aboutsummaryrefslogtreecommitdiffstats
path: root/drivers
diff options
context:
space:
mode:
Diffstat (limited to 'drivers')
-rw-r--r--drivers/parport/Kconfig9
-rw-r--r--drivers/parport/Makefile1
-rw-r--r--drivers/parport/parport_ip32.c2253
3 files changed, 2263 insertions, 0 deletions
diff --git a/drivers/parport/Kconfig b/drivers/parport/Kconfig
index f605dea57224..f63c387976cf 100644
--- a/drivers/parport/Kconfig
+++ b/drivers/parport/Kconfig
@@ -90,6 +90,15 @@ config PARPORT_ARC
90 depends on ARM && PARPORT 90 depends on ARM && PARPORT
91 select PARPORT_NOT_PC 91 select PARPORT_NOT_PC
92 92
93config PARPORT_IP32
94 tristate "SGI IP32 builtin port (EXPERIMENTAL)"
95 depends on SGI_IP32 && PARPORT && EXPERIMENTAL
96 select PARPORT_NOT_PC
97 help
98 Say Y here if you need support for the parallel port on
99 SGI O2 machines. This code is also available as a module (say M),
100 called parport_ip32. If in doubt, saying N is the safe plan.
101
93config PARPORT_AMIGA 102config PARPORT_AMIGA
94 tristate "Amiga builtin port" 103 tristate "Amiga builtin port"
95 depends on AMIGA && PARPORT 104 depends on AMIGA && PARPORT
diff --git a/drivers/parport/Makefile b/drivers/parport/Makefile
index 5372212bb9d9..a19de35f8de2 100644
--- a/drivers/parport/Makefile
+++ b/drivers/parport/Makefile
@@ -17,3 +17,4 @@ obj-$(CONFIG_PARPORT_MFC3) += parport_mfc3.o
17obj-$(CONFIG_PARPORT_ATARI) += parport_atari.o 17obj-$(CONFIG_PARPORT_ATARI) += parport_atari.o
18obj-$(CONFIG_PARPORT_SUNBPP) += parport_sunbpp.o 18obj-$(CONFIG_PARPORT_SUNBPP) += parport_sunbpp.o
19obj-$(CONFIG_PARPORT_GSC) += parport_gsc.o 19obj-$(CONFIG_PARPORT_GSC) += parport_gsc.o
20obj-$(CONFIG_PARPORT_IP32) += parport_ip32.o
diff --git a/drivers/parport/parport_ip32.c b/drivers/parport/parport_ip32.c
new file mode 100644
index 000000000000..46e06e596d73
--- /dev/null
+++ b/drivers/parport/parport_ip32.c
@@ -0,0 +1,2253 @@
1/* Low-level parallel port routines for built-in port on SGI IP32
2 *
3 * Author: Arnaud Giersch <arnaud.giersch@free.fr>
4 *
5 * Based on parport_pc.c by
6 * Phil Blundell, Tim Waugh, Jose Renau, David Campbell,
7 * Andrea Arcangeli, et al.
8 *
9 * Thanks to Ilya A. Volynets-Evenbakh for his help.
10 *
11 * Copyright (C) 2005, 2006 Arnaud Giersch.
12 *
13 * This program is free software; you can redistribute it and/or modify it
14 * under the terms of the GNU General Public License as published by the Free
15 * Software Foundation; either version 2 of the License, or (at your option)
16 * any later version.
17 *
18 * This program is distributed in the hope that it will be useful, but WITHOUT
19 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
20 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
21 * more details.
22 *
23 * You should have received a copy of the GNU General Public License along
24 * with this program; if not, write to the Free Software Foundation, Inc., 59
25 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26 */
27
28/* Current status:
29 *
30 * Basic SPP and PS2 modes are supported.
31 * Support for parallel port IRQ is present.
32 * Hardware SPP (a.k.a. compatibility), EPP, and ECP modes are
33 * supported.
34 * SPP/ECP FIFO can be driven in PIO or DMA mode. PIO mode can work with
35 * or without interrupt support.
36 *
37 * Hardware ECP mode is not fully implemented (ecp_read_data and
38 * ecp_write_addr are actually missing).
39 *
40 * To do:
41 *
42 * Fully implement ECP mode.
43 * EPP and ECP mode need to be tested. I currently do not own any
44 * peripheral supporting these extended mode, and cannot test them.
45 * If DMA mode works well, decide if support for PIO FIFO modes should be
46 * dropped.
47 * Use the io{read,write} family functions when they become available in
48 * the linux-mips.org tree. Note: the MIPS specific functions readsb()
49 * and writesb() are to be translated by ioread8_rep() and iowrite8_rep()
50 * respectively.
51 */
52
53/* The built-in parallel port on the SGI 02 workstation (a.k.a. IP32) is an
54 * IEEE 1284 parallel port driven by a Texas Instrument TL16PIR552PH chip[1].
55 * This chip supports SPP, bidirectional, EPP and ECP modes. It has a 16 byte
56 * FIFO buffer and supports DMA transfers.
57 *
58 * [1] http://focus.ti.com/docs/prod/folders/print/tl16pir552.html
59 *
60 * Theoretically, we could simply use the parport_pc module. It is however
61 * not so simple. The parport_pc code assumes that the parallel port
62 * registers are port-mapped. On the O2, they are memory-mapped.
63 * Furthermore, each register is replicated on 256 consecutive addresses (as
64 * it is for the built-in serial ports on the same chip).
65 */
66
67/*--- Some configuration defines ---------------------------------------*/
68
69/* DEBUG_PARPORT_IP32
70 * 0 disable debug
71 * 1 standard level: pr_debug1 is enabled
72 * 2 parport_ip32_dump_state is enabled
73 * >=3 verbose level: pr_debug is enabled
74 */
75#if !defined(DEBUG_PARPORT_IP32)
76# define DEBUG_PARPORT_IP32 0 /* 0 (disabled) for production */
77#endif
78
79/*----------------------------------------------------------------------*/
80
81/* Setup DEBUG macros. This is done before any includes, just in case we
82 * activate pr_debug() with DEBUG_PARPORT_IP32 >= 3.
83 */
84#if DEBUG_PARPORT_IP32 == 1
85# warning DEBUG_PARPORT_IP32 == 1
86#elif DEBUG_PARPORT_IP32 == 2
87# warning DEBUG_PARPORT_IP32 == 2
88#elif DEBUG_PARPORT_IP32 >= 3
89# warning DEBUG_PARPORT_IP32 >= 3
90# if !defined(DEBUG)
91# define DEBUG /* enable pr_debug() in kernel.h */
92# endif
93#endif
94
95#include <linux/completion.h>
96#include <linux/delay.h>
97#include <linux/dma-mapping.h>
98#include <linux/err.h>
99#include <linux/init.h>
100#include <linux/interrupt.h>
101#include <linux/jiffies.h>
102#include <linux/kernel.h>
103#include <linux/module.h>
104#include <linux/parport.h>
105#include <linux/sched.h>
106#include <linux/spinlock.h>
107#include <linux/stddef.h>
108#include <linux/types.h>
109#include <asm/io.h>
110#include <asm/ip32/ip32_ints.h>
111#include <asm/ip32/mace.h>
112
113/*--- Global variables -------------------------------------------------*/
114
115/* Verbose probing on by default for debugging. */
116#if DEBUG_PARPORT_IP32 >= 1
117# define DEFAULT_VERBOSE_PROBING 1
118#else
119# define DEFAULT_VERBOSE_PROBING 0
120#endif
121
122/* Default prefix for printk */
123#define PPIP32 "parport_ip32: "
124
125/*
126 * These are the module parameters:
127 * @features: bit mask of features to enable/disable
128 * (all enabled by default)
129 * @verbose_probing: log chit-chat during initialization
130 */
131#define PARPORT_IP32_ENABLE_IRQ (1U << 0)
132#define PARPORT_IP32_ENABLE_DMA (1U << 1)
133#define PARPORT_IP32_ENABLE_SPP (1U << 2)
134#define PARPORT_IP32_ENABLE_EPP (1U << 3)
135#define PARPORT_IP32_ENABLE_ECP (1U << 4)
136static unsigned int features = ~0U;
137static int verbose_probing = DEFAULT_VERBOSE_PROBING;
138
139/* We do not support more than one port. */
140static struct parport *this_port = NULL;
141
142/* Timing constants for FIFO modes. */
143#define FIFO_NFAULT_TIMEOUT 100 /* milliseconds */
144#define FIFO_POLLING_INTERVAL 50 /* microseconds */
145
146/*--- I/O register definitions -----------------------------------------*/
147
148/**
149 * struct parport_ip32_regs - virtual addresses of parallel port registers
150 * @data: Data Register
151 * @dsr: Device Status Register
152 * @dcr: Device Control Register
153 * @eppAddr: EPP Address Register
154 * @eppData0: EPP Data Register 0
155 * @eppData1: EPP Data Register 1
156 * @eppData2: EPP Data Register 2
157 * @eppData3: EPP Data Register 3
158 * @ecpAFifo: ECP Address FIFO
159 * @fifo: General FIFO register. The same address is used for:
160 * - cFifo, the Parallel Port DATA FIFO
161 * - ecpDFifo, the ECP Data FIFO
162 * - tFifo, the ECP Test FIFO
163 * @cnfgA: Configuration Register A
164 * @cnfgB: Configuration Register B
165 * @ecr: Extended Control Register
166 */
167struct parport_ip32_regs {
168 void __iomem *data;
169 void __iomem *dsr;
170 void __iomem *dcr;
171 void __iomem *eppAddr;
172 void __iomem *eppData0;
173 void __iomem *eppData1;
174 void __iomem *eppData2;
175 void __iomem *eppData3;
176 void __iomem *ecpAFifo;
177 void __iomem *fifo;
178 void __iomem *cnfgA;
179 void __iomem *cnfgB;
180 void __iomem *ecr;
181};
182
183/* Device Status Register */
184#define DSR_nBUSY (1U << 7) /* PARPORT_STATUS_BUSY */
185#define DSR_nACK (1U << 6) /* PARPORT_STATUS_ACK */
186#define DSR_PERROR (1U << 5) /* PARPORT_STATUS_PAPEROUT */
187#define DSR_SELECT (1U << 4) /* PARPORT_STATUS_SELECT */
188#define DSR_nFAULT (1U << 3) /* PARPORT_STATUS_ERROR */
189#define DSR_nPRINT (1U << 2) /* specific to TL16PIR552 */
190/* #define DSR_reserved (1U << 1) */
191#define DSR_TIMEOUT (1U << 0) /* EPP timeout */
192
193/* Device Control Register */
194/* #define DCR_reserved (1U << 7) | (1U << 6) */
195#define DCR_DIR (1U << 5) /* direction */
196#define DCR_IRQ (1U << 4) /* interrupt on nAck */
197#define DCR_SELECT (1U << 3) /* PARPORT_CONTROL_SELECT */
198#define DCR_nINIT (1U << 2) /* PARPORT_CONTROL_INIT */
199#define DCR_AUTOFD (1U << 1) /* PARPORT_CONTROL_AUTOFD */
200#define DCR_STROBE (1U << 0) /* PARPORT_CONTROL_STROBE */
201
202/* ECP Configuration Register A */
203#define CNFGA_IRQ (1U << 7)
204#define CNFGA_ID_MASK ((1U << 6) | (1U << 5) | (1U << 4))
205#define CNFGA_ID_SHIFT 4
206#define CNFGA_ID_16 (00U << CNFGA_ID_SHIFT)
207#define CNFGA_ID_8 (01U << CNFGA_ID_SHIFT)
208#define CNFGA_ID_32 (02U << CNFGA_ID_SHIFT)
209/* #define CNFGA_reserved (1U << 3) */
210#define CNFGA_nBYTEINTRANS (1U << 2)
211#define CNFGA_PWORDLEFT ((1U << 1) | (1U << 0))
212
213/* ECP Configuration Register B */
214#define CNFGB_COMPRESS (1U << 7)
215#define CNFGB_INTRVAL (1U << 6)
216#define CNFGB_IRQ_MASK ((1U << 5) | (1U << 4) | (1U << 3))
217#define CNFGB_IRQ_SHIFT 3
218#define CNFGB_DMA_MASK ((1U << 2) | (1U << 1) | (1U << 0))
219#define CNFGB_DMA_SHIFT 0
220
221/* Extended Control Register */
222#define ECR_MODE_MASK ((1U << 7) | (1U << 6) | (1U << 5))
223#define ECR_MODE_SHIFT 5
224#define ECR_MODE_SPP (00U << ECR_MODE_SHIFT)
225#define ECR_MODE_PS2 (01U << ECR_MODE_SHIFT)
226#define ECR_MODE_PPF (02U << ECR_MODE_SHIFT)
227#define ECR_MODE_ECP (03U << ECR_MODE_SHIFT)
228#define ECR_MODE_EPP (04U << ECR_MODE_SHIFT)
229/* #define ECR_MODE_reserved (05U << ECR_MODE_SHIFT) */
230#define ECR_MODE_TST (06U << ECR_MODE_SHIFT)
231#define ECR_MODE_CFG (07U << ECR_MODE_SHIFT)
232#define ECR_nERRINTR (1U << 4)
233#define ECR_DMAEN (1U << 3)
234#define ECR_SERVINTR (1U << 2)
235#define ECR_F_FULL (1U << 1)
236#define ECR_F_EMPTY (1U << 0)
237
238/*--- Private data -----------------------------------------------------*/
239
240/**
241 * enum parport_ip32_irq_mode - operation mode of interrupt handler
242 * @PARPORT_IP32_IRQ_FWD: forward interrupt to the upper parport layer
243 * @PARPORT_IP32_IRQ_HERE: interrupt is handled locally
244 */
245enum parport_ip32_irq_mode { PARPORT_IP32_IRQ_FWD, PARPORT_IP32_IRQ_HERE };
246
247/**
248 * struct parport_ip32_private - private stuff for &struct parport
249 * @regs: register addresses
250 * @dcr_cache: cached contents of DCR
251 * @dcr_writable: bit mask of writable DCR bits
252 * @pword: number of bytes per PWord
253 * @fifo_depth: number of PWords that FIFO will hold
254 * @readIntrThreshold: minimum number of PWords we can read
255 * if we get an interrupt
256 * @writeIntrThreshold: minimum number of PWords we can write
257 * if we get an interrupt
258 * @irq_mode: operation mode of interrupt handler for this port
259 * @irq_complete: mutex used to wait for an interrupt to occur
260 */
261struct parport_ip32_private {
262 struct parport_ip32_regs regs;
263 unsigned int dcr_cache;
264 unsigned int dcr_writable;
265 unsigned int pword;
266 unsigned int fifo_depth;
267 unsigned int readIntrThreshold;
268 unsigned int writeIntrThreshold;
269 enum parport_ip32_irq_mode irq_mode;
270 struct completion irq_complete;
271};
272
273/*--- Debug code -------------------------------------------------------*/
274
275/*
276 * pr_debug1 - print debug messages
277 *
278 * This is like pr_debug(), but is defined for %DEBUG_PARPORT_IP32 >= 1
279 */
280#if DEBUG_PARPORT_IP32 >= 1
281# define pr_debug1(...) printk(KERN_DEBUG __VA_ARGS__)
282#else /* DEBUG_PARPORT_IP32 < 1 */
283# define pr_debug1(...) do { } while (0)
284#endif
285
286/*
287 * pr_trace, pr_trace1 - trace function calls
288 * @p: pointer to &struct parport
289 * @fmt: printk format string
290 * @...: parameters for format string
291 *
292 * Macros used to trace function calls. The given string is formatted after
293 * function name. pr_trace() uses pr_debug(), and pr_trace1() uses
294 * pr_debug1(). __pr_trace() is the low-level macro and is not to be used
295 * directly.
