aboutsummaryrefslogtreecommitdiffstats
path: root/drivers
diff options
context:
space:
mode:
Diffstat (limited to 'drivers')
-rw-r--r--drivers/rtc/class.c13
-rw-r--r--drivers/rtc/interface.c574
-rw-r--r--drivers/rtc/rtc-lib.c28
3 files changed, 390 insertions, 225 deletions
diff --git a/drivers/rtc/class.c b/drivers/rtc/class.c
index 565562ba6ac9..95d2b82762d6 100644
--- a/drivers/rtc/class.c
+++ b/drivers/rtc/class.c
@@ -16,6 +16,7 @@
16#include <linux/kdev_t.h> 16#include <linux/kdev_t.h>
17#include <linux/idr.h> 17#include <linux/idr.h>
18#include <linux/slab.h> 18#include <linux/slab.h>
19#include <linux/workqueue.h>
19 20
20#include "rtc-core.h" 21#include "rtc-core.h"
21 22
@@ -152,6 +153,18 @@ struct rtc_device *rtc_device_register(const char *name, struct device *dev,
152 spin_lock_init(&rtc->irq_task_lock); 153 spin_lock_init(&rtc->irq_task_lock);
153 init_waitqueue_head(&rtc->irq_queue); 154 init_waitqueue_head(&rtc->irq_queue);
154 155
156 /* Init timerqueue */
157 timerqueue_init_head(&rtc->timerqueue);
158 INIT_WORK(&rtc->irqwork, rtctimer_do_work);
159 /* Init aie timer */
160 rtctimer_init(&rtc->aie_timer, rtc_aie_update_irq, (void *)rtc);
161 /* Init uie timer */
162 rtctimer_init(&rtc->uie_rtctimer, rtc_uie_update_irq, (void *)rtc);
163 /* Init pie timer */
164 hrtimer_init(&rtc->pie_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
165 rtc->pie_timer.function = rtc_pie_update_irq;
166 rtc->pie_enabled = 0;
167
155 strlcpy(rtc->name, name, RTC_DEVICE_NAME_SIZE); 168 strlcpy(rtc->name, name, RTC_DEVICE_NAME_SIZE);
156 dev_set_name(&rtc->dev, "rtc%d", id); 169 dev_set_name(&rtc->dev, "rtc%d", id);
157 170
diff --git a/drivers/rtc/interface.c b/drivers/rtc/interface.c
index a0c816238aa9..c81c50b497b7 100644
--- a/drivers/rtc/interface.c
+++ b/drivers/rtc/interface.c
@@ -14,15 +14,11 @@
14#include <linux/rtc.h> 14#include <linux/rtc.h>
15#include <linux/sched.h> 15#include <linux/sched.h>
16#include <linux/log2.h> 16#include <linux/log2.h>
17#include <linux/workqueue.h>
17 18
18int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm) 19static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
19{ 20{
20 int err; 21 int err;
21
22 err = mutex_lock_interruptible(&rtc->ops_lock);
23 if (err)
24 return err;
25
26 if (!rtc->ops) 22 if (!rtc->ops)
27 err = -ENODEV; 23 err = -ENODEV;
28 else if (!rtc->ops->read_time) 24 else if (!rtc->ops->read_time)
@@ -31,7 +27,18 @@ int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
31 memset(tm, 0, sizeof(struct rtc_time)); 27 memset(tm, 0, sizeof(struct rtc_time));
32 err = rtc->ops->read_time(rtc->dev.parent, tm); 28 err = rtc->ops->read_time(rtc->dev.parent, tm);
33 } 29 }
30 return err;
31}
32
33int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
34{
35 int err;
34 36
37 err = mutex_lock_interruptible(&rtc->ops_lock);
38 if (err)
39 return err;
40
41 err = __rtc_read_time(rtc, tm);
35 mutex_unlock(&rtc->ops_lock); 42 mutex_unlock(&rtc->ops_lock);
36 return err; 43 return err;
37} 44}
@@ -106,188 +113,54 @@ int rtc_set_mmss(struct rtc_device *rtc, unsigned long secs)
106} 113}
107EXPORT_SYMBOL_GPL(rtc_set_mmss); 114EXPORT_SYMBOL_GPL(rtc_set_mmss);
108 115
109static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm) 116int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
110{ 117{
111 int err; 118 int err;
112 119
113 err = mutex_lock_interruptible(&rtc->ops_lock); 120 err = mutex_lock_interruptible(&rtc->ops_lock);
114 if (err) 121 if (err)
115 return err; 122 return err;
116 123 alarm->enabled = rtc->aie_timer.enabled;
117 if (rtc->ops == NULL) 124 if (alarm->enabled)
118 err = -ENODEV; 125 alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires);
