aboutsummaryrefslogtreecommitdiffstats
path: root/fs/btrfs/ctree.c
diff options
context:
space:
mode:
Diffstat (limited to 'fs/btrfs/ctree.c')
-rw-r--r--fs/btrfs/ctree.c3892
1 files changed, 3892 insertions, 0 deletions
diff --git a/fs/btrfs/ctree.c b/fs/btrfs/ctree.c
new file mode 100644
index 000000000000..71ef0a2e2daa
--- /dev/null
+++ b/fs/btrfs/ctree.c
@@ -0,0 +1,3892 @@
1/*
2 * Copyright (C) 2007,2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/sched.h>
20#include "ctree.h"
21#include "disk-io.h"
22#include "transaction.h"
23#include "print-tree.h"
24#include "locking.h"
25
26static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
27 *root, struct btrfs_path *path, int level);
28static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
29 *root, struct btrfs_key *ins_key,
30 struct btrfs_path *path, int data_size, int extend);
31static int push_node_left(struct btrfs_trans_handle *trans,
32 struct btrfs_root *root, struct extent_buffer *dst,
33 struct extent_buffer *src, int empty);
34static int balance_node_right(struct btrfs_trans_handle *trans,
35 struct btrfs_root *root,
36 struct extent_buffer *dst_buf,
37 struct extent_buffer *src_buf);
38static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
39 struct btrfs_path *path, int level, int slot);
40
41inline void btrfs_init_path(struct btrfs_path *p)
42{
43 memset(p, 0, sizeof(*p));
44}
45
46struct btrfs_path *btrfs_alloc_path(void)
47{
48 struct btrfs_path *path;
49 path = kmem_cache_alloc(btrfs_path_cachep, GFP_NOFS);
50 if (path) {
51 btrfs_init_path(path);
52 path->reada = 1;
53 }
54 return path;
55}
56
57/* this also releases the path */
58void btrfs_free_path(struct btrfs_path *p)
59{
60 btrfs_release_path(NULL, p);
61 kmem_cache_free(btrfs_path_cachep, p);
62}
63
64/*
65 * path release drops references on the extent buffers in the path
66 * and it drops any locks held by this path
67 *
68 * It is safe to call this on paths that no locks or extent buffers held.
69 */
70void noinline btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p)
71{
72 int i;
73
74 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
75 p->slots[i] = 0;
76 if (!p->nodes[i])
77 continue;
78 if (p->locks[i]) {
79 btrfs_tree_unlock(p->nodes[i]);
80 p->locks[i] = 0;
81 }
82 free_extent_buffer(p->nodes[i]);
83 p->nodes[i] = NULL;
84 }
85}
86
87/*
88 * safely gets a reference on the root node of a tree. A lock
89 * is not taken, so a concurrent writer may put a different node
90 * at the root of the tree. See btrfs_lock_root_node for the
91 * looping required.
92 *
93 * The extent buffer returned by this has a reference taken, so
94 * it won't disappear. It may stop being the root of the tree
95 * at any time because there are no locks held.
96 */
97struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
98{
99 struct extent_buffer *eb;
100 spin_lock(&root->node_lock);
101 eb = root->node;
102 extent_buffer_get(eb);
103 spin_unlock(&root->node_lock);
104 return eb;
105}
106
107/* loop around taking references on and locking the root node of the
108 * tree until you end up with a lock on the root. A locked buffer
109 * is returned, with a reference held.
110 */
111struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
112{
113 struct extent_buffer *eb;
114
115 while(1) {
116 eb = btrfs_root_node(root);
117 btrfs_tree_lock(eb);
118
119 spin_lock(&root->node_lock);
120 if (eb == root->node) {
121 spin_unlock(&root->node_lock);
122 break;
123 }
124 spin_unlock(&root->node_lock);
125
126 btrfs_tree_unlock(eb);
127 free_extent_buffer(eb);
128 }
129 return eb;
130}
131
132/* cowonly root (everything not a reference counted cow subvolume), just get
133 * put onto a simple dirty list. transaction.c walks this to make sure they
134 * get properly updated on disk.
135 */
136static void add_root_to_dirty_list(struct btrfs_root *root)
137{
138 if (root->track_dirty && list_empty(&root->dirty_list)) {
139 list_add(&root->dirty_list,
140 &root->fs_info->dirty_cowonly_roots);
141 }
142}
143
144/*
145 * used by snapshot creation to make a copy of a root for a tree with
146 * a given objectid. The buffer with the new root node is returned in
147 * cow_ret, and this func returns zero on success or a negative error code.
148 */
149int btrfs_copy_root(struct btrfs_trans_handle *trans,
150 struct btrfs_root *root,
151 struct extent_buffer *buf,
152 struct extent_buffer **cow_ret, u64 new_root_objectid)
153{
154 struct extent_buffer *cow;
155 u32 nritems;
156 int ret = 0;
157 int level;
158 struct btrfs_root *new_root;
159
160 new_root = kmalloc(sizeof(*new_root), GFP_NOFS);
161 if (!new_root)
162 return -ENOMEM;
163
164 memcpy(new_root, root, sizeof(*new_root));
165 new_root->root_key.objectid = new_root_objectid;
166
167 WARN_ON(root->ref_cows && trans->transid !=
168 root->fs_info->running_transaction->transid);
169 WARN_ON(root->ref_cows && trans->transid != root->last_trans);
170
171 level = btrfs_header_level(buf);
172 nritems = btrfs_header_nritems(buf);
173
174 cow = btrfs_alloc_free_block(trans, new_root, buf->len, 0,
175 new_root_objectid, trans->transid,
176 level, buf->start, 0);
177 if (IS_ERR(cow)) {
178 kfree(new_root);
179 return PTR_ERR(cow);
180 }
181
182 copy_extent_buffer(cow, buf, 0, 0, cow->len);
183 btrfs_set_header_bytenr(cow, cow->start);
184 btrfs_set_header_generation(cow, trans->transid);
185 btrfs_set_header_owner(cow, new_root_objectid);
186 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN);
187
188 write_extent_buffer(cow, root->fs_info->fsid,
189 (unsigned long)btrfs_header_fsid(cow),
190 BTRFS_FSID_SIZE);
191
192 WARN_ON(btrfs_header_generation(buf) > trans->transid);
193 ret = btrfs_inc_ref(trans, new_root, buf, cow, NULL);
194 kfree(new_root);
195
196 if (ret)
197 return ret;
198
199 btrfs_mark_buffer_dirty(cow);
200 *cow_ret = cow;
201 return 0;
202}
203
204/*
205 * does the dirty work in cow of a single block. The parent block
206 * (if supplied) is updated to point to the new cow copy. The new
207 * buffer is marked dirty and returned locked. If you modify the block
208 * it needs to be marked dirty again.
209 *
210 * search_start -- an allocation hint for the new block
211 *
212 * empty_size -- a hint that you plan on doing more cow. This is the size in bytes
213 * the allocator should try to find free next to the block it returns. This is
214 * just a hint and may be ignored by the allocator.
215 *
216 * prealloc_dest -- if you have already reserved a destination for the cow,
217 * this uses that block instead of allocating a new one. btrfs_alloc_reserved_extent
218 * is used to finish the allocation.
219 */
220int noinline __btrfs_cow_block(struct btrfs_trans_handle *trans,
221 struct btrfs_root *root,
222 struct extent_buffer *buf,
223 struct extent_buffer *parent, int parent_slot,
224 struct extent_buffer **cow_ret,
225 u64 search_start, u64 empty_size,
226 u64 prealloc_dest)
227{
228 u64 parent_start;
229 struct extent_buffer *cow;
230 u32 nritems;
231 int ret = 0;
232 int level;
233 int unlock_orig = 0;
234
235 if (*cow_ret == buf)
236 unlock_orig = 1;
237
238 WARN_ON(!btrfs_tree_locked(buf));
239
240 if (parent)
241 parent_start = parent->start;
242 else
243 parent_start = 0;
244
245 WARN_ON(root->ref_cows && trans->transid !=
246 root->fs_info->running_transaction->transid);
247 WARN_ON(root->ref_cows && trans->transid != root->last_trans);
248
249 level = btrfs_header_level(buf);
250 nritems = btrfs_header_nritems(buf);
251
252 if (prealloc_dest) {
253 struct btrfs_key ins;
254
255 ins.objectid = prealloc_dest;
256 ins.offset = buf->len;
257 ins.type = BTRFS_EXTENT_ITEM_KEY;
258
259 ret = btrfs_alloc_reserved_extent(trans, root, parent_start,
260 root->root_key.objectid,
261 trans->transid, level, &ins);
262 BUG_ON(ret);
263 cow = btrfs_init_new_buffer(trans, root, prealloc_dest,
264 buf->len);
265 } else {
266 cow = btrfs_alloc_free_block(trans, root, buf->len,
267 parent_start,
268 root->root_key.objectid,
269 trans->transid, level,
270 search_start, empty_size);
271 }
272 if (IS_ERR(cow))
273 return PTR_ERR(cow);
274
275 copy_extent_buffer(cow, buf, 0, 0, cow->len);
276 btrfs_set_header_bytenr(cow, cow->start);
277 btrfs_set_header_generation(cow, trans->transid);
278 btrfs_set_header_owner(cow, root->root_key.objectid);
279 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN);
280
281 write_extent_buffer(cow, root->fs_info->fsid,
282 (unsigned long)btrfs_header_fsid(cow),
283 BTRFS_FSID_SIZE);
284
285 WARN_ON(btrfs_header_generation(buf) > trans->transid);
286 if (btrfs_header_generation(buf) != trans->transid) {
287 u32 nr_extents;
288 ret = btrfs_inc_ref(trans, root, buf, cow, &nr_extents);
289 if (ret)
290 return ret;
291
292 ret = btrfs_cache_ref(trans, root, buf, nr_extents);
293 WARN_ON(ret);
294 } else if (btrfs_header_owner(buf) == BTRFS_TREE_RELOC_OBJECTID) {
295 /*
296 * There are only two places that can drop reference to
297 * tree blocks owned by living reloc trees, one is here,
298 * the other place is btrfs_drop_subtree. In both places,
299 * we check reference count while tree block is locked.
300 * Furthermore, if reference count is one, it won't get
301 * increased by someone else.
302 */
303 u32 refs;
304 ret = btrfs_lookup_extent_ref(trans, root, buf->start,
305 buf->len, &refs);
306 BUG_ON(ret);
307 if (refs == 1) {
308 ret = btrfs_update_ref(trans, root, buf, cow,
309 0, nritems);
310 clean_tree_block(trans, root, buf);
311 } else {
312 ret = btrfs_inc_ref(trans, root, buf, cow, NULL);
313 }
314 BUG_ON(ret);
315 } else {
316 ret = btrfs_update_ref(trans, root, buf, cow, 0, nritems);
317 if (ret)
318 return ret;
319 clean_tree_block(trans, root, buf);
320 }
321
322 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
323 ret = btrfs_reloc_tree_cache_ref(trans, root, cow, buf->start);
324 WARN_ON(ret);
325 }
326
327 if (buf == root->node) {
328 WARN_ON(parent && parent != buf);
329
330 spin_lock(&root->node_lock);
331 root->node = cow;
332 extent_buffer_get(cow);
333 spin_unlock(&root->node_lock);
334
335 if (buf != root->commit_root) {
336 btrfs_free_extent(trans, root, buf->start,
337 buf->len, buf->start,
338 root->root_key.objectid,
339 btrfs_header_generation(buf),
340 level, 1);
341 }
342 free_extent_buffer(buf);
343 add_root_to_dirty_list(root);
344 } else {
345 btrfs_set_node_blockptr(parent, parent_slot,
346 cow->start);
347 WARN_ON(trans->transid == 0);
348 btrfs_set_node_ptr_generation(parent, parent_slot,
349 trans->transid);
350 btrfs_mark_buffer_dirty(parent);
351 WARN_ON(btrfs_header_generation(parent) != trans->transid);
352 btrfs_free_extent(trans, root, buf->start, buf->len,
353 parent_start, btrfs_header_owner(parent),
354 btrfs_header_generation(parent), level, 1);
355 }
356 if (unlock_orig)
357 btrfs_tree_unlock(buf);
358 free_extent_buffer(buf);
359 btrfs_mark_buffer_dirty(cow);
360 *cow_ret = cow;
361 return 0;
362}
363
364/*
365 * cows a single block, see __btrfs_cow_block for the real work.
366 * This version of it has extra checks so that a block isn't cow'd more than
367 * once per transaction, as long as it hasn't been written yet
368 */
369int noinline btrfs_cow_block(struct btrfs_trans_handle *trans,
370 struct btrfs_root *root, struct extent_buffer *buf,
371 struct extent_buffer *parent, int parent_slot,
372 struct extent_buffer **cow_ret, u64 prealloc_dest)
373{
374 u64 search_start;
375 int ret;
376
377 if (trans->transaction != root->fs_info->running_transaction) {
378 printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
379 root->fs_info->running_transaction->transid);
380 WARN_ON(1);
381 }
382 if (trans->transid != root->fs_info->generation) {
383 printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
384 root->fs_info->generation);
385 WARN_ON(1);
386 }
387
388 spin_lock(&root->fs_info->hash_lock);
389 if (btrfs_header_generation(buf) == trans->transid &&
390 btrfs_header_owner(buf) == root->root_key.objectid &&
391 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
392 *cow_ret = buf;
393 spin_unlock(&root->fs_info->hash_lock);
394 WARN_ON(prealloc_dest);
395 return 0;
396 }
397 spin_unlock(&root->fs_info->hash_lock);
398 search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
399 ret = __btrfs_cow_block(trans, root, buf, parent,
400 parent_slot, cow_ret, search_start, 0,
401 prealloc_dest);
402 return ret;
403}
404
405/*
406 * helper function for defrag to decide if two blocks pointed to by a
407 * node are actually close by
408 */
409static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
410{
411 if (blocknr < other && other - (blocknr + blocksize) < 32768)
412 return 1;
413 if (blocknr > other && blocknr - (other + blocksize) < 32768)
414 return 1;
415 return 0;
416}
417
418/*
419 * compare two keys in a memcmp fashion
420 */
421static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
422{
423 struct btrfs_key k1;
424
425 btrfs_disk_key_to_cpu(&k1, disk);
426
427 if (k1.objectid > k2->objectid)
428 return 1;
429 if (k1.objectid < k2->objectid)
430 return -1;
431 if (k1.type > k2->type)
432 return 1;
433 if (k1.type < k2->type)
434 return -1;
435 if (k1.offset > k2->offset)
436 return 1;
437 if (k1.offset < k2->offset)
438 return -1;
439 return 0;
440}
441
442/*
443 * same as comp_keys only with two btrfs_key's
444 */
445static int comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
446{
447 if (k1->objectid > k2->objectid)
448 return 1;
449 if (k1->objectid < k2->objectid)
450 return -1;
451 if (k1->type > k2->type)
452 return 1;
453 if (k1->type < k2->type)
454 return -1;
455 if (k1->offset > k2->offset)
456 return 1;
457 if (k1->offset < k2->offset)
458 return -1;
459 return 0;
460}
461
462/*
463 * this is used by the defrag code to go through all the
464 * leaves pointed to by a node and reallocate them so that
465 * disk order is close to key order
466 */
467int btrfs_realloc_node(struct btrfs_trans_handle *trans,
468 struct btrfs_root *root, struct extent_buffer *parent,
469 int start_slot, int cache_only, u64 *last_ret,
470 struct btrfs_key *progress)
471{
472 struct extent_buffer *cur;
473 u64 blocknr;
474 u64 gen;
475 u64 search_start = *last_ret;
476 u64 last_block = 0;
477 u64 other;
478 u32 parent_nritems;
479 int end_slot;
480 int i;
481 int err = 0;
482 int parent_level;
483 int uptodate;
484 u32 blocksize;
485 int progress_passed = 0;
486 struct btrfs_disk_key disk_key;
487
488 parent_level = btrfs_header_level(parent);
489 if (cache_only && parent_level != 1)
490 return 0;
491
492 if (trans->transaction != root->fs_info->running_transaction) {
493 printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
494 root->fs_info->running_transaction->transid);
495 WARN_ON(1);
496 }
497 if (trans->transid != root->fs_info->generation) {
498 printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
499 root->fs_info->generation);
500 WARN_ON(1);
501 }
502
503 parent_nritems = btrfs_header_nritems(parent);
504 blocksize = btrfs_level_size(root, parent_level - 1);
505 end_slot = parent_nritems;
506
507 if (parent_nritems == 1)
508 return 0;
509
510 for (i = start_slot; i < end_slot; i++) {
511 int close = 1;
512
513 if (!parent->map_token) {
514 map_extent_buffer(parent,
515 btrfs_node_key_ptr_offset(i),
516 sizeof(struct btrfs_key_ptr),
517 &parent->map_token, &parent->kaddr,
518 &parent->map_start, &parent->map_len,
519 KM_USER1);
520 }
521 btrfs_node_key(parent, &disk_key, i);
522 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
523 continue;
524
525 progress_passed = 1;
526 blocknr = btrfs_node_blockptr(parent, i);
527 gen = btrfs_node_ptr_generation(parent, i);
528 if (last_block == 0)
529 last_block = blocknr;
530
531 if (i > 0) {
532 other = btrfs_node_blockptr(parent, i - 1);
533 close = close_blocks(blocknr, other, blocksize);
534 }
535 if (!close && i < end_slot - 2) {
536 other = btrfs_node_blockptr(parent, i + 1);
537 close = close_blocks(blocknr, other, blocksize);
538 }
539 if (close) {
540 last_block = blocknr;
541 continue;
542 }
543 if (parent->map_token) {
544 unmap_extent_buffer(parent, parent->map_token,
545 KM_USER1);
546 parent->map_token = NULL;
547 }
548
549 cur = btrfs_find_tree_block(root, blocknr, blocksize);
550 if (cur)
551 uptodate = btrfs_buffer_uptodate(cur, gen);
552 else
553 uptodate = 0;
554 if (!cur || !uptodate) {
555 if (cache_only) {
556 free_extent_buffer(cur);
557 continue;
558 }
559 if (!cur) {
560 cur = read_tree_block(root, blocknr,
561 blocksize, gen);
562 } else if (!uptodate) {
563 btrfs_read_buffer(cur, gen);
564 }
565 }
566 if (search_start == 0)
567 search_start = last_block;
568
569 btrfs_tree_lock(cur);
570 err = __btrfs_cow_block(trans, root, cur, parent, i,
571 &cur, search_start,
572 min(16 * blocksize,
573 (end_slot - i) * blocksize), 0);
574 if (err) {
575 btrfs_tree_unlock(cur);
576 free_extent_buffer(cur);
577 break;
578 }
579 search_start = cur->start;
580 last_block = cur->start;
581 *last_ret = search_start;
582 btrfs_tree_unlock(cur);
583 free_extent_buffer(cur);
584 }
585 if (parent->map_token) {
586 unmap_extent_buffer(parent, parent->map_token,
587 KM_USER1);
588 parent->map_token = NULL;
589 }
590 return err;
591}
592
593/*
594 * The leaf data grows from end-to-front in the node.