296 */
297#define __pr_trace(pr, p, fmt, ...) \
298 pr("%s: %s" fmt "\n", \
299 ({ const struct parport *__p = (p); \
300 __p ? __p->name : "parport_ip32"; }), \
301 __func__ , ##__VA_ARGS__)
302#define pr_trace(p, fmt, ...) __pr_trace(pr_debug, p, fmt , ##__VA_ARGS__)
303#define pr_trace1(p, fmt, ...) __pr_trace(pr_debug1, p, fmt , ##__VA_ARGS__)
304
305/*
306 * __pr_probe, pr_probe - print message if @verbose_probing is true
307 * @p: pointer to &struct parport
308 * @fmt: printk format string
309 * @...: parameters for format string
310 *
311 * For new lines, use pr_probe(). Use __pr_probe() for continued lines.
312 */
313#define __pr_probe(...) \
314 do { if (verbose_probing) printk(__VA_ARGS__); } while (0)
315#define pr_probe(p, fmt, ...) \
316 __pr_probe(KERN_INFO PPIP32 "0x%lx: " fmt, (p)->base , ##__VA_ARGS__)
317
318/*
319 * parport_ip32_dump_state - print register status of parport
320 * @p: pointer to &struct parport
321 * @str: string to add in message
322 * @show_ecp_config: shall we dump ECP configuration registers too?
323 *
324 * This function is only here for debugging purpose, and should be used with
325 * care. Reading the parallel port registers may have undesired side effects.
326 * Especially if @show_ecp_config is true, the parallel port is resetted.
327 * This function is only defined if %DEBUG_PARPORT_IP32 >= 2.
328 */
329#if DEBUG_PARPORT_IP32 >= 2
330static void parport_ip32_dump_state(struct parport *p, char *str,
331 unsigned int show_ecp_config)
332{
333 struct parport_ip32_private * const priv = p->physport->private_data;
334 unsigned int i;
335
336 printk(KERN_DEBUG PPIP32 "%s: state (%s):\n", p->name, str);
337 {
338 static const char ecr_modes[8][4] = {"SPP", "PS2", "PPF",
339 "ECP", "EPP", "???",
340 "TST", "CFG"};
341 unsigned int ecr = readb(priv->regs.ecr);
342 printk(KERN_DEBUG PPIP32 " ecr=0x%02x", ecr);
343 printk(" %s",
344 ecr_modes[(ecr & ECR_MODE_MASK) >> ECR_MODE_SHIFT]);
345 if (ecr & ECR_nERRINTR)
346 printk(",nErrIntrEn");
347 if (ecr & ECR_DMAEN)
348 printk(",dmaEn");
349 if (ecr & ECR_SERVINTR)
350 printk(",serviceIntr");
351 if (ecr & ECR_F_FULL)
352 printk(",f_full");
353 if (ecr & ECR_F_EMPTY)
354 printk(",f_empty");
355 printk("\n");
356 }
357 if (show_ecp_config) {
358 unsigned int oecr, cnfgA, cnfgB;
359 oecr = readb(priv->regs.ecr);
360 writeb(ECR_MODE_PS2, priv->regs.ecr);
361 writeb(ECR_MODE_CFG, priv->regs.ecr);
362 cnfgA = readb(priv->regs.cnfgA);
363 cnfgB = readb(priv->regs.cnfgB);
364 writeb(ECR_MODE_PS2, priv->regs.ecr);
365 writeb(oecr, priv->regs.ecr);
366 printk(KERN_DEBUG PPIP32 " cnfgA=0x%02x", cnfgA);
367 printk(" ISA-%s", (cnfgA & CNFGA_IRQ) ? "Level" : "Pulses");
368 switch (cnfgA & CNFGA_ID_MASK) {
369 case CNFGA_ID_8:
370 printk(",8 bits");
371 break;
372 case CNFGA_ID_16:
373 printk(",16 bits");
374 break;
375 case CNFGA_ID_32:
376 printk(",32 bits");
377 break;
378 default:
379 printk(",unknown ID");
380 break;
381 }
382 if (!(cnfgA & CNFGA_nBYTEINTRANS))
383 printk(",ByteInTrans");
384 if ((cnfgA & CNFGA_ID_MASK) != CNFGA_ID_8)
385 printk(",%d byte%s left", cnfgA & CNFGA_PWORDLEFT,
386 ((cnfgA & CNFGA_PWORDLEFT) > 1) ? "s" : "");
387 printk("\n");
388 printk(KERN_DEBUG PPIP32 " cnfgB=0x%02x", cnfgB);
389 printk(" irq=%u,dma=%u",
390 (cnfgB & CNFGB_IRQ_MASK) >> CNFGB_IRQ_SHIFT,
391 (cnfgB & CNFGB_DMA_MASK) >> CNFGB_DMA_SHIFT);
392 printk(",intrValue=%d", !!(cnfgB & CNFGB_INTRVAL));
393 if (cnfgB & CNFGB_COMPRESS)
394 printk(",compress");
395 printk("\n");
396 }
397 for (i = 0; i < 2; i++) {
398 unsigned int dcr = i ? priv->dcr_cache : readb(priv->regs.dcr);
399 printk(KERN_DEBUG PPIP32 " dcr(%s)=0x%02x",
400 i ? "soft" : "hard", dcr);
401 printk(" %s", (dcr & DCR_DIR) ? "rev" : "fwd");
402 if (dcr & DCR_IRQ)
403 printk(",ackIntEn");
404 if (!(dcr & DCR_SELECT))
405 printk(",nSelectIn");
406 if (dcr & DCR_nINIT)
407 printk(",nInit");
408 if (!(dcr & DCR_AUTOFD))
409 printk(",nAutoFD");
410 if (!(dcr & DCR_STROBE))
411 printk(",nStrobe");
412 printk("\n");
413 }
414#define sep (f++ ? ',' : ' ')
415 {
416 unsigned int f = 0;
417 unsigned int dsr = readb(priv->regs.dsr);
418 printk(KERN_DEBUG PPIP32 " dsr=0x%02x", dsr);
419 if (!(dsr & DSR_nBUSY))
420 printk("%cBusy", sep);
421 if (dsr & DSR_nACK)
422 printk("%cnAck", sep);
423 if (dsr & DSR_PERROR)
424 printk("%cPError", sep);
425 if (dsr & DSR_SELECT)
426 printk("%cSelect", sep);
427 if (dsr & DSR_nFAULT)
428 printk("%cnFault", sep);
429 if (!(dsr & DSR_nPRINT))
430 printk("%c(Print)", sep);
431 if (dsr & DSR_TIMEOUT)
432 printk("%cTimeout", sep);
433 printk("\n");
434 }
435#undef sep
436}
437#else /* DEBUG_PARPORT_IP32 < 2 */
438#define parport_ip32_dump_state(...) do { } while (0)
439#endif
440
441/*
442 * CHECK_EXTRA_BITS - track and log extra bits
443 * @p: pointer to &struct parport
444 * @b: byte to inspect
445 * @m: bit mask of authorized bits
446 *
447 * This is used to track and log extra bits that should not be there in
448 * parport_ip32_write_control() and parport_ip32_frob_control(). It is only
449 * defined if %DEBUG_PARPORT_IP32 >= 1.
450 */
451#if DEBUG_PARPORT_IP32 >= 1
452#define CHECK_EXTRA_BITS(p, b, m) \
453 do { \
454 unsigned int __b = (b), __m = (m); \
455 if (__b & ~__m) \
456 pr_debug1(PPIP32 "%s: extra bits in %s(%s): " \
457 "0x%02x/0x%02x\n", \
458 (p)->name, __func__, #b, __b, __m); \
459 } while (0)
460#else /* DEBUG_PARPORT_IP32 < 1 */
461#define CHECK_EXTRA_BITS(...) do { } while (0)
462#endif
463
464/*--- IP32 parallel port DMA operations --------------------------------*/
465
466/**
467 * struct parport_ip32_dma_data - private data needed for DMA operation
468 * @dir: DMA direction (from or to device)
469 * @buf: buffer physical address
470 * @len: buffer length
471 * @next: address of next bytes to DMA transfer
472 * @left: number of bytes remaining
473 * @ctx: next context to write (0: context_a; 1: context_b)
474 * @irq_on: are the DMA IRQs currently enabled?
475 * @lock: spinlock to protect access to the structure
476 */
477struct parport_ip32_dma_data {
478 enum dma_data_direction dir;
479 dma_addr_t buf;
480 dma_addr_t next;
481 size_t len;
482 size_t left;
483 unsigned int ctx;
484 unsigned int irq_on;
485 spinlock_t lock;
486};
487static struct parport_ip32_dma_data parport_ip32_dma;
488
489/**
490 * parport_ip32_dma_setup_context - setup next DMA context
491 * @limit: maximum data size for the context
492 *
493 * The alignment constraints must be verified in caller function, and the
494 * parameter @limit must be set accordingly.