119 else if (!rtc->ops->read_alarm)
120 err = -EINVAL;
121 else {
122 memset(alarm, 0, sizeof(struct rtc_wkalrm));
123 err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
124 }
125
126 mutex_unlock(&rtc->ops_lock); 126 mutex_unlock(&rtc->ops_lock);
127 return err; 127
128 return 0;
128} 129}
130EXPORT_SYMBOL_GPL(rtc_read_alarm);
129 131
130int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) 132int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
131{ 133{
134 struct rtc_time tm;
135 long now, scheduled;
132 int err; 136 int err;
133 struct rtc_time before, now;
134 int first_time = 1;
135 unsigned long t_now, t_alm;
136 enum { none, day, month, year } missing = none;
137 unsigned days;
138
139 /* The lower level RTC driver may return -1 in some fields,
140 * creating invalid alarm->time values, for reasons like:
141 *
142 * - The hardware may not be capable of filling them in;
143 * many alarms match only on time-of-day fields, not
144 * day/month/year calendar data.
145 *
146 * - Some hardware uses illegal values as "wildcard" match
147 * values, which non-Linux firmware (like a BIOS) may try
148 * to set up as e.g. "alarm 15 minutes after each hour".
149 * Linux uses only oneshot alarms.
150 *
151 * When we see that here, we deal with it by using values from
152 * a current RTC timestamp for any missing (-1) values. The
153 * RTC driver prevents "periodic alarm" modes.
154 *
155 * But this can be racey, because some fields of the RTC timestamp
156 * may have wrapped in the interval since we read the RTC alarm,
157 * which would lead to us inserting inconsistent values in place
158 * of the -1 fields.
159 *
160 * Reading the alarm and timestamp in the reverse sequence
161 * would have the same race condition, and not solve the issue.
162 *
163 * So, we must first read the RTC timestamp,
164 * then read the RTC alarm value,
165 * and then read a second RTC timestamp.
166 *
167 * If any fields of the second timestamp have changed
168 * when compared with the first timestamp, then we know
169 * our timestamp may be inconsistent with that used by
170 * the low-level rtc_read_alarm_internal() function.
171 *
172 * So, when the two timestamps disagree, we just loop and do
173 * the process again to get a fully consistent set of values.
174 *
175 * This could all instead be done in the lower level driver,
176 * but since more than one lower level RTC implementation needs it,
177 * then it's probably best best to do it here instead of there..
178 */
179 137
180 /* Get the "before" timestamp */ 138 err = rtc_valid_tm(&alarm->time);
181 err = rtc_read_time(rtc, &before); 139 if (err)
182 if (err < 0)
183 return err; 140 return err;
184 do { 141 rtc_tm_to_time(&alarm->time, &scheduled);
185 if (!first_time)
186 memcpy(&before, &now, sizeof(struct rtc_time));
187 first_time = 0;
188
189 /* get the RTC alarm values, which may be incomplete */
190 err = rtc_read_alarm_internal(rtc, alarm);
191 if (err)
192 return err;
193 if (!alarm->enabled)
194 return 0;
195
196 /* full-function RTCs won't have such missing fields */
197 if (rtc_valid_tm(&alarm->time) == 0)
198 return 0;
199
200 /* get the "after" timestamp, to detect wrapped fields */
201 err = rtc_read_time(rtc, &now);
202 if (err < 0)
203 return err;
204
205 /* note that tm_sec is a "don't care" value here: */
206 } while ( before.tm_min != now.tm_min
207 || before.tm_hour != now.tm_hour
208 || before.tm_mon != now.tm_mon
209 || before.tm_year != now.tm_year);
210
211 /* Fill in the missing alarm fields using the timestamp; we
212 * know there's at least one since alarm->time is invalid.