595 * this returns the address of the start of the last item,
596 * which is the stop of the leaf data stack
597 */
598static inline unsigned int leaf_data_end(struct btrfs_root *root,
599 struct extent_buffer *leaf)
600{
601 u32 nr = btrfs_header_nritems(leaf);
602 if (nr == 0)
603 return BTRFS_LEAF_DATA_SIZE(root);
604 return btrfs_item_offset_nr(leaf, nr - 1);
605}
606
607/*
608 * extra debugging checks to make sure all the items in a key are
609 * well formed and in the proper order
610 */
611static int check_node(struct btrfs_root *root, struct btrfs_path *path,
612 int level)
613{
614 struct extent_buffer *parent = NULL;
615 struct extent_buffer *node = path->nodes[level];
616 struct btrfs_disk_key parent_key;
617 struct btrfs_disk_key node_key;
618 int parent_slot;
619 int slot;
620 struct btrfs_key cpukey;
621 u32 nritems = btrfs_header_nritems(node);
622
623 if (path->nodes[level + 1])
624 parent = path->nodes[level + 1];
625
626 slot = path->slots[level];
627 BUG_ON(nritems == 0);
628 if (parent) {
629 parent_slot = path->slots[level + 1];
630 btrfs_node_key(parent, &parent_key, parent_slot);
631 btrfs_node_key(node, &node_key, 0);
632 BUG_ON(memcmp(&parent_key, &node_key,
633 sizeof(struct btrfs_disk_key)));
634 BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
635 btrfs_header_bytenr(node));
636 }
637 BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root));
638 if (slot != 0) {
639 btrfs_node_key_to_cpu(node, &cpukey, slot - 1);
640 btrfs_node_key(node, &node_key, slot);
641 BUG_ON(comp_keys(&node_key, &cpukey) <= 0);
642 }
643 if (slot < nritems - 1) {
644 btrfs_node_key_to_cpu(node, &cpukey, slot + 1);
645 btrfs_node_key(node, &node_key, slot);
646 BUG_ON(comp_keys(&node_key, &cpukey) >= 0);
647 }
648 return 0;
649}
650
651/*
652 * extra checking to make sure all the items in a leaf are
653 * well formed and in the proper order
654 */
655static int check_leaf(struct btrfs_root *root, struct btrfs_path *path,
656 int level)
657{
658 struct extent_buffer *leaf = path->nodes[level];
659 struct extent_buffer *parent = NULL;
660 int parent_slot;
661 struct btrfs_key cpukey;
662 struct btrfs_disk_key parent_key;
663 struct btrfs_disk_key leaf_key;
664 int slot = path->slots[0];
665
666 u32 nritems = btrfs_header_nritems(leaf);
667
668 if (path->nodes[level + 1])
669 parent = path->nodes[level + 1];
670
671 if (nritems == 0)
672 return 0;
673
674 if (parent) {
675 parent_slot = path->slots[level + 1];
676 btrfs_node_key(parent, &parent_key, parent_slot);
677 btrfs_item_key(leaf, &leaf_key, 0);
678
679 BUG_ON(memcmp(&parent_key, &leaf_key,
680 sizeof(struct btrfs_disk_key)));
681 BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
682 btrfs_header_bytenr(leaf));
683 }
684#if 0
685 for (i = 0; nritems > 1 && i < nritems - 2; i++) {
686 btrfs_item_key_to_cpu(leaf, &cpukey, i + 1);
687 btrfs_item_key(leaf, &leaf_key, i);
688 if (comp_keys(&leaf_key, &cpukey) >= 0) {
689 btrfs_print_leaf(root, leaf);
690 printk("slot %d offset bad key\n", i);
691 BUG_ON(1);
692 }
693 if (btrfs_item_offset_nr(leaf, i) !=
694 btrfs_item_end_nr(leaf, i + 1)) {
695 btrfs_print_leaf(root, leaf);
696 printk("slot %d offset bad\n", i);
697 BUG_ON(1);
698 }
699 if (i == 0) {
700 if (btrfs_item_offset_nr(leaf, i) +
701 btrfs_item_size_nr(leaf, i) !=
702 BTRFS_LEAF_DATA_SIZE(root)) {
703 btrfs_print_leaf(root, leaf);
704 printk("slot %d first offset bad\n", i);
705 BUG_ON(1);
706 }
707 }
708 }
709 if (nritems > 0) {
710 if (btrfs_item_size_nr(leaf, nritems - 1) > 4096) {
711 btrfs_print_leaf(root, leaf);
712 printk("slot %d bad size \n", nritems - 1);
713 BUG_ON(1);
714 }
715 }
716#endif
717 if (slot != 0 && slot < nritems - 1) {
718 btrfs_item_key(leaf, &leaf_key, slot);
719 btrfs_item_key_to_cpu(leaf, &cpukey, slot - 1);
720 if (comp_keys(&leaf_key, &cpukey) <= 0) {
721 btrfs_print_leaf(root, leaf);
722 printk("slot %d offset bad key\n", slot);
723 BUG_ON(1);
724 }
725 if (btrfs_item_offset_nr(leaf, slot - 1) !=
726 btrfs_item_end_nr(leaf, slot)) {
727 btrfs_print_leaf(root, leaf);
728 printk("slot %d offset bad\n", slot);
729 BUG_ON(1);
730 }
731 }
732 if (slot < nritems - 1) {
733 btrfs_item_key(leaf, &leaf_key, slot);
734 btrfs_item_key_to_cpu(leaf, &cpukey, slot + 1);
735 BUG_ON(comp_keys(&leaf_key, &cpukey) >= 0);
736 if (btrfs_item_offset_nr(leaf, slot) !=
737 btrfs_item_end_nr(leaf, slot + 1)) {
738 btrfs_print_leaf(root, leaf);
739 printk("slot %d offset bad\n", slot);
740 BUG_ON(1);
741 }
742 }
743 BUG_ON(btrfs_item_offset_nr(leaf, 0) +
744 btrfs_item_size_nr(leaf, 0) != BTRFS_LEAF_DATA_SIZE(root));
745 return 0;
746}
747
748static int noinline check_block(struct btrfs_root *root,
749 struct btrfs_path *path, int level)
750{
751 u64 found_start;
752 return 0;
753 if (btrfs_header_level(path->nodes[level]) != level)
754 printk("warning: bad level %Lu wanted %d found %d\n",
755 path->nodes[level]->start, level,
756 btrfs_header_level(path->nodes[level]));
757 found_start = btrfs_header_bytenr(path->nodes[level]);
758 if (found_start != path->nodes[level]->start) {
759 printk("warning: bad bytentr %Lu found %Lu\n",
760 path->nodes[level]->start, found_start);
761 }
762#if 0
763 struct extent_buffer *buf = path->nodes[level];
764
765 if (memcmp_extent_buffer(buf, root->fs_info->fsid,
766 (unsigned long)btrfs_header_fsid(buf),
767 BTRFS_FSID_SIZE)) {
768 printk("warning bad block %Lu\n", buf->start);
769 return 1;
770 }
771#endif
772 if (level == 0)
773 return check_leaf(root, path, level);
774 return check_node(root, path, level);
775}
776
777/*
778 * search for key in the extent_buffer. The items start at offset p,
779 * and they are item_size apart. There are 'max' items in p.
780 *
781 * the slot in the array is returned via slot, and it points to
782 * the place where you would insert key if it is not found in
783 * the array.
784 *
785 * slot may point to max if the key is bigger than all of the keys
786 */
787static noinline int generic_bin_search(struct extent_buffer *eb,
788 unsigned long p,
789 int item_size, struct btrfs_key *key,
790 int max, int *slot)
791{
792 int low = 0;
793 int high = max;
794 int mid;
795 int ret;
796 struct btrfs_disk_key *tmp = NULL;
797 struct btrfs_disk_key unaligned;
798 unsigned long offset;
799 char *map_token = NULL;
800 char *kaddr = NULL;
801 unsigned long map_start = 0;
802 unsigned long map_len = 0;
803 int err;
804
805 while(low < high) {
806 mid = (low + high) / 2;
807 offset = p + mid * item_size;
808
809 if (!map_token || offset < map_start ||
810 (offset + sizeof(struct btrfs_disk_key)) >
811 map_start + map_len) {
812 if (map_token) {
813 unmap_extent_buffer(eb, map_token, KM_USER0);
814 map_token = NULL;
815 }
816 err = map_extent_buffer(eb, offset,
817 sizeof(struct btrfs_disk_key),
818 &map_token, &kaddr,
819 &map_start, &map_len, KM_USER0);
820
821 if (!err) {
822 tmp = (struct btrfs_disk_key *)(kaddr + offset -
823 map_start);
824 } else {
825 read_extent_buffer(eb, &unaligned,
826 offset, sizeof(unaligned));
827 tmp = &unaligned;
828 }
829
830 } else {
831 tmp = (struct btrfs_disk_key *)(kaddr + offset -
832 map_start);
833 }
834 ret = comp_keys(tmp, key);
835
836 if (ret < 0)
837 low = mid + 1;
838 else if (ret > 0)
839 high = mid;
840 else {
841 *slot = mid;
842 if (map_token)
843 unmap_extent_buffer(eb, map_token, KM_USER0);
844 return 0;
845 }
846 }
847 *slot = low;
848 if (map_token)
849 unmap_extent_buffer(eb, map_token, KM_USER0);
850 return 1;
851}
852
853/*
854 * simple bin_search frontend that does the right thing for
855 * leaves vs nodes
856 */
857static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
858 int level, int *slot)
859{
860 if (level == 0) {
861 return generic_bin_search(eb,
862 offsetof(struct btrfs_leaf, items),
863 sizeof(struct btrfs_item),
864 key, btrfs_header_nritems(eb),
865 slot);
866 } else {
867 return generic_bin_search(eb,
868 offsetof(struct btrfs_node, ptrs),
869 sizeof(struct btrfs_key_ptr),
870 key, btrfs_header_nritems(eb),
871 slot);
872 }
873 return -1;
874}
875
876/* given a node and slot number, this reads the blocks it points to. The
877 * extent buffer is returned with a reference taken (but unlocked).
878 * NULL is returned on error.
879 */
880static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
881 struct extent_buffer *parent, int slot)
882{
883 int level = btrfs_header_level(parent);
884 if (slot < 0)
885 return NULL;
886 if (slot >= btrfs_header_nritems(parent))
887 return NULL;
888
889 BUG_ON(level == 0);
890
891 return read_tree_block(root, btrfs_node_blockptr(parent, slot),
892 btrfs_level_size(root, level - 1),
893 btrfs_node_ptr_generation(parent, slot));
894}
895
896/*
897 * node level balancing, used to make sure nodes are in proper order for
898 * item deletion. We balance from the top down, so we have to make sure
899 * that a deletion won't leave an node completely empty later on.
900 */
901static noinline int balance_level(struct btrfs_trans_handle *trans,
902 struct btrfs_root *root,
903 struct btrfs_path *path, int level)
904{
905 struct extent_buffer *right = NULL;
906 struct extent_buffer *mid;
907 struct extent_buffer *left = NULL;
908 struct extent_buffer *parent = NULL;
909 int ret = 0;
910 int wret;
911 int pslot;
912 int orig_slot = path->slots[level];
913 int err_on_enospc = 0;
914 u64 orig_ptr;
915
916 if (level == 0)
917 return 0;
918
919 mid = path->nodes[level];
920 WARN_ON(!path->locks[level]);
921 WARN_ON(btrfs_header_generation(mid) != trans->transid);
922
923 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
924
925 if (level < BTRFS_MAX_LEVEL - 1)
926 parent = path->nodes[level + 1];
927 pslot = path->slots[level + 1];
928
929 /*
930 * deal with the case where there is only one pointer in the root
931 * by promoting the node below to a root
932 */
933 if (!parent) {
934 struct extent_buffer *child;
935
936 if (btrfs_header_nritems(mid) != 1)
937 return 0;
938
939 /* promote the child to a root */
940 child = read_node_slot(root, mid, 0);
941 btrfs_tree_lock(child);
942 BUG_ON(!child);
943 ret = btrfs_cow_block(trans, root, child, mid, 0, &child, 0);
944 BUG_ON(ret);
945
946 spin_lock(&root->node_lock);
947 root->node = child;
948 spin_unlock(&root->node_lock);
949
950 ret = btrfs_update_extent_ref(trans, root, child->start,
951 mid->start, child->start,
952 root->root_key.objectid,
953 trans->transid, level - 1);
954 BUG_ON(ret);
955
956 add_root_to_dirty_list(root);
957 btrfs_tree_unlock(child);
958 path->locks[level] = 0;
959 path->nodes[level] = NULL;
960 clean_tree_block(trans, root, mid);
961 btrfs_tree_unlock(mid);
962 /* once for the path */
963 free_extent_buffer(mid);
964 ret = btrfs_free_extent(trans, root, mid->start, mid->len,
965 mid->start, root->root_key.objectid,
966 btrfs_header_generation(mid),
967 level, 1);
968 /* once for the root ptr */
969 free_extent_buffer(mid);
970 return ret;
971 }
972 if (btrfs_header_nritems(mid) >
973 BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
974 return 0;
975
976 if (btrfs_header_nritems(mid) < 2)
977 err_on_enospc = 1;
978
979 left = read_node_slot(root, parent, pslot - 1);
980 if (left) {
981 btrfs_tree_lock(left);
982 wret = btrfs_cow_block(trans, root, left,
983 parent, pslot - 1, &left, 0);
984 if (wret) {
985 ret = wret;
986 goto enospc;
987 }
988 }
989 right = read_node_slot(root, parent, pslot + 1);
990 if (right) {
991 btrfs_tree_lock(right);
992 wret = btrfs_cow_block(trans, root, right,
993 parent, pslot + 1, &right, 0);
994 if (wret) {
995 ret = wret;
996 goto enospc;
997 }
998 }
999
1000 /* first, try to make some room in the middle buffer */
1001 if (left) {
1002 orig_slot += btrfs_header_nritems(left);
1003 wret = push_node_left(trans, root, left, mid, 1);
1004 if (wret < 0)
1005 ret = wret;
1006 if (btrfs_header_nritems(mid) < 2)
1007 err_on_enospc = 1;
1008 }
1009
1010 /*
1011 * then try to empty the right most buffer into the middle
1012 */
1013 if (right) {
1014 wret = push_node_left(trans, root, mid, right, 1);
1015 if (wret < 0 && wret != -ENOSPC)
1016 ret = wret;
1017 if (btrfs_header_nritems(right) == 0) {
1018 u64 bytenr = right->start;
1019 u64 generation = btrfs_header_generation(parent);
1020 u32 blocksize = right->len;
1021
1022 clean_tree_block(trans, root, right);
1023 btrfs_tree_unlock(right);
1024 free_extent_buffer(right);
1025 right = NULL;
1026 wret = del_ptr(trans, root, path, level + 1, pslot +
1027 1);
1028 if (wret)
1029 ret = wret;
1030 wret = btrfs_free_extent(trans, root, bytenr,
1031 blocksize, parent->start,
1032 btrfs_header_owner(parent),
1033 generation, level, 1);
1034 if (wret)
1035 ret = wret;
1036 } else {
1037 struct btrfs_disk_key right_key;
1038 btrfs_node_key(right, &right_key, 0);
1039 btrfs_set_node_key(parent, &right_key, pslot + 1);
1040 btrfs_mark_buffer_dirty(parent);
1041 }
1042 }
1043 if (btrfs_header_nritems(mid) == 1) {
1044 /*
1045 * we're not allowed to leave a node with one item in the
1046 * tree during a delete. A deletion from lower in the tree
1047 * could try to delete the only pointer in this node.