495 */
496static void parport_ip32_dma_setup_context(unsigned int limit)
497{
498 unsigned long flags;
499
500 spin_lock_irqsave(&parport_ip32_dma.lock, flags);
501 if (parport_ip32_dma.left > 0) {
502 /* Note: ctxreg is "volatile" here only because
503 * mace->perif.ctrl.parport.context_a and context_b are
504 * "volatile". */
505 volatile u64 __iomem *ctxreg = (parport_ip32_dma.ctx == 0) ?
506 &mace->perif.ctrl.parport.context_a :
507 &mace->perif.ctrl.parport.context_b;
508 u64 count;
509 u64 ctxval;
510 if (parport_ip32_dma.left <= limit) {
511 count = parport_ip32_dma.left;
512 ctxval = MACEPAR_CONTEXT_LASTFLAG;
513 } else {
514 count = limit;
515 ctxval = 0;
516 }
517
518 pr_trace(NULL,
519 "(%u): 0x%04x:0x%04x, %u -> %u%s",
520 limit,
521 (unsigned int)parport_ip32_dma.buf,
522 (unsigned int)parport_ip32_dma.next,
523 (unsigned int)count,
524 parport_ip32_dma.ctx, ctxval ? "*" : "");
525
526 ctxval |= parport_ip32_dma.next &
527 MACEPAR_CONTEXT_BASEADDR_MASK;
528 ctxval |= ((count - 1) << MACEPAR_CONTEXT_DATALEN_SHIFT) &
529 MACEPAR_CONTEXT_DATALEN_MASK;
530 writeq(ctxval, ctxreg);
531 parport_ip32_dma.next += count;
532 parport_ip32_dma.left -= count;
533 parport_ip32_dma.ctx ^= 1U;
534 }
535 /* If there is nothing more to send, disable IRQs to avoid to
536 * face an IRQ storm which can lock the machine. Disable them
537 * only once. */
538 if (parport_ip32_dma.left == 0 && parport_ip32_dma.irq_on) {
539 pr_debug(PPIP32 "IRQ off (ctx)\n");
540 disable_irq_nosync(MACEISA_PAR_CTXA_IRQ);
541 disable_irq_nosync(MACEISA_PAR_CTXB_IRQ);
542 parport_ip32_dma.irq_on = 0;
543 }
544 spin_unlock_irqrestore(&parport_ip32_dma.lock, flags);
545}
546
547/**
548 * parport_ip32_dma_interrupt - DMA interrupt handler
549 * @irq: interrupt number
550 * @dev_id: unused
551 * @regs: pointer to &struct pt_regs
552 */
553static irqreturn_t parport_ip32_dma_interrupt(int irq, void *dev_id,
554 struct pt_regs *regs)
555{
556 if (parport_ip32_dma.left)
557 pr_trace(NULL, "(%d): ctx=%d", irq, parport_ip32_dma.ctx);
558 parport_ip32_dma_setup_context(MACEPAR_CONTEXT_DATA_BOUND);
559 return IRQ_HANDLED;
560}
561
562#if DEBUG_PARPORT_IP32
563static irqreturn_t parport_ip32_merr_interrupt(int irq, void *dev_id,
564 struct pt_regs *regs)
565{
566 pr_trace1(NULL, "(%d)", irq);
567 return IRQ_HANDLED;
568}
569#endif
570
571/**
572 * parport_ip32_dma_start - begins a DMA transfer
573 * @dir: DMA direction: DMA_TO_DEVICE or DMA_FROM_DEVICE
574 * @addr: pointer to data buffer
575 * @count: buffer size
576 *
577 * Calls to parport_ip32_dma_start() and parport_ip32_dma_stop() must be
578 * correctly balanced.
579 */
580static int parport_ip32_dma_start(enum dma_data_direction dir,
581 void *addr, size_t count)
582{
583 unsigned int limit;
584 u64 ctrl;
585
586 pr_trace(NULL, "(%d, %lu)", dir, (unsigned long)count);
587
588 /* FIXME - add support for DMA_FROM_DEVICE. In this case, buffer must
589 * be 64 bytes aligned. */
590 BUG_ON(dir != DMA_TO_DEVICE);
591
592 /* Reset DMA controller */
593 ctrl = MACEPAR_CTLSTAT_RESET;
594 writeq(ctrl, &mace->perif.ctrl.parport.cntlstat);
595
596 /* DMA IRQs should normally be enabled */
597 if (!parport_ip32_dma.irq_on) {
598 WARN_ON(1);
599 enable_irq(MACEISA_PAR_CTXA_IRQ);
600 enable_irq(MACEISA_PAR_CTXB_IRQ);
601 parport_ip32_dma.irq_on = 1;
602 }
603
604 /* Prepare DMA pointers */
605 parport_ip32_dma.dir = dir;
606 parport_ip32_dma.buf = dma_map_single(NULL, addr, count, dir);
607 parport_ip32_dma.len = count;
608 parport_ip32_dma.next = parport_ip32_dma.buf;
609 parport_ip32_dma.left = parport_ip32_dma.len;
610 parport_ip32_dma.ctx = 0;
611
612 /* Setup DMA direction and first two contexts */
613 ctrl = (dir == DMA_TO_DEVICE) ? 0 : MACEPAR_CTLSTAT_DIRECTION;
614 writeq(ctrl, &mace->perif.ctrl.parport.cntlstat);
615 /* Single transfer should not cross a 4K page boundary */
616 limit = MACEPAR_CONTEXT_DATA_BOUND -
617 (parport_ip32_dma.next & (MACEPAR_CONTEXT_DATA_BOUND - 1));
618 parport_ip32_dma_setup_context(limit);
619 parport_ip32_dma_setup_context(MACEPAR_CONTEXT_DATA_BOUND);
620
621 /* Real start of DMA transfer */
622 ctrl |= MACEPAR_CTLSTAT_ENABLE;
623 writeq(ctrl, &mace->perif.ctrl.parport.cntlstat);
624
625 return 0;
626}
627
628/**
629 * parport_ip32_dma_stop - ends a running DMA transfer
630 *
631 * Calls to parport_ip32_dma_start() and parport_ip32_dma_stop() must be
632 * correctly balanced.
633 */
634static void parport_ip32_dma_stop(void)
635{
636 u64 ctx_a;
637 u64 ctx_b;
638 u64 ctrl;
639 u64 diag;
640 size_t res[2]; /* {[0] = res_a, [1] = res_b} */
641
642 pr_trace(NULL, "()");
643
644 /* Disable IRQs */
645 spin_lock_irq(&parport_ip32_dma.lock);
646 if (parport_ip32_dma.irq_on) {
647 pr_debug(PPIP32 "IRQ off (stop)\n");
648 disable_irq_nosync(MACEISA_PAR_CTXA_IRQ);
649 disable_irq_nosync(MACEISA_PAR_CTXB_IRQ);
650 parport_ip32_dma.irq_on = 0;
651 }
652 spin_unlock_irq(&parport_ip32_dma.lock);
653 /* Force IRQ synchronization, even if the IRQs were disabled
654 * elsewhere. */
655 synchronize_irq(MACEISA_PAR_CTXA_IRQ);
656 synchronize_irq(MACEISA_PAR_CTXB_IRQ);
657
658 /* Stop DMA transfer */
659 ctrl = readq(&mace->perif.ctrl.parport.cntlstat);
660 ctrl &= ~MACEPAR_CTLSTAT_ENABLE;
661 writeq(ctrl, &mace->perif.ctrl.parport.cntlstat);
662
663 /* Adjust residue (parport_ip32_dma.left) */
664 ctx_a = readq(&mace->perif.ctrl.parport.context_a);
665 ctx_b = readq(&mace->perif.ctrl.parport.context_b);
666 ctrl = readq(&mace->perif.ctrl.parport.cntlstat);
667 diag = readq(&mace->perif.ctrl.parport.diagnostic);
668 res[0] = (ctrl & MACEPAR_CTLSTAT_CTXA_VALID) ?
669 1 + ((ctx_a & MACEPAR_CONTEXT_DATALEN_MASK) >>
670 MACEPAR_CONTEXT_DATALEN_SHIFT) :
671 0;
672 res[1] = (ctrl & MACEPAR_CTLSTAT_CTXB_VALID) ?
673 1 + ((ctx_b & MACEPAR_CONTEXT_DATALEN_MASK) >>
674 MACEPAR_CONTEXT_DATALEN_SHIFT) :
675 0;
676 if (diag & MACEPAR_DIAG_DMACTIVE)
677 res[(diag & MACEPAR_DIAG_CTXINUSE) != 0] =
678 1 + ((diag & MACEPAR_DIAG_CTRMASK) >>
679 MACEPAR_DIAG_CTRSHIFT);
680 parport_ip32_dma.left += res[0] + res[1];
681
682 /* Reset DMA controller, and re-enable IRQs */
683 ctrl = MACEPAR_CTLSTAT_RESET;
684 writeq(ctrl, &mace->perif.ctrl.parport.cntlstat);
685 pr_debug(PPIP32 "IRQ on (stop)\n");
686 enable_irq(MACEISA_PAR_CTXA_IRQ);
687 enable_irq(MACEISA_PAR_CTXB_IRQ);
688 parport_ip32_dma.irq_on = 1;
689
690 dma_unmap_single(NULL, parport_ip32_dma.buf, parport_ip32_dma.len,
691 parport_ip32_dma.dir);
692}
693
694/**
695 * parport_ip32_dma_get_residue - get residue from last DMA transfer
696 *
697 * Returns the number of bytes remaining from last DMA transfer.
698 */
699static inline size_t parport_ip32_dma_get_residue(void)
700{
701 return parport_ip32_dma.left;
702}
703
704/**
705 * parport_ip32_dma_register - initialize DMA engine
706 *
707 * Returns zero for success.
708 */
709static int parport_ip32_dma_register(void)
710{
711 int err;
712
713 spin_lock_init(&parport_ip32_dma.lock);
714 parport_ip32_dma.irq_on = 1;
715
716 /* Reset DMA controller */
717 writeq(MACEPAR_CTLSTAT_RESET, &mace->perif.ctrl.parport.cntlstat);
718
719 /* Request IRQs */
720 err = request_irq(MACEISA_PAR_CTXA_IRQ, parport_ip32_dma_interrupt,
721 0, "parport_ip32", NULL);
722 if (err)
723 goto fail_a;
724 err = request_irq(MACEISA_PAR_CTXB_IRQ, parport_ip32_dma_interrupt,
725 0, "parport_ip32", NULL);
726 if (err)
727 goto fail_b;
728#if DEBUG_PARPORT_IP32
729 /* FIXME - what is this IRQ for? */
730 err = request_irq(MACEISA_PAR_MERR_IRQ, parport_ip32_merr_interrupt,
731 0, "parport_ip32", NULL);
732 if (err)
733 goto fail_merr;
734#endif
735 return 0;
736
737#if DEBUG_PARPORT_IP32
738fail_merr:
739 free_irq(MACEISA_PAR_CTXB_IRQ, NULL);
740#endif
741fail_b:
742 free_irq(MACEISA_PAR_CTXA_IRQ, NULL);
743fail_a:
744 return err;
745}
746
747/**
748 * parport_ip32_dma_unregister - release and free resources for DMA engine
749 */
750static void parport_ip32_dma_unregister(void)
751{
752#if DEBUG_PARPORT_IP32
753 free_irq(MACEISA_PAR_MERR_IRQ, NULL);
754#endif
755 free_irq(MACEISA_PAR_CTXB_IRQ, NULL);
756 free_irq(MACEISA_PAR_CTXA_IRQ, NULL);
757}
758
759/*--- Interrupt handlers and associates --------------------------------*/
760
761/**
762 * parport_ip32_wakeup - wakes up code waiting for an interrupt
763 * @p: pointer to &struct parport
764 */
765static inline void parport_ip32_wakeup(struct parport *p)
766{
767 struct parport_ip32_private * const priv = p->physport->private_data;
768 complete(&priv->irq_complete);
769}
770
771/**
772 * parport_ip32_interrupt - interrupt handler
773 * @irq: interrupt number
774 * @dev_id: pointer to &struct parport
775 * @regs: pointer to &struct pt_regs
776 *
777 * Caught interrupts are forwarded to the upper parport layer if IRQ_mode is
778 * %PARPORT_IP32_IRQ_FWD.