213 */
214 if (alarm->time.tm_sec == -1)
215 alarm->time.tm_sec = now.tm_sec;
216 if (alarm->time.tm_min == -1)
217 alarm->time.tm_min = now.tm_min;
218 if (alarm->time.tm_hour == -1)
219 alarm->time.tm_hour = now.tm_hour;
220
221 /* For simplicity, only support date rollover for now */
222 if (alarm->time.tm_mday == -1) {
223 alarm->time.tm_mday = now.tm_mday;
224 missing = day;
225 }
226 if (alarm->time.tm_mon == -1) {
227 alarm->time.tm_mon = now.tm_mon;
228 if (missing == none)
229 missing = month;
230 }
231 if (alarm->time.tm_year == -1) {
232 alarm->time.tm_year = now.tm_year;
233 if (missing == none)
234 missing = year;
235 }
236
237 /* with luck, no rollover is needed */
238 rtc_tm_to_time(&now, &t_now);
239 rtc_tm_to_time(&alarm->time, &t_alm);
240 if (t_now < t_alm)
241 goto done;
242
243 switch (missing) {
244 142
245 /* 24 hour rollover ... if it's now 10am Monday, an alarm that 143 /* Make sure we're not setting alarms in the past */
246 * that will trigger at 5am will do so at 5am Tuesday, which 144 err = __rtc_read_time(rtc, &tm);
247 * could also be in the next month or year. This is a common 145 rtc_tm_to_time(&tm, &now);
248 * case, especially for PCs. 146 if (scheduled <= now)
249 */ 147 return -ETIME;
250 case day: 148 /*
251 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day"); 149 * XXX - We just checked to make sure the alarm time is not
252 t_alm += 24 * 60 * 60; 150 * in the past, but there is still a race window where if
253 rtc_time_to_tm(t_alm, &alarm->time); 151 * the is alarm set for the next second and the second ticks
254 break; 152 * over right here, before we set the alarm.
255
256 /* Month rollover ... if it's the 31th, an alarm on the 3rd will
257 * be next month. An alarm matching on the 30th, 29th, or 28th
258 * may end up in the month after that! Many newer PCs support
259 * this type of alarm.
260 */ 153 */
261 case month:
262 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
263 do {
264 if (alarm->time.tm_mon < 11)
265 alarm->time.tm_mon++;
266 else {
267 alarm->time.tm_mon = 0;
268 alarm->time.tm_year++;
269 }
270 days = rtc_month_days(alarm->time.tm_mon,
271 alarm->time.tm_year);
272 } while (days < alarm->time.tm_mday);
273 break;
274
275 /* Year rollover ... easy except for leap years! */
276 case year:
277 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
278 do {
279 alarm->time.tm_year++;
280 } while (rtc_valid_tm(&alarm->time) != 0);
281 break;
282
283 default:
284 dev_warn(&rtc->dev, "alarm rollover not handled\n");
285 }
286 154
287done: 155 if (!rtc->ops)
288 return 0; 156 err = -ENODEV;
157 else if (!rtc->ops->set_alarm)
158 err = -EINVAL;
159 else
160 err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
161
162 return err;
289} 163}
290EXPORT_SYMBOL_GPL(rtc_read_alarm);
291 164
292int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) 165int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
293{ 166{
@@ -300,16 +173,18 @@ int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
300 err = mutex_lock_interruptible(&rtc->ops_lock); 173 err = mutex_lock_interruptible(&rtc->ops_lock);
301 if (err) 174 if (err)
302 return err; 175 return err;
303 176 if (rtc->aie_timer.enabled) {
304 if (!rtc->ops) 177 rtctimer_remove(rtc, &rtc->aie_timer);
305 err = -ENODEV; 178 rtc->aie_timer.enabled = 0;
306 else if (!rtc->ops->set_alarm) 179 }
307 err = -EINVAL; 180 rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
308 else 181 rtc->aie_timer.period = ktime_set(0, 0);
309 err = rtc->ops->set_alarm(rtc->dev.parent, alarm); 182 if (alarm->enabled) {
310 183 rtc->aie_timer.enabled = 1;
184 rtctimer_enqueue(rtc, &rtc->aie_timer);
185 }
311 mutex_unlock(&rtc->ops_lock); 186 mutex_unlock(&rtc->ops_lock);
312 return err; 187 return 0;
313} 188}
314EXPORT_SYMBOL_GPL(rtc_set_alarm); 189EXPORT_SYMBOL_GPL(rtc_set_alarm);
315 190
@@ -319,6 +194,16 @@ int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
319 if (err) 194 if (err)
320 return err; 195 return err;
321 196
