diff options
Diffstat (limited to 'fs/btrfs/ordered-data.c')
-rw-r--r-- | fs/btrfs/ordered-data.c | 730 |
1 files changed, 730 insertions, 0 deletions
diff --git a/fs/btrfs/ordered-data.c b/fs/btrfs/ordered-data.c new file mode 100644 index 000000000000..a20940170274 --- /dev/null +++ b/fs/btrfs/ordered-data.c | |||
@@ -0,0 +1,730 @@ | |||
1 | /* | ||
2 | * Copyright (C) 2007 Oracle. All rights reserved. | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or | ||
5 | * modify it under the terms of the GNU General Public | ||
6 | * License v2 as published by the Free Software Foundation. | ||
7 | * | ||
8 | * This program is distributed in the hope that it will be useful, | ||
9 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | ||
11 | * General Public License for more details. | ||
12 | * | ||
13 | * You should have received a copy of the GNU General Public | ||
14 | * License along with this program; if not, write to the | ||
15 | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | ||
16 | * Boston, MA 021110-1307, USA. | ||
17 | */ | ||
18 | |||
19 | #include <linux/gfp.h> | ||
20 | #include <linux/slab.h> | ||
21 | #include <linux/blkdev.h> | ||
22 | #include <linux/writeback.h> | ||
23 | #include <linux/pagevec.h> | ||
24 | #include "ctree.h" | ||
25 | #include "transaction.h" | ||
26 | #include "btrfs_inode.h" | ||
27 | #include "extent_io.h" | ||
28 | |||
29 | static u64 entry_end(struct btrfs_ordered_extent *entry) | ||
30 | { | ||
31 | if (entry->file_offset + entry->len < entry->file_offset) | ||
32 | return (u64)-1; | ||
33 | return entry->file_offset + entry->len; | ||
34 | } | ||
35 | |||
36 | /* returns NULL if the insertion worked, or it returns the node it did find | ||
37 | * in the tree | ||
38 | */ | ||
39 | static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset, | ||
40 | struct rb_node *node) | ||
41 | { | ||
42 | struct rb_node **p = &root->rb_node; | ||
43 | struct rb_node *parent = NULL; | ||
44 | struct btrfs_ordered_extent *entry; | ||
45 | |||
46 | while (*p) { | ||
47 | parent = *p; | ||
48 | entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node); | ||
49 | |||
50 | if (file_offset < entry->file_offset) | ||
51 | p = &(*p)->rb_left; | ||
52 | else if (file_offset >= entry_end(entry)) | ||
53 | p = &(*p)->rb_right; | ||
54 | else | ||
55 | return parent; | ||
56 | } | ||
57 | |||
58 | rb_link_node(node, parent, p); | ||
59 | rb_insert_color(node, root); | ||
60 | return NULL; | ||
61 | } | ||
62 | |||
63 | /* | ||
64 | * look for a given offset in the tree, and if it can't be found return the | ||
65 | * first lesser offset | ||
66 | */ | ||
67 | static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset, | ||
68 | struct rb_node **prev_ret) | ||
69 | { | ||
70 | struct rb_node *n = root->rb_node; | ||
71 | struct rb_node *prev = NULL; | ||
72 | struct rb_node *test; | ||
73 | struct btrfs_ordered_extent *entry; | ||
74 | struct btrfs_ordered_extent *prev_entry = NULL; | ||
75 | |||
76 | while (n) { | ||
77 | entry = rb_entry(n, struct btrfs_ordered_extent, rb_node); | ||
78 | prev = n; | ||
79 | prev_entry = entry; | ||
80 | |||
81 | if (file_offset < entry->file_offset) | ||
82 | n = n->rb_left; | ||
83 | else if (file_offset >= entry_end(entry)) | ||
84 | n = n->rb_right; | ||
85 | else | ||
86 | return n; | ||