779 */
780static irqreturn_t parport_ip32_interrupt(int irq, void *dev_id,
781 struct pt_regs *regs)
782{
783 struct parport * const p = dev_id;
784 struct parport_ip32_private * const priv = p->physport->private_data;
785 enum parport_ip32_irq_mode irq_mode = priv->irq_mode;
786 switch (irq_mode) {
787 case PARPORT_IP32_IRQ_FWD:
788 parport_generic_irq(irq, p, regs);
789 break;
790 case PARPORT_IP32_IRQ_HERE:
791 parport_ip32_wakeup(p);
792 break;
793 }
794 return IRQ_HANDLED;
795}
796
797/*--- Some utility function to manipulate ECR register -----------------*/
798
799/**
800 * parport_ip32_read_econtrol - read contents of the ECR register
801 * @p: pointer to &struct parport
802 */
803static inline unsigned int parport_ip32_read_econtrol(struct parport *p)
804{
805 struct parport_ip32_private * const priv = p->physport->private_data;
806 return readb(priv->regs.ecr);
807}
808
809/**
810 * parport_ip32_write_econtrol - write new contents to the ECR register
811 * @p: pointer to &struct parport
812 * @c: new value to write
813 */
814static inline void parport_ip32_write_econtrol(struct parport *p,
815 unsigned int c)
816{
817 struct parport_ip32_private * const priv = p->physport->private_data;
818 writeb(c, priv->regs.ecr);
819}
820
821/**
822 * parport_ip32_frob_econtrol - change bits from the ECR register
823 * @p: pointer to &struct parport
824 * @mask: bit mask of bits to change
825 * @val: new value for changed bits
826 *
827 * Read from the ECR, mask out the bits in @mask, exclusive-or with the bits
828 * in @val, and write the result to the ECR.
829 */
830static inline void parport_ip32_frob_econtrol(struct parport *p,
831 unsigned int mask,
832 unsigned int val)
833{
834 unsigned int c;
835 c = (parport_ip32_read_econtrol(p) & ~mask) ^ val;
836 parport_ip32_write_econtrol(p, c);
837}
838
839/**
840 * parport_ip32_set_mode - change mode of ECP port
841 * @p: pointer to &struct parport
842 * @mode: new mode to write in ECR
843 *
844 * ECR is reset in a sane state (interrupts and DMA disabled), and placed in
845 * mode @mode. Go through PS2 mode if needed.
846 */
847static void parport_ip32_set_mode(struct parport *p, unsigned int mode)
848{
849 unsigned int omode;
850
851 mode &= ECR_MODE_MASK;
852 omode = parport_ip32_read_econtrol(p) & ECR_MODE_MASK;
853
854 if (!(mode == ECR_MODE_SPP || mode == ECR_MODE_PS2
855 || omode == ECR_MODE_SPP || omode == ECR_MODE_PS2)) {
856 /* We have to go through PS2 mode */
857 unsigned int ecr = ECR_MODE_PS2 | ECR_nERRINTR | ECR_SERVINTR;
858 parport_ip32_write_econtrol(p, ecr);
859 }
860 parport_ip32_write_econtrol(p, mode | ECR_nERRINTR | ECR_SERVINTR);
861}
862
863/*--- Basic functions needed for parport -------------------------------*/
864
865/**
866 * parport_ip32_read_data - return current contents of the DATA register
867 * @p: pointer to &struct parport
868 */
869static inline unsigned char parport_ip32_read_data(struct parport *p)
870{
871 struct parport_ip32_private * const priv = p->physport->private_data;
872 return readb(priv->regs.data);
873}
874
875/**
876 * parport_ip32_write_data - set new contents for the DATA register
877 * @p: pointer to &struct parport
878 * @d: new value to write
879 */
880static inline void parport_ip32_write_data(struct parport *p, unsigned char d)
881{
882 struct parport_ip32_private * const priv = p->physport->private_data;
883 writeb(d, priv->regs.data);
884}
885
886/**
887 * parport_ip32_read_status - return current contents of the DSR register
888 * @p: pointer to &struct parport
889 */
890static inline unsigned char parport_ip32_read_status(struct parport *p)
891{
892 struct parport_ip32_private * const priv = p->physport->private_data;
893 return readb(priv->regs.dsr);
894}
895
896/**
897 * __parport_ip32_read_control - return cached contents of the DCR register
898 * @p: pointer to &struct parport
899 */
900static inline unsigned int __parport_ip32_read_control(struct parport *p)
901{
902 struct parport_ip32_private * const priv = p->physport->private_data;
903 return priv->dcr_cache; /* use soft copy */
904}
905
906/**
907 * __parport_ip32_write_control - set new contents for the DCR register
908 * @p: pointer to &struct parport
909 * @c: new value to write
910 */
911static inline void __parport_ip32_write_control(struct parport *p,
912 unsigned int c)
913{
914 struct parport_ip32_private * const priv = p->physport->private_data;
915 CHECK_EXTRA_BITS(p, c, priv->dcr_writable);
916 c &= priv->dcr_writable; /* only writable bits */
917 writeb(c, priv->regs.dcr);
918 priv->dcr_cache = c; /* update soft copy */
919}
920
921/**
922 * __parport_ip32_frob_control - change bits from the DCR register
923 * @p: pointer to &struct parport
924 * @mask: bit mask of bits to change
925 * @val: new value for changed bits
926 *
927 * This is equivalent to read from the DCR, mask out the bits in @mask,
928 * exclusive-or with the bits in @val, and write the result to the DCR.
929 * Actually, the cached contents of the DCR is used.
930 */
931static inline void __parport_ip32_frob_control(struct parport *p,
932 unsigned int mask,
933 unsigned int val)
934{
935 unsigned int c;
936 c = (__parport_ip32_read_control(p) & ~mask) ^ val;
937 __parport_ip32_write_control(p, c);
938}
939
940/**
941 * parport_ip32_read_control - return cached contents of the DCR register
942 * @p: pointer to &struct parport
943 *
944 * The return value is masked so as to only return the value of %DCR_STROBE,
945 * %DCR_AUTOFD, %DCR_nINIT, and %DCR_SELECT.
946 */
947static inline unsigned char parport_ip32_read_control(struct parport *p)
948{
949 const unsigned int rm =
950 DCR_STROBE | DCR_AUTOFD | DCR_nINIT | DCR_SELECT;
951 return __parport_ip32_read_control(p) & rm;
952}
953
954/**
955 * parport_ip32_write_control - set new contents for the DCR register
956 * @p: pointer to &struct parport
957 * @c: new value to write
958 *
959 * The value is masked so as to only change the value of %DCR_STROBE,
960 * %DCR_AUTOFD, %DCR_nINIT, and %DCR_SELECT.
961 */
962static inline void parport_ip32_write_control(struct parport *p,
963 unsigned char c)
964{
965 const unsigned int wm =
966 DCR_STROBE | DCR_AUTOFD | DCR_nINIT | DCR_SELECT;
967 CHECK_EXTRA_BITS(p, c, wm);
968 __parport_ip32_frob_control(p, wm, c & wm);
969}
970
971/**
972 * parport_ip32_frob_control - change bits from the DCR register
973 * @p: pointer to &struct parport
974 * @mask: bit mask of bits to change
975 * @val: new value for changed bits
976 *
977 * This differs from __parport_ip32_frob_control() in that it only allows to
978 * change the value of %DCR_STROBE, %DCR_AUTOFD, %DCR_nINIT, and %DCR_SELECT.
979 */
980static inline unsigned char parport_ip32_frob_control(struct parport *p,
981 unsigned char mask,
982 unsigned char val)
983{
984 const unsigned int wm =
985 DCR_STROBE | DCR_AUTOFD | DCR_nINIT | DCR_SELECT;
986 CHECK_EXTRA_BITS(p, mask, wm);
987 CHECK_EXTRA_BITS(p, val, wm);
988 __parport_ip32_frob_control(p, mask & wm, val & wm);
989 return parport_ip32_read_control(p);
990}
991
992/**
993 * parport_ip32_disable_irq - disable interrupts on the rising edge of nACK
994 * @p: pointer to &struct parport
995 */
996static inline void parport_ip32_disable_irq(struct parport *p)
997{
998 __parport_ip32_frob_control(p, DCR_IRQ, 0);
999}
1000
1001/**
1002 * parport_ip32_enable_irq - enable interrupts on the rising edge of nACK
1003 * @p: pointer to &struct parport
1004 */
1005static inline void parport_ip32_enable_irq(struct parport *p)
1006{
1007 __parport_ip32_frob_control(p, DCR_IRQ, DCR_IRQ);
1008}
1009
1010/**
1011 * parport_ip32_data_forward - enable host-to-peripheral communications
1012 * @p: pointer to &struct parport
1013 *
1014 * Enable the data line drivers, for 8-bit host-to-peripheral communications.
1015 */
1016static inline void parport_ip32_data_forward(struct parport *p)
1017{
1018 __parport_ip32_frob_control(p, DCR_DIR, 0);
1019}
1020
1021/**
1022 * parport_ip32_data_reverse - enable peripheral-to-host communications
1023 * @p: pointer to &struct parport
1024 *
1025 * Place the data bus in a high impedance state, if @p->modes has the
1026 * PARPORT_MODE_TRISTATE bit set.
1027 */
1028static inline void parport_ip32_data_reverse(struct parport *p)
1029{
1030 __parport_ip32_frob_control(p, DCR_DIR, DCR_DIR);
1031}
1032
1033/**
1034 * parport_ip32_init_state - for core parport code
1035 * @dev: pointer to &struct pardevice
1036 * @s: pointer to &struct parport_state to initialize
1037 */
1038static void parport_ip32_init_state(struct pardevice *dev,
1039 struct parport_state *s)
1040{
1041 s->u.ip32.dcr = DCR_SELECT | DCR_nINIT;
1042 s->u.ip32.ecr = ECR_MODE_PS2 | ECR_nERRINTR | ECR_SERVINTR;
1043}
1044
1045/**
1046 * parport_ip32_save_state - for core parport code
1047 * @p: pointer to &struct parport
1048 * @s: pointer to &struct parport_state to save state to
1049 */
1050static void parport_ip32_save_state(struct parport *p,
1051 struct parport_state *s)
1052{
1053 s->u.ip32.dcr = __parport_ip32_read_control(p);
1054 s->u.ip32.ecr = parport_ip32_read_econtrol(p);
1055}
1056
1057/**
1058 * parport_ip32_restore_state - for core parport code
1059 * @p: pointer to &struct parport
1060 * @s: pointer to &struct parport_state to restore state from
1061 */
1062static void parport_ip32_restore_state(struct parport *p,
1063 struct parport_state *s)
1064{
1065 parport_ip32_set_mode(p, s->u.ip32.ecr & ECR_MODE_MASK);
1066 parport_ip32_write_econtrol(p, s->u.ip32.ecr);
1067 __parport_ip32_write_control(p, s->u.ip32.dcr);
1068}
1069
1070/*--- EPP mode functions -----------------------------------------------*/
1071
1072/**
1073 * parport_ip32_clear_epp_timeout - clear Timeout bit in EPP mode
1074 * @p: pointer to &struct parport
1075 *
1076 * Returns 1 if the Timeout bit is clear, and 0 otherwise.