1048 * So, pull some keys from the left.
1049 * There has to be a left pointer at this point because
1050 * otherwise we would have pulled some pointers from the
1051 * right
1052 */
1053 BUG_ON(!left);
1054 wret = balance_node_right(trans, root, mid, left);
1055 if (wret < 0) {
1056 ret = wret;
1057 goto enospc;
1058 }
1059 if (wret == 1) {
1060 wret = push_node_left(trans, root, left, mid, 1);
1061 if (wret < 0)
1062 ret = wret;
1063 }
1064 BUG_ON(wret == 1);
1065 }
1066 if (btrfs_header_nritems(mid) == 0) {
1067 /* we've managed to empty the middle node, drop it */
1068 u64 root_gen = btrfs_header_generation(parent);
1069 u64 bytenr = mid->start;
1070 u32 blocksize = mid->len;
1071
1072 clean_tree_block(trans, root, mid);
1073 btrfs_tree_unlock(mid);
1074 free_extent_buffer(mid);
1075 mid = NULL;
1076 wret = del_ptr(trans, root, path, level + 1, pslot);
1077 if (wret)
1078 ret = wret;
1079 wret = btrfs_free_extent(trans, root, bytenr, blocksize,
1080 parent->start,
1081 btrfs_header_owner(parent),
1082 root_gen, level, 1);
1083 if (wret)
1084 ret = wret;
1085 } else {
1086 /* update the parent key to reflect our changes */
1087 struct btrfs_disk_key mid_key;
1088 btrfs_node_key(mid, &mid_key, 0);
1089 btrfs_set_node_key(parent, &mid_key, pslot);
1090 btrfs_mark_buffer_dirty(parent);
1091 }
1092
1093 /* update the path */
1094 if (left) {
1095 if (btrfs_header_nritems(left) > orig_slot) {
1096 extent_buffer_get(left);
1097 /* left was locked after cow */
1098 path->nodes[level] = left;
1099 path->slots[level + 1] -= 1;
1100 path->slots[level] = orig_slot;
1101 if (mid) {
1102 btrfs_tree_unlock(mid);
1103 free_extent_buffer(mid);
1104 }
1105 } else {
1106 orig_slot -= btrfs_header_nritems(left);
1107 path->slots[level] = orig_slot;
1108 }
1109 }
1110 /* double check we haven't messed things up */
1111 check_block(root, path, level);
1112 if (orig_ptr !=
1113 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1114 BUG();
1115enospc:
1116 if (right) {
1117 btrfs_tree_unlock(right);
1118 free_extent_buffer(right);
1119 }
1120 if (left) {
1121 if (path->nodes[level] != left)
1122 btrfs_tree_unlock(left);
1123 free_extent_buffer(left);
1124 }
1125 return ret;
1126}
1127
1128/* Node balancing for insertion. Here we only split or push nodes around
1129 * when they are completely full. This is also done top down, so we
1130 * have to be pessimistic.
1131 */
1132static int noinline push_nodes_for_insert(struct btrfs_trans_handle *trans,
1133 struct btrfs_root *root,
1134 struct btrfs_path *path, int level)
1135{
1136 struct extent_buffer *right = NULL;
1137 struct extent_buffer *mid;
1138 struct extent_buffer *left = NULL;
1139 struct extent_buffer *parent = NULL;
1140 int ret = 0;
1141 int wret;
1142 int pslot;
1143 int orig_slot = path->slots[level];
1144 u64 orig_ptr;
1145
1146 if (level == 0)
1147 return 1;
1148
1149 mid = path->nodes[level];
1150 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1151 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1152
1153 if (level < BTRFS_MAX_LEVEL - 1)
1154 parent = path->nodes[level + 1];
1155 pslot = path->slots[level + 1];
1156
1157 if (!parent)
1158 return 1;
1159
1160 left = read_node_slot(root, parent, pslot - 1);
1161
1162 /* first, try to make some room in the middle buffer */
1163 if (left) {
1164 u32 left_nr;
1165
1166 btrfs_tree_lock(left);
1167 left_nr = btrfs_header_nritems(left);
1168 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1169 wret = 1;
1170 } else {
1171 ret = btrfs_cow_block(trans, root, left, parent,
1172 pslot - 1, &left, 0);
1173 if (ret)
1174 wret = 1;
1175 else {
1176 wret = push_node_left(trans, root,
1177 left, mid, 0);
1178 }
1179 }
1180 if (wret < 0)
1181 ret = wret;
1182 if (wret == 0) {
1183 struct btrfs_disk_key disk_key;
1184 orig_slot += left_nr;
1185 btrfs_node_key(mid, &disk_key, 0);
1186 btrfs_set_node_key(parent, &disk_key, pslot);
1187 btrfs_mark_buffer_dirty(parent);
1188 if (btrfs_header_nritems(left) > orig_slot) {
1189 path->nodes[level] = left;
1190 path->slots[level + 1] -= 1;
1191 path->slots[level] = orig_slot;
1192 btrfs_tree_unlock(mid);
1193 free_extent_buffer(mid);
1194 } else {
1195 orig_slot -=
1196 btrfs_header_nritems(left);
1197 path->slots[level] = orig_slot;
1198 btrfs_tree_unlock(left);
1199 free_extent_buffer(left);
1200 }
1201 return 0;
1202 }
1203 btrfs_tree_unlock(left);
1204 free_extent_buffer(left);
1205 }
1206 right = read_node_slot(root, parent, pslot + 1);
1207
1208 /*
1209 * then try to empty the right most buffer into the middle
1210 */
1211 if (right) {
1212 u32 right_nr;
1213 btrfs_tree_lock(right);
1214 right_nr = btrfs_header_nritems(right);
1215 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1216 wret = 1;
1217 } else {
1218 ret = btrfs_cow_block(trans, root, right,
1219 parent, pslot + 1,
1220 &right, 0);
1221 if (ret)
1222 wret = 1;
1223 else {
1224 wret = balance_node_right(trans, root,
1225 right, mid);
1226 }
1227 }
1228 if (wret < 0)
1229 ret = wret;
1230 if (wret == 0) {
1231 struct btrfs_disk_key disk_key;
1232
1233 btrfs_node_key(right, &disk_key, 0);
1234 btrfs_set_node_key(parent, &disk_key, pslot + 1);
1235 btrfs_mark_buffer_dirty(parent);
1236
1237 if (btrfs_header_nritems(mid) <= orig_slot) {
1238 path->nodes[level] = right;
1239 path->slots[level + 1] += 1;
1240 path->slots[level] = orig_slot -
1241 btrfs_header_nritems(mid);
1242 btrfs_tree_unlock(mid);
1243 free_extent_buffer(mid);
1244 } else {
1245 btrfs_tree_unlock(right);
1246 free_extent_buffer(right);
1247 }
1248 return 0;
1249 }
1250 btrfs_tree_unlock(right);
1251 free_extent_buffer(right);
1252 }
1253 return 1;
1254}
1255
1256/*
1257 * readahead one full node of leaves, finding things that are close
1258 * to the block in 'slot', and triggering ra on them.
1259 */
1260static noinline void reada_for_search(struct btrfs_root *root,
1261 struct btrfs_path *path,
1262 int level, int slot, u64 objectid)
1263{
1264 struct extent_buffer *node;
1265 struct btrfs_disk_key disk_key;
1266 u32 nritems;
1267 u64 search;
1268 u64 lowest_read;
1269 u64 highest_read;
1270 u64 nread = 0;
1271 int direction = path->reada;
1272 struct extent_buffer *eb;
1273 u32 nr;
1274 u32 blocksize;
1275 u32 nscan = 0;
1276
1277 if (level != 1)
1278 return;
1279
1280 if (!path->nodes[level])
1281 return;
1282
1283 node = path->nodes[level];
1284
1285 search = btrfs_node_blockptr(node, slot);
1286 blocksize = btrfs_level_size(root, level - 1);
1287 eb = btrfs_find_tree_block(root, search, blocksize);
1288 if (eb) {
1289 free_extent_buffer(eb);
1290 return;
1291 }
1292
1293 highest_read = search;
1294 lowest_read = search;
1295
1296 nritems = btrfs_header_nritems(node);
1297 nr = slot;
1298 while(1) {
1299 if (direction < 0) {
1300 if (nr == 0)
1301 break;
1302 nr--;
1303 } else if (direction > 0) {
1304 nr++;
1305 if (nr >= nritems)
1306 break;
1307 }
1308 if (path->reada < 0 && objectid) {
1309 btrfs_node_key(node, &disk_key, nr);
1310 if (btrfs_disk_key_objectid(&disk_key) != objectid)
1311 break;
1312 }
1313 search = btrfs_node_blockptr(node, nr);
1314 if ((search >= lowest_read && search <= highest_read) ||
1315 (search < lowest_read && lowest_read - search <= 16384) ||
1316 (search > highest_read && search - highest_read <= 16384)) {
1317 readahead_tree_block(root, search, blocksize,
1318 btrfs_node_ptr_generation(node, nr));
1319 nread += blocksize;
1320 }
1321 nscan++;
1322 if (path->reada < 2 && (nread > (64 * 1024) || nscan > 32))
1323 break;
1324 if(nread > (256 * 1024) || nscan > 128)
1325 break;
1326
1327 if (search < lowest_read)
1328 lowest_read = search;
1329 if (search > highest_read)
1330 highest_read = search;
1331 }
1332}
1333
1334/*
1335 * when we walk down the tree, it is usually safe to unlock the higher layers in
1336 * the tree. The exceptions are when our path goes through slot 0, because operations
1337 * on the tree might require changing key pointers higher up in the tree.
1338 *
1339 * callers might also have set path->keep_locks, which tells this code to
1340 * keep the lock if the path points to the last slot in the block. This is
1341 * part of walking through the tree, and selecting the next slot in the higher
1342 * block.
1343 *
1344 * lowest_unlock sets the lowest level in the tree we're allowed to unlock.
1345 * so if lowest_unlock is 1, level 0 won't be unlocked
1346 */
1347static noinline void unlock_up(struct btrfs_path *path, int level,
1348 int lowest_unlock)
1349{
1350 int i;
1351 int skip_level = level;
1352 int no_skips = 0;
1353 struct extent_buffer *t;
1354
1355 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1356 if (!path->nodes[i])
1357 break;
1358 if (!path->locks[i])
1359 break;
1360 if (!no_skips && path->slots[i] == 0) {
1361 skip_level = i + 1;
1362 continue;
1363 }
1364 if (!no_skips && path->keep_locks) {
1365 u32 nritems;
1366 t = path->nodes[i];
1367 nritems = btrfs_header_nritems(t);
1368 if (nritems < 1 || path->slots[i] >= nritems - 1) {
1369 skip_level = i + 1;
1370 continue;
1371 }
1372 }
1373 if (skip_level < i && i >= lowest_unlock)
1374 no_skips = 1;
1375
1376 t = path->nodes[i];
1377 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
1378 btrfs_tree_unlock(t);
1379 path->locks[i] = 0;
1380 }
1381 }
1382}
1383
1384/*
1385 * look for key in the tree. path is filled in with nodes along the way
1386 * if key is found, we return zero and you can find the item in the leaf
1387 * level of the path (level 0)
1388 *
1389 * If the key isn't found, the path points to the slot where it should
1390 * be inserted, and 1 is returned. If there are other errors during the
1391 * search a negative error number is returned.
1392 *
1393 * if ins_len > 0, nodes and leaves will be split as we walk down the
1394 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
1395 * possible)
1396 */
1397int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
1398 *root, struct btrfs_key *key, struct btrfs_path *p, int
1399 ins_len, int cow)
1400{
1401 struct extent_buffer *b;
1402 struct extent_buffer *tmp;
1403 int slot;
1404 int ret;
1405 int level;
1406 int should_reada = p->reada;
1407 int lowest_unlock = 1;
1408 int blocksize;
1409 u8 lowest_level = 0;
1410 u64 blocknr;
1411 u64 gen;
1412 struct btrfs_key prealloc_block;
1413
1414 lowest_level = p->lowest_level;
1415 WARN_ON(lowest_level && ins_len > 0);
1416 WARN_ON(p->nodes[0] != NULL);
1417
1418 if (ins_len < 0)
1419 lowest_unlock = 2;
1420
1421 prealloc_block.objectid = 0;
1422
1423again:
1424 if (p->skip_locking)
1425 b = btrfs_root_node(root);
1426 else
1427 b = btrfs_lock_root_node(root);
1428
1429 while (b) {
1430 level = btrfs_header_level(b);
1431
1432 /*
1433 * setup the path here so we can release it under lock
1434 * contention with the cow code
1435 */
1436 p->nodes[level] = b;
1437 if (!p->skip_locking)
1438 p->locks[level] = 1;
1439
1440 if (cow) {
1441 int wret;
1442
1443 /* is a cow on this block not required */
1444 spin_lock(&root->fs_info->hash_lock);
1445 if (btrfs_header_generation(b) == trans->transid &&
1446 btrfs_header_owner(b) == root->root_key.objectid &&
1447 !btrfs_header_flag(b, BTRFS_HEADER_FLAG_WRITTEN)) {
1448 spin_unlock(&root->fs_info->hash_lock);
1449 goto cow_done;
1450 }
1451 spin_unlock(&root->fs_info->hash_lock);
1452
1453 /* ok, we have to cow, is our old prealloc the right
1454 * size?
1455 */
1456 if (prealloc_block.objectid &&
1457 prealloc_block.offset != b->len) {
1458 btrfs_free_reserved_extent(root,
1459 prealloc_block.objectid,
1460 prealloc_block.offset);
1461 prealloc_block.objectid = 0;
1462 }
1463
1464 /*
1465 * for higher level blocks, try not to allocate blocks
1466 * with the block and the parent locks held.