87 | } | ||
88 | if (!prev_ret) | ||
89 | return NULL; | ||
90 | |||
91 | while (prev && file_offset >= entry_end(prev_entry)) { | ||
92 | test = rb_next(prev); | ||
93 | if (!test) | ||
94 | break; | ||
95 | prev_entry = rb_entry(test, struct btrfs_ordered_extent, | ||
96 | rb_node); | ||
97 | if (file_offset < entry_end(prev_entry)) | ||
98 | break; | ||
99 | |||
100 | prev = test; | ||
101 | } | ||
102 | if (prev) | ||
103 | prev_entry = rb_entry(prev, struct btrfs_ordered_extent, | ||
104 | rb_node); | ||
105 | while (prev && file_offset < entry_end(prev_entry)) { | ||
106 | test = rb_prev(prev); | ||
107 | if (!test) | ||
108 | break; | ||
109 | prev_entry = rb_entry(test, struct btrfs_ordered_extent, | ||
110 | rb_node); | ||
111 | prev = test; | ||
112 | } | ||
113 | *prev_ret = prev; | ||
114 | return NULL; | ||
115 | } | ||
116 | |||
117 | /* | ||
118 | * helper to check if a given offset is inside a given entry | ||
119 | */ | ||
120 | static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset) | ||
121 | { | ||
122 | if (file_offset < entry->file_offset || | ||
123 | entry->file_offset + entry->len <= file_offset) | ||
124 | return 0; | ||
125 | return 1; | ||
126 | } | ||
127 | |||
128 | /* | ||
129 | * look find the first ordered struct that has this offset, otherwise | ||
130 | * the first one less than this offset | ||
131 | */ | ||
132 | static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree, | ||
133 | u64 file_offset) | ||
134 | { | ||
135 | struct rb_root *root = &tree->tree; | ||
136 | struct rb_node *prev; | ||
137 | struct rb_node *ret; | ||
138 | struct btrfs_ordered_extent *entry; | ||
139 | |||
140 | if (tree->last) { | ||
141 | entry = rb_entry(tree->last, struct btrfs_ordered_extent, | ||
142 | rb_node); | ||
143 | if (offset_in_entry(entry, file_offset)) | ||
144 | return tree->last; | ||
145 | } | ||
146 | ret = __tree_search(root, file_offset, &prev); | ||
147 | if (!ret) | ||
148 | ret = prev; | ||
149 | if (ret) | ||
150 | tree->last = ret; | ||
151 | return ret; | ||
152 | } | ||
153 | |||
154 | /* allocate and add a new ordered_extent into the per-inode tree. | ||
155 | * file_offset is the logical offset in the file | ||
156 | * | ||
157 | * start is the disk block number of an extent already reserved in the | ||
158 | * extent allocation tree | ||
159 | * | ||
160 | * len is the length of the extent | ||
161 | * | ||
162 | * This also sets the EXTENT_ORDERED bit on the range in the inode. | ||
163 | * | ||
164 | * The tree is given a single reference on the ordered extent that was | ||
165 | * inserted. | ||
166 | */ | ||
167 | int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset, | ||
168 | u64 start, u64 len, u64 disk_len, int type) | ||
169 | { | ||
170 | struct btrfs_ordered_inode_tree *tree; | ||
171 | struct rb_node *node; | ||
172 | struct btrfs_ordered_extent *entry; | ||
173 | |||
174 | tree = &BTRFS_I(inode)->ordered_tree; | ||
175 | entry = kzalloc(sizeof(*entry), GFP_NOFS); | ||
176 | if (!entry) | ||
177 | return -ENOMEM; | ||
178 | |||
179 | mutex_lock(&tree->mutex); | ||
180 | entry->file_offset = file_offset; | ||
181 | entry->start = start; | ||
182 | entry->len = len; | ||
183 | entry->disk_len = disk_len; | ||
184 | entry->inode = inode; | ||
185 | if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE) | ||
