aboutsummaryrefslogtreecommitdiffstats
path: root/drivers
diff options
context:
space:
mode:
Diffstat (limited to 'drivers')
-rw-r--r--drivers/net/wireless/Kconfig52
-rw-r--r--drivers/net/wireless/Makefile2
-rw-r--r--drivers/net/wireless/ipw2200.c7348
-rw-r--r--drivers/net/wireless/ipw2200.h1770
4 files changed, 9172 insertions, 0 deletions
diff --git a/drivers/net/wireless/Kconfig b/drivers/net/wireless/Kconfig
index 7cd0aee18f55..a22b1e7c65ba 100644
--- a/drivers/net/wireless/Kconfig
+++ b/drivers/net/wireless/Kconfig
@@ -190,6 +190,58 @@ config IPW_DEBUG
190 If you are not trying to debug or develop the IPW2100 driver, you 190 If you are not trying to debug or develop the IPW2100 driver, you
191 most likely want to say N here. 191 most likely want to say N here.
192 192
193config IPW2200
194 tristate "Intel PRO/Wireless 2200BG and 2915ABG Network Connection"
195 depends on NET_RADIO && PCI
196 select FW_LOADER
197 select IEEE80211
198 ---help---
199 A driver for the Intel PRO/Wireless 2200BG and 2915ABG Network
200 Connection adapters.
201
202 See <file:Documentation/networking/README.ipw2200> for
203 information on the capabilities currently enabled in this
204 driver and for tips for debugging issues and problems.
205
206 In order to use this driver, you will need a firmware image for it.
207 You can obtain the firmware from
208 <http://ipw2200.sf.net/>. See the above referenced README.ipw2200
209 for information on where to install the firmare images.
210
211 You will also very likely need the Wireless Tools in order to
212 configure your card:
213
214 <http://www.hpl.hp.com/personal/Jean_Tourrilhes/Linux/Tools.html>.
215
216 If you want to compile the driver as a module ( = code which can be
217 inserted in and remvoed from the running kernel whenever you want),
218 say M here and read <file:Documentation/modules.txt>. The module
219 will be called ipw2200.ko.
220
221config IPW_DEBUG
222 bool "Enable full debugging output in IPW2200 module."
223 depends on IPW2200
224 ---help---
225 This option will enable debug tracing output for the IPW2200.
226
227 This will result in the kernel module being ~100k larger. You can
228 control which debug output is sent to the kernel log by setting the
229 value in
230
231 /sys/bus/pci/drivers/ipw2200/debug_level
232
233 This entry will only exist if this option is enabled.
234
235 To set a value, simply echo an 8-byte hex value to the same file:
236
237 % echo 0x00000FFO > /sys/bus/pci/drivers/ipw2200/debug_level
238
239 You can find the list of debug mask values in
240 drivers/net/wireless/ipw2200.h
241
242 If you are not trying to debug or develop the IPW2200 driver, you
243 most likely want to say N here.
244
193config AIRO 245config AIRO
194 tristate "Cisco/Aironet 34X/35X/4500/4800 ISA and PCI cards" 246 tristate "Cisco/Aironet 34X/35X/4500/4800 ISA and PCI cards"
195 depends on NET_RADIO && ISA && (PCI || BROKEN) 247 depends on NET_RADIO && ISA && (PCI || BROKEN)
diff --git a/drivers/net/wireless/Makefile b/drivers/net/wireless/Makefile
index 2426885c7a5e..0859787581bb 100644
--- a/drivers/net/wireless/Makefile
+++ b/drivers/net/wireless/Makefile
@@ -4,6 +4,8 @@
4 4
5obj-$(CONFIG_IPW2100) += ipw2100.o 5obj-$(CONFIG_IPW2100) += ipw2100.o
6 6
7obj-$(CONFIG_IPW2200) += ipw2200.o
8
7obj-$(CONFIG_STRIP) += strip.o 9obj-$(CONFIG_STRIP) += strip.o
8obj-$(CONFIG_ARLAN) += arlan.o 10obj-$(CONFIG_ARLAN) += arlan.o
9 11
diff --git a/drivers/net/wireless/ipw2200.c b/drivers/net/wireless/ipw2200.c
new file mode 100644
index 000000000000..69733465354b
--- /dev/null
+++ b/drivers/net/wireless/ipw2200.c
@@ -0,0 +1,7348 @@
1/******************************************************************************
2
3 Copyright(c) 2003 - 2004 Intel Corporation. All rights reserved.
4
5 802.11 status code portion of this file from ethereal-0.10.6:
6 Copyright 2000, Axis Communications AB
7 Ethereal - Network traffic analyzer
8 By Gerald Combs <gerald@ethereal.com>
9 Copyright 1998 Gerald Combs
10
11 This program is free software; you can redistribute it and/or modify it
12 under the terms of version 2 of the GNU General Public License as
13 published by the Free Software Foundation.
14
15 This program is distributed in the hope that it will be useful, but WITHOUT
16 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
18 more details.
19
20 You should have received a copy of the GNU General Public License along with
21 this program; if not, write to the Free Software Foundation, Inc., 59
22 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23
24 The full GNU General Public License is included in this distribution in the
25 file called LICENSE.
26
27 Contact Information:
28 James P. Ketrenos <ipw2100-admin@linux.intel.com>
29 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30
31******************************************************************************/
32
33#include "ipw2200.h"
34
35#define IPW2200_VERSION "1.0.0"
36#define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
37#define DRV_COPYRIGHT "Copyright(c) 2003-2004 Intel Corporation"
38#define DRV_VERSION IPW2200_VERSION
39
40MODULE_DESCRIPTION(DRV_DESCRIPTION);
41MODULE_VERSION(DRV_VERSION);
42MODULE_AUTHOR(DRV_COPYRIGHT);
43MODULE_LICENSE("GPL");
44
45static int debug = 0;
46static int channel = 0;
47static char *ifname;
48static int mode = 0;
49
50static u32 ipw_debug_level;
51static int associate = 1;
52static int auto_create = 1;
53static int disable = 0;
54static const char ipw_modes[] = {
55 'a', 'b', 'g', '?'
56};
57
58static void ipw_rx(struct ipw_priv *priv);
59static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
60 struct clx2_tx_queue *txq, int qindex);
61static int ipw_queue_reset(struct ipw_priv *priv);
62
63static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
64 int len, int sync);
65
66static void ipw_tx_queue_free(struct ipw_priv *);
67
68static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
69static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
70static void ipw_rx_queue_replenish(void *);
71
72static int ipw_up(struct ipw_priv *);
73static void ipw_down(struct ipw_priv *);
74static int ipw_config(struct ipw_priv *);
75static int init_supported_rates(struct ipw_priv *priv, struct ipw_supported_rates *prates);
76
77static u8 band_b_active_channel[MAX_B_CHANNELS] = {
78 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 0
79};
80static u8 band_a_active_channel[MAX_A_CHANNELS] = {
81 36, 40, 44, 48, 149, 153, 157, 161, 165, 52, 56, 60, 64, 0
82};
83
84static int is_valid_channel(int mode_mask, int channel)
85{
86 int i;
87
88 if (!channel)
89 return 0;
90
91 if (mode_mask & IEEE_A)
92 for (i = 0; i < MAX_A_CHANNELS; i++)
93 if (band_a_active_channel[i] == channel)
94 return IEEE_A;
95
96 if (mode_mask & (IEEE_B | IEEE_G))
97 for (i = 0; i < MAX_B_CHANNELS; i++)
98 if (band_b_active_channel[i] == channel)
99 return mode_mask & (IEEE_B | IEEE_G);
100
101 return 0;
102}
103
104static char *snprint_line(char *buf, size_t count,
105 const u8 *data, u32 len, u32 ofs)
106{
107 int out, i, j, l;
108 char c;
109
110 out = snprintf(buf, count, "%08X", ofs);
111
112 for (l = 0, i = 0; i < 2; i++) {
113 out += snprintf(buf + out, count - out, " ");
114 for (j = 0; j < 8 && l < len; j++, l++)
115 out += snprintf(buf + out, count - out, "%02X ",
116 data[(i * 8 + j)]);
117 for (; j < 8; j++)
118 out += snprintf(buf + out, count - out, " ");
119 }
120
121 out += snprintf(buf + out, count - out, " ");
122 for (l = 0, i = 0; i < 2; i++) {
123 out += snprintf(buf + out, count - out, " ");
124 for (j = 0; j < 8 && l < len; j++, l++) {
125 c = data[(i * 8 + j)];
126 if (!isascii(c) || !isprint(c))
127 c = '.';
128
129 out += snprintf(buf + out, count - out, "%c", c);
130 }
131
132 for (; j < 8; j++)
133 out += snprintf(buf + out, count - out, " ");
134 }
135
136 return buf;
137}
138
139static void printk_buf(int level, const u8 *data, u32 len)
140{
141 char line[81];
142 u32 ofs = 0;
143 if (!(ipw_debug_level & level))
144 return;
145
146 while (len) {
147 printk(KERN_DEBUG "%s\n",
148 snprint_line(line, sizeof(line), &data[ofs],
149 min(len, 16U), ofs));
150 ofs += 16;
151 len -= min(len, 16U);
152 }
153}
154
155static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
156#define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
157
158static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
159#define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
160
161static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
162static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
163{
164 IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(b), (u32)(c));
165 _ipw_write_reg8(a, b, c);
166}
167
168static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
169static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
170{
171 IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(b), (u32)(c));
172 _ipw_write_reg16(a, b, c);
173}
174
175static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
176static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
177{
178 IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(b), (u32)(c));
179 _ipw_write_reg32(a, b, c);
180}
181
182#define _ipw_write8(ipw, ofs, val) writeb((val), (ipw)->hw_base + (ofs))
183#define ipw_write8(ipw, ofs, val) \
184 IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
185 _ipw_write8(ipw, ofs, val)
186
187#define _ipw_write16(ipw, ofs, val) writew((val), (ipw)->hw_base + (ofs))
188#define ipw_write16(ipw, ofs, val) \
189 IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
190 _ipw_write16(ipw, ofs, val)
191
192#define _ipw_write32(ipw, ofs, val) writel((val), (ipw)->hw_base + (ofs))
193#define ipw_write32(ipw, ofs, val) \
194 IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
195 _ipw_write32(ipw, ofs, val)
196
197#define _ipw_read8(ipw, ofs) readb((ipw)->hw_base + (ofs))
198static inline u8 __ipw_read8(char *f, u32 l, struct ipw_priv *ipw, u32 ofs) {
199 IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", f, l, (u32)(ofs));
200 return _ipw_read8(ipw, ofs);
201}
202#define ipw_read8(ipw, ofs) __ipw_read8(__FILE__, __LINE__, ipw, ofs)
203
204#define _ipw_read16(ipw, ofs) readw((ipw)->hw_base + (ofs))
205static inline u16 __ipw_read16(char *f, u32 l, struct ipw_priv *ipw, u32 ofs) {
206 IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", f, l, (u32)(ofs));
207 return _ipw_read16(ipw, ofs);
208}
209#define ipw_read16(ipw, ofs) __ipw_read16(__FILE__, __LINE__, ipw, ofs)
210
211#define _ipw_read32(ipw, ofs) readl((ipw)->hw_base + (ofs))
212static inline u32 __ipw_read32(char *f, u32 l, struct ipw_priv *ipw, u32 ofs) {
213 IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", f, l, (u32)(ofs));
214 return _ipw_read32(ipw, ofs);
215}
216#define ipw_read32(ipw, ofs) __ipw_read32(__FILE__, __LINE__, ipw, ofs)
217
218static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
219#define ipw_read_indirect(a, b, c, d) \
220 IPW_DEBUG_IO("%s %d: read_inddirect(0x%08X) %d bytes\n", __FILE__, __LINE__, (u32)(b), d); \
221 _ipw_read_indirect(a, b, c, d)
222
223static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 *data, int num);
224#define ipw_write_indirect(a, b, c, d) \
225 IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %d bytes\n", __FILE__, __LINE__, (u32)(b), d); \
226 _ipw_write_indirect(a, b, c, d)
227
228/* indirect write s */
229static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg,
230 u32 value)
231{
232 IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n",
233 priv, reg, value);
234 _ipw_write32(priv, CX2_INDIRECT_ADDR, reg);
235 _ipw_write32(priv, CX2_INDIRECT_DATA, value);
236}
237
238
239static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
240{
241 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
242 _ipw_write32(priv, CX2_INDIRECT_ADDR, reg & CX2_INDIRECT_ADDR_MASK);
243 _ipw_write8(priv, CX2_INDIRECT_DATA, value);
244 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n",
245 (unsigned)(priv->hw_base + CX2_INDIRECT_DATA),
246 value);
247}
248
249static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg,
250 u16 value)
251{
252 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
253 _ipw_write32(priv, CX2_INDIRECT_ADDR, reg & CX2_INDIRECT_ADDR_MASK);
254 _ipw_write16(priv, CX2_INDIRECT_DATA, value);
255}
256
257/* indirect read s */
258
259static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
260{
261 u32 word;
262 _ipw_write32(priv, CX2_INDIRECT_ADDR, reg & CX2_INDIRECT_ADDR_MASK);
263 IPW_DEBUG_IO(" reg = 0x%8X : \n", reg);
264 word = _ipw_read32(priv, CX2_INDIRECT_DATA);
265 return (word >> ((reg & 0x3)*8)) & 0xff;
266}
267
268static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
269{
270 u32 value;
271
272 IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
273
274 _ipw_write32(priv, CX2_INDIRECT_ADDR, reg);
275 value = _ipw_read32(priv, CX2_INDIRECT_DATA);
276 IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x \n", reg, value);
277 return value;
278}
279
280/* iterative/auto-increment 32 bit reads and writes */
281static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
282 int num)
283{
284 u32 aligned_addr = addr & CX2_INDIRECT_ADDR_MASK;
285 u32 dif_len = addr - aligned_addr;
286 u32 aligned_len;
287 u32 i;
288
289 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
290
291 /* Read the first nibble byte by byte */
292 if (unlikely(dif_len)) {
293 /* Start reading at aligned_addr + dif_len */
294 _ipw_write32(priv, CX2_INDIRECT_ADDR, aligned_addr);
295 for (i = dif_len; i < 4; i++, buf++)
296 *buf = _ipw_read8(priv, CX2_INDIRECT_DATA + i);
297 num -= dif_len;
298 aligned_addr += 4;
299 }
300
301 /* Read DWs through autoinc register */
302 _ipw_write32(priv, CX2_AUTOINC_ADDR, aligned_addr);
303 aligned_len = num & CX2_INDIRECT_ADDR_MASK;
304 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
305 *(u32*)buf = ipw_read32(priv, CX2_AUTOINC_DATA);
306
307 /* Copy the last nibble */
308 dif_len = num - aligned_len;
309 _ipw_write32(priv, CX2_INDIRECT_ADDR, aligned_addr);
310 for (i = 0; i < dif_len; i++, buf++)
311 *buf = ipw_read8(priv, CX2_INDIRECT_DATA + i);
312}
313
314static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 *buf,
315 int num)
316{
317 u32 aligned_addr = addr & CX2_INDIRECT_ADDR_MASK;
318 u32 dif_len = addr - aligned_addr;
319 u32 aligned_len;
320 u32 i;
321
322 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
323
324 /* Write the first nibble byte by byte */
325 if (unlikely(dif_len)) {
326 /* Start writing at aligned_addr + dif_len */
327 _ipw_write32(priv, CX2_INDIRECT_ADDR, aligned_addr);
328 for (i = dif_len; i < 4; i++, buf++)
329 _ipw_write8(priv, CX2_INDIRECT_DATA + i, *buf);
330 num -= dif_len;
331 aligned_addr += 4;
332 }
333
334 /* Write DWs through autoinc register */
335 _ipw_write32(priv, CX2_AUTOINC_ADDR, aligned_addr);
336 aligned_len = num & CX2_INDIRECT_ADDR_MASK;
337 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
338 _ipw_write32(priv, CX2_AUTOINC_DATA, *(u32*)buf);
339
340 /* Copy the last nibble */
341 dif_len = num - aligned_len;
342 _ipw_write32(priv, CX2_INDIRECT_ADDR, aligned_addr);
343 for (i = 0; i < dif_len; i++, buf++)
344 _ipw_write8(priv, CX2_INDIRECT_DATA + i, *buf);
345}
346
347static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
348 int num)
349{
350 memcpy_toio((priv->hw_base + addr), buf, num);
351}
352
353static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
354{
355 ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
356}
357
358static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
359{
360 ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
361}
362
363static inline void ipw_enable_interrupts(struct ipw_priv *priv)
364{
365 if (priv->status & STATUS_INT_ENABLED)
366 return;
367 priv->status |= STATUS_INT_ENABLED;
368 ipw_write32(priv, CX2_INTA_MASK_R, CX2_INTA_MASK_ALL);
369}
370
371static inline void ipw_disable_interrupts(struct ipw_priv *priv)
372{
373 if (!(priv->status & STATUS_INT_ENABLED))
374 return;
375 priv->status &= ~STATUS_INT_ENABLED;
376 ipw_write32(priv, CX2_INTA_MASK_R, ~CX2_INTA_MASK_ALL);
377}
378
379static char *ipw_error_desc(u32 val)
380{
381 switch (val) {
382 case IPW_FW_ERROR_OK:
383 return "ERROR_OK";
384 case IPW_FW_ERROR_FAIL:
385 return "ERROR_FAIL";
386 case IPW_FW_ERROR_MEMORY_UNDERFLOW:
387 return "MEMORY_UNDERFLOW";
388 case IPW_FW_ERROR_MEMORY_OVERFLOW:
389 return "MEMORY_OVERFLOW";
390 case IPW_FW_ERROR_BAD_PARAM:
391 return "ERROR_BAD_PARAM";
392 case IPW_FW_ERROR_BAD_CHECKSUM:
393 return "ERROR_BAD_CHECKSUM";
394 case IPW_FW_ERROR_NMI_INTERRUPT:
395 return "ERROR_NMI_INTERRUPT";
396 case IPW_FW_ERROR_BAD_DATABASE:
397 return "ERROR_BAD_DATABASE";
398 case IPW_FW_ERROR_ALLOC_FAIL:
399 return "ERROR_ALLOC_FAIL";
400 case IPW_FW_ERROR_DMA_UNDERRUN:
401 return "ERROR_DMA_UNDERRUN";
402 case IPW_FW_ERROR_DMA_STATUS:
403 return "ERROR_DMA_STATUS";
404 case IPW_FW_ERROR_DINOSTATUS_ERROR:
405 return "ERROR_DINOSTATUS_ERROR";
406 case IPW_FW_ERROR_EEPROMSTATUS_ERROR:
407 return "ERROR_EEPROMSTATUS_ERROR";
408 case IPW_FW_ERROR_SYSASSERT:
409 return "ERROR_SYSASSERT";
410 case IPW_FW_ERROR_FATAL_ERROR:
411 return "ERROR_FATALSTATUS_ERROR";
412 default:
413 return "UNKNOWNSTATUS_ERROR";
414 }
415}
416
417static void ipw_dump_nic_error_log(struct ipw_priv *priv)
418{
419 u32 desc, time, blink1, blink2, ilink1, ilink2, idata, i, count, base;
420
421 base = ipw_read32(priv, IPWSTATUS_ERROR_LOG);
422 count = ipw_read_reg32(priv, base);
423
424 if (ERROR_START_OFFSET <= count * ERROR_ELEM_SIZE) {
425 IPW_ERROR("Start IPW Error Log Dump:\n");
426 IPW_ERROR("Status: 0x%08X, Config: %08X\n",
427 priv->status, priv->config);
428 }
429
430 for (i = ERROR_START_OFFSET;
431 i <= count * ERROR_ELEM_SIZE;
432 i += ERROR_ELEM_SIZE) {
433 desc = ipw_read_reg32(priv, base + i);
434 time = ipw_read_reg32(priv, base + i + 1*sizeof(u32));
435 blink1 = ipw_read_reg32(priv, base + i + 2*sizeof(u32));
436 blink2 = ipw_read_reg32(priv, base + i + 3*sizeof(u32));
437 ilink1 = ipw_read_reg32(priv, base + i + 4*sizeof(u32));
438 ilink2 = ipw_read_reg32(priv, base + i + 5*sizeof(u32));
439 idata = ipw_read_reg32(priv, base + i + 6*sizeof(u32));
440
441 IPW_ERROR(
442 "%s %i 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
443 ipw_error_desc(desc), time, blink1, blink2,
444 ilink1, ilink2, idata);
445 }
446}
447
448static void ipw_dump_nic_event_log(struct ipw_priv *priv)
449{
450 u32 ev, time, data, i, count, base;
451
452 base = ipw_read32(priv, IPW_EVENT_LOG);
453 count = ipw_read_reg32(priv, base);
454
455 if (EVENT_START_OFFSET <= count * EVENT_ELEM_SIZE)
456 IPW_ERROR("Start IPW Event Log Dump:\n");
457
458 for (i = EVENT_START_OFFSET;
459 i <= count * EVENT_ELEM_SIZE;
460 i += EVENT_ELEM_SIZE) {
461 ev = ipw_read_reg32(priv, base + i);
462 time = ipw_read_reg32(priv, base + i + 1*sizeof(u32));
463 data = ipw_read_reg32(priv, base + i + 2*sizeof(u32));
464
465#ifdef CONFIG_IPW_DEBUG
466 IPW_ERROR("%i\t0x%08x\t%i\n", time, data, ev);
467#endif
468 }
469}
470
471static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val,
472 u32 *len)
473{
474 u32 addr, field_info, field_len, field_count, total_len;
475
476 IPW_DEBUG_ORD("ordinal = %i\n", ord);
477
478 if (!priv || !val || !len) {
479 IPW_DEBUG_ORD("Invalid argument\n");
480 return -EINVAL;
481 }
482
483 /* verify device ordinal tables have been initialized */
484 if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
485 IPW_DEBUG_ORD("Access ordinals before initialization\n");
486 return -EINVAL;
487 }
488
489 switch (IPW_ORD_TABLE_ID_MASK & ord) {
490 case IPW_ORD_TABLE_0_MASK:
491 /*
492 * TABLE 0: Direct access to a table of 32 bit values
493 *
494 * This is a very simple table with the data directly
495 * read from the table
496 */
497
498 /* remove the table id from the ordinal */
499 ord &= IPW_ORD_TABLE_VALUE_MASK;
500
501 /* boundary check */
502 if (ord > priv->table0_len) {
503 IPW_DEBUG_ORD("ordinal value (%i) longer then "
504 "max (%i)\n", ord, priv->table0_len);
505 return -EINVAL;
506 }
507
508 /* verify we have enough room to store the value */
509 if (*len < sizeof(u32)) {
510 IPW_DEBUG_ORD("ordinal buffer length too small, "
511 "need %d\n", sizeof(u32));
512 return -EINVAL;
513 }
514
515 IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
516 ord, priv->table0_addr + (ord << 2));
517
518 *len = sizeof(u32);
519 ord <<= 2;
520 *((u32 *)val) = ipw_read32(priv, priv->table0_addr + ord);
521 break;
522
523 case IPW_ORD_TABLE_1_MASK:
524 /*
525 * TABLE 1: Indirect access to a table of 32 bit values
526 *
527 * This is a fairly large table of u32 values each
528 * representing starting addr for the data (which is
529 * also a u32)
530 */
531
532 /* remove the table id from the ordinal */
533 ord &= IPW_ORD_TABLE_VALUE_MASK;
534
535 /* boundary check */
536 if (ord > priv->table1_len) {
537 IPW_DEBUG_ORD("ordinal value too long\n");
538 return -EINVAL;
539 }
540
541 /* verify we have enough room to store the value */
542 if (*len < sizeof(u32)) {
543 IPW_DEBUG_ORD("ordinal buffer length too small, "
544 "need %d\n", sizeof(u32));
545 return -EINVAL;
546 }
547
548 *((u32 *)val) = ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
549 *len = sizeof(u32);
550 break;
551
552 case IPW_ORD_TABLE_2_MASK:
553 /*
554 * TABLE 2: Indirect access to a table of variable sized values
555 *
556 * This table consist of six values, each containing
557 * - dword containing the starting offset of the data
558 * - dword containing the lengh in the first 16bits
559 * and the count in the second 16bits
560 */
561
562 /* remove the table id from the ordinal */
563 ord &= IPW_ORD_TABLE_VALUE_MASK;
564
565 /* boundary check */
566 if (ord > priv->table2_len) {
567 IPW_DEBUG_ORD("ordinal value too long\n");
568 return -EINVAL;
569 }
570
571 /* get the address of statistic */
572 addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
573
574 /* get the second DW of statistics ;
575 * two 16-bit words - first is length, second is count */
576 field_info = ipw_read_reg32(priv, priv->table2_addr + (ord << 3) + sizeof(u32));
577
578 /* get each entry length */
579 field_len = *((u16 *)&field_info);
580
581 /* get number of entries */
582 field_count = *(((u16 *)&field_info) + 1);
583
584 /* abort if not enought memory */
585 total_len = field_len * field_count;
586 if (total_len > *len) {
587 *len = total_len;
588 return -EINVAL;
589 }
590
591 *len = total_len;
592 if (!total_len)
593 return 0;
594
595 IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
596 "field_info = 0x%08x\n",
597 addr, total_len, field_info);
598 ipw_read_indirect(priv, addr, val, total_len);
599 break;
600
601 default:
602 IPW_DEBUG_ORD("Invalid ordinal!\n");
603 return -EINVAL;
604
605 }
606
607
608 return 0;
609}
610
611static void ipw_init_ordinals(struct ipw_priv *priv)
612{
613 priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
614 priv->table0_len = ipw_read32(priv, priv->table0_addr);
615
616 IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
617 priv->table0_addr, priv->table0_len);
618
619 priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
620 priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
621
622 IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
623 priv->table1_addr, priv->table1_len);
624
625 priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
626 priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
627 priv->table2_len &= 0x0000ffff; /* use first two bytes */
628
629 IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
630 priv->table2_addr, priv->table2_len);
631
632}
633
634/*
635 * The following adds a new attribute to the sysfs representation
636 * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
637 * used for controling the debug level.
638 *
639 * See the level definitions in ipw for details.
640 */
641static ssize_t show_debug_level(struct device_driver *d, char *buf)
642{
643 return sprintf(buf, "0x%08X\n", ipw_debug_level);
644}
645static ssize_t store_debug_level(struct device_driver *d, const char *buf,
646 size_t count)
647{
648 char *p = (char *)buf;
649 u32 val;
650
651 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
652 p++;
653 if (p[0] == 'x' || p[0] == 'X')
654 p++;
655 val = simple_strtoul(p, &p, 16);
656 } else
657 val = simple_strtoul(p, &p, 10);
658 if (p == buf)
659 printk(KERN_INFO DRV_NAME
660 ": %s is not in hex or decimal form.\n", buf);
661 else
662 ipw_debug_level = val;
663
664 return strnlen(buf, count);
665}
666
667static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO,
668 show_debug_level, store_debug_level);
669
670static ssize_t show_status(struct device *d, char *buf)
671{
672 struct ipw_priv *p = (struct ipw_priv *)d->driver_data;
673 return sprintf(buf, "0x%08x\n", (int)p->status);
674}
675static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
676
677static ssize_t show_cfg(struct device *d, char *buf)
678{
679 struct ipw_priv *p = (struct ipw_priv *)d->driver_data;
680 return sprintf(buf, "0x%08x\n", (int)p->config);
681}
682static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
683
684static ssize_t show_nic_type(struct device *d, char *buf)
685{
686 struct ipw_priv *p = (struct ipw_priv *)d->driver_data;
687 u8 type = p->eeprom[EEPROM_NIC_TYPE];
688
689 switch (type) {
690 case EEPROM_NIC_TYPE_STANDARD:
691 return sprintf(buf, "STANDARD\n");
692 case EEPROM_NIC_TYPE_DELL:
693 return sprintf(buf, "DELL\n");
694 case EEPROM_NIC_TYPE_FUJITSU:
695 return sprintf(buf, "FUJITSU\n");
696 case EEPROM_NIC_TYPE_IBM:
697 return sprintf(buf, "IBM\n");
698 case EEPROM_NIC_TYPE_HP:
699 return sprintf(buf, "HP\n");
700 }
701
702 return sprintf(buf, "UNKNOWN\n");
703}
704static DEVICE_ATTR(nic_type, S_IRUGO, show_nic_type, NULL);
705
706static ssize_t dump_error_log(struct device *d, const char *buf,
707 size_t count)
708{
709 char *p = (char *)buf;
710
711 if (p[0] == '1')
712 ipw_dump_nic_error_log((struct ipw_priv*)d->driver_data);
713
714 return strnlen(buf, count);
715}
716static DEVICE_ATTR(dump_errors, S_IWUSR, NULL, dump_error_log);
717
718static ssize_t dump_event_log(struct device *d, const char *buf,
719 size_t count)
720{
721 char *p = (char *)buf;
722
723 if (p[0] == '1')
724 ipw_dump_nic_event_log((struct ipw_priv*)d->driver_data);
725
726 return strnlen(buf, count);
727}
728static DEVICE_ATTR(dump_events, S_IWUSR, NULL, dump_event_log);
729
730static ssize_t show_ucode_version(struct device *d, char *buf)
731{
732 u32 len = sizeof(u32), tmp = 0;
733 struct ipw_priv *p = (struct ipw_priv*)d->driver_data;
734
735 if(ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
736 return 0;
737
738 return sprintf(buf, "0x%08x\n", tmp);
739}
740static DEVICE_ATTR(ucode_version, S_IWUSR|S_IRUGO, show_ucode_version, NULL);
741
742static ssize_t show_rtc(struct device *d, char *buf)
743{
744 u32 len = sizeof(u32), tmp = 0;
745 struct ipw_priv *p = (struct ipw_priv*)d->driver_data;
746
747 if(ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
748 return 0;
749
750 return sprintf(buf, "0x%08x\n", tmp);
751}
752static DEVICE_ATTR(rtc, S_IWUSR|S_IRUGO, show_rtc, NULL);
753
754/*
755 * Add a device attribute to view/control the delay between eeprom
756 * operations.