1467 */
1468 if (level > 1 && !prealloc_block.objectid &&
1469 btrfs_path_lock_waiting(p, level)) {
1470 u32 size = b->len;
1471 u64 hint = b->start;
1472
1473 btrfs_release_path(root, p);
1474 ret = btrfs_reserve_extent(trans, root,
1475 size, size, 0,
1476 hint, (u64)-1,
1477 &prealloc_block, 0);
1478 BUG_ON(ret);
1479 goto again;
1480 }
1481
1482 wret = btrfs_cow_block(trans, root, b,
1483 p->nodes[level + 1],
1484 p->slots[level + 1],
1485 &b, prealloc_block.objectid);
1486 prealloc_block.objectid = 0;
1487 if (wret) {
1488 free_extent_buffer(b);
1489 ret = wret;
1490 goto done;
1491 }
1492 }
1493cow_done:
1494 BUG_ON(!cow && ins_len);
1495 if (level != btrfs_header_level(b))
1496 WARN_ON(1);
1497 level = btrfs_header_level(b);
1498
1499 p->nodes[level] = b;
1500 if (!p->skip_locking)
1501 p->locks[level] = 1;
1502
1503 ret = check_block(root, p, level);
1504 if (ret) {
1505 ret = -1;
1506 goto done;
1507 }
1508
1509 ret = bin_search(b, key, level, &slot);
1510 if (level != 0) {
1511 if (ret && slot > 0)
1512 slot -= 1;
1513 p->slots[level] = slot;
1514 if (ins_len > 0 && btrfs_header_nritems(b) >=
1515 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
1516 int sret = split_node(trans, root, p, level);
1517 BUG_ON(sret > 0);
1518 if (sret) {
1519 ret = sret;
1520 goto done;
1521 }
1522 b = p->nodes[level];
1523 slot = p->slots[level];
1524 } else if (ins_len < 0) {
1525 int sret = balance_level(trans, root, p,
1526 level);
1527 if (sret) {
1528 ret = sret;
1529 goto done;
1530 }
1531 b = p->nodes[level];
1532 if (!b) {
1533 btrfs_release_path(NULL, p);
1534 goto again;
1535 }
1536 slot = p->slots[level];
1537 BUG_ON(btrfs_header_nritems(b) == 1);
1538 }
1539 unlock_up(p, level, lowest_unlock);
1540
1541 /* this is only true while dropping a snapshot */
1542 if (level == lowest_level) {
1543 ret = 0;
1544 goto done;
1545 }
1546
1547 blocknr = btrfs_node_blockptr(b, slot);
1548 gen = btrfs_node_ptr_generation(b, slot);
1549 blocksize = btrfs_level_size(root, level - 1);
1550
1551 tmp = btrfs_find_tree_block(root, blocknr, blocksize);
1552 if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
1553 b = tmp;
1554 } else {
1555 /*
1556 * reduce lock contention at high levels
1557 * of the btree by dropping locks before
1558 * we read.
1559 */
1560 if (level > 1) {
1561 btrfs_release_path(NULL, p);
1562 if (tmp)
1563 free_extent_buffer(tmp);
1564 if (should_reada)
1565 reada_for_search(root, p,
1566 level, slot,
1567 key->objectid);
1568
1569 tmp = read_tree_block(root, blocknr,
1570 blocksize, gen);
1571 if (tmp)
1572 free_extent_buffer(tmp);
1573 goto again;
1574 } else {
1575 if (tmp)
1576 free_extent_buffer(tmp);
1577 if (should_reada)
1578 reada_for_search(root, p,
1579 level, slot,
1580 key->objectid);
1581 b = read_node_slot(root, b, slot);
1582 }
1583 }
1584 if (!p->skip_locking)
1585 btrfs_tree_lock(b);
1586 } else {
1587 p->slots[level] = slot;
1588 if (ins_len > 0 && btrfs_leaf_free_space(root, b) <
1589 sizeof(struct btrfs_item) + ins_len) {
1590 int sret = split_leaf(trans, root, key,
1591 p, ins_len, ret == 0);
1592 BUG_ON(sret > 0);
1593 if (sret) {
1594 ret = sret;
1595 goto done;
1596 }
1597 }
1598 unlock_up(p, level, lowest_unlock);
1599 goto done;
1600 }
1601 }
1602 ret = 1;
1603done:
1604 if (prealloc_block.objectid) {
1605 btrfs_free_reserved_extent(root,
1606 prealloc_block.objectid,
1607 prealloc_block.offset);
1608 }
1609
1610 return ret;
1611}
1612
1613int btrfs_merge_path(struct btrfs_trans_handle *trans,
1614 struct btrfs_root *root,
1615 struct btrfs_key *node_keys,
1616 u64 *nodes, int lowest_level)
1617{
1618 struct extent_buffer *eb;
1619 struct extent_buffer *parent;
1620 struct btrfs_key key;
1621 u64 bytenr;
1622 u64 generation;
1623 u32 blocksize;
1624 int level;
1625 int slot;
1626 int key_match;
1627 int ret;
1628
1629 eb = btrfs_lock_root_node(root);
1630 ret = btrfs_cow_block(trans, root, eb, NULL, 0, &eb, 0);
1631 BUG_ON(ret);
1632
1633 parent = eb;
1634 while (1) {
1635 level = btrfs_header_level(parent);
1636 if (level == 0 || level <= lowest_level)
1637 break;
1638
1639 ret = bin_search(parent, &node_keys[lowest_level], level,
1640 &slot);
1641 if (ret && slot > 0)
1642 slot--;
1643
1644 bytenr = btrfs_node_blockptr(parent, slot);
1645 if (nodes[level - 1] == bytenr)
1646 break;
1647
1648 blocksize = btrfs_level_size(root, level - 1);
1649 generation = btrfs_node_ptr_generation(parent, slot);
1650 btrfs_node_key_to_cpu(eb, &key, slot);
1651 key_match = !memcmp(&key, &node_keys[level - 1], sizeof(key));
1652
1653 if (generation == trans->transid) {
1654 eb = read_tree_block(root, bytenr, blocksize,
1655 generation);
1656 btrfs_tree_lock(eb);
1657 }
1658
1659 /*
1660 * if node keys match and node pointer hasn't been modified
1661 * in the running transaction, we can merge the path. for
1662 * blocks owened by reloc trees, the node pointer check is
1663 * skipped, this is because these blocks are fully controlled
1664 * by the space balance code, no one else can modify them.
1665 */
1666 if (!nodes[level - 1] || !key_match ||
1667 (generation == trans->transid &&
1668 btrfs_header_owner(eb) != BTRFS_TREE_RELOC_OBJECTID)) {
1669 if (level == 1 || level == lowest_level + 1) {
1670 if (generation == trans->transid) {
1671 btrfs_tree_unlock(eb);
1672 free_extent_buffer(eb);
1673 }
1674 break;
1675 }
1676
1677 if (generation != trans->transid) {
1678 eb = read_tree_block(root, bytenr, blocksize,
1679 generation);
1680 btrfs_tree_lock(eb);
1681 }
1682
1683 ret = btrfs_cow_block(trans, root, eb, parent, slot,
1684 &eb, 0);
1685 BUG_ON(ret);
1686
1687 if (root->root_key.objectid ==
1688 BTRFS_TREE_RELOC_OBJECTID) {
1689 if (!nodes[level - 1]) {
1690 nodes[level - 1] = eb->start;
1691 memcpy(&node_keys[level - 1], &key,
1692 sizeof(node_keys[0]));
1693 } else {
1694 WARN_ON(1);
1695 }
1696 }
1697
1698 btrfs_tree_unlock(parent);
1699 free_extent_buffer(parent);
1700 parent = eb;
1701 continue;
1702 }
1703
1704 btrfs_set_node_blockptr(parent, slot, nodes[level - 1]);
1705 btrfs_set_node_ptr_generation(parent, slot, trans->transid);
1706 btrfs_mark_buffer_dirty(parent);
1707
1708 ret = btrfs_inc_extent_ref(trans, root,
1709 nodes[level - 1],
1710 blocksize, parent->start,
1711 btrfs_header_owner(parent),
1712 btrfs_header_generation(parent),
1713 level - 1);
1714 BUG_ON(ret);
1715
1716 /*
1717 * If the block was created in the running transaction,
1718 * it's possible this is the last reference to it, so we
1719 * should drop the subtree.
1720 */
1721 if (generation == trans->transid) {
1722 ret = btrfs_drop_subtree(trans, root, eb, parent);
1723 BUG_ON(ret);
1724 btrfs_tree_unlock(eb);
1725 free_extent_buffer(eb);
1726 } else {
1727 ret = btrfs_free_extent(trans, root, bytenr,
1728 blocksize, parent->start,
1729 btrfs_header_owner(parent),
1730 btrfs_header_generation(parent),
1731 level - 1, 1);
1732 BUG_ON(ret);
1733 }
1734 break;
1735 }
1736 btrfs_tree_unlock(parent);
1737 free_extent_buffer(parent);
1738 return 0;
1739}
1740
1741/*
1742 * adjust the pointers going up the tree, starting at level
1743 * making sure the right key of each node is points to 'key'.
1744 * This is used after shifting pointers to the left, so it stops
1745 * fixing up pointers when a given leaf/node is not in slot 0 of the
1746 * higher levels
1747 *
1748 * If this fails to write a tree block, it returns -1, but continues
1749 * fixing up the blocks in ram so the tree is consistent.
1750 */
1751static int fixup_low_keys(struct btrfs_trans_handle *trans,
1752 struct btrfs_root *root, struct btrfs_path *path,
1753 struct btrfs_disk_key *key, int level)
1754{
1755 int i;
1756 int ret = 0;
1757 struct extent_buffer *t;
1758
1759 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1760 int tslot = path->slots[i];
1761 if (!path->nodes[i])
1762 break;
1763 t = path->nodes[i];
1764 btrfs_set_node_key(t, key, tslot);
1765 btrfs_mark_buffer_dirty(path->nodes[i]);
1766 if (tslot != 0)
1767 break;
1768 }
1769 return ret;
1770}
1771
1772/*
1773 * update item key.
1774 *
1775 * This function isn't completely safe. It's the caller's responsibility
1776 * that the new key won't break the order
1777 */
1778int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
1779 struct btrfs_root *root, struct btrfs_path *path,
1780 struct btrfs_key *new_key)
1781{
1782 struct btrfs_disk_key disk_key;
1783 struct extent_buffer *eb;
1784 int slot;
1785
1786 eb = path->nodes[0];
1787 slot = path->slots[0];
1788 if (slot > 0) {
1789 btrfs_item_key(eb, &disk_key, slot - 1);
1790 if (comp_keys(&disk_key, new_key) >= 0)
1791 return -1;
1792 }
1793 if (slot < btrfs_header_nritems(eb) - 1) {
1794 btrfs_item_key(eb, &disk_key, slot + 1);
1795 if (comp_keys(&disk_key, new_key) <= 0)
1796 return -1;
1797 }
1798
1799 btrfs_cpu_key_to_disk(&disk_key, new_key);
1800 btrfs_set_item_key(eb, &disk_key, slot);
1801 btrfs_mark_buffer_dirty(eb);
1802 if (slot == 0)
1803 fixup_low_keys(trans, root, path, &disk_key, 1);
1804 return 0;
1805}
1806
1807/*
1808 * try to push data from one node into the next node left in the
1809 * tree.
1810 *
1811 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
1812 * error, and > 0 if there was no room in the left hand block.
1813 */
1814static int push_node_left(struct btrfs_trans_handle *trans,
1815 struct btrfs_root *root, struct extent_buffer *dst,
1816 struct extent_buffer *src, int empty)
1817{
1818 int push_items = 0;
1819 int src_nritems;
1820 int dst_nritems;
1821 int ret = 0;
1822
1823 src_nritems = btrfs_header_nritems(src);
1824 dst_nritems = btrfs_header_nritems(dst);
1825 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
1826 WARN_ON(btrfs_header_generation(src) != trans->transid);
1827 WARN_ON(btrfs_header_generation(dst) != trans->transid);
1828
1829 if (!empty && src_nritems <= 8)
1830 return 1;
1831
1832 if (push_items <= 0) {
1833 return 1;
1834 }
1835
1836 if (empty) {
1837 push_items = min(src_nritems, push_items);
1838 if (push_items < src_nritems) {
1839 /* leave at least 8 pointers in the node if
1840 * we aren't going to empty it
1841 */
1842 if (src_nritems - push_items < 8) {
1843 if (push_items <= 8)
1844 return 1;
1845 push_items -= 8;
1846 }
1847 }
1848 } else
1849 push_items = min(src_nritems - 8, push_items);
1850
1851 copy_extent_buffer(dst, src,
1852 btrfs_node_key_ptr_offset(dst_nritems),
1853 btrfs_node_key_ptr_offset(0),
1854 push_items * sizeof(struct btrfs_key_ptr));
1855
1856 if (push_items < src_nritems) {
1857 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
1858 btrfs_node_key_ptr_offset(push_items),
1859 (src_nritems - push_items) *
1860 sizeof(struct btrfs_key_ptr));
1861 }
1862 btrfs_set_header_nritems(src, src_nritems - push_items);
1863 btrfs_set_header_nritems(dst, dst_nritems + push_items);
1864 btrfs_mark_buffer_dirty(src);
1865 btrfs_mark_buffer_dirty(dst);
1866
1867 ret = btrfs_update_ref(trans, root, src, dst, dst_nritems, push_items);
1868 BUG_ON(ret);
1869
1870 return ret;
1871}
1872
1873/*
1874 * try to push data from one node into the next node right in the
1875 * tree.
1876 *
1877 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
1878 * error, and > 0 if there was no room in the right hand block.
1879 *
1880 * this will only push up to 1/2 the contents of the left node over
1881 */
1882static int balance_node_right(struct btrfs_trans_handle *trans,
1883 struct btrfs_root *root,
1884 struct extent_buffer *dst,
1885 struct extent_buffer *src)
1886{
1887 int push_items = 0;
1888 int max_push;
1889 int src_nritems;
1890 int dst_nritems;
1891 int ret = 0;
1892
1893 WARN_ON(btrfs_header_generation(src) != trans->transid);
1894 WARN_ON(btrfs_header_generation(dst) != trans->transid);
1895
1896 src_nritems = btrfs_header_nritems(src);
1897 dst_nritems = btrfs_header_nritems(dst);
1898 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
1899 if (push_items <= 0) {
1900 return 1;
1901 }
1902
1903 if (src_nritems < 4) {
1904 return 1;
1905 }
1906
1907 max_push = src_nritems / 2 + 1;
1908 /* don't try to empty the node */
1909 if (max_push >= src_nritems) {
1910 return 1;
1911 }
1912
1913 if (max_push < push_items)
1914 push_items = max_push;
1915
1916 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
1917 btrfs_node_key_ptr_offset(0),
1918 (dst_nritems) *
1919 sizeof(struct btrfs_key_ptr));
1920
1921 copy_extent_buffer(dst, src,
1922 btrfs_node_key_ptr_offset(0),
1923 btrfs_node_key_ptr_offset(src_nritems - push_items),
1924 push_items * sizeof(struct btrfs_key_ptr));
1925
1926 btrfs_set_header_nritems(src, src_nritems - push_items);
1927 btrfs_set_header_nritems(dst, dst_nritems + push_items);
1928
1929 btrfs_mark_buffer_dirty(src);
1930 btrfs_mark_buffer_dirty(dst);
1931
1932 ret = btrfs_update_ref(trans, root, src, dst, 0, push_items);
1933 BUG_ON(ret);
1934
1935 return ret;
1936}
1937
1938/*
1939 * helper function to insert a new root level in the tree.
1940 * A new node is allocated, and a single item is inserted to
1941 * point to the existing root
1942 *
1943 * returns zero on success or < 0 on failure.