197 if (rtc->aie_timer.enabled != enabled) {
198 if (enabled) {
199 rtc->aie_timer.enabled = 1;
200 rtctimer_enqueue(rtc, &rtc->aie_timer);
201 } else {
202 rtctimer_remove(rtc, &rtc->aie_timer);
203 rtc->aie_timer.enabled = 0;
204 }
205 }
206
322 if (!rtc->ops) 207 if (!rtc->ops)
323 err = -ENODEV; 208 err = -ENODEV;
324 else if (!rtc->ops->alarm_irq_enable) 209 else if (!rtc->ops->alarm_irq_enable)
@@ -337,52 +222,53 @@ int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
337 if (err) 222 if (err)
338 return err; 223 return err;
339 224
340#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL 225 /* make sure we're changing state */
341 if (enabled == 0 && rtc->uie_irq_active) { 226 if (rtc->uie_rtctimer.enabled == enabled)
342 mutex_unlock(&rtc->ops_lock); 227 goto out;
343 return rtc_dev_update_irq_enable_emul(rtc, enabled); 228
229 if (enabled) {
230 struct rtc_time tm;
231 ktime_t now, onesec;
232
233 __rtc_read_time(rtc, &tm);
234 onesec = ktime_set(1, 0);
235 now = rtc_tm_to_ktime(tm);
236 rtc->uie_rtctimer.node.expires = ktime_add(now, onesec);
237 rtc->uie_rtctimer.period = ktime_set(1, 0);
238 rtc->uie_rtctimer.enabled = 1;
239 rtctimer_enqueue(rtc, &rtc->uie_rtctimer);
240 } else {
241 rtctimer_remove(rtc, &rtc->uie_rtctimer);
242 rtc->uie_rtctimer.enabled = 0;
344 } 243 }
345#endif
346
347 if (!rtc->ops)
348 err = -ENODEV;
349 else if (!rtc->ops->update_irq_enable)
350 err = -EINVAL;
351 else
352 err = rtc->ops->update_irq_enable(rtc->dev.parent, enabled);
353 244
245out:
354 mutex_unlock(&rtc->ops_lock); 246 mutex_unlock(&rtc->ops_lock);
355
356#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
357 /*
358 * Enable emulation if the driver did not provide
359 * the update_irq_enable function pointer or if returned
360 * -EINVAL to signal that it has been configured without
361 * interrupts or that are not available at the moment.
362 */
363 if (err == -EINVAL)
364 err = rtc_dev_update_irq_enable_emul(rtc, enabled);
365#endif
366 return err; 247 return err;
248
367} 249}
368EXPORT_SYMBOL_GPL(rtc_update_irq_enable); 250EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
369 251
252
370/** 253/**
371 * rtc_update_irq - report RTC periodic, alarm, and/or update irqs 254 * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
372 * @rtc: the rtc device 255 * @rtc: pointer to the rtc device
373 * @num: how many irqs are being reported (usually one) 256 *
374 * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF 257 * This function is called when an AIE, UIE or PIE mode interrupt
375 * Context: any 258 * has occured (or been emulated).
259 *
260 * Triggers the registered irq_task function callback.
376 */ 261 */
377void rtc_update_irq(struct rtc_device *rtc, 262static void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode)
378 unsigned long num, unsigned long events)
379{ 263{
380 unsigned long flags; 264 unsigned long flags;
381 265
266 /* mark one irq of the appropriate mode */
382 spin_lock_irqsave(&rtc->irq_lock, flags); 267 spin_lock_irqsave(&rtc->irq_lock, flags);
383 rtc->irq_data = (rtc->irq_data + (num << 8)) | events; 268 rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF|mode);
384 spin_unlock_irqrestore(&rtc->irq_lock, flags); 269 spin_unlock_irqrestore(&rtc->irq_lock, flags);
385 270
271 /* call the task func */
386 spin_lock_irqsave(&rtc->irq_task_lock, flags); 272 spin_lock_irqsave(&rtc->irq_task_lock, flags);
387 if (rtc->irq_task) 273 if (rtc->irq_task)
388 rtc->irq_task->func(rtc->irq_task->private_data); 274 rtc->irq_task->func(rtc->irq_task->private_data);
@@ -391,6 +277,69 @@ void rtc_update_irq(struct rtc_device *rtc,
391 wake_up_interruptible(&rtc->irq_queue); 277 wake_up_interruptible(&rtc->irq_queue);
392 kill_fasync(&rtc->async_queue, SIGIO, POLL_IN); 278 kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
393} 279}
280
281
282/**
283 * rtc_aie_update_irq - AIE mode rtctimer hook
284 * @private: pointer to the rtc_device
285 *
286 * This functions is called when the aie_timer expires.