757 */
758static ssize_t show_eeprom_delay(struct device *d, char *buf)
759{
760 int n = ((struct ipw_priv*)d->driver_data)->eeprom_delay;
761 return sprintf(buf, "%i\n", n);
762}
763static ssize_t store_eeprom_delay(struct device *d, const char *buf,
764 size_t count)
765{
766 struct ipw_priv *p = (struct ipw_priv*)d->driver_data;
767 sscanf(buf, "%i", &p->eeprom_delay);
768 return strnlen(buf, count);
769}
770static DEVICE_ATTR(eeprom_delay, S_IWUSR|S_IRUGO,
771 show_eeprom_delay,store_eeprom_delay);
772
773static ssize_t show_command_event_reg(struct device *d, char *buf)
774{
775 u32 reg = 0;
776 struct ipw_priv *p = (struct ipw_priv *)d->driver_data;
777
778 reg = ipw_read_reg32(p, CX2_INTERNAL_CMD_EVENT);
779 return sprintf(buf, "0x%08x\n", reg);
780}
781static ssize_t store_command_event_reg(struct device *d,
782 const char *buf,
783 size_t count)
784{
785 u32 reg;
786 struct ipw_priv *p = (struct ipw_priv *)d->driver_data;
787
788 sscanf(buf, "%x", &reg);
789 ipw_write_reg32(p, CX2_INTERNAL_CMD_EVENT, reg);
790 return strnlen(buf, count);
791}
792static DEVICE_ATTR(command_event_reg, S_IWUSR|S_IRUGO,
793 show_command_event_reg,store_command_event_reg);
794
795static ssize_t show_mem_gpio_reg(struct device *d, char *buf)
796{
797 u32 reg = 0;
798 struct ipw_priv *p = (struct ipw_priv *)d->driver_data;
799
800 reg = ipw_read_reg32(p, 0x301100);
801 return sprintf(buf, "0x%08x\n", reg);
802}
803static ssize_t store_mem_gpio_reg(struct device *d,
804 const char *buf,
805 size_t count)
806{
807 u32 reg;
808 struct ipw_priv *p = (struct ipw_priv *)d->driver_data;
809
810 sscanf(buf, "%x", &reg);
811 ipw_write_reg32(p, 0x301100, reg);
812 return strnlen(buf, count);
813}
814static DEVICE_ATTR(mem_gpio_reg, S_IWUSR|S_IRUGO,
815 show_mem_gpio_reg,store_mem_gpio_reg);
816
817static ssize_t show_indirect_dword(struct device *d, char *buf)
818{
819 u32 reg = 0;
820 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
821 if (priv->status & STATUS_INDIRECT_DWORD)
822 reg = ipw_read_reg32(priv, priv->indirect_dword);
823 else
824 reg = 0;
825
826 return sprintf(buf, "0x%08x\n", reg);
827}
828static ssize_t store_indirect_dword(struct device *d,
829 const char *buf,
830 size_t count)
831{
832 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
833
834 sscanf(buf, "%x", &priv->indirect_dword);
835 priv->status |= STATUS_INDIRECT_DWORD;
836 return strnlen(buf, count);
837}
838static DEVICE_ATTR(indirect_dword, S_IWUSR|S_IRUGO,
839 show_indirect_dword,store_indirect_dword);
840
841static ssize_t show_indirect_byte(struct device *d, char *buf)
842{
843 u8 reg = 0;
844 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
845 if (priv->status & STATUS_INDIRECT_BYTE)
846 reg = ipw_read_reg8(priv, priv->indirect_byte);
847 else
848 reg = 0;
849
850 return sprintf(buf, "0x%02x\n", reg);
851}
852static ssize_t store_indirect_byte(struct device *d,
853 const char *buf,
854 size_t count)
855{
856 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
857
858 sscanf(buf, "%x", &priv->indirect_byte);
859 priv->status |= STATUS_INDIRECT_BYTE;
860 return strnlen(buf, count);
861}
862static DEVICE_ATTR(indirect_byte, S_IWUSR|S_IRUGO,
863 show_indirect_byte, store_indirect_byte);
864
865static ssize_t show_direct_dword(struct device *d, char *buf)
866{
867 u32 reg = 0;
868 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
869
870 if (priv->status & STATUS_DIRECT_DWORD)
871 reg = ipw_read32(priv, priv->direct_dword);
872 else
873 reg = 0;
874
875 return sprintf(buf, "0x%08x\n", reg);
876}
877static ssize_t store_direct_dword(struct device *d,
878 const char *buf,
879 size_t count)
880{
881 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
882
883 sscanf(buf, "%x", &priv->direct_dword);
884 priv->status |= STATUS_DIRECT_DWORD;
885 return strnlen(buf, count);
886}
887static DEVICE_ATTR(direct_dword, S_IWUSR|S_IRUGO,
888 show_direct_dword,store_direct_dword);
889
890
891static inline int rf_kill_active(struct ipw_priv *priv)
892{
893 if (0 == (ipw_read32(priv, 0x30) & 0x10000))
894 priv->status |= STATUS_RF_KILL_HW;
895 else
896 priv->status &= ~STATUS_RF_KILL_HW;
897
898 return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
899}
900
901static ssize_t show_rf_kill(struct device *d, char *buf)
902{
903 /* 0 - RF kill not enabled
904 1 - SW based RF kill active (sysfs)
905 2 - HW based RF kill active
906 3 - Both HW and SW baed RF kill active */
907 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
908 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
909 (rf_kill_active(priv) ? 0x2 : 0x0);
910 return sprintf(buf, "%i\n", val);
911}
912
913static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
914{
915 if ((disable_radio ? 1 : 0) ==
916 (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
917 return 0 ;
918
919 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n",
920 disable_radio ? "OFF" : "ON");
921
922 if (disable_radio) {
923 priv->status |= STATUS_RF_KILL_SW;
924
925 if (priv->workqueue) {
926 cancel_delayed_work(&priv->request_scan);
927 }
928 wake_up_interruptible(&priv->wait_command_queue);
929 queue_work(priv->workqueue, &priv->down);
930 } else {
931 priv->status &= ~STATUS_RF_KILL_SW;
932 if (rf_kill_active(priv)) {
933 IPW_DEBUG_RF_KILL("Can not turn radio back on - "
934 "disabled by HW switch\n");
935 /* Make sure the RF_KILL check timer is running */
936 cancel_delayed_work(&priv->rf_kill);
937 queue_delayed_work(priv->workqueue, &priv->rf_kill,
938 2 * HZ);
939 } else
940 queue_work(priv->workqueue, &priv->up);
941 }
942
943 return 1;
944}
945
946static ssize_t store_rf_kill(struct device *d, const char *buf, size_t count)
947{
948 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
949
950 ipw_radio_kill_sw(priv, buf[0] == '1');
951
952 return count;
953}
954static DEVICE_ATTR(rf_kill, S_IWUSR|S_IRUGO, show_rf_kill, store_rf_kill);
955
956static void ipw_irq_tasklet(struct ipw_priv *priv)
957{
958 u32 inta, inta_mask, handled = 0;
959 unsigned long flags;
960 int rc = 0;
961
962 spin_lock_irqsave(&priv->lock, flags);
963
964 inta = ipw_read32(priv, CX2_INTA_RW);
965 inta_mask = ipw_read32(priv, CX2_INTA_MASK_R);
966 inta &= (CX2_INTA_MASK_ALL & inta_mask);
967
968 /* Add any cached INTA values that need to be handled */
969 inta |= priv->isr_inta;
970
971 /* handle all the justifications for the interrupt */
972 if (inta & CX2_INTA_BIT_RX_TRANSFER) {
973 ipw_rx(priv);
974 handled |= CX2_INTA_BIT_RX_TRANSFER;
975 }
976
977 if (inta & CX2_INTA_BIT_TX_CMD_QUEUE) {
978 IPW_DEBUG_HC("Command completed.\n");
979 rc = ipw_queue_tx_reclaim( priv, &priv->txq_cmd, -1);
980 priv->status &= ~STATUS_HCMD_ACTIVE;
981 wake_up_interruptible(&priv->wait_command_queue);
982 handled |= CX2_INTA_BIT_TX_CMD_QUEUE;
983 }
984
985 if (inta & CX2_INTA_BIT_TX_QUEUE_1) {
986 IPW_DEBUG_TX("TX_QUEUE_1\n");
987 rc = ipw_queue_tx_reclaim( priv, &priv->txq[0], 0);
988 handled |= CX2_INTA_BIT_TX_QUEUE_1;
989 }
990
991 if (inta & CX2_INTA_BIT_TX_QUEUE_2) {
992 IPW_DEBUG_TX("TX_QUEUE_2\n");
993 rc = ipw_queue_tx_reclaim( priv, &priv->txq[1], 1);
994 handled |= CX2_INTA_BIT_TX_QUEUE_2;
995 }
996
997 if (inta & CX2_INTA_BIT_TX_QUEUE_3) {
998 IPW_DEBUG_TX("TX_QUEUE_3\n");
999 rc = ipw_queue_tx_reclaim( priv, &priv->txq[2], 2);
1000 handled |= CX2_INTA_BIT_TX_QUEUE_3;
1001 }
1002
1003 if (inta & CX2_INTA_BIT_TX_QUEUE_4) {
1004 IPW_DEBUG_TX("TX_QUEUE_4\n");
1005 rc = ipw_queue_tx_reclaim( priv, &priv->txq[3], 3);
1006 handled |= CX2_INTA_BIT_TX_QUEUE_4;
1007 }
1008
1009 if (inta & CX2_INTA_BIT_STATUS_CHANGE) {
1010 IPW_WARNING("STATUS_CHANGE\n");
1011 handled |= CX2_INTA_BIT_STATUS_CHANGE;
1012 }
1013
1014 if (inta & CX2_INTA_BIT_BEACON_PERIOD_EXPIRED) {
1015 IPW_WARNING("TX_PERIOD_EXPIRED\n");
1016 handled |= CX2_INTA_BIT_BEACON_PERIOD_EXPIRED;
1017 }
1018
1019 if (inta & CX2_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
1020 IPW_WARNING("HOST_CMD_DONE\n");
1021 handled |= CX2_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
1022 }
1023
1024 if (inta & CX2_INTA_BIT_FW_INITIALIZATION_DONE) {
1025 IPW_WARNING("FW_INITIALIZATION_DONE\n");
1026 handled |= CX2_INTA_BIT_FW_INITIALIZATION_DONE;
1027 }
1028
1029 if (inta & CX2_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
1030 IPW_WARNING("PHY_OFF_DONE\n");
1031 handled |= CX2_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
1032 }
1033
1034 if (inta & CX2_INTA_BIT_RF_KILL_DONE) {
1035 IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
1036 priv->status |= STATUS_RF_KILL_HW;
1037 wake_up_interruptible(&priv->wait_command_queue);
1038 netif_carrier_off(priv->net_dev);
1039 netif_stop_queue(priv->net_dev);
1040 cancel_delayed_work(&priv->request_scan);
1041 queue_delayed_work(priv->workqueue, &priv->rf_kill, 2 * HZ);
1042 handled |= CX2_INTA_BIT_RF_KILL_DONE;
1043 }
1044
1045 if (inta & CX2_INTA_BIT_FATAL_ERROR) {
1046 IPW_ERROR("Firmware error detected. Restarting.\n");
1047#ifdef CONFIG_IPW_DEBUG
1048 if (ipw_debug_level & IPW_DL_FW_ERRORS) {
1049 ipw_dump_nic_error_log(priv);
1050 ipw_dump_nic_event_log(priv);
1051 }
1052#endif
1053 queue_work(priv->workqueue, &priv->adapter_restart);
1054 handled |= CX2_INTA_BIT_FATAL_ERROR;
1055 }
1056
1057 if (inta & CX2_INTA_BIT_PARITY_ERROR) {
1058 IPW_ERROR("Parity error\n");
1059 handled |= CX2_INTA_BIT_PARITY_ERROR;
1060 }
1061
1062 if (handled != inta) {
1063 IPW_ERROR("Unhandled INTA bits 0x%08x\n",
1064 inta & ~handled);
1065 }
1066
1067 /* enable all interrupts */
1068 ipw_enable_interrupts(priv);
1069
1070 spin_unlock_irqrestore(&priv->lock, flags);
1071}
1072
1073#ifdef CONFIG_IPW_DEBUG
1074#define IPW_CMD(x) case IPW_CMD_ ## x : return #x
1075static char *get_cmd_string(u8 cmd)
1076{
1077 switch (cmd) {
1078 IPW_CMD(HOST_COMPLETE);
1079 IPW_CMD(POWER_DOWN);
1080 IPW_CMD(SYSTEM_CONFIG);
1081 IPW_CMD(MULTICAST_ADDRESS);
1082 IPW_CMD(SSID);
1083 IPW_CMD(ADAPTER_ADDRESS);
1084 IPW_CMD(PORT_TYPE);
1085 IPW_CMD(RTS_THRESHOLD);
1086 IPW_CMD(FRAG_THRESHOLD);
1087 IPW_CMD(POWER_MODE);
1088 IPW_CMD(WEP_KEY);
1089 IPW_CMD(TGI_TX_KEY);
1090 IPW_CMD(SCAN_REQUEST);
1091 IPW_CMD(SCAN_REQUEST_EXT);
1092 IPW_CMD(ASSOCIATE);
1093 IPW_CMD(SUPPORTED_RATES);
1094 IPW_CMD(SCAN_ABORT);
1095 IPW_CMD(TX_FLUSH);
1096 IPW_CMD(QOS_PARAMETERS);
1097 IPW_CMD(DINO_CONFIG);
1098 IPW_CMD(RSN_CAPABILITIES);
1099 IPW_CMD(RX_KEY);
1100 IPW_CMD(CARD_DISABLE);
1101 IPW_CMD(SEED_NUMBER);
1102 IPW_CMD(TX_POWER);
1103 IPW_CMD(COUNTRY_INFO);
1104 IPW_CMD(AIRONET_INFO);
1105 IPW_CMD(AP_TX_POWER);
1106 IPW_CMD(CCKM_INFO);
1107 IPW_CMD(CCX_VER_INFO);
1108 IPW_CMD(SET_CALIBRATION);
1109 IPW_CMD(SENSITIVITY_CALIB);
1110 IPW_CMD(RETRY_LIMIT);
1111 IPW_CMD(IPW_PRE_POWER_DOWN);
1112 IPW_CMD(VAP_BEACON_TEMPLATE);
1113 IPW_CMD(VAP_DTIM_PERIOD);
1114 IPW_CMD(EXT_SUPPORTED_RATES);
1115 IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
1116 IPW_CMD(VAP_QUIET_INTERVALS);
1117 IPW_CMD(VAP_CHANNEL_SWITCH);
1118 IPW_CMD(VAP_MANDATORY_CHANNELS);
1119 IPW_CMD(VAP_CELL_PWR_LIMIT);
1120 IPW_CMD(VAP_CF_PARAM_SET);
1121 IPW_CMD(VAP_SET_BEACONING_STATE);
1122 IPW_CMD(MEASUREMENT);
1123 IPW_CMD(POWER_CAPABILITY);
1124 IPW_CMD(SUPPORTED_CHANNELS);
1125 IPW_CMD(TPC_REPORT);
1126 IPW_CMD(WME_INFO);
1127 IPW_CMD(PRODUCTION_COMMAND);
1128 default:
1129 return "UNKNOWN";
1130 }
1131}
1132#endif /* CONFIG_IPW_DEBUG */
1133
1134#define HOST_COMPLETE_TIMEOUT HZ
1135static int ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
1136{
1137 int rc = 0;
1138
1139 if (priv->status & STATUS_HCMD_ACTIVE) {
1140 IPW_ERROR("Already sending a command\n");
1141 return -1;
1142 }
1143
1144 priv->status |= STATUS_HCMD_ACTIVE;
1145
1146 IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
1147 get_cmd_string(cmd->cmd), cmd->cmd, cmd->len);
1148 printk_buf(IPW_DL_HOST_COMMAND, (u8*)cmd->param, cmd->len);
1149
1150 rc = ipw_queue_tx_hcmd(priv, cmd->cmd, &cmd->param, cmd->len, 0);
1151 if (rc)
1152 return rc;
1153
1154 rc = wait_event_interruptible_timeout(
1155 priv->wait_command_queue, !(priv->status & STATUS_HCMD_ACTIVE),
1156 HOST_COMPLETE_TIMEOUT);
1157 if (rc == 0) {
1158 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
1159 HOST_COMPLETE_TIMEOUT / (HZ / 1000));
1160 priv->status &= ~STATUS_HCMD_ACTIVE;
1161 return -EIO;
1162 }
1163 if (priv->status & STATUS_RF_KILL_MASK) {
1164 IPW_DEBUG_INFO("Command aborted due to RF Kill Switch\n");
1165 return -EIO;
1166 }
1167
1168 return 0;
1169}
1170
1171static int ipw_send_host_complete(struct ipw_priv *priv)
1172{
1173 struct host_cmd cmd = {
1174 .cmd = IPW_CMD_HOST_COMPLETE,
1175 .len = 0
1176 };
1177
1178 if (!priv) {
1179 IPW_ERROR("Invalid args\n");
1180 return -1;
1181 }
1182
1183 if (ipw_send_cmd(priv, &cmd)) {
1184 IPW_ERROR("failed to send HOST_COMPLETE command\n");
1185 return -1;
1186 }
1187
1188 return 0;
1189}
1190
1191static int ipw_send_system_config(struct ipw_priv *priv,
1192 struct ipw_sys_config *config)
1193{
1194 struct host_cmd cmd = {
1195 .cmd = IPW_CMD_SYSTEM_CONFIG,
1196 .len = sizeof(*config)
1197 };
1198
1199 if (!priv || !config) {
1200 IPW_ERROR("Invalid args\n");
1201 return -1;
1202 }
1203
1204 memcpy(&cmd.param,config,sizeof(*config));
1205 if (ipw_send_cmd(priv, &cmd)) {
1206 IPW_ERROR("failed to send SYSTEM_CONFIG command\n");
1207 return -1;
1208 }
1209
1210 return 0;
1211}
1212
1213static int ipw_send_ssid(struct ipw_priv *priv, u8 *ssid, int len)
1214{
1215 struct host_cmd cmd = {
1216 .cmd = IPW_CMD_SSID,
1217 .len = min(len, IW_ESSID_MAX_SIZE)
1218 };
1219
1220 if (!priv || !ssid) {
1221 IPW_ERROR("Invalid args\n");
1222 return -1;
1223 }
1224
1225 memcpy(&cmd.param, ssid, cmd.len);
1226 if (ipw_send_cmd(priv, &cmd)) {
1227 IPW_ERROR("failed to send SSID command\n");
1228 return -1;
1229 }
1230
1231 return 0;
1232}
1233
1234static int ipw_send_adapter_address(struct ipw_priv *priv, u8 *mac)
1235{
1236 struct host_cmd cmd = {
1237 .cmd = IPW_CMD_ADAPTER_ADDRESS,
1238 .len = ETH_ALEN
1239 };
1240
1241 if (!priv || !mac) {
1242 IPW_ERROR("Invalid args\n");
1243 return -1;
1244 }
1245
1246 IPW_DEBUG_INFO("%s: Setting MAC to " MAC_FMT "\n",
1247 priv->net_dev->name, MAC_ARG(mac));
1248
1249 memcpy(&cmd.param, mac, ETH_ALEN);
1250
1251 if (ipw_send_cmd(priv, &cmd)) {
1252 IPW_ERROR("failed to send ADAPTER_ADDRESS command\n");
1253 return -1;
1254 }
1255
1256 return 0;
1257}
1258
1259static void ipw_adapter_restart(void *adapter)
1260{
1261 struct ipw_priv *priv = adapter;
1262
1263 if (priv->status & STATUS_RF_KILL_MASK)
1264 return;
1265
1266 ipw_down(priv);
1267 if (ipw_up(priv)) {
1268 IPW_ERROR("Failed to up device\n");
1269 return;
1270 }
1271}
1272
1273
1274
1275
1276#define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)
1277
1278static void ipw_scan_check(void *data)
1279{
1280 struct ipw_priv *priv = data;
1281 if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
1282 IPW_DEBUG_SCAN("Scan completion watchdog resetting "
1283 "adapter (%dms).\n",
1284 IPW_SCAN_CHECK_WATCHDOG / 100);
1285 ipw_adapter_restart(priv);
1286 }
1287}
1288
1289static int ipw_send_scan_request_ext(struct ipw_priv *priv,
1290 struct ipw_scan_request_ext *request)
1291{
1292 struct host_cmd cmd = {
1293 .cmd = IPW_CMD_SCAN_REQUEST_EXT,
1294 .len = sizeof(*request)
1295 };
1296
1297 if (!priv || !request) {
1298 IPW_ERROR("Invalid args\n");
1299 return -1;
1300 }
1301
1302 memcpy(&cmd.param,request,sizeof(*request));
1303 if (ipw_send_cmd(priv, &cmd)) {
1304 IPW_ERROR("failed to send SCAN_REQUEST_EXT command\n");
1305 return -1;
1306 }
1307
1308 queue_delayed_work(priv->workqueue, &priv->scan_check,
1309 IPW_SCAN_CHECK_WATCHDOG);
1310 return 0;
1311}
1312
1313static int ipw_send_scan_abort(struct ipw_priv *priv)
1314{
1315 struct host_cmd cmd = {
1316 .cmd = IPW_CMD_SCAN_ABORT,
1317 .len = 0
1318 };
1319
1320 if (!priv) {
1321 IPW_ERROR("Invalid args\n");
1322 return -1;
1323 }
1324
1325 if (ipw_send_cmd(priv, &cmd)) {
1326 IPW_ERROR("failed to send SCAN_ABORT command\n");
1327 return -1;
1328 }
1329
1330 return 0;
1331}
1332
1333static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
1334{
1335 struct host_cmd cmd = {
1336 .cmd = IPW_CMD_SENSITIVITY_CALIB,
1337 .len = sizeof(struct ipw_sensitivity_calib)
1338 };
1339 struct ipw_sensitivity_calib *calib = (struct ipw_sensitivity_calib *)
1340 &cmd.param;
1341 calib->beacon_rssi_raw = sens;
1342 if (ipw_send_cmd(priv, &cmd)) {
1343 IPW_ERROR("failed to send SENSITIVITY CALIB command\n");
1344 return -1;
1345 }
1346
1347 return 0;
1348}
1349
1350static int ipw_send_associate(struct ipw_priv *priv,
1351 struct ipw_associate *associate)
1352{
1353 struct host_cmd cmd = {
1354 .cmd = IPW_CMD_ASSOCIATE,
1355 .len = sizeof(*associate)
1356 };
1357
1358 if (!priv || !associate) {
1359 IPW_ERROR("Invalid args\n");
1360 return -1;
1361 }
1362
1363 memcpy(&cmd.param,associate,sizeof(*associate));
1364 if (ipw_send_cmd(priv, &cmd)) {
1365 IPW_ERROR("failed to send ASSOCIATE command\n");
1366 return -1;
1367 }
1368
1369 return 0;
1370}
1371
1372static int ipw_send_supported_rates(struct ipw_priv *priv,
1373 struct ipw_supported_rates *rates)
1374{
1375 struct host_cmd cmd = {
1376 .cmd = IPW_CMD_SUPPORTED_RATES,
1377 .len = sizeof(*rates)
1378 };
1379
1380 if (!priv || !rates) {
1381 IPW_ERROR("Invalid args\n");
1382 return -1;
1383 }
1384
1385 memcpy(&cmd.param,rates,sizeof(*rates));
1386 if (ipw_send_cmd(priv, &cmd)) {
1387 IPW_ERROR("failed to send SUPPORTED_RATES command\n");
1388 return -1;
1389 }
1390
1391 return 0;
1392}
1393
1394static int ipw_set_random_seed(struct ipw_priv *priv)
1395{
1396 struct host_cmd cmd = {
1397 .cmd = IPW_CMD_SEED_NUMBER,
1398 .len = sizeof(u32)
1399 };
1400
1401 if (!priv) {
1402 IPW_ERROR("Invalid args\n");
1403 return -1;
1404 }
1405
1406 get_random_bytes(&cmd.param, sizeof(u32));
1407
1408 if (ipw_send_cmd(priv, &cmd)) {
1409 IPW_ERROR("failed to send SEED_NUMBER command\n");
1410 return -1;
1411 }
1412
1413 return 0;
1414}
1415
1416#if 0
1417static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
1418{
1419 struct host_cmd cmd = {
1420 .cmd = IPW_CMD_CARD_DISABLE,
1421 .len = sizeof(u32)
1422 };
1423
1424 if (!priv) {
1425 IPW_ERROR("Invalid args\n");
1426 return -1;
1427 }
1428
1429 *((u32*)&cmd.param) = phy_off;
1430
1431 if (ipw_send_cmd(priv, &cmd)) {
1432 IPW_ERROR("failed to send CARD_DISABLE command\n");
1433 return -1;
1434 }
1435
1436 return 0;
1437}
1438#endif
1439
1440static int ipw_send_tx_power(struct ipw_priv *priv,
1441 struct ipw_tx_power *power)
1442{
1443 struct host_cmd cmd = {
1444 .cmd = IPW_CMD_TX_POWER,
1445 .len = sizeof(*power)
1446 };
1447
1448 if (!priv || !power) {
1449 IPW_ERROR("Invalid args\n");
1450 return -1;
1451 }
1452
1453 memcpy(&cmd.param,power,sizeof(*power));
1454 if (ipw_send_cmd(priv, &cmd)) {
1455 IPW_ERROR("failed to send TX_POWER command\n");
1456 return -1;
1457 }
1458
1459 return 0;
1460}
1461
1462static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
1463{
1464 struct ipw_rts_threshold rts_threshold = {
1465 .rts_threshold = rts,
1466 };
1467 struct host_cmd cmd = {
1468 .cmd = IPW_CMD_RTS_THRESHOLD,
1469 .len = sizeof(rts_threshold)
1470 };
1471
1472 if (!priv) {
1473 IPW_ERROR("Invalid args\n");
1474 return -1;
1475 }
1476
1477 memcpy(&cmd.param, &rts_threshold, sizeof(rts_threshold));
1478 if (ipw_send_cmd(priv, &cmd)) {
1479 IPW_ERROR("failed to send RTS_THRESHOLD command\n");
1480 return -1;
1481 }
1482
1483 return 0;
1484}
1485
1486static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
1487{
1488 struct ipw_frag_threshold frag_threshold = {
1489 .frag_threshold = frag,
1490 };
1491 struct host_cmd cmd = {
1492 .cmd = IPW_CMD_FRAG_THRESHOLD,
1493 .len = sizeof(frag_threshold)
1494 };
1495
1496 if (!priv) {
1497 IPW_ERROR("Invalid args\n");
1498 return -1;
1499 }
1500
1501 memcpy(&cmd.param, &frag_threshold, sizeof(frag_threshold));
1502 if (ipw_send_cmd(priv, &cmd)) {
1503 IPW_ERROR("failed to send FRAG_THRESHOLD command\n");
1504 return -1;
1505 }
1506
1507 return 0;
1508}
1509
1510static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
1511{
1512 struct host_cmd cmd = {
1513 .cmd = IPW_CMD_POWER_MODE,
1514 .len = sizeof(u32)
1515 };
1516 u32 *param = (u32*)(&cmd.param);
1517
1518 if (!priv) {
1519 IPW_ERROR("Invalid args\n");
1520 return -1;
1521 }
1522
1523 /* If on battery, set to 3, if AC set to CAM, else user
1524 * level */
1525 switch (mode) {
1526 case IPW_POWER_BATTERY:
1527 *param = IPW_POWER_INDEX_3;
1528 break;
1529 case IPW_POWER_AC:
1530 *param = IPW_POWER_MODE_CAM;
1531 break;
1532 default:
1533 *param = mode;
1534 break;
1535 }
1536
1537 if (ipw_send_cmd(priv, &cmd)) {
1538 IPW_ERROR("failed to send POWER_MODE command\n");
1539 return -1;
1540 }
1541
1542 return 0;
1543}
1544
1545/*
1546 * The IPW device contains a Microwire compatible EEPROM that stores
1547 * various data like the MAC address. Usually the firmware has exclusive
1548 * access to the eeprom, but during device initialization (before the
1549 * device driver has sent the HostComplete command to the firmware) the
1550 * device driver has read access to the EEPROM by way of indirect addressing
1551 * through a couple of memory mapped registers.
1552 *
1553 * The following is a simplified implementation for pulling data out of the
1554 * the eeprom, along with some helper functions to find information in
1555 * the per device private data's copy of the eeprom.
1556 *
1557 * NOTE: To better understand how these functions work (i.e what is a chip
1558 * select and why do have to keep driving the eeprom clock?), read
1559 * just about any data sheet for a Microwire compatible EEPROM.
1560 */
1561
1562/* write a 32 bit value into the indirect accessor register */
1563static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
1564{
1565 ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
1566
1567 /* the eeprom requires some time to complete the operation */
1568 udelay(p->eeprom_delay);
1569
1570 return;
1571}
1572
1573/* perform a chip select operation */
1574static inline void eeprom_cs(struct ipw_priv* priv)
1575{
1576 eeprom_write_reg(priv,0);
1577 eeprom_write_reg(priv,EEPROM_BIT_CS);
1578 eeprom_write_reg(priv,EEPROM_BIT_CS|EEPROM_BIT_SK);
1579 eeprom_write_reg(priv,EEPROM_BIT_CS);
1580}
1581
1582/* perform a chip select operation */
1583static inline void eeprom_disable_cs(struct ipw_priv* priv)
1584{
1585 eeprom_write_reg(priv,EEPROM_BIT_CS);
1586 eeprom_write_reg(priv,0);
1587 eeprom_write_reg(priv,EEPROM_BIT_SK);
1588}
1589
1590/* push a single bit down to the eeprom */
1591static inline void eeprom_write_bit(struct ipw_priv *p,u8 bit)
1592{
1593 int d = ( bit ? EEPROM_BIT_DI : 0);
1594 eeprom_write_reg(p,EEPROM_BIT_CS|d);
1595 eeprom_write_reg(p,EEPROM_BIT_CS|d|EEPROM_BIT_SK);
1596}
1597
1598/* push an opcode followed by an address down to the eeprom */
1599static void eeprom_op(struct ipw_priv* priv, u8 op, u8 addr)
1600{
1601 int i;
1602
1603 eeprom_cs(priv);
1604 eeprom_write_bit(priv,1);
1605 eeprom_write_bit(priv,op&2);
1606 eeprom_write_bit(priv,op&1);
1607 for ( i=7; i>=0; i-- ) {
1608 eeprom_write_bit(priv,addr&(1<<i));
1609 }
1610}
1611
1612/* pull 16 bits off the eeprom, one bit at a time */
1613static u16 eeprom_read_u16(struct ipw_priv* priv, u8 addr)
1614{
1615 int i;
1616 u16 r=0;
1617
1618 /* Send READ Opcode */
1619 eeprom_op(priv,EEPROM_CMD_READ,addr);
1620
1621 /* Send dummy bit */
1622 eeprom_write_reg(priv,EEPROM_BIT_CS);
1623
1624 /* Read the byte off the eeprom one bit at a time */
1625 for ( i=0; i<16; i++ ) {
1626 u32 data = 0;
1627 eeprom_write_reg(priv,EEPROM_BIT_CS|EEPROM_BIT_SK);
1628 eeprom_write_reg(priv,EEPROM_BIT_CS);
1629 data = ipw_read_reg32(priv,FW_MEM_REG_EEPROM_ACCESS);
1630 r = (r<<1) | ((data & EEPROM_BIT_DO)?1:0);
1631 }
1632
1633 /* Send another dummy bit */
1634 eeprom_write_reg(priv,0);
1635 eeprom_disable_cs(priv);
1636
1637 return r;
1638}
1639
1640/* helper function for pulling the mac address out of the private */
1641/* data's copy of the eeprom data */
1642static void eeprom_parse_mac(struct ipw_priv* priv, u8* mac)
1643{
1644 u8* ee = (u8*)priv->eeprom;
1645 memcpy(mac, &ee[EEPROM_MAC_ADDRESS], 6);
1646}
1647
1648/*
1649 * Either the device driver (i.e. the host) or the firmware can
1650 * load eeprom data into the designated region in SRAM. If neither
1651 * happens then the FW will shutdown with a fatal error.
1652 *
1653 * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
1654 * bit needs region of shared SRAM needs to be non-zero.
1655 */
1656static void ipw_eeprom_init_sram(struct ipw_priv *priv)
1657{
1658 int i;
1659 u16 *eeprom = (u16 *)priv->eeprom;
1660
1661 IPW_DEBUG_TRACE(">>\n");
1662
1663 /* read entire contents of eeprom into private buffer */
1664 for ( i=0; i<128; i++ )
1665 eeprom[i] = eeprom_read_u16(priv,(u8)i);
1666
1667 /*
1668 If the data looks correct, then copy it to our private
1669 copy. Otherwise let the firmware know to perform the operation
1670 on it's own
1671 */
1672 if ((priv->eeprom + EEPROM_VERSION) != 0) {
1673 IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
1674
1675 /* write the eeprom data to sram */
1676 for( i=0; i<CX2_EEPROM_IMAGE_SIZE; i++ )
1677 ipw_write8(priv, IPW_EEPROM_DATA + i,
1678 priv->eeprom[i]);
1679
1680 /* Do not load eeprom data on fatal error or suspend */
1681 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
1682 } else {
1683 IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n");
1684
1685 /* Load eeprom data on fatal error or suspend */
1686 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
1687 }
1688
1689 IPW_DEBUG_TRACE("<<\n");
1690}
1691
1692
1693static inline void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
1694{
1695 count >>= 2;
1696 if (!count) return;
1697 _ipw_write32(priv, CX2_AUTOINC_ADDR, start);
1698 while (count--)
1699 _ipw_write32(priv, CX2_AUTOINC_DATA, 0);
1700}
1701
1702static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
1703{
1704 ipw_zero_memory(priv, CX2_SHARED_SRAM_DMA_CONTROL,
1705 CB_NUMBER_OF_ELEMENTS_SMALL *
1706 sizeof(struct command_block));
1707}
1708
1709static int ipw_fw_dma_enable(struct ipw_priv *priv)
1710{ /* start dma engine but no transfers yet*/
1711
1712 IPW_DEBUG_FW(">> : \n");
1713
1714 /* Start the dma */
1715 ipw_fw_dma_reset_command_blocks(priv);
1716
1717 /* Write CB base address */
1718 ipw_write_reg32(priv, CX2_DMA_I_CB_BASE, CX2_SHARED_SRAM_DMA_CONTROL);
1719
1720 IPW_DEBUG_FW("<< : \n");
1721 return 0;
1722}
1723
1724static void ipw_fw_dma_abort(struct ipw_priv *priv)
1725{
1726 u32 control = 0;
1727
1728 IPW_DEBUG_FW(">> :\n");
1729
1730 //set the Stop and Abort bit
1731 control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
1732 ipw_write_reg32(priv, CX2_DMA_I_DMA_CONTROL, control);
1733 priv->sram_desc.last_cb_index = 0;
1734
1735 IPW_DEBUG_FW("<< \n");
1736}
1737
1738static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index, struct command_block *cb)
1739{
1740 u32 address = CX2_SHARED_SRAM_DMA_CONTROL + (sizeof(struct command_block) * index);
1741 IPW_DEBUG_FW(">> :\n");
1742
1743 ipw_write_indirect(priv, address, (u8*)cb, sizeof(struct command_block));
1744
1745 IPW_DEBUG_FW("<< :\n");
1746 return 0;
1747
1748}
1749
1750static int ipw_fw_dma_kick(struct ipw_priv *priv)
1751{
1752 u32 control = 0;
1753 u32 index=0;
1754
1755 IPW_DEBUG_FW(">> :\n");
1756
1757 for (index = 0; index < priv->sram_desc.last_cb_index; index++)
1758 ipw_fw_dma_write_command_block(priv, index, &priv->sram_desc.cb_list[index]);
1759
1760 /* Enable the DMA in the CSR register */
1761 ipw_clear_bit(priv, CX2_RESET_REG,CX2_RESET_REG_MASTER_DISABLED | CX2_RESET_REG_STOP_MASTER);
1762
1763 /* Set the Start bit. */
1764 control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
1765 ipw_write_reg32(priv, CX2_DMA_I_DMA_CONTROL, control);
1766
1767 IPW_DEBUG_FW("<< :\n");
1768 return 0;
1769}
1770
1771static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
1772{
1773 u32 address;
1774 u32 register_value=0;
1775 u32 cb_fields_address=0;
1776
1777 IPW_DEBUG_FW(">> :\n");
1778 address = ipw_read_reg32(priv,CX2_DMA_I_CURRENT_CB);
1779 IPW_DEBUG_FW_INFO("Current CB is 0x%x \n",address);
1780
1781 /* Read the DMA Controlor register */
1782 register_value = ipw_read_reg32(priv, CX2_DMA_I_DMA_CONTROL);
1783 IPW_DEBUG_FW_INFO("CX2_DMA_I_DMA_CONTROL is 0x%x \n",register_value);
1784
1785 /* Print the CB values*/
1786 cb_fields_address = address;
1787 register_value = ipw_read_reg32(priv, cb_fields_address);
1788 IPW_DEBUG_FW_INFO("Current CB ControlField is 0x%x \n",register_value);
1789
1790 cb_fields_address += sizeof(u32);
1791 register_value = ipw_read_reg32(priv, cb_fields_address);
1792 IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x \n",register_value);
1793
1794 cb_fields_address += sizeof(u32);
1795 register_value = ipw_read_reg32(priv, cb_fields_address);
1796 IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x \n",
1797 register_value);
1798
1799 cb_fields_address += sizeof(u32);
1800 register_value = ipw_read_reg32(priv, cb_fields_address);
1801 IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x \n",register_value);
1802
1803 IPW_DEBUG_FW(">> :\n");
1804}
1805
1806static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
1807{
1808 u32 current_cb_address = 0;
1809 u32 current_cb_index = 0;
1810
1811 IPW_DEBUG_FW("<< :\n");
1812 current_cb_address= ipw_read_reg32(priv, CX2_DMA_I_CURRENT_CB);
1813
1814 current_cb_index = (current_cb_address - CX2_SHARED_SRAM_DMA_CONTROL )/
1815 sizeof (struct command_block);
1816
1817 IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X \n",
1818 current_cb_index, current_cb_address );
1819
1820 IPW_DEBUG_FW(">> :\n");
1821 return current_cb_index;
1822
1823}
1824
1825static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
1826 u32 src_address,
1827 u32 dest_address,
1828 u32 length,
1829 int interrupt_enabled,
1830 int is_last)
1831{
1832
1833 u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
1834 CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
1835 CB_DEST_SIZE_LONG;
1836 struct command_block *cb;
1837 u32 last_cb_element=0;
1838
1839 IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
1840 src_address, dest_address, length);
1841
1842 if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
1843 return -1;
1844
1845 last_cb_element = priv->sram_desc.last_cb_index;
1846 cb = &priv->sram_desc.cb_list[last_cb_element];
1847 priv->sram_desc.last_cb_index++;
1848
1849 /* Calculate the new CB control word */
1850 if (interrupt_enabled )
1851 control |= CB_INT_ENABLED;
1852
1853 if (is_last)
1854 control |= CB_LAST_VALID;
1855
1856 control |= length;
1857
1858 /* Calculate the CB Element's checksum value */
1859 cb->status = control ^src_address ^dest_address;
1860
1861 /* Copy the Source and Destination addresses */
1862 cb->dest_addr = dest_address;
1863 cb->source_addr = src_address;
1864
1865 /* Copy the Control Word last */
1866 cb->control = control;
1867
1868 return 0;
1869}
1870
1871static int ipw_fw_dma_add_buffer(struct ipw_priv *priv,
1872 u32 src_phys,
1873 u32 dest_address,
1874 u32 length)
1875{
1876 u32 bytes_left = length;
1877 u32 src_offset=0;
1878 u32 dest_offset=0;
1879 int status = 0;
1880 IPW_DEBUG_FW(">> \n");
1881 IPW_DEBUG_FW_INFO("src_phys=0x%x dest_address=0x%x length=0x%x\n",
1882 src_phys, dest_address, length);
1883 while (bytes_left > CB_MAX_LENGTH) {
1884 status = ipw_fw_dma_add_command_block( priv,
1885 src_phys + src_offset,
1886 dest_address + dest_offset,
1887 CB_MAX_LENGTH, 0, 0);
1888 if (status) {
1889 IPW_DEBUG_FW_INFO(": Failed\n");
1890 return -1;
1891 } else
1892 IPW_DEBUG_FW_INFO(": Added new cb\n");
1893
1894 src_offset += CB_MAX_LENGTH;
1895 dest_offset += CB_MAX_LENGTH;
1896 bytes_left -= CB_MAX_LENGTH;
1897 }
1898
1899 /* add the buffer tail */
1900 if (bytes_left > 0) {
1901 status = ipw_fw_dma_add_command_block(
1902 priv, src_phys + src_offset,
1903 dest_address + dest_offset,
1904 bytes_left, 0, 0);
1905 if (status) {
1906 IPW_DEBUG_FW_INFO(": Failed on the buffer tail\n");
1907 return -1;
1908 } else
1909 IPW_DEBUG_FW_INFO(": Adding new cb - the buffer tail\n");
1910 }
1911
1912
1913 IPW_DEBUG_FW("<< \n");
1914 return 0;
1915}
1916
1917static int ipw_fw_dma_wait(struct ipw_priv *priv)
1918{
1919 u32 current_index = 0;
1920 u32 watchdog = 0;
1921
1922 IPW_DEBUG_FW(">> : \n");
1923
1924 current_index = ipw_fw_dma_command_block_index(priv);
1925 IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%8X\n",
1926 (int) priv->sram_desc.last_cb_index);
1927
1928 while (current_index < priv->sram_desc.last_cb_index) {
1929 udelay(50);
1930 current_index = ipw_fw_dma_command_block_index(priv);
1931
1932 watchdog++;
1933
1934 if (watchdog > 400) {
1935 IPW_DEBUG_FW_INFO("Timeout\n");
1936 ipw_fw_dma_dump_command_block(priv);
1937 ipw_fw_dma_abort(priv);
1938 return -1;
1939 }
1940 }
1941
1942 ipw_fw_dma_abort(priv);
1943
1944 /*Disable the DMA in the CSR register*/
1945 ipw_set_bit(priv, CX2_RESET_REG,
1946 CX2_RESET_REG_MASTER_DISABLED | CX2_RESET_REG_STOP_MASTER);
1947
1948 IPW_DEBUG_FW("<< dmaWaitSync \n");
1949 return 0;
1950}
1951
1952static void ipw_remove_current_network(struct ipw_priv *priv)
1953{
1954 struct list_head *element, *safe;
1955 struct ieee80211_network *network = NULL;
1956 list_for_each_safe(element, safe, &priv->ieee->network_list) {
1957 network = list_entry(element, struct ieee80211_network, list);
1958 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
1959 list_del(element);
1960 list_add_tail(&network->list,
1961 &priv->ieee->network_free_list);
1962 }
1963 }
1964}
1965
1966/**
1967 * Check that card is still alive.
1968 * Reads debug register from domain0.
1969 * If card is present, pre-defined value should
1970 * be found there.
1971 *
1972 * @param priv
1973 * @return 1 if card is present, 0 otherwise
1974 */
1975static inline int ipw_alive(struct ipw_priv *priv)
1976{
1977 return ipw_read32(priv, 0x90) == 0xd55555d5;
1978}
1979
1980static inline int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
1981 int timeout)
1982{
1983 int i = 0;
1984
1985 do {
1986 if ((ipw_read32(priv, addr) & mask) == mask)
1987 return i;
1988 mdelay(10);
1989 i += 10;
1990 } while (i < timeout);
1991
1992 return -ETIME;
1993}
1994
1995/* These functions load the firmware and micro code for the operation of
1996 * the ipw hardware. It assumes the buffer has all the bits for the
1997 * image and the caller is handling the memory allocation and clean up.
1998 */
1999
2000
2001static int ipw_stop_master(struct ipw_priv * priv)
2002{
2003 int rc;
2004
2005 IPW_DEBUG_TRACE(">> \n");
2006 /* stop master. typical delay - 0 */
2007 ipw_set_bit(priv, CX2_RESET_REG, CX2_RESET_REG_STOP_MASTER);
2008
2009 rc = ipw_poll_bit(priv, CX2_RESET_REG,
2010 CX2_RESET_REG_MASTER_DISABLED, 100);
2011 if (rc < 0) {
2012 IPW_ERROR("stop master failed in 10ms\n");
2013 return -1;
2014 }
2015
2016 IPW_DEBUG_INFO("stop master %dms\n", rc);
2017
2018 return rc;
2019}
2020
2021static void ipw_arc_release(struct ipw_priv *priv)
2022{
2023 IPW_DEBUG_TRACE(">> \n");
2024 mdelay(5);
2025
2026 ipw_clear_bit(priv, CX2_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
2027
2028 /* no one knows timing, for safety add some delay */
2029 mdelay(5);
2030}
2031
2032struct fw_header {
2033 u32 version;
2034 u32 mode;
2035};
2036
2037struct fw_chunk {
2038 u32 address;
2039 u32 length;
2040};
2041
2042#define IPW_FW_MAJOR_VERSION 2
2043#define IPW_FW_MINOR_VERSION 2
2044
2045#define IPW_FW_MINOR(x) ((x & 0xff) >> 8)
2046#define IPW_FW_MAJOR(x) (x & 0xff)
2047
2048#define IPW_FW_VERSION ((IPW_FW_MINOR_VERSION << 8) | \
2049 IPW_FW_MAJOR_VERSION)
2050
2051#define IPW_FW_PREFIX "ipw-" __stringify(IPW_FW_MAJOR_VERSION) \
2052"." __stringify(IPW_FW_MINOR_VERSION) "-"
2053
2054#if IPW_FW_MAJOR_VERSION >= 2 && IPW_FW_MINOR_VERSION > 0
2055#define IPW_FW_NAME(x) IPW_FW_PREFIX "" x ".fw"
2056#else
2057#define IPW_FW_NAME(x) "ipw2200_" x ".fw"
2058#endif
2059
2060static int ipw_load_ucode(struct ipw_priv *priv, u8 * data,
2061 size_t len)
2062{
2063 int rc = 0, i, addr;
2064 u8 cr = 0;
2065 u16 *image;
2066
2067 image = (u16 *)data;
2068
2069 IPW_DEBUG_TRACE(">> \n");
2070
2071 rc = ipw_stop_master(priv);
2072
2073 if (rc < 0)
2074 return rc;
2075
2076// spin_lock_irqsave(&priv->lock, flags);
2077
2078 for (addr = CX2_SHARED_LOWER_BOUND;
2079 addr < CX2_REGISTER_DOMAIN1_END; addr += 4) {
2080 ipw_write32(priv, addr, 0);
2081 }
2082
2083 /* no ucode (yet) */
2084 memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
2085 /* destroy DMA queues */
2086 /* reset sequence */
2087
2088 ipw_write_reg32(priv, CX2_MEM_HALT_AND_RESET ,CX2_BIT_HALT_RESET_ON);
2089 ipw_arc_release(priv);
2090 ipw_write_reg32(priv, CX2_MEM_HALT_AND_RESET, CX2_BIT_HALT_RESET_OFF);
2091 mdelay(1);
2092
2093 /* reset PHY */
2094 ipw_write_reg32(priv, CX2_INTERNAL_CMD_EVENT, CX2_BASEBAND_POWER_DOWN);
2095 mdelay(1);
2096
2097 ipw_write_reg32(priv, CX2_INTERNAL_CMD_EVENT, 0);
2098 mdelay(1);
2099
2100 /* enable ucode store */
2101 ipw_write_reg8(priv, DINO_CONTROL_REG, 0x0);
2102 ipw_write_reg8(priv, DINO_CONTROL_REG, DINO_ENABLE_CS);
2103 mdelay(1);
2104
2105 /* write ucode */
2106 /**
2107 * @bug
2108 * Do NOT set indirect address register once and then
2109 * store data to indirect data register in the loop.
2110 * It seems very reasonable, but in this case DINO do not
2111 * accept ucode. It is essential to set address each time.
2112 */
2113 /* load new ipw uCode */
2114 for (i = 0; i < len / 2; i++)
2115 ipw_write_reg16(priv, CX2_BASEBAND_CONTROL_STORE, image[i]);
2116
2117
2118 /* enable DINO */
2119 ipw_write_reg8(priv, CX2_BASEBAND_CONTROL_STATUS, 0);
2120 ipw_write_reg8(priv, CX2_BASEBAND_CONTROL_STATUS,
2121 DINO_ENABLE_SYSTEM );
2122
2123 /* this is where the igx / win driver deveates from the VAP driver.*/
2124
2125 /* wait for alive response */
2126 for (i = 0; i < 100; i++) {
2127 /* poll for incoming data */
2128 cr = ipw_read_reg8(priv, CX2_BASEBAND_CONTROL_STATUS);
2129 if (cr & DINO_RXFIFO_DATA)
2130 break;
2131 mdelay(1);
2132 }
2133
2134 if (cr & DINO_RXFIFO_DATA) {
2135 /* alive_command_responce size is NOT multiple of 4 */
2136 u32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
2137
2138 for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
2139 response_buffer[i] =
2140 ipw_read_reg32(priv,
2141 CX2_BASEBAND_RX_FIFO_READ);
2142 memcpy(&priv->dino_alive, response_buffer,
2143 sizeof(priv->dino_alive));
2144 if (priv->dino_alive.alive_command == 1
2145 && priv->dino_alive.ucode_valid == 1) {
2146 rc = 0;
2147 IPW_DEBUG_INFO(
2148 "Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
2149 "of %02d/%02d/%02d %02d:%02d\n",
2150 priv->dino_alive.software_revision,
2151 priv->dino_alive.software_revision,
2152 priv->dino_alive.device_identifier,
2153 priv->dino_alive.device_identifier,
2154 priv->dino_alive.time_stamp[0],
2155 priv->dino_alive.time_stamp[1],
2156 priv->dino_alive.time_stamp[2],
2157 priv->dino_alive.time_stamp[3],
2158 priv->dino_alive.time_stamp[4]);
2159 } else {
2160 IPW_DEBUG_INFO("Microcode is not alive\n");
2161 rc = -EINVAL;
2162 }
2163 } else {
2164 IPW_DEBUG_INFO("No alive response from DINO\n");
2165 rc = -ETIME;
2166 }
2167
2168 /* disable DINO, otherwise for some reason
2169 firmware have problem getting alive resp. */
2170 ipw_write_reg8(priv, CX2_BASEBAND_CONTROL_STATUS, 0);
2171
2172// spin_unlock_irqrestore(&priv->lock, flags);
2173
2174 return rc;
2175}
2176
2177static int ipw_load_firmware(struct ipw_priv *priv, u8 * data,
2178 size_t len)
2179{
2180 int rc = -1;
2181 int offset = 0;
2182 struct fw_chunk *chunk;
2183 dma_addr_t shared_phys;
2184 u8 *shared_virt;
2185
2186 IPW_DEBUG_TRACE("<< : \n");
2187 shared_virt = pci_alloc_consistent(priv->pci_dev, len, &shared_phys);
2188
2189 if (!shared_virt)
2190 return -ENOMEM;
2191
2192 memmove(shared_virt, data, len);
2193
2194 /* Start the Dma */
2195 rc = ipw_fw_dma_enable(priv);
2196
2197 if (priv->sram_desc.last_cb_index > 0) {
2198 /* the DMA is already ready this would be a bug. */
2199 BUG();
2200 goto out;
2201 }
2202
2203 do {
2204 chunk = (struct fw_chunk *)(data + offset);
2205 offset += sizeof(struct fw_chunk);
2206 /* build DMA packet and queue up for sending */
2207 /* dma to chunk->address, the chunk->length bytes from data +
2208 * offeset*/
2209 /* Dma loading */
2210 rc = ipw_fw_dma_add_buffer(priv, shared_phys + offset,
2211 chunk->address, chunk->length);
2212 if (rc) {
2213 IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
2214 goto out;
2215 }
2216
2217 offset += chunk->length;
2218 } while (offset < len);
2219
2220 /* Run the DMA and wait for the answer*/
2221 rc = ipw_fw_dma_kick(priv);
2222 if (rc) {
2223 IPW_ERROR("dmaKick Failed\n");
2224 goto out;
2225 }
2226
2227 rc = ipw_fw_dma_wait(priv);
2228 if (rc) {
2229 IPW_ERROR("dmaWaitSync Failed\n");
2230 goto out;
2231 }
2232 out:
2233 pci_free_consistent( priv->pci_dev, len, shared_virt, shared_phys);
2234 return rc;
2235}
2236
2237/* stop nic */
2238static int ipw_stop_nic(struct ipw_priv *priv)
2239{
2240 int rc = 0;
2241
2242 /* stop*/
2243 ipw_write32(priv, CX2_RESET_REG, CX2_RESET_REG_STOP_MASTER);
2244
2245 rc = ipw_poll_bit(priv, CX2_RESET_REG,
2246 CX2_RESET_REG_MASTER_DISABLED, 500);
2247 if (rc < 0) {
2248 IPW_ERROR("wait for reg master disabled failed\n");
2249 return rc;
2250 }
2251
2252 ipw_set_bit(priv, CX2_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
2253
2254 return rc;
2255}
2256
2257static void ipw_start_nic(struct ipw_priv *priv)
2258{
2259 IPW_DEBUG_TRACE(">>\n");
2260
2261 /* prvHwStartNic release ARC*/
2262 ipw_clear_bit(priv, CX2_RESET_REG,
2263 CX2_RESET_REG_MASTER_DISABLED |
2264 CX2_RESET_REG_STOP_MASTER |
2265 CBD_RESET_REG_PRINCETON_RESET);
2266
2267 /* enable power management */
2268 ipw_set_bit(priv, CX2_GP_CNTRL_RW, CX2_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
2269
2270 IPW_DEBUG_TRACE("<<\n");
2271}
2272
2273static int ipw_init_nic(struct ipw_priv *priv)
2274{
2275 int rc;
2276
2277 IPW_DEBUG_TRACE(">>\n");
2278 /* reset */
2279 /*prvHwInitNic */
2280 /* set "initialization complete" bit to move adapter to D0 state */
2281 ipw_set_bit(priv, CX2_GP_CNTRL_RW, CX2_GP_CNTRL_BIT_INIT_DONE);
2282
2283 /* low-level PLL activation */
2284 ipw_write32(priv, CX2_READ_INT_REGISTER, CX2_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
2285
2286 /* wait for clock stabilization */
2287 rc = ipw_poll_bit(priv, CX2_GP_CNTRL_RW,
2288 CX2_GP_CNTRL_BIT_CLOCK_READY, 250);
2289 if (rc < 0 )
2290 IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
2291
2292 /* assert SW reset */
2293 ipw_set_bit(priv, CX2_RESET_REG, CX2_RESET_REG_SW_RESET);
2294
2295 udelay(10);
2296
2297 /* set "initialization complete" bit to move adapter to D0 state */
2298 ipw_set_bit(priv, CX2_GP_CNTRL_RW, CX2_GP_CNTRL_BIT_INIT_DONE);
2299
2300 IPW_DEBUG_TRACE(">>\n");
2301 return 0;
2302}
2303
2304
2305/* Call this function from process context, it will sleep in request_firmware.