186 | set_bit(type, &entry->flags); | ||
187 | |||
188 | /* one ref for the tree */ | ||
189 | atomic_set(&entry->refs, 1); | ||
190 | init_waitqueue_head(&entry->wait); | ||
191 | INIT_LIST_HEAD(&entry->list); | ||
192 | INIT_LIST_HEAD(&entry->root_extent_list); | ||
193 | |||
194 | node = tree_insert(&tree->tree, file_offset, | ||
195 | &entry->rb_node); | ||
196 | BUG_ON(node); | ||
197 | |||
198 | set_extent_ordered(&BTRFS_I(inode)->io_tree, file_offset, | ||
199 | entry_end(entry) - 1, GFP_NOFS); | ||
200 | |||
201 | spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock); | ||
202 | list_add_tail(&entry->root_extent_list, | ||
203 | &BTRFS_I(inode)->root->fs_info->ordered_extents); | ||
204 | spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock); | ||
205 | |||
206 | mutex_unlock(&tree->mutex); | ||
207 | BUG_ON(node); | ||
208 | return 0; | ||
209 | } | ||
210 | |||
211 | /* | ||
212 | * Add a struct btrfs_ordered_sum into the list of checksums to be inserted | ||
213 | * when an ordered extent is finished. If the list covers more than one | ||
214 | * ordered extent, it is split across multiples. | ||
215 | */ | ||
216 | int btrfs_add_ordered_sum(struct inode *inode, | ||
217 | struct btrfs_ordered_extent *entry, | ||
218 | struct btrfs_ordered_sum *sum) | ||
219 | { | ||
220 | struct btrfs_ordered_inode_tree *tree; | ||
221 | |||
222 | tree = &BTRFS_I(inode)->ordered_tree; | ||
223 | mutex_lock(&tree->mutex); | ||
224 | list_add_tail(&sum->list, &entry->list); | ||
225 | mutex_unlock(&tree->mutex); | ||
226 | return 0; | ||
227 | } | ||
228 | |||
229 | /* | ||
230 | * this is used to account for finished IO across a given range | ||
231 | * of the file. The IO should not span ordered extents. If | ||
232 | * a given ordered_extent is completely done, 1 is returned, otherwise | ||
233 | * 0. | ||
234 | * | ||
235 | * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used | ||
236 | * to make sure this function only returns 1 once for a given ordered extent. | ||
237 | */ | ||
238 | int btrfs_dec_test_ordered_pending(struct inode *inode, | ||
239 | u64 file_offset, u64 io_size) | ||
240 | { | ||
241 | struct btrfs_ordered_inode_tree *tree; | ||
242 | struct rb_node *node; | ||
243 | struct btrfs_ordered_extent *entry; | ||
244 | struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; | ||
245 | int ret; | ||
246 | |||
247 | tree = &BTRFS_I(inode)->ordered_tree; | ||
248 | mutex_lock(&tree->mutex); | ||
249 | clear_extent_ordered(io_tree, file_offset, file_offset + io_size - 1, | ||
250 | GFP_NOFS); | ||
251 | node = tree_search(tree, file_offset); | ||
252 | if (!node) { | ||
253 | ret = 1; | ||
254 | goto out; | ||
255 | } | ||
256 | |||
257 | entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); | ||
258 | if (!offset_in_entry(entry, file_offset)) { | ||
259 | ret = 1; | ||
260 | goto out; | ||
261 | } | ||
262 | |||
263 | ret = test_range_bit(io_tree, entry->file_offset, | ||
264 | entry->file_offset + entry->len - 1, | ||
265 | EXTENT_ORDERED, 0); | ||
266 | if (ret == 0) | ||
267 | ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); | ||
268 | out: | ||
269 | mutex_unlock(&tree->mutex); | ||
270 | return ret == 0; | ||
271 | } | ||
272 | |||
273 | /* | ||
274 | * used to drop a reference on an ordered extent. This will free | ||