287 */
288void rtc_aie_update_irq(void *private)
289{
290 struct rtc_device *rtc = (struct rtc_device *)private;
291 rtc_handle_legacy_irq(rtc, 1, RTC_AF);
292}
293
294
295/**
296 * rtc_uie_update_irq - UIE mode rtctimer hook
297 * @private: pointer to the rtc_device
298 *
299 * This functions is called when the uie_timer expires.
300 */
301void rtc_uie_update_irq(void *private)
302{
303 struct rtc_device *rtc = (struct rtc_device *)private;
304 rtc_handle_legacy_irq(rtc, 1, RTC_UF);
305}
306
307
308/**
309 * rtc_pie_update_irq - PIE mode hrtimer hook
310 * @timer: pointer to the pie mode hrtimer
311 *
312 * This function is used to emulate PIE mode interrupts
313 * using an hrtimer. This function is called when the periodic
314 * hrtimer expires.
315 */
316enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer)
317{
318 struct rtc_device *rtc;
319 ktime_t period;
320 int count;
321 rtc = container_of(timer, struct rtc_device, pie_timer);
322
323 period = ktime_set(0, NSEC_PER_SEC/rtc->irq_freq);
324 count = hrtimer_forward_now(timer, period);
325
326 rtc_handle_legacy_irq(rtc, count, RTC_PF);
327
328 return HRTIMER_RESTART;
329}
330
331/**
332 * rtc_update_irq - Triggered when a RTC interrupt occurs.
333 * @rtc: the rtc device
334 * @num: how many irqs are being reported (usually one)
335 * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
336 * Context: any
337 */
338void rtc_update_irq(struct rtc_device *rtc,
339 unsigned long num, unsigned long events)
340{
341 schedule_work(&rtc->irqwork);
342}
394EXPORT_SYMBOL_GPL(rtc_update_irq); 343EXPORT_SYMBOL_GPL(rtc_update_irq);
395 344
396static int __rtc_match(struct device *dev, void *data) 345static int __rtc_match(struct device *dev, void *data)
@@ -477,18 +426,20 @@ int rtc_irq_set_state(struct rtc_device *rtc, struct rtc_task *task, int enabled
477 int err = 0; 426 int err = 0;
478 unsigned long flags; 427 unsigned long flags;
479 428
480 if (rtc->ops->irq_set_state == NULL)
481 return -ENXIO;
482
483 spin_lock_irqsave(&rtc->irq_task_lock, flags); 429 spin_lock_irqsave(&rtc->irq_task_lock, flags);
484 if (rtc->irq_task != NULL && task == NULL) 430 if (rtc->irq_task != NULL && task == NULL)
485 err = -EBUSY; 431 err = -EBUSY;
486 if (rtc->irq_task != task) 432 if (rtc->irq_task != task)
487 err = -EACCES; 433 err = -EACCES;
488 spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
489 434
490 if (err == 0) 435 if (enabled) {
491 err = rtc->ops->irq_set_state(rtc->dev.parent, enabled); 436 ktime_t period = ktime_set(0, NSEC_PER_SEC/rtc->irq_freq);
437 hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
438 } else {
439 hrtimer_cancel(&rtc->pie_timer);
440 }
441 rtc->pie_enabled = enabled;
442 spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
492 443
493 return err; 444 return err;
494} 445}
@@ -509,21 +460,194 @@ int rtc_irq_set_freq(struct rtc_device *rtc, struct rtc_task *task, int freq)