2306 * Probe is an ok place to call this from.
2307 */
2308static int ipw_reset_nic(struct ipw_priv *priv)
2309{
2310 int rc = 0;
2311
2312 IPW_DEBUG_TRACE(">>\n");
2313
2314 rc = ipw_init_nic(priv);
2315
2316 /* Clear the 'host command active' bit... */
2317 priv->status &= ~STATUS_HCMD_ACTIVE;
2318 wake_up_interruptible(&priv->wait_command_queue);
2319
2320 IPW_DEBUG_TRACE("<<\n");
2321 return rc;
2322}
2323
2324static int ipw_get_fw(struct ipw_priv *priv,
2325 const struct firmware **fw, const char *name)
2326{
2327 struct fw_header *header;
2328 int rc;
2329
2330 /* ask firmware_class module to get the boot firmware off disk */
2331 rc = request_firmware(fw, name, &priv->pci_dev->dev);
2332 if (rc < 0) {
2333 IPW_ERROR("%s load failed: Reason %d\n", name, rc);
2334 return rc;
2335 }
2336
2337 header = (struct fw_header *)(*fw)->data;
2338 if (IPW_FW_MAJOR(header->version) != IPW_FW_MAJOR_VERSION) {
2339 IPW_ERROR("'%s' firmware version not compatible (%d != %d)\n",
2340 name,
2341 IPW_FW_MAJOR(header->version), IPW_FW_MAJOR_VERSION);
2342 return -EINVAL;
2343 }
2344
2345 IPW_DEBUG_INFO("Loading firmware '%s' file v%d.%d (%d bytes)\n",
2346 name,
2347 IPW_FW_MAJOR(header->version),
2348 IPW_FW_MINOR(header->version),
2349 (*fw)->size - sizeof(struct fw_header));
2350 return 0;
2351}
2352
2353#define CX2_RX_BUF_SIZE (3000)
2354
2355static inline void ipw_rx_queue_reset(struct ipw_priv *priv,
2356 struct ipw_rx_queue *rxq)
2357{
2358 unsigned long flags;
2359 int i;
2360
2361 spin_lock_irqsave(&rxq->lock, flags);
2362
2363 INIT_LIST_HEAD(&rxq->rx_free);
2364 INIT_LIST_HEAD(&rxq->rx_used);
2365
2366 /* Fill the rx_used queue with _all_ of the Rx buffers */
2367 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
2368 /* In the reset function, these buffers may have been allocated
2369 * to an SKB, so we need to unmap and free potential storage */
2370 if (rxq->pool[i].skb != NULL) {
2371 pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
2372 CX2_RX_BUF_SIZE,
2373 PCI_DMA_FROMDEVICE);
2374 dev_kfree_skb(rxq->pool[i].skb);
2375 }
2376 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
2377 }
2378
2379 /* Set us so that we have processed and used all buffers, but have
2380 * not restocked the Rx queue with fresh buffers */
2381 rxq->read = rxq->write = 0;
2382 rxq->processed = RX_QUEUE_SIZE - 1;
2383 rxq->free_count = 0;
2384 spin_unlock_irqrestore(&rxq->lock, flags);
2385}
2386
2387#ifdef CONFIG_PM
2388static int fw_loaded = 0;
2389static const struct firmware *bootfw = NULL;
2390static const struct firmware *firmware = NULL;
2391static const struct firmware *ucode = NULL;
2392#endif
2393
2394static int ipw_load(struct ipw_priv *priv)
2395{
2396#ifndef CONFIG_PM
2397 const struct firmware *bootfw = NULL;
2398 const struct firmware *firmware = NULL;
2399 const struct firmware *ucode = NULL;
2400#endif
2401 int rc = 0, retries = 3;
2402
2403#ifdef CONFIG_PM
2404 if (!fw_loaded) {
2405#endif
2406 rc = ipw_get_fw(priv, &bootfw, IPW_FW_NAME("boot"));
2407 if (rc)
2408 goto error;
2409
2410 switch (priv->ieee->iw_mode) {
2411 case IW_MODE_ADHOC:
2412 rc = ipw_get_fw(priv, &ucode,
2413 IPW_FW_NAME("ibss_ucode"));
2414 if (rc)
2415 goto error;
2416
2417 rc = ipw_get_fw(priv, &firmware, IPW_FW_NAME("ibss"));
2418 break;
2419
2420#ifdef CONFIG_IPW_PROMISC
2421 case IW_MODE_MONITOR:
2422 rc = ipw_get_fw(priv, &ucode,
2423 IPW_FW_NAME("ibss_ucode"));
2424 if (rc)
2425 goto error;
2426
2427 rc = ipw_get_fw(priv, &firmware, IPW_FW_NAME("sniffer"));
2428 break;
2429#endif
2430 case IW_MODE_INFRA:
2431 rc = ipw_get_fw(priv, &ucode,
2432 IPW_FW_NAME("bss_ucode"));
2433 if (rc)
2434 goto error;
2435
2436 rc = ipw_get_fw(priv, &firmware, IPW_FW_NAME("bss"));
2437 break;
2438
2439 default:
2440 rc = -EINVAL;
2441 }
2442
2443 if (rc)
2444 goto error;
2445
2446#ifdef CONFIG_PM
2447 fw_loaded = 1;
2448 }
2449#endif
2450
2451 if (!priv->rxq)
2452 priv->rxq = ipw_rx_queue_alloc(priv);
2453 else
2454 ipw_rx_queue_reset(priv, priv->rxq);
2455 if (!priv->rxq) {
2456 IPW_ERROR("Unable to initialize Rx queue\n");
2457 goto error;
2458 }
2459
2460 retry:
2461 /* Ensure interrupts are disabled */
2462 ipw_write32(priv, CX2_INTA_MASK_R, ~CX2_INTA_MASK_ALL);
2463 priv->status &= ~STATUS_INT_ENABLED;
2464
2465 /* ack pending interrupts */
2466 ipw_write32(priv, CX2_INTA_RW, CX2_INTA_MASK_ALL);
2467
2468 ipw_stop_nic(priv);
2469
2470 rc = ipw_reset_nic(priv);
2471 if (rc) {
2472 IPW_ERROR("Unable to reset NIC\n");
2473 goto error;
2474 }
2475
2476 ipw_zero_memory(priv, CX2_NIC_SRAM_LOWER_BOUND,
2477 CX2_NIC_SRAM_UPPER_BOUND - CX2_NIC_SRAM_LOWER_BOUND);
2478
2479 /* DMA the initial boot firmware into the device */
2480 rc = ipw_load_firmware(priv, bootfw->data + sizeof(struct fw_header),
2481 bootfw->size - sizeof(struct fw_header));
2482 if (rc < 0) {
2483 IPW_ERROR("Unable to load boot firmware\n");
2484 goto error;
2485 }
2486
2487 /* kick start the device */
2488 ipw_start_nic(priv);
2489
2490 /* wait for the device to finish it's initial startup sequence */
2491 rc = ipw_poll_bit(priv, CX2_INTA_RW,
2492 CX2_INTA_BIT_FW_INITIALIZATION_DONE, 500);
2493 if (rc < 0) {
2494 IPW_ERROR("device failed to boot initial fw image\n");
2495 goto error;
2496 }
2497 IPW_DEBUG_INFO("initial device response after %dms\n", rc);
2498
2499 /* ack fw init done interrupt */
2500 ipw_write32(priv, CX2_INTA_RW, CX2_INTA_BIT_FW_INITIALIZATION_DONE);
2501
2502 /* DMA the ucode into the device */
2503 rc = ipw_load_ucode(priv, ucode->data + sizeof(struct fw_header),
2504 ucode->size - sizeof(struct fw_header));
2505 if (rc < 0) {
2506 IPW_ERROR("Unable to load ucode\n");
2507 goto error;
2508 }
2509
2510 /* stop nic */
2511 ipw_stop_nic(priv);
2512
2513 /* DMA bss firmware into the device */
2514 rc = ipw_load_firmware(priv, firmware->data +
2515 sizeof(struct fw_header),
2516 firmware->size - sizeof(struct fw_header));
2517 if (rc < 0 ) {
2518 IPW_ERROR("Unable to load firmware\n");
2519 goto error;
2520 }
2521
2522 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2523
2524 rc = ipw_queue_reset(priv);
2525 if (rc) {
2526 IPW_ERROR("Unable to initialize queues\n");
2527 goto error;
2528 }
2529
2530 /* Ensure interrupts are disabled */
2531 ipw_write32(priv, CX2_INTA_MASK_R, ~CX2_INTA_MASK_ALL);
2532
2533 /* kick start the device */
2534 ipw_start_nic(priv);
2535
2536 if (ipw_read32(priv, CX2_INTA_RW) & CX2_INTA_BIT_PARITY_ERROR) {
2537 if (retries > 0) {
2538 IPW_WARNING("Parity error. Retrying init.\n");
2539 retries--;
2540 goto retry;
2541 }
2542
2543 IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
2544 rc = -EIO;
2545 goto error;
2546 }
2547
2548 /* wait for the device */
2549 rc = ipw_poll_bit(priv, CX2_INTA_RW,
2550 CX2_INTA_BIT_FW_INITIALIZATION_DONE, 500);
2551 if (rc < 0) {
2552 IPW_ERROR("device failed to start after 500ms\n");
2553 goto error;
2554 }
2555 IPW_DEBUG_INFO("device response after %dms\n", rc);
2556
2557 /* ack fw init done interrupt */
2558 ipw_write32(priv, CX2_INTA_RW, CX2_INTA_BIT_FW_INITIALIZATION_DONE);
2559
2560 /* read eeprom data and initialize the eeprom region of sram */
2561 priv->eeprom_delay = 1;
2562 ipw_eeprom_init_sram(priv);
2563
2564 /* enable interrupts */
2565 ipw_enable_interrupts(priv);
2566
2567 /* Ensure our queue has valid packets */
2568 ipw_rx_queue_replenish(priv);
2569
2570 ipw_write32(priv, CX2_RX_READ_INDEX, priv->rxq->read);
2571
2572 /* ack pending interrupts */
2573 ipw_write32(priv, CX2_INTA_RW, CX2_INTA_MASK_ALL);
2574
2575#ifndef CONFIG_PM
2576 release_firmware(bootfw);
2577 release_firmware(ucode);
2578 release_firmware(firmware);
2579#endif
2580 return 0;
2581
2582 error:
2583 if (priv->rxq) {
2584 ipw_rx_queue_free(priv, priv->rxq);
2585 priv->rxq = NULL;
2586 }
2587 ipw_tx_queue_free(priv);
2588 if (bootfw)
2589 release_firmware(bootfw);
2590 if (ucode)
2591 release_firmware(ucode);
2592 if (firmware)
2593 release_firmware(firmware);
2594#ifdef CONFIG_PM
2595 fw_loaded = 0;
2596 bootfw = ucode = firmware = NULL;
2597#endif
2598
2599 return rc;
2600}
2601
2602/**
2603 * DMA services
2604 *
2605 * Theory of operation
2606 *
2607 * A queue is a circular buffers with 'Read' and 'Write' pointers.
2608 * 2 empty entries always kept in the buffer to protect from overflow.
2609 *
2610 * For Tx queue, there are low mark and high mark limits. If, after queuing
2611 * the packet for Tx, free space become < low mark, Tx queue stopped. When
2612 * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
2613 * Tx queue resumed.
2614 *
2615 * The IPW operates with six queues, one receive queue in the device's
2616 * sram, one transmit queue for sending commands to the device firmware,
2617 * and four transmit queues for data.
2618 *
2619 * The four transmit queues allow for performing quality of service (qos)
2620 * transmissions as per the 802.11 protocol. Currently Linux does not
2621 * provide a mechanism to the user for utilizing prioritized queues, so
2622 * we only utilize the first data transmit queue (queue1).
2623 */
2624
2625/**
2626 * Driver allocates buffers of this size for Rx
2627 */
2628
2629static inline int ipw_queue_space(const struct clx2_queue *q)
2630{
2631 int s = q->last_used - q->first_empty;
2632 if (s <= 0)
2633 s += q->n_bd;
2634 s -= 2; /* keep some reserve to not confuse empty and full situations */
2635 if (s < 0)
2636 s = 0;
2637 return s;
2638}
2639
2640static inline int ipw_queue_inc_wrap(int index, int n_bd)
2641{
2642 return (++index == n_bd) ? 0 : index;
2643}
2644
2645/**
2646 * Initialize common DMA queue structure
2647 *
2648 * @param q queue to init
2649 * @param count Number of BD's to allocate. Should be power of 2
2650 * @param read_register Address for 'read' register
2651 * (not offset within BAR, full address)
2652 * @param write_register Address for 'write' register
2653 * (not offset within BAR, full address)
2654 * @param base_register Address for 'base' register
2655 * (not offset within BAR, full address)
2656 * @param size Address for 'size' register
2657 * (not offset within BAR, full address)
2658 */
2659static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
2660 int count, u32 read, u32 write,
2661 u32 base, u32 size)
2662{
2663 q->n_bd = count;
2664
2665 q->low_mark = q->n_bd / 4;
2666 if (q->low_mark < 4)
2667 q->low_mark = 4;
2668
2669 q->high_mark = q->n_bd / 8;
2670 if (q->high_mark < 2)
2671 q->high_mark = 2;
2672
2673 q->first_empty = q->last_used = 0;
2674 q->reg_r = read;
2675 q->reg_w = write;
2676
2677 ipw_write32(priv, base, q->dma_addr);
2678 ipw_write32(priv, size, count);
2679 ipw_write32(priv, read, 0);
2680 ipw_write32(priv, write, 0);
2681
2682 _ipw_read32(priv, 0x90);
2683}
2684
2685static int ipw_queue_tx_init(struct ipw_priv *priv,
2686 struct clx2_tx_queue *q,
2687 int count, u32 read, u32 write,
2688 u32 base, u32 size)
2689{
2690 struct pci_dev *dev = priv->pci_dev;
2691
2692 q->txb = kmalloc(sizeof(q->txb[0]) * count, GFP_KERNEL);
2693 if (!q->txb) {
2694 IPW_ERROR("vmalloc for auxilary BD structures failed\n");
2695 return -ENOMEM;
2696 }
2697
2698 q->bd = pci_alloc_consistent(dev,sizeof(q->bd[0])*count, &q->q.dma_addr);
2699 if (!q->bd) {
2700 IPW_ERROR("pci_alloc_consistent(%d) failed\n",
2701 sizeof(q->bd[0]) * count);
2702 kfree(q->txb);
2703 q->txb = NULL;
2704 return -ENOMEM;
2705 }
2706
2707 ipw_queue_init(priv, &q->q, count, read, write, base, size);
2708 return 0;
2709}
2710
2711/**
2712 * Free one TFD, those at index [txq->q.last_used].
2713 * Do NOT advance any indexes
2714 *
2715 * @param dev
2716 * @param txq
2717 */
2718static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
2719 struct clx2_tx_queue *txq)
2720{
2721 struct tfd_frame *bd = &txq->bd[txq->q.last_used];
2722 struct pci_dev *dev = priv->pci_dev;
2723 int i;
2724
2725 /* classify bd */
2726 if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
2727 /* nothing to cleanup after for host commands */
2728 return;
2729
2730 /* sanity check */
2731 if (bd->u.data.num_chunks > NUM_TFD_CHUNKS) {
2732 IPW_ERROR("Too many chunks: %i\n", bd->u.data.num_chunks);
2733 /** @todo issue fatal error, it is quite serious situation */
2734 return;
2735 }
2736
2737 /* unmap chunks if any */
2738 for (i = 0; i < bd->u.data.num_chunks; i++) {
2739 pci_unmap_single(dev, bd->u.data.chunk_ptr[i],
2740 bd->u.data.chunk_len[i], PCI_DMA_TODEVICE);
2741 if (txq->txb[txq->q.last_used]) {
2742 ieee80211_txb_free(txq->txb[txq->q.last_used]);
2743 txq->txb[txq->q.last_used] = NULL;
2744 }
2745 }
2746}
2747
2748/**
2749 * Deallocate DMA queue.
2750 *
2751 * Empty queue by removing and destroying all BD's.
2752 * Free all buffers.
2753 *
2754 * @param dev
2755 * @param q
2756 */
2757static void ipw_queue_tx_free(struct ipw_priv *priv,
2758 struct clx2_tx_queue *txq)
2759{
2760 struct clx2_queue *q = &txq->q;
2761 struct pci_dev *dev = priv->pci_dev;
2762
2763 if (q->n_bd == 0)
2764 return;
2765
2766 /* first, empty all BD's */
2767 for (; q->first_empty != q->last_used;
2768 q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
2769 ipw_queue_tx_free_tfd(priv, txq);
2770 }
2771
2772 /* free buffers belonging to queue itself */
2773 pci_free_consistent(dev, sizeof(txq->bd[0])*q->n_bd, txq->bd,
2774 q->dma_addr);
2775 kfree(txq->txb);
2776
2777 /* 0 fill whole structure */
2778 memset(txq, 0, sizeof(*txq));
2779}
2780
2781
2782/**
2783 * Destroy all DMA queues and structures
2784 *
2785 * @param priv
2786 */
2787static void ipw_tx_queue_free(struct ipw_priv *priv)
2788{
2789 /* Tx CMD queue */
2790 ipw_queue_tx_free(priv, &priv->txq_cmd);
2791
2792 /* Tx queues */
2793 ipw_queue_tx_free(priv, &priv->txq[0]);
2794 ipw_queue_tx_free(priv, &priv->txq[1]);
2795 ipw_queue_tx_free(priv, &priv->txq[2]);
2796 ipw_queue_tx_free(priv, &priv->txq[3]);
2797}
2798
2799static void inline __maybe_wake_tx(struct ipw_priv *priv)
2800{
2801 if (netif_running(priv->net_dev)) {
2802 switch (priv->port_type) {
2803 case DCR_TYPE_MU_BSS:
2804 case DCR_TYPE_MU_IBSS:
2805 if (!(priv->status & STATUS_ASSOCIATED)) {
2806 return;
2807 }
2808 }
2809 netif_wake_queue(priv->net_dev);
2810 }
2811
2812}
2813
2814static inline void ipw_create_bssid(struct ipw_priv *priv, u8 *bssid)
2815{
2816 /* First 3 bytes are manufacturer */
2817 bssid[0] = priv->mac_addr[0];
2818 bssid[1] = priv->mac_addr[1];
2819 bssid[2] = priv->mac_addr[2];
2820
2821 /* Last bytes are random */
2822 get_random_bytes(&bssid[3], ETH_ALEN-3);
2823
2824 bssid[0] &= 0xfe; /* clear multicast bit */
2825 bssid[0] |= 0x02; /* set local assignment bit (IEEE802) */
2826}
2827
2828static inline u8 ipw_add_station(struct ipw_priv *priv, u8 *bssid)
2829{
2830 struct ipw_station_entry entry;
2831 int i;
2832
2833 for (i = 0; i < priv->num_stations; i++) {
2834 if (!memcmp(priv->stations[i], bssid, ETH_ALEN)) {
2835 /* Another node is active in network */
2836 priv->missed_adhoc_beacons = 0;
2837 if (!(priv->config & CFG_STATIC_CHANNEL))
2838 /* when other nodes drop out, we drop out */
2839 priv->config &= ~CFG_ADHOC_PERSIST;
2840
2841 return i;
2842 }
2843 }
2844
2845 if (i == MAX_STATIONS)
2846 return IPW_INVALID_STATION;
2847
2848 IPW_DEBUG_SCAN("Adding AdHoc station: " MAC_FMT "\n", MAC_ARG(bssid));
2849
2850 entry.reserved = 0;
2851 entry.support_mode = 0;
2852 memcpy(entry.mac_addr, bssid, ETH_ALEN);
2853 memcpy(priv->stations[i], bssid, ETH_ALEN);
2854 ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
2855 &entry,
2856 sizeof(entry));
2857 priv->num_stations++;
2858
2859 return i;
2860}
2861
2862static inline u8 ipw_find_station(struct ipw_priv *priv, u8 *bssid)
2863{
2864 int i;
2865
2866 for (i = 0; i < priv->num_stations; i++)
2867 if (!memcmp(priv->stations[i], bssid, ETH_ALEN))
2868 return i;
2869
2870 return IPW_INVALID_STATION;
2871}
2872
2873static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
2874{
2875 int err;
2876
2877 if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED))) {
2878 IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
2879 return;
2880 }
2881
2882 IPW_DEBUG_ASSOC("Disassocation attempt from " MAC_FMT " "
2883 "on channel %d.\n",
2884 MAC_ARG(priv->assoc_request.bssid),
2885 priv->assoc_request.channel);
2886
2887 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
2888 priv->status |= STATUS_DISASSOCIATING;
2889
2890 if (quiet)
2891 priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
2892 else
2893 priv->assoc_request.assoc_type = HC_DISASSOCIATE;
2894 err = ipw_send_associate(priv, &priv->assoc_request);
2895 if (err) {
2896 IPW_DEBUG_HC("Attempt to send [dis]associate command "
2897 "failed.\n");
2898 return;
2899 }
2900
2901}
2902
2903static void ipw_disassociate(void *data)
2904{
2905 ipw_send_disassociate(data, 0);
2906}
2907
2908static void notify_wx_assoc_event(struct ipw_priv *priv)
2909{
2910 union iwreq_data wrqu;
2911 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
2912 if (priv->status & STATUS_ASSOCIATED)
2913 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
2914 else
2915 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
2916 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
2917}
2918
2919struct ipw_status_code {
2920 u16 status;
2921 const char *reason;
2922};
2923
2924static const struct ipw_status_code ipw_status_codes[] = {
2925 {0x00, "Successful"},
2926 {0x01, "Unspecified failure"},
2927 {0x0A, "Cannot support all requested capabilities in the "
2928 "Capability information field"},
2929 {0x0B, "Reassociation denied due to inability to confirm that "
2930 "association exists"},
2931 {0x0C, "Association denied due to reason outside the scope of this "
2932 "standard"},
2933 {0x0D, "Responding station does not support the specified authentication "
2934 "algorithm"},
2935 {0x0E, "Received an Authentication frame with authentication sequence "
2936 "transaction sequence number out of expected sequence"},
2937 {0x0F, "Authentication rejected because of challenge failure"},
2938 {0x10, "Authentication rejected due to timeout waiting for next "
2939 "frame in sequence"},
2940 {0x11, "Association denied because AP is unable to handle additional "
2941 "associated stations"},
2942 {0x12, "Association denied due to requesting station not supporting all "
2943 "of the datarates in the BSSBasicServiceSet Parameter"},
2944 {0x13, "Association denied due to requesting station not supporting "
2945 "short preamble operation"},
2946 {0x14, "Association denied due to requesting station not supporting "
2947 "PBCC encoding"},
2948 {0x15, "Association denied due to requesting station not supporting "
2949 "channel agility"},
2950 {0x19, "Association denied due to requesting station not supporting "
2951 "short slot operation"},
2952 {0x1A, "Association denied due to requesting station not supporting "
2953 "DSSS-OFDM operation"},
2954 {0x28, "Invalid Information Element"},
2955 {0x29, "Group Cipher is not valid"},
2956 {0x2A, "Pairwise Cipher is not valid"},
2957 {0x2B, "AKMP is not valid"},
2958 {0x2C, "Unsupported RSN IE version"},
2959 {0x2D, "Invalid RSN IE Capabilities"},
2960 {0x2E, "Cipher suite is rejected per security policy"},
2961};
2962
2963#ifdef CONFIG_IPW_DEBUG
2964static const char *ipw_get_status_code(u16 status)
2965{
2966 int i;
2967 for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
2968 if (ipw_status_codes[i].status == status)
2969 return ipw_status_codes[i].reason;
2970 return "Unknown status value.";
2971}
2972#endif
2973
2974static void inline average_init(struct average *avg)
2975{
2976 memset(avg, 0, sizeof(*avg));
2977}
2978
2979static void inline average_add(struct average *avg, s16 val)
2980{
2981 avg->sum -= avg->entries[avg->pos];
2982 avg->sum += val;
2983 avg->entries[avg->pos++] = val;
2984 if (unlikely(avg->pos == AVG_ENTRIES)) {
2985 avg->init = 1;
2986 avg->pos = 0;
2987 }
2988}
2989
2990static s16 inline average_value(struct average *avg)
2991{
2992 if (!unlikely(avg->init)) {
2993 if (avg->pos)
2994 return avg->sum / avg->pos;
2995 return 0;
2996 }
2997
2998 return avg->sum / AVG_ENTRIES;
2999}
3000
3001static void ipw_reset_stats(struct ipw_priv *priv)
3002{
3003 u32 len = sizeof(u32);
3004
3005 priv->quality = 0;
3006
3007 average_init(&priv->average_missed_beacons);
3008 average_init(&priv->average_rssi);
3009 average_init(&priv->average_noise);
3010
3011 priv->last_rate = 0;
3012 priv->last_missed_beacons = 0;
3013 priv->last_rx_packets = 0;
3014 priv->last_tx_packets = 0;
3015 priv->last_tx_failures = 0;
3016
3017 /* Firmware managed, reset only when NIC is restarted, so we have to
3018 * normalize on the current value */
3019 ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
3020 &priv->last_rx_err, &len);
3021 ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
3022 &priv->last_tx_failures, &len);
3023
3024 /* Driver managed, reset with each association */
3025 priv->missed_adhoc_beacons = 0;
3026 priv->missed_beacons = 0;
3027 priv->tx_packets = 0;
3028 priv->rx_packets = 0;
3029
3030}
3031
3032
3033static inline u32 ipw_get_max_rate(struct ipw_priv *priv)
3034{
3035 u32 i = 0x80000000;
3036 u32 mask = priv->rates_mask;
3037 /* If currently associated in B mode, restrict the maximum
3038 * rate match to B rates */
3039 if (priv->assoc_request.ieee_mode == IPW_B_MODE)
3040 mask &= IEEE80211_CCK_RATES_MASK;
3041
3042 /* TODO: Verify that the rate is supported by the current rates
3043 * list. */
3044
3045 while (i && !(mask & i)) i >>= 1;
3046 switch (i) {
3047 case IEEE80211_CCK_RATE_1MB_MASK: return 1000000;
3048 case IEEE80211_CCK_RATE_2MB_MASK: return 2000000;
3049 case IEEE80211_CCK_RATE_5MB_MASK: return 5500000;
3050 case IEEE80211_OFDM_RATE_6MB_MASK: return 6000000;
3051 case IEEE80211_OFDM_RATE_9MB_MASK: return 9000000;
3052 case IEEE80211_CCK_RATE_11MB_MASK: return 11000000;
3053 case IEEE80211_OFDM_RATE_12MB_MASK: return 12000000;
3054 case IEEE80211_OFDM_RATE_18MB_MASK: return 18000000;
3055 case IEEE80211_OFDM_RATE_24MB_MASK: return 24000000;
3056 case IEEE80211_OFDM_RATE_36MB_MASK: return 36000000;
3057 case IEEE80211_OFDM_RATE_48MB_MASK: return 48000000;
3058 case IEEE80211_OFDM_RATE_54MB_MASK: return 54000000;
3059 }
3060
3061 if (priv->ieee->mode == IEEE_B)
3062 return 11000000;
3063 else
3064 return 54000000;
3065}
3066
3067static u32 ipw_get_current_rate(struct ipw_priv *priv)
3068{
3069 u32 rate, len = sizeof(rate);
3070 int err;
3071
3072 if (!(priv->status & STATUS_ASSOCIATED))
3073 return 0;
3074
3075 if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
3076 err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
3077 &len);
3078 if (err) {
3079 IPW_DEBUG_INFO("failed querying ordinals.\n");
3080 return 0;
3081 }
3082 } else
3083 return ipw_get_max_rate(priv);
3084
3085 switch (rate) {
3086 case IPW_TX_RATE_1MB: return 1000000;
3087 case IPW_TX_RATE_2MB: return 2000000;
3088 case IPW_TX_RATE_5MB: return 5500000;
3089 case IPW_TX_RATE_6MB: return 6000000;
3090 case IPW_TX_RATE_9MB: return 9000000;
3091 case IPW_TX_RATE_11MB: return 11000000;
3092 case IPW_TX_RATE_12MB: return 12000000;
3093 case IPW_TX_RATE_18MB: return 18000000;
3094 case IPW_TX_RATE_24MB: return 24000000;
3095 case IPW_TX_RATE_36MB: return 36000000;
3096 case IPW_TX_RATE_48MB: return 48000000;
3097 case IPW_TX_RATE_54MB: return 54000000;
3098 }
3099
3100 return 0;
3101}
3102
3103#define PERFECT_RSSI (-50)
3104#define WORST_RSSI (-85)
3105#define IPW_STATS_INTERVAL (2 * HZ)
3106static void ipw_gather_stats(struct ipw_priv *priv)
3107{
3108 u32 rx_err, rx_err_delta, rx_packets_delta;
3109 u32 tx_failures, tx_failures_delta, tx_packets_delta;
3110 u32 missed_beacons_percent, missed_beacons_delta;
3111 u32 quality = 0;
3112 u32 len = sizeof(u32);
3113 s16 rssi;
3114 u32 beacon_quality, signal_quality, tx_quality, rx_quality,
3115 rate_quality;
3116
3117 if (!(priv->status & STATUS_ASSOCIATED)) {
3118 priv->quality = 0;
3119 return;
3120 }
3121
3122 /* Update the statistics */
3123 ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
3124 &priv->missed_beacons, &len);
3125 missed_beacons_delta = priv->missed_beacons -
3126 priv->last_missed_beacons;
3127 priv->last_missed_beacons = priv->missed_beacons;
3128 if (priv->assoc_request.beacon_interval) {
3129 missed_beacons_percent = missed_beacons_delta *
3130 (HZ * priv->assoc_request.beacon_interval) /
3131 (IPW_STATS_INTERVAL * 10);
3132 } else {
3133 missed_beacons_percent = 0;
3134 }
3135 average_add(&priv->average_missed_beacons, missed_beacons_percent);
3136
3137 ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
3138 rx_err_delta = rx_err - priv->last_rx_err;
3139 priv->last_rx_err = rx_err;
3140
3141 ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
3142 tx_failures_delta = tx_failures - priv->last_tx_failures;
3143 priv->last_tx_failures = tx_failures;
3144
3145 rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
3146 priv->last_rx_packets = priv->rx_packets;
3147
3148 tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
3149 priv->last_tx_packets = priv->tx_packets;
3150
3151 /* Calculate quality based on the following:
3152 *
3153 * Missed beacon: 100% = 0, 0% = 70% missed
3154 * Rate: 60% = 1Mbs, 100% = Max
3155 * Rx and Tx errors represent a straight % of total Rx/Tx
3156 * RSSI: 100% = > -50, 0% = < -80
3157 * Rx errors: 100% = 0, 0% = 50% missed
3158 *
3159 * The lowest computed quality is used.
3160 *
3161 */
3162#define BEACON_THRESHOLD 5
3163 beacon_quality = 100 - missed_beacons_percent;
3164 if (beacon_quality < BEACON_THRESHOLD)
3165 beacon_quality = 0;
3166 else
3167 beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
3168 (100 - BEACON_THRESHOLD);
3169 IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
3170 beacon_quality, missed_beacons_percent);
3171
3172 priv->last_rate = ipw_get_current_rate(priv);
3173 rate_quality = priv->last_rate * 40 / priv->last_rate + 60;
3174 IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
3175 rate_quality, priv->last_rate / 1000000);
3176
3177 if (rx_packets_delta > 100 &&
3178 rx_packets_delta + rx_err_delta)
3179 rx_quality = 100 - (rx_err_delta * 100) /
3180 (rx_packets_delta + rx_err_delta);
3181 else
3182 rx_quality = 100;
3183 IPW_DEBUG_STATS("Rx quality : %3d%% (%u errors, %u packets)\n",
3184 rx_quality, rx_err_delta, rx_packets_delta);
3185
3186 if (tx_packets_delta > 100 &&
3187 tx_packets_delta + tx_failures_delta)
3188 tx_quality = 100 - (tx_failures_delta * 100) /
3189 (tx_packets_delta + tx_failures_delta);
3190 else
3191 tx_quality = 100;
3192 IPW_DEBUG_STATS("Tx quality : %3d%% (%u errors, %u packets)\n",
3193 tx_quality, tx_failures_delta, tx_packets_delta);
3194
3195 rssi = average_value(&priv->average_rssi);
3196 if (rssi > PERFECT_RSSI)
3197 signal_quality = 100;
3198 else if (rssi < WORST_RSSI)
3199 signal_quality = 0;
3200 else
3201 signal_quality = (rssi - WORST_RSSI) * 100 /
3202 (PERFECT_RSSI - WORST_RSSI);
3203 IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
3204 signal_quality, rssi);
3205
3206 quality = min(beacon_quality,
3207 min(rate_quality,
3208 min(tx_quality, min(rx_quality, signal_quality))));
3209 if (quality == beacon_quality)
3210 IPW_DEBUG_STATS(
3211 "Quality (%d%%): Clamped to missed beacons.\n",
3212 quality);
3213 if (quality == rate_quality)
3214 IPW_DEBUG_STATS(
3215 "Quality (%d%%): Clamped to rate quality.\n",
3216 quality);
3217 if (quality == tx_quality)
3218 IPW_DEBUG_STATS(
3219 "Quality (%d%%): Clamped to Tx quality.\n",
3220 quality);
3221 if (quality == rx_quality)
3222 IPW_DEBUG_STATS(
3223 "Quality (%d%%): Clamped to Rx quality.\n",
3224 quality);
3225 if (quality == signal_quality)
3226 IPW_DEBUG_STATS(
3227 "Quality (%d%%): Clamped to signal quality.\n",
3228 quality);
3229
3230 priv->quality = quality;
3231
3232 queue_delayed_work(priv->workqueue, &priv->gather_stats,
3233 IPW_STATS_INTERVAL);
3234}
3235
3236/**
3237 * Handle host notification packet.