275 | * the extent if the last reference is dropped | ||
276 | */ | ||
277 | int btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry) | ||
278 | { | ||
279 | struct list_head *cur; | ||
280 | struct btrfs_ordered_sum *sum; | ||
281 | |||
282 | if (atomic_dec_and_test(&entry->refs)) { | ||
283 | while (!list_empty(&entry->list)) { | ||
284 | cur = entry->list.next; | ||
285 | sum = list_entry(cur, struct btrfs_ordered_sum, list); | ||
286 | list_del(&sum->list); | ||
287 | kfree(sum); | ||
288 | } | ||
289 | kfree(entry); | ||
290 | } | ||
291 | return 0; | ||
292 | } | ||
293 | |||
294 | /* | ||
295 | * remove an ordered extent from the tree. No references are dropped | ||
296 | * but, anyone waiting on this extent is woken up. | ||
297 | */ | ||
298 | int btrfs_remove_ordered_extent(struct inode *inode, | ||
299 | struct btrfs_ordered_extent *entry) | ||
300 | { | ||
301 | struct btrfs_ordered_inode_tree *tree; | ||
302 | struct rb_node *node; | ||
303 | |||
304 | tree = &BTRFS_I(inode)->ordered_tree; | ||
305 | mutex_lock(&tree->mutex); | ||
306 | node = &entry->rb_node; | ||
307 | rb_erase(node, &tree->tree); | ||
308 | tree->last = NULL; | ||
309 | set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags); | ||
310 | |||
311 | spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock); | ||
312 | list_del_init(&entry->root_extent_list); | ||
313 | spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock); | ||
314 | |||
315 | mutex_unlock(&tree->mutex); | ||
316 | wake_up(&entry->wait); | ||
317 | return 0; | ||
318 | } | ||
319 | |||
320 | /* | ||
321 | * wait for all the ordered extents in a root. This is done when balancing | ||
322 | * space between drives. | ||
323 | */ | ||
324 | int btrfs_wait_ordered_extents(struct btrfs_root *root, int nocow_only) | ||
325 | { | ||
326 | struct list_head splice; | ||
327 | struct list_head *cur; | ||
328 | struct btrfs_ordered_extent *ordered; | ||
329 | struct inode *inode; | ||
330 | |||
331 | INIT_LIST_HEAD(&splice); | ||
332 | |||
333 | spin_lock(&root->fs_info->ordered_extent_lock); | ||
334 | list_splice_init(&root->fs_info->ordered_extents, &splice); | ||
335 | while (!list_empty(&splice)) { | ||
336 | cur = splice.next; | ||
337 | ordered = list_entry(cur, struct btrfs_ordered_extent, | ||
338 | root_extent_list); | ||
339 | if (nocow_only && | ||
340 | !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) && | ||
341 | !test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) { | ||
342 | list_move(&ordered->root_extent_list, | ||
343 | &root->fs_info->ordered_extents); | ||
344 | cond_resched_lock(&root->fs_info->ordered_extent_lock); | ||
345 | continue; | ||
346 | } | ||
347 | |||
348 | list_del_init(&ordered->root_extent_list); | ||
349 | atomic_inc(&ordered->refs); | ||
350 | |||
351 | /* | ||
352 | * the inode may be getting freed (in sys_unlink path). | ||
353 | */ | ||
354 | inode = igrab(ordered->inode); | ||
355 | |||
356 | spin_unlock(&root->fs_info->ordered_extent_lock); | ||
357 | |||
358 | if (inode) { | ||
359 | btrfs_start_ordered_extent(inode, ordered, 1); | ||
360 | btrfs_put_ordered_extent(ordered); | ||
361 | iput(inode); | ||
362 | } else { | ||
363 | btrfs_put_ordered_extent(ordered); | ||
364 | } | ||
365 | |||
366 | spin_lock(&root->fs_info->ordered_extent_lock); | ||
