aboutsummaryrefslogtreecommitdiffstats
path: root/fs/btrfs/free-space-cache.c
diff options
context:
space:
mode:
Diffstat (limited to 'fs/btrfs/free-space-cache.c')
-rw-r--r--fs/btrfs/free-space-cache.c297
1 files changed, 297 insertions, 0 deletions
diff --git a/fs/btrfs/free-space-cache.c b/fs/btrfs/free-space-cache.c
index df19b60eef61..3fdadd28e935 100644
--- a/fs/btrfs/free-space-cache.c
+++ b/fs/btrfs/free-space-cache.c
@@ -18,6 +18,15 @@
18 18
19#include <linux/sched.h> 19#include <linux/sched.h>
20#include "ctree.h" 20#include "ctree.h"
21#include "free-space-cache.h"
22#include "transaction.h"
23
24struct btrfs_free_space {
25 struct rb_node bytes_index;
26 struct rb_node offset_index;
27 u64 offset;
28 u64 bytes;
29};
21 30
22static int tree_insert_offset(struct rb_root *root, u64 offset, 31static int tree_insert_offset(struct rb_root *root, u64 offset,
23 struct rb_node *node) 32 struct rb_node *node)
@@ -371,12 +380,58 @@ u64 btrfs_block_group_free_space(struct btrfs_block_group_cache *block_group)
371 return ret; 380 return ret;
372} 381}
373 382
383/*
384 * for a given cluster, put all of its extents back into the free
385 * space cache. If the block group passed doesn't match the block group
386 * pointed to by the cluster, someone else raced in and freed the
387 * cluster already. In that case, we just return without changing anything
388 */
389static int
390__btrfs_return_cluster_to_free_space(
391 struct btrfs_block_group_cache *block_group,
392 struct btrfs_free_cluster *cluster)
393{
394 struct btrfs_free_space *entry;
395 struct rb_node *node;
396
397 spin_lock(&cluster->lock);
398 if (cluster->block_group != block_group)
399 goto out;
400
401 cluster->window_start = 0;
402 node = rb_first(&cluster->root);
403 while(node) {
404 entry = rb_entry(node, struct btrfs_free_space, offset_index);
405 node = rb_next(&entry->offset_index);
406 rb_erase(&entry->offset_index, &cluster->root);
407 link_free_space(block_group, entry);
408 }
409 list_del_init(&cluster->block_group_list);
410
411 btrfs_put_block_group(cluster->block_group);
412 cluster->block_group = NULL;
413 cluster->root.rb_node = NULL;
414out:
415 spin_unlock(&cluster->lock);
416 return 0;
417}
418
374void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group) 419void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
375{ 420{
376 struct btrfs_free_space *info; 421 struct btrfs_free_space *info;
377 struct rb_node *node; 422 struct rb_node *node;
423 struct btrfs_free_cluster *cluster;
424 struct btrfs_free_cluster *safe;
378 425
379 spin_lock(&block_group->tree_lock); 426 spin_lock(&block_group->tree_lock);
427
428 list_for_each_entry_safe(cluster, safe, &block_group->cluster_list,
429 block_group_list) {
430
431 WARN_ON(cluster->block_group != block_group);
432 __btrfs_return_cluster_to_free_space(block_group, cluster);
433 }
434
380 while ((node = rb_last(&block_group->free_space_bytes)) != NULL) { 435 while ((node = rb_last(&block_group->free_space_bytes)) != NULL) {
381 info = rb_entry(node, struct btrfs_free_space, bytes_index); 436 info = rb_entry(node, struct btrfs_free_space, bytes_index);
382 unlink_free_space(block_group, info); 437 unlink_free_space(block_group, info);
@@ -417,3 +472,245 @@ u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
417 472
418 return ret; 473 return ret;
419} 474}
475
476/*
477 * given a cluster, put all of its extents back into the free space
478 * cache. If a block group is passed, this function will only free
479 * a cluster that belongs to the passed block group.
480 *
481 * Otherwise, it'll get a reference on the block group pointed to by the
482 * cluster and remove the cluster from it.
483 */
484int btrfs_return_cluster_to_free_space(
485 struct btrfs_block_group_cache *block_group,
486 struct btrfs_free_cluster *cluster)
487{
488 int ret;
489
490 /* first, get a safe pointer to the block group */
491 spin_lock(&cluster->lock);
492 if (!block_group) {
493 block_group = cluster->block_group;
494 if (!block_group) {
495 spin_unlock(&cluster->lock);
496 return 0;
497 }
498 } else if (cluster->block_group != block_group) {
499 /* someone else has already freed it don't redo their work */
500 spin_unlock(&cluster->lock);
501 return 0;
502 }
503 atomic_inc(&block_group->count);
504 spin_unlock(&cluster->lock);
505
506 /* now return any extents the cluster had on it */
507 spin_lock(&block_group->tree_lock);
508 ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
509 spin_unlock(&block_group->tree_lock);
510
511 /* finally drop our ref */
512 btrfs_put_block_group(block_group);
513 return ret;
514}
515
516/*
517 * given a cluster, try to allocate 'bytes' from it, returns 0
518 * if it couldn't find anything suitably large, or a logical disk offset
519 * if things worked out
520 */
521u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
522 struct btrfs_free_cluster *cluster, u64 bytes,
523 u64 min_start)
524{
525 struct btrfs_free_space *entry = NULL;
526 struct rb_node *node;
527 u64 ret = 0;
528
529 spin_lock(&cluster->lock);
530 if (bytes > cluster->max_size)
531 goto out;
532
533 if (cluster->block_group != block_group)
534 goto out;
535
536 node = rb_first(&cluster->root);
537 if (!node)
538 goto out;
539
540 entry = rb_entry(node, struct btrfs_free_space, offset_index);
541
542 while(1) {
543 if (entry->bytes < bytes || entry->offset < min_start) {
544 struct rb_node *node;
545
546 node = rb_next(&entry->offset_index);
547 if (!node)
548 break;
549 entry = rb_entry(node, struct btrfs_free_space,
550 offset_index);
551 continue;
552 }
553 ret = entry->offset;
554
555 entry->offset += bytes;
556 entry->bytes -= bytes;
557
558 if (entry->bytes == 0) {
559 rb_erase(&entry->offset_index, &cluster->root);
560 kfree(entry);
561 }
562 break;
563 }
564out:
565 spin_unlock(&cluster->lock);
566 return ret;
567}
568
569/*
570 * here we try to find a cluster of blocks in a block group. The goal
571 * is to find at least bytes free and up to empty_size + bytes free.