1944 */
1945static int noinline insert_new_root(struct btrfs_trans_handle *trans,
1946 struct btrfs_root *root,
1947 struct btrfs_path *path, int level)
1948{
1949 u64 lower_gen;
1950 struct extent_buffer *lower;
1951 struct extent_buffer *c;
1952 struct extent_buffer *old;
1953 struct btrfs_disk_key lower_key;
1954 int ret;
1955
1956 BUG_ON(path->nodes[level]);
1957 BUG_ON(path->nodes[level-1] != root->node);
1958
1959 lower = path->nodes[level-1];
1960 if (level == 1)
1961 btrfs_item_key(lower, &lower_key, 0);
1962 else
1963 btrfs_node_key(lower, &lower_key, 0);
1964
1965 c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
1966 root->root_key.objectid, trans->transid,
1967 level, root->node->start, 0);
1968 if (IS_ERR(c))
1969 return PTR_ERR(c);
1970
1971 memset_extent_buffer(c, 0, 0, root->nodesize);
1972 btrfs_set_header_nritems(c, 1);
1973 btrfs_set_header_level(c, level);
1974 btrfs_set_header_bytenr(c, c->start);
1975 btrfs_set_header_generation(c, trans->transid);
1976 btrfs_set_header_owner(c, root->root_key.objectid);
1977
1978 write_extent_buffer(c, root->fs_info->fsid,
1979 (unsigned long)btrfs_header_fsid(c),
1980 BTRFS_FSID_SIZE);
1981
1982 write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
1983 (unsigned long)btrfs_header_chunk_tree_uuid(c),
1984 BTRFS_UUID_SIZE);
1985
1986 btrfs_set_node_key(c, &lower_key, 0);
1987 btrfs_set_node_blockptr(c, 0, lower->start);
1988 lower_gen = btrfs_header_generation(lower);
1989 WARN_ON(lower_gen != trans->transid);
1990
1991 btrfs_set_node_ptr_generation(c, 0, lower_gen);
1992
1993 btrfs_mark_buffer_dirty(c);
1994
1995 spin_lock(&root->node_lock);
1996 old = root->node;
1997 root->node = c;
1998 spin_unlock(&root->node_lock);
1999
2000 ret = btrfs_update_extent_ref(trans, root, lower->start,
2001 lower->start, c->start,
2002 root->root_key.objectid,
2003 trans->transid, level - 1);
2004 BUG_ON(ret);
2005
2006 /* the super has an extra ref to root->node */
2007 free_extent_buffer(old);
2008
2009 add_root_to_dirty_list(root);
2010 extent_buffer_get(c);
2011 path->nodes[level] = c;
2012 path->locks[level] = 1;
2013 path->slots[level] = 0;
2014 return 0;
2015}
2016
2017/*
2018 * worker function to insert a single pointer in a node.
2019 * the node should have enough room for the pointer already
2020 *
2021 * slot and level indicate where you want the key to go, and
2022 * blocknr is the block the key points to.
2023 *
2024 * returns zero on success and < 0 on any error
2025 */
2026static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
2027 *root, struct btrfs_path *path, struct btrfs_disk_key
2028 *key, u64 bytenr, int slot, int level)
2029{
2030 struct extent_buffer *lower;
2031 int nritems;
2032
2033 BUG_ON(!path->nodes[level]);
2034 lower = path->nodes[level];
2035 nritems = btrfs_header_nritems(lower);
2036 if (slot > nritems)
2037 BUG();
2038 if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
2039 BUG();
2040 if (slot != nritems) {
2041 memmove_extent_buffer(lower,
2042 btrfs_node_key_ptr_offset(slot + 1),
2043 btrfs_node_key_ptr_offset(slot),
2044 (nritems - slot) * sizeof(struct btrfs_key_ptr));
2045 }
2046 btrfs_set_node_key(lower, key, slot);
2047 btrfs_set_node_blockptr(lower, slot, bytenr);
2048 WARN_ON(trans->transid == 0);
2049 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2050 btrfs_set_header_nritems(lower, nritems + 1);
2051 btrfs_mark_buffer_dirty(lower);
2052 return 0;
2053}
2054
2055/*
2056 * split the node at the specified level in path in two.
2057 * The path is corrected to point to the appropriate node after the split
2058 *
2059 * Before splitting this tries to make some room in the node by pushing
2060 * left and right, if either one works, it returns right away.
2061 *
2062 * returns 0 on success and < 0 on failure
2063 */
2064static noinline int split_node(struct btrfs_trans_handle *trans,
2065 struct btrfs_root *root,
2066 struct btrfs_path *path, int level)
2067{
2068 struct extent_buffer *c;
2069 struct extent_buffer *split;
2070 struct btrfs_disk_key disk_key;
2071 int mid;
2072 int ret;
2073 int wret;
2074 u32 c_nritems;
2075
2076 c = path->nodes[level];
2077 WARN_ON(btrfs_header_generation(c) != trans->transid);
2078 if (c == root->node) {
2079 /* trying to split the root, lets make a new one */
2080 ret = insert_new_root(trans, root, path, level + 1);
2081 if (ret)
2082 return ret;
2083 } else {
2084 ret = push_nodes_for_insert(trans, root, path, level);
2085 c = path->nodes[level];
2086 if (!ret && btrfs_header_nritems(c) <
2087 BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
2088 return 0;
2089 if (ret < 0)
2090 return ret;
2091 }
2092
2093 c_nritems = btrfs_header_nritems(c);
2094
2095 split = btrfs_alloc_free_block(trans, root, root->nodesize,
2096 path->nodes[level + 1]->start,
2097 root->root_key.objectid,
2098 trans->transid, level, c->start, 0);
2099 if (IS_ERR(split))
2100 return PTR_ERR(split);
2101
2102 btrfs_set_header_flags(split, btrfs_header_flags(c));
2103 btrfs_set_header_level(split, btrfs_header_level(c));
2104 btrfs_set_header_bytenr(split, split->start);
2105 btrfs_set_header_generation(split, trans->transid);
2106 btrfs_set_header_owner(split, root->root_key.objectid);
2107 btrfs_set_header_flags(split, 0);
2108 write_extent_buffer(split, root->fs_info->fsid,
2109 (unsigned long)btrfs_header_fsid(split),
2110 BTRFS_FSID_SIZE);
2111 write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
2112 (unsigned long)btrfs_header_chunk_tree_uuid(split),
2113 BTRFS_UUID_SIZE);
2114
2115 mid = (c_nritems + 1) / 2;
2116
2117 copy_extent_buffer(split, c,
2118 btrfs_node_key_ptr_offset(0),
2119 btrfs_node_key_ptr_offset(mid),
2120 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
2121 btrfs_set_header_nritems(split, c_nritems - mid);
2122 btrfs_set_header_nritems(c, mid);
2123 ret = 0;
2124
2125 btrfs_mark_buffer_dirty(c);
2126 btrfs_mark_buffer_dirty(split);
2127
2128 btrfs_node_key(split, &disk_key, 0);
2129 wret = insert_ptr(trans, root, path, &disk_key, split->start,
2130 path->slots[level + 1] + 1,
2131 level + 1);
2132 if (wret)
2133 ret = wret;
2134
2135 ret = btrfs_update_ref(trans, root, c, split, 0, c_nritems - mid);
2136 BUG_ON(ret);
2137
2138 if (path->slots[level] >= mid) {
2139 path->slots[level] -= mid;
2140 btrfs_tree_unlock(c);
2141 free_extent_buffer(c);
2142 path->nodes[level] = split;
2143 path->slots[level + 1] += 1;
2144 } else {
2145 btrfs_tree_unlock(split);
2146 free_extent_buffer(split);
2147 }
2148 return ret;
2149}
2150
2151/*
2152 * how many bytes are required to store the items in a leaf. start
2153 * and nr indicate which items in the leaf to check. This totals up the
2154 * space used both by the item structs and the item data
2155 */
2156static int leaf_space_used(struct extent_buffer *l, int start, int nr)
2157{
2158 int data_len;
2159 int nritems = btrfs_header_nritems(l);
2160 int end = min(nritems, start + nr) - 1;
2161
2162 if (!nr)
2163 return 0;
2164 data_len = btrfs_item_end_nr(l, start);
2165 data_len = data_len - btrfs_item_offset_nr(l, end);
2166 data_len += sizeof(struct btrfs_item) * nr;
2167 WARN_ON(data_len < 0);
2168 return data_len;
2169}
2170
2171/*
2172 * The space between the end of the leaf items and
2173 * the start of the leaf data. IOW, how much room
2174 * the leaf has left for both items and data
2175 */
2176int noinline btrfs_leaf_free_space(struct btrfs_root *root,
2177 struct extent_buffer *leaf)
2178{
2179 int nritems = btrfs_header_nritems(leaf);
2180 int ret;
2181 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
2182 if (ret < 0) {
2183 printk("leaf free space ret %d, leaf data size %lu, used %d nritems %d\n",
2184 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
2185 leaf_space_used(leaf, 0, nritems), nritems);
2186 }
2187 return ret;
2188}
2189
2190/*
2191 * push some data in the path leaf to the right, trying to free up at
2192 * least data_size bytes. returns zero if the push worked, nonzero otherwise
2193 *
2194 * returns 1 if the push failed because the other node didn't have enough
2195 * room, 0 if everything worked out and < 0 if there were major errors.
2196 */
2197static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
2198 *root, struct btrfs_path *path, int data_size,
2199 int empty)
2200{
2201 struct extent_buffer *left = path->nodes[0];
2202 struct extent_buffer *right;
2203 struct extent_buffer *upper;
2204 struct btrfs_disk_key disk_key;
2205 int slot;
2206 u32 i;
2207 int free_space;
2208 int push_space = 0;
2209 int push_items = 0;
2210 struct btrfs_item *item;
2211 u32 left_nritems;
2212 u32 nr;
2213 u32 right_nritems;
2214 u32 data_end;
2215 u32 this_item_size;
2216 int ret;
2217
2218 slot = path->slots[1];
2219 if (!path->nodes[1]) {
2220 return 1;
2221 }
2222 upper = path->nodes[1];
2223 if (slot >= btrfs_header_nritems(upper) - 1)
2224 return 1;
2225
2226 WARN_ON(!btrfs_tree_locked(path->nodes[1]));
2227
2228 right = read_node_slot(root, upper, slot + 1);
2229 btrfs_tree_lock(right);
2230 free_space = btrfs_leaf_free_space(root, right);
2231 if (free_space < data_size + sizeof(struct btrfs_item))
2232 goto out_unlock;
2233
2234 /* cow and double check */
2235 ret = btrfs_cow_block(trans, root, right, upper,
2236 slot + 1, &right, 0);
2237 if (ret)
2238 goto out_unlock;
2239
2240 free_space = btrfs_leaf_free_space(root, right);
2241 if (free_space < data_size + sizeof(struct btrfs_item))
2242 goto out_unlock;
2243
2244 left_nritems = btrfs_header_nritems(left);
2245 if (left_nritems == 0)
2246 goto out_unlock;
2247
2248 if (empty)
2249 nr = 0;
2250 else
2251 nr = 1;
2252
2253 if (path->slots[0] >= left_nritems)
2254 push_space += data_size + sizeof(*item);
2255
2256 i = left_nritems - 1;
2257 while (i >= nr) {
2258 item = btrfs_item_nr(left, i);
2259
2260 if (!empty && push_items > 0) {
2261 if (path->slots[0] > i)
2262 break;
2263 if (path->slots[0] == i) {
2264 int space = btrfs_leaf_free_space(root, left);
2265 if (space + push_space * 2 > free_space)
2266 break;
2267 }
2268 }
2269
2270 if (path->slots[0] == i)
2271 push_space += data_size + sizeof(*item);
2272
2273 if (!left->map_token) {
2274 map_extent_buffer(left, (unsigned long)item,
2275 sizeof(struct btrfs_item),
2276 &left->map_token, &left->kaddr,
2277 &left->map_start, &left->map_len,
2278 KM_USER1);
2279 }
2280
2281 this_item_size = btrfs_item_size(left, item);
2282 if (this_item_size + sizeof(*item) + push_space > free_space)
2283 break;
2284
2285 push_items++;
2286 push_space += this_item_size + sizeof(*item);
2287 if (i == 0)
2288 break;
2289 i--;
2290 }
2291 if (left->map_token) {
2292 unmap_extent_buffer(left, left->map_token, KM_USER1);
2293 left->map_token = NULL;
2294 }
2295
2296 if (push_items == 0)
2297 goto out_unlock;
2298
2299 if (!empty && push_items == left_nritems)
2300 WARN_ON(1);
2301
2302 /* push left to right */
2303 right_nritems = btrfs_header_nritems(right);
2304
2305 push_space = btrfs_item_end_nr(left, left_nritems - push_items);
2306 push_space -= leaf_data_end(root, left);
2307
2308 /* make room in the right data area */
2309 data_end = leaf_data_end(root, right);
2310 memmove_extent_buffer(right,
2311 btrfs_leaf_data(right) + data_end - push_space,
2312 btrfs_leaf_data(right) + data_end,
2313 BTRFS_LEAF_DATA_SIZE(root) - data_end);
2314
2315 /* copy from the left data area */
2316 copy_extent_buffer(right, left, btrfs_leaf_data(right) +
2317 BTRFS_LEAF_DATA_SIZE(root) - push_space,
2318 btrfs_leaf_data(left) + leaf_data_end(root, left),
2319 push_space);
2320
2321 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
2322 btrfs_item_nr_offset(0),
2323 right_nritems * sizeof(struct btrfs_item));
2324
2325 /* copy the items from left to right */
2326 copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
2327 btrfs_item_nr_offset(left_nritems - push_items),
2328 push_items * sizeof(struct btrfs_item));
2329
2330 /* update the item pointers */
2331 right_nritems += push_items;
2332 btrfs_set_header_nritems(right, right_nritems);
2333 push_space = BTRFS_LEAF_DATA_SIZE(root);
2334 for (i = 0; i < right_nritems; i++) {
2335 item = btrfs_item_nr(right, i);
2336 if (!right->map_token) {
2337 map_extent_buffer(right, (unsigned long)item,
2338 sizeof(struct btrfs_item),
2339 &right->map_token, &right->kaddr,
2340 &right->map_start, &right->map_len,
2341 KM_USER1);
2342 }
2343 push_space -= btrfs_item_size(right, item);
2344 btrfs_set_item_offset(right, item, push_space);
2345 }
2346
2347 if (right->map_token) {
2348 unmap_extent_buffer(right, right->map_token, KM_USER1);
2349 right->map_token = NULL;
2350 }
2351 left_nritems -= push_items;
2352 btrfs_set_header_nritems(left, left_nritems);
2353
2354 if (left_nritems)
2355 btrfs_mark_buffer_dirty(left);
2356 btrfs_mark_buffer_dirty(right);
2357
2358 ret = btrfs_update_ref(trans, root, left, right, 0, push_items);
2359 BUG_ON(ret);
2360
2361 btrfs_item_key(right, &disk_key, 0);
2362 btrfs_set_node_key(upper, &disk_key, slot + 1);
2363 btrfs_mark_buffer_dirty(upper);
2364
2365 /* then fixup the leaf pointer in the path */
2366 if (path->slots[0] >= left_nritems) {
2367 path->slots[0] -= left_nritems;
2368 if (btrfs_header_nritems(path->nodes[0]) == 0)
2369 clean_tree_block(trans, root, path->nodes[0]);