1077 */
1078static unsigned int parport_ip32_clear_epp_timeout(struct parport *p)
1079{
1080 struct parport_ip32_private * const priv = p->physport->private_data;
1081 unsigned int cleared;
1082
1083 if (!(parport_ip32_read_status(p) & DSR_TIMEOUT))
1084 cleared = 1;
1085 else {
1086 unsigned int r;
1087 /* To clear timeout some chips require double read */
1088 parport_ip32_read_status(p);
1089 r = parport_ip32_read_status(p);
1090 /* Some reset by writing 1 */
1091 writeb(r | DSR_TIMEOUT, priv->regs.dsr);
1092 /* Others by writing 0 */
1093 writeb(r & ~DSR_TIMEOUT, priv->regs.dsr);
1094
1095 r = parport_ip32_read_status(p);
1096 cleared = !(r & DSR_TIMEOUT);
1097 }
1098
1099 pr_trace(p, "(): %s", cleared ? "cleared" : "failed");
1100 return cleared;
1101}
1102
1103/**
1104 * parport_ip32_epp_read - generic EPP read function
1105 * @eppreg: I/O register to read from
1106 * @p: pointer to &struct parport
1107 * @buf: buffer to store read data
1108 * @len: length of buffer @buf
1109 * @flags: may be PARPORT_EPP_FAST
1110 */
1111static size_t parport_ip32_epp_read(void __iomem *eppreg,
1112 struct parport *p, void *buf,
1113 size_t len, int flags)
1114{
1115 struct parport_ip32_private * const priv = p->physport->private_data;
1116 size_t got;
1117 parport_ip32_set_mode(p, ECR_MODE_EPP);
1118 parport_ip32_data_reverse(p);
1119 parport_ip32_write_control(p, DCR_nINIT);
1120 if ((flags & PARPORT_EPP_FAST) && (len > 1)) {
1121 readsb(eppreg, buf, len);
1122 if (readb(priv->regs.dsr) & DSR_TIMEOUT) {
1123 parport_ip32_clear_epp_timeout(p);
1124 return -EIO;
1125 }
1126 got = len;
1127 } else {
1128 u8 *bufp = buf;
1129 for (got = 0; got < len; got++) {
1130 *bufp++ = readb(eppreg);
1131 if (readb(priv->regs.dsr) & DSR_TIMEOUT) {
1132 parport_ip32_clear_epp_timeout(p);
1133 break;
1134 }
1135 }
1136 }
1137 parport_ip32_data_forward(p);
1138 parport_ip32_set_mode(p, ECR_MODE_PS2);
1139 return got;
1140}
1141
1142/**
1143 * parport_ip32_epp_write - generic EPP write function
1144 * @eppreg: I/O register to write to
1145 * @p: pointer to &struct parport
1146 * @buf: buffer of data to write
1147 * @len: length of buffer @buf
1148 * @flags: may be PARPORT_EPP_FAST
1149 */
1150static size_t parport_ip32_epp_write(void __iomem *eppreg,
1151 struct parport *p, const void *buf,
1152 size_t len, int flags)
1153{
1154 struct parport_ip32_private * const priv = p->physport->private_data;
1155 size_t written;
1156 parport_ip32_set_mode(p, ECR_MODE_EPP);
1157 parport_ip32_data_forward(p);
1158 parport_ip32_write_control(p, DCR_nINIT);
1159 if ((flags & PARPORT_EPP_FAST) && (len > 1)) {
1160 writesb(eppreg, buf, len);
1161 if (readb(priv->regs.dsr) & DSR_TIMEOUT) {
1162 parport_ip32_clear_epp_timeout(p);
1163 return -EIO;
1164 }
1165 written = len;
1166 } else {
1167 const u8 *bufp = buf;
1168 for (written = 0; written < len; written++) {
1169 writeb(*bufp++, eppreg);
1170 if (readb(priv->regs.dsr) & DSR_TIMEOUT) {
1171 parport_ip32_clear_epp_timeout(p);
1172 break;
1173 }
1174 }
1175 }
1176 parport_ip32_set_mode(p, ECR_MODE_PS2);
1177 return written;
1178}
1179
1180/**
1181 * parport_ip32_epp_read_data - read a block of data in EPP mode
1182 * @p: pointer to &struct parport
1183 * @buf: buffer to store read data
1184 * @len: length of buffer @buf
1185 * @flags: may be PARPORT_EPP_FAST
1186 */
1187static size_t parport_ip32_epp_read_data(struct parport *p, void *buf,
1188 size_t len, int flags)
1189{
1190 struct parport_ip32_private * const priv = p->physport->private_data;
1191 return parport_ip32_epp_read(priv->regs.eppData0, p, buf, len, flags);
1192}
1193
1194/**
1195 * parport_ip32_epp_write_data - write a block of data in EPP mode
1196 * @p: pointer to &struct parport
1197 * @buf: buffer of data to write
1198 * @len: length of buffer @buf
1199 * @flags: may be PARPORT_EPP_FAST
1200 */
1201static size_t parport_ip32_epp_write_data(struct parport *p, const void *buf,
1202 size_t len, int flags)
1203{
1204 struct parport_ip32_private * const priv = p->physport->private_data;
1205 return parport_ip32_epp_write(priv->regs.eppData0, p, buf, len, flags);
1206}
1207
1208/**
1209 * parport_ip32_epp_read_addr - read a block of addresses in EPP mode
1210 * @p: pointer to &struct parport
1211 * @buf: buffer to store read data
1212 * @len: length of buffer @buf
1213 * @flags: may be PARPORT_EPP_FAST
1214 */
1215static size_t parport_ip32_epp_read_addr(struct parport *p, void *buf,
1216 size_t len, int flags)
1217{
1218 struct parport_ip32_private * const priv = p->physport->private_data;
1219 return parport_ip32_epp_read(priv->regs.eppAddr, p, buf, len, flags);
1220}
1221
1222/**
1223 * parport_ip32_epp_write_addr - write a block of addresses in EPP mode
1224 * @p: pointer to &struct parport
1225 * @buf: buffer of data to write
1226 * @len: length of buffer @buf
1227 * @flags: may be PARPORT_EPP_FAST
1228 */
1229static size_t parport_ip32_epp_write_addr(struct parport *p, const void *buf,
1230 size_t len, int flags)
1231{
1232 struct parport_ip32_private * const priv = p->physport->private_data;
1233 return parport_ip32_epp_write(priv->regs.eppAddr, p, buf, len, flags);
1234}
1235
1236/*--- ECP mode functions (FIFO) ----------------------------------------*/
1237
1238/**
1239 * parport_ip32_fifo_wait_break - check if the waiting function should return
1240 * @p: pointer to &struct parport
1241 * @expire: timeout expiring date, in jiffies
1242 *
1243 * parport_ip32_fifo_wait_break() checks if the waiting function should return
1244 * immediately or not. The break conditions are:
1245 * - expired timeout;
1246 * - a pending signal;
1247 * - nFault asserted low.
1248 * This function also calls cond_resched().
1249 */
1250static unsigned int parport_ip32_fifo_wait_break(struct parport *p,
1251 unsigned long expire)
1252{
1253 cond_resched();
1254 if (time_after(jiffies, expire)) {
1255 pr_debug1(PPIP32 "%s: FIFO write timed out\n", p->name);
1256 return 1;
1257 }
1258 if (signal_pending(current)) {
1259 pr_debug1(PPIP32 "%s: Signal pending\n", p->name);
1260 return 1;
1261 }
1262 if (!(parport_ip32_read_status(p) & DSR_nFAULT)) {
1263 pr_debug1(PPIP32 "%s: nFault asserted low\n", p->name);
1264 return 1;
1265 }
1266 return 0;
1267}
1268
1269/**
1270 * parport_ip32_fwp_wait_polling - wait for FIFO to empty (polling)
1271 * @p: pointer to &struct parport
1272 *
1273 * Returns the number of bytes that can safely be written in the FIFO. A
1274 * return value of zero means that the calling function should terminate as
1275 * fast as possible.
1276 */
1277static unsigned int parport_ip32_fwp_wait_polling(struct parport *p)
1278{
1279 struct parport_ip32_private * const priv = p->physport->private_data;
1280 struct parport * const physport = p->physport;
1281 unsigned long expire;
1282 unsigned int count;
1283 unsigned int ecr;
1284
1285 expire = jiffies + physport->cad->timeout;
1286 count = 0;
1287 while (1) {
1288 if (parport_ip32_fifo_wait_break(p, expire))
1289 break;
1290
1291 /* Check FIFO state. We do nothing when the FIFO is nor full,
1292 * nor empty. It appears that the FIFO full bit is not always
1293 * reliable, the FIFO state is sometimes wrongly reported, and
1294 * the chip gets confused if we give it another byte. */
1295 ecr = parport_ip32_read_econtrol(p);
1296 if (ecr & ECR_F_EMPTY) {
1297 /* FIFO is empty, fill it up */
1298 count = priv->fifo_depth;
1299 break;
1300 }
1301
1302 /* Wait a moment... */
1303 udelay(FIFO_POLLING_INTERVAL);
1304 } /* while (1) */
1305
1306 return count;
1307}
1308
1309/**
1310 * parport_ip32_fwp_wait_interrupt - wait for FIFO to empty (interrupt-driven)
1311 * @p: pointer to &struct parport
1312 *
1313 * Returns the number of bytes that can safely be written in the FIFO. A
1314 * return value of zero means that the calling function should terminate as
1315 * fast as possible.
1316 */
1317static unsigned int parport_ip32_fwp_wait_interrupt(struct parport *p)
1318{
1319 static unsigned int lost_interrupt = 0;
1320 struct parport_ip32_private * const priv = p->physport->private_data;
1321 struct parport * const physport = p->physport;
1322 unsigned long nfault_timeout;
1323 unsigned long expire;
1324 unsigned int count;
1325 unsigned int ecr;
1326
1327 nfault_timeout = min((unsigned long)physport->cad->timeout,
1328 msecs_to_jiffies(FIFO_NFAULT_TIMEOUT));
1329 expire = jiffies + physport->cad->timeout;
1330 count = 0;
1331 while (1) {
1332 if (parport_ip32_fifo_wait_break(p, expire))
1333 break;
1334
1335 /* Initialize mutex used to take interrupts into account */
1336 INIT_COMPLETION(priv->irq_complete);
1337
1338 /* Enable serviceIntr */
1339 parport_ip32_frob_econtrol(p, ECR_SERVINTR, 0);
1340
1341 /* Enabling serviceIntr while the FIFO is empty does not
1342 * always generate an interrupt, so check for emptiness
1343 * now. */
1344 ecr = parport_ip32_read_econtrol(p);
1345 if (!(ecr & ECR_F_EMPTY)) {
1346 /* FIFO is not empty: wait for an interrupt or a
1347 * timeout to occur */
1348 wait_for_completion_interruptible_timeout(
1349 &priv->irq_complete, nfault_timeout);
1350 ecr = parport_ip32_read_econtrol(p);
1351 if ((ecr & ECR_F_EMPTY) && !(ecr & ECR_SERVINTR)
1352 && !lost_interrupt) {
1353 printk(KERN_WARNING PPIP32
1354 "%s: lost interrupt in %s\n",
1355 p->name, __func__);
1356 lost_interrupt = 1;
1357 }
1358 }
1359
1360 /* Disable serviceIntr */
1361 parport_ip32_frob_econtrol(p, ECR_SERVINTR, ECR_SERVINTR);
1362
1363 /* Check FIFO state */
1364 if (ecr & ECR_F_EMPTY) {
1365 /* FIFO is empty, fill it up */
1366 count = priv->fifo_depth;
1367 break;
1368 } else if (ecr & ECR_SERVINTR) {
1369 /* FIFO is not empty, but we know that can safely push
1370 * writeIntrThreshold bytes into it */
1371 count = priv->writeIntrThreshold;
1372 break;
1373 }
1374 /* FIFO is not empty, and we did not get any interrupt.
1375 * Either it's time to check for nFault, or a signal is
1376 * pending. This is verified in
1377 * parport_ip32_fifo_wait_break(), so we continue the loop. */
1378 } /* while (1) */
1379
1380 return count;
1381}
1382
1383/**
1384 * parport_ip32_fifo_write_block_pio - write a block of data (PIO mode)
1385 * @p: pointer to &struct parport
1386 * @buf: buffer of data to write
1387 * @len: length of buffer @buf
1388 *
1389 * Uses PIO to write the contents of the buffer @buf into the parallel port
1390 * FIFO. Returns the number of bytes that were actually written. It can work
1391 * with or without the help of interrupts. The parallel port must be
1392 * correctly initialized before calling parport_ip32_fifo_write_block_pio().