3238 * Called from interrupt routine
3239 */
3240static inline void ipw_rx_notification(struct ipw_priv* priv,
3241 struct ipw_rx_notification *notif)
3242{
3243 IPW_DEBUG_NOTIF("type = %i (%d bytes)\n",
3244 notif->subtype, notif->size);
3245
3246 switch (notif->subtype) {
3247 case HOST_NOTIFICATION_STATUS_ASSOCIATED: {
3248 struct notif_association *assoc = &notif->u.assoc;
3249
3250 switch (assoc->state) {
3251 case CMAS_ASSOCIATED: {
3252 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
3253 "associated: '%s' " MAC_FMT " \n",
3254 escape_essid(priv->essid, priv->essid_len),
3255 MAC_ARG(priv->bssid));
3256
3257 switch (priv->ieee->iw_mode) {
3258 case IW_MODE_INFRA:
3259 memcpy(priv->ieee->bssid, priv->bssid,
3260 ETH_ALEN);
3261 break;
3262
3263 case IW_MODE_ADHOC:
3264 memcpy(priv->ieee->bssid, priv->bssid,
3265 ETH_ALEN);
3266
3267 /* clear out the station table */
3268 priv->num_stations = 0;
3269
3270 IPW_DEBUG_ASSOC("queueing adhoc check\n");
3271 queue_delayed_work(priv->workqueue,
3272 &priv->adhoc_check,
3273 priv->assoc_request.beacon_interval);
3274 break;
3275 }
3276
3277 priv->status &= ~STATUS_ASSOCIATING;
3278 priv->status |= STATUS_ASSOCIATED;
3279
3280 netif_carrier_on(priv->net_dev);
3281 if (netif_queue_stopped(priv->net_dev)) {
3282 IPW_DEBUG_NOTIF("waking queue\n");
3283 netif_wake_queue(priv->net_dev);
3284 } else {
3285 IPW_DEBUG_NOTIF("starting queue\n");
3286 netif_start_queue(priv->net_dev);
3287 }
3288
3289 ipw_reset_stats(priv);
3290 /* Ensure the rate is updated immediately */
3291 priv->last_rate = ipw_get_current_rate(priv);
3292 schedule_work(&priv->gather_stats);
3293 notify_wx_assoc_event(priv);
3294
3295/* queue_delayed_work(priv->workqueue,
3296 &priv->request_scan,
3297 SCAN_ASSOCIATED_INTERVAL);
3298*/
3299 break;
3300 }
3301
3302 case CMAS_AUTHENTICATED: {
3303 if (priv->status & (STATUS_ASSOCIATED | STATUS_AUTH)) {
3304#ifdef CONFIG_IPW_DEBUG
3305 struct notif_authenticate *auth = &notif->u.auth;
3306 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
3307 "deauthenticated: '%s' " MAC_FMT ": (0x%04X) - %s \n",
3308 escape_essid(priv->essid, priv->essid_len),
3309 MAC_ARG(priv->bssid),
3310 ntohs(auth->status),
3311 ipw_get_status_code(ntohs(auth->status)));
3312#endif
3313
3314 priv->status &= ~(STATUS_ASSOCIATING |
3315 STATUS_AUTH |
3316 STATUS_ASSOCIATED);
3317
3318 netif_carrier_off(priv->net_dev);
3319 netif_stop_queue(priv->net_dev);
3320 queue_work(priv->workqueue, &priv->request_scan);
3321 notify_wx_assoc_event(priv);
3322 break;
3323 }
3324
3325 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
3326 "authenticated: '%s' " MAC_FMT "\n",
3327 escape_essid(priv->essid, priv->essid_len),
3328 MAC_ARG(priv->bssid));
3329 break;
3330 }
3331
3332 case CMAS_INIT: {
3333 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
3334 "disassociated: '%s' " MAC_FMT " \n",
3335 escape_essid(priv->essid, priv->essid_len),
3336 MAC_ARG(priv->bssid));
3337
3338 priv->status &= ~(
3339 STATUS_DISASSOCIATING |
3340 STATUS_ASSOCIATING |
3341 STATUS_ASSOCIATED |
3342 STATUS_AUTH);
3343
3344 netif_stop_queue(priv->net_dev);
3345 if (!(priv->status & STATUS_ROAMING)) {
3346 netif_carrier_off(priv->net_dev);
3347 notify_wx_assoc_event(priv);
3348
3349 /* Cancel any queued work ... */
3350 cancel_delayed_work(&priv->request_scan);
3351 cancel_delayed_work(&priv->adhoc_check);
3352
3353 /* Queue up another scan... */
3354 queue_work(priv->workqueue,
3355 &priv->request_scan);
3356
3357 cancel_delayed_work(&priv->gather_stats);
3358 } else {
3359 priv->status |= STATUS_ROAMING;
3360 queue_work(priv->workqueue,
3361 &priv->request_scan);
3362 }
3363
3364 ipw_reset_stats(priv);
3365 break;
3366 }
3367
3368 default:
3369 IPW_ERROR("assoc: unknown (%d)\n",
3370 assoc->state);
3371 break;
3372 }
3373
3374 break;
3375 }
3376
3377 case HOST_NOTIFICATION_STATUS_AUTHENTICATE: {
3378 struct notif_authenticate *auth = &notif->u.auth;
3379 switch (auth->state) {
3380 case CMAS_AUTHENTICATED:
3381 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
3382 "authenticated: '%s' " MAC_FMT " \n",
3383 escape_essid(priv->essid, priv->essid_len),
3384 MAC_ARG(priv->bssid));
3385 priv->status |= STATUS_AUTH;
3386 break;
3387
3388 case CMAS_INIT:
3389 if (priv->status & STATUS_AUTH) {
3390 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
3391 "authentication failed (0x%04X): %s\n",
3392 ntohs(auth->status),
3393 ipw_get_status_code(ntohs(auth->status)));
3394 }
3395 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
3396 "deauthenticated: '%s' " MAC_FMT "\n",
3397 escape_essid(priv->essid, priv->essid_len),
3398 MAC_ARG(priv->bssid));
3399
3400 priv->status &= ~(STATUS_ASSOCIATING |
3401 STATUS_AUTH |
3402 STATUS_ASSOCIATED);
3403
3404 netif_carrier_off(priv->net_dev);
3405 netif_stop_queue(priv->net_dev);
3406 queue_work(priv->workqueue, &priv->request_scan);
3407 notify_wx_assoc_event(priv);
3408 break;
3409
3410 case CMAS_TX_AUTH_SEQ_1:
3411 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
3412 "AUTH_SEQ_1\n");
3413 break;
3414 case CMAS_RX_AUTH_SEQ_2:
3415 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
3416 "AUTH_SEQ_2\n");
3417 break;
3418 case CMAS_AUTH_SEQ_1_PASS:
3419 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
3420 "AUTH_SEQ_1_PASS\n");
3421 break;
3422 case CMAS_AUTH_SEQ_1_FAIL:
3423 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
3424 "AUTH_SEQ_1_FAIL\n");
3425 break;
3426 case CMAS_TX_AUTH_SEQ_3:
3427 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
3428 "AUTH_SEQ_3\n");
3429 break;
3430 case CMAS_RX_AUTH_SEQ_4:
3431 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
3432 "RX_AUTH_SEQ_4\n");
3433 break;
3434 case CMAS_AUTH_SEQ_2_PASS:
3435 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
3436 "AUTH_SEQ_2_PASS\n");
3437 break;
3438 case CMAS_AUTH_SEQ_2_FAIL:
3439 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
3440 "AUT_SEQ_2_FAIL\n");
3441 break;
3442 case CMAS_TX_ASSOC:
3443 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
3444 "TX_ASSOC\n");
3445 break;
3446 case CMAS_RX_ASSOC_RESP:
3447 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
3448 "RX_ASSOC_RESP\n");
3449 break;
3450 case CMAS_ASSOCIATED:
3451 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
3452 "ASSOCIATED\n");
3453 break;
3454 default:
3455 IPW_DEBUG_NOTIF("auth: failure - %d\n", auth->state);
3456 break;
3457 }
3458 break;
3459 }
3460
3461 case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT: {
3462 struct notif_channel_result *x = &notif->u.channel_result;
3463
3464 if (notif->size == sizeof(*x)) {
3465 IPW_DEBUG_SCAN("Scan result for channel %d\n",
3466 x->channel_num);
3467 } else {
3468 IPW_DEBUG_SCAN("Scan result of wrong size %d "
3469 "(should be %d)\n",
3470 notif->size,sizeof(*x));
3471 }
3472 break;
3473 }
3474
3475 case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED: {
3476 struct notif_scan_complete* x = &notif->u.scan_complete;
3477 if (notif->size == sizeof(*x)) {
3478 IPW_DEBUG_SCAN("Scan completed: type %d, %d channels, "
3479 "%d status\n",
3480 x->scan_type,
3481 x->num_channels,
3482 x->status);
3483 } else {
3484 IPW_ERROR("Scan completed of wrong size %d "
3485 "(should be %d)\n",
3486 notif->size,sizeof(*x));
3487 }
3488
3489 priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3490
3491 cancel_delayed_work(&priv->scan_check);
3492
3493 if (!(priv->status & (STATUS_ASSOCIATED |
3494 STATUS_ASSOCIATING |
3495 STATUS_ROAMING |
3496 STATUS_DISASSOCIATING)))
3497 queue_work(priv->workqueue, &priv->associate);
3498 else if (priv->status & STATUS_ROAMING) {
3499 /* If a scan completed and we are in roam mode, then
3500 * the scan that completed was the one requested as a
3501 * result of entering roam... so, schedule the
3502 * roam work */
3503 queue_work(priv->workqueue, &priv->roam);
3504 } else if (priv->status & STATUS_SCAN_PENDING)
3505 queue_work(priv->workqueue, &priv->request_scan);
3506
3507 priv->ieee->scans++;
3508 break;
3509 }
3510
3511 case HOST_NOTIFICATION_STATUS_FRAG_LENGTH: {
3512 struct notif_frag_length *x = &notif->u.frag_len;
3513
3514 if (notif->size == sizeof(*x)) {
3515 IPW_ERROR("Frag length: %d\n", x->frag_length);
3516 } else {
3517 IPW_ERROR("Frag length of wrong size %d "
3518 "(should be %d)\n",
3519 notif->size, sizeof(*x));
3520 }
3521 break;
3522 }
3523
3524 case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION: {
3525 struct notif_link_deterioration *x =
3526 &notif->u.link_deterioration;
3527 if (notif->size==sizeof(*x)) {
3528 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
3529 "link deterioration: '%s' " MAC_FMT " \n",
3530 escape_essid(priv->essid, priv->essid_len),
3531 MAC_ARG(priv->bssid));
3532 memcpy(&priv->last_link_deterioration, x, sizeof(*x));
3533 } else {
3534 IPW_ERROR("Link Deterioration of wrong size %d "
3535 "(should be %d)\n",
3536 notif->size,sizeof(*x));
3537 }
3538 break;
3539 }
3540
3541 case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE: {
3542 IPW_ERROR("Dino config\n");
3543 if (priv->hcmd && priv->hcmd->cmd == HOST_CMD_DINO_CONFIG) {
3544 /* TODO: Do anything special? */
3545 } else {
3546 IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
3547 }
3548 break;
3549 }
3550
3551 case HOST_NOTIFICATION_STATUS_BEACON_STATE: {
3552 struct notif_beacon_state *x = &notif->u.beacon_state;
3553 if (notif->size != sizeof(*x)) {
3554 IPW_ERROR("Beacon state of wrong size %d (should "
3555 "be %d)\n", notif->size, sizeof(*x));
3556 break;
3557 }
3558
3559 if (x->state == HOST_NOTIFICATION_STATUS_BEACON_MISSING) {
3560 if (priv->status & STATUS_SCANNING) {
3561 /* Stop scan to keep fw from getting
3562 * stuck... */
3563 queue_work(priv->workqueue,
3564 &priv->abort_scan);
3565 }
3566
3567 if (x->number > priv->missed_beacon_threshold &&
3568 priv->status & STATUS_ASSOCIATED) {
3569 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
3570 IPW_DL_STATE,
3571 "Missed beacon: %d - disassociate\n",
3572 x->number);
3573 queue_work(priv->workqueue,
3574 &priv->disassociate);
3575 } else if (x->number > priv->roaming_threshold) {
3576 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
3577 "Missed beacon: %d - initiate "
3578 "roaming\n",
3579 x->number);
3580 queue_work(priv->workqueue,
3581 &priv->roam);
3582 } else {
3583 IPW_DEBUG_NOTIF("Missed beacon: %d\n",
3584 x->number);
3585 }
3586
3587 priv->notif_missed_beacons = x->number;
3588
3589 }
3590
3591
3592 break;
3593 }
3594
3595 case HOST_NOTIFICATION_STATUS_TGI_TX_KEY: {
3596 struct notif_tgi_tx_key *x = &notif->u.tgi_tx_key;
3597 if (notif->size==sizeof(*x)) {
3598 IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
3599 "0x%02x station %d\n",
3600 x->key_state,x->security_type,
3601 x->station_index);
3602 break;
3603 }
3604
3605 IPW_ERROR("TGi Tx Key of wrong size %d (should be %d)\n",
3606 notif->size,sizeof(*x));
3607 break;
3608 }
3609
3610 case HOST_NOTIFICATION_CALIB_KEEP_RESULTS: {
3611 struct notif_calibration *x = &notif->u.calibration;
3612
3613 if (notif->size == sizeof(*x)) {
3614 memcpy(&priv->calib, x, sizeof(*x));
3615 IPW_DEBUG_INFO("TODO: Calibration\n");
3616 break;
3617 }
3618
3619 IPW_ERROR("Calibration of wrong size %d (should be %d)\n",
3620 notif->size,sizeof(*x));
3621 break;
3622 }
3623
3624 case HOST_NOTIFICATION_NOISE_STATS: {
3625 if (notif->size == sizeof(u32)) {
3626 priv->last_noise = (u8)(notif->u.noise.value & 0xff);
3627 average_add(&priv->average_noise, priv->last_noise);
3628 break;
3629 }
3630
3631 IPW_ERROR("Noise stat is wrong size %d (should be %d)\n",
3632 notif->size, sizeof(u32));
3633 break;
3634 }
3635
3636 default:
3637 IPW_ERROR("Unknown notification: "
3638 "subtype=%d,flags=0x%2x,size=%d\n",
3639 notif->subtype, notif->flags, notif->size);
3640 }
3641}
3642
3643/**
3644 * Destroys all DMA structures and initialise them again
3645 *
3646 * @param priv
3647 * @return error code
3648 */
3649static int ipw_queue_reset(struct ipw_priv *priv)
3650{
3651 int rc = 0;
3652 /** @todo customize queue sizes */
3653 int nTx = 64, nTxCmd = 8;
3654 ipw_tx_queue_free(priv);
3655 /* Tx CMD queue */
3656 rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
3657 CX2_TX_CMD_QUEUE_READ_INDEX,
3658 CX2_TX_CMD_QUEUE_WRITE_INDEX,
3659 CX2_TX_CMD_QUEUE_BD_BASE,
3660 CX2_TX_CMD_QUEUE_BD_SIZE);
3661 if (rc) {
3662 IPW_ERROR("Tx Cmd queue init failed\n");
3663 goto error;
3664 }
3665 /* Tx queue(s) */
3666 rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
3667 CX2_TX_QUEUE_0_READ_INDEX,
3668 CX2_TX_QUEUE_0_WRITE_INDEX,
3669 CX2_TX_QUEUE_0_BD_BASE,
3670 CX2_TX_QUEUE_0_BD_SIZE);
3671 if (rc) {
3672 IPW_ERROR("Tx 0 queue init failed\n");
3673 goto error;
3674 }
3675 rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
3676 CX2_TX_QUEUE_1_READ_INDEX,
3677 CX2_TX_QUEUE_1_WRITE_INDEX,
3678 CX2_TX_QUEUE_1_BD_BASE,
3679 CX2_TX_QUEUE_1_BD_SIZE);
3680 if (rc) {
3681 IPW_ERROR("Tx 1 queue init failed\n");
3682 goto error;
3683 }
3684 rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
3685 CX2_TX_QUEUE_2_READ_INDEX,
3686 CX2_TX_QUEUE_2_WRITE_INDEX,
3687 CX2_TX_QUEUE_2_BD_BASE,
3688 CX2_TX_QUEUE_2_BD_SIZE);
3689 if (rc) {
3690 IPW_ERROR("Tx 2 queue init failed\n");
3691 goto error;
3692 }
3693 rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
3694 CX2_TX_QUEUE_3_READ_INDEX,
3695 CX2_TX_QUEUE_3_WRITE_INDEX,
3696 CX2_TX_QUEUE_3_BD_BASE,
3697 CX2_TX_QUEUE_3_BD_SIZE);
3698 if (rc) {
3699 IPW_ERROR("Tx 3 queue init failed\n");
3700 goto error;
3701 }
3702 /* statistics */
3703 priv->rx_bufs_min = 0;
3704 priv->rx_pend_max = 0;
3705 return rc;
3706
3707 error:
3708 ipw_tx_queue_free(priv);
3709 return rc;
3710}
3711
3712/**
3713 * Reclaim Tx queue entries no more used by NIC.
3714 *
3715 * When FW adwances 'R' index, all entries between old and
3716 * new 'R' index need to be reclaimed. As result, some free space
3717 * forms. If there is enough free space (> low mark), wake Tx queue.
3718 *
3719 * @note Need to protect against garbage in 'R' index
3720 * @param priv
3721 * @param txq
3722 * @param qindex
3723 * @return Number of used entries remains in the queue
3724 */
3725static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
3726 struct clx2_tx_queue *txq, int qindex)
3727{
3728 u32 hw_tail;
3729 int used;
3730 struct clx2_queue *q = &txq->q;
3731
3732 hw_tail = ipw_read32(priv, q->reg_r);
3733 if (hw_tail >= q->n_bd) {
3734 IPW_ERROR
3735 ("Read index for DMA queue (%d) is out of range [0-%d)\n",
3736 hw_tail, q->n_bd);
3737 goto done;
3738 }
3739 for (; q->last_used != hw_tail;
3740 q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3741 ipw_queue_tx_free_tfd(priv, txq);
3742 priv->tx_packets++;
3743 }
3744 done:
3745 if (ipw_queue_space(q) > q->low_mark && qindex >= 0) {
3746 __maybe_wake_tx(priv);
3747 }
3748 used = q->first_empty - q->last_used;
3749 if (used < 0)
3750 used += q->n_bd;
3751
3752 return used;
3753}
3754
3755static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
3756 int len, int sync)
3757{
3758 struct clx2_tx_queue *txq = &priv->txq_cmd;
3759 struct clx2_queue *q = &txq->q;
3760 struct tfd_frame *tfd;
3761
3762 if (ipw_queue_space(q) < (sync ? 1 : 2)) {
3763 IPW_ERROR("No space for Tx\n");
3764 return -EBUSY;
3765 }
3766
3767 tfd = &txq->bd[q->first_empty];
3768 txq->txb[q->first_empty] = NULL;
3769
3770 memset(tfd, 0, sizeof(*tfd));
3771 tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
3772 tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
3773 priv->hcmd_seq++;
3774 tfd->u.cmd.index = hcmd;
3775 tfd->u.cmd.length = len;
3776 memcpy(tfd->u.cmd.payload, buf, len);
3777 q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
3778 ipw_write32(priv, q->reg_w, q->first_empty);
3779 _ipw_read32(priv, 0x90);
3780
3781 return 0;
3782}
3783
3784
3785
3786/*
3787 * Rx theory of operation
3788 *
3789 * The host allocates 32 DMA target addresses and passes the host address
3790 * to the firmware at register CX2_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
3791 * 0 to 31
3792 *
3793 * Rx Queue Indexes
3794 * The host/firmware share two index registers for managing the Rx buffers.
3795 *
3796 * The READ index maps to the first position that the firmware may be writing
3797 * to -- the driver can read up to (but not including) this position and get
3798 * good data.
3799 * The READ index is managed by the firmware once the card is enabled.
3800 *
3801 * The WRITE index maps to the last position the driver has read from -- the
3802 * position preceding WRITE is the last slot the firmware can place a packet.
3803 *
3804 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
3805 * WRITE = READ.
3806 *
3807 * During initialization the host sets up the READ queue position to the first
3808 * INDEX position, and WRITE to the last (READ - 1 wrapped)
3809 *
3810 * When the firmware places a packet in a buffer it will advance the READ index
3811 * and fire the RX interrupt. The driver can then query the READ index and
3812 * process as many packets as possible, moving the WRITE index forward as it
3813 * resets the Rx queue buffers with new memory.
3814 *
3815 * The management in the driver is as follows:
3816 * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free. When
3817 * ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
3818 * to replensish the ipw->rxq->rx_free.
3819 * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
3820 * ipw->rxq is replenished and the READ INDEX is updated (updating the
3821 * 'processed' and 'read' driver indexes as well)
3822 * + A received packet is processed and handed to the kernel network stack,
3823 * detached from the ipw->rxq. The driver 'processed' index is updated.
3824 * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
3825 * list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
3826 * INDEX is not incremented and ipw->status(RX_STALLED) is set. If there
3827 * were enough free buffers and RX_STALLED is set it is cleared.
3828 *
3829 *
3830 * Driver sequence:
3831 *
3832 * ipw_rx_queue_alloc() Allocates rx_free
3833 * ipw_rx_queue_replenish() Replenishes rx_free list from rx_used, and calls
3834 * ipw_rx_queue_restock
3835 * ipw_rx_queue_restock() Moves available buffers from rx_free into Rx
3836 * queue, updates firmware pointers, and updates
3837 * the WRITE index. If insufficient rx_free buffers
3838 * are available, schedules ipw_rx_queue_replenish
3839 *
3840 * -- enable interrupts --
3841 * ISR - ipw_rx() Detach ipw_rx_mem_buffers from pool up to the
3842 * READ INDEX, detaching the SKB from the pool.
3843 * Moves the packet buffer from queue to rx_used.
3844 * Calls ipw_rx_queue_restock to refill any empty
3845 * slots.
3846 * ...
3847 *
3848 */
3849
3850/*
3851 * If there are slots in the RX queue that need to be restocked,
3852 * and we have free pre-allocated buffers, fill the ranks as much
3853 * as we can pulling from rx_free.
3854 *
3855 * This moves the 'write' index forward to catch up with 'processed', and
3856 * also updates the memory address in the firmware to reference the new
3857 * target buffer.
3858 */
3859static void ipw_rx_queue_restock(struct ipw_priv *priv)
3860{
3861 struct ipw_rx_queue *rxq = priv->rxq;
3862 struct list_head *element;
3863 struct ipw_rx_mem_buffer *rxb;
3864 unsigned long flags;
3865 int write;
3866
3867 spin_lock_irqsave(&rxq->lock, flags);
3868 write = rxq->write;
3869 while ((rxq->write != rxq->processed) && (rxq->free_count)) {
3870 element = rxq->rx_free.next;
3871 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
3872 list_del(element);
3873
3874 ipw_write32(priv, CX2_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
3875 rxb->dma_addr);
3876 rxq->queue[rxq->write] = rxb;
3877 rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
3878 rxq->free_count--;
3879 }
3880 spin_unlock_irqrestore(&rxq->lock, flags);
3881
3882 /* If the pre-allocated buffer pool is dropping low, schedule to
3883 * refill it */
3884 if (rxq->free_count <= RX_LOW_WATERMARK)
3885 queue_work(priv->workqueue, &priv->rx_replenish);
3886
3887 /* If we've added more space for the firmware to place data, tell it */
3888 if (write != rxq->write)
3889 ipw_write32(priv, CX2_RX_WRITE_INDEX, rxq->write);
3890}
3891
3892/*
3893 * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
3894 * Also restock the Rx queue via ipw_rx_queue_restock.
3895 *
3896 * This is called as a scheduled work item (except for during intialization)
3897 */
3898static void ipw_rx_queue_replenish(void *data)
3899{
3900 struct ipw_priv *priv = data;
3901 struct ipw_rx_queue *rxq = priv->rxq;
3902 struct list_head *element;
3903 struct ipw_rx_mem_buffer *rxb;
3904 unsigned long flags;
3905
3906 spin_lock_irqsave(&rxq->lock, flags);
3907 while (!list_empty(&rxq->rx_used)) {
3908 element = rxq->rx_used.next;
3909 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
3910 rxb->skb = alloc_skb(CX2_RX_BUF_SIZE, GFP_ATOMIC);
3911 if (!rxb->skb) {
3912 printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
3913 priv->net_dev->name);
3914 /* We don't reschedule replenish work here -- we will
3915 * call the restock method and if it still needs
3916 * more buffers it will schedule replenish */
3917 break;
3918 }
3919 list_del(element);
3920
3921 rxb->rxb = (struct ipw_rx_buffer *)rxb->skb->data;
3922 rxb->dma_addr = pci_map_single(
3923 priv->pci_dev, rxb->skb->data, CX2_RX_BUF_SIZE,
3924 PCI_DMA_FROMDEVICE);
3925
3926 list_add_tail(&rxb->list, &rxq->rx_free);
3927 rxq->free_count++;
3928 }
3929 spin_unlock_irqrestore(&rxq->lock, flags);
3930
3931 ipw_rx_queue_restock(priv);
3932}
3933
3934/* Assumes that the skb field of the buffers in 'pool' is kept accurate.
3935 * If an SKB has been detached, the POOL needs to have it's SKB set to NULL
3936 * This free routine walks the list of POOL entries and if SKB is set to
3937 * non NULL it is unmapped and freed
3938 */
3939static void ipw_rx_queue_free(struct ipw_priv *priv,
3940 struct ipw_rx_queue *rxq)
3941{
3942 int i;
3943
3944 if (!rxq)
3945 return;
3946
3947 for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
3948 if (rxq->pool[i].skb != NULL) {
3949 pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
3950 CX2_RX_BUF_SIZE,
3951 PCI_DMA_FROMDEVICE);
3952 dev_kfree_skb(rxq->pool[i].skb);
3953 }
3954 }
3955
3956 kfree(rxq);
3957}
3958
3959static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
3960{
3961 struct ipw_rx_queue *rxq;
3962 int i;
3963
3964 rxq = (struct ipw_rx_queue *)kmalloc(sizeof(*rxq), GFP_KERNEL);
3965 memset(rxq, 0, sizeof(*rxq));
3966 spin_lock_init(&rxq->lock);
3967 INIT_LIST_HEAD(&rxq->rx_free);
3968 INIT_LIST_HEAD(&rxq->rx_used);
3969
3970 /* Fill the rx_used queue with _all_ of the Rx buffers */
3971 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
3972 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3973
3974 /* Set us so that we have processed and used all buffers, but have
3975 * not restocked the Rx queue with fresh buffers */
3976 rxq->read = rxq->write = 0;
3977 rxq->processed = RX_QUEUE_SIZE - 1;
3978 rxq->free_count = 0;
3979
3980 return rxq;
3981}
3982
3983static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
3984{
3985 rate &= ~IEEE80211_BASIC_RATE_MASK;
3986 if (ieee_mode == IEEE_A) {
3987 switch (rate) {
3988 case IEEE80211_OFDM_RATE_6MB:
3989 return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ?
3990 1 : 0;
3991 case IEEE80211_OFDM_RATE_9MB:
3992 return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ?
3993 1 : 0;
3994 case IEEE80211_OFDM_RATE_12MB:
3995 return priv->rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ?
3996 1 : 0;
3997 case IEEE80211_OFDM_RATE_18MB:
3998 return priv->rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ?
3999 1 : 0;
4000 case IEEE80211_OFDM_RATE_24MB:
4001 return priv->rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ?
4002 1 : 0;
4003 case IEEE80211_OFDM_RATE_36MB:
4004 return priv->rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ?
4005 1 : 0;
4006 case IEEE80211_OFDM_RATE_48MB:
4007 return priv->rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ?
4008 1 : 0;
4009 case IEEE80211_OFDM_RATE_54MB:
4010 return priv->rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ?
4011 1 : 0;
4012 default:
4013 return 0;
4014 }
4015 }
4016
4017 /* B and G mixed */
4018 switch (rate) {
4019 case IEEE80211_CCK_RATE_1MB:
4020 return priv->rates_mask & IEEE80211_CCK_RATE_1MB_MASK ? 1 : 0;
4021 case IEEE80211_CCK_RATE_2MB:
4022 return priv->rates_mask & IEEE80211_CCK_RATE_2MB_MASK ? 1 : 0;
4023 case IEEE80211_CCK_RATE_5MB:
4024 return priv->rates_mask & IEEE80211_CCK_RATE_5MB_MASK ? 1 : 0;
4025 case IEEE80211_CCK_RATE_11MB:
4026 return priv->rates_mask & IEEE80211_CCK_RATE_11MB_MASK ? 1 : 0;
4027 }
4028
4029 /* If we are limited to B modulations, bail at this point */
4030 if (ieee_mode == IEEE_B)
4031 return 0;
4032
4033 /* G */
4034 switch (rate) {
4035 case IEEE80211_OFDM_RATE_6MB:
4036 return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ? 1 : 0;
4037 case IEEE80211_OFDM_RATE_9MB:
4038 return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ? 1 : 0;
4039 case IEEE80211_OFDM_RATE_12MB:
4040 return priv->rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
4041 case IEEE80211_OFDM_RATE_18MB:
4042 return priv->rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
4043 case IEEE80211_OFDM_RATE_24MB:
4044 return priv->rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
4045 case IEEE80211_OFDM_RATE_36MB:
4046 return priv->rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
4047 case IEEE80211_OFDM_RATE_48MB:
4048 return priv->rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
4049 case IEEE80211_OFDM_RATE_54MB:
4050 return priv->rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
4051 }
4052
4053 return 0;
4054}
4055
4056static int ipw_compatible_rates(struct ipw_priv *priv,
4057 const struct ieee80211_network *network,
4058 struct ipw_supported_rates *rates)
4059{
4060 int num_rates, i;
4061
4062 memset(rates, 0, sizeof(*rates));
4063 num_rates = min(network->rates_len, (u8)IPW_MAX_RATES);
4064 rates->num_rates = 0;
4065 for (i = 0; i < num_rates; i++) {
4066 if (!ipw_is_rate_in_mask(priv, network->mode, network->rates[i])) {
4067 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
4068 network->rates[i], priv->rates_mask);
4069 continue;
4070 }
4071
4072 rates->supported_rates[rates->num_rates++] = network->rates[i];
4073 }
4074
4075 num_rates = min(network->rates_ex_len, (u8)(IPW_MAX_RATES - num_rates));
4076 for (i = 0; i < num_rates; i++) {
4077 if (!ipw_is_rate_in_mask(priv, network->mode, network->rates_ex[i])) {
4078 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
4079 network->rates_ex[i], priv->rates_mask);
4080 continue;
4081 }
4082
4083 rates->supported_rates[rates->num_rates++] = network->rates_ex[i];
4084 }
4085
4086 return rates->num_rates;
4087}
4088
4089static inline void ipw_copy_rates(struct ipw_supported_rates *dest,
4090 const struct ipw_supported_rates *src)
4091{
4092 u8 i;
4093 for (i = 0; i < src->num_rates; i++)
4094 dest->supported_rates[i] = src->supported_rates[i];
4095 dest->num_rates = src->num_rates;
4096}
4097
4098/* TODO: Look at sniffed packets in the air to determine if the basic rate
4099 * mask should ever be used -- right now all callers to add the scan rates are
4100 * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
4101static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
4102 u8 modulation, u32 rate_mask)
4103{
4104 u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
4105 IEEE80211_BASIC_RATE_MASK : 0;
4106
4107 if (rate_mask & IEEE80211_CCK_RATE_1MB_MASK)
4108 rates->supported_rates[rates->num_rates++] =
4109 IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_1MB;
4110
4111 if (rate_mask & IEEE80211_CCK_RATE_2MB_MASK)
4112 rates->supported_rates[rates->num_rates++] =
4113 IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_2MB;
4114
4115 if (rate_mask & IEEE80211_CCK_RATE_5MB_MASK)
4116 rates->supported_rates[rates->num_rates++] = basic_mask |
4117 IEEE80211_CCK_RATE_5MB;
4118
4119 if (rate_mask & IEEE80211_CCK_RATE_11MB_MASK)
4120 rates->supported_rates[rates->num_rates++] = basic_mask |
4121 IEEE80211_CCK_RATE_11MB;
4122}
4123
4124static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
4125 u8 modulation, u32 rate_mask)
4126{
4127 u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
4128 IEEE80211_BASIC_RATE_MASK : 0;
4129
4130 if (rate_mask & IEEE80211_OFDM_RATE_6MB_MASK)
4131 rates->supported_rates[rates->num_rates++] = basic_mask |
4132 IEEE80211_OFDM_RATE_6MB;
4133
4134 if (rate_mask & IEEE80211_OFDM_RATE_9MB_MASK)
4135 rates->supported_rates[rates->num_rates++] =
4136 IEEE80211_OFDM_RATE_9MB;
4137
4138 if (rate_mask & IEEE80211_OFDM_RATE_12MB_MASK)
4139 rates->supported_rates[rates->num_rates++] = basic_mask |
4140 IEEE80211_OFDM_RATE_12MB;
4141
4142 if (rate_mask & IEEE80211_OFDM_RATE_18MB_MASK)
4143 rates->supported_rates[rates->num_rates++] =
4144 IEEE80211_OFDM_RATE_18MB;
4145
4146 if (rate_mask & IEEE80211_OFDM_RATE_24MB_MASK)
4147 rates->supported_rates[rates->num_rates++] = basic_mask |
4148 IEEE80211_OFDM_RATE_24MB;
4149
4150 if (rate_mask & IEEE80211_OFDM_RATE_36MB_MASK)
4151 rates->supported_rates[rates->num_rates++] =
4152 IEEE80211_OFDM_RATE_36MB;
4153
4154 if (rate_mask & IEEE80211_OFDM_RATE_48MB_MASK)
4155 rates->supported_rates[rates->num_rates++] =
4156 IEEE80211_OFDM_RATE_48MB;
4157
4158 if (rate_mask & IEEE80211_OFDM_RATE_54MB_MASK)
4159 rates->supported_rates[rates->num_rates++] =
4160 IEEE80211_OFDM_RATE_54MB;
4161}
4162
4163struct ipw_network_match {
4164 struct ieee80211_network *network;
4165 struct ipw_supported_rates rates;
4166};
4167
4168static int ipw_best_network(
4169 struct ipw_priv *priv,
4170 struct ipw_network_match *match,
4171 struct ieee80211_network *network,
4172 int roaming)
4173{
4174 struct ipw_supported_rates rates;
4175
4176 /* Verify that this network's capability is compatible with the
4177 * current mode (AdHoc or Infrastructure) */
4178 if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
4179 !(network->capability & WLAN_CAPABILITY_BSS)) ||
4180 (priv->ieee->iw_mode == IW_MODE_ADHOC &&
4181 !(network->capability & WLAN_CAPABILITY_IBSS))) {
4182 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded due to "
4183 "capability mismatch.\n",
4184 escape_essid(network->ssid, network->ssid_len),
4185 MAC_ARG(network->bssid));
4186 return 0;
4187 }
4188
4189 /* If we do not have an ESSID for this AP, we can not associate with
4190 * it */
4191 if (network->flags & NETWORK_EMPTY_ESSID) {
4192 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
4193 "because of hidden ESSID.\n",
4194 escape_essid(network->ssid, network->ssid_len),
4195 MAC_ARG(network->bssid));
4196 return 0;
4197 }
4198
4199 if (unlikely(roaming)) {
4200 /* If we are roaming, then ensure check if this is a valid
4201 * network to try and roam to */
4202 if ((network->ssid_len != match->network->ssid_len) ||
4203 memcmp(network->ssid, match->network->ssid,
4204 network->ssid_len)) {
4205 IPW_DEBUG_ASSOC("Netowrk '%s (" MAC_FMT ")' excluded "
4206 "because of non-network ESSID.\n",
4207 escape_essid(network->ssid,
4208 network->ssid_len),
4209 MAC_ARG(network->bssid));
4210 return 0;
4211 }
4212 } else {
4213 /* If an ESSID has been configured then compare the broadcast
4214 * ESSID to ours */
4215 if ((priv->config & CFG_STATIC_ESSID) &&
4216 ((network->ssid_len != priv->essid_len) ||
4217 memcmp(network->ssid, priv->essid,
4218 min(network->ssid_len, priv->essid_len)))) {
4219 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
4220 strncpy(escaped, escape_essid(
4221 network->ssid, network->ssid_len),
4222 sizeof(escaped));
4223 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
4224 "because of ESSID mismatch: '%s'.\n",
4225 escaped, MAC_ARG(network->bssid),
4226 escape_essid(priv->essid, priv->essid_len));
4227 return 0;
4228 }
4229 }
4230
4231 /* If the old network rate is better than this one, don't bother
4232 * testing everything else. */
4233 if (match->network && match->network->stats.rssi >
4234 network->stats.rssi) {
4235 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
4236 strncpy(escaped,
4237 escape_essid(network->ssid, network->ssid_len),
4238 sizeof(escaped));
4239 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded because "
4240 "'%s (" MAC_FMT ")' has a stronger signal.\n",
4241 escaped, MAC_ARG(network->bssid),
4242 escape_essid(match->network->ssid,
4243 match->network->ssid_len),
4244 MAC_ARG(match->network->bssid));
4245 return 0;
4246 }
4247
4248 /* If this network has already had an association attempt within the
4249 * last 3 seconds, do not try and associate again... */
4250 if (network->last_associate &&
4251 time_after(network->last_associate + (HZ * 5UL), jiffies)) {
4252 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
4253 "because of storming (%lu since last "
4254 "assoc attempt).\n",
4255 escape_essid(network->ssid, network->ssid_len),
4256 MAC_ARG(network->bssid),
4257 (jiffies - network->last_associate) / HZ);
4258 return 0;
4259 }
4260
4261 /* Now go through and see if the requested network is valid... */
4262 if (priv->ieee->scan_age != 0 &&
4263 jiffies - network->last_scanned > priv->ieee->scan_age) {
4264 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
4265 "because of age: %lums.\n",
4266 escape_essid(network->ssid, network->ssid_len),
4267 MAC_ARG(network->bssid),
4268 (jiffies - network->last_scanned) / (HZ / 100));
4269 return 0;
4270 }
4271
4272 if ((priv->config & CFG_STATIC_CHANNEL) &&
4273 (network->channel != priv->channel)) {
4274 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
4275 "because of channel mismatch: %d != %d.\n",
4276 escape_essid(network->ssid, network->ssid_len),
4277 MAC_ARG(network->bssid),
4278 network->channel, priv->channel);
4279 return 0;
4280 }
4281
4282 /* Verify privacy compatability */
4283 if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
4284 ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
4285 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
4286 "because of privacy mismatch: %s != %s.\n",
4287 escape_essid(network->ssid, network->ssid_len),
4288 MAC_ARG(network->bssid),
4289 priv->capability & CAP_PRIVACY_ON ? "on" :
4290 "off",
4291 network->capability &
4292 WLAN_CAPABILITY_PRIVACY ?"on" : "off");
4293 return 0;
4294 }
4295
4296 if ((priv->config & CFG_STATIC_BSSID) &&
4297 memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
4298 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
4299 "because of BSSID mismatch: " MAC_FMT ".\n",
4300 escape_essid(network->ssid, network->ssid_len),
4301 MAC_ARG(network->bssid),
4302 MAC_ARG(priv->bssid));
4303 return 0;
4304 }
4305
4306 /* Filter out any incompatible freq / mode combinations */
4307 if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
4308 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
4309 "because of invalid frequency/mode "
4310 "combination.\n",
4311 escape_essid(network->ssid, network->ssid_len),
4312 MAC_ARG(network->bssid));
4313 return 0;
4314 }
4315
4316 ipw_compatible_rates(priv, network, &rates);
4317 if (rates.num_rates == 0) {
4318 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
4319 "because of no compatible rates.\n",
4320 escape_essid(network->ssid, network->ssid_len),
4321 MAC_ARG(network->bssid));
4322 return 0;
4323 }
4324
4325 /* TODO: Perform any further minimal comparititive tests. We do not
4326 * want to put too much policy logic here; intelligent scan selection
4327 * should occur within a generic IEEE 802.11 user space tool. */
4328
4329 /* Set up 'new' AP to this network */
4330 ipw_copy_rates(&match->rates, &rates);
4331 match->network = network;
4332
4333 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' is a viable match.\n",
4334 escape_essid(network->ssid, network->ssid_len),
4335 MAC_ARG(network->bssid));
4336
4337 return 1;
4338}
4339
4340
4341static void ipw_adhoc_create(struct ipw_priv *priv,
4342 struct ieee80211_network *network)
4343{
4344 /*
4345 * For the purposes of scanning, we can set our wireless mode
4346 * to trigger scans across combinations of bands, but when it
4347 * comes to creating a new ad-hoc network, we have tell the FW
4348 * exactly which band to use.
4349 *
4350 * We also have the possibility of an invalid channel for the
4351 * chossen band. Attempting to create a new ad-hoc network
4352 * with an invalid channel for wireless mode will trigger a
4353 * FW fatal error.