509 int err = 0; 460 int err = 0;
510 unsigned long flags; 461 unsigned long flags;
511 462
512 if (rtc->ops->irq_set_freq == NULL)
513 return -ENXIO;
514
515 spin_lock_irqsave(&rtc->irq_task_lock, flags); 463 spin_lock_irqsave(&rtc->irq_task_lock, flags);
516 if (rtc->irq_task != NULL && task == NULL) 464 if (rtc->irq_task != NULL && task == NULL)
517 err = -EBUSY; 465 err = -EBUSY;
518 if (rtc->irq_task != task) 466 if (rtc->irq_task != task)
519 err = -EACCES; 467 err = -EACCES;
520 spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
521
522 if (err == 0) { 468 if (err == 0) {
523 err = rtc->ops->irq_set_freq(rtc->dev.parent, freq); 469 rtc->irq_freq = freq;
524 if (err == 0) 470 if (rtc->pie_enabled) {
525 rtc->irq_freq = freq; 471 ktime_t period;
472 hrtimer_cancel(&rtc->pie_timer);
473 period = ktime_set(0, NSEC_PER_SEC/rtc->irq_freq);
474 hrtimer_start(&rtc->pie_timer, period,
475 HRTIMER_MODE_REL);
476 }
526 } 477 }
478 spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
527 return err; 479 return err;
528} 480}
529EXPORT_SYMBOL_GPL(rtc_irq_set_freq); 481EXPORT_SYMBOL_GPL(rtc_irq_set_freq);
482
483/**
484 * rtctimer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
485 * @rtc rtc device
486 * @timer timer being added.
487 *
488 * Enqueues a timer onto the rtc devices timerqueue and sets
489 * the next alarm event appropriately.
490 *
491 * Must hold ops_lock for proper serialization of timerqueue
492 */
493void rtctimer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
494{
495 timerqueue_add(&rtc->timerqueue, &timer->node);
496 if (&timer->node == timerqueue_getnext(&rtc->timerqueue)) {
497 struct rtc_wkalrm alarm;
498 int err;
499 alarm.time = rtc_ktime_to_tm(timer->node.expires);
500 alarm.enabled = 1;
501 err = __rtc_set_alarm(rtc, &alarm);
502 if (err == -ETIME)
503 schedule_work(&rtc->irqwork);
504 }
505}
506
507/**
508 * rtctimer_remove - Removes a rtc_timer from the rtc_device timerqueue
509 * @rtc rtc device
510 * @timer timer being removed.
511 *
512 * Removes a timer onto the rtc devices timerqueue and sets
513 * the next alarm event appropriately.
514 *
515 * Must hold ops_lock for proper serialization of timerqueue
516 */
517void rtctimer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
518{
519 struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
520 timerqueue_del(&rtc->timerqueue, &timer->node);
521
522 if (next == &timer->node) {
523 struct rtc_wkalrm alarm;
524 int err;
525 next = timerqueue_getnext(&rtc->timerqueue);
526 if (!next)
527 return;
528 alarm.time = rtc_ktime_to_tm(next->expires);
529 alarm.enabled = 1;
530 err = __rtc_set_alarm(rtc, &alarm);
531 if (err == -ETIME)
532 schedule_work(&rtc->irqwork);
533 }
534}
535
536/**
537 * rtctimer_do_work - Expires rtc timers
538 * @rtc rtc device
539 * @timer timer being removed.
540 *
541 * Expires rtc timers. Reprograms next alarm event if needed.
542 * Called via worktask.