1393 */
1394static size_t parport_ip32_fifo_write_block_pio(struct parport *p,
1395 const void *buf, size_t len)
1396{
1397 struct parport_ip32_private * const priv = p->physport->private_data;
1398 const u8 *bufp = buf;
1399 size_t left = len;
1400
1401 priv->irq_mode = PARPORT_IP32_IRQ_HERE;
1402
1403 while (left > 0) {
1404 unsigned int count;
1405
1406 count = (p->irq == PARPORT_IRQ_NONE) ?
1407 parport_ip32_fwp_wait_polling(p) :
1408 parport_ip32_fwp_wait_interrupt(p);
1409 if (count == 0)
1410 break; /* Transmission should be stopped */
1411 if (count > left)
1412 count = left;
1413 if (count == 1) {
1414 writeb(*bufp, priv->regs.fifo);
1415 bufp++, left--;
1416 } else {
1417 writesb(priv->regs.fifo, bufp, count);
1418 bufp += count, left -= count;
1419 }
1420 }
1421
1422 priv->irq_mode = PARPORT_IP32_IRQ_FWD;
1423
1424 return len - left;
1425}
1426
1427/**
1428 * parport_ip32_fifo_write_block_dma - write a block of data (DMA mode)
1429 * @p: pointer to &struct parport
1430 * @buf: buffer of data to write
1431 * @len: length of buffer @buf
1432 *
1433 * Uses DMA to write the contents of the buffer @buf into the parallel port
1434 * FIFO. Returns the number of bytes that were actually written. The
1435 * parallel port must be correctly initialized before calling
1436 * parport_ip32_fifo_write_block_dma().
1437 */
1438static size_t parport_ip32_fifo_write_block_dma(struct parport *p,
1439 const void *buf, size_t len)
1440{
1441 struct parport_ip32_private * const priv = p->physport->private_data;
1442 struct parport * const physport = p->physport;
1443 unsigned long nfault_timeout;
1444 unsigned long expire;
1445 size_t written;
1446 unsigned int ecr;
1447
1448 priv->irq_mode = PARPORT_IP32_IRQ_HERE;
1449
1450 parport_ip32_dma_start(DMA_TO_DEVICE, (void *)buf, len);
1451 INIT_COMPLETION(priv->irq_complete);
1452 parport_ip32_frob_econtrol(p, ECR_DMAEN | ECR_SERVINTR, ECR_DMAEN);
1453
1454 nfault_timeout = min((unsigned long)physport->cad->timeout,
1455 msecs_to_jiffies(FIFO_NFAULT_TIMEOUT));
1456 expire = jiffies + physport->cad->timeout;
1457 while (1) {
1458 if (parport_ip32_fifo_wait_break(p, expire))
1459 break;
1460 wait_for_completion_interruptible_timeout(&priv->irq_complete,
1461 nfault_timeout);
1462 ecr = parport_ip32_read_econtrol(p);
1463 if (ecr & ECR_SERVINTR)
1464 break; /* DMA transfer just finished */
1465 }
1466 parport_ip32_dma_stop();
1467 written = len - parport_ip32_dma_get_residue();
1468
1469 priv->irq_mode = PARPORT_IP32_IRQ_FWD;
1470
1471 return written;
1472}
1473
1474/**
1475 * parport_ip32_fifo_write_block - write a block of data
1476 * @p: pointer to &struct parport
1477 * @buf: buffer of data to write
1478 * @len: length of buffer @buf
1479 *
1480 * Uses PIO or DMA to write the contents of the buffer @buf into the parallel
1481 * p FIFO. Returns the number of bytes that were actually written.
1482 */
1483static size_t parport_ip32_fifo_write_block(struct parport *p,
1484 const void *buf, size_t len)
1485{
1486 size_t written = 0;
1487 if (len)
1488 /* FIXME - Maybe some threshold value should be set for @len
1489 * under which we revert to PIO mode? */
1490 written = (p->modes & PARPORT_MODE_DMA) ?
1491 parport_ip32_fifo_write_block_dma(p, buf, len) :
1492 parport_ip32_fifo_write_block_pio(p, buf, len);
1493 return written;
1494}
1495
1496/**
1497 * parport_ip32_drain_fifo - wait for FIFO to empty
1498 * @p: pointer to &struct parport
1499 * @timeout: timeout, in jiffies
1500 *
1501 * This function waits for FIFO to empty. It returns 1 when FIFO is empty, or
1502 * 0 if the timeout @timeout is reached before, or if a signal is pending.
1503 */
1504static unsigned int parport_ip32_drain_fifo(struct parport *p,
1505 unsigned long timeout)
1506{
1507 unsigned long expire = jiffies + timeout;
1508 unsigned int polling_interval;
1509 unsigned int counter;
1510
1511 /* Busy wait for approx. 200us */
1512 for (counter = 0; counter < 40; counter++) {
1513 if (parport_ip32_read_econtrol(p) & ECR_F_EMPTY)
1514 break;
1515 if (time_after(jiffies, expire))
1516 break;
1517 if (signal_pending(current))
1518 break;
1519 udelay(5);
1520 }
1521 /* Poll slowly. Polling interval starts with 1 millisecond, and is
1522 * increased exponentially until 128. */
1523 polling_interval = 1; /* msecs */
1524 while (!(parport_ip32_read_econtrol(p) & ECR_F_EMPTY)) {
1525 if (time_after_eq(jiffies, expire))
1526 break;
1527 msleep_interruptible(polling_interval);
1528 if (signal_pending(current))
1529 break;
1530 if (polling_interval < 128)
1531 polling_interval *= 2;
1532 }
1533
1534 return !!(parport_ip32_read_econtrol(p) & ECR_F_EMPTY);
1535}
1536
1537/**
1538 * parport_ip32_get_fifo_residue - reset FIFO
1539 * @p: pointer to &struct parport
1540 * @mode: current operation mode (ECR_MODE_PPF or ECR_MODE_ECP)
1541 *
1542 * This function resets FIFO, and returns the number of bytes remaining in it.
1543 */
1544static unsigned int parport_ip32_get_fifo_residue(struct parport *p,
1545 unsigned int mode)
1546{
1547 struct parport_ip32_private * const priv = p->physport->private_data;
1548 unsigned int residue;
1549 unsigned int cnfga;
1550
1551 /* FIXME - We are missing one byte if the printer is off-line. I
1552 * don't know how to detect this. It looks that the full bit is not
1553 * always reliable. For the moment, the problem is avoided in most
1554 * cases by testing for BUSY in parport_ip32_compat_write_data().
1555 */
1556 if (parport_ip32_read_econtrol(p) & ECR_F_EMPTY)
1557 residue = 0;
1558 else {
1559 pr_debug1(PPIP32 "%s: FIFO is stuck\n", p->name);
1560
1561 /* Stop all transfers.
1562 *
1563 * Microsoft's document instructs to drive DCR_STROBE to 0,
1564 * but it doesn't work (at least in Compatibility mode, not
1565 * tested in ECP mode). Switching directly to Test mode (as
1566 * in parport_pc) is not an option: it does confuse the port,
1567 * ECP service interrupts are no more working after that. A
1568 * hard reset is then needed to revert to a sane state.
1569 *
1570 * Let's hope that the FIFO is really stuck and that the
1571 * peripheral doesn't wake up now.
1572 */
1573 parport_ip32_frob_control(p, DCR_STROBE, 0);
1574
1575 /* Fill up FIFO */
1576 for (residue = priv->fifo_depth; residue > 0; residue--) {
1577 if (parport_ip32_read_econtrol(p) & ECR_F_FULL)
1578 break;
1579 writeb(0x00, priv->regs.fifo);
1580 }
1581 }
1582 if (residue)
1583 pr_debug1(PPIP32 "%s: %d PWord%s left in FIFO\n",
1584 p->name, residue,
1585 (residue == 1) ? " was" : "s were");
1586
1587 /* Now reset the FIFO */
1588 parport_ip32_set_mode(p, ECR_MODE_PS2);
1589
1590 /* Host recovery for ECP mode */
1591 if (mode == ECR_MODE_ECP) {
1592 parport_ip32_data_reverse(p);
1593 parport_ip32_frob_control(p, DCR_nINIT, 0);
1594 if (parport_wait_peripheral(p, DSR_PERROR, 0))
1595 pr_debug1(PPIP32 "%s: PEerror timeout 1 in %s\n",
1596 p->name, __func__);
1597 parport_ip32_frob_control(p, DCR_STROBE, DCR_STROBE);
1598 parport_ip32_frob_control(p, DCR_nINIT, DCR_nINIT);
1599 if (parport_wait_peripheral(p, DSR_PERROR, DSR_PERROR))
1600 pr_debug1(PPIP32 "%s: PEerror timeout 2 in %s\n",
1601 p->name, __func__);
1602 }
1603
1604 /* Adjust residue if needed */
1605 parport_ip32_set_mode(p, ECR_MODE_CFG);
1606 cnfga = readb(priv->regs.cnfgA);
1607 if (!(cnfga & CNFGA_nBYTEINTRANS)) {
1608 pr_debug1(PPIP32 "%s: cnfgA contains 0x%02x\n",
1609 p->name, cnfga);
1610 pr_debug1(PPIP32 "%s: Accounting for extra byte\n",
1611 p->name);
1612 residue++;
1613 }
1614
1615 /* Don't care about partial PWords since we do not support
1616 * PWord != 1 byte. */
1617
1618 /* Back to forward PS2 mode. */
1619 parport_ip32_set_mode(p, ECR_MODE_PS2);
1620 parport_ip32_data_forward(p);
1621
1622 return residue;
1623}
1624
1625/**
1626 * parport_ip32_compat_write_data - write a block of data in SPP mode
1627 * @p: pointer to &struct parport
1628 * @buf: buffer of data to write
1629 * @len: length of buffer @buf
1630 * @flags: ignored
1631 */
1632static size_t parport_ip32_compat_write_data(struct parport *p,
1633 const void *buf, size_t len,
1634 int flags)
1635{
1636 static unsigned int ready_before = 1;
1637 struct parport_ip32_private * const priv = p->physport->private_data;
1638 struct parport * const physport = p->physport;
1639 size_t written = 0;
1640
1641 /* Special case: a timeout of zero means we cannot call schedule().
1642 * Also if O_NONBLOCK is set then use the default implementation. */
1643 if (physport->cad->timeout <= PARPORT_INACTIVITY_O_NONBLOCK)
1644 return parport_ieee1284_write_compat(p, buf, len, flags);
1645
1646 /* Reset FIFO, go in forward mode, and disable ackIntEn */
1647 parport_ip32_set_mode(p, ECR_MODE_PS2);
1648 parport_ip32_write_control(p, DCR_SELECT | DCR_nINIT);
1649 parport_ip32_data_forward(p);
1650 parport_ip32_disable_irq(p);
1651 parport_ip32_set_mode(p, ECR_MODE_PPF);
1652 physport->ieee1284.phase = IEEE1284_PH_FWD_DATA;
1653
1654 /* Wait for peripheral to become ready */
1655 if (parport_wait_peripheral(p, DSR_nBUSY | DSR_nFAULT,
1656 DSR_nBUSY | DSR_nFAULT)) {
1657 /* Avoid to flood the logs */
1658 if (ready_before)
1659 printk(KERN_INFO PPIP32 "%s: not ready in %s\n",
1660 p->name, __func__);
1661 ready_before = 0;
1662 goto stop;
1663 }
1664 ready_before = 1;
1665
1666 written = parport_ip32_fifo_write_block(p, buf, len);
1667
1668 /* Wait FIFO to empty. Timeout is proportional to FIFO_depth. */
1669 parport_ip32_drain_fifo(p, physport->cad->timeout * priv->fifo_depth);
1670
1671 /* Check for a potential residue */
1672 written -= parport_ip32_get_fifo_residue(p, ECR_MODE_PPF);
1673
1674 /* Then, wait for BUSY to get low. */
1675 if (parport_wait_peripheral(p, DSR_nBUSY, DSR_nBUSY))
1676 printk(KERN_DEBUG PPIP32 "%s: BUSY timeout in %s\n",
1677 p->name, __func__);
1678
1679stop:
1680 /* Reset FIFO */
1681 parport_ip32_set_mode(p, ECR_MODE_PS2);
1682 physport->ieee1284.phase = IEEE1284_PH_FWD_IDLE;
1683
1684 return written;
1685}
1686
1687/*
1688 * FIXME - Insert here parport_ip32_ecp_read_data().