4354 */
4355 network->mode = is_valid_channel(priv->ieee->mode, priv->channel);
4356 if (network->mode) {
4357 network->channel = priv->channel;
4358 } else {
4359 IPW_WARNING("Overriding invalid channel\n");
4360 if (priv->ieee->mode & IEEE_A) {
4361 network->mode = IEEE_A;
4362 priv->channel = band_a_active_channel[0];
4363 } else if (priv->ieee->mode & IEEE_G) {
4364 network->mode = IEEE_G;
4365 priv->channel = band_b_active_channel[0];
4366 } else {
4367 network->mode = IEEE_B;
4368 priv->channel = band_b_active_channel[0];
4369 }
4370 }
4371
4372 network->channel = priv->channel;
4373 priv->config |= CFG_ADHOC_PERSIST;
4374 ipw_create_bssid(priv, network->bssid);
4375 network->ssid_len = priv->essid_len;
4376 memcpy(network->ssid, priv->essid, priv->essid_len);
4377 memset(&network->stats, 0, sizeof(network->stats));
4378 network->capability = WLAN_CAPABILITY_IBSS;
4379 if (priv->capability & CAP_PRIVACY_ON)
4380 network->capability |= WLAN_CAPABILITY_PRIVACY;
4381 network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
4382 memcpy(network->rates, priv->rates.supported_rates,
4383 network->rates_len);
4384 network->rates_ex_len = priv->rates.num_rates - network->rates_len;
4385 memcpy(network->rates_ex,
4386 &priv->rates.supported_rates[network->rates_len],
4387 network->rates_ex_len);
4388 network->last_scanned = 0;
4389 network->flags = 0;
4390 network->last_associate = 0;
4391 network->time_stamp[0] = 0;
4392 network->time_stamp[1] = 0;
4393 network->beacon_interval = 100; /* Default */
4394 network->listen_interval = 10; /* Default */
4395 network->atim_window = 0; /* Default */
4396#ifdef CONFIG_IEEE80211_WPA
4397 network->wpa_ie_len = 0;
4398 network->rsn_ie_len = 0;
4399#endif /* CONFIG_IEEE80211_WPA */
4400}
4401
4402static void ipw_send_wep_keys(struct ipw_priv *priv)
4403{
4404 struct ipw_wep_key *key;
4405 int i;
4406 struct host_cmd cmd = {
4407 .cmd = IPW_CMD_WEP_KEY,
4408 .len = sizeof(*key)
4409 };
4410
4411 key = (struct ipw_wep_key *)&cmd.param;
4412 key->cmd_id = DINO_CMD_WEP_KEY;
4413 key->seq_num = 0;
4414
4415 for (i = 0; i < 4; i++) {
4416 key->key_index = i;
4417 if (!(priv->sec.flags & (1 << i))) {
4418 key->key_size = 0;
4419 } else {
4420 key->key_size = priv->sec.key_sizes[i];
4421 memcpy(key->key, priv->sec.keys[i], key->key_size);
4422 }
4423
4424 if (ipw_send_cmd(priv, &cmd)) {
4425 IPW_ERROR("failed to send WEP_KEY command\n");
4426 return;
4427 }
4428 }
4429}
4430
4431static void ipw_adhoc_check(void *data)
4432{
4433 struct ipw_priv *priv = data;
4434
4435 if (priv->missed_adhoc_beacons++ > priv->missed_beacon_threshold &&
4436 !(priv->config & CFG_ADHOC_PERSIST)) {
4437 IPW_DEBUG_SCAN("Disassociating due to missed beacons\n");
4438 ipw_remove_current_network(priv);
4439 ipw_disassociate(priv);
4440 return;
4441 }
4442
4443 queue_delayed_work(priv->workqueue, &priv->adhoc_check,
4444 priv->assoc_request.beacon_interval);
4445}
4446
4447#ifdef CONFIG_IPW_DEBUG
4448static void ipw_debug_config(struct ipw_priv *priv)
4449{
4450 IPW_DEBUG_INFO("Scan completed, no valid APs matched "
4451 "[CFG 0x%08X]\n", priv->config);
4452 if (priv->config & CFG_STATIC_CHANNEL)
4453 IPW_DEBUG_INFO("Channel locked to %d\n",
4454 priv->channel);
4455 else
4456 IPW_DEBUG_INFO("Channel unlocked.\n");
4457 if (priv->config & CFG_STATIC_ESSID)
4458 IPW_DEBUG_INFO("ESSID locked to '%s'\n",
4459 escape_essid(priv->essid,
4460 priv->essid_len));
4461 else
4462 IPW_DEBUG_INFO("ESSID unlocked.\n");
4463 if (priv->config & CFG_STATIC_BSSID)
4464 IPW_DEBUG_INFO("BSSID locked to %d\n", priv->channel);
4465 else
4466 IPW_DEBUG_INFO("BSSID unlocked.\n");
4467 if (priv->capability & CAP_PRIVACY_ON)
4468 IPW_DEBUG_INFO("PRIVACY on\n");
4469 else
4470 IPW_DEBUG_INFO("PRIVACY off\n");
4471 IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
4472}
4473#else
4474#define ipw_debug_config(x) do {} while (0);
4475#endif
4476
4477static inline void ipw_set_fixed_rate(struct ipw_priv *priv,
4478 struct ieee80211_network *network)
4479{
4480 /* TODO: Verify that this works... */
4481 struct ipw_fixed_rate fr = {
4482 .tx_rates = priv->rates_mask
4483 };
4484 u32 reg;
4485 u16 mask = 0;
4486
4487 /* Identify 'current FW band' and match it with the fixed
4488 * Tx rates */
4489
4490 switch (priv->ieee->freq_band) {
4491 case IEEE80211_52GHZ_BAND: /* A only */
4492 /* IEEE_A */
4493 if (priv->rates_mask & ~IEEE80211_OFDM_RATES_MASK) {
4494 /* Invalid fixed rate mask */
4495 fr.tx_rates = 0;
4496 break;
4497 }
4498
4499 fr.tx_rates >>= IEEE80211_OFDM_SHIFT_MASK_A;
4500 break;
4501
4502 default: /* 2.4Ghz or Mixed */
4503 /* IEEE_B */
4504 if (network->mode == IEEE_B) {
4505 if (fr.tx_rates & ~IEEE80211_CCK_RATES_MASK) {
4506 /* Invalid fixed rate mask */
4507 fr.tx_rates = 0;
4508 }
4509 break;
4510 }
4511
4512 /* IEEE_G */
4513 if (fr.tx_rates & ~(IEEE80211_CCK_RATES_MASK |
4514 IEEE80211_OFDM_RATES_MASK)) {
4515 /* Invalid fixed rate mask */
4516 fr.tx_rates = 0;
4517 break;
4518 }
4519
4520 if (IEEE80211_OFDM_RATE_6MB_MASK & fr.tx_rates) {
4521 mask |= (IEEE80211_OFDM_RATE_6MB_MASK >> 1);
4522 fr.tx_rates &= ~IEEE80211_OFDM_RATE_6MB_MASK;
4523 }
4524
4525 if (IEEE80211_OFDM_RATE_9MB_MASK & fr.tx_rates) {
4526 mask |= (IEEE80211_OFDM_RATE_9MB_MASK >> 1);
4527 fr.tx_rates &= ~IEEE80211_OFDM_RATE_9MB_MASK;
4528 }
4529
4530 if (IEEE80211_OFDM_RATE_12MB_MASK & fr.tx_rates) {
4531 mask |= (IEEE80211_OFDM_RATE_12MB_MASK >> 1);
4532 fr.tx_rates &= ~IEEE80211_OFDM_RATE_12MB_MASK;
4533 }
4534
4535 fr.tx_rates |= mask;
4536 break;
4537 }
4538
4539 reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
4540 ipw_write_reg32(priv, reg, *(u32*)&fr);
4541}
4542
4543static int ipw_associate_network(struct ipw_priv *priv,
4544 struct ieee80211_network *network,
4545 struct ipw_supported_rates *rates,
4546 int roaming)
4547{
4548 int err;
4549
4550 if (priv->config & CFG_FIXED_RATE)
4551 ipw_set_fixed_rate(priv, network);
4552
4553 if (!(priv->config & CFG_STATIC_ESSID)) {
4554 priv->essid_len = min(network->ssid_len,
4555 (u8)IW_ESSID_MAX_SIZE);
4556 memcpy(priv->essid, network->ssid, priv->essid_len);
4557 }
4558
4559 network->last_associate = jiffies;
4560
4561 memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
4562 priv->assoc_request.channel = network->channel;
4563 if ((priv->capability & CAP_PRIVACY_ON) &&
4564 (priv->capability & CAP_SHARED_KEY)) {
4565 priv->assoc_request.auth_type = AUTH_SHARED_KEY;
4566 priv->assoc_request.auth_key = priv->sec.active_key;
4567 } else {
4568 priv->assoc_request.auth_type = AUTH_OPEN;
4569 priv->assoc_request.auth_key = 0;
4570 }
4571
4572 if (priv->capability & CAP_PRIVACY_ON)
4573 ipw_send_wep_keys(priv);
4574
4575 /*
4576 * It is valid for our ieee device to support multiple modes, but
4577 * when it comes to associating to a given network we have to choose
4578 * just one mode.
4579 */
4580 if (network->mode & priv->ieee->mode & IEEE_A)
4581 priv->assoc_request.ieee_mode = IPW_A_MODE;
4582 else if (network->mode & priv->ieee->mode & IEEE_G)
4583 priv->assoc_request.ieee_mode = IPW_G_MODE;
4584 else if (network->mode & priv->ieee->mode & IEEE_B)
4585 priv->assoc_request.ieee_mode = IPW_B_MODE;
4586
4587 IPW_DEBUG_ASSOC("%sssocation attempt: '%s', channel %d, "
4588 "802.11%c [%d], enc=%s%s%s%c%c\n",
4589 roaming ? "Rea" : "A",
4590 escape_essid(priv->essid, priv->essid_len),
4591 network->channel,
4592 ipw_modes[priv->assoc_request.ieee_mode],
4593 rates->num_rates,
4594 priv->capability & CAP_PRIVACY_ON ? "on " : "off",
4595 priv->capability & CAP_PRIVACY_ON ?
4596 (priv->capability & CAP_SHARED_KEY ? "(shared)" :
4597 "(open)") : "",
4598 priv->capability & CAP_PRIVACY_ON ? " key=" : "",
4599 priv->capability & CAP_PRIVACY_ON ?
4600 '1' + priv->sec.active_key : '.',
4601 priv->capability & CAP_PRIVACY_ON ?
4602 '.' : ' ');
4603
4604 priv->assoc_request.beacon_interval = network->beacon_interval;
4605 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
4606 (network->time_stamp[0] == 0) &&
4607 (network->time_stamp[1] == 0)) {
4608 priv->assoc_request.assoc_type = HC_IBSS_START;
4609 priv->assoc_request.assoc_tsf_msw = 0;
4610 priv->assoc_request.assoc_tsf_lsw = 0;
4611 } else {
4612 if (unlikely(roaming))
4613 priv->assoc_request.assoc_type = HC_REASSOCIATE;
4614 else
4615 priv->assoc_request.assoc_type = HC_ASSOCIATE;
4616 priv->assoc_request.assoc_tsf_msw = network->time_stamp[1];
4617 priv->assoc_request.assoc_tsf_lsw = network->time_stamp[0];
4618 }
4619
4620 memcpy(&priv->assoc_request.bssid, network->bssid, ETH_ALEN);
4621
4622 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
4623 memset(&priv->assoc_request.dest, 0xFF, ETH_ALEN);
4624 priv->assoc_request.atim_window = network->atim_window;
4625 } else {
4626 memcpy(&priv->assoc_request.dest, network->bssid,
4627 ETH_ALEN);
4628 priv->assoc_request.atim_window = 0;
4629 }
4630
4631 priv->assoc_request.capability = network->capability;
4632 priv->assoc_request.listen_interval = network->listen_interval;
4633
4634 err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
4635 if (err) {
4636 IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
4637 return err;
4638 }
4639
4640 rates->ieee_mode = priv->assoc_request.ieee_mode;
4641 rates->purpose = IPW_RATE_CONNECT;
4642 ipw_send_supported_rates(priv, rates);
4643
4644 if (priv->assoc_request.ieee_mode == IPW_G_MODE)
4645 priv->sys_config.dot11g_auto_detection = 1;
4646 else
4647 priv->sys_config.dot11g_auto_detection = 0;
4648 err = ipw_send_system_config(priv, &priv->sys_config);
4649 if (err) {
4650 IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
4651 return err;
4652 }
4653
4654 IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
4655 err = ipw_set_sensitivity(priv, network->stats.rssi);
4656 if (err) {
4657 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
4658 return err;
4659 }
4660
4661 /*
4662 * If preemption is enabled, it is possible for the association
4663 * to complete before we return from ipw_send_associate. Therefore
4664 * we have to be sure and update our priviate data first.
4665 */
4666 priv->channel = network->channel;
4667 memcpy(priv->bssid, network->bssid, ETH_ALEN);
4668 priv->status |= STATUS_ASSOCIATING;
4669 priv->status &= ~STATUS_SECURITY_UPDATED;
4670
4671 priv->assoc_network = network;
4672
4673 err = ipw_send_associate(priv, &priv->assoc_request);
4674 if (err) {
4675 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
4676 return err;
4677 }
4678
4679 IPW_DEBUG(IPW_DL_STATE, "associating: '%s' " MAC_FMT " \n",
4680 escape_essid(priv->essid, priv->essid_len),
4681 MAC_ARG(priv->bssid));
4682
4683 return 0;
4684}
4685
4686static void ipw_roam(void *data)
4687{
4688 struct ipw_priv *priv = data;
4689 struct ieee80211_network *network = NULL;
4690 struct ipw_network_match match = {
4691 .network = priv->assoc_network
4692 };
4693
4694 /* The roaming process is as follows:
4695 *
4696 * 1. Missed beacon threshold triggers the roaming process by
4697 * setting the status ROAM bit and requesting a scan.
4698 * 2. When the scan completes, it schedules the ROAM work
4699 * 3. The ROAM work looks at all of the known networks for one that
4700 * is a better network than the currently associated. If none
4701 * found, the ROAM process is over (ROAM bit cleared)
4702 * 4. If a better network is found, a disassociation request is
4703 * sent.
4704 * 5. When the disassociation completes, the roam work is again
4705 * scheduled. The second time through, the driver is no longer
4706 * associated, and the newly selected network is sent an
4707 * association request.
4708 * 6. At this point ,the roaming process is complete and the ROAM
4709 * status bit is cleared.
4710 */
4711
4712 /* If we are no longer associated, and the roaming bit is no longer
4713 * set, then we are not actively roaming, so just return */
4714 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
4715 return;
4716
4717 if (priv->status & STATUS_ASSOCIATED) {
4718 /* First pass through ROAM process -- look for a better
4719 * network */
4720 u8 rssi = priv->assoc_network->stats.rssi;
4721 priv->assoc_network->stats.rssi = -128;
4722 list_for_each_entry(network, &priv->ieee->network_list, list) {
4723 if (network != priv->assoc_network)
4724 ipw_best_network(priv, &match, network, 1);
4725 }
4726 priv->assoc_network->stats.rssi = rssi;
4727
4728 if (match.network == priv->assoc_network) {
4729 IPW_DEBUG_ASSOC("No better APs in this network to "
4730 "roam to.\n");
4731 priv->status &= ~STATUS_ROAMING;
4732 ipw_debug_config(priv);
4733 return;
4734 }
4735
4736 ipw_send_disassociate(priv, 1);
4737 priv->assoc_network = match.network;
4738
4739 return;
4740 }
4741
4742 /* Second pass through ROAM process -- request association */
4743 ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
4744 ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
4745 priv->status &= ~STATUS_ROAMING;
4746}
4747
4748static void ipw_associate(void *data)
4749{
4750 struct ipw_priv *priv = data;
4751
4752 struct ieee80211_network *network = NULL;
4753 struct ipw_network_match match = {
4754 .network = NULL
4755 };
4756 struct ipw_supported_rates *rates;
4757 struct list_head *element;
4758
4759 if (!(priv->config & CFG_ASSOCIATE) &&
4760 !(priv->config & (CFG_STATIC_ESSID |
4761 CFG_STATIC_CHANNEL |
4762 CFG_STATIC_BSSID))) {
4763 IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
4764 return;
4765 }
4766
4767 list_for_each_entry(network, &priv->ieee->network_list, list)
4768 ipw_best_network(priv, &match, network, 0);
4769
4770 network = match.network;
4771 rates = &match.rates;
4772
4773 if (network == NULL &&
4774 priv->ieee->iw_mode == IW_MODE_ADHOC &&
4775 priv->config & CFG_ADHOC_CREATE &&
4776 priv->config & CFG_STATIC_ESSID &&
4777 !list_empty(&priv->ieee->network_free_list)) {
4778 element = priv->ieee->network_free_list.next;
4779 network = list_entry(element, struct ieee80211_network,
4780 list);
4781 ipw_adhoc_create(priv, network);
4782 rates = &priv->rates;
4783 list_del(element);
4784 list_add_tail(&network->list, &priv->ieee->network_list);
4785 }
4786
4787 /* If we reached the end of the list, then we don't have any valid
4788 * matching APs */
4789 if (!network) {
4790 ipw_debug_config(priv);
4791
4792 queue_delayed_work(priv->workqueue, &priv->request_scan,
4793 SCAN_INTERVAL);
4794
4795 return;
4796 }
4797
4798 ipw_associate_network(priv, network, rates, 0);
4799}
4800
4801static inline void ipw_handle_data_packet(struct ipw_priv *priv,
4802 struct ipw_rx_mem_buffer *rxb,
4803 struct ieee80211_rx_stats *stats)
4804{
4805 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
4806
4807 /* We received data from the HW, so stop the watchdog */
4808 priv->net_dev->trans_start = jiffies;
4809
4810 /* We only process data packets if the
4811 * interface is open */
4812 if (unlikely((pkt->u.frame.length + IPW_RX_FRAME_SIZE) >
4813 skb_tailroom(rxb->skb))) {
4814 priv->ieee->stats.rx_errors++;
4815 priv->wstats.discard.misc++;
4816 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
4817 return;
4818 } else if (unlikely(!netif_running(priv->net_dev))) {
4819 priv->ieee->stats.rx_dropped++;
4820 priv->wstats.discard.misc++;
4821 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
4822 return;
4823 }
4824
4825 /* Advance skb->data to the start of the actual payload */
4826 skb_reserve(rxb->skb, (u32)&pkt->u.frame.data[0] - (u32)pkt);
4827
4828 /* Set the size of the skb to the size of the frame */
4829 skb_put(rxb->skb, pkt->u.frame.length);
4830
4831 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
4832
4833 if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
4834 priv->ieee->stats.rx_errors++;
4835 else /* ieee80211_rx succeeded, so it now owns the SKB */
4836 rxb->skb = NULL;
4837}
4838
4839
4840/*
4841 * Main entry function for recieving a packet with 80211 headers. This
4842 * should be called when ever the FW has notified us that there is a new
4843 * skb in the recieve queue.
4844 */
4845static void ipw_rx(struct ipw_priv *priv)
4846{
4847 struct ipw_rx_mem_buffer *rxb;
4848 struct ipw_rx_packet *pkt;
4849 struct ieee80211_hdr *header;
4850 u32 r, w, i;
4851 u8 network_packet;
4852
4853 r = ipw_read32(priv, CX2_RX_READ_INDEX);
4854 w = ipw_read32(priv, CX2_RX_WRITE_INDEX);
4855 i = (priv->rxq->processed + 1) % RX_QUEUE_SIZE;
4856
4857 while (i != r) {
4858 rxb = priv->rxq->queue[i];
4859#ifdef CONFIG_IPW_DEBUG
4860 if (unlikely(rxb == NULL)) {
4861 printk(KERN_CRIT "Queue not allocated!\n");
4862 break;
4863 }
4864#endif
4865 priv->rxq->queue[i] = NULL;
4866
4867 pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr,
4868 CX2_RX_BUF_SIZE,
4869 PCI_DMA_FROMDEVICE);
4870
4871 pkt = (struct ipw_rx_packet *)rxb->skb->data;
4872 IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
4873 pkt->header.message_type,
4874 pkt->header.rx_seq_num,
4875 pkt->header.control_bits);
4876
4877 switch (pkt->header.message_type) {
4878 case RX_FRAME_TYPE: /* 802.11 frame */ {
4879 struct ieee80211_rx_stats stats = {
4880 .rssi = pkt->u.frame.rssi_dbm -
4881 IPW_RSSI_TO_DBM,
4882 .signal = pkt->u.frame.signal,
4883 .rate = pkt->u.frame.rate,
4884 .mac_time = jiffies,
4885 .received_channel =
4886 pkt->u.frame.received_channel,
4887 .freq = (pkt->u.frame.control & (1<<0)) ?
4888 IEEE80211_24GHZ_BAND : IEEE80211_52GHZ_BAND,
4889 .len = pkt->u.frame.length,
4890 };
4891
4892 if (stats.rssi != 0)
4893 stats.mask |= IEEE80211_STATMASK_RSSI;
4894 if (stats.signal != 0)
4895 stats.mask |= IEEE80211_STATMASK_SIGNAL;
4896 if (stats.rate != 0)
4897 stats.mask |= IEEE80211_STATMASK_RATE;
4898
4899 priv->rx_packets++;
4900
4901#ifdef CONFIG_IPW_PROMISC
4902 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4903 ipw_handle_data_packet(priv, rxb, &stats);
4904 break;
4905 }
4906#endif
4907
4908 header = (struct ieee80211_hdr *)(rxb->skb->data +
4909 IPW_RX_FRAME_SIZE);
4910 /* TODO: Check Ad-Hoc dest/source and make sure
4911 * that we are actually parsing these packets
4912 * correctly -- we should probably use the
4913 * frame control of the packet and disregard
4914 * the current iw_mode */
4915 switch (priv->ieee->iw_mode) {
4916 case IW_MODE_ADHOC:
4917 network_packet =
4918 !memcmp(header->addr1,
4919 priv->net_dev->dev_addr,
4920 ETH_ALEN) ||
4921 !memcmp(header->addr3,
4922 priv->bssid, ETH_ALEN) ||
4923 is_broadcast_ether_addr(header->addr1) ||
4924 is_multicast_ether_addr(header->addr1);
4925 break;
4926
4927 case IW_MODE_INFRA:
4928 default:
4929 network_packet =
4930 !memcmp(header->addr3,
4931 priv->bssid, ETH_ALEN) ||
4932 !memcmp(header->addr1,
4933 priv->net_dev->dev_addr,
4934 ETH_ALEN) ||
4935 is_broadcast_ether_addr(header->addr1) ||
4936 is_multicast_ether_addr(header->addr1);
4937 break;
4938 }
4939
4940 if (network_packet && priv->assoc_network) {
4941 priv->assoc_network->stats.rssi = stats.rssi;
4942 average_add(&priv->average_rssi,
4943 stats.rssi);
4944 priv->last_rx_rssi = stats.rssi;
4945 }
4946
4947 IPW_DEBUG_RX("Frame: len=%u\n", pkt->u.frame.length);
4948
4949 if (pkt->u.frame.length < frame_hdr_len(header)) {
4950 IPW_DEBUG_DROP("Received packet is too small. "
4951 "Dropping.\n");
4952 priv->ieee->stats.rx_errors++;
4953 priv->wstats.discard.misc++;
4954 break;
4955 }
4956
4957 switch (WLAN_FC_GET_TYPE(header->frame_ctl)) {
4958 case IEEE80211_FTYPE_MGMT:
4959 ieee80211_rx_mgt(priv->ieee, header, &stats);
4960 if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
4961 ((WLAN_FC_GET_STYPE(header->frame_ctl) ==
4962 IEEE80211_STYPE_PROBE_RESP) ||
4963 (WLAN_FC_GET_STYPE(header->frame_ctl) ==
4964 IEEE80211_STYPE_BEACON)) &&
4965 !memcmp(header->addr3, priv->bssid, ETH_ALEN))
4966 ipw_add_station(priv, header->addr2);
4967 break;
4968
4969 case IEEE80211_FTYPE_CTL:
4970 break;
4971
4972 case IEEE80211_FTYPE_DATA:
4973 if (network_packet)
4974 ipw_handle_data_packet(priv, rxb, &stats);
4975 else
4976 IPW_DEBUG_DROP("Dropping: " MAC_FMT
4977 ", " MAC_FMT ", " MAC_FMT "\n",
4978 MAC_ARG(header->addr1), MAC_ARG(header->addr2),
4979 MAC_ARG(header->addr3));
4980 break;
4981 }
4982 break;
4983 }
4984
4985 case RX_HOST_NOTIFICATION_TYPE: {
4986 IPW_DEBUG_RX("Notification: subtype=%02X flags=%02X size=%d\n",
4987 pkt->u.notification.subtype,
4988 pkt->u.notification.flags,
4989 pkt->u.notification.size);
4990 ipw_rx_notification(priv, &pkt->u.notification);
4991 break;
4992 }
4993
4994 default:
4995 IPW_DEBUG_RX("Bad Rx packet of type %d\n",
4996 pkt->header.message_type);
4997 break;
4998 }
4999
5000 /* For now we just don't re-use anything. We can tweak this
5001 * later to try and re-use notification packets and SKBs that
5002 * fail to Rx correctly */
5003 if (rxb->skb != NULL) {
5004 dev_kfree_skb_any(rxb->skb);
5005 rxb->skb = NULL;
5006 }
5007
5008 pci_unmap_single(priv->pci_dev, rxb->dma_addr,
5009 CX2_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5010 list_add_tail(&rxb->list, &priv->rxq->rx_used);
5011
5012 i = (i + 1) % RX_QUEUE_SIZE;
5013 }
5014
5015 /* Backtrack one entry */
5016 priv->rxq->processed = (i ? i : RX_QUEUE_SIZE) - 1;
5017
5018 ipw_rx_queue_restock(priv);
5019}
5020
5021static void ipw_abort_scan(struct ipw_priv *priv)
5022{
5023 int err;
5024
5025 if (priv->status & STATUS_SCAN_ABORTING) {
5026 IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
5027 return;
5028 }
5029 priv->status |= STATUS_SCAN_ABORTING;
5030
5031 err = ipw_send_scan_abort(priv);
5032 if (err)
5033 IPW_DEBUG_HC("Request to abort scan failed.\n");
5034}
5035
5036static int ipw_request_scan(struct ipw_priv *priv)
5037{
5038 struct ipw_scan_request_ext scan;
5039 int channel_index = 0;
5040 int i, err, scan_type;
5041
5042 if (priv->status & STATUS_EXIT_PENDING) {
5043 IPW_DEBUG_SCAN("Aborting scan due to device shutdown\n");
5044 priv->status |= STATUS_SCAN_PENDING;
5045 return 0;
5046 }
5047
5048 if (priv->status & STATUS_SCANNING) {
5049 IPW_DEBUG_HC("Concurrent scan requested. Aborting first.\n");
5050 priv->status |= STATUS_SCAN_PENDING;
5051 ipw_abort_scan(priv);
5052 return 0;
5053 }
5054
5055 if (priv->status & STATUS_SCAN_ABORTING) {
5056 IPW_DEBUG_HC("Scan request while abort pending. Queuing.\n");
5057 priv->status |= STATUS_SCAN_PENDING;
5058 return 0;
5059 }
5060
5061 if (priv->status & STATUS_RF_KILL_MASK) {
5062 IPW_DEBUG_HC("Aborting scan due to RF Kill activation\n");
5063 priv->status |= STATUS_SCAN_PENDING;
5064 return 0;
5065 }
5066
5067 memset(&scan, 0, sizeof(scan));
5068
5069 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] = 20;
5070 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] = 20;
5071 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = 20;
5072
5073 scan.full_scan_index = ieee80211_get_scans(priv->ieee);
5074 /* If we are roaming, then make this a directed scan for the current
5075 * network. Otherwise, ensure that every other scan is a fast
5076 * channel hop scan */
5077 if ((priv->status & STATUS_ROAMING) || (
5078 !(priv->status & STATUS_ASSOCIATED) &&
5079 (priv->config & CFG_STATIC_ESSID) &&
5080 (scan.full_scan_index % 2))) {
5081 err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
5082 if (err) {
5083 IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
5084 return err;
5085 }
5086
5087 scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
5088 } else {
5089 scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
5090 }
5091
5092 if (priv->ieee->freq_band & IEEE80211_52GHZ_BAND) {
5093 int start = channel_index;
5094 for (i = 0; i < MAX_A_CHANNELS; i++) {
5095 if (band_a_active_channel[i] == 0)
5096 break;
5097 if ((priv->status & STATUS_ASSOCIATED) &&
5098 band_a_active_channel[i] == priv->channel)
5099 continue;
5100 channel_index++;
5101 scan.channels_list[channel_index] =
5102 band_a_active_channel[i];
5103 ipw_set_scan_type(&scan, channel_index, scan_type);
5104 }
5105
5106 if (start != channel_index) {
5107 scan.channels_list[start] = (u8)(IPW_A_MODE << 6) |
5108 (channel_index - start);
5109 channel_index++;
5110 }
5111 }
5112
5113 if (priv->ieee->freq_band & IEEE80211_24GHZ_BAND) {
5114 int start = channel_index;
5115 for (i = 0; i < MAX_B_CHANNELS; i++) {
5116 if (band_b_active_channel[i] == 0)
5117 break;
5118 if ((priv->status & STATUS_ASSOCIATED) &&
5119 band_b_active_channel[i] == priv->channel)
5120 continue;
5121 channel_index++;
5122 scan.channels_list[channel_index] =
5123 band_b_active_channel[i];
5124 ipw_set_scan_type(&scan, channel_index, scan_type);
5125 }
5126
5127 if (start != channel_index) {
5128 scan.channels_list[start] = (u8)(IPW_B_MODE << 6) |
5129 (channel_index - start);
5130 }
5131 }
5132
5133 err = ipw_send_scan_request_ext(priv, &scan);
5134 if (err) {
5135 IPW_DEBUG_HC("Sending scan command failed: %08X\n",
5136 err);
5137 return -EIO;
5138 }
5139
5140 priv->status |= STATUS_SCANNING;
5141 priv->status &= ~STATUS_SCAN_PENDING;
5142
5143 return 0;
5144}
5145
5146/*
5147 * This file defines the Wireless Extension handlers. It does not
5148 * define any methods of hardware manipulation and relies on the
5149 * functions defined in ipw_main to provide the HW interaction.
5150 *
5151 * The exception to this is the use of the ipw_get_ordinal()
5152 * function used to poll the hardware vs. making unecessary calls.
5153 *
5154 */
5155
5156static int ipw_wx_get_name(struct net_device *dev,
5157 struct iw_request_info *info,
5158 union iwreq_data *wrqu, char *extra)
5159{
5160 struct ipw_priv *priv = ieee80211_priv(dev);
5161 if (!(priv->status & STATUS_ASSOCIATED))
5162 strcpy(wrqu->name, "unassociated");
5163 else
5164 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11%c",
5165 ipw_modes[priv->assoc_request.ieee_mode]);
5166 IPW_DEBUG_WX("Name: %s\n", wrqu->name);
5167 return 0;
5168}
5169
5170static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
5171{
5172 if (channel == 0) {
5173 IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
5174 priv->config &= ~CFG_STATIC_CHANNEL;
5175 if (!(priv->status & (STATUS_SCANNING | STATUS_ASSOCIATED |
5176 STATUS_ASSOCIATING))) {
5177 IPW_DEBUG_ASSOC("Attempting to associate with new "
5178 "parameters.\n");
5179 ipw_associate(priv);
5180 }
5181
5182 return 0;
5183 }
5184
5185 priv->config |= CFG_STATIC_CHANNEL;
5186
5187 if (priv->channel == channel) {
5188 IPW_DEBUG_INFO(
5189 "Request to set channel to current value (%d)\n",
5190 channel);
5191 return 0;
5192 }
5193
5194 IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
5195 priv->channel = channel;
5196
5197 /* If we are currently associated, or trying to associate
5198 * then see if this is a new channel (causing us to disassociate) */
5199 if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
5200 IPW_DEBUG_ASSOC("Disassociating due to channel change.\n");
5201 ipw_disassociate(priv);
5202 } else {
5203 ipw_associate(priv);
5204 }
5205
5206 return 0;
5207}
5208
5209static int ipw_wx_set_freq(struct net_device *dev,
5210 struct iw_request_info *info,
5211 union iwreq_data *wrqu, char *extra)
5212{
5213 struct ipw_priv *priv = ieee80211_priv(dev);
5214 struct iw_freq *fwrq = &wrqu->freq;
5215
5216 /* if setting by freq convert to channel */
5217 if (fwrq->e == 1) {
5218 if ((fwrq->m >= (int) 2.412e8 &&
5219 fwrq->m <= (int) 2.487e8)) {
5220 int f = fwrq->m / 100000;
5221 int c = 0;
5222
5223 while ((c < REG_MAX_CHANNEL) &&
5224 (f != ipw_frequencies[c]))
5225 c++;
5226
5227 /* hack to fall through */
5228 fwrq->e = 0;
5229 fwrq->m = c + 1;
5230 }
5231 }
5232
5233 if (fwrq->e > 0 || fwrq->m > 1000)
5234 return -EOPNOTSUPP;
5235
5236 IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
5237 return ipw_set_channel(priv, (u8)fwrq->m);
5238
5239 return 0;
5240}
5241
5242
5243static int ipw_wx_get_freq(struct net_device *dev,
5244 struct iw_request_info *info,
5245 union iwreq_data *wrqu, char *extra)
5246{
5247 struct ipw_priv *priv = ieee80211_priv(dev);
5248
5249 wrqu->freq.e = 0;
5250
5251 /* If we are associated, trying to associate, or have a statically
5252 * configured CHANNEL then return that; otherwise return ANY */
5253 if (priv->config & CFG_STATIC_CHANNEL ||
5254 priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED))
5255 wrqu->freq.m = priv->channel;
5256 else
5257 wrqu->freq.m = 0;
5258
5259 IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
5260 return 0;
5261}
5262
5263static int ipw_wx_set_mode(struct net_device *dev,
5264 struct iw_request_info *info,
5265 union iwreq_data *wrqu, char *extra)
5266{
5267 struct ipw_priv *priv = ieee80211_priv(dev);
5268 int err = 0;
5269
5270 IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
5271
5272 if (wrqu->mode == priv->ieee->iw_mode)
5273 return 0;
5274
5275 switch (wrqu->mode) {
5276#ifdef CONFIG_IPW_PROMISC
5277 case IW_MODE_MONITOR:
5278#endif
5279 case IW_MODE_ADHOC:
5280 case IW_MODE_INFRA:
5281 break;
5282 case IW_MODE_AUTO:
5283 wrqu->mode = IW_MODE_INFRA;
5284 break;
5285 default:
5286 return -EINVAL;
5287 }
5288
5289#ifdef CONFIG_IPW_PROMISC
5290 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5291 priv->net_dev->type = ARPHRD_ETHER;
5292
5293 if (wrqu->mode == IW_MODE_MONITOR)
5294 priv->net_dev->type = ARPHRD_IEEE80211;
5295#endif /* CONFIG_IPW_PROMISC */
5296
5297#ifdef CONFIG_PM
5298 /* Free the existing firmware and reset the fw_loaded
5299 * flag so ipw_load() will bring in the new firmawre */
5300 if (fw_loaded) {
5301 fw_loaded = 0;
5302 }
5303
5304 release_firmware(bootfw);
5305 release_firmware(ucode);
5306 release_firmware(firmware);
5307 bootfw = ucode = firmware = NULL;
5308#endif
5309
5310 priv->ieee->iw_mode = wrqu->mode;
5311 ipw_adapter_restart(priv);
5312
5313 return err;
5314}
5315
5316static int ipw_wx_get_mode(struct net_device *dev,
5317 struct iw_request_info *info,
5318 union iwreq_data *wrqu, char *extra)
5319{
5320 struct ipw_priv *priv = ieee80211_priv(dev);
5321
5322 wrqu->mode = priv->ieee->iw_mode;
5323 IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
5324
5325 return 0;
5326}
5327
5328
5329#define DEFAULT_RTS_THRESHOLD 2304U
5330#define MIN_RTS_THRESHOLD 1U
5331#define MAX_RTS_THRESHOLD 2304U
5332#define DEFAULT_BEACON_INTERVAL 100U
5333#define DEFAULT_SHORT_RETRY_LIMIT 7U
5334#define DEFAULT_LONG_RETRY_LIMIT 4U
5335
5336/* Values are in microsecond */
5337static const s32 timeout_duration[] = {
5338 350000,
5339 250000,
5340 75000,
5341 37000,
5342 25000,
5343};
5344
5345static const s32 period_duration[] = {
5346 400000,
5347 700000,
5348 1000000,
5349 1000000,
5350 1000000
5351};
5352
5353static int ipw_wx_get_range(struct net_device *dev,
5354 struct iw_request_info *info,
5355 union iwreq_data *wrqu, char *extra)
5356{
5357 struct ipw_priv *priv = ieee80211_priv(dev);
5358 struct iw_range *range = (struct iw_range *)extra;
5359 u16 val;
5360 int i;
5361
5362 wrqu->data.length = sizeof(*range);
5363 memset(range, 0, sizeof(*range));
5364
5365 /* 54Mbs == ~27 Mb/s real (802.11g) */
5366 range->throughput = 27 * 1000 * 1000;
5367
5368 range->max_qual.qual = 100;
5369 /* TODO: Find real max RSSI and stick here */
5370 range->max_qual.level = 0;
5371 range->max_qual.noise = 0;
5372 range->max_qual.updated = 7; /* Updated all three */
5373
5374 range->avg_qual.qual = 70;
5375 /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
5376 range->avg_qual.level = 0; /* FIXME to real average level */
5377 range->avg_qual.noise = 0;
5378 range->avg_qual.updated = 7; /* Updated all three */
5379
5380 range->num_bitrates = min(priv->rates.num_rates, (u8)IW_MAX_BITRATES);
5381
5382 for (i = 0; i < range->num_bitrates; i++)
5383 range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
5384 500000;
5385
5386 range->max_rts = DEFAULT_RTS_THRESHOLD;
5387 range->min_frag = MIN_FRAG_THRESHOLD;
5388 range->max_frag = MAX_FRAG_THRESHOLD;
5389
5390 range->encoding_size[0] = 5;
5391 range->encoding_size[1] = 13;
5392 range->num_encoding_sizes = 2;
5393 range->max_encoding_tokens = WEP_KEYS;
5394
5395 /* Set the Wireless Extension versions */
5396 range->we_version_compiled = WIRELESS_EXT;
5397 range->we_version_source = 16;
5398
5399 range->num_channels = FREQ_COUNT;
5400
5401 val = 0;
5402 for (i = 0; i < FREQ_COUNT; i++) {
5403 range->freq[val].i = i + 1;
5404 range->freq[val].m = ipw_frequencies[i] * 100000;
5405 range->freq[val].e = 1;
5406 val++;
5407
5408 if (val == IW_MAX_FREQUENCIES)
5409 break;
5410 }
5411 range->num_frequency = val;
5412
5413 IPW_DEBUG_WX("GET Range\n");
5414 return 0;
5415}
5416
5417static int ipw_wx_set_wap(struct net_device *dev,
5418 struct iw_request_info *info,
5419 union iwreq_data *wrqu, char *extra)
5420{
5421 struct ipw_priv *priv = ieee80211_priv(dev);
5422
5423 static const unsigned char any[] = {
5424 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
5425 };
5426 static const unsigned char off[] = {
5427 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
5428 };
5429
5430 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
5431 return -EINVAL;
5432
5433 if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
5434 !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
5435 /* we disable mandatory BSSID association */
5436 IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
5437 priv->config &= ~CFG_STATIC_BSSID;
5438 if (!(priv->status & (STATUS_SCANNING | STATUS_ASSOCIATED |
5439 STATUS_ASSOCIATING))) {
5440 IPW_DEBUG_ASSOC("Attempting to associate with new "
5441 "parameters.\n");
5442 ipw_associate(priv);
5443 }
5444
5445 return 0;
5446 }
5447
5448 priv->config |= CFG_STATIC_BSSID;
5449 if (!memcmp(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN)) {
5450 IPW_DEBUG_WX("BSSID set to current BSSID.\n");
5451 return 0;
5452 }
5453
5454 IPW_DEBUG_WX("Setting mandatory BSSID to " MAC_FMT "\n",
5455 MAC_ARG(wrqu->ap_addr.sa_data));
5456
5457 memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
5458
5459 /* If we are currently associated, or trying to associate
5460 * then see if this is a new BSSID (causing us to disassociate) */
5461 if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
5462 IPW_DEBUG_ASSOC("Disassociating due to BSSID change.\n");
5463 ipw_disassociate(priv);
5464 } else {
5465 ipw_associate(priv);
5466 }
5467
5468 return 0;
5469}
5470
5471static int ipw_wx_get_wap(struct net_device *dev,
5472 struct iw_request_info *info,
5473 union iwreq_data *wrqu, char *extra)
5474{
5475 struct ipw_priv *priv = ieee80211_priv(dev);
5476 /* If we are associated, trying to associate, or have a statically
5477 * configured BSSID then return that; otherwise return ANY */
5478 if (priv->config & CFG_STATIC_BSSID ||
5479 priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
5480 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
5481 memcpy(wrqu->ap_addr.sa_data, &priv->bssid, ETH_ALEN);
5482 } else
5483 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
5484
5485 IPW_DEBUG_WX("Getting WAP BSSID: " MAC_FMT "\n",
5486 MAC_ARG(wrqu->ap_addr.sa_data));
5487 return 0;
5488}
5489
5490static int ipw_wx_set_essid(struct net_device *dev,
5491 struct iw_request_info *info,
5492 union iwreq_data *wrqu, char *extra)
5493{
5494 struct ipw_priv *priv = ieee80211_priv(dev);
5495 char *essid = ""; /* ANY */
5496 int length = 0;
5497
5498 if (wrqu->essid.flags && wrqu->essid.length) {
5499 length = wrqu->essid.length - 1;
5500 essid = extra;
5501 }
5502 if (length == 0) {
5503 IPW_DEBUG_WX("Setting ESSID to ANY\n");
5504 priv->config &= ~CFG_STATIC_ESSID;
5505 if (!(priv->status & (STATUS_SCANNING | STATUS_ASSOCIATED |
5506 STATUS_ASSOCIATING))) {
5507 IPW_DEBUG_ASSOC("Attempting to associate with new "
5508 "parameters.\n");
5509 ipw_associate(priv);
5510 }
5511
5512 return 0;
5513 }
5514
5515 length = min(length, IW_ESSID_MAX_SIZE);
5516
5517 priv->config |= CFG_STATIC_ESSID;
5518
5519 if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
5520 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
5521 return 0;
5522 }
5523
5524 IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n", escape_essid(essid, length),
5525 length);
5526
5527 priv->essid_len = length;
5528 memcpy(priv->essid, essid, priv->essid_len);
5529
5530 /* If we are currently associated, or trying to associate
5531 * then see if this is a new ESSID (causing us to disassociate) */
5532 if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
5533 IPW_DEBUG_ASSOC("Disassociating due to ESSID change.\n");
5534 ipw_disassociate(priv);
5535 } else {
5536 ipw_associate(priv);
5537 }
5538
5539 return 0;
5540}
5541
5542static int ipw_wx_get_essid(struct net_device *dev,
5543 struct iw_request_info *info,
5544 union iwreq_data *wrqu, char *extra)
5545{
5546 struct ipw_priv *priv = ieee80211_priv(dev);
5547
5548 /* If we are associated, trying to associate, or have a statically
5549 * configured ESSID then return that; otherwise return ANY */
5550 if (priv->config & CFG_STATIC_ESSID ||
5551 priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
5552 IPW_DEBUG_WX("Getting essid: '%s'\n",
5553 escape_essid(priv->essid, priv->essid_len));
5554 memcpy(extra, priv->essid, priv->essid_len);
5555 wrqu->essid.length = priv->essid_len;
5556 wrqu->essid.flags = 1; /* active */
5557 } else {
5558 IPW_DEBUG_WX("Getting essid: ANY\n");
5559 wrqu->essid.length = 0;
5560 wrqu->essid.flags = 0; /* active */
5561 }
5562
5563 return 0;
5564}
5565
5566static int ipw_wx_set_nick(struct net_device *dev,
5567 struct iw_request_info *info,
5568 union iwreq_data *wrqu, char *extra)
5569{
5570 struct ipw_priv *priv = ieee80211_priv(dev);