367 | } | ||
368 | spin_unlock(&root->fs_info->ordered_extent_lock); | ||
369 | return 0; | ||
370 | } | ||
371 | |||
372 | /* | ||
373 | * Used to start IO or wait for a given ordered extent to finish. | ||
374 | * | ||
375 | * If wait is one, this effectively waits on page writeback for all the pages | ||
376 | * in the extent, and it waits on the io completion code to insert | ||
377 | * metadata into the btree corresponding to the extent | ||
378 | */ | ||
379 | void btrfs_start_ordered_extent(struct inode *inode, | ||
380 | struct btrfs_ordered_extent *entry, | ||
381 | int wait) | ||
382 | { | ||
383 | u64 start = entry->file_offset; | ||
384 | u64 end = start + entry->len - 1; | ||
385 | |||
386 | /* | ||
387 | * pages in the range can be dirty, clean or writeback. We | ||
388 | * start IO on any dirty ones so the wait doesn't stall waiting | ||
389 | * for pdflush to find them | ||
390 | */ | ||
391 | btrfs_fdatawrite_range(inode->i_mapping, start, end, WB_SYNC_ALL); | ||
392 | if (wait) { | ||
393 | wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, | ||
394 | &entry->flags)); | ||
395 | } | ||
396 | } | ||
397 | |||
398 | /* | ||
399 | * Used to wait on ordered extents across a large range of bytes. | ||
400 | */ | ||
401 | int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len) | ||
402 | { | ||
403 | u64 end; | ||
404 | u64 orig_end; | ||
405 | u64 wait_end; | ||
406 | struct btrfs_ordered_extent *ordered; | ||
407 | |||
408 | if (start + len < start) { | ||
409 | orig_end = INT_LIMIT(loff_t); | ||
410 | } else { | ||
411 | orig_end = start + len - 1; | ||
412 | if (orig_end > INT_LIMIT(loff_t)) | ||
413 | orig_end = INT_LIMIT(loff_t); | ||
414 | } | ||
415 | wait_end = orig_end; | ||
416 | again: | ||
417 | /* start IO across the range first to instantiate any delalloc | ||
418 | * extents | ||
419 | */ | ||
420 | btrfs_fdatawrite_range(inode->i_mapping, start, orig_end, WB_SYNC_NONE); | ||
421 | |||
422 | /* The compression code will leave pages locked but return from | ||
423 | * writepage without setting the page writeback. Starting again | ||
424 | * with WB_SYNC_ALL will end up waiting for the IO to actually start. | ||
425 | */ | ||
426 | btrfs_fdatawrite_range(inode->i_mapping, start, orig_end, WB_SYNC_ALL); | ||
427 | |||
428 | btrfs_wait_on_page_writeback_range(inode->i_mapping, | ||
429 | start >> PAGE_CACHE_SHIFT, | ||
430 | orig_end >> PAGE_CACHE_SHIFT); | ||
431 | |||
432 | end = orig_end; | ||
433 | while (1) { | ||
434 | ordered = btrfs_lookup_first_ordered_extent(inode, end); | ||
435 | if (!ordered) | ||
436 | break; | ||
437 | if (ordered->file_offset > orig_end) { | ||
438 | btrfs_put_ordered_extent(ordered); | ||
439 | break; | ||
440 | } | ||
441 | if (ordered->file_offset + ordered->len < start) { | ||
442 | btrfs_put_ordered_extent(ordered); | ||
443 | break; | ||
444 | } | ||
445 | btrfs_start_ordered_extent(inode, ordered, 1); | ||
446 | end = ordered->file_offset; | ||
447 | btrfs_put_ordered_extent(ordered); | ||
448 | if (end == 0 || end == start) | ||
449 | break; | ||
450 | end--; | ||
451 | } | ||
452 | if (test_range_bit(&BTRFS_I(inode)->io_tree, start, orig_end, | ||
453 | EXTENT_ORDERED | EXTENT_DELALLOC, 0)) { | ||
454 | schedule_timeout(1); | ||
455 | goto again; | ||
456 | } | ||
457 | return 0; | ||