1689 */
1690
1691/**
1692 * parport_ip32_ecp_write_data - write a block of data in ECP mode
1693 * @p: pointer to &struct parport
1694 * @buf: buffer of data to write
1695 * @len: length of buffer @buf
1696 * @flags: ignored
1697 */
1698static size_t parport_ip32_ecp_write_data(struct parport *p,
1699 const void *buf, size_t len,
1700 int flags)
1701{
1702 static unsigned int ready_before = 1;
1703 struct parport_ip32_private * const priv = p->physport->private_data;
1704 struct parport * const physport = p->physport;
1705 size_t written = 0;
1706
1707 /* Special case: a timeout of zero means we cannot call schedule().
1708 * Also if O_NONBLOCK is set then use the default implementation. */
1709 if (physport->cad->timeout <= PARPORT_INACTIVITY_O_NONBLOCK)
1710 return parport_ieee1284_ecp_write_data(p, buf, len, flags);
1711
1712 /* Negotiate to forward mode if necessary. */
1713 if (physport->ieee1284.phase != IEEE1284_PH_FWD_IDLE) {
1714 /* Event 47: Set nInit high. */
1715 parport_ip32_frob_control(p, DCR_nINIT | DCR_AUTOFD,
1716 DCR_nINIT | DCR_AUTOFD);
1717
1718 /* Event 49: PError goes high. */
1719 if (parport_wait_peripheral(p, DSR_PERROR, DSR_PERROR)) {
1720 printk(KERN_DEBUG PPIP32 "%s: PError timeout in %s",
1721 p->name, __func__);
1722 physport->ieee1284.phase = IEEE1284_PH_ECP_DIR_UNKNOWN;
1723 return 0;
1724 }
1725 }
1726
1727 /* Reset FIFO, go in forward mode, and disable ackIntEn */
1728 parport_ip32_set_mode(p, ECR_MODE_PS2);
1729 parport_ip32_write_control(p, DCR_SELECT | DCR_nINIT);
1730 parport_ip32_data_forward(p);
1731 parport_ip32_disable_irq(p);
1732 parport_ip32_set_mode(p, ECR_MODE_ECP);
1733 physport->ieee1284.phase = IEEE1284_PH_FWD_DATA;
1734
1735 /* Wait for peripheral to become ready */
1736 if (parport_wait_peripheral(p, DSR_nBUSY | DSR_nFAULT,
1737 DSR_nBUSY | DSR_nFAULT)) {
1738 /* Avoid to flood the logs */
1739 if (ready_before)
1740 printk(KERN_INFO PPIP32 "%s: not ready in %s\n",
1741 p->name, __func__);
1742 ready_before = 0;
1743 goto stop;
1744 }
1745 ready_before = 1;
1746
1747 written = parport_ip32_fifo_write_block(p, buf, len);
1748
1749 /* Wait FIFO to empty. Timeout is proportional to FIFO_depth. */
1750 parport_ip32_drain_fifo(p, physport->cad->timeout * priv->fifo_depth);
1751
1752 /* Check for a potential residue */
1753 written -= parport_ip32_get_fifo_residue(p, ECR_MODE_ECP);
1754
1755 /* Then, wait for BUSY to get low. */
1756 if (parport_wait_peripheral(p, DSR_nBUSY, DSR_nBUSY))
1757 printk(KERN_DEBUG PPIP32 "%s: BUSY timeout in %s\n",
1758 p->name, __func__);
1759
1760stop:
1761 /* Reset FIFO */
1762 parport_ip32_set_mode(p, ECR_MODE_PS2);
1763 physport->ieee1284.phase = IEEE1284_PH_FWD_IDLE;
1764
1765 return written;
1766}
1767
1768/*
1769 * FIXME - Insert here parport_ip32_ecp_write_addr().
1770 */
1771
1772/*--- Default parport operations ---------------------------------------*/
1773
1774static __initdata struct parport_operations parport_ip32_ops = {
1775 .write_data = parport_ip32_write_data,
1776 .read_data = parport_ip32_read_data,
1777
1778 .write_control = parport_ip32_write_control,
1779 .read_control = parport_ip32_read_control,
1780 .frob_control = parport_ip32_frob_control,
1781
1782 .read_status = parport_ip32_read_status,
1783
1784 .enable_irq = parport_ip32_enable_irq,
1785 .disable_irq = parport_ip32_disable_irq,
1786
1787 .data_forward = parport_ip32_data_forward,
1788 .data_reverse = parport_ip32_data_reverse,
1789
1790 .init_state = parport_ip32_init_state,
1791 .save_state = parport_ip32_save_state,
1792 .restore_state = parport_ip32_restore_state,
1793
1794 .epp_write_data = parport_ieee1284_epp_write_data,
1795 .epp_read_data = parport_ieee1284_epp_read_data,
1796 .epp_write_addr = parport_ieee1284_epp_write_addr,
1797 .epp_read_addr = parport_ieee1284_epp_read_addr,
1798
1799 .ecp_write_data = parport_ieee1284_ecp_write_data,
1800 .ecp_read_data = parport_ieee1284_ecp_read_data,
1801 .ecp_write_addr = parport_ieee1284_ecp_write_addr,
1802
1803 .compat_write_data = parport_ieee1284_write_compat,
1804 .nibble_read_data = parport_ieee1284_read_nibble,
1805 .byte_read_data = parport_ieee1284_read_byte,
1806
1807 .owner = THIS_MODULE,
1808};
1809
1810/*--- Device detection -------------------------------------------------*/
1811
1812/**
1813 * parport_ip32_ecp_supported - check for an ECP port
1814 * @p: pointer to the &parport structure
1815 *
1816 * Returns 1 if an ECP port is found, and 0 otherwise. This function actually
1817 * checks if an Extended Control Register seems to be present. On successful
1818 * return, the port is placed in SPP mode.
1819 */
1820static __init unsigned int parport_ip32_ecp_supported(struct parport *p)
1821{
1822 struct parport_ip32_private * const priv = p->physport->private_data;
1823 unsigned int ecr;
1824
1825 ecr = ECR_MODE_PS2 | ECR_nERRINTR | ECR_SERVINTR;
1826 writeb(ecr, priv->regs.ecr);
1827 if (readb(priv->regs.ecr) != (ecr | ECR_F_EMPTY))
1828 goto fail;
1829
1830 pr_probe(p, "Found working ECR register\n");
1831 parport_ip32_set_mode(p, ECR_MODE_SPP);
1832 parport_ip32_write_control(p, DCR_SELECT | DCR_nINIT);
1833 return 1;
1834
1835fail:
1836 pr_probe(p, "ECR register not found\n");
1837 return 0;
1838}
1839
1840/**
1841 * parport_ip32_fifo_supported - check for FIFO parameters
1842 * @p: pointer to the &parport structure
1843 *
1844 * Check for FIFO parameters of an Extended Capabilities Port. Returns 1 on
1845 * success, and 0 otherwise. Adjust FIFO parameters in the parport structure.
1846 * On return, the port is placed in SPP mode.
1847 */
1848static __init unsigned int parport_ip32_fifo_supported(struct parport *p)
1849{
1850 struct parport_ip32_private * const priv = p->physport->private_data;
1851 unsigned int configa, configb;
1852 unsigned int pword;
1853 unsigned int i;
1854
1855 /* Configuration mode */
1856 parport_ip32_set_mode(p, ECR_MODE_CFG);
1857 configa = readb(priv->regs.cnfgA);
1858 configb = readb(priv->regs.cnfgB);
1859
1860 /* Find out PWord size */
1861 switch (configa & CNFGA_ID_MASK) {
1862 case CNFGA_ID_8:
1863 pword = 1;
1864 break;
1865 case CNFGA_ID_16:
1866 pword = 2;
1867 break;
1868 case CNFGA_ID_32:
1869 pword = 4;
1870 break;
1871 default:
1872 pr_probe(p, "Unknown implementation ID: 0x%0x\n",
1873 (configa & CNFGA_ID_MASK) >> CNFGA_ID_SHIFT);
1874 goto fail;
1875 break;
1876 }
1877 if (pword != 1) {
1878 pr_probe(p, "Unsupported PWord size: %u\n", pword);
1879 goto fail;
1880 }
1881 priv->pword = pword;
1882 pr_probe(p, "PWord is %u bits\n", 8 * priv->pword);
1883
1884 /* Check for compression support */
1885 writeb(configb | CNFGB_COMPRESS, priv->regs.cnfgB);
1886 if (readb(priv->regs.cnfgB) & CNFGB_COMPRESS)
1887 pr_probe(p, "Hardware compression detected (unsupported)\n");
1888 writeb(configb & ~CNFGB_COMPRESS, priv->regs.cnfgB);
1889
1890 /* Reset FIFO and go in test mode (no interrupt, no DMA) */
1891 parport_ip32_set_mode(p, ECR_MODE_TST);
1892
1893 /* FIFO must be empty now */
1894 if (!(readb(priv->regs.ecr) & ECR_F_EMPTY)) {
1895 pr_probe(p, "FIFO not reset\n");
1896 goto fail;
1897 }
1898
1899 /* Find out FIFO depth. */
1900 priv->fifo_depth = 0;
1901 for (i = 0; i < 1024; i++) {
1902 if (readb(priv->regs.ecr) & ECR_F_FULL) {
1903 /* FIFO full */
1904 priv->fifo_depth = i;
1905 break;
1906 }
1907 writeb((u8)i, priv->regs.fifo);
1908 }
1909 if (i >= 1024) {
1910 pr_probe(p, "Can't fill FIFO\n");
1911 goto fail;
1912 }
1913 if (!priv->fifo_depth) {
1914 pr_probe(p, "Can't get FIFO depth\n");
1915 goto fail;
1916 }
1917 pr_probe(p, "FIFO is %u PWords deep\n", priv->fifo_depth);
1918
1919 /* Enable interrupts */
1920 parport_ip32_frob_econtrol(p, ECR_SERVINTR, 0);
1921
1922 /* Find out writeIntrThreshold: number of PWords we know we can write
1923 * if we get an interrupt. */
1924 priv->writeIntrThreshold = 0;
1925 for (i = 0; i < priv->fifo_depth; i++) {
1926 if (readb(priv->regs.fifo) != (u8)i) {
1927 pr_probe(p, "Invalid data in FIFO\n");
1928 goto fail;
1929 }
1930 if (!priv->writeIntrThreshold
1931 && readb(priv->regs.ecr) & ECR_SERVINTR)
1932 /* writeIntrThreshold reached */
1933 priv->writeIntrThreshold = i + 1;
1934 if (i + 1 < priv->fifo_depth
1935 && readb(priv->regs.ecr) & ECR_F_EMPTY) {
1936 /* FIFO empty before the last byte? */
1937 pr_probe(p, "Data lost in FIFO\n");
1938 goto fail;
1939 }
1940 }
1941 if (!priv->writeIntrThreshold) {
1942 pr_probe(p, "Can't get writeIntrThreshold\n");
1943 goto fail;
1944 }
1945 pr_probe(p, "writeIntrThreshold is %u\n", priv->writeIntrThreshold);
1946
1947 /* FIFO must be empty now */
1948 if (!(readb(priv->regs.ecr) & ECR_F_EMPTY)) {
1949 pr_probe(p, "Can't empty FIFO\n");
1950 goto fail;
1951 }
1952
1953 /* Reset FIFO */
1954 parport_ip32_set_mode(p, ECR_MODE_PS2);
1955 /* Set reverse direction (must be in PS2 mode) */
1956 parport_ip32_data_reverse(p);
1957 /* Test FIFO, no interrupt, no DMA */
1958 parport_ip32_set_mode(p, ECR_MODE_TST);
1959 /* Enable interrupts */
1960 parport_ip32_frob_econtrol(p, ECR_SERVINTR, 0);
1961
1962 /* Find out readIntrThreshold: number of PWords we can read if we get
1963 * an interrupt. */
1964 priv->readIntrThreshold = 0;
1965 for (i = 0; i < priv->fifo_depth; i++) {
1966 writeb(0xaa, priv->regs.fifo);
1967 if (readb(priv->regs.ecr) & ECR_SERVINTR) {
1968 /* readIntrThreshold reached */
1969 priv->readIntrThreshold = i + 1;
1970 break;
1971 }
1972 }
1973 if (!priv->readIntrThreshold) {
1974 pr_probe(p, "Can't get readIntrThreshold\n");
1975 goto fail;
1976 }
1977 pr_probe(p, "readIntrThreshold is %u\n", priv->readIntrThreshold);
1978
1979 /* Reset ECR */
1980 parport_ip32_set_mode(p, ECR_MODE_PS2);
1981 parport_ip32_data_forward(p);
1982 parport_ip32_set_mode(p, ECR_MODE_SPP);
1983 return 1;
1984
1985fail:
1986 priv->fifo_depth = 0;
1987 parport_ip32_set_mode(p, ECR_MODE_SPP);
1988 return 0;
1989}
1990
1991/*--- Initialization code ----------------------------------------------*/
1992
1993/**
1994 * parport_ip32_make_isa_registers - compute (ISA) register addresses
1995 * @regs: pointer to &struct parport_ip32_regs to fill
1996 * @base: base address of standard and EPP registers
1997 * @base_hi: base address of ECP registers
1998 * @regshift: how much to shift register offset by
1999 *
2000 * Compute register addresses, according to the ISA standard. The addresses
2001 * of the standard and EPP registers are computed from address @base. The
2002 * addresses of the ECP registers are computed from address @base_hi.