5571
5572 IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
5573 if (wrqu->data.length > IW_ESSID_MAX_SIZE)
5574 return -E2BIG;
5575
5576 wrqu->data.length = min((size_t)wrqu->data.length, sizeof(priv->nick));
5577 memset(priv->nick, 0, sizeof(priv->nick));
5578 memcpy(priv->nick, extra, wrqu->data.length);
5579 IPW_DEBUG_TRACE("<<\n");
5580 return 0;
5581
5582}
5583
5584
5585static int ipw_wx_get_nick(struct net_device *dev,
5586 struct iw_request_info *info,
5587 union iwreq_data *wrqu, char *extra)
5588{
5589 struct ipw_priv *priv = ieee80211_priv(dev);
5590 IPW_DEBUG_WX("Getting nick\n");
5591 wrqu->data.length = strlen(priv->nick) + 1;
5592 memcpy(extra, priv->nick, wrqu->data.length);
5593 wrqu->data.flags = 1; /* active */
5594 return 0;
5595}
5596
5597
5598static int ipw_wx_set_rate(struct net_device *dev,
5599 struct iw_request_info *info,
5600 union iwreq_data *wrqu, char *extra)
5601{
5602 IPW_DEBUG_WX("0x%p, 0x%p, 0x%p\n", dev, info, wrqu);
5603 return -EOPNOTSUPP;
5604}
5605
5606static int ipw_wx_get_rate(struct net_device *dev,
5607 struct iw_request_info *info,
5608 union iwreq_data *wrqu, char *extra)
5609{
5610 struct ipw_priv * priv = ieee80211_priv(dev);
5611 wrqu->bitrate.value = priv->last_rate;
5612
5613 IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
5614 return 0;
5615}
5616
5617
5618static int ipw_wx_set_rts(struct net_device *dev,
5619 struct iw_request_info *info,
5620 union iwreq_data *wrqu, char *extra)
5621{
5622 struct ipw_priv *priv = ieee80211_priv(dev);
5623
5624 if (wrqu->rts.disabled)
5625 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
5626 else {
5627 if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
5628 wrqu->rts.value > MAX_RTS_THRESHOLD)
5629 return -EINVAL;
5630
5631 priv->rts_threshold = wrqu->rts.value;
5632 }
5633
5634 ipw_send_rts_threshold(priv, priv->rts_threshold);
5635 IPW_DEBUG_WX("SET RTS Threshold -> %d \n", priv->rts_threshold);
5636 return 0;
5637}
5638
5639static int ipw_wx_get_rts(struct net_device *dev,
5640 struct iw_request_info *info,
5641 union iwreq_data *wrqu, char *extra)
5642{
5643 struct ipw_priv *priv = ieee80211_priv(dev);
5644 wrqu->rts.value = priv->rts_threshold;
5645 wrqu->rts.fixed = 0; /* no auto select */
5646 wrqu->rts.disabled =
5647 (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
5648
5649 IPW_DEBUG_WX("GET RTS Threshold -> %d \n", wrqu->rts.value);
5650 return 0;
5651}
5652
5653
5654static int ipw_wx_set_txpow(struct net_device *dev,
5655 struct iw_request_info *info,
5656 union iwreq_data *wrqu, char *extra)
5657{
5658 struct ipw_priv *priv = ieee80211_priv(dev);
5659 struct ipw_tx_power tx_power;
5660 int i;
5661
5662 if (ipw_radio_kill_sw(priv, wrqu->power.disabled))
5663 return -EINPROGRESS;
5664
5665 if (wrqu->power.flags != IW_TXPOW_DBM)
5666 return -EINVAL;
5667
5668 if ((wrqu->power.value > 20) ||
5669 (wrqu->power.value < -12))
5670 return -EINVAL;
5671
5672 priv->tx_power = wrqu->power.value;
5673
5674 memset(&tx_power, 0, sizeof(tx_power));
5675
5676 /* configure device for 'G' band */
5677 tx_power.ieee_mode = IPW_G_MODE;
5678 tx_power.num_channels = 11;
5679 for (i = 0; i < 11; i++) {
5680 tx_power.channels_tx_power[i].channel_number = i + 1;
5681 tx_power.channels_tx_power[i].tx_power = priv->tx_power;
5682 }
5683 if (ipw_send_tx_power(priv, &tx_power))
5684 goto error;
5685
5686 /* configure device to also handle 'B' band */
5687 tx_power.ieee_mode = IPW_B_MODE;
5688 if (ipw_send_tx_power(priv, &tx_power))
5689 goto error;
5690
5691 return 0;
5692
5693 error:
5694 return -EIO;
5695}
5696
5697
5698static int ipw_wx_get_txpow(struct net_device *dev,
5699 struct iw_request_info *info,
5700 union iwreq_data *wrqu, char *extra)
5701{
5702 struct ipw_priv *priv = ieee80211_priv(dev);
5703
5704 wrqu->power.value = priv->tx_power;
5705 wrqu->power.fixed = 1;
5706 wrqu->power.flags = IW_TXPOW_DBM;
5707 wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
5708
5709 IPW_DEBUG_WX("GET TX Power -> %s %d \n",
5710 wrqu->power.disabled ? "ON" : "OFF",
5711 wrqu->power.value);
5712
5713 return 0;
5714}
5715
5716static int ipw_wx_set_frag(struct net_device *dev,
5717 struct iw_request_info *info,
5718 union iwreq_data *wrqu, char *extra)
5719{
5720 struct ipw_priv *priv = ieee80211_priv(dev);
5721
5722 if (wrqu->frag.disabled)
5723 priv->ieee->fts = DEFAULT_FTS;
5724 else {
5725 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
5726 wrqu->frag.value > MAX_FRAG_THRESHOLD)
5727 return -EINVAL;
5728
5729 priv->ieee->fts = wrqu->frag.value & ~0x1;
5730 }
5731
5732 ipw_send_frag_threshold(priv, wrqu->frag.value);
5733 IPW_DEBUG_WX("SET Frag Threshold -> %d \n", wrqu->frag.value);
5734 return 0;
5735}
5736
5737static int ipw_wx_get_frag(struct net_device *dev,
5738 struct iw_request_info *info,
5739 union iwreq_data *wrqu, char *extra)
5740{
5741 struct ipw_priv *priv = ieee80211_priv(dev);
5742 wrqu->frag.value = priv->ieee->fts;
5743 wrqu->frag.fixed = 0; /* no auto select */
5744 wrqu->frag.disabled =
5745 (wrqu->frag.value == DEFAULT_FTS);
5746
5747 IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
5748
5749 return 0;
5750}
5751
5752static int ipw_wx_set_retry(struct net_device *dev,
5753 struct iw_request_info *info,
5754 union iwreq_data *wrqu, char *extra)
5755{
5756 IPW_DEBUG_WX("0x%p, 0x%p, 0x%p\n", dev, info, wrqu);
5757 return -EOPNOTSUPP;
5758}
5759
5760
5761static int ipw_wx_get_retry(struct net_device *dev,
5762 struct iw_request_info *info,
5763 union iwreq_data *wrqu, char *extra)
5764{
5765 IPW_DEBUG_WX("0x%p, 0x%p, 0x%p\n", dev, info, wrqu);
5766 return -EOPNOTSUPP;
5767}
5768
5769
5770static int ipw_wx_set_scan(struct net_device *dev,
5771 struct iw_request_info *info,
5772 union iwreq_data *wrqu, char *extra)
5773{
5774 struct ipw_priv *priv = ieee80211_priv(dev);
5775 IPW_DEBUG_WX("Start scan\n");
5776 if (ipw_request_scan(priv))
5777 return -EIO;
5778 return 0;
5779}
5780
5781static int ipw_wx_get_scan(struct net_device *dev,
5782 struct iw_request_info *info,
5783 union iwreq_data *wrqu, char *extra)
5784{
5785 struct ipw_priv *priv = ieee80211_priv(dev);
5786 return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
5787}
5788
5789static int ipw_wx_set_encode(struct net_device *dev,
5790 struct iw_request_info *info,
5791 union iwreq_data *wrqu, char *key)
5792{
5793 struct ipw_priv *priv = ieee80211_priv(dev);
5794 return ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
5795}
5796
5797static int ipw_wx_get_encode(struct net_device *dev,
5798 struct iw_request_info *info,
5799 union iwreq_data *wrqu, char *key)
5800{
5801 struct ipw_priv *priv = ieee80211_priv(dev);
5802 return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
5803}
5804
5805static int ipw_wx_set_power(struct net_device *dev,
5806 struct iw_request_info *info,
5807 union iwreq_data *wrqu, char *extra)
5808{
5809 struct ipw_priv *priv = ieee80211_priv(dev);
5810 int err;
5811
5812 if (wrqu->power.disabled) {
5813 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
5814 err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
5815 if (err) {
5816 IPW_DEBUG_WX("failed setting power mode.\n");
5817 return err;
5818 }
5819
5820 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
5821
5822 return 0;
5823 }
5824
5825 switch (wrqu->power.flags & IW_POWER_MODE) {
5826 case IW_POWER_ON: /* If not specified */
5827 case IW_POWER_MODE: /* If set all mask */
5828 case IW_POWER_ALL_R: /* If explicitely state all */
5829 break;
5830 default: /* Otherwise we don't support it */
5831 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
5832 wrqu->power.flags);
5833 return -EOPNOTSUPP;
5834 }
5835
5836 /* If the user hasn't specified a power management mode yet, default
5837 * to BATTERY */
5838 if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
5839 priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
5840 else
5841 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
5842 err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
5843 if (err) {
5844 IPW_DEBUG_WX("failed setting power mode.\n");
5845 return err;
5846 }
5847
5848 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n",
5849 priv->power_mode);
5850
5851 return 0;
5852}
5853
5854static int ipw_wx_get_power(struct net_device *dev,
5855 struct iw_request_info *info,
5856 union iwreq_data *wrqu, char *extra)
5857{
5858 struct ipw_priv *priv = ieee80211_priv(dev);
5859
5860 if (!(priv->power_mode & IPW_POWER_ENABLED)) {
5861 wrqu->power.disabled = 1;
5862 } else {
5863 wrqu->power.disabled = 0;
5864 }
5865
5866 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
5867
5868 return 0;
5869}
5870
5871static int ipw_wx_set_powermode(struct net_device *dev,
5872 struct iw_request_info *info,
5873 union iwreq_data *wrqu, char *extra)
5874{
5875 struct ipw_priv *priv = ieee80211_priv(dev);
5876 int mode = *(int *)extra;
5877 int err;
5878
5879 if ((mode < 1) || (mode > IPW_POWER_LIMIT)) {
5880 mode = IPW_POWER_AC;
5881 priv->power_mode = mode;
5882 } else {
5883 priv->power_mode = IPW_POWER_ENABLED | mode;
5884 }
5885
5886 if (priv->power_mode != mode) {
5887 err = ipw_send_power_mode(priv, mode);
5888
5889 if (err) {
5890 IPW_DEBUG_WX("failed setting power mode.\n");
5891 return err;
5892 }
5893 }
5894
5895 return 0;
5896}
5897
5898#define MAX_WX_STRING 80
5899static int ipw_wx_get_powermode(struct net_device *dev,
5900 struct iw_request_info *info,
5901 union iwreq_data *wrqu, char *extra)
5902{
5903 struct ipw_priv *priv = ieee80211_priv(dev);
5904 int level = IPW_POWER_LEVEL(priv->power_mode);
5905 char *p = extra;
5906
5907 p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
5908
5909 switch (level) {
5910 case IPW_POWER_AC:
5911 p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
5912 break;
5913 case IPW_POWER_BATTERY:
5914 p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
5915 break;
5916 default:
5917 p += snprintf(p, MAX_WX_STRING - (p - extra),
5918 "(Timeout %dms, Period %dms)",
5919 timeout_duration[level - 1] / 1000,
5920 period_duration[level - 1] / 1000);
5921 }
5922
5923 if (!(priv->power_mode & IPW_POWER_ENABLED))
5924 p += snprintf(p, MAX_WX_STRING - (p - extra)," OFF");
5925
5926 wrqu->data.length = p - extra + 1;
5927
5928 return 0;
5929}
5930
5931static int ipw_wx_set_wireless_mode(struct net_device *dev,
5932 struct iw_request_info *info,
5933 union iwreq_data *wrqu, char *extra)
5934{
5935 struct ipw_priv *priv = ieee80211_priv(dev);
5936 int mode = *(int *)extra;
5937 u8 band = 0, modulation = 0;
5938
5939 if (mode == 0 || mode & ~IEEE_MODE_MASK) {
5940 IPW_WARNING("Attempt to set invalid wireless mode: %d\n",
5941 mode);
5942 return -EINVAL;
5943 }
5944
5945 if (priv->adapter == IPW_2915ABG) {
5946 priv->ieee->abg_ture = 1;
5947 if (mode & IEEE_A) {
5948 band |= IEEE80211_52GHZ_BAND;
5949 modulation |= IEEE80211_OFDM_MODULATION;
5950 } else
5951 priv->ieee->abg_ture = 0;
5952 } else {
5953 if (mode & IEEE_A) {
5954 IPW_WARNING("Attempt to set 2200BG into "
5955 "802.11a mode\n");
5956 return -EINVAL;
5957 }
5958
5959 priv->ieee->abg_ture = 0;
5960 }
5961
5962 if (mode & IEEE_B) {
5963 band |= IEEE80211_24GHZ_BAND;
5964 modulation |= IEEE80211_CCK_MODULATION;
5965 } else
5966 priv->ieee->abg_ture = 0;
5967
5968 if (mode & IEEE_G) {
5969 band |= IEEE80211_24GHZ_BAND;
5970 modulation |= IEEE80211_OFDM_MODULATION;
5971 } else
5972 priv->ieee->abg_ture = 0;
5973
5974 priv->ieee->mode = mode;
5975 priv->ieee->freq_band = band;
5976 priv->ieee->modulation = modulation;
5977 init_supported_rates(priv, &priv->rates);
5978
5979 /* If we are currently associated, or trying to associate
5980 * then see if this is a new configuration (causing us to
5981 * disassociate) */
5982 if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
5983 /* The resulting association will trigger
5984 * the new rates to be sent to the device */
5985 IPW_DEBUG_ASSOC("Disassociating due to mode change.\n");
5986 ipw_disassociate(priv);
5987 } else
5988 ipw_send_supported_rates(priv, &priv->rates);
5989
5990 IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
5991 mode & IEEE_A ? 'a' : '.',
5992 mode & IEEE_B ? 'b' : '.',
5993 mode & IEEE_G ? 'g' : '.');
5994 return 0;
5995}
5996
5997static int ipw_wx_get_wireless_mode(struct net_device *dev,
5998 struct iw_request_info *info,
5999 union iwreq_data *wrqu, char *extra)
6000{
6001 struct ipw_priv *priv = ieee80211_priv(dev);
6002
6003 switch (priv->ieee->freq_band) {
6004 case IEEE80211_24GHZ_BAND:
6005 switch (priv->ieee->modulation) {
6006 case IEEE80211_CCK_MODULATION:
6007 strncpy(extra, "802.11b (2)", MAX_WX_STRING);
6008 break;
6009 case IEEE80211_OFDM_MODULATION:
6010 strncpy(extra, "802.11g (4)", MAX_WX_STRING);
6011 break;
6012 default:
6013 strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
6014 break;
6015 }
6016 break;
6017
6018 case IEEE80211_52GHZ_BAND:
6019 strncpy(extra, "802.11a (1)", MAX_WX_STRING);
6020 break;
6021
6022 default: /* Mixed Band */
6023 switch (priv->ieee->modulation) {
6024 case IEEE80211_CCK_MODULATION:
6025 strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
6026 break;
6027 case IEEE80211_OFDM_MODULATION:
6028 strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
6029 break;
6030 default:
6031 strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
6032 break;
6033 }
6034 break;
6035 }
6036
6037 IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
6038
6039 wrqu->data.length = strlen(extra) + 1;
6040
6041 return 0;
6042}
6043
6044#ifdef CONFIG_IPW_PROMISC
6045static int ipw_wx_set_promisc(struct net_device *dev,
6046 struct iw_request_info *info,
6047 union iwreq_data *wrqu, char *extra)
6048{
6049 struct ipw_priv *priv = ieee80211_priv(dev);
6050 int *parms = (int *)extra;
6051 int enable = (parms[0] > 0);
6052
6053 IPW_DEBUG_WX("SET PROMISC: %d %d\n", enable, parms[1]);
6054 if (enable) {
6055 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
6056 priv->net_dev->type = ARPHRD_IEEE80211;
6057 ipw_adapter_restart(priv);
6058 }
6059
6060 ipw_set_channel(priv, parms[1]);
6061 } else {
6062 if (priv->ieee->iw_mode != IW_MODE_MONITOR)
6063 return 0;
6064 priv->net_dev->type = ARPHRD_ETHER;
6065 ipw_adapter_restart(priv);
6066 }
6067 return 0;
6068}
6069
6070
6071static int ipw_wx_reset(struct net_device *dev,
6072 struct iw_request_info *info,
6073 union iwreq_data *wrqu, char *extra)
6074{
6075 struct ipw_priv *priv = ieee80211_priv(dev);
6076 IPW_DEBUG_WX("RESET\n");
6077 ipw_adapter_restart(priv);
6078 return 0;
6079}
6080#endif // CONFIG_IPW_PROMISC
6081
6082/* Rebase the WE IOCTLs to zero for the handler array */
6083#define IW_IOCTL(x) [(x)-SIOCSIWCOMMIT]
6084static iw_handler ipw_wx_handlers[] =
6085{
6086 IW_IOCTL(SIOCGIWNAME) = ipw_wx_get_name,
6087 IW_IOCTL(SIOCSIWFREQ) = ipw_wx_set_freq,
6088 IW_IOCTL(SIOCGIWFREQ) = ipw_wx_get_freq,
6089 IW_IOCTL(SIOCSIWMODE) = ipw_wx_set_mode,
6090 IW_IOCTL(SIOCGIWMODE) = ipw_wx_get_mode,
6091 IW_IOCTL(SIOCGIWRANGE) = ipw_wx_get_range,
6092 IW_IOCTL(SIOCSIWAP) = ipw_wx_set_wap,
6093 IW_IOCTL(SIOCGIWAP) = ipw_wx_get_wap,
6094 IW_IOCTL(SIOCSIWSCAN) = ipw_wx_set_scan,
6095 IW_IOCTL(SIOCGIWSCAN) = ipw_wx_get_scan,
6096 IW_IOCTL(SIOCSIWESSID) = ipw_wx_set_essid,
6097 IW_IOCTL(SIOCGIWESSID) = ipw_wx_get_essid,
6098 IW_IOCTL(SIOCSIWNICKN) = ipw_wx_set_nick,
6099 IW_IOCTL(SIOCGIWNICKN) = ipw_wx_get_nick,
6100 IW_IOCTL(SIOCSIWRATE) = ipw_wx_set_rate,
6101 IW_IOCTL(SIOCGIWRATE) = ipw_wx_get_rate,
6102 IW_IOCTL(SIOCSIWRTS) = ipw_wx_set_rts,
6103 IW_IOCTL(SIOCGIWRTS) = ipw_wx_get_rts,
6104 IW_IOCTL(SIOCSIWFRAG) = ipw_wx_set_frag,
6105 IW_IOCTL(SIOCGIWFRAG) = ipw_wx_get_frag,
6106 IW_IOCTL(SIOCSIWTXPOW) = ipw_wx_set_txpow,
6107 IW_IOCTL(SIOCGIWTXPOW) = ipw_wx_get_txpow,
6108 IW_IOCTL(SIOCSIWRETRY) = ipw_wx_set_retry,
6109 IW_IOCTL(SIOCGIWRETRY) = ipw_wx_get_retry,
6110 IW_IOCTL(SIOCSIWENCODE) = ipw_wx_set_encode,
6111 IW_IOCTL(SIOCGIWENCODE) = ipw_wx_get_encode,
6112 IW_IOCTL(SIOCSIWPOWER) = ipw_wx_set_power,
6113 IW_IOCTL(SIOCGIWPOWER) = ipw_wx_get_power,
6114};
6115
6116#define IPW_PRIV_SET_POWER SIOCIWFIRSTPRIV
6117#define IPW_PRIV_GET_POWER SIOCIWFIRSTPRIV+1
6118#define IPW_PRIV_SET_MODE SIOCIWFIRSTPRIV+2
6119#define IPW_PRIV_GET_MODE SIOCIWFIRSTPRIV+3
6120#define IPW_PRIV_SET_PROMISC SIOCIWFIRSTPRIV+4
6121#define IPW_PRIV_RESET SIOCIWFIRSTPRIV+5
6122
6123
6124static struct iw_priv_args ipw_priv_args[] = {
6125 {
6126 .cmd = IPW_PRIV_SET_POWER,
6127 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
6128 .name = "set_power"
6129 },
6130 {
6131 .cmd = IPW_PRIV_GET_POWER,
6132 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
6133 .name = "get_power"
6134 },
6135 {
6136 .cmd = IPW_PRIV_SET_MODE,
6137 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
6138 .name = "set_mode"
6139 },
6140 {
6141 .cmd = IPW_PRIV_GET_MODE,
6142 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
6143 .name = "get_mode"
6144 },
6145#ifdef CONFIG_IPW_PROMISC
6146 {
6147 IPW_PRIV_SET_PROMISC,
6148 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"
6149 },
6150 {
6151 IPW_PRIV_RESET,
6152 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"
6153 },
6154#endif /* CONFIG_IPW_PROMISC */
6155};
6156
6157static iw_handler ipw_priv_handler[] = {
6158 ipw_wx_set_powermode,
6159 ipw_wx_get_powermode,
6160 ipw_wx_set_wireless_mode,
6161 ipw_wx_get_wireless_mode,
6162#ifdef CONFIG_IPW_PROMISC
6163 ipw_wx_set_promisc,
6164 ipw_wx_reset,
6165#endif
6166};
6167
6168static struct iw_handler_def ipw_wx_handler_def =
6169{
6170 .standard = ipw_wx_handlers,
6171 .num_standard = ARRAY_SIZE(ipw_wx_handlers),
6172 .num_private = ARRAY_SIZE(ipw_priv_handler),
6173 .num_private_args = ARRAY_SIZE(ipw_priv_args),
6174 .private = ipw_priv_handler,
6175 .private_args = ipw_priv_args,
6176};
6177
6178
6179
6180
6181/*
6182 * Get wireless statistics.
6183 * Called by /proc/net/wireless
6184 * Also called by SIOCGIWSTATS
6185 */
6186static struct iw_statistics *ipw_get_wireless_stats(struct net_device * dev)
6187{
6188 struct ipw_priv *priv = ieee80211_priv(dev);
6189 struct iw_statistics *wstats;
6190
6191 wstats = &priv->wstats;
6192
6193 /* if hw is disabled, then ipw2100_get_ordinal() can't be called.
6194 * ipw2100_wx_wireless_stats seems to be called before fw is
6195 * initialized. STATUS_ASSOCIATED will only be set if the hw is up
6196 * and associated; if not associcated, the values are all meaningless
6197 * anyway, so set them all to NULL and INVALID */
6198 if (!(priv->status & STATUS_ASSOCIATED)) {
6199 wstats->miss.beacon = 0;
6200 wstats->discard.retries = 0;
6201 wstats->qual.qual = 0;
6202 wstats->qual.level = 0;
6203 wstats->qual.noise = 0;
6204 wstats->qual.updated = 7;
6205 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
6206 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
6207 return wstats;
6208 }
6209
6210 wstats->qual.qual = priv->quality;
6211 wstats->qual.level = average_value(&priv->average_rssi);
6212 wstats->qual.noise = average_value(&priv->average_noise);
6213 wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
6214 IW_QUAL_NOISE_UPDATED;
6215
6216 wstats->miss.beacon = average_value(&priv->average_missed_beacons);
6217 wstats->discard.retries = priv->last_tx_failures;
6218 wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
6219
6220/* if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
6221 goto fail_get_ordinal;
6222 wstats->discard.retries += tx_retry; */
6223
6224 return wstats;
6225}
6226
6227
6228/* net device stuff */
6229
6230static inline void init_sys_config(struct ipw_sys_config *sys_config)
6231{
6232 memset(sys_config, 0, sizeof(struct ipw_sys_config));
6233 sys_config->bt_coexistence = 1; /* We may need to look into prvStaBtConfig */
6234 sys_config->answer_broadcast_ssid_probe = 0;
6235 sys_config->accept_all_data_frames = 0;
6236 sys_config->accept_non_directed_frames = 1;
6237 sys_config->exclude_unicast_unencrypted = 0;
6238 sys_config->disable_unicast_decryption = 1;
6239 sys_config->exclude_multicast_unencrypted = 0;
6240 sys_config->disable_multicast_decryption = 1;
6241 sys_config->antenna_diversity = CFG_SYS_ANTENNA_BOTH;
6242 sys_config->pass_crc_to_host = 0; /* TODO: See if 1 gives us FCS */
6243 sys_config->dot11g_auto_detection = 0;
6244 sys_config->enable_cts_to_self = 0;
6245 sys_config->bt_coexist_collision_thr = 0;
6246 sys_config->pass_noise_stats_to_host = 1;
6247}
6248
6249static int ipw_net_open(struct net_device *dev)
6250{
6251 struct ipw_priv *priv = ieee80211_priv(dev);
6252 IPW_DEBUG_INFO("dev->open\n");
6253 /* we should be verifying the device is ready to be opened */
6254 if (!(priv->status & STATUS_RF_KILL_MASK) &&
6255 (priv->status & STATUS_ASSOCIATED))
6256 netif_start_queue(dev);
6257 return 0;
6258}
6259
6260static int ipw_net_stop(struct net_device *dev)
6261{
6262 IPW_DEBUG_INFO("dev->close\n");
6263 netif_stop_queue(dev);
6264 return 0;
6265}
6266
6267/*
6268todo:
6269
6270modify to send one tfd per fragment instead of using chunking. otherwise
6271we need to heavily modify the ieee80211_skb_to_txb.
6272*/
6273
6274static inline void ipw_tx_skb(struct ipw_priv *priv, struct ieee80211_txb *txb)
6275{
6276 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)
6277 txb->fragments[0]->data;
6278 int i = 0;
6279 struct tfd_frame *tfd;
6280 struct clx2_tx_queue *txq = &priv->txq[0];
6281 struct clx2_queue *q = &txq->q;
6282 u8 id, hdr_len, unicast;
6283 u16 remaining_bytes;
6284
6285 switch (priv->ieee->iw_mode) {
6286 case IW_MODE_ADHOC:
6287 hdr_len = IEEE80211_3ADDR_LEN;
6288 unicast = !is_broadcast_ether_addr(hdr->addr1) &&
6289 !is_multicast_ether_addr(hdr->addr1);
6290 id = ipw_find_station(priv, hdr->addr1);
6291 if (id == IPW_INVALID_STATION) {
6292 id = ipw_add_station(priv, hdr->addr1);
6293 if (id == IPW_INVALID_STATION) {
6294 IPW_WARNING("Attempt to send data to "
6295 "invalid cell: " MAC_FMT "\n",
6296 MAC_ARG(hdr->addr1));
6297 goto drop;
6298 }
6299 }
6300 break;
6301
6302 case IW_MODE_INFRA:
6303 default:
6304 unicast = !is_broadcast_ether_addr(hdr->addr3) &&
6305 !is_multicast_ether_addr(hdr->addr3);
6306 hdr_len = IEEE80211_3ADDR_LEN;
6307 id = 0;
6308 break;
6309 }
6310
6311 tfd = &txq->bd[q->first_empty];
6312 txq->txb[q->first_empty] = txb;
6313 memset(tfd, 0, sizeof(*tfd));
6314 tfd->u.data.station_number = id;
6315
6316 tfd->control_flags.message_type = TX_FRAME_TYPE;
6317 tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
6318
6319 tfd->u.data.cmd_id = DINO_CMD_TX;
6320 tfd->u.data.len = txb->payload_size;
6321 remaining_bytes = txb->payload_size;
6322 if (unlikely(!unicast))
6323 tfd->u.data.tx_flags = DCT_FLAG_NO_WEP;
6324 else
6325 tfd->u.data.tx_flags = DCT_FLAG_NO_WEP | DCT_FLAG_ACK_REQD;
6326
6327 if (priv->assoc_request.ieee_mode == IPW_B_MODE)
6328 tfd->u.data.tx_flags_ext = DCT_FLAG_EXT_MODE_CCK;
6329 else
6330 tfd->u.data.tx_flags_ext = DCT_FLAG_EXT_MODE_OFDM;
6331
6332 if (priv->config & CFG_PREAMBLE)
6333 tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREMBL;
6334
6335 memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
6336
6337 /* payload */
6338 tfd->u.data.num_chunks = min((u8)(NUM_TFD_CHUNKS - 2), txb->nr_frags);
6339 for (i = 0; i < tfd->u.data.num_chunks; i++) {
6340 IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
6341 i, tfd->u.data.num_chunks,
6342 txb->fragments[i]->len - hdr_len);
6343 printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
6344 txb->fragments[i]->len - hdr_len);
6345
6346 tfd->u.data.chunk_ptr[i] = pci_map_single(
6347 priv->pci_dev, txb->fragments[i]->data + hdr_len,
6348 txb->fragments[i]->len - hdr_len, PCI_DMA_TODEVICE);
6349 tfd->u.data.chunk_len[i] = txb->fragments[i]->len - hdr_len;
6350 }
6351
6352 if (i != txb->nr_frags) {
6353 struct sk_buff *skb;
6354 u16 remaining_bytes = 0;
6355 int j;
6356
6357 for (j = i; j < txb->nr_frags; j++)
6358 remaining_bytes += txb->fragments[j]->len - hdr_len;
6359
6360 printk(KERN_INFO "Trying to reallocate for %d bytes\n",
6361 remaining_bytes);
6362 skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
6363 if (skb != NULL) {
6364 tfd->u.data.chunk_len[i] = remaining_bytes;
6365 for (j = i; j < txb->nr_frags; j++) {
6366 int size = txb->fragments[j]->len - hdr_len;
6367 printk(KERN_INFO "Adding frag %d %d...\n",
6368 j, size);
6369 memcpy(skb_put(skb, size),
6370 txb->fragments[j]->data + hdr_len,
6371 size);
6372 }
6373 dev_kfree_skb_any(txb->fragments[i]);
6374 txb->fragments[i] = skb;
6375 tfd->u.data.chunk_ptr[i] = pci_map_single(
6376 priv->pci_dev, skb->data,
6377 tfd->u.data.chunk_len[i], PCI_DMA_TODEVICE);
6378 tfd->u.data.num_chunks++;
6379 }
6380 }
6381
6382 /* kick DMA */
6383 q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
6384 ipw_write32(priv, q->reg_w, q->first_empty);
6385
6386 if (ipw_queue_space(q) < q->high_mark)
6387 netif_stop_queue(priv->net_dev);
6388
6389 return;
6390
6391 drop:
6392 IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
6393 ieee80211_txb_free(txb);
6394}
6395
6396static int ipw_net_hard_start_xmit(struct ieee80211_txb *txb,
6397 struct net_device *dev)
6398{
6399 struct ipw_priv *priv = ieee80211_priv(dev);
6400 unsigned long flags;
6401
6402 IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
6403
6404 spin_lock_irqsave(&priv->lock, flags);
6405
6406 if (!(priv->status & STATUS_ASSOCIATED)) {
6407 IPW_DEBUG_INFO("Tx attempt while not associated.\n");
6408 priv->ieee->stats.tx_carrier_errors++;
6409 netif_stop_queue(dev);
6410 goto fail_unlock;
6411 }
6412
6413 ipw_tx_skb(priv, txb);
6414
6415 spin_unlock_irqrestore(&priv->lock, flags);
6416 return 0;
6417
6418 fail_unlock:
6419 spin_unlock_irqrestore(&priv->lock, flags);
6420 return 1;
6421}
6422
6423static struct net_device_stats *ipw_net_get_stats(struct net_device *dev)
6424{
6425 struct ipw_priv *priv = ieee80211_priv(dev);
6426
6427 priv->ieee->stats.tx_packets = priv->tx_packets;
6428 priv->ieee->stats.rx_packets = priv->rx_packets;
6429 return &priv->ieee->stats;
6430}
6431
6432static void ipw_net_set_multicast_list(struct net_device *dev)
6433{
6434
6435}
6436
6437static int ipw_net_set_mac_address(struct net_device *dev, void *p)
6438{
6439 struct ipw_priv *priv = ieee80211_priv(dev);
6440 struct sockaddr *addr = p;
6441 if (!is_valid_ether_addr(addr->sa_data))
6442 return -EADDRNOTAVAIL;
6443 priv->config |= CFG_CUSTOM_MAC;
6444 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
6445 printk(KERN_INFO "%s: Setting MAC to " MAC_FMT "\n",
6446 priv->net_dev->name, MAC_ARG(priv->mac_addr));
6447 ipw_adapter_restart(priv);
6448 return 0;
6449}
6450
6451static void ipw_ethtool_get_drvinfo(struct net_device *dev,
6452 struct ethtool_drvinfo *info)
6453{
6454 struct ipw_priv *p = ieee80211_priv(dev);
6455 char vers[64];
6456 char date[32];
6457 u32 len;
6458
6459 strcpy(info->driver, DRV_NAME);
6460 strcpy(info->version, DRV_VERSION);
6461
6462 len = sizeof(vers);
6463 ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
6464 len = sizeof(date);
6465 ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
6466
6467 snprintf(info->fw_version, sizeof(info->fw_version),"%s (%s)",
6468 vers, date);
6469 strcpy(info->bus_info, pci_name(p->pci_dev));
6470 info->eedump_len = CX2_EEPROM_IMAGE_SIZE;
6471}
6472
6473static u32 ipw_ethtool_get_link(struct net_device *dev)
6474{
6475 struct ipw_priv *priv = ieee80211_priv(dev);
6476 return (priv->status & STATUS_ASSOCIATED) != 0;
6477}
6478
6479static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
6480{
6481 return CX2_EEPROM_IMAGE_SIZE;
6482}
6483
6484static int ipw_ethtool_get_eeprom(struct net_device *dev,
6485 struct ethtool_eeprom *eeprom, u8 *bytes)
6486{
6487 struct ipw_priv *p = ieee80211_priv(dev);
6488
6489 if (eeprom->offset + eeprom->len > CX2_EEPROM_IMAGE_SIZE)
6490 return -EINVAL;
6491
6492 memcpy(bytes, &((u8 *)p->eeprom)[eeprom->offset], eeprom->len);
6493 return 0;
6494}
6495
6496static int ipw_ethtool_set_eeprom(struct net_device *dev,
6497 struct ethtool_eeprom *eeprom, u8 *bytes)
6498{
6499 struct ipw_priv *p = ieee80211_priv(dev);
6500 int i;
6501
6502 if (eeprom->offset + eeprom->len > CX2_EEPROM_IMAGE_SIZE)
6503 return -EINVAL;
6504
6505 memcpy(&((u8 *)p->eeprom)[eeprom->offset], bytes, eeprom->len);
6506 for (i = IPW_EEPROM_DATA;
6507 i < IPW_EEPROM_DATA + CX2_EEPROM_IMAGE_SIZE;
6508 i++)
6509 ipw_write8(p, i, p->eeprom[i]);
6510
6511 return 0;
6512}
6513
6514static struct ethtool_ops ipw_ethtool_ops = {
6515 .get_link = ipw_ethtool_get_link,
6516 .get_drvinfo = ipw_ethtool_get_drvinfo,
6517 .get_eeprom_len = ipw_ethtool_get_eeprom_len,
6518 .get_eeprom = ipw_ethtool_get_eeprom,
6519 .set_eeprom = ipw_ethtool_set_eeprom,
6520};
6521
6522static irqreturn_t ipw_isr(int irq, void *data, struct pt_regs *regs)
6523{
6524 struct ipw_priv *priv = data;
6525 u32 inta, inta_mask;
6526
6527 if (!priv)
6528 return IRQ_NONE;
6529
6530 spin_lock(&priv->lock);
6531
6532 if (!(priv->status & STATUS_INT_ENABLED)) {
6533 /* Shared IRQ */
6534 goto none;
6535 }
6536
6537 inta = ipw_read32(priv, CX2_INTA_RW);
6538 inta_mask = ipw_read32(priv, CX2_INTA_MASK_R);
6539
6540 if (inta == 0xFFFFFFFF) {
6541 /* Hardware disappeared */
6542 IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
6543 goto none;
6544 }
6545
6546 if (!(inta & (CX2_INTA_MASK_ALL & inta_mask))) {
6547 /* Shared interrupt */
6548 goto none;
6549 }
6550
6551 /* tell the device to stop sending interrupts */
6552 ipw_disable_interrupts(priv);
6553
6554 /* ack current interrupts */
6555 inta &= (CX2_INTA_MASK_ALL & inta_mask);
6556 ipw_write32(priv, CX2_INTA_RW, inta);
6557
6558 /* Cache INTA value for our tasklet */
6559 priv->isr_inta = inta;
6560
6561 tasklet_schedule(&priv->irq_tasklet);
6562
6563 spin_unlock(&priv->lock);
6564
6565 return IRQ_HANDLED;
6566 none:
6567 spin_unlock(&priv->lock);
6568 return IRQ_NONE;
6569}
6570
6571static void ipw_rf_kill(void *adapter)
6572{
6573 struct ipw_priv *priv = adapter;
6574 unsigned long flags;
6575
6576 spin_lock_irqsave(&priv->lock, flags);
6577
6578 if (rf_kill_active(priv)) {
6579 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
6580 if (priv->workqueue)
6581 queue_delayed_work(priv->workqueue,
6582 &priv->rf_kill, 2 * HZ);
6583 goto exit_unlock;
6584 }
6585
6586 /* RF Kill is now disabled, so bring the device back up */
6587
6588 if (!(priv->status & STATUS_RF_KILL_MASK)) {
6589 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
6590 "device\n");
6591
6592 /* we can not do an adapter restart while inside an irq lock */
6593 queue_work(priv->workqueue, &priv->adapter_restart);
6594 } else
6595 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still "
6596 "enabled\n");
6597
6598 exit_unlock:
6599 spin_unlock_irqrestore(&priv->lock, flags);
6600}
6601
6602static int ipw_setup_deferred_work(struct ipw_priv *priv)
6603{
6604 int ret = 0;
6605
6606#ifdef CONFIG_SOFTWARE_SUSPEND2
6607 priv->workqueue = create_workqueue(DRV_NAME, 0);
6608#else
6609 priv->workqueue = create_workqueue(DRV_NAME);
6610#endif
6611 init_waitqueue_head(&priv->wait_command_queue);
6612
6613 INIT_WORK(&priv->adhoc_check, ipw_adhoc_check, priv);
6614 INIT_WORK(&priv->associate, ipw_associate, priv);
6615 INIT_WORK(&priv->disassociate, ipw_disassociate, priv);
6616 INIT_WORK(&priv->rx_replenish, ipw_rx_queue_replenish, priv);
6617 INIT_WORK(&priv->adapter_restart, ipw_adapter_restart, priv);
6618 INIT_WORK(&priv->rf_kill, ipw_rf_kill, priv);
6619 INIT_WORK(&priv->up, (void (*)(void *))ipw_up, priv);
6620 INIT_WORK(&priv->down, (void (*)(void *))ipw_down, priv);
6621 INIT_WORK(&priv->request_scan,
6622 (void (*)(void *))ipw_request_scan, priv);
6623 INIT_WORK(&priv->gather_stats,
6624 (void (*)(void *))ipw_gather_stats, priv);
6625 INIT_WORK(&priv->abort_scan, (void (*)(void *))ipw_abort_scan, priv);
6626 INIT_WORK(&priv->roam, ipw_roam, priv);
6627 INIT_WORK(&priv->scan_check, ipw_scan_check, priv);
6628
6629 tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
6630 ipw_irq_tasklet, (unsigned long)priv);
6631
6632 return ret;
6633}
6634
6635
6636static void shim__set_security(struct net_device *dev,
6637 struct ieee80211_security *sec)
6638{
6639 struct ipw_priv *priv = ieee80211_priv(dev);
6640 int i;
6641
6642 for (i = 0; i < 4; i++) {
6643 if (sec->flags & (1 << i)) {
6644 priv->sec.key_sizes[i] = sec->key_sizes[i];
6645 if (sec->key_sizes[i] == 0)
6646 priv->sec.flags &= ~(1 << i);
6647 else
6648 memcpy(priv->sec.keys[i], sec->keys[i],
6649 sec->key_sizes[i]);
6650 priv->sec.flags |= (1 << i);
6651 priv->status |= STATUS_SECURITY_UPDATED;
6652 }
6653 }
6654
6655 if ((sec->flags & SEC_ACTIVE_KEY) &&
6656 priv->sec.active_key != sec->active_key) {
6657 if (sec->active_key <= 3) {
6658 priv->sec.active_key = sec->active_key;
6659 priv->sec.flags |= SEC_ACTIVE_KEY;
6660 } else
6661 priv->sec.flags &= ~SEC_ACTIVE_KEY;
6662 priv->status |= STATUS_SECURITY_UPDATED;
6663 }
6664
6665 if ((sec->flags & SEC_AUTH_MODE) &&
6666 (priv->sec.auth_mode != sec->auth_mode)) {
6667 priv->sec.auth_mode = sec->auth_mode;
6668 priv->sec.flags |= SEC_AUTH_MODE;
6669 if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
6670 priv->capability |= CAP_SHARED_KEY;
6671 else
6672 priv->capability &= ~CAP_SHARED_KEY;
6673 priv->status |= STATUS_SECURITY_UPDATED;
6674 }
6675
6676 if (sec->flags & SEC_ENABLED &&
6677 priv->sec.enabled != sec->enabled) {
6678 priv->sec.flags |= SEC_ENABLED;
6679 priv->sec.enabled = sec->enabled;
6680 priv->status |= STATUS_SECURITY_UPDATED;
6681 if (sec->enabled)
6682 priv->capability |= CAP_PRIVACY_ON;
6683 else
6684 priv->capability &= ~CAP_PRIVACY_ON;
6685 }
6686
6687 if (sec->flags & SEC_LEVEL &&
6688 priv->sec.level != sec->level) {
6689 priv->sec.level = sec->level;
6690 priv->sec.flags |= SEC_LEVEL;
6691 priv->status |= STATUS_SECURITY_UPDATED;
6692 }
6693
6694 /* To match current functionality of ipw2100 (which works well w/
6695 * various supplicants, we don't force a disassociate if the
6696 * privacy capability changes ... */
6697#if 0
6698 if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
6699 (((priv->assoc_request.capability &
6700 WLAN_CAPABILITY_PRIVACY) && !sec->enabled) ||
6701 (!(priv->assoc_request.capability &
6702 WLAN_CAPABILITY_PRIVACY) && sec->enabled))) {
6703 IPW_DEBUG_ASSOC("Disassociating due to capability "
6704 "change.\n");
6705 ipw_disassociate(priv);
6706 }
6707#endif
6708}
6709
6710static int init_supported_rates(struct ipw_priv *priv,
6711 struct ipw_supported_rates *rates)
6712{
6713 /* TODO: Mask out rates based on priv->rates_mask */
6714
6715 memset(rates, 0, sizeof(*rates));
6716 /* configure supported rates */
6717 switch (priv->ieee->freq_band) {
6718 case IEEE80211_52GHZ_BAND:
6719 rates->ieee_mode = IPW_A_MODE;
6720 rates->purpose = IPW_RATE_CAPABILITIES;
6721 ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
6722 IEEE80211_OFDM_DEFAULT_RATES_MASK);
6723 break;
6724
6725 default: /* Mixed or 2.4Ghz */
6726 rates->ieee_mode = IPW_G_MODE;
6727 rates->purpose = IPW_RATE_CAPABILITIES;
6728 ipw_add_cck_scan_rates(rates, IEEE80211_CCK_MODULATION,
6729 IEEE80211_CCK_DEFAULT_RATES_MASK);
6730 if (priv->ieee->modulation & IEEE80211_OFDM_MODULATION) {
6731 ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
6732 IEEE80211_OFDM_DEFAULT_RATES_MASK);
6733 }
6734 break;
6735 }
6736
6737 return 0;
6738}
6739
6740static int ipw_config(struct ipw_priv *priv)
6741{
6742 int i;
6743 struct ipw_tx_power tx_power;
6744
6745 memset(&priv->sys_config, 0, sizeof(priv->sys_config));
6746 memset(&tx_power, 0, sizeof(tx_power));
6747
6748 /* This is only called from ipw_up, which resets/reloads the firmware
6749 so, we don't need to first disable the card before we configure
6750 it */
6751
6752 /* configure device for 'G' band */
6753 tx_power.ieee_mode = IPW_G_MODE;
6754 tx_power.num_channels = 11;
6755 for (i = 0; i < 11; i++) {
6756 tx_power.channels_tx_power[i].channel_number = i + 1;
6757 tx_power.channels_tx_power[i].tx_power = priv->tx_power;
6758 }
6759 if (ipw_send_tx_power(priv, &tx_power))
6760 goto error;
6761
6762 /* configure device to also handle 'B' band */
6763 tx_power.ieee_mode = IPW_B_MODE;
6764 if (ipw_send_tx_power(priv, &tx_power))
6765 goto error;
6766
6767 /* initialize adapter address */
6768 if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
6769 goto error;
6770
6771 /* set basic system config settings */
6772 init_sys_config(&priv->sys_config);
6773 if (ipw_send_system_config(priv, &priv->sys_config))
6774 goto error;
6775
6776 init_supported_rates(priv, &priv->rates);
6777 if (ipw_send_supported_rates(priv, &priv->rates))
6778 goto error;
6779
6780 /* Set request-to-send threshold */
6781 if (priv->rts_threshold) {
6782 if (ipw_send_rts_threshold(priv, priv->rts_threshold))
6783 goto error;
6784 }
6785
6786 if (ipw_set_random_seed(priv))
6787 goto error;
6788
6789 /* final state transition to the RUN state */
6790 if (ipw_send_host_complete(priv))
6791 goto error;
6792
6793 /* If configured to try and auto-associate, kick off a scan */
6794 if ((priv->config & CFG_ASSOCIATE) && ipw_request_scan(priv))
6795 goto error;
6796
6797 return 0;
6798
6799 error:
6800 return -EIO;
6801}
6802
6803#define MAX_HW_RESTARTS 5
6804static int ipw_up(struct ipw_priv *priv)
6805{
6806 int rc, i;
6807
6808 if (priv->status & STATUS_EXIT_PENDING)
6809 return -EIO;
6810
6811 for (i = 0; i < MAX_HW_RESTARTS; i++ ) {
6812 /* Load the microcode, firmware, and eeprom.