458 | } | ||
459 | |||
460 | /* | ||
461 | * find an ordered extent corresponding to file_offset. return NULL if | ||
462 | * nothing is found, otherwise take a reference on the extent and return it | ||
463 | */ | ||
464 | struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode, | ||
465 | u64 file_offset) | ||
466 | { | ||
467 | struct btrfs_ordered_inode_tree *tree; | ||
468 | struct rb_node *node; | ||
469 | struct btrfs_ordered_extent *entry = NULL; | ||
470 | |||
471 | tree = &BTRFS_I(inode)->ordered_tree; | ||
472 | mutex_lock(&tree->mutex); | ||
473 | node = tree_search(tree, file_offset); | ||
474 | if (!node) | ||
475 | goto out; | ||
476 | |||
477 | entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); | ||
478 | if (!offset_in_entry(entry, file_offset)) | ||
479 | entry = NULL; | ||
480 | if (entry) | ||
481 | atomic_inc(&entry->refs); | ||
482 | out: | ||
483 | mutex_unlock(&tree->mutex); | ||
484 | return entry; | ||
485 | } | ||
486 | |||
487 | /* | ||
488 | * lookup and return any extent before 'file_offset'. NULL is returned | ||
489 | * if none is found | ||
490 | */ | ||
491 | struct btrfs_ordered_extent * | ||
492 | btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset) | ||
493 | { | ||
494 | struct btrfs_ordered_inode_tree *tree; | ||
495 | struct rb_node *node; | ||
496 | struct btrfs_ordered_extent *entry = NULL; | ||
497 | |||
498 | tree = &BTRFS_I(inode)->ordered_tree; | ||
499 | mutex_lock(&tree->mutex); | ||
500 | node = tree_search(tree, file_offset); | ||
501 | if (!node) | ||
502 | goto out; | ||
503 | |||
504 | entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); | ||
505 | atomic_inc(&entry->refs); | ||
506 | out: | ||
507 | mutex_unlock(&tree->mutex); | ||
508 | return entry; | ||
509 | } | ||
510 | |||
511 | /* | ||
512 | * After an extent is done, call this to conditionally update the on disk | ||
513 | * i_size. i_size is updated to cover any fully written part of the file. | ||
514 | */ | ||
515 | int btrfs_ordered_update_i_size(struct inode *inode, | ||
516 | struct btrfs_ordered_extent *ordered) | ||
517 | { | ||
518 | struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree; | ||
519 | struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; | ||
520 | u64 disk_i_size; | ||
521 | u64 new_i_size; | ||
522 | u64 i_size_test; | ||
523 | struct rb_node *node; | ||
524 | struct btrfs_ordered_extent *test; | ||
525 | |||
526 | mutex_lock(&tree->mutex); | ||
527 | disk_i_size = BTRFS_I(inode)->disk_i_size; | ||
528 | |||
529 | /* | ||
530 | * if the disk i_size is already at the inode->i_size, or | ||
531 | * this ordered extent is inside the disk i_size, we're done | ||
532 | */ | ||
533 | if (disk_i_size >= inode->i_size || | ||
534 | ordered->file_offset + ordered->len <= disk_i_size) { | ||
535 | goto out; | ||
536 | } | ||
537 | |||
538 | /* | ||
539 | * we can't update the disk_isize if there are delalloc bytes | ||
540 | * between disk_i_size and this ordered extent | ||
541 | */ | ||
542 | if (test_range_bit(io_tree, disk_i_size, | ||
543 | ordered->file_offset + ordered->len - 1, | ||
544 | EXTENT_DELALLOC, 0)) { | ||
545 | goto out; | ||
546 | } | ||
547 | /* | ||
548 | * walk backward from this ordered extent to disk_i_size. | ||
549 | * if we find an ordered extent then we can't update disk i_size | ||
