *root, int nocow_only)
326{
327 struct list_head splice;
328 struct list_head *cur;
329 struct btrfs_ordered_extent *ordered;
330 struct inode *inode;
331
332 INIT_LIST_HEAD(&splice);
333
334 spin_lock(&root->fs_info->ordered_extent_lock);
335 list_splice_init(&root->fs_info->ordered_extents, &splice);
336 while (!list_empty(&splice)) {
337 cur = splice.next;
338 ordered = list_entry(cur, struct btrfs_ordered_extent,
339 root_extent_list);
340 if (nocow_only &&
341 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
342 list_move(&ordered->root_extent_list,
343 &root->fs_info->ordered_extents);
344 cond_resched_lock(&root->fs_info->ordered_extent_lock);
345 continue;
346 }
347
348 list_del_init(&ordered->root_extent_list);
349 atomic_inc(&ordered->refs);
350
351 /*
352 * the inode may be getting freed (in sys_unlink path).
353 */
354 inode = igrab(ordered->inode);
355
356 spin_unlock(&root->fs_info->ordered_extent_lock);
357
358 if (inode) {
359 btrfs_start_ordered_extent(inode, ordered, 1);
360 btrfs_put_ordered_extent(ordered);
361 iput(inode);
362 } else {
363 btrfs_put_ordered_extent(ordered);
364 }
365
366 spin_lock(&root->fs_info->ordered_extent_lock);
367 }
368 spin_unlock(&root->fs_info->ordered_extent_lock);
369 return 0;
370}
371
372/*
373 * Used to start IO or wait for a given ordered extent to finish.
374 *
375 * If wait is one, this effectively waits on page writeback for all the pages
376 * in the extent, and it waits on the io completion code to insert
377 * metadata into the btree corresponding to the extent
378 */
379void btrfs_start_ordered_extent(struct inode *inode,
380 struct btrfs_ordered_extent *entry,
381 int wait)
382{
383 u64 start = entry->file_offset;
384 u64 end = start + entry->len - 1;
385
386 /*
387 * pages in the range can be dirty, clean or writeback. We
388 * start IO on any dirty ones so the wait doesn't stall waiting
389 * for pdflush to find them
390 */
391 btrfs_fdatawrite_range(inode->i_mapping, start, end, WB_SYNC_NONE);
392 if (wait)
393 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
394 &entry->flags));
395}
396
397/*
398 * Used to wait on ordered extents across a large range of bytes.
399 */
400int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
401{
402 u64 end;
403 u64 orig_end;
404 u64 wait_end;
405 struct btrfs_ordered_extent *ordered;
406
407 if (start + len < start) {
408 orig_end = INT_LIMIT(loff_t);
409 } else {
410 orig_end = start + len - 1;
411 if (orig_end > INT_LIMIT(loff_t))
412 orig_end = INT_LIMIT(loff_t);
413 }
414 wait_end = orig_end;
415again:
416 /* start IO across the range first to instantiate any delalloc
417 * extents
418 */
419 btrfs_fdatawrite_range(inode->i_mapping, start, orig_end, WB_SYNC_NONE);
420
421 btrfs_wait_on_page_writeback_range(inode->i_mapping,
422 start >> PAGE_CACHE_SHIFT,
423 orig_end >> PAGE_CACHE_SHIFT);
424
425 end = orig_end;
426 while(1) {
427 ordered = btrfs_lookup_first_ordered_extent(inode, end);
428 if (!ordered) {
429 break;
430 }
431 if (ordered->file_offset > orig_end) {
432 btrfs_put_ordered_extent(ordered);
433 break;
434 }
435 if (ordered->file_offset + ordered->len < start) {
436 btrfs_put_ordered_extent(ordered);
437 break;
438 }
439 btrfs_start_ordered_extent(inode, ordered, 1);
440 end = ordered->file_offset;
441 btrfs_put_ordered_extent(ordered);
442 if (end == 0 || end == start)
443 break;
444 end--;
445 }
446 if (test_range_bit(&BTRFS_I(inode)->io_tree, start, orig_end,
447 EXTENT_ORDERED | EXTENT_DELALLOC, 0)) {
448 printk("inode %lu still ordered or delalloc after wait "
449 "%llu %llu\n", inode->i_ino,
450 (unsigned long long)start,
451 (unsigned long long)orig_end);
452 goto again;
453 }
454 return 0;
455}
456
457/*
458 * find an ordered extent corresponding to file_offset. return NULL if
459 * nothing is found, otherwise take a reference on the extent and return it