6813 * Also start the clocks. */
6814 rc = ipw_load(priv);
6815 if (rc) {
6816 IPW_ERROR("Unable to load firmware: 0x%08X\n",
6817 rc);
6818 return rc;
6819 }
6820
6821 ipw_init_ordinals(priv);
6822 if (!(priv->config & CFG_CUSTOM_MAC))
6823 eeprom_parse_mac(priv, priv->mac_addr);
6824 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
6825
6826 if (priv->status & STATUS_RF_KILL_MASK)
6827 return 0;
6828
6829 rc = ipw_config(priv);
6830 if (!rc) {
6831 IPW_DEBUG_INFO("Configured device on count %i\n", i);
6832 priv->notif_missed_beacons = 0;
6833 netif_start_queue(priv->net_dev);
6834 return 0;
6835 } else {
6836 IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n",
6837 rc);
6838 }
6839
6840 IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
6841 i, MAX_HW_RESTARTS);
6842
6843 /* We had an error bringing up the hardware, so take it
6844 * all the way back down so we can try again */
6845 ipw_down(priv);
6846 }
6847
6848 /* tried to restart and config the device for as long as our
6849 * patience could withstand */
6850 IPW_ERROR("Unable to initialize device after %d attempts.\n",
6851 i);
6852 return -EIO;
6853}
6854
6855static void ipw_down(struct ipw_priv *priv)
6856{
6857 /* Attempt to disable the card */
6858#if 0
6859 ipw_send_card_disable(priv, 0);
6860#endif
6861
6862 /* tell the device to stop sending interrupts */
6863 ipw_disable_interrupts(priv);
6864
6865 /* Clear all bits but the RF Kill */
6866 priv->status &= STATUS_RF_KILL_MASK;
6867
6868 netif_carrier_off(priv->net_dev);
6869 netif_stop_queue(priv->net_dev);
6870
6871 ipw_stop_nic(priv);
6872}
6873
6874/* Called by register_netdev() */
6875static int ipw_net_init(struct net_device *dev)
6876{
6877 struct ipw_priv *priv = ieee80211_priv(dev);
6878
6879 if (priv->status & STATUS_RF_KILL_SW) {
6880 IPW_WARNING("Radio disabled by module parameter.\n");
6881 return 0;
6882 } else if (rf_kill_active(priv)) {
6883 IPW_WARNING("Radio Frequency Kill Switch is On:\n"
6884 "Kill switch must be turned off for "
6885 "wireless networking to work.\n");
6886 queue_delayed_work(priv->workqueue, &priv->rf_kill, 2 * HZ);
6887 return 0;
6888 }
6889
6890 if (ipw_up(priv))
6891 return -EIO;
6892
6893 return 0;
6894}
6895
6896/* PCI driver stuff */
6897static struct pci_device_id card_ids[] = {
6898 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
6899 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
6900 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
6901 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
6902 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
6903 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
6904 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
6905 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
6906 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
6907 {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
6908 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
6909 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
6910 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
6911 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
6912 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
6913 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
6914 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
6915 {PCI_VENDOR_ID_INTEL, 0x104f, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
6916 {PCI_VENDOR_ID_INTEL, 0x4220, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
6917 {PCI_VENDOR_ID_INTEL, 0x4221, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* 2225BG */
6918 {PCI_VENDOR_ID_INTEL, 0x4223, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
6919 {PCI_VENDOR_ID_INTEL, 0x4224, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
6920
6921 /* required last entry */
6922 {0,}
6923};
6924
6925MODULE_DEVICE_TABLE(pci, card_ids);
6926
6927static struct attribute *ipw_sysfs_entries[] = {
6928 &dev_attr_rf_kill.attr,
6929 &dev_attr_direct_dword.attr,
6930 &dev_attr_indirect_byte.attr,
6931 &dev_attr_indirect_dword.attr,
6932 &dev_attr_mem_gpio_reg.attr,
6933 &dev_attr_command_event_reg.attr,
6934 &dev_attr_nic_type.attr,
6935 &dev_attr_status.attr,
6936 &dev_attr_cfg.attr,
6937 &dev_attr_dump_errors.attr,
6938 &dev_attr_dump_events.attr,
6939 &dev_attr_eeprom_delay.attr,
6940 &dev_attr_ucode_version.attr,
6941 &dev_attr_rtc.attr,
6942 NULL
6943};
6944
6945static struct attribute_group ipw_attribute_group = {
6946 .name = NULL, /* put in device directory */
6947 .attrs = ipw_sysfs_entries,
6948};
6949
6950static int ipw_pci_probe(struct pci_dev *pdev,
6951 const struct pci_device_id *ent)
6952{
6953 int err = 0;
6954 struct net_device *net_dev;
6955 void __iomem *base;
6956 u32 length, val;
6957 struct ipw_priv *priv;
6958 int band, modulation;
6959
6960 net_dev = alloc_ieee80211(sizeof(struct ipw_priv));
6961 if (net_dev == NULL) {
6962 err = -ENOMEM;
6963 goto out;
6964 }
6965
6966 priv = ieee80211_priv(net_dev);
6967 priv->ieee = netdev_priv(net_dev);
6968 priv->net_dev = net_dev;
6969 priv->pci_dev = pdev;
6970#ifdef CONFIG_IPW_DEBUG
6971 ipw_debug_level = debug;
6972#endif
6973 spin_lock_init(&priv->lock);
6974
6975 if (pci_enable_device(pdev)) {
6976 err = -ENODEV;
6977 goto out_free_ieee80211;
6978 }
6979
6980 pci_set_master(pdev);
6981
6982#define PCI_DMA_32BIT 0x00000000ffffffffULL
6983 err = pci_set_dma_mask(pdev, PCI_DMA_32BIT);
6984 if (!err)
6985 err = pci_set_consistent_dma_mask(pdev, PCI_DMA_32BIT);
6986 if (err) {
6987 printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
6988 goto out_pci_disable_device;
6989 }
6990
6991 pci_set_drvdata(pdev, priv);
6992
6993 err = pci_request_regions(pdev, DRV_NAME);
6994 if (err)
6995 goto out_pci_disable_device;
6996
6997 /* We disable the RETRY_TIMEOUT register (0x41) to keep
6998 * PCI Tx retries from interfering with C3 CPU state */
6999 pci_read_config_dword(pdev, 0x40, &val);
7000 if ((val & 0x0000ff00) != 0)
7001 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
7002
7003 length = pci_resource_len(pdev, 0);
7004 priv->hw_len = length;
7005
7006 base = ioremap_nocache(pci_resource_start(pdev, 0), length);
7007 if (!base) {
7008 err = -ENODEV;
7009 goto out_pci_release_regions;
7010 }
7011
7012 priv->hw_base = base;
7013 IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
7014 IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
7015
7016 err = ipw_setup_deferred_work(priv);
7017 if (err) {
7018 IPW_ERROR("Unable to setup deferred work\n");
7019 goto out_iounmap;
7020 }
7021
7022 /* Initialize module parameter values here */
7023 if (ifname)
7024 strncpy(net_dev->name, ifname, IFNAMSIZ);
7025
7026 if (associate)
7027 priv->config |= CFG_ASSOCIATE;
7028 else
7029 IPW_DEBUG_INFO("Auto associate disabled.\n");
7030
7031 if (auto_create)
7032 priv->config |= CFG_ADHOC_CREATE;
7033 else
7034 IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
7035
7036 if (disable) {
7037 priv->status |= STATUS_RF_KILL_SW;
7038 IPW_DEBUG_INFO("Radio disabled.\n");
7039 }
7040
7041 if (channel != 0) {
7042 priv->config |= CFG_STATIC_CHANNEL;
7043 priv->channel = channel;
7044 IPW_DEBUG_INFO("Bind to static channel %d\n", channel);
7045 IPW_DEBUG_INFO("Bind to static channel %d\n", channel);
7046 /* TODO: Validate that provided channel is in range */
7047 }
7048
7049 switch (mode) {
7050 case 1:
7051 priv->ieee->iw_mode = IW_MODE_ADHOC;
7052 break;
7053#ifdef CONFIG_IPW_PROMISC
7054 case 2:
7055 priv->ieee->iw_mode = IW_MODE_MONITOR;
7056 break;
7057#endif
7058 default:
7059 case 0:
7060 priv->ieee->iw_mode = IW_MODE_INFRA;
7061 break;
7062 }
7063
7064 if ((priv->pci_dev->device == 0x4223) ||
7065 (priv->pci_dev->device == 0x4224)) {
7066 printk(KERN_INFO DRV_NAME
7067 ": Detected Intel PRO/Wireless 2915ABG Network "
7068 "Connection\n");
7069 priv->ieee->abg_ture = 1;
7070 band = IEEE80211_52GHZ_BAND | IEEE80211_24GHZ_BAND;
7071 modulation = IEEE80211_OFDM_MODULATION |
7072 IEEE80211_CCK_MODULATION;
7073 priv->adapter = IPW_2915ABG;
7074 priv->ieee->mode = IEEE_A|IEEE_G|IEEE_B;
7075 } else {
7076 if (priv->pci_dev->device == 0x4221)
7077 printk(KERN_INFO DRV_NAME
7078 ": Detected Intel PRO/Wireless 2225BG Network "
7079 "Connection\n");
7080 else
7081 printk(KERN_INFO DRV_NAME
7082 ": Detected Intel PRO/Wireless 2200BG Network "
7083 "Connection\n");
7084
7085 priv->ieee->abg_ture = 0;
7086 band = IEEE80211_24GHZ_BAND;
7087 modulation = IEEE80211_OFDM_MODULATION |
7088 IEEE80211_CCK_MODULATION;
7089 priv->adapter = IPW_2200BG;
7090 priv->ieee->mode = IEEE_G|IEEE_B;
7091 }
7092
7093 priv->ieee->freq_band = band;
7094 priv->ieee->modulation = modulation;
7095
7096 priv->rates_mask = IEEE80211_DEFAULT_RATES_MASK;
7097
7098 priv->missed_beacon_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
7099 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
7100
7101 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
7102
7103 /* If power management is turned on, default to AC mode */
7104 priv->power_mode = IPW_POWER_AC;
7105 priv->tx_power = IPW_DEFAULT_TX_POWER;
7106
7107 err = request_irq(pdev->irq, ipw_isr, SA_SHIRQ, DRV_NAME,
7108 priv);
7109 if (err) {
7110 IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
7111 goto out_destroy_workqueue;
7112 }
7113
7114 SET_MODULE_OWNER(net_dev);
7115 SET_NETDEV_DEV(net_dev, &pdev->dev);
7116
7117 priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
7118 priv->ieee->set_security = shim__set_security;
7119
7120 net_dev->open = ipw_net_open;
7121 net_dev->stop = ipw_net_stop;
7122 net_dev->init = ipw_net_init;
7123 net_dev->get_stats = ipw_net_get_stats;
7124 net_dev->set_multicast_list = ipw_net_set_multicast_list;
7125 net_dev->set_mac_address = ipw_net_set_mac_address;
7126 net_dev->get_wireless_stats = ipw_get_wireless_stats;
7127 net_dev->wireless_handlers = &ipw_wx_handler_def;
7128 net_dev->ethtool_ops = &ipw_ethtool_ops;
7129 net_dev->irq = pdev->irq;
7130 net_dev->base_addr = (unsigned long )priv->hw_base;
7131 net_dev->mem_start = pci_resource_start(pdev, 0);
7132 net_dev->mem_end = net_dev->mem_start + pci_resource_len(pdev, 0) - 1;
7133
7134 err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
7135 if (err) {
7136 IPW_ERROR("failed to create sysfs device attributes\n");
7137 goto out_release_irq;
7138 }
7139
7140 err = register_netdev(net_dev);
7141 if (err) {
7142 IPW_ERROR("failed to register network device\n");
7143 goto out_remove_group;
7144 }
7145
7146 return 0;
7147
7148 out_remove_group:
7149 sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
7150 out_release_irq:
7151 free_irq(pdev->irq, priv);
7152 out_destroy_workqueue:
7153 destroy_workqueue(priv->workqueue);
7154 priv->workqueue = NULL;
7155 out_iounmap:
7156 iounmap(priv->hw_base);
7157 out_pci_release_regions:
7158 pci_release_regions(pdev);
7159 out_pci_disable_device:
7160 pci_disable_device(pdev);
7161 pci_set_drvdata(pdev, NULL);
7162 out_free_ieee80211:
7163 free_ieee80211(priv->net_dev);
7164 out:
7165 return err;
7166}
7167
7168static void ipw_pci_remove(struct pci_dev *pdev)
7169{
7170 struct ipw_priv *priv = pci_get_drvdata(pdev);
7171 if (!priv)
7172 return;
7173
7174 priv->status |= STATUS_EXIT_PENDING;
7175
7176 sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
7177
7178 ipw_down(priv);
7179
7180 unregister_netdev(priv->net_dev);
7181
7182 if (priv->rxq) {
7183 ipw_rx_queue_free(priv, priv->rxq);
7184 priv->rxq = NULL;
7185 }
7186 ipw_tx_queue_free(priv);
7187
7188 /* ipw_down will ensure that there is no more pending work
7189 * in the workqueue's, so we can safely remove them now. */
7190 if (priv->workqueue) {
7191 cancel_delayed_work(&priv->adhoc_check);
7192 cancel_delayed_work(&priv->gather_stats);
7193 cancel_delayed_work(&priv->request_scan);
7194 cancel_delayed_work(&priv->rf_kill);
7195 cancel_delayed_work(&priv->scan_check);
7196 destroy_workqueue(priv->workqueue);
7197 priv->workqueue = NULL;
7198 }
7199
7200 free_irq(pdev->irq, priv);
7201 iounmap(priv->hw_base);
7202 pci_release_regions(pdev);
7203 pci_disable_device(pdev);
7204 pci_set_drvdata(pdev, NULL);
7205 free_ieee80211(priv->net_dev);
7206
7207#ifdef CONFIG_PM
7208 if (fw_loaded) {
7209 release_firmware(bootfw);
7210 release_firmware(ucode);
7211 release_firmware(firmware);
7212 fw_loaded = 0;
7213 }
7214#endif
7215}
7216
7217
7218#ifdef CONFIG_PM
7219static int ipw_pci_suspend(struct pci_dev *pdev, u32 state)
7220{
7221 struct ipw_priv *priv = pci_get_drvdata(pdev);
7222 struct net_device *dev = priv->net_dev;
7223
7224 printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
7225
7226 /* Take down the device; powers it off, etc. */
7227 ipw_down(priv);
7228
7229 /* Remove the PRESENT state of the device */
7230 netif_device_detach(dev);
7231
7232#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,10)
7233 pci_save_state(pdev, priv->pm_state);
7234#else
7235 pci_save_state(pdev);
7236#endif
7237 pci_disable_device(pdev);
7238 pci_set_power_state(pdev, state);
7239
7240 return 0;
7241}
7242
7243static int ipw_pci_resume(struct pci_dev *pdev)
7244{
7245 struct ipw_priv *priv = pci_get_drvdata(pdev);
7246 struct net_device *dev = priv->net_dev;
7247 u32 val;
7248
7249 printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
7250
7251 pci_set_power_state(pdev, 0);
7252 pci_enable_device(pdev);
7253#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,10)
7254 pci_restore_state(pdev, priv->pm_state);
7255#else
7256 pci_restore_state(pdev);
7257#endif
7258 /*
7259 * Suspend/Resume resets the PCI configuration space, so we have to
7260 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
7261 * from interfering with C3 CPU state. pci_restore_state won't help
7262 * here since it only restores the first 64 bytes pci config header.
7263 */
7264 pci_read_config_dword(pdev, 0x40, &val);
7265 if ((val & 0x0000ff00) != 0)
7266 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
7267
7268 /* Set the device back into the PRESENT state; this will also wake
7269 * the queue of needed */
7270 netif_device_attach(dev);
7271
7272 /* Bring the device back up */
7273 queue_work(priv->workqueue, &priv->up);
7274
7275 return 0;
7276}
7277#endif
7278
7279/* driver initialization stuff */
7280static struct pci_driver ipw_driver = {
7281 .name = DRV_NAME,
7282 .id_table = card_ids,
7283 .probe = ipw_pci_probe,
7284 .remove = __devexit_p(ipw_pci_remove),
7285#ifdef CONFIG_PM
7286 .suspend = ipw_pci_suspend,
7287 .resume = ipw_pci_resume,
7288#endif
7289};
7290
7291static int __init ipw_init(void)
7292{
7293 int ret;
7294
7295 printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
7296 printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
7297
7298 ret = pci_module_init(&ipw_driver);
7299 if (ret) {
7300 IPW_ERROR("Unable to initialize PCI module\n");
7301 return ret;
7302 }
7303
7304 ret = driver_create_file(&ipw_driver.driver,
7305 &driver_attr_debug_level);
7306 if (ret) {
7307 IPW_ERROR("Unable to create driver sysfs file\n");
7308 pci_unregister_driver(&ipw_driver);
7309 return ret;
7310 }
7311
7312 return ret;
7313}
7314
7315static void __exit ipw_exit(void)
7316{
7317 driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
7318 pci_unregister_driver(&ipw_driver);
7319}
7320
7321module_param(disable, int, 0444);
7322MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
7323
7324module_param(associate, int, 0444);
7325MODULE_PARM_DESC(associate, "auto associate when scanning (default on)");
7326
7327module_param(auto_create, int, 0444);
7328MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
7329
7330module_param(debug, int, 0444);
7331MODULE_PARM_DESC(debug, "debug output mask");
7332
7333module_param(channel, int, 0444);
7334MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
7335
7336module_param(ifname, charp, 0444);
7337MODULE_PARM_DESC(ifname, "network device name (default eth%d)");
7338
7339#ifdef CONFIG_IPW_PROMISC
7340module_param(mode, int, 0444);
7341MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
7342#else
7343module_param(mode, int, 0444);
7344MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
7345#endif
7346
7347module_exit(ipw_exit);
7348module_init(ipw_init);
diff --git a/drivers/net/wireless/ipw2200.h b/drivers/net/wireless/ipw2200.h
new file mode 100644
index 000000000000..4e8b75e7962a
--- /dev/null
+++ b/drivers/net/wireless/ipw2200.h
@@ -0,0 +1,1770 @@
1/******************************************************************************
2
3 Copyright(c) 2003 - 2004 Intel Corporation. All rights reserved.
4
5 This program is free software; you can redistribute it and/or modify it
6 under the terms of version 2 of the GNU General Public License as
7 published by the Free Software Foundation.
8
9 This program is distributed in the hope that it will be useful, but WITHOUT
10 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 more details.
13
14 You should have received a copy of the GNU General Public License along with
15 this program; if not, write to the Free Software Foundation, Inc., 59
16 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17
18 The full GNU General Public License is included in this distribution in the
19 file called LICENSE.
20
21 Contact Information:
22 James P. Ketrenos <ipw2100-admin@linux.intel.com>
23 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25******************************************************************************/
26
27#ifndef __ipw2200_h__
28#define __ipw2200_h__
29
30#define WEXT_USECHANNELS 1
31
32#include <linux/module.h>
33#include <linux/moduleparam.h>
34#include <linux/config.h>
35#include <linux/init.h>
36
37#include <linux/version.h>
38#include <linux/pci.h>
39#include <linux/netdevice.h>
40#include <linux/ethtool.h>
41#include <linux/skbuff.h>
42#include <linux/etherdevice.h>
43#include <linux/delay.h>
44#include <linux/random.h>
45
46#include <linux/firmware.h>
47#include <linux/wireless.h>
48#include <asm/io.h>
49
50#include <net/ieee80211.h>
51
52#define DRV_NAME "ipw2200"
53
54#include <linux/workqueue.h>
55
56#ifndef IRQ_NONE
57typedef void irqreturn_t;
58#define IRQ_NONE
59#define IRQ_HANDLED
60#define IRQ_RETVAL(x)
61#endif
62
63#if ( LINUX_VERSION_CODE < KERNEL_VERSION(2,6,9) )
64#define __iomem
65#endif
66
67#if ( LINUX_VERSION_CODE < KERNEL_VERSION(2,6,5) )
68#define pci_dma_sync_single_for_cpu pci_dma_sync_single
69#define pci_dma_sync_single_for_device pci_dma_sync_single
70#endif
71
72#ifndef HAVE_FREE_NETDEV
73#define free_netdev(x) kfree(x)
74#endif
75
76/* Authentication and Association States */
77enum connection_manager_assoc_states
78{
79 CMAS_INIT = 0,
80 CMAS_TX_AUTH_SEQ_1,
81 CMAS_RX_AUTH_SEQ_2,
82 CMAS_AUTH_SEQ_1_PASS,
83 CMAS_AUTH_SEQ_1_FAIL,
84 CMAS_TX_AUTH_SEQ_3,
85 CMAS_RX_AUTH_SEQ_4,
86 CMAS_AUTH_SEQ_2_PASS,
87 CMAS_AUTH_SEQ_2_FAIL,
88 CMAS_AUTHENTICATED,
89 CMAS_TX_ASSOC,
90 CMAS_RX_ASSOC_RESP,
91 CMAS_ASSOCIATED,
92 CMAS_LAST
93};
94
95
96#define IPW_NORMAL 0
97#define IPW_NOWAIT 0
98#define IPW_WAIT (1<<0)
99#define IPW_QUIET (1<<1)
100#define IPW_ROAMING (1<<2)
101
102#define IPW_POWER_MODE_CAM 0x00 //(always on)
103#define IPW_POWER_INDEX_1 0x01
104#define IPW_POWER_INDEX_2 0x02
105#define IPW_POWER_INDEX_3 0x03
106#define IPW_POWER_INDEX_4 0x04
107#define IPW_POWER_INDEX_5 0x05
108#define IPW_POWER_AC 0x06
109#define IPW_POWER_BATTERY 0x07
110#define IPW_POWER_LIMIT 0x07
111#define IPW_POWER_MASK 0x0F
112#define IPW_POWER_ENABLED 0x10
113#define IPW_POWER_LEVEL(x) ((x) & IPW_POWER_MASK)
114
115#define IPW_CMD_HOST_COMPLETE 2
116#define IPW_CMD_POWER_DOWN 4
117#define IPW_CMD_SYSTEM_CONFIG 6
118#define IPW_CMD_MULTICAST_ADDRESS 7
119#define IPW_CMD_SSID 8
120#define IPW_CMD_ADAPTER_ADDRESS 11
121#define IPW_CMD_PORT_TYPE 12
122#define IPW_CMD_RTS_THRESHOLD 15
123#define IPW_CMD_FRAG_THRESHOLD 16
124#define IPW_CMD_POWER_MODE 17
125#define IPW_CMD_WEP_KEY 18
126#define IPW_CMD_TGI_TX_KEY 19
127#define IPW_CMD_SCAN_REQUEST 20
128#define IPW_CMD_ASSOCIATE 21
129#define IPW_CMD_SUPPORTED_RATES 22
130#define IPW_CMD_SCAN_ABORT 23
131#define IPW_CMD_TX_FLUSH 24
132#define IPW_CMD_QOS_PARAMETERS 25
133#define IPW_CMD_SCAN_REQUEST_EXT 26
134#define IPW_CMD_DINO_CONFIG 30
135#define IPW_CMD_RSN_CAPABILITIES 31
136#define IPW_CMD_RX_KEY 32
137#define IPW_CMD_CARD_DISABLE 33
138#define IPW_CMD_SEED_NUMBER 34
139#define IPW_CMD_TX_POWER 35
140#define IPW_CMD_COUNTRY_INFO 36
141#define IPW_CMD_AIRONET_INFO 37
142#define IPW_CMD_AP_TX_POWER 38
143#define IPW_CMD_CCKM_INFO 39
144#define IPW_CMD_CCX_VER_INFO 40
145#define IPW_CMD_SET_CALIBRATION 41
146#define IPW_CMD_SENSITIVITY_CALIB 42
147#define IPW_CMD_RETRY_LIMIT 51
148#define IPW_CMD_IPW_PRE_POWER_DOWN 58
149#define IPW_CMD_VAP_BEACON_TEMPLATE 60
150#define IPW_CMD_VAP_DTIM_PERIOD 61
151#define IPW_CMD_EXT_SUPPORTED_RATES 62
152#define IPW_CMD_VAP_LOCAL_TX_PWR_CONSTRAINT 63
153#define IPW_CMD_VAP_QUIET_INTERVALS 64
154#define IPW_CMD_VAP_CHANNEL_SWITCH 65
155#define IPW_CMD_VAP_MANDATORY_CHANNELS 66
156#define IPW_CMD_VAP_CELL_PWR_LIMIT 67
157#define IPW_CMD_VAP_CF_PARAM_SET 68
158#define IPW_CMD_VAP_SET_BEACONING_STATE 69
159#define IPW_CMD_MEASUREMENT 80
160#define IPW_CMD_POWER_CAPABILITY 81
161#define IPW_CMD_SUPPORTED_CHANNELS 82
162#define IPW_CMD_TPC_REPORT 83
163#define IPW_CMD_WME_INFO 84
164#define IPW_CMD_PRODUCTION_COMMAND 85
165#define IPW_CMD_LINKSYS_EOU_INFO 90
166
167#define RFD_SIZE 4
168#define NUM_TFD_CHUNKS 6
169
170#define TX_QUEUE_SIZE 32
171#define RX_QUEUE_SIZE 32
172
173#define DINO_CMD_WEP_KEY 0x08
174#define DINO_CMD_TX 0x0B
175#define DCT_ANTENNA_A 0x01
176#define DCT_ANTENNA_B 0x02
177
178#define IPW_A_MODE 0
179#define IPW_B_MODE 1
180#define IPW_G_MODE 2
181
182/*
183 * TX Queue Flag Definitions
184 */
185
186/* abort attempt if mgmt frame is rx'd */
187#define DCT_FLAG_ABORT_MGMT 0x01
188
189/* require CTS */
190#define DCT_FLAG_CTS_REQUIRED 0x02
191
192/* use short preamble */
193#define DCT_FLAG_SHORT_PREMBL 0x04
194
195/* RTS/CTS first */
196#define DCT_FLAG_RTS_REQD 0x08
197
198/* dont calculate duration field */
199#define DCT_FLAG_DUR_SET 0x10
200
201/* even if MAC WEP set (allows pre-encrypt) */
202#define DCT_FLAG_NO_WEP 0x20
203#define IPW_
204/* overwrite TSF field */
205#define DCT_FLAG_TSF_REQD 0x40
206
207/* ACK rx is expected to follow */
208#define DCT_FLAG_ACK_REQD 0x80
209
210#define DCT_FLAG_EXT_MODE_CCK 0x01
211#define DCT_FLAG_EXT_MODE_OFDM 0x00
212
213
214#define TX_RX_TYPE_MASK 0xFF
215#define TX_FRAME_TYPE 0x00
216#define TX_HOST_COMMAND_TYPE 0x01
217#define RX_FRAME_TYPE 0x09
218#define RX_HOST_NOTIFICATION_TYPE 0x03
219#define RX_HOST_CMD_RESPONSE_TYPE 0x04
220#define RX_TX_FRAME_RESPONSE_TYPE 0x05
221#define TFD_NEED_IRQ_MASK 0x04
222
223#define HOST_CMD_DINO_CONFIG 30
224
225#define HOST_NOTIFICATION_STATUS_ASSOCIATED 10
226#define HOST_NOTIFICATION_STATUS_AUTHENTICATE 11
227#define HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT 12
228#define HOST_NOTIFICATION_STATUS_SCAN_COMPLETED 13
229#define HOST_NOTIFICATION_STATUS_FRAG_LENGTH 14
230#define HOST_NOTIFICATION_STATUS_LINK_DETERIORATION 15
231#define HOST_NOTIFICATION_DINO_CONFIG_RESPONSE 16
232#define HOST_NOTIFICATION_STATUS_BEACON_STATE 17
233#define HOST_NOTIFICATION_STATUS_TGI_TX_KEY 18
234#define HOST_NOTIFICATION_TX_STATUS 19
235#define HOST_NOTIFICATION_CALIB_KEEP_RESULTS 20
236#define HOST_NOTIFICATION_MEASUREMENT_STARTED 21
237#define HOST_NOTIFICATION_MEASUREMENT_ENDED 22
238#define HOST_NOTIFICATION_CHANNEL_SWITCHED 23
239#define HOST_NOTIFICATION_RX_DURING_QUIET_PERIOD 24
240#define HOST_NOTIFICATION_NOISE_STATS 25
241#define HOST_NOTIFICATION_S36_MEASUREMENT_ACCEPTED 30
242#define HOST_NOTIFICATION_S36_MEASUREMENT_REFUSED 31
243
244#define HOST_NOTIFICATION_STATUS_BEACON_MISSING 1
245#define IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT 24
246#define IPW_MB_ROAMING_THRESHOLD_DEFAULT 8
247#define IPW_REAL_RATE_RX_PACKET_THRESHOLD 300
248
249#define MACADRR_BYTE_LEN 6
250
251#define DCR_TYPE_AP 0x01
252#define DCR_TYPE_WLAP 0x02
253#define DCR_TYPE_MU_ESS 0x03
254#define DCR_TYPE_MU_IBSS 0x04
255#define DCR_TYPE_MU_PIBSS 0x05
256#define DCR_TYPE_SNIFFER 0x06
257#define DCR_TYPE_MU_BSS DCR_TYPE_MU_ESS
258
259/**
260 * Generic queue structure
261 *
262 * Contains common data for Rx and Tx queues
263 */
264struct clx2_queue {
265 int n_bd; /**< number of BDs in this queue */
266 int first_empty; /**< 1-st empty entry (index) */
267 int last_used; /**< last used entry (index) */
268 u32 reg_w; /**< 'write' reg (queue head), addr in domain 1 */
269 u32 reg_r; /**< 'read' reg (queue tail), addr in domain 1 */
270 dma_addr_t dma_addr; /**< physical addr for BD's */
271 int low_mark; /**< low watermark, resume queue if free space more than this */
272 int high_mark; /**< high watermark, stop queue if free space less than this */
273} __attribute__ ((packed));
274
275struct machdr32
276{
277 u16 frame_ctl;
278 u16 duration; // watch out for endians!
279 u8 addr1[ MACADRR_BYTE_LEN ];
280 u8 addr2[ MACADRR_BYTE_LEN ];
281 u8 addr3[ MACADRR_BYTE_LEN ];
282 u16 seq_ctrl; // more endians!
283 u8 addr4[ MACADRR_BYTE_LEN ];
284 u16 qos_ctrl;
285} __attribute__ ((packed)) ;
286
287struct machdr30
288{
289 u16 frame_ctl;
290 u16 duration; // watch out for endians!
291 u8 addr1[ MACADRR_BYTE_LEN ];
292 u8 addr2[ MACADRR_BYTE_LEN ];
293 u8 addr3[ MACADRR_BYTE_LEN ];
294 u16 seq_ctrl; // more endians!
295 u8 addr4[ MACADRR_BYTE_LEN ];
296} __attribute__ ((packed)) ;
297
298struct machdr26
299{
300 u16 frame_ctl;
301 u16 duration; // watch out for endians!
302 u8 addr1[ MACADRR_BYTE_LEN ];
303 u8 addr2[ MACADRR_BYTE_LEN ];
304 u8 addr3[ MACADRR_BYTE_LEN ];
305 u16 seq_ctrl; // more endians!
306 u16 qos_ctrl;
307} __attribute__ ((packed)) ;
308
309struct machdr24
310{
311 u16 frame_ctl;
312 u16 duration; // watch out for endians!
313 u8 addr1[ MACADRR_BYTE_LEN ];
314 u8 addr2[ MACADRR_BYTE_LEN ];
315 u8 addr3[ MACADRR_BYTE_LEN ];
316 u16 seq_ctrl; // more endians!
317} __attribute__ ((packed)) ;
318
319// TX TFD with 32 byte MAC Header
320struct tx_tfd_32
321{
322 struct machdr32 mchdr; // 32
323 u32 uivplaceholder[2]; // 8
324} __attribute__ ((packed)) ;
325
326// TX TFD with 30 byte MAC Header
327struct tx_tfd_30
328{
329 struct machdr30 mchdr; // 30
330 u8 reserved[2]; // 2
331 u32 uivplaceholder[2]; // 8
332} __attribute__ ((packed)) ;
333
334// tx tfd with 26 byte mac header
335struct tx_tfd_26
336{
337 struct machdr26 mchdr; // 26
338 u8 reserved1[2]; // 2
339 u32 uivplaceholder[2]; // 8
340 u8 reserved2[4]; // 4
341} __attribute__ ((packed)) ;
342
343// tx tfd with 24 byte mac header
344struct tx_tfd_24
345{
346 struct machdr24 mchdr; // 24
347 u32 uivplaceholder[2]; // 8
348 u8 reserved[8]; // 8
349} __attribute__ ((packed)) ;
350
351
352#define DCT_WEP_KEY_FIELD_LENGTH 16
353
354struct tfd_command
355{
356 u8 index;
357 u8 length;
358 u16 reserved;
359 u8 payload[0];
360} __attribute__ ((packed)) ;
361
362struct tfd_data {
363 /* Header */
364 u32 work_area_ptr;
365 u8 station_number; /* 0 for BSS */
366 u8 reserved1;
367 u16 reserved2;
368
369 /* Tx Parameters */
370 u8 cmd_id;
371 u8 seq_num;
372 u16 len;
373 u8 priority;
374 u8 tx_flags;
375 u8 tx_flags_ext;
376 u8 key_index;
377 u8 wepkey[DCT_WEP_KEY_FIELD_LENGTH];
378 u8 rate;
379 u8 antenna;
380 u16 next_packet_duration;
381 u16 next_frag_len;
382 u16 back_off_counter; //////txop;
383 u8 retrylimit;
384 u16 cwcurrent;
385 u8 reserved3;
386
387 /* 802.11 MAC Header */
388 union
389 {
390 struct tx_tfd_24 tfd_24;
391 struct tx_tfd_26 tfd_26;
392 struct tx_tfd_30 tfd_30;
393 struct tx_tfd_32 tfd_32;
394 } tfd;
395
396 /* Payload DMA info */
397 u32 num_chunks;
398 u32 chunk_ptr[NUM_TFD_CHUNKS];
399 u16 chunk_len[NUM_TFD_CHUNKS];
400} __attribute__ ((packed));
401
402struct txrx_control_flags
403{
404 u8 message_type;
405 u8 rx_seq_num;
406 u8 control_bits;
407 u8 reserved;
408} __attribute__ ((packed));
409
410#define TFD_SIZE 128
411#define TFD_CMD_IMMEDIATE_PAYLOAD_LENGTH (TFD_SIZE - sizeof(struct txrx_control_flags))
412
413struct tfd_frame
414{
415 struct txrx_control_flags control_flags;
416 union {
417 struct tfd_data data;
418 struct tfd_command cmd;
419 u8 raw[TFD_CMD_IMMEDIATE_PAYLOAD_LENGTH];
420 } u;
421} __attribute__ ((packed)) ;
422
423typedef void destructor_func(const void*);
424
425/**
426 * Tx Queue for DMA. Queue consists of circular buffer of
427 * BD's and required locking structures.