550 | * yet | ||
551 | */ | ||
552 | node = &ordered->rb_node; | ||
553 | while (1) { | ||
554 | node = rb_prev(node); | ||
555 | if (!node) | ||
556 | break; | ||
557 | test = rb_entry(node, struct btrfs_ordered_extent, rb_node); | ||
558 | if (test->file_offset + test->len <= disk_i_size) | ||
559 | break; | ||
560 | if (test->file_offset >= inode->i_size) | ||
561 | break; | ||
562 | if (test->file_offset >= disk_i_size) | ||
563 | goto out; | ||
564 | } | ||
565 | new_i_size = min_t(u64, entry_end(ordered), i_size_read(inode)); | ||
566 | |||
567 | /* | ||
568 | * at this point, we know we can safely update i_size to at least | ||
569 | * the offset from this ordered extent. But, we need to | ||
570 | * walk forward and see if ios from higher up in the file have | ||
571 | * finished. | ||
572 | */ | ||
573 | node = rb_next(&ordered->rb_node); | ||
574 | i_size_test = 0; | ||
575 | if (node) { | ||
576 | /* | ||
577 | * do we have an area where IO might have finished | ||
578 | * between our ordered extent and the next one. | ||
579 | */ | ||
580 | test = rb_entry(node, struct btrfs_ordered_extent, rb_node); | ||
581 | if (test->file_offset > entry_end(ordered)) | ||
582 | i_size_test = test->file_offset; | ||
583 | } else { | ||
584 | i_size_test = i_size_read(inode); | ||
585 | } | ||
586 | |||
587 | /* | ||
588 | * i_size_test is the end of a region after this ordered | ||
589 | * extent where there are no ordered extents. As long as there | ||
590 | * are no delalloc bytes in this area, it is safe to update | ||
591 | * disk_i_size to the end of the region. | ||
592 | */ | ||
593 | if (i_size_test > entry_end(ordered) && | ||
594 | !test_range_bit(io_tree, entry_end(ordered), i_size_test - 1, | ||
595 | EXTENT_DELALLOC, 0)) { | ||
596 | new_i_size = min_t(u64, i_size_test, i_size_read(inode)); | ||
597 | } | ||
598 | BTRFS_I(inode)->disk_i_size = new_i_size; | ||
599 | out: | ||
600 | mutex_unlock(&tree->mutex); | ||
601 | return 0; | ||
602 | } | ||
603 | |||
604 | /* | ||
605 | * search the ordered extents for one corresponding to 'offset' and | ||
606 | * try to find a checksum. This is used because we allow pages to | ||
607 | * be reclaimed before their checksum is actually put into the btree | ||
608 | */ | ||
609 | int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr, | ||
610 | u32 *sum) | ||
611 | { | ||
612 | struct btrfs_ordered_sum *ordered_sum; | ||
613 | struct btrfs_sector_sum *sector_sums; | ||
614 | struct btrfs_ordered_extent *ordered; | ||
615 | struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree; | ||
616 | struct list_head *cur; | ||
617 | unsigned long num_sectors; | ||
618 | unsigned long i; | ||
619 | u32 sectorsize = BTRFS_I(inode)->root->sectorsize; | ||
620 | int ret = 1; | ||
621 | |||
622 | ordered = btrfs_lookup_ordered_extent(inode, offset); | ||
623 | if (!ordered) | ||
624 | return 1; | ||
625 | |||
626 | mutex_lock(&tree->mutex); | ||
627 | list_for_each_prev(cur, &ordered->list) { | ||
628 | ordered_sum = list_entry(cur, struct btrfs_ordered_sum, list); | ||
629 | if (disk_bytenr >= ordered_sum->bytenr) { | ||
630 | num_sectors = ordered_sum->len / sectorsize; | ||
631 | sector_sums = ordered_sum->sums; | ||
632 | for (i = 0; i < num_sectors; i++) { | ||
633 | if (sector_sums[i].bytenr == disk_bytenr) { | ||