2370 btrfs_tree_unlock(path->nodes[0]);
2371 free_extent_buffer(path->nodes[0]);
2372 path->nodes[0] = right;
2373 path->slots[1] += 1;
2374 } else {
2375 btrfs_tree_unlock(right);
2376 free_extent_buffer(right);
2377 }
2378 return 0;
2379
2380out_unlock:
2381 btrfs_tree_unlock(right);
2382 free_extent_buffer(right);
2383 return 1;
2384}
2385
2386/*
2387 * push some data in the path leaf to the left, trying to free up at
2388 * least data_size bytes. returns zero if the push worked, nonzero otherwise
2389 */
2390static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
2391 *root, struct btrfs_path *path, int data_size,
2392 int empty)
2393{
2394 struct btrfs_disk_key disk_key;
2395 struct extent_buffer *right = path->nodes[0];
2396 struct extent_buffer *left;
2397 int slot;
2398 int i;
2399 int free_space;
2400 int push_space = 0;
2401 int push_items = 0;
2402 struct btrfs_item *item;
2403 u32 old_left_nritems;
2404 u32 right_nritems;
2405 u32 nr;
2406 int ret = 0;
2407 int wret;
2408 u32 this_item_size;
2409 u32 old_left_item_size;
2410
2411 slot = path->slots[1];
2412 if (slot == 0)
2413 return 1;
2414 if (!path->nodes[1])
2415 return 1;
2416
2417 right_nritems = btrfs_header_nritems(right);
2418 if (right_nritems == 0) {
2419 return 1;
2420 }
2421
2422 WARN_ON(!btrfs_tree_locked(path->nodes[1]));
2423
2424 left = read_node_slot(root, path->nodes[1], slot - 1);
2425 btrfs_tree_lock(left);
2426 free_space = btrfs_leaf_free_space(root, left);
2427 if (free_space < data_size + sizeof(struct btrfs_item)) {
2428 ret = 1;
2429 goto out;
2430 }
2431
2432 /* cow and double check */
2433 ret = btrfs_cow_block(trans, root, left,
2434 path->nodes[1], slot - 1, &left, 0);
2435 if (ret) {
2436 /* we hit -ENOSPC, but it isn't fatal here */
2437 ret = 1;
2438 goto out;
2439 }
2440
2441 free_space = btrfs_leaf_free_space(root, left);
2442 if (free_space < data_size + sizeof(struct btrfs_item)) {
2443 ret = 1;
2444 goto out;
2445 }
2446
2447 if (empty)
2448 nr = right_nritems;
2449 else
2450 nr = right_nritems - 1;
2451
2452 for (i = 0; i < nr; i++) {
2453 item = btrfs_item_nr(right, i);
2454 if (!right->map_token) {
2455 map_extent_buffer(right, (unsigned long)item,
2456 sizeof(struct btrfs_item),
2457 &right->map_token, &right->kaddr,
2458 &right->map_start, &right->map_len,
2459 KM_USER1);
2460 }
2461
2462 if (!empty && push_items > 0) {
2463 if (path->slots[0] < i)
2464 break;
2465 if (path->slots[0] == i) {
2466 int space = btrfs_leaf_free_space(root, right);
2467 if (space + push_space * 2 > free_space)
2468 break;
2469 }
2470 }
2471
2472 if (path->slots[0] == i)
2473 push_space += data_size + sizeof(*item);
2474
2475 this_item_size = btrfs_item_size(right, item);
2476 if (this_item_size + sizeof(*item) + push_space > free_space)
2477 break;
2478
2479 push_items++;
2480 push_space += this_item_size + sizeof(*item);
2481 }
2482
2483 if (right->map_token) {
2484 unmap_extent_buffer(right, right->map_token, KM_USER1);
2485 right->map_token = NULL;
2486 }
2487
2488 if (push_items == 0) {
2489 ret = 1;
2490 goto out;
2491 }
2492 if (!empty && push_items == btrfs_header_nritems(right))
2493 WARN_ON(1);
2494
2495 /* push data from right to left */
2496 copy_extent_buffer(left, right,
2497 btrfs_item_nr_offset(btrfs_header_nritems(left)),
2498 btrfs_item_nr_offset(0),
2499 push_items * sizeof(struct btrfs_item));
2500
2501 push_space = BTRFS_LEAF_DATA_SIZE(root) -
2502 btrfs_item_offset_nr(right, push_items -1);
2503
2504 copy_extent_buffer(left, right, btrfs_leaf_data(left) +
2505 leaf_data_end(root, left) - push_space,
2506 btrfs_leaf_data(right) +
2507 btrfs_item_offset_nr(right, push_items - 1),
2508 push_space);
2509 old_left_nritems = btrfs_header_nritems(left);
2510 BUG_ON(old_left_nritems < 0);
2511
2512 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
2513 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
2514 u32 ioff;
2515
2516 item = btrfs_item_nr(left, i);
2517 if (!left->map_token) {
2518 map_extent_buffer(left, (unsigned long)item,
2519 sizeof(struct btrfs_item),
2520 &left->map_token, &left->kaddr,
2521 &left->map_start, &left->map_len,
2522 KM_USER1);
2523 }
2524
2525 ioff = btrfs_item_offset(left, item);
2526 btrfs_set_item_offset(left, item,
2527 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size));
2528 }
2529 btrfs_set_header_nritems(left, old_left_nritems + push_items);
2530 if (left->map_token) {
2531 unmap_extent_buffer(left, left->map_token, KM_USER1);
2532 left->map_token = NULL;
2533 }
2534
2535 /* fixup right node */
2536 if (push_items > right_nritems) {
2537 printk("push items %d nr %u\n", push_items, right_nritems);
2538 WARN_ON(1);
2539 }
2540
2541 if (push_items < right_nritems) {
2542 push_space = btrfs_item_offset_nr(right, push_items - 1) -
2543 leaf_data_end(root, right);
2544 memmove_extent_buffer(right, btrfs_leaf_data(right) +
2545 BTRFS_LEAF_DATA_SIZE(root) - push_space,
2546 btrfs_leaf_data(right) +
2547 leaf_data_end(root, right), push_space);
2548
2549 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
2550 btrfs_item_nr_offset(push_items),
2551 (btrfs_header_nritems(right) - push_items) *
2552 sizeof(struct btrfs_item));
2553 }
2554 right_nritems -= push_items;
2555 btrfs_set_header_nritems(right, right_nritems);
2556 push_space = BTRFS_LEAF_DATA_SIZE(root);
2557 for (i = 0; i < right_nritems; i++) {
2558 item = btrfs_item_nr(right, i);
2559
2560 if (!right->map_token) {
2561 map_extent_buffer(right, (unsigned long)item,
2562 sizeof(struct btrfs_item),
2563 &right->map_token, &right->kaddr,
2564 &right->map_start, &right->map_len,
2565 KM_USER1);
2566 }
2567
2568 push_space = push_space - btrfs_item_size(right, item);
2569 btrfs_set_item_offset(right, item, push_space);
2570 }
2571 if (right->map_token) {
2572 unmap_extent_buffer(right, right->map_token, KM_USER1);
2573 right->map_token = NULL;
2574 }
2575
2576 btrfs_mark_buffer_dirty(left);
2577 if (right_nritems)
2578 btrfs_mark_buffer_dirty(right);
2579
2580 ret = btrfs_update_ref(trans, root, right, left,
2581 old_left_nritems, push_items);
2582 BUG_ON(ret);
2583
2584 btrfs_item_key(right, &disk_key, 0);
2585 wret = fixup_low_keys(trans, root, path, &disk_key, 1);
2586 if (wret)
2587 ret = wret;
2588
2589 /* then fixup the leaf pointer in the path */
2590 if (path->slots[0] < push_items) {
2591 path->slots[0] += old_left_nritems;
2592 if (btrfs_header_nritems(path->nodes[0]) == 0)
2593 clean_tree_block(trans, root, path->nodes[0]);
2594 btrfs_tree_unlock(path->nodes[0]);
2595 free_extent_buffer(path->nodes[0]);
2596 path->nodes[0] = left;
2597 path->slots[1] -= 1;
2598 } else {
2599 btrfs_tree_unlock(left);
2600 free_extent_buffer(left);
2601 path->slots[0] -= push_items;
2602 }
2603 BUG_ON(path->slots[0] < 0);
2604 return ret;
2605out:
2606 btrfs_tree_unlock(left);
2607 free_extent_buffer(left);
2608 return ret;
2609}
2610
2611/*
2612 * split the path's leaf in two, making sure there is at least data_size
2613 * available for the resulting leaf level of the path.
2614 *
2615 * returns 0 if all went well and < 0 on failure.
2616 */
2617static noinline int split_leaf(struct btrfs_trans_handle *trans,
2618 struct btrfs_root *root,
2619 struct btrfs_key *ins_key,
2620 struct btrfs_path *path, int data_size,
2621 int extend)
2622{
2623 struct extent_buffer *l;
2624 u32 nritems;
2625 int mid;
2626 int slot;
2627 struct extent_buffer *right;
2628 int space_needed = data_size + sizeof(struct btrfs_item);
2629 int data_copy_size;
2630 int rt_data_off;
2631 int i;
2632 int ret = 0;
2633 int wret;
2634 int double_split;
2635 int num_doubles = 0;
2636 struct btrfs_disk_key disk_key;
2637
2638 if (extend)
2639 space_needed = data_size;
2640
2641 /* first try to make some room by pushing left and right */
2642 if (ins_key->type != BTRFS_DIR_ITEM_KEY) {
2643 wret = push_leaf_right(trans, root, path, data_size, 0);
2644 if (wret < 0) {
2645 return wret;
2646 }
2647 if (wret) {
2648 wret = push_leaf_left(trans, root, path, data_size, 0);
2649 if (wret < 0)
2650 return wret;
2651 }
2652 l = path->nodes[0];
2653
2654 /* did the pushes work? */
2655 if (btrfs_leaf_free_space(root, l) >= space_needed)
2656 return 0;
2657 }
2658
2659 if (!path->nodes[1]) {
2660 ret = insert_new_root(trans, root, path, 1);
2661 if (ret)
2662 return ret;
2663 }
2664again:
2665 double_split = 0;
2666 l = path->nodes[0];
2667 slot = path->slots[0];
2668 nritems = btrfs_header_nritems(l);
2669 mid = (nritems + 1)/ 2;
2670
2671 right = btrfs_alloc_free_block(trans, root, root->leafsize,
2672 path->nodes[1]->start,
2673 root->root_key.objectid,
2674 trans->transid, 0, l->start, 0);
2675 if (IS_ERR(right)) {
2676 BUG_ON(1);
2677 return PTR_ERR(right);
2678 }
2679
2680 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
2681 btrfs_set_header_bytenr(right, right->start);
2682 btrfs_set_header_generation(right, trans->transid);
2683 btrfs_set_header_owner(right, root->root_key.objectid);
2684 btrfs_set_header_level(right, 0);
2685 write_extent_buffer(right, root->fs_info->fsid,
2686 (unsigned long)btrfs_header_fsid(right),
2687 BTRFS_FSID_SIZE);
2688
2689 write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
2690 (unsigned long)btrfs_header_chunk_tree_uuid(right),
2691 BTRFS_UUID_SIZE);
2692 if (mid <= slot) {
2693 if (nritems == 1 ||
2694 leaf_space_used(l, mid, nritems - mid) + space_needed >
2695 BTRFS_LEAF_DATA_SIZE(root)) {
2696 if (slot >= nritems) {
2697 btrfs_cpu_key_to_disk(&disk_key, ins_key);
2698 btrfs_set_header_nritems(right, 0);
2699 wret = insert_ptr(trans, root, path,
2700 &disk_key, right->start,
2701 path->slots[1] + 1, 1);
2702 if (wret)
2703 ret = wret;
2704
2705 btrfs_tree_unlock(path->nodes[0]);
2706 free_extent_buffer(path->nodes[0]);
2707 path->nodes[0] = right;
2708 path->slots[0] = 0;
2709 path->slots[1] += 1;
2710 btrfs_mark_buffer_dirty(right);
2711 return ret;
2712 }
2713 mid = slot;
2714 if (mid != nritems &&
2715 leaf_space_used(l, mid, nritems - mid) +
2716 space_needed > BTRFS_LEAF_DATA_SIZE(root)) {
2717 double_split = 1;
2718 }
2719 }
2720 } else {
2721 if (leaf_space_used(l, 0, mid + 1) + space_needed >
2722 BTRFS_LEAF_DATA_SIZE(root)) {
2723 if (!extend && slot == 0) {
2724 btrfs_cpu_key_to_disk(&disk_key, ins_key);
2725 btrfs_set_header_nritems(right, 0);
2726 wret = insert_ptr(trans, root, path,
2727 &disk_key,
2728 right->start,
2729 path->slots[1], 1);
2730 if (wret)
2731 ret = wret;
2732 btrfs_tree_unlock(path->nodes[0]);
2733 free_extent_buffer(path->nodes[0]);
2734 path->nodes[0] = right;
2735 path->slots[0] = 0;
2736 if (path->slots[1] == 0) {
2737 wret = fixup_low_keys(trans, root,
2738 path, &disk_key, 1);
2739 if (wret)
2740 ret = wret;
2741 }
2742 btrfs_mark_buffer_dirty(right);
2743 return ret;
2744 } else if (extend && slot == 0) {
2745 mid = 1;
2746 } else {
2747 mid = slot;
2748 if (mid != nritems &&
2749 leaf_space_used(l, mid, nritems - mid) +
2750 space_needed > BTRFS_LEAF_DATA_SIZE(root)) {
2751 double_split = 1;
2752 }
2753 }
2754 }
2755 }
2756 nritems = nritems - mid;
2757 btrfs_set_header_nritems(right, nritems);
2758 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
2759
2760 copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
2761 btrfs_item_nr_offset(mid),
2762 nritems * sizeof(struct btrfs_item));
2763
2764 copy_extent_buffer(right, l,
2765 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
2766 data_copy_size, btrfs_leaf_data(l) +
2767 leaf_data_end(root, l), data_copy_size);
2768
2769 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
2770 btrfs_item_end_nr(l, mid);
2771
2772 for (i = 0; i < nritems; i++) {
2773 struct btrfs_item *item = btrfs_item_nr(right, i);
2774 u32 ioff;
2775
2776 if (!right->map_token) {
2777 map_extent_buffer(right, (unsigned long)item,
2778 sizeof(struct btrfs_item),
2779 &right->map_token, &right->kaddr,
2780 &right->map_start, &right->map_len,
2781 KM_USER1);
2782 }
2783
2784 ioff = btrfs_item_offset(right, item);
2785 btrfs_set_item_offset(right, item, ioff + rt_data_off);
2786 }
2787
2788 if (right->map_token) {
2789 unmap_extent_buffer(right, right->map_token, KM_USER1);
2790 right->map_token = NULL;
2791 }
2792
2793 btrfs_set_header_nritems(l, mid);
2794 ret = 0;
2795 btrfs_item_key(right, &disk_key, 0);
2796 wret = insert_ptr(trans, root, path, &disk_key, right->start,
2797 path->slots[1] + 1, 1);
2798 if (wret)
2799 ret = wret;
2800
2801 btrfs_mark_buffer_dirty(right);
2802 btrfs_mark_buffer_dirty(l);
2803 BUG_ON(path->slots[0] != slot);
2804
2805 ret = btrfs_update_ref(trans, root, l, right, 0, nritems);
2806 BUG_ON(ret);
2807
2808 if (mid <= slot) {
2809 btrfs_tree_unlock(path->nodes[0]);
2810 free_extent_buffer(path->nodes[0]);
2811 path->nodes[0] = right;
2812 path->slots[0] -= mid;
2813 path->slots[1] += 1;
2814 } else {
2815 btrfs_tree_unlock(right);
2816 free_extent_buffer(right);
2817 }
2818
2819 BUG_ON(path->slots[0] < 0);
2820
2821 if (double_split) {
2822 BUG_ON(num_doubles != 0);
2823 num_doubles++;
2824 goto again;
2825 }
2826 return ret;
2827}
2828
2829/*
2830 * make the item pointed to by the path smaller. new_size indicates
2831 * how small to make it, and from_end tells us if we just chop bytes
2832 * off the end of the item or if we shift the item to chop bytes off
2833 * the front.