543 *
544 * Serializes access to timerqueue via ops_lock mutex
545 */
546void rtctimer_do_work(struct work_struct *work)
547{
548 struct rtc_timer *timer;
549 struct timerqueue_node *next;
550 ktime_t now;
551 struct rtc_time tm;
552
553 struct rtc_device *rtc =
554 container_of(work, struct rtc_device, irqwork);
555
556 mutex_lock(&rtc->ops_lock);
557again:
558 __rtc_read_time(rtc, &tm);
559 now = rtc_tm_to_ktime(tm);
560 while ((next = timerqueue_getnext(&rtc->timerqueue))) {
561 if (next->expires.tv64 > now.tv64)
562 break;
563
564 /* expire timer */
565 timer = container_of(next, struct rtc_timer, node);
566 timerqueue_del(&rtc->timerqueue, &timer->node);
567 timer->enabled = 0;
568 if (timer->task.func)
569 timer->task.func(timer->task.private_data);
570
571 /* Re-add/fwd periodic timers */
572 if (ktime_to_ns(timer->period)) {
573 timer->node.expires = ktime_add(timer->node.expires,
574 timer->period);
575 timer->enabled = 1;
576 timerqueue_add(&rtc->timerqueue, &timer->node);
577 }
578 }
579
580 /* Set next alarm */
581 if (next) {
582 struct rtc_wkalrm alarm;
583 int err;
584 alarm.time = rtc_ktime_to_tm(next->expires);
585 alarm.enabled = 1;
586 err = __rtc_set_alarm(rtc, &alarm);
587 if (err == -ETIME)
588 goto again;
589 }
590
591 mutex_unlock(&rtc->ops_lock);
592}
593
594
595/* rtctimer_init - Initializes an rtc_timer
596 * @timer: timer to be intiialized
597 * @f: function pointer to be called when timer fires
598 * @data: private data passed to function pointer
599 *
600 * Kernel interface to initializing an rtc_timer.
601 */
602void rtctimer_init(struct rtc_timer *timer, void (*f)(void* p), void* data)
603{
604 timerqueue_init(&timer->node);
605 timer->enabled = 0;
606 timer->task.func = f;
607 timer->task.private_data = data;
608}
609
610/* rtctimer_start - Sets an rtc_timer to fire in the future
611 * @ rtc: rtc device to be used
612 * @ timer: timer being set
613 * @ expires: time at which to expire the timer
614 * @ period: period that the timer will recur
615 *
616 * Kernel interface to set an rtc_timer
617 */
618int rtctimer_start(struct rtc_device *rtc, struct rtc_timer* timer,
619 ktime_t expires, ktime_t period)
620{
621 int ret = 0;
622 mutex_lock(&rtc->ops_lock);
623 if (timer->enabled)
624 rtctimer_remove(rtc, timer);
625
626 timer->node.expires = expires;
627 timer->period = period;
628
629 timer->enabled = 1;
630 rtctimer_enqueue(rtc, timer);
631
632 mutex_unlock(&rtc->ops_lock);
633 return ret;
634}
635
636/* rtctimer_cancel - Stops an rtc_timer
637 * @ rtc: rtc device to be used
638 * @ timer: timer being set
639 *
640 * Kernel interface to cancel an rtc_timer
641 */
642int rtctimer_cancel(struct rtc_device *rtc, struct rtc_timer* timer)
643{
644 int ret = 0;
645 mutex_lock(&rtc->ops_lock);
646 if (timer->enabled)
647 rtctimer_remove(rtc, timer);
648 timer->enabled = 0;
649 mutex_unlock(&rtc->ops_lock);
650 return ret;
651}
652
653
diff --git a/drivers/rtc/rtc-lib.c b/drivers/rtc/rtc-lib.c
index 773851f338b8..075f1708deae 100644
--- a/drivers/rtc/rtc-lib.c
+++ b/drivers/rtc/rtc-lib.c
@@ -117,4 +117,32 @@ int rtc_tm_to_time(struct rtc_time *tm, unsigned long *time)
117} 117}
118EXPORT_SYMBOL(rtc_tm_to_time); 118EXPORT_SYMBOL(rtc_tm_to_time);
119 119
120/*
121 * Convert rtc_time to ktime
122 */
123ktime_t rtc_tm_to_ktime(struct rtc_time tm)
124{
125 time_t time;
126 rtc_tm_to_time(&tm, &time);
127 return ktime_set(time, 0);
128}
129EXPORT_SYMBOL_GPL(rtc_tm_to_ktime);
130
131/*
132 * Convert ktime to rtc_time
133 */
134struct rtc_time rtc_ktime_to_tm(ktime_t kt)
135{
136 struct timespec ts;
137 struct rtc_time ret;
138
139 ts = ktime_to_timespec(kt);
140 /* Round up any ns */
141 if (ts.tv_nsec)
142 ts.tv_sec++;
143 rtc_time_to_tm(ts.tv_sec, &ret);
144 return ret;
145}
146EXPORT_SYMBOL_GPL(rtc_ktime_to_tm);
147
120MODULE_LICENSE("GPL"); 148MODULE_LICENSE("GPL");