2003 */
2004static void __init
2005parport_ip32_make_isa_registers(struct parport_ip32_regs *regs,
2006 void __iomem *base, void __iomem *base_hi,
2007 unsigned int regshift)
2008{
2009#define r_base(offset) ((u8 __iomem *)base + ((offset) << regshift))
2010#define r_base_hi(offset) ((u8 __iomem *)base_hi + ((offset) << regshift))
2011 *regs = (struct parport_ip32_regs){
2012 .data = r_base(0),
2013 .dsr = r_base(1),
2014 .dcr = r_base(2),
2015 .eppAddr = r_base(3),
2016 .eppData0 = r_base(4),
2017 .eppData1 = r_base(5),
2018 .eppData2 = r_base(6),
2019 .eppData3 = r_base(7),
2020 .ecpAFifo = r_base(0),
2021 .fifo = r_base_hi(0),
2022 .cnfgA = r_base_hi(0),
2023 .cnfgB = r_base_hi(1),
2024 .ecr = r_base_hi(2)
2025 };
2026#undef r_base_hi
2027#undef r_base
2028}
2029
2030/**
2031 * parport_ip32_probe_port - probe and register IP32 built-in parallel port
2032 *
2033 * Returns the new allocated &parport structure. On error, an error code is
2034 * encoded in return value with the ERR_PTR function.
2035 */
2036static __init struct parport *parport_ip32_probe_port(void)
2037{
2038 struct parport_ip32_regs regs;
2039 struct parport_ip32_private *priv = NULL;
2040 struct parport_operations *ops = NULL;
2041 struct parport *p = NULL;
2042 int err;
2043
2044 parport_ip32_make_isa_registers(&regs, &mace->isa.parallel,
2045 &mace->isa.ecp1284, 8 /* regshift */);
2046
2047 ops = kmalloc(sizeof(struct parport_operations), GFP_KERNEL);
2048 priv = kmalloc(sizeof(struct parport_ip32_private), GFP_KERNEL);
2049 p = parport_register_port(0, PARPORT_IRQ_NONE, PARPORT_DMA_NONE, ops);
2050 if (ops == NULL || priv == NULL || p == NULL) {
2051 err = -ENOMEM;
2052 goto fail;
2053 }
2054 p->base = MACE_BASE + offsetof(struct sgi_mace, isa.parallel);
2055 p->base_hi = MACE_BASE + offsetof(struct sgi_mace, isa.ecp1284);
2056 p->private_data = priv;
2057
2058 *ops = parport_ip32_ops;
2059 *priv = (struct parport_ip32_private){
2060 .regs = regs,
2061 .dcr_writable = DCR_DIR | DCR_SELECT | DCR_nINIT |
2062 DCR_AUTOFD | DCR_STROBE,
2063 .irq_mode = PARPORT_IP32_IRQ_FWD,
2064 };
2065 init_completion(&priv->irq_complete);
2066
2067 /* Probe port. */
2068 if (!parport_ip32_ecp_supported(p)) {
2069 err = -ENODEV;
2070 goto fail;
2071 }
2072 parport_ip32_dump_state(p, "begin init", 0);
2073
2074 /* We found what looks like a working ECR register. Simply assume
2075 * that all modes are correctly supported. Enable basic modes. */
2076 p->modes = PARPORT_MODE_PCSPP | PARPORT_MODE_SAFEININT;
2077 p->modes |= PARPORT_MODE_TRISTATE;
2078
2079 if (!parport_ip32_fifo_supported(p)) {
2080 printk(KERN_WARNING PPIP32
2081 "%s: error: FIFO disabled\n", p->name);
2082 /* Disable hardware modes depending on a working FIFO. */
2083 features &= ~PARPORT_IP32_ENABLE_SPP;
2084 features &= ~PARPORT_IP32_ENABLE_ECP;
2085 /* DMA is not needed if FIFO is not supported. */
2086 features &= ~PARPORT_IP32_ENABLE_DMA;
2087 }
2088
2089 /* Request IRQ */
2090 if (features & PARPORT_IP32_ENABLE_IRQ) {
2091 int irq = MACEISA_PARALLEL_IRQ;
2092 if (request_irq(irq, parport_ip32_interrupt, 0, p->name, p)) {
2093 printk(KERN_WARNING PPIP32
2094 "%s: error: IRQ disabled\n", p->name);
2095 /* DMA cannot work without interrupts. */
2096 features &= ~PARPORT_IP32_ENABLE_DMA;
2097 } else {
2098 pr_probe(p, "Interrupt support enabled\n");
2099 p->irq = irq;
2100 priv->dcr_writable |= DCR_IRQ;
2101 }
2102 }
2103
2104 /* Allocate DMA resources */
2105 if (features & PARPORT_IP32_ENABLE_DMA) {
2106 if (parport_ip32_dma_register())
2107 printk(KERN_WARNING PPIP32
2108 "%s: error: DMA disabled\n", p->name);
2109 else {
2110 pr_probe(p, "DMA support enabled\n");
2111 p->dma = 0; /* arbitrary value != PARPORT_DMA_NONE */
2112 p->modes |= PARPORT_MODE_DMA;
2113 }
2114 }
2115
2116 if (features & PARPORT_IP32_ENABLE_SPP) {
2117 /* Enable compatibility FIFO mode */
2118 p->ops->compat_write_data = parport_ip32_compat_write_data;
2119 p->modes |= PARPORT_MODE_COMPAT;
2120 pr_probe(p, "Hardware support for SPP mode enabled\n");
2121 }
2122 if (features & PARPORT_IP32_ENABLE_EPP) {
2123 /* Set up access functions to use EPP hardware. */
2124 p->ops->epp_read_data = parport_ip32_epp_read_data;
2125 p->ops->epp_write_data = parport_ip32_epp_write_data;
2126 p->ops->epp_read_addr = parport_ip32_epp_read_addr;
2127 p->ops->epp_write_addr = parport_ip32_epp_write_addr;
2128 p->modes |= PARPORT_MODE_EPP;
2129 pr_probe(p, "Hardware support for EPP mode enabled\n");
2130 }
2131 if (features & PARPORT_IP32_ENABLE_ECP) {
2132 /* Enable ECP FIFO mode */
2133 p->ops->ecp_write_data = parport_ip32_ecp_write_data;
2134 /* FIXME - not implemented */
2135/* p->ops->ecp_read_data = parport_ip32_ecp_read_data; */
2136/* p->ops->ecp_write_addr = parport_ip32_ecp_write_addr; */
2137 p->modes |= PARPORT_MODE_ECP;
2138 pr_probe(p, "Hardware support for ECP mode enabled\n");
2139 }
2140
2141 /* Initialize the port with sensible values */
2142 parport_ip32_set_mode(p, ECR_MODE_PS2);
2143 parport_ip32_write_control(p, DCR_SELECT | DCR_nINIT);
2144 parport_ip32_data_forward(p);
2145 parport_ip32_disable_irq(p);
2146 parport_ip32_write_data(p, 0x00);
2147 parport_ip32_dump_state(p, "end init", 0);
2148
2149 /* Print out what we found */
2150 printk(KERN_INFO "%s: SGI IP32 at 0x%lx (0x%lx)",
2151 p->name, p->base, p->base_hi);
2152 if (p->irq != PARPORT_IRQ_NONE)
2153 printk(", irq %d", p->irq);
2154 printk(" [");
2155#define printmode(x) if (p->modes & PARPORT_MODE_##x) \
2156 printk("%s%s", f++ ? "," : "", #x)
2157 {
2158 unsigned int f = 0;
2159 printmode(PCSPP);
2160 printmode(TRISTATE);
2161 printmode(COMPAT);
2162 printmode(EPP);
2163 printmode(ECP);
2164 printmode(DMA);
2165 }
2166#undef printmode
2167 printk("]\n");
2168
2169 parport_announce_port(p);
2170 return p;
2171
2172fail:
2173 if (p)
2174 parport_put_port(p);
2175 kfree(priv);
2176 kfree(ops);
2177 return ERR_PTR(err);
2178}
2179
2180/**
2181 * parport_ip32_unregister_port - unregister a parallel port
2182 * @p: pointer to the &struct parport
2183 *
2184 * Unregisters a parallel port and free previously allocated resources
2185 * (memory, IRQ, ...).
2186 */
2187static __exit void parport_ip32_unregister_port(struct parport *p)
2188{
2189 struct parport_ip32_private * const priv = p->physport->private_data;
2190 struct parport_operations *ops = p->ops;
2191
2192 parport_remove_port(p);
2193 if (p->modes & PARPORT_MODE_DMA)
2194 parport_ip32_dma_unregister();
2195 if (p->irq != PARPORT_IRQ_NONE)
2196 free_irq(p->irq, p);
2197 parport_put_port(p);
2198 kfree(priv);
2199 kfree(ops);
2200}
2201
2202/**
2203 * parport_ip32_init - module initialization function
2204 */
2205static int __init parport_ip32_init(void)
2206{
2207 pr_info(PPIP32 "SGI IP32 built-in parallel port driver v0.6\n");
2208 pr_debug1(PPIP32 "Compiled on %s, %s\n", __DATE__, __TIME__);
2209 this_port = parport_ip32_probe_port();
2210 return IS_ERR(this_port) ? PTR_ERR(this_port) : 0;
2211}
2212
2213/**
2214 * parport_ip32_exit - module termination function
2215 */
2216static void __exit parport_ip32_exit(void)
2217{
2218 parport_ip32_unregister_port(this_port);
2219}
2220
2221/*--- Module stuff -----------------------------------------------------*/
2222
2223MODULE_AUTHOR("Arnaud Giersch <arnaud.giersch@free.fr>");
2224MODULE_DESCRIPTION("SGI IP32 built-in parallel port driver");
2225MODULE_LICENSE("GPL");
2226MODULE_VERSION("0.6"); /* update in parport_ip32_init() too */
2227
2228module_init(parport_ip32_init);
2229module_exit(parport_ip32_exit);
2230
2231module_param(verbose_probing, bool, S_IRUGO);
2232MODULE_PARM_DESC(verbose_probing, "Log chit-chat during initialization");
2233
2234module_param(features, uint, S_IRUGO);
2235MODULE_PARM_DESC(features,
2236 "Bit mask of features to enable"
2237 ", bit 0: IRQ support"
2238 ", bit 1: DMA support"
2239 ", bit 2: hardware SPP mode"
2240 ", bit 3: hardware EPP mode"
2241 ", bit 4: hardware ECP mode");
2242
2243/*--- Inform (X)Emacs about preferred coding style ---------------------*/
2244/*
2245 * Local Variables:
2246 * mode: c
2247 * c-file-style: "linux"
2248 * indent-tabs-mode: t
2249 * tab-width: 8
2250 * fill-column: 78
2251 * ispell-local-dictionary: "american"
2252 * End:
2253 */