460 */
461struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
462 u64 file_offset)
463{
464 struct btrfs_ordered_inode_tree *tree;
465 struct rb_node *node;
466 struct btrfs_ordered_extent *entry = NULL;
467
468 tree = &BTRFS_I(inode)->ordered_tree;
469 mutex_lock(&tree->mutex);
470 node = tree_search(tree, file_offset);
471 if (!node)
472 goto out;
473
474 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
475 if (!offset_in_entry(entry, file_offset))
476 entry = NULL;
477 if (entry)
478 atomic_inc(&entry->refs);
479out:
480 mutex_unlock(&tree->mutex);
481 return entry;
482}
483
484/*
485 * lookup and return any extent before 'file_offset'. NULL is returned
486 * if none is found
487 */
488struct btrfs_ordered_extent *
489btrfs_lookup_first_ordered_extent(struct inode * inode, u64 file_offset)
490{
491 struct btrfs_ordered_inode_tree *tree;
492 struct rb_node *node;
493 struct btrfs_ordered_extent *entry = NULL;
494
495 tree = &BTRFS_I(inode)->ordered_tree;
496 mutex_lock(&tree->mutex);
497 node = tree_search(tree, file_offset);
498 if (!node)
499 goto out;
500
501 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
502 atomic_inc(&entry->refs);
503out:
504 mutex_unlock(&tree->mutex);
505 return entry;
506}
507
508/*
509 * After an extent is done, call this to conditionally update the on disk
510 * i_size. i_size is updated to cover any fully written part of the file.
511 */
512int btrfs_ordered_update_i_size(struct inode *inode,
513 struct btrfs_ordered_extent *ordered)
514{
515 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
516 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
517 u64 disk_i_size;
518 u64 new_i_size;
519 u64 i_size_test;
520 struct rb_node *node;
521 struct btrfs_ordered_extent *test;
522
523 mutex_lock(&tree->mutex);
524 disk_i_size = BTRFS_I(inode)->disk_i_size;
525
526 /*
527 * if the disk i_size is already at the inode->i_size, or
528 * this ordered extent is inside the disk i_size, we're done
529 */
530 if (disk_i_size >= inode->i_size ||
531 ordered->file_offset + ordered->len <= disk_i_size) {
532 goto out;
533 }
534
535 /*
536 * we can't update the disk_isize if there are delalloc bytes
537 * between disk_i_size and this ordered extent
538 */
539 if (test_range_bit(io_tree, disk_i_size,
540 ordered->file_offset + ordered->len - 1,
541 EXTENT_DELALLOC, 0)) {
542 goto out;
543 }
544 /*
545 * walk backward from this ordered extent to disk_i_size.
546 * if we find an ordered extent then we can't update disk i_size
547 * yet
548 */
549 node = &ordered->rb_node;
550 while(1) {
551 node = rb_prev(node);
552 if (!node)
553 break;
554 test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
555 if (test->file_offset + test->len <= disk_i_size)
556 break;
557 if (test->file_offset >= inode->i_size)
558 break;
559 if (test->file_offset >= disk_i_size)
560 goto out;
561 }
562 new_i_size = min_t(u64, entry_end(ordered), i_size_read(inode));
563
564 /*
565 * at this point, we know we can safely update i_size to at least
566 * the offset from this ordered extent. But, we need to
567 * walk forward and see if ios from higher up in the file have
568 * finished.
569 */
570 node = rb_next(&ordered->rb_node);
571 i_size_test = 0;
572 if (node) {
573 /*
574 * do we have an area where IO might have finished
575 * between our ordered extent and the next one.
576 */
577 test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
578 if (test->file_offset > entry_end(ordered)) {
579 i_size_test = test->file_offset;
580 }
581 } else {
582 i_size_test = i_size_read(inode);
583 }
584
585 /*
586 * i_size_test is the end of a region after this ordered
587 * extent where there are no ordered extents. As long as there
588 * are no delalloc bytes in this area, it is safe to update
589 * disk_i_size to the end of the region.