2834 */
2835int btrfs_truncate_item(struct btrfs_trans_handle *trans,
2836 struct btrfs_root *root,
2837 struct btrfs_path *path,
2838 u32 new_size, int from_end)
2839{
2840 int ret = 0;
2841 int slot;
2842 int slot_orig;
2843 struct extent_buffer *leaf;
2844 struct btrfs_item *item;
2845 u32 nritems;
2846 unsigned int data_end;
2847 unsigned int old_data_start;
2848 unsigned int old_size;
2849 unsigned int size_diff;
2850 int i;
2851
2852 slot_orig = path->slots[0];
2853 leaf = path->nodes[0];
2854 slot = path->slots[0];
2855
2856 old_size = btrfs_item_size_nr(leaf, slot);
2857 if (old_size == new_size)
2858 return 0;
2859
2860 nritems = btrfs_header_nritems(leaf);
2861 data_end = leaf_data_end(root, leaf);
2862
2863 old_data_start = btrfs_item_offset_nr(leaf, slot);
2864
2865 size_diff = old_size - new_size;
2866
2867 BUG_ON(slot < 0);
2868 BUG_ON(slot >= nritems);
2869
2870 /*
2871 * item0..itemN ... dataN.offset..dataN.size .. data0.size
2872 */
2873 /* first correct the data pointers */
2874 for (i = slot; i < nritems; i++) {
2875 u32 ioff;
2876 item = btrfs_item_nr(leaf, i);
2877
2878 if (!leaf->map_token) {
2879 map_extent_buffer(leaf, (unsigned long)item,
2880 sizeof(struct btrfs_item),
2881 &leaf->map_token, &leaf->kaddr,
2882 &leaf->map_start, &leaf->map_len,
2883 KM_USER1);
2884 }
2885
2886 ioff = btrfs_item_offset(leaf, item);
2887 btrfs_set_item_offset(leaf, item, ioff + size_diff);
2888 }
2889
2890 if (leaf->map_token) {
2891 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
2892 leaf->map_token = NULL;
2893 }
2894
2895 /* shift the data */
2896 if (from_end) {
2897 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
2898 data_end + size_diff, btrfs_leaf_data(leaf) +
2899 data_end, old_data_start + new_size - data_end);
2900 } else {
2901 struct btrfs_disk_key disk_key;
2902 u64 offset;
2903
2904 btrfs_item_key(leaf, &disk_key, slot);
2905
2906 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
2907 unsigned long ptr;
2908 struct btrfs_file_extent_item *fi;
2909
2910 fi = btrfs_item_ptr(leaf, slot,
2911 struct btrfs_file_extent_item);
2912 fi = (struct btrfs_file_extent_item *)(
2913 (unsigned long)fi - size_diff);
2914
2915 if (btrfs_file_extent_type(leaf, fi) ==
2916 BTRFS_FILE_EXTENT_INLINE) {
2917 ptr = btrfs_item_ptr_offset(leaf, slot);
2918 memmove_extent_buffer(leaf, ptr,
2919 (unsigned long)fi,
2920 offsetof(struct btrfs_file_extent_item,
2921 disk_bytenr));
2922 }
2923 }
2924
2925 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
2926 data_end + size_diff, btrfs_leaf_data(leaf) +
2927 data_end, old_data_start - data_end);
2928
2929 offset = btrfs_disk_key_offset(&disk_key);
2930 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
2931 btrfs_set_item_key(leaf, &disk_key, slot);
2932 if (slot == 0)
2933 fixup_low_keys(trans, root, path, &disk_key, 1);
2934 }
2935
2936 item = btrfs_item_nr(leaf, slot);
2937 btrfs_set_item_size(leaf, item, new_size);
2938 btrfs_mark_buffer_dirty(leaf);
2939
2940 ret = 0;
2941 if (btrfs_leaf_free_space(root, leaf) < 0) {
2942 btrfs_print_leaf(root, leaf);
2943 BUG();
2944 }
2945 return ret;
2946}
2947
2948/*
2949 * make the item pointed to by the path bigger, data_size is the new size.
2950 */
2951int btrfs_extend_item(struct btrfs_trans_handle *trans,
2952 struct btrfs_root *root, struct btrfs_path *path,
2953 u32 data_size)
2954{
2955 int ret = 0;
2956 int slot;
2957 int slot_orig;
2958 struct extent_buffer *leaf;
2959 struct btrfs_item *item;
2960 u32 nritems;
2961 unsigned int data_end;
2962 unsigned int old_data;
2963 unsigned int old_size;
2964 int i;
2965
2966 slot_orig = path->slots[0];
2967 leaf = path->nodes[0];
2968
2969 nritems = btrfs_header_nritems(leaf);
2970 data_end = leaf_data_end(root, leaf);
2971
2972 if (btrfs_leaf_free_space(root, leaf) < data_size) {
2973 btrfs_print_leaf(root, leaf);
2974 BUG();
2975 }
2976 slot = path->slots[0];
2977 old_data = btrfs_item_end_nr(leaf, slot);
2978
2979 BUG_ON(slot < 0);
2980 if (slot >= nritems) {
2981 btrfs_print_leaf(root, leaf);
2982 printk("slot %d too large, nritems %d\n", slot, nritems);
2983 BUG_ON(1);
2984 }
2985
2986 /*
2987 * item0..itemN ... dataN.offset..dataN.size .. data0.size
2988 */
2989 /* first correct the data pointers */
2990 for (i = slot; i < nritems; i++) {
2991 u32 ioff;
2992 item = btrfs_item_nr(leaf, i);
2993
2994 if (!leaf->map_token) {
2995 map_extent_buffer(leaf, (unsigned long)item,
2996 sizeof(struct btrfs_item),
2997 &leaf->map_token, &leaf->kaddr,
2998 &leaf->map_start, &leaf->map_len,
2999 KM_USER1);
3000 }
3001 ioff = btrfs_item_offset(leaf, item);
3002 btrfs_set_item_offset(leaf, item, ioff - data_size);
3003 }
3004
3005 if (leaf->map_token) {
3006 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3007 leaf->map_token = NULL;
3008 }
3009
3010 /* shift the data */
3011 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3012 data_end - data_size, btrfs_leaf_data(leaf) +
3013 data_end, old_data - data_end);
3014
3015 data_end = old_data;
3016 old_size = btrfs_item_size_nr(leaf, slot);
3017 item = btrfs_item_nr(leaf, slot);
3018 btrfs_set_item_size(leaf, item, old_size + data_size);
3019 btrfs_mark_buffer_dirty(leaf);
3020
3021 ret = 0;
3022 if (btrfs_leaf_free_space(root, leaf) < 0) {
3023 btrfs_print_leaf(root, leaf);
3024 BUG();
3025 }
3026 return ret;
3027}
3028
3029/*
3030 * Given a key and some data, insert items into the tree.
3031 * This does all the path init required, making room in the tree if needed.
3032 * Returns the number of keys that were inserted.
3033 */
3034int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
3035 struct btrfs_root *root,
3036 struct btrfs_path *path,
3037 struct btrfs_key *cpu_key, u32 *data_size,
3038 int nr)
3039{
3040 struct extent_buffer *leaf;
3041 struct btrfs_item *item;
3042 int ret = 0;
3043 int slot;
3044 int i;
3045 u32 nritems;
3046 u32 total_data = 0;
3047 u32 total_size = 0;
3048 unsigned int data_end;
3049 struct btrfs_disk_key disk_key;
3050 struct btrfs_key found_key;
3051
3052 found_key.objectid = 0;
3053 nr = min_t(int, nr, BTRFS_NODEPTRS_PER_BLOCK(root));
3054
3055 for (i = 0; i < nr; i++)
3056 total_data += data_size[i];
3057
3058 total_data = min_t(u32, total_data, BTRFS_LEAF_DATA_SIZE(root));
3059 total_size = total_data + (nr * sizeof(struct btrfs_item));
3060 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3061 if (ret == 0)
3062 return -EEXIST;
3063 if (ret < 0)
3064 goto out;
3065
3066 leaf = path->nodes[0];
3067
3068 nritems = btrfs_header_nritems(leaf);
3069 data_end = leaf_data_end(root, leaf);
3070
3071 if (btrfs_leaf_free_space(root, leaf) < total_size) {
3072 for (i = nr; i >= 0; i--) {
3073 total_data -= data_size[i];
3074 total_size -= data_size[i] + sizeof(struct btrfs_item);
3075 if (total_size < btrfs_leaf_free_space(root, leaf))
3076 break;
3077 }
3078 nr = i;
3079 }
3080
3081 slot = path->slots[0];
3082 BUG_ON(slot < 0);
3083
3084 if (slot != nritems) {
3085 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3086
3087 item = btrfs_item_nr(leaf, slot);
3088 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3089
3090 /* figure out how many keys we can insert in here */
3091 total_data = data_size[0];
3092 for (i = 1; i < nr; i++) {
3093 if (comp_cpu_keys(&found_key, cpu_key + i) <= 0)
3094 break;
3095 total_data += data_size[i];
3096 }
3097 nr = i;
3098
3099 if (old_data < data_end) {
3100 btrfs_print_leaf(root, leaf);
3101 printk("slot %d old_data %d data_end %d\n",
3102 slot, old_data, data_end);
3103 BUG_ON(1);
3104 }
3105 /*
3106 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3107 */
3108 /* first correct the data pointers */
3109 WARN_ON(leaf->map_token);
3110 for (i = slot; i < nritems; i++) {
3111 u32 ioff;
3112
3113 item = btrfs_item_nr(leaf, i);
3114 if (!leaf->map_token) {
3115 map_extent_buffer(leaf, (unsigned long)item,
3116 sizeof(struct btrfs_item),
3117 &leaf->map_token, &leaf->kaddr,
3118 &leaf->map_start, &leaf->map_len,
3119 KM_USER1);
3120 }
3121
3122 ioff = btrfs_item_offset(leaf, item);
3123 btrfs_set_item_offset(leaf, item, ioff - total_data);
3124 }
3125 if (leaf->map_token) {
3126 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3127 leaf->map_token = NULL;
3128 }
3129
3130 /* shift the items */
3131 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3132 btrfs_item_nr_offset(slot),
3133 (nritems - slot) * sizeof(struct btrfs_item));
3134
3135 /* shift the data */
3136 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3137 data_end - total_data, btrfs_leaf_data(leaf) +
3138 data_end, old_data - data_end);
3139 data_end = old_data;
3140 } else {
3141 /*
3142 * this sucks but it has to be done, if we are inserting at
3143 * the end of the leaf only insert 1 of the items, since we
3144 * have no way of knowing whats on the next leaf and we'd have
3145 * to drop our current locks to figure it out
3146 */
3147 nr = 1;
3148 }
3149
3150 /* setup the item for the new data */
3151 for (i = 0; i < nr; i++) {
3152 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3153 btrfs_set_item_key(leaf, &disk_key, slot + i);
3154 item = btrfs_item_nr(leaf, slot + i);
3155 btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
3156 data_end -= data_size[i];
3157 btrfs_set_item_size(leaf, item, data_size[i]);
3158 }
3159 btrfs_set_header_nritems(leaf, nritems + nr);
3160 btrfs_mark_buffer_dirty(leaf);
3161
3162 ret = 0;
3163 if (slot == 0) {
3164 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3165 ret = fixup_low_keys(trans, root, path, &disk_key, 1);
3166 }
3167
3168 if (btrfs_leaf_free_space(root, leaf) < 0) {
3169 btrfs_print_leaf(root, leaf);
3170 BUG();
3171 }
3172out:
3173 if (!ret)
3174 ret = nr;
3175 return ret;
3176}
3177
3178/*
3179 * Given a key and some data, insert items into the tree.
3180 * This does all the path init required, making room in the tree if needed.
3181 */
3182int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
3183 struct btrfs_root *root,
3184 struct btrfs_path *path,
3185 struct btrfs_key *cpu_key, u32 *data_size,
3186 int nr)
3187{
3188 struct extent_buffer *leaf;
3189 struct btrfs_item *item;
3190 int ret = 0;
3191 int slot;
3192 int slot_orig;
3193 int i;
3194 u32 nritems;
3195 u32 total_size = 0;
3196 u32 total_data = 0;
3197 unsigned int data_end;
3198 struct btrfs_disk_key disk_key;
3199
3200 for (i = 0; i < nr; i++) {
3201 total_data += data_size[i];
3202 }
3203
3204 total_size = total_data + (nr * sizeof(struct btrfs_item));
3205 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3206 if (ret == 0)
3207 return -EEXIST;
3208 if (ret < 0)
3209 goto out;
3210
3211 slot_orig = path->slots[0];
3212 leaf = path->nodes[0];
3213
3214 nritems = btrfs_header_nritems(leaf);
3215 data_end = leaf_data_end(root, leaf);
3216
3217 if (btrfs_leaf_free_space(root, leaf) < total_size) {
3218 btrfs_print_leaf(root, leaf);
3219 printk("not enough freespace need %u have %d\n",
3220 total_size, btrfs_leaf_free_space(root, leaf));
3221 BUG();
3222 }
3223
3224 slot = path->slots[0];
3225 BUG_ON(slot < 0);
3226
3227 if (slot != nritems) {
3228 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3229
3230 if (old_data < data_end) {
3231 btrfs_print_leaf(root, leaf);
3232 printk("slot %d old_data %d data_end %d\n",
3233 slot, old_data, data_end);
3234 BUG_ON(1);
3235 }
3236 /*
3237 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3238 */
3239 /* first correct the data pointers */
3240 WARN_ON(leaf->map_token);
3241 for (i = slot; i < nritems; i++) {
3242 u32 ioff;
3243
3244 item = btrfs_item_nr(leaf, i);
3245 if (!leaf->map_token) {
3246 map_extent_buffer(leaf, (unsigned long)item,
3247 sizeof(struct btrfs_item),
3248 &leaf->map_token, &leaf->kaddr,
3249 &leaf->map_start, &leaf->map_len,
3250 KM_USER1);
3251 }
3252
3253 ioff = btrfs_item_offset(leaf, item);
3254 btrfs_set_item_offset(leaf, item, ioff - total_data);
3255 }
3256 if (leaf->map_token) {
3257 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3258 leaf->map_token = NULL;
3259 }
3260
3261 /* shift the items */
3262 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3263 btrfs_item_nr_offset(slot),
3264 (nritems - slot) * sizeof(struct btrfs_item));
3265
3266 /* shift the data */
3267 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3268 data_end - total_data, btrfs_leaf_data(leaf) +
3269 data_end, old_data - data_end);
3270 data_end = old_data;
3271 }
3272
3273 /* setup the item for the new data */
3274 for (i = 0; i < nr; i++) {
3275 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3276 btrfs_set_item_key(leaf, &disk_key, slot + i);
3277 item = btrfs_item_nr(leaf, slot + i);
3278 btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
3279 data_end -= data_size[i];
3280 btrfs_set_item_size(leaf, item, data_size[i]);
3281 }
3282 btrfs_set_header_nritems(leaf, nritems + nr);
3283 btrfs_mark_buffer_dirty(leaf);
3284
3285 ret = 0;
3286 if (slot == 0) {
3287 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3288 ret = fixup_low_keys(trans, root, path, &disk_key, 1);
3289 }
3290
3291 if (btrfs_leaf_free_space(root, leaf) < 0) {
3292 btrfs_print_leaf(root, leaf);
3293 BUG();
3294 }
3295out:
3296 return ret;
3297}
3298
3299/*
3300 * Given a key and some data, insert an item into the tree.
3301 * This does all the path init required, making room in the tree if needed.
3302 */
3303int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
3304 *root, struct btrfs_key *cpu_key, void *data, u32
3305 data_size)
3306{
3307 int ret = 0;
3308 struct btrfs_path *path;
3309 struct extent_buffer *leaf;
3310 unsigned long ptr;
3311
3312 path = btrfs_alloc_path();
3313 BUG_ON(!path);
3314 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
3315 if (!ret) {
3316 leaf = path->nodes[0];
3317 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3318 write_extent_buffer(leaf, data, ptr, data_size);
3319 btrfs_mark_buffer_dirty(leaf);
3320 }
3321 btrfs_free_path(path);
3322 return ret;
3323}
3324
3325/*
3326 * delete the pointer from a given node.
3327 *
3328 * the tree should have been previously balanced so the deletion does not
3329 * empty a node.
3330 */
3331static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3332 struct btrfs_path *path, int level, int slot)
3333{
3334 struct extent_buffer *parent = path->nodes[level];
3335 u32 nritems;
3336 int ret = 0;
3337 int wret;
3338
3339 nritems = btrfs_header_nritems(parent);
3340 if (slot != nritems -1) {
3341 memmove_extent_buffer(parent,
3342 btrfs_node_key_ptr_offset(slot),
3343 btrfs_node_key_ptr_offset(slot + 1),
3344 sizeof(struct btrfs_key_ptr) *
3345 (nritems - slot - 1));
3346 }
3347 nritems--;
3348 btrfs_set_header_nritems(parent, nritems);
3349 if (nritems == 0 && parent == root->node) {
3350 BUG_ON(btrfs_header_level(root->node) != 1);
3351 /* just turn the root into a leaf and break */
3352 btrfs_set_header_level(root->node, 0);
3353 } else if (slot == 0) {
3354 struct btrfs_disk_key disk_key;
3355
3356 btrfs_node_key(parent, &disk_key, 0);
3357 wret = fixup_low_keys(trans, root, path, &disk_key, level + 1);
3358 if (wret)
3359 ret = wret;
3360 }
3361 btrfs_mark_buffer_dirty(parent);
3362 return ret;
3363}
3364
3365/*
3366 * a helper function to delete the leaf pointed to by path->slots[1] and
3367 * path->nodes[1]. bytenr is the node block pointer, but since the callers
3368 * already know it, it is faster to have them pass it down than to
3369 * read it out of the node again.
3370 *
3371 * This deletes the pointer in path->nodes[1] and frees the leaf
3372 * block extent. zero is returned if it all worked out, < 0 otherwise.
3373 *
3374 * The path must have already been setup for deleting the leaf, including
3375 * all the proper balancing. path->nodes[1] must be locked.