634 | *sum = sector_sums[i].sum; | ||
635 | ret = 0; | ||
636 | goto out; | ||
637 | } | ||
638 | } | ||
639 | } | ||
640 | } | ||
641 | out: | ||
642 | mutex_unlock(&tree->mutex); | ||
643 | btrfs_put_ordered_extent(ordered); | ||
644 | return ret; | ||
645 | } | ||
646 | |||
647 | |||
648 | /** | ||
649 | * taken from mm/filemap.c because it isn't exported | ||
650 | * | ||
651 | * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range | ||
652 | * @mapping: address space structure to write | ||
653 | * @start: offset in bytes where the range starts | ||
654 | * @end: offset in bytes where the range ends (inclusive) | ||
655 | * @sync_mode: enable synchronous operation | ||
656 | * | ||
657 | * Start writeback against all of a mapping's dirty pages that lie | ||
658 | * within the byte offsets <start, end> inclusive. | ||
659 | * | ||
660 | * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as | ||
661 | * opposed to a regular memory cleansing writeback. The difference between | ||
662 | * these two operations is that if a dirty page/buffer is encountered, it must | ||
663 | * be waited upon, and not just skipped over. | ||
664 | */ | ||
665 | int btrfs_fdatawrite_range(struct address_space *mapping, loff_t start, | ||
666 | loff_t end, int sync_mode) | ||
667 | { | ||
668 | struct writeback_control wbc = { | ||
669 | .sync_mode = sync_mode, | ||
670 | .nr_to_write = mapping->nrpages * 2, | ||
671 | .range_start = start, | ||
672 | .range_end = end, | ||
673 | .for_writepages = 1, | ||
674 | }; | ||
675 | return btrfs_writepages(mapping, &wbc); | ||
676 | } | ||
677 | |||
678 | /** | ||
679 | * taken from mm/filemap.c because it isn't exported | ||
680 | * | ||
681 | * wait_on_page_writeback_range - wait for writeback to complete | ||
682 | * @mapping: target address_space | ||
683 | * @start: beginning page index | ||
684 | * @end: ending page index | ||
685 | * | ||
686 | * Wait for writeback to complete against pages indexed by start->end | ||
687 | * inclusive | ||
688 | */ | ||
689 | int btrfs_wait_on_page_writeback_range(struct address_space *mapping, | ||
690 | pgoff_t start, pgoff_t end) | ||
691 | { | ||
692 | struct pagevec pvec; | ||
693 | int nr_pages; | ||
694 | int ret = 0; | ||
695 | pgoff_t index; | ||
696 | |||
697 | if (end < start) | ||
698 | return 0; | ||
699 | |||
700 | pagevec_init(&pvec, 0); | ||
701 | index = start; | ||
702 | while ((index <= end) && | ||
703 | (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, | ||
704 | PAGECACHE_TAG_WRITEBACK, | ||
705 | min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) { | ||
706 | unsigned i; | ||
707 | |||
708 | for (i = 0; i < nr_pages; i++) { | ||
709 | struct page *page = pvec.pages[i]; | ||
710 | |||
711 | /* until radix tree lookup accepts end_index */ | ||
712 | if (page->index > end) | ||
713 | continue; | ||
714 | |||
715 | wait_on_page_writeback(page); | ||
716 | if (PageError(page)) | ||
717 | ret = -EIO; | ||
718 | } | ||
719 | pagevec_release(&pvec); | ||
720 | cond_resched(); | ||
721 | } | ||
722 | |||
723 | /* Check for outstanding write errors */ | ||
724 | if (test_and_clear_bit(AS_ENOSPC, &mapping->flags)) | ||
725 | ret = -ENOSPC; | ||
726 | if (test_and_clear_bit(AS_EIO, &mapping->flags)) | ||
727 | ret = -EIO; | ||
728 | |||
729 | return ret; | ||
730 | } | ||