590 */
591 if (i_size_test > entry_end(ordered) &&
592 !test_range_bit(io_tree, entry_end(ordered), i_size_test - 1,
593 EXTENT_DELALLOC, 0)) {
594 new_i_size = min_t(u64, i_size_test, i_size_read(inode));
595 }
596 BTRFS_I(inode)->disk_i_size = new_i_size;
597out:
598 mutex_unlock(&tree->mutex);
599 return 0;
600}
601
602/*
603 * search the ordered extents for one corresponding to 'offset' and
604 * try to find a checksum. This is used because we allow pages to
605 * be reclaimed before their checksum is actually put into the btree
606 */
607int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u32 *sum)
608{
609 struct btrfs_ordered_sum *ordered_sum;
610 struct btrfs_sector_sum *sector_sums;
611 struct btrfs_ordered_extent *ordered;
612 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
613 struct list_head *cur;
614 unsigned long num_sectors;
615 unsigned long i;
616 u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
617 int ret = 1;
618
619 ordered = btrfs_lookup_ordered_extent(inode, offset);
620 if (!ordered)
621 return 1;
622
623 mutex_lock(&tree->mutex);
624 list_for_each_prev(cur, &ordered->list) {
625 ordered_sum = list_entry(cur, struct btrfs_ordered_sum, list);
626 if (offset >= ordered_sum->file_offset) {
627 num_sectors = ordered_sum->len / sectorsize;
628 sector_sums = ordered_sum->sums;
629 for (i = 0; i < num_sectors; i++) {
630 if (sector_sums[i].offset == offset) {
631 *sum = sector_sums[i].sum;
632 ret = 0;
633 goto out;
634 }
635 }
636 }
637 }
638out:
639 mutex_unlock(&tree->mutex);
640 btrfs_put_ordered_extent(ordered);
641 return ret;
642}
643
644
645/**
646 * taken from mm/filemap.c because it isn't exported
647 *
648 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
649 * @mapping: address space structure to write
650 * @start: offset in bytes where the range starts
651 * @end: offset in bytes where the range ends (inclusive)
652 * @sync_mode: enable synchronous operation
653 *
654 * Start writeback against all of a mapping's dirty pages that lie
655 * within the byte offsets <start, end> inclusive.
656 *
657 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
658 * opposed to a regular memory cleansing writeback. The difference between
659 * these two operations is that if a dirty page/buffer is encountered, it must
660 * be waited upon, and not just skipped over.
661 */
662int btrfs_fdatawrite_range(struct address_space *mapping, loff_t start,
663 loff_t end, int sync_mode)
664{
665 struct writeback_control wbc = {
666 .sync_mode = sync_mode,
667 .nr_to_write = mapping->nrpages * 2,
668 .range_start = start,
669 .range_end = end,
670 .for_writepages = 1,
671 };
672 return btrfs_writepages(mapping, &wbc);
673}
674
675/**
676 * taken from mm/filemap.c because it isn't exported
677 *
678 * wait_on_page_writeback_range - wait for writeback to complete
679 * @mapping: target address_space
680 * @start: beginning page index
681 * @end: ending page index
682 *
683 * Wait for writeback to complete against pages indexed by start->end
684 * inclusive
685 */
686int btrfs_wait_on_page_writeback_range(struct address_space *mapping,
687 pgoff_t start, pgoff_t end)
688{
689 struct pagevec pvec;
690 int nr_pages;
691 int ret = 0;
692 pgoff_t index;
693
694 if (end < start)
695 return 0;
696
697 pagevec_init(&pvec, 0);
698 index = start;
699 while ((index <= end) &&
700 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
701 PAGECACHE_TAG_WRITEBACK,
702 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
703 unsigned i;
704
705 for (i = 0; i < nr_pages; i++) {
706 struct page *page = pvec.pages[i];
707
708 /* until radix tree lookup accepts end_index */
709 if (page->index > end)
710 continue;
711
712 wait_on_page_writeback(page);
713 if (PageError(page))
714 ret = -EIO;
715 }
716 pagevec_release(&pvec);
717 cond_resched();
718 }
719
720 /* Check for outstanding write errors */
721 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
722 ret = -ENOSPC;
723 if (test_and_clear_bit(AS_EIO, &mapping->flags))
724 ret = -EIO;
725
726 return ret;
727}