3376 */
3377noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
3378 struct btrfs_root *root,
3379 struct btrfs_path *path, u64 bytenr)
3380{
3381 int ret;
3382 u64 root_gen = btrfs_header_generation(path->nodes[1]);
3383
3384 ret = del_ptr(trans, root, path, 1, path->slots[1]);
3385 if (ret)
3386 return ret;
3387
3388 ret = btrfs_free_extent(trans, root, bytenr,
3389 btrfs_level_size(root, 0),
3390 path->nodes[1]->start,
3391 btrfs_header_owner(path->nodes[1]),
3392 root_gen, 0, 1);
3393 return ret;
3394}
3395/*
3396 * delete the item at the leaf level in path. If that empties
3397 * the leaf, remove it from the tree
3398 */
3399int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3400 struct btrfs_path *path, int slot, int nr)
3401{
3402 struct extent_buffer *leaf;
3403 struct btrfs_item *item;
3404 int last_off;
3405 int dsize = 0;
3406 int ret = 0;
3407 int wret;
3408 int i;
3409 u32 nritems;
3410
3411 leaf = path->nodes[0];
3412 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
3413
3414 for (i = 0; i < nr; i++)
3415 dsize += btrfs_item_size_nr(leaf, slot + i);
3416
3417 nritems = btrfs_header_nritems(leaf);
3418
3419 if (slot + nr != nritems) {
3420 int data_end = leaf_data_end(root, leaf);
3421
3422 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3423 data_end + dsize,
3424 btrfs_leaf_data(leaf) + data_end,
3425 last_off - data_end);
3426
3427 for (i = slot + nr; i < nritems; i++) {
3428 u32 ioff;
3429
3430 item = btrfs_item_nr(leaf, i);
3431 if (!leaf->map_token) {
3432 map_extent_buffer(leaf, (unsigned long)item,
3433 sizeof(struct btrfs_item),
3434 &leaf->map_token, &leaf->kaddr,
3435 &leaf->map_start, &leaf->map_len,
3436 KM_USER1);
3437 }
3438 ioff = btrfs_item_offset(leaf, item);
3439 btrfs_set_item_offset(leaf, item, ioff + dsize);
3440 }
3441
3442 if (leaf->map_token) {
3443 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3444 leaf->map_token = NULL;
3445 }
3446
3447 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
3448 btrfs_item_nr_offset(slot + nr),
3449 sizeof(struct btrfs_item) *
3450 (nritems - slot - nr));
3451 }
3452 btrfs_set_header_nritems(leaf, nritems - nr);
3453 nritems -= nr;
3454
3455 /* delete the leaf if we've emptied it */
3456 if (nritems == 0) {
3457 if (leaf == root->node) {
3458 btrfs_set_header_level(leaf, 0);
3459 } else {
3460 ret = btrfs_del_leaf(trans, root, path, leaf->start);
3461 BUG_ON(ret);
3462 }
3463 } else {
3464 int used = leaf_space_used(leaf, 0, nritems);
3465 if (slot == 0) {
3466 struct btrfs_disk_key disk_key;
3467
3468 btrfs_item_key(leaf, &disk_key, 0);
3469 wret = fixup_low_keys(trans, root, path,
3470 &disk_key, 1);
3471 if (wret)
3472 ret = wret;
3473 }
3474
3475 /* delete the leaf if it is mostly empty */
3476 if (used < BTRFS_LEAF_DATA_SIZE(root) / 4) {
3477 /* push_leaf_left fixes the path.
3478 * make sure the path still points to our leaf
3479 * for possible call to del_ptr below
3480 */
3481 slot = path->slots[1];
3482 extent_buffer_get(leaf);
3483
3484 wret = push_leaf_left(trans, root, path, 1, 1);
3485 if (wret < 0 && wret != -ENOSPC)
3486 ret = wret;
3487
3488 if (path->nodes[0] == leaf &&
3489 btrfs_header_nritems(leaf)) {
3490 wret = push_leaf_right(trans, root, path, 1, 1);
3491 if (wret < 0 && wret != -ENOSPC)
3492 ret = wret;
3493 }
3494
3495 if (btrfs_header_nritems(leaf) == 0) {
3496 path->slots[1] = slot;
3497 ret = btrfs_del_leaf(trans, root, path, leaf->start);
3498 BUG_ON(ret);
3499 free_extent_buffer(leaf);
3500 } else {
3501 /* if we're still in the path, make sure
3502 * we're dirty. Otherwise, one of the
3503 * push_leaf functions must have already
3504 * dirtied this buffer
3505 */
3506 if (path->nodes[0] == leaf)
3507 btrfs_mark_buffer_dirty(leaf);
3508 free_extent_buffer(leaf);
3509 }
3510 } else {
3511 btrfs_mark_buffer_dirty(leaf);
3512 }
3513 }
3514 return ret;
3515}
3516
3517/*
3518 * search the tree again to find a leaf with lesser keys
3519 * returns 0 if it found something or 1 if there are no lesser leaves.
3520 * returns < 0 on io errors.
3521 *
3522 * This may release the path, and so you may lose any locks held at the
3523 * time you call it.
3524 */
3525int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
3526{
3527 struct btrfs_key key;
3528 struct btrfs_disk_key found_key;
3529 int ret;
3530
3531 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
3532
3533 if (key.offset > 0)
3534 key.offset--;
3535 else if (key.type > 0)
3536 key.type--;
3537 else if (key.objectid > 0)
3538 key.objectid--;
3539 else
3540 return 1;
3541
3542 btrfs_release_path(root, path);
3543 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3544 if (ret < 0)
3545 return ret;
3546 btrfs_item_key(path->nodes[0], &found_key, 0);
3547 ret = comp_keys(&found_key, &key);
3548 if (ret < 0)
3549 return 0;
3550 return 1;
3551}
3552
3553/*
3554 * A helper function to walk down the tree starting at min_key, and looking
3555 * for nodes or leaves that are either in cache or have a minimum
3556 * transaction id. This is used by the btree defrag code, and tree logging
3557 *
3558 * This does not cow, but it does stuff the starting key it finds back
3559 * into min_key, so you can call btrfs_search_slot with cow=1 on the
3560 * key and get a writable path.
3561 *
3562 * This does lock as it descends, and path->keep_locks should be set
3563 * to 1 by the caller.
3564 *
3565 * This honors path->lowest_level to prevent descent past a given level
3566 * of the tree.
3567 *
3568 * min_trans indicates the oldest transaction that you are interested
3569 * in walking through. Any nodes or leaves older than min_trans are
3570 * skipped over (without reading them).
3571 *
3572 * returns zero if something useful was found, < 0 on error and 1 if there
3573 * was nothing in the tree that matched the search criteria.
3574 */
3575int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
3576 struct btrfs_key *max_key,
3577 struct btrfs_path *path, int cache_only,
3578 u64 min_trans)
3579{
3580 struct extent_buffer *cur;
3581 struct btrfs_key found_key;
3582 int slot;
3583 int sret;
3584 u32 nritems;
3585 int level;
3586 int ret = 1;
3587
3588again:
3589 cur = btrfs_lock_root_node(root);
3590 level = btrfs_header_level(cur);
3591 WARN_ON(path->nodes[level]);
3592 path->nodes[level] = cur;
3593 path->locks[level] = 1;
3594
3595 if (btrfs_header_generation(cur) < min_trans) {
3596 ret = 1;
3597 goto out;
3598 }
3599 while(1) {
3600 nritems = btrfs_header_nritems(cur);
3601 level = btrfs_header_level(cur);
3602 sret = bin_search(cur, min_key, level, &slot);
3603
3604 /* at the lowest level, we're done, setup the path and exit */
3605 if (level == path->lowest_level) {
3606 if (slot >= nritems)
3607 goto find_next_key;
3608 ret = 0;
3609 path->slots[level] = slot;
3610 btrfs_item_key_to_cpu(cur, &found_key, slot);
3611 goto out;
3612 }
3613 if (sret && slot > 0)
3614 slot--;
3615 /*
3616 * check this node pointer against the cache_only and
3617 * min_trans parameters. If it isn't in cache or is too
3618 * old, skip to the next one.
3619 */
3620 while(slot < nritems) {
3621 u64 blockptr;
3622 u64 gen;
3623 struct extent_buffer *tmp;
3624 struct btrfs_disk_key disk_key;
3625
3626 blockptr = btrfs_node_blockptr(cur, slot);
3627 gen = btrfs_node_ptr_generation(cur, slot);
3628 if (gen < min_trans) {
3629 slot++;
3630 continue;
3631 }
3632 if (!cache_only)
3633 break;
3634
3635 if (max_key) {
3636 btrfs_node_key(cur, &disk_key, slot);
3637 if (comp_keys(&disk_key, max_key) >= 0) {
3638 ret = 1;
3639 goto out;
3640 }
3641 }
3642
3643 tmp = btrfs_find_tree_block(root, blockptr,
3644 btrfs_level_size(root, level - 1));
3645
3646 if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
3647 free_extent_buffer(tmp);
3648 break;
3649 }
3650 if (tmp)
3651 free_extent_buffer(tmp);
3652 slot++;
3653 }
3654find_next_key:
3655 /*
3656 * we didn't find a candidate key in this node, walk forward
3657 * and find another one
3658 */
3659 if (slot >= nritems) {
3660 path->slots[level] = slot;
3661 sret = btrfs_find_next_key(root, path, min_key, level,
3662 cache_only, min_trans);
3663 if (sret == 0) {
3664 btrfs_release_path(root, path);
3665 goto again;
3666 } else {
3667 goto out;
3668 }
3669 }
3670 /* save our key for returning back */
3671 btrfs_node_key_to_cpu(cur, &found_key, slot);
3672 path->slots[level] = slot;
3673 if (level == path->lowest_level) {
3674 ret = 0;
3675 unlock_up(path, level, 1);
3676 goto out;
3677 }
3678 cur = read_node_slot(root, cur, slot);
3679
3680 btrfs_tree_lock(cur);
3681 path->locks[level - 1] = 1;
3682 path->nodes[level - 1] = cur;
3683 unlock_up(path, level, 1);
3684 }
3685out:
3686 if (ret == 0)
3687 memcpy(min_key, &found_key, sizeof(found_key));
3688 return ret;
3689}
3690
3691/*
3692 * this is similar to btrfs_next_leaf, but does not try to preserve
3693 * and fixup the path. It looks for and returns the next key in the
3694 * tree based on the current path and the cache_only and min_trans
3695 * parameters.
3696 *
3697 * 0 is returned if another key is found, < 0 if there are any errors
3698 * and 1 is returned if there are no higher keys in the tree
3699 *
3700 * path->keep_locks should be set to 1 on the search made before
3701 * calling this function.
3702 */
3703int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
3704 struct btrfs_key *key, int lowest_level,
3705 int cache_only, u64 min_trans)
3706{
3707 int level = lowest_level;
3708 int slot;
3709 struct extent_buffer *c;
3710
3711 while(level < BTRFS_MAX_LEVEL) {
3712 if (!path->nodes[level])
3713 return 1;
3714
3715 slot = path->slots[level] + 1;
3716 c = path->nodes[level];
3717next:
3718 if (slot >= btrfs_header_nritems(c)) {
3719 level++;
3720 if (level == BTRFS_MAX_LEVEL) {
3721 return 1;
3722 }
3723 continue;
3724 }
3725 if (level == 0)
3726 btrfs_item_key_to_cpu(c, key, slot);
3727 else {
3728 u64 blockptr = btrfs_node_blockptr(c, slot);
3729 u64 gen = btrfs_node_ptr_generation(c, slot);
3730
3731 if (cache_only) {
3732 struct extent_buffer *cur;
3733 cur = btrfs_find_tree_block(root, blockptr,
3734 btrfs_level_size(root, level - 1));
3735 if (!cur || !btrfs_buffer_uptodate(cur, gen)) {
3736 slot++;
3737 if (cur)
3738 free_extent_buffer(cur);
3739 goto next;
3740 }
3741 free_extent_buffer(cur);
3742 }
3743 if (gen < min_trans) {
3744 slot++;
3745 goto next;
3746 }
3747 btrfs_node_key_to_cpu(c, key, slot);
3748 }
3749 return 0;
3750 }
3751 return 1;
3752}
3753
3754/*
3755 * search the tree again to find a leaf with greater keys
3756 * returns 0 if it found something or 1 if there are no greater leaves.
3757 * returns < 0 on io errors.
3758 */
3759int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
3760{
3761 int slot;
3762 int level = 1;
3763 struct extent_buffer *c;
3764 struct extent_buffer *next = NULL;
3765 struct btrfs_key key;
3766 u32 nritems;
3767 int ret;
3768
3769 nritems = btrfs_header_nritems(path->nodes[0]);
3770 if (nritems == 0) {
3771 return 1;
3772 }
3773
3774 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
3775
3776 btrfs_release_path(root, path);
3777 path->keep_locks = 1;
3778 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3779 path->keep_locks = 0;
3780
3781 if (ret < 0)
3782 return ret;
3783
3784 nritems = btrfs_header_nritems(path->nodes[0]);
3785 /*
3786 * by releasing the path above we dropped all our locks. A balance
3787 * could have added more items next to the key that used to be
3788 * at the very end of the block. So, check again here and
3789 * advance the path if there are now more items available.
3790 */
3791 if (nritems > 0 && path->slots[0] < nritems - 1) {
3792 path->slots[0]++;
3793 goto done;
3794 }
3795
3796 while(level < BTRFS_MAX_LEVEL) {
3797 if (!path->nodes[level])
3798 return 1;
3799
3800 slot = path->slots[level] + 1;
3801 c = path->nodes[level];
3802 if (slot >= btrfs_header_nritems(c)) {
3803 level++;
3804 if (level == BTRFS_MAX_LEVEL) {
3805 return 1;
3806 }
3807 continue;
3808 }
3809
3810 if (next) {
3811 btrfs_tree_unlock(next);
3812 free_extent_buffer(next);
3813 }
3814
3815 if (level == 1 && (path->locks[1] || path->skip_locking) &&
3816 path->reada)
3817 reada_for_search(root, path, level, slot, 0);
3818
3819 next = read_node_slot(root, c, slot);
3820 if (!path->skip_locking) {
3821 WARN_ON(!btrfs_tree_locked(c));
3822 btrfs_tree_lock(next);
3823 }
3824 break;
3825 }
3826 path->slots[level] = slot;
3827 while(1) {
3828 level--;
3829 c = path->nodes[level];
3830 if (path->locks[level])
3831 btrfs_tree_unlock(c);
3832 free_extent_buffer(c);
3833 path->nodes[level] = next;
3834 path->slots[level] = 0;
3835 if (!path->skip_locking)
3836 path->locks[level] = 1;
3837 if (!level)
3838 break;
3839 if (level == 1 && path->locks[1] && path->reada)
3840 reada_for_search(root, path, level, slot, 0);
3841 next = read_node_slot(root, next, 0);
3842 if (!path->skip_locking) {
3843 WARN_ON(!btrfs_tree_locked(path->nodes[level]));
3844 btrfs_tree_lock(next);
3845 }
3846 }
3847done:
3848 unlock_up(path, 0, 1);
3849 return 0;
3850}
3851
3852/*
3853 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
3854 * searching until it gets past min_objectid or finds an item of 'type'
3855 *
3856 * returns 0 if something is found, 1 if nothing was found and < 0 on error
3857 */
3858int btrfs_previous_item(struct btrfs_root *root,
3859 struct btrfs_path *path, u64 min_objectid,
3860 int type)
3861{
3862 struct btrfs_key found_key;
3863 struct extent_buffer *leaf;
3864 u32 nritems;
3865 int ret;
3866
3867 while(1) {
3868 if (path->slots[0] == 0) {
3869 ret = btrfs_prev_leaf(root, path);
3870 if (ret != 0)
3871 return ret;
3872 } else {
3873 path->slots[0]--;
3874 }
3875 leaf = path->nodes[0];
3876 nritems = btrfs_header_nritems(leaf);
3877 if (nritems == 0)
3878 return 1;
3879 if (path->slots[0] == nritems)
3880 path->slots[0]--;
3881
3882 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3883 if (found_key.type == type)
3884 return 0;
3885 if (found_key.objectid < min_objectid)
3886 break;
3887 if (found_key.objectid == min_objectid &&
3888 found_key.type < type)
3889 break;
3890 }
3891 return 1;
3892}