572 * We might not find them all in one contiguous area.
573 *
574 * returns zero and sets up cluster if things worked out, otherwise
575 * it returns -enospc
576 */
577int btrfs_find_space_cluster(struct btrfs_trans_handle *trans,
578 struct btrfs_block_group_cache *block_group,
579 struct btrfs_free_cluster *cluster,
580 u64 offset, u64 bytes, u64 empty_size)
581{
582 struct btrfs_free_space *entry = NULL;
583 struct rb_node *node;
584 struct btrfs_free_space *next;
585 struct btrfs_free_space *last;
586 u64 min_bytes;
587 u64 window_start;
588 u64 window_free;
589 u64 max_extent = 0;
590 int total_retries = 0;
591 int ret;
592
593 /* for metadata, allow allocates with more holes */
594 if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
595 /*
596 * we want to do larger allocations when we are
597 * flushing out the delayed refs, it helps prevent
598 * making more work as we go along.
599 */
600 if (trans->transaction->delayed_refs.flushing)
601 min_bytes = max(bytes, (bytes + empty_size) >> 1);
602 else
603 min_bytes = max(bytes, (bytes + empty_size) >> 4);
604 } else
605 min_bytes = max(bytes, (bytes + empty_size) >> 2);
606
607 spin_lock(&block_group->tree_lock);
608 spin_lock(&cluster->lock);
609
610 /* someone already found a cluster, hooray */
611 if (cluster->block_group) {
612 ret = 0;
613 goto out;
614 }
615again:
616 min_bytes = min(min_bytes, bytes + empty_size);
617 entry = tree_search_bytes(&block_group->free_space_bytes,
618 offset, min_bytes);
619 if (!entry) {
620 ret = -ENOSPC;
621 goto out;
622 }
623 window_start = entry->offset;
624 window_free = entry->bytes;
625 last = entry;
626 max_extent = entry->bytes;
627
628 while(1) {
629 /* out window is just right, lets fill it */
630 if (window_free >= bytes + empty_size)
631 break;
632
633 node = rb_next(&last->offset_index);
634 if (!node) {
635 ret = -ENOSPC;
636 goto out;
637 }
638 next = rb_entry(node, struct btrfs_free_space, offset_index);
639
640 /*
641 * we haven't filled the empty size and the window is
642 * very large. reset and try again
643 */
644 if (next->offset - window_start > (bytes + empty_size) * 2) {
645 entry = next;
646 window_start = entry->offset;
647 window_free = entry->bytes;
648 last = entry;
649 max_extent = 0;
650 total_retries++;
651 if (total_retries % 256 == 0) {
652 if (min_bytes >= (bytes + empty_size)) {
653 ret = -ENOSPC;
654 goto out;
655 }
656 /*
657 * grow our allocation a bit, we're not having
658 * much luck
659 */
660 min_bytes *= 2;
661 goto again;
662 }
663 } else {
664 last = next;
665 window_free += next->bytes;
666 if (entry->bytes > max_extent)
667 max_extent = entry->bytes;
668 }
669 }
670
671 cluster->window_start = entry->offset;
672
673 /*
674 * now we've found our entries, pull them out of the free space
675 * cache and put them into the cluster rbtree
676 *
677 * The cluster includes an rbtree, but only uses the offset index
678 * of each free space cache entry.
679 */
680 while(1) {
681 node = rb_next(&entry->offset_index);
682 unlink_free_space(block_group, entry);
683 ret = tree_insert_offset(&cluster->root, entry->offset,
684 &entry->offset_index);
685 BUG_ON(ret);
686
687 if (!node || entry == last)
688 break;
689
690 entry = rb_entry(node, struct btrfs_free_space, offset_index);
691 }
692 ret = 0;
693 cluster->max_size = max_extent;
694 atomic_inc(&block_group->count);
695 list_add_tail(&cluster->block_group_list, &block_group->cluster_list);
696 cluster->block_group = block_group;
697out:
698 spin_unlock(&cluster->lock);
699 spin_unlock(&block_group->tree_lock);
700
701 return ret;
702}
703
704/*
705 * simple code to zero out a cluster
706 */
707void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
708{
709 spin_lock_init(&cluster->lock);
710 spin_lock_init(&cluster->refill_lock);
711 cluster->root.rb_node = NULL;
712 cluster->max_size = 0;
713 INIT_LIST_HEAD(&cluster->block_group_list);
714 cluster->block_group = NULL;
715}
716