428 */
429struct clx2_tx_queue {
430 struct clx2_queue q;
431 struct tfd_frame* bd;
432 struct ieee80211_txb **txb;
433};
434
435/*
436 * RX related structures and functions
437 */
438#define RX_FREE_BUFFERS 32
439#define RX_LOW_WATERMARK 8
440
441#define SUP_RATE_11A_MAX_NUM_CHANNELS (8)
442#define SUP_RATE_11B_MAX_NUM_CHANNELS (4)
443#define SUP_RATE_11G_MAX_NUM_CHANNELS (12)
444
445// Used for passing to driver number of successes and failures per rate
446struct rate_histogram
447{
448 union {
449 u32 a[SUP_RATE_11A_MAX_NUM_CHANNELS];
450 u32 b[SUP_RATE_11B_MAX_NUM_CHANNELS];
451 u32 g[SUP_RATE_11G_MAX_NUM_CHANNELS];
452 } success;
453 union {
454 u32 a[SUP_RATE_11A_MAX_NUM_CHANNELS];
455 u32 b[SUP_RATE_11B_MAX_NUM_CHANNELS];
456 u32 g[SUP_RATE_11G_MAX_NUM_CHANNELS];
457 } failed;
458} __attribute__ ((packed));
459
460/* statistics command response */
461struct ipw_cmd_stats {
462 u8 cmd_id;
463 u8 seq_num;
464 u16 good_sfd;
465 u16 bad_plcp;
466 u16 wrong_bssid;
467 u16 valid_mpdu;
468 u16 bad_mac_header;
469 u16 reserved_frame_types;
470 u16 rx_ina;
471 u16 bad_crc32;
472 u16 invalid_cts;
473 u16 invalid_acks;
474 u16 long_distance_ina_fina;
475 u16 dsp_silence_unreachable;
476 u16 accumulated_rssi;
477 u16 rx_ovfl_frame_tossed;
478 u16 rssi_silence_threshold;
479 u16 rx_ovfl_frame_supplied;
480 u16 last_rx_frame_signal;
481 u16 last_rx_frame_noise;
482 u16 rx_autodetec_no_ofdm;
483 u16 rx_autodetec_no_barker;
484 u16 reserved;
485} __attribute__ ((packed));
486
487struct notif_channel_result {
488 u8 channel_num;
489 struct ipw_cmd_stats stats;
490 u8 uReserved;
491} __attribute__ ((packed));
492
493struct notif_scan_complete {
494 u8 scan_type;
495 u8 num_channels;
496 u8 status;
497 u8 reserved;
498} __attribute__ ((packed));
499
500struct notif_frag_length {
501 u16 frag_length;
502 u16 reserved;
503} __attribute__ ((packed));
504
505struct notif_beacon_state {
506 u32 state;
507 u32 number;
508} __attribute__ ((packed));
509
510struct notif_tgi_tx_key {
511 u8 key_state;
512 u8 security_type;
513 u8 station_index;
514 u8 reserved;
515} __attribute__ ((packed));
516
517struct notif_link_deterioration {
518 struct ipw_cmd_stats stats;
519 u8 rate;
520 u8 modulation;
521 struct rate_histogram histogram;
522 u8 reserved1;
523 u16 reserved2;
524} __attribute__ ((packed));
525
526struct notif_association {
527 u8 state;
528} __attribute__ ((packed));
529
530struct notif_authenticate {
531 u8 state;
532 struct machdr24 addr;
533 u16 status;
534} __attribute__ ((packed));
535
536struct temperature
537{
538 s32 measured;
539 s32 active;
540} __attribute__ ((packed));
541
542struct notif_calibration {
543 u8 data[104];
544} __attribute__ ((packed));
545
546struct notif_noise {
547 u32 value;
548} __attribute__ ((packed));
549
550struct ipw_rx_notification {
551 u8 reserved[8];
552 u8 subtype;
553 u8 flags;
554 u16 size;
555 union {
556 struct notif_association assoc;
557 struct notif_authenticate auth;
558 struct notif_channel_result channel_result;
559 struct notif_scan_complete scan_complete;
560 struct notif_frag_length frag_len;
561 struct notif_beacon_state beacon_state;
562 struct notif_tgi_tx_key tgi_tx_key;
563 struct notif_link_deterioration link_deterioration;
564 struct notif_calibration calibration;
565 struct notif_noise noise;
566 u8 raw[0];
567 } u;
568} __attribute__ ((packed));
569
570struct ipw_rx_frame {
571 u32 reserved1;
572 u8 parent_tsf[4]; // fw_use[0] is boolean for OUR_TSF_IS_GREATER
573 u8 received_channel; // The channel that this frame was received on.
574 // Note that for .11b this does not have to be
575 // the same as the channel that it was sent.
576 // Filled by LMAC
577 u8 frameStatus;
578 u8 rate;
579 u8 rssi;
580 u8 agc;
581 u8 rssi_dbm;
582 u16 signal;
583 u16 noise;
584 u8 antennaAndPhy;
585 u8 control; // control bit should be on in bg
586 u8 rtscts_rate; // rate of rts or cts (in rts cts sequence rate
587 // is identical)
588 u8 rtscts_seen; // 0x1 RTS seen ; 0x2 CTS seen
589 u16 length;
590 u8 data[0];
591} __attribute__ ((packed));
592
593struct ipw_rx_header {
594 u8 message_type;
595 u8 rx_seq_num;
596 u8 control_bits;
597 u8 reserved;
598} __attribute__ ((packed));
599
600struct ipw_rx_packet
601{
602 struct ipw_rx_header header;
603 union {
604 struct ipw_rx_frame frame;
605 struct ipw_rx_notification notification;
606 } u;
607} __attribute__ ((packed));
608
609#define IPW_RX_NOTIFICATION_SIZE sizeof(struct ipw_rx_header) + 12
610#define IPW_RX_FRAME_SIZE sizeof(struct ipw_rx_header) + \
611 sizeof(struct ipw_rx_frame)
612
613struct ipw_rx_mem_buffer {
614 dma_addr_t dma_addr;
615 struct ipw_rx_buffer *rxb;
616 struct sk_buff *skb;
617 struct list_head list;
618}; /* Not transferred over network, so not __attribute__ ((packed)) */
619
620struct ipw_rx_queue {
621 struct ipw_rx_mem_buffer pool[RX_QUEUE_SIZE + RX_FREE_BUFFERS];
622 struct ipw_rx_mem_buffer *queue[RX_QUEUE_SIZE];
623 u32 processed; /* Internal index to last handled Rx packet */
624 u32 read; /* Shared index to newest available Rx buffer */
625 u32 write; /* Shared index to oldest written Rx packet */
626 u32 free_count;/* Number of pre-allocated buffers in rx_free */
627 /* Each of these lists is used as a FIFO for ipw_rx_mem_buffers */
628 struct list_head rx_free; /* Own an SKBs */
629 struct list_head rx_used; /* No SKB allocated */
630 spinlock_t lock;
631}; /* Not transferred over network, so not __attribute__ ((packed)) */
632
633
634struct alive_command_responce {
635 u8 alive_command;
636 u8 sequence_number;
637 u16 software_revision;
638 u8 device_identifier;
639 u8 reserved1[5];
640 u16 reserved2;
641 u16 reserved3;
642 u16 clock_settle_time;
643 u16 powerup_settle_time;
644 u16 reserved4;
645 u8 time_stamp[5]; /* month, day, year, hours, minutes */
646 u8 ucode_valid;
647} __attribute__ ((packed));
648
649#define IPW_MAX_RATES 12
650
651struct ipw_rates {
652 u8 num_rates;
653 u8 rates[IPW_MAX_RATES];
654} __attribute__ ((packed));
655
656struct command_block
657{
658 unsigned int control;
659 u32 source_addr;
660 u32 dest_addr;
661 unsigned int status;
662} __attribute__ ((packed));
663
664#define CB_NUMBER_OF_ELEMENTS_SMALL 64
665struct fw_image_desc
666{
667 unsigned long last_cb_index;
668 unsigned long current_cb_index;
669 struct command_block cb_list[CB_NUMBER_OF_ELEMENTS_SMALL];
670 void * v_addr;
671 unsigned long p_addr;
672 unsigned long len;
673};
674
675struct ipw_sys_config
676{
677 u8 bt_coexistence;
678 u8 reserved1;
679 u8 answer_broadcast_ssid_probe;
680 u8 accept_all_data_frames;
681 u8 accept_non_directed_frames;
682 u8 exclude_unicast_unencrypted;
683 u8 disable_unicast_decryption;
684 u8 exclude_multicast_unencrypted;
685 u8 disable_multicast_decryption;
686 u8 antenna_diversity;
687 u8 pass_crc_to_host;
688 u8 dot11g_auto_detection;
689 u8 enable_cts_to_self;
690 u8 enable_multicast_filtering;
691 u8 bt_coexist_collision_thr;
692 u8 reserved2;
693 u8 accept_all_mgmt_bcpr;
694 u8 accept_all_mgtm_frames;
695 u8 pass_noise_stats_to_host;
696 u8 reserved3;
697} __attribute__ ((packed));
698
699struct ipw_multicast_addr
700{
701 u8 num_of_multicast_addresses;
702 u8 reserved[3];
703 u8 mac1[6];
704 u8 mac2[6];
705 u8 mac3[6];
706 u8 mac4[6];
707} __attribute__ ((packed));
708
709struct ipw_wep_key
710{
711 u8 cmd_id;
712 u8 seq_num;
713 u8 key_index;
714 u8 key_size;
715 u8 key[16];
716} __attribute__ ((packed));
717
718struct ipw_tgi_tx_key
719{
720 u8 key_id;
721 u8 security_type;
722 u8 station_index;
723 u8 flags;
724 u8 key[16];
725 u32 tx_counter[2];
726} __attribute__ ((packed));
727
728#define IPW_SCAN_CHANNELS 54
729
730struct ipw_scan_request
731{
732 u8 scan_type;
733 u16 dwell_time;
734 u8 channels_list[IPW_SCAN_CHANNELS];
735 u8 channels_reserved[3];
736} __attribute__ ((packed));
737
738enum {
739 IPW_SCAN_PASSIVE_TILL_FIRST_BEACON_SCAN = 0,
740 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN,
741 IPW_SCAN_ACTIVE_DIRECT_SCAN,
742 IPW_SCAN_ACTIVE_BROADCAST_SCAN,
743 IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN,
744 IPW_SCAN_TYPES
745};
746
747struct ipw_scan_request_ext
748{
749 u32 full_scan_index;
750 u8 channels_list[IPW_SCAN_CHANNELS];
751 u8 scan_type[IPW_SCAN_CHANNELS / 2];
752 u8 reserved;
753 u16 dwell_time[IPW_SCAN_TYPES];
754} __attribute__ ((packed));
755
756extern inline u8 ipw_get_scan_type(struct ipw_scan_request_ext *scan, u8 index)
757{
758 if (index % 2)
759 return scan->scan_type[index / 2] & 0x0F;
760 else
761 return (scan->scan_type[index / 2] & 0xF0) >> 4;
762}
763
764extern inline void ipw_set_scan_type(struct ipw_scan_request_ext *scan,
765 u8 index, u8 scan_type)
766{
767 if (index % 2)
768 scan->scan_type[index / 2] =
769 (scan->scan_type[index / 2] & 0xF0) |
770 (scan_type & 0x0F);
771 else
772 scan->scan_type[index / 2] =
773 (scan->scan_type[index / 2] & 0x0F) |
774 ((scan_type & 0x0F) << 4);
775}
776
777struct ipw_associate
778{
779 u8 channel;
780 u8 auth_type:4,
781 auth_key:4;
782 u8 assoc_type;
783 u8 reserved;
784 u16 policy_support;
785 u8 preamble_length;
786 u8 ieee_mode;
787 u8 bssid[ETH_ALEN];
788 u32 assoc_tsf_msw;
789 u32 assoc_tsf_lsw;
790 u16 capability;
791 u16 listen_interval;
792 u16 beacon_interval;
793 u8 dest[ETH_ALEN];
794 u16 atim_window;
795 u8 smr;
796 u8 reserved1;
797 u16 reserved2;
798} __attribute__ ((packed));
799
800struct ipw_supported_rates
801{
802 u8 ieee_mode;
803 u8 num_rates;
804 u8 purpose;
805 u8 reserved;
806 u8 supported_rates[IPW_MAX_RATES];
807} __attribute__ ((packed));
808
809struct ipw_rts_threshold
810{
811 u16 rts_threshold;
812 u16 reserved;
813} __attribute__ ((packed));
814
815struct ipw_frag_threshold
816{
817 u16 frag_threshold;
818 u16 reserved;
819} __attribute__ ((packed));
820
821struct ipw_retry_limit
822{
823 u8 short_retry_limit;
824 u8 long_retry_limit;
825 u16 reserved;
826} __attribute__ ((packed));
827
828struct ipw_dino_config
829{
830 u32 dino_config_addr;
831 u16 dino_config_size;
832 u8 dino_response;
833 u8 reserved;
834} __attribute__ ((packed));
835
836struct ipw_aironet_info
837{
838 u8 id;
839 u8 length;
840 u16 reserved;
841} __attribute__ ((packed));
842
843struct ipw_rx_key
844{
845 u8 station_index;
846 u8 key_type;
847 u8 key_id;
848 u8 key_flag;
849 u8 key[16];
850 u8 station_address[6];
851 u8 key_index;
852 u8 reserved;
853} __attribute__ ((packed));
854
855struct ipw_country_channel_info
856{
857 u8 first_channel;
858 u8 no_channels;
859 s8 max_tx_power;
860} __attribute__ ((packed));
861
862struct ipw_country_info
863{
864 u8 id;
865 u8 length;
866 u8 country_str[3];
867 struct ipw_country_channel_info groups[7];
868} __attribute__ ((packed));
869
870struct ipw_channel_tx_power
871{
872 u8 channel_number;
873 s8 tx_power;
874} __attribute__ ((packed));
875
876#define SCAN_ASSOCIATED_INTERVAL (HZ)
877#define SCAN_INTERVAL (HZ / 10)
878#define MAX_A_CHANNELS 37
879#define MAX_B_CHANNELS 14
880
881struct ipw_tx_power
882{
883 u8 num_channels;
884 u8 ieee_mode;
885 struct ipw_channel_tx_power channels_tx_power[MAX_A_CHANNELS];
886} __attribute__ ((packed));
887
888struct ipw_qos_parameters
889{
890 u16 cw_min[4];
891 u16 cw_max[4];
892 u8 aifs[4];
893 u8 flag[4];
894 u16 tx_op_limit[4];
895} __attribute__ ((packed));
896
897struct ipw_rsn_capabilities
898{
899 u8 id;
900 u8 length;
901 u16 version;
902} __attribute__ ((packed));
903
904struct ipw_sensitivity_calib
905{
906 u16 beacon_rssi_raw;
907 u16 reserved;
908} __attribute__ ((packed));
909
910/**
911 * Host command structure.
912 *
913 * On input, the following fields should be filled:
914 * - cmd
915 * - len
916 * - status_len
917 * - param (if needed)
918 *
919 * On output,
920 * - \a status contains status;
921 * - \a param filled with status parameters.
922 */
923struct ipw_cmd {
924 u32 cmd; /**< Host command */
925 u32 status; /**< Status */
926 u32 status_len; /**< How many 32 bit parameters in the status */
927 u32 len; /**< incoming parameters length, bytes */
928 /**
929 * command parameters.
930 * There should be enough space for incoming and
931 * outcoming parameters.
932 * Incoming parameters listed 1-st, followed by outcoming params.
933 * nParams=(len+3)/4+status_len
934 */
935 u32 param[0];
936} __attribute__ ((packed));
937
938#define STATUS_HCMD_ACTIVE (1<<0) /**< host command in progress */
939
940#define STATUS_INT_ENABLED (1<<1)
941#define STATUS_RF_KILL_HW (1<<2)
942#define STATUS_RF_KILL_SW (1<<3)
943#define STATUS_RF_KILL_MASK (STATUS_RF_KILL_HW | STATUS_RF_KILL_SW)
944
945#define STATUS_INIT (1<<5)
946#define STATUS_AUTH (1<<6)
947#define STATUS_ASSOCIATED (1<<7)
948#define STATUS_STATE_MASK (STATUS_INIT | STATUS_AUTH | STATUS_ASSOCIATED)
949
950#define STATUS_ASSOCIATING (1<<8)
951#define STATUS_DISASSOCIATING (1<<9)
952#define STATUS_ROAMING (1<<10)
953#define STATUS_EXIT_PENDING (1<<11)
954#define STATUS_DISASSOC_PENDING (1<<12)
955#define STATUS_STATE_PENDING (1<<13)
956
957#define STATUS_SCAN_PENDING (1<<20)
958#define STATUS_SCANNING (1<<21)
959#define STATUS_SCAN_ABORTING (1<<22)
960
961#define STATUS_INDIRECT_BYTE (1<<28) /* sysfs entry configured for access */
962#define STATUS_INDIRECT_DWORD (1<<29) /* sysfs entry configured for access */
963#define STATUS_DIRECT_DWORD (1<<30) /* sysfs entry configured for access */
964
965#define STATUS_SECURITY_UPDATED (1<<31) /* Security sync needed */
966
967#define CFG_STATIC_CHANNEL (1<<0) /* Restrict assoc. to single channel */
968#define CFG_STATIC_ESSID (1<<1) /* Restrict assoc. to single SSID */
969#define CFG_STATIC_BSSID (1<<2) /* Restrict assoc. to single BSSID */
970#define CFG_CUSTOM_MAC (1<<3)
971#define CFG_PREAMBLE (1<<4)
972#define CFG_ADHOC_PERSIST (1<<5)
973#define CFG_ASSOCIATE (1<<6)
974#define CFG_FIXED_RATE (1<<7)
975#define CFG_ADHOC_CREATE (1<<8)
976
977#define CAP_SHARED_KEY (1<<0) /* Off = OPEN */
978#define CAP_PRIVACY_ON (1<<1) /* Off = No privacy */
979
980#define MAX_STATIONS 32
981#define IPW_INVALID_STATION (0xff)
982
983struct ipw_station_entry {
984 u8 mac_addr[ETH_ALEN];
985 u8 reserved;
986 u8 support_mode;
987};
988
989#define AVG_ENTRIES 8
990struct average {
991 s16 entries[AVG_ENTRIES];
992 u8 pos;
993 u8 init;
994 s32 sum;
995};
996
997struct ipw_priv {
998 /* ieee device used by generic ieee processing code */
999 struct ieee80211_device *ieee;
1000 struct ieee80211_security sec;
1001
1002 /* spinlock */
1003 spinlock_t lock;
1004
1005 /* basic pci-network driver stuff */
1006 struct pci_dev *pci_dev;
1007 struct net_device *net_dev;
1008
1009 /* pci hardware address support */
1010 void __iomem *hw_base;
1011 unsigned long hw_len;
1012
1013 struct fw_image_desc sram_desc;
1014
1015 /* result of ucode download */
1016 struct alive_command_responce dino_alive;
1017
1018 wait_queue_head_t wait_command_queue;
1019 wait_queue_head_t wait_state;
1020
1021 /* Rx and Tx DMA processing queues */
1022 struct ipw_rx_queue *rxq;
1023 struct clx2_tx_queue txq_cmd;
1024 struct clx2_tx_queue txq[4];
1025 u32 status;
1026 u32 config;
1027 u32 capability;
1028
1029 u8 last_rx_rssi;
1030 u8 last_noise;
1031 struct average average_missed_beacons;
1032 struct average average_rssi;
1033 struct average average_noise;
1034 u32 port_type;
1035 int rx_bufs_min; /**< minimum number of bufs in Rx queue */
1036 int rx_pend_max; /**< maximum pending buffers for one IRQ */
1037 u32 hcmd_seq; /**< sequence number for hcmd */
1038 u32 missed_beacon_threshold;
1039 u32 roaming_threshold;
1040
1041 struct ipw_associate assoc_request;
1042 struct ieee80211_network *assoc_network;
1043
1044 unsigned long ts_scan_abort;
1045 struct ipw_supported_rates rates;
1046 struct ipw_rates phy[3]; /**< PHY restrictions, per band */
1047 struct ipw_rates supp; /**< software defined */
1048 struct ipw_rates extended; /**< use for corresp. IE, AP only */
1049
1050 struct notif_link_deterioration last_link_deterioration; /** for statistics */
1051 struct ipw_cmd* hcmd; /**< host command currently executed */
1052
1053 wait_queue_head_t hcmd_wq; /**< host command waits for execution */
1054 u32 tsf_bcn[2]; /**< TSF from latest beacon */
1055
1056 struct notif_calibration calib; /**< last calibration */
1057
1058 /* ordinal interface with firmware */
1059 u32 table0_addr;
1060 u32 table0_len;
1061 u32 table1_addr;
1062 u32 table1_len;
1063 u32 table2_addr;
1064 u32 table2_len;
1065
1066 /* context information */
1067 u8 essid[IW_ESSID_MAX_SIZE];
1068 u8 essid_len;
1069 u8 nick[IW_ESSID_MAX_SIZE];
1070 u16 rates_mask;
1071 u8 channel;
1072 struct ipw_sys_config sys_config;
1073 u32 power_mode;
1074 u8 bssid[ETH_ALEN];
1075 u16 rts_threshold;
1076 u8 mac_addr[ETH_ALEN];
1077 u8 num_stations;
1078 u8 stations[MAX_STATIONS][ETH_ALEN];
1079
1080 u32 notif_missed_beacons;
1081
1082 /* Statistics and counters normalized with each association */
1083 u32 last_missed_beacons;
1084 u32 last_tx_packets;
1085 u32 last_rx_packets;
1086 u32 last_tx_failures;
1087 u32 last_rx_err;
1088 u32 last_rate;
1089
1090 u32 missed_adhoc_beacons;
1091 u32 missed_beacons;
1092 u32 rx_packets;
1093 u32 tx_packets;
1094 u32 quality;
1095
1096 /* eeprom */
1097 u8 eeprom[0x100]; /* 256 bytes of eeprom */
1098 int eeprom_delay;
1099
1100 struct iw_statistics wstats;
1101
1102 struct workqueue_struct *workqueue;
1103
1104 struct work_struct adhoc_check;
1105 struct work_struct associate;
1106 struct work_struct disassociate;
1107 struct work_struct rx_replenish;
1108 struct work_struct request_scan;
1109 struct work_struct adapter_restart;
1110 struct work_struct rf_kill;
1111 struct work_struct up;
1112 struct work_struct down;
1113 struct work_struct gather_stats;
1114 struct work_struct abort_scan;
1115 struct work_struct roam;
1116 struct work_struct scan_check;
1117
1118 struct tasklet_struct irq_tasklet;
1119
1120
1121#define IPW_2200BG 1
1122#define IPW_2915ABG 2
1123 u8 adapter;
1124
1125#define IPW_DEFAULT_TX_POWER 0x14
1126 u8 tx_power;
1127
1128#ifdef CONFIG_PM
1129 u32 pm_state[16];
1130#endif
1131
1132 /* network state */
1133
1134 /* Used to pass the current INTA value from ISR to Tasklet */
1135 u32 isr_inta;
1136
1137 /* debugging info */
1138 u32 indirect_dword;
1139 u32 direct_dword;
1140 u32 indirect_byte;
1141}; /*ipw_priv */
1142
1143
1144/* debug macros */
1145
1146#ifdef CONFIG_IPW_DEBUG
1147#define IPW_DEBUG(level, fmt, args...) \
1148do { if (ipw_debug_level & (level)) \
1149 printk(KERN_DEBUG DRV_NAME": %c %s " fmt, \
1150 in_interrupt() ? 'I' : 'U', __FUNCTION__ , ## args); } while (0)
1151#else
1152#define IPW_DEBUG(level, fmt, args...) do {} while (0)
1153#endif /* CONFIG_IPW_DEBUG */
1154
1155/*
1156 * To use the debug system;
1157 *
1158 * If you are defining a new debug classification, simply add it to the #define
1159 * list here in the form of:
1160 *
1161 * #define IPW_DL_xxxx VALUE
1162 *
1163 * shifting value to the left one bit from the previous entry. xxxx should be
1164 * the name of the classification (for example, WEP)
1165 *
1166 * You then need to either add a IPW_xxxx_DEBUG() macro definition for your
1167 * classification, or use IPW_DEBUG(IPW_DL_xxxx, ...) whenever you want
1168 * to send output to that classification.
1169 *
1170 * To add your debug level to the list of levels seen when you perform
1171 *
1172 * % cat /proc/net/ipw/debug_level
1173 *
1174 * you simply need to add your entry to the ipw_debug_levels array.
1175 *
1176 * If you do not see debug_level in /proc/net/ipw then you do not have
1177 * CONFIG_IPW_DEBUG defined in your kernel configuration
1178 *
1179 */
1180
1181#define IPW_DL_ERROR (1<<0)
1182#define IPW_DL_WARNING (1<<1)
1183#define IPW_DL_INFO (1<<2)
1184#define IPW_DL_WX (1<<3)
1185#define IPW_DL_HOST_COMMAND (1<<5)
1186#define IPW_DL_STATE (1<<6)
1187
1188#define IPW_DL_NOTIF (1<<10)
1189#define IPW_DL_SCAN (1<<11)
1190#define IPW_DL_ASSOC (1<<12)
1191#define IPW_DL_DROP (1<<13)
1192#define IPW_DL_IOCTL (1<<14)
1193
1194#define IPW_DL_MANAGE (1<<15)
1195#define IPW_DL_FW (1<<16)
1196#define IPW_DL_RF_KILL (1<<17)
1197#define IPW_DL_FW_ERRORS (1<<18)
1198
1199
1200#define IPW_DL_ORD (1<<20)
1201
1202#define IPW_DL_FRAG (1<<21)
1203#define IPW_DL_WEP (1<<22)
1204#define IPW_DL_TX (1<<23)
1205#define IPW_DL_RX (1<<24)
1206#define IPW_DL_ISR (1<<25)
1207#define IPW_DL_FW_INFO (1<<26)
1208#define IPW_DL_IO (1<<27)
1209#define IPW_DL_TRACE (1<<28)
1210
1211#define IPW_DL_STATS (1<<29)
1212
1213
1214#define IPW_ERROR(f, a...) printk(KERN_ERR DRV_NAME ": " f, ## a)
1215#define IPW_WARNING(f, a...) printk(KERN_WARNING DRV_NAME ": " f, ## a)
1216#define IPW_DEBUG_INFO(f, a...) IPW_DEBUG(IPW_DL_INFO, f, ## a)
1217
1218#define IPW_DEBUG_WX(f, a...) IPW_DEBUG(IPW_DL_WX, f, ## a)
1219#define IPW_DEBUG_SCAN(f, a...) IPW_DEBUG(IPW_DL_SCAN, f, ## a)
1220#define IPW_DEBUG_STATUS(f, a...) IPW_DEBUG(IPW_DL_STATUS, f, ## a)
1221#define IPW_DEBUG_TRACE(f, a...) IPW_DEBUG(IPW_DL_TRACE, f, ## a)
1222#define IPW_DEBUG_RX(f, a...) IPW_DEBUG(IPW_DL_RX, f, ## a)
1223#define IPW_DEBUG_TX(f, a...) IPW_DEBUG(IPW_DL_TX, f, ## a)
1224#define IPW_DEBUG_ISR(f, a...) IPW_DEBUG(IPW_DL_ISR, f, ## a)
1225#define IPW_DEBUG_MANAGEMENT(f, a...) IPW_DEBUG(IPW_DL_MANAGE, f, ## a)
1226#define IPW_DEBUG_WEP(f, a...) IPW_DEBUG(IPW_DL_WEP, f, ## a)
1227#define IPW_DEBUG_HC(f, a...) IPW_DEBUG(IPW_DL_HOST_COMMAND, f, ## a)
1228#define IPW_DEBUG_FRAG(f, a...) IPW_DEBUG(IPW_DL_FRAG, f, ## a)
1229#define IPW_DEBUG_FW(f, a...) IPW_DEBUG(IPW_DL_FW, f, ## a)
1230#define IPW_DEBUG_RF_KILL(f, a...) IPW_DEBUG(IPW_DL_RF_KILL, f, ## a)
1231#define IPW_DEBUG_DROP(f, a...) IPW_DEBUG(IPW_DL_DROP, f, ## a)
1232#define IPW_DEBUG_IO(f, a...) IPW_DEBUG(IPW_DL_IO, f, ## a)
1233#define IPW_DEBUG_ORD(f, a...) IPW_DEBUG(IPW_DL_ORD, f, ## a)
1234#define IPW_DEBUG_FW_INFO(f, a...) IPW_DEBUG(IPW_DL_FW_INFO, f, ## a)
1235#define IPW_DEBUG_NOTIF(f, a...) IPW_DEBUG(IPW_DL_NOTIF, f, ## a)
1236#define IPW_DEBUG_STATE(f, a...) IPW_DEBUG(IPW_DL_STATE | IPW_DL_ASSOC | IPW_DL_INFO, f, ## a)
1237#define IPW_DEBUG_ASSOC(f, a...) IPW_DEBUG(IPW_DL_ASSOC | IPW_DL_INFO, f, ## a)
1238#define IPW_DEBUG_STATS(f, a...) IPW_DEBUG(IPW_DL_STATS, f, ## a)
1239
1240#include <linux/ctype.h>
1241
1242/*
1243* Register bit definitions
1244*/
1245
1246/* Dino control registers bits */
1247
1248#define DINO_ENABLE_SYSTEM 0x80
1249#define DINO_ENABLE_CS 0x40
1250#define DINO_RXFIFO_DATA 0x01
1251#define DINO_CONTROL_REG 0x00200000
1252
1253#define CX2_INTA_RW 0x00000008
1254#define CX2_INTA_MASK_R 0x0000000C
1255#define CX2_INDIRECT_ADDR 0x00000010
1256#define CX2_INDIRECT_DATA 0x00000014
1257#define CX2_AUTOINC_ADDR 0x00000018
1258#define CX2_AUTOINC_DATA 0x0000001C
1259#define CX2_RESET_REG 0x00000020
1260#define CX2_GP_CNTRL_RW 0x00000024
1261
1262#define CX2_READ_INT_REGISTER 0xFF4
1263
1264#define CX2_GP_CNTRL_BIT_INIT_DONE 0x00000004
1265
1266#define CX2_REGISTER_DOMAIN1_END 0x00001000
1267#define CX2_SRAM_READ_INT_REGISTER 0x00000ff4
1268
1269#define CX2_SHARED_LOWER_BOUND 0x00000200
1270#define CX2_INTERRUPT_AREA_LOWER_BOUND 0x00000f80
1271
1272#define CX2_NIC_SRAM_LOWER_BOUND 0x00000000
1273#define CX2_NIC_SRAM_UPPER_BOUND 0x00030000
1274
1275#define CX2_BIT_INT_HOST_SRAM_READ_INT_REGISTER (1 << 29)
1276#define CX2_GP_CNTRL_BIT_CLOCK_READY 0x00000001
1277#define CX2_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY 0x00000002
1278
1279/*
1280 * RESET Register Bit Indexes
1281 */
1282#define CBD_RESET_REG_PRINCETON_RESET 0x00000001 /* Bit 0 (LSB) */
1283#define CX2_RESET_REG_SW_RESET 0x00000080 /* Bit 7 */
1284#define CX2_RESET_REG_MASTER_DISABLED 0x00000100 /* Bit 8 */
1285#define CX2_RESET_REG_STOP_MASTER 0x00000200 /* Bit 9 */
1286#define CX2_ARC_KESHET_CONFIG 0x08000000 /* Bit 27 */
1287#define CX2_START_STANDBY 0x00000004 /* Bit 2 */
1288
1289#define CX2_CSR_CIS_UPPER_BOUND 0x00000200
1290#define CX2_DOMAIN_0_END 0x1000
1291#define CLX_MEM_BAR_SIZE 0x1000
1292
1293#define CX2_BASEBAND_CONTROL_STATUS 0X00200000
1294#define CX2_BASEBAND_TX_FIFO_WRITE 0X00200004
1295#define CX2_BASEBAND_RX_FIFO_READ 0X00200004
1296#define CX2_BASEBAND_CONTROL_STORE 0X00200010
1297
1298#define CX2_INTERNAL_CMD_EVENT 0X00300004
1299#define CX2_BASEBAND_POWER_DOWN 0x00000001
1300
1301#define CX2_MEM_HALT_AND_RESET 0x003000e0
1302
1303/* defgroup bits_halt_reset MEM_HALT_AND_RESET register bits */
1304#define CX2_BIT_HALT_RESET_ON 0x80000000
1305#define CX2_BIT_HALT_RESET_OFF 0x00000000
1306
1307#define CB_LAST_VALID 0x20000000
1308#define CB_INT_ENABLED 0x40000000
1309#define CB_VALID 0x80000000
1310#define CB_SRC_LE 0x08000000
1311#define CB_DEST_LE 0x04000000
1312#define CB_SRC_AUTOINC 0x00800000
1313#define CB_SRC_IO_GATED 0x00400000
1314#define CB_DEST_AUTOINC 0x00080000
1315#define CB_SRC_SIZE_LONG 0x00200000
1316#define CB_DEST_SIZE_LONG 0x00020000
1317
1318
1319/* DMA DEFINES */
1320
1321#define DMA_CONTROL_SMALL_CB_CONST_VALUE 0x00540000
1322#define DMA_CB_STOP_AND_ABORT 0x00000C00
1323#define DMA_CB_START 0x00000100
1324
1325
1326#define CX2_SHARED_SRAM_SIZE 0x00030000
1327#define CX2_SHARED_SRAM_DMA_CONTROL 0x00027000
1328#define CB_MAX_LENGTH 0x1FFF
1329
1330#define CX2_HOST_EEPROM_DATA_SRAM_SIZE 0xA18
1331#define CX2_EEPROM_IMAGE_SIZE 0x100
1332
1333
1334/* DMA defs */
1335#define CX2_DMA_I_CURRENT_CB 0x003000D0
1336#define CX2_DMA_O_CURRENT_CB 0x003000D4
1337#define CX2_DMA_I_DMA_CONTROL 0x003000A4
1338#define CX2_DMA_I_CB_BASE 0x003000A0
1339
1340#define CX2_TX_CMD_QUEUE_BD_BASE (0x00000200)
1341#define CX2_TX_CMD_QUEUE_BD_SIZE (0x00000204)
1342#define CX2_TX_QUEUE_0_BD_BASE (0x00000208)
1343#define CX2_TX_QUEUE_0_BD_SIZE (0x0000020C)
1344#define CX2_TX_QUEUE_1_BD_BASE (0x00000210)
1345#define CX2_TX_QUEUE_1_BD_SIZE (0x00000214)
1346#define CX2_TX_QUEUE_2_BD_BASE (0x00000218)
1347#define CX2_TX_QUEUE_2_BD_SIZE (0x0000021C)
1348#define CX2_TX_QUEUE_3_BD_BASE (0x00000220)
1349#define CX2_TX_QUEUE_3_BD_SIZE (0x00000224)
1350#define CX2_RX_BD_BASE (0x00000240)
1351#define CX2_RX_BD_SIZE (0x00000244)
1352#define CX2_RFDS_TABLE_LOWER (0x00000500)
1353
1354#define CX2_TX_CMD_QUEUE_READ_INDEX (0x00000280)
1355#define CX2_TX_QUEUE_0_READ_INDEX (0x00000284)
1356#define CX2_TX_QUEUE_1_READ_INDEX (0x00000288)
1357#define CX2_TX_QUEUE_2_READ_INDEX (0x0000028C)
1358#define CX2_TX_QUEUE_3_READ_INDEX (0x00000290)
1359#define CX2_RX_READ_INDEX (0x000002A0)
1360
1361#define CX2_TX_CMD_QUEUE_WRITE_INDEX (0x00000F80)
1362#define CX2_TX_QUEUE_0_WRITE_INDEX (0x00000F84)
1363#define CX2_TX_QUEUE_1_WRITE_INDEX (0x00000F88)
1364#define CX2_TX_QUEUE_2_WRITE_INDEX (0x00000F8C)
1365#define CX2_TX_QUEUE_3_WRITE_INDEX (0x00000F90)
1366#define CX2_RX_WRITE_INDEX (0x00000FA0)
1367
1368/*
1369 * EEPROM Related Definitions
1370 */
1371
1372#define IPW_EEPROM_DATA_SRAM_ADDRESS (CX2_SHARED_LOWER_BOUND + 0x814)
1373#define IPW_EEPROM_DATA_SRAM_SIZE (CX2_SHARED_LOWER_BOUND + 0x818)
1374#define IPW_EEPROM_LOAD_DISABLE (CX2_SHARED_LOWER_BOUND + 0x81C)
1375#define IPW_EEPROM_DATA (CX2_SHARED_LOWER_BOUND + 0x820)
1376#define IPW_EEPROM_UPPER_ADDRESS (CX2_SHARED_LOWER_BOUND + 0x9E0)
1377
1378#define IPW_STATION_TABLE_LOWER (CX2_SHARED_LOWER_BOUND + 0xA0C)
1379#define IPW_STATION_TABLE_UPPER (CX2_SHARED_LOWER_BOUND + 0xB0C)
1380#define IPW_REQUEST_ATIM (CX2_SHARED_LOWER_BOUND + 0xB0C)
1381#define IPW_ATIM_SENT (CX2_SHARED_LOWER_BOUND + 0xB10)
1382#define IPW_WHO_IS_AWAKE (CX2_SHARED_LOWER_BOUND + 0xB14)
1383#define IPW_DURING_ATIM_WINDOW (CX2_SHARED_LOWER_BOUND + 0xB18)
1384
1385
1386#define MSB 1
1387#define LSB 0
1388#define WORD_TO_BYTE(_word) ((_word) * sizeof(u16))
1389
1390#define GET_EEPROM_ADDR(_wordoffset,_byteoffset) \
1391 ( WORD_TO_BYTE(_wordoffset) + (_byteoffset) )
1392
1393/* EEPROM access by BYTE */
1394#define EEPROM_PME_CAPABILITY (GET_EEPROM_ADDR(0x09,MSB)) /* 1 byte */
1395#define EEPROM_MAC_ADDRESS (GET_EEPROM_ADDR(0x21,LSB)) /* 6 byte */
1396#define EEPROM_VERSION (GET_EEPROM_ADDR(0x24,MSB)) /* 1 byte */
1397#define EEPROM_NIC_TYPE (GET_EEPROM_ADDR(0x25,LSB)) /* 1 byte */
1398#define EEPROM_SKU_CAPABILITY (GET_EEPROM_ADDR(0x25,MSB)) /* 1 byte */
1399#define EEPROM_COUNTRY_CODE (GET_EEPROM_ADDR(0x26,LSB)) /* 3 bytes */
1400#define EEPROM_IBSS_CHANNELS_BG (GET_EEPROM_ADDR(0x28,LSB)) /* 2 bytes */
1401#define EEPROM_IBSS_CHANNELS_A (GET_EEPROM_ADDR(0x29,MSB)) /* 5 bytes */
1402#define EEPROM_BSS_CHANNELS_BG (GET_EEPROM_ADDR(0x2c,LSB)) /* 2 bytes */
1403#define EEPROM_HW_VERSION (GET_EEPROM_ADDR(0x72,LSB)) /* 2 bytes */
1404
1405/* NIC type as found in the one byte EEPROM_NIC_TYPE offset*/
1406#define EEPROM_NIC_TYPE_STANDARD 0
1407#define EEPROM_NIC_TYPE_DELL 1
1408#define EEPROM_NIC_TYPE_FUJITSU 2
1409#define EEPROM_NIC_TYPE_IBM 3
1410#define EEPROM_NIC_TYPE_HP 4
1411
1412#define FW_MEM_REG_LOWER_BOUND 0x00300000
1413#define FW_MEM_REG_EEPROM_ACCESS (FW_MEM_REG_LOWER_BOUND + 0x40)
1414
1415#define EEPROM_BIT_SK (1<<0)
1416#define EEPROM_BIT_CS (1<<1)
1417#define EEPROM_BIT_DI (1<<2)
1418#define EEPROM_BIT_DO (1<<4)
1419
1420#define EEPROM_CMD_READ 0x2
1421
1422/* Interrupts masks */
1423#define CX2_INTA_NONE 0x00000000
1424
1425#define CX2_INTA_BIT_RX_TRANSFER 0x00000002
1426#define CX2_INTA_BIT_STATUS_CHANGE 0x00000010
1427#define CX2_INTA_BIT_BEACON_PERIOD_EXPIRED 0x00000020
1428
1429//Inta Bits for CF
1430#define CX2_INTA_BIT_TX_CMD_QUEUE 0x00000800
1431#define CX2_INTA_BIT_TX_QUEUE_1 0x00001000
1432#define CX2_INTA_BIT_TX_QUEUE_2 0x00002000
1433#define CX2_INTA_BIT_TX_QUEUE_3 0x00004000
1434#define CX2_INTA_BIT_TX_QUEUE_4 0x00008000
1435
1436#define CX2_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE 0x00010000
1437
1438#define CX2_INTA_BIT_PREPARE_FOR_POWER_DOWN 0x00100000
1439#define CX2_INTA_BIT_POWER_DOWN 0x00200000
1440
1441#define CX2_INTA_BIT_FW_INITIALIZATION_DONE 0x01000000
1442#define CX2_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE 0x02000000
1443#define CX2_INTA_BIT_RF_KILL_DONE 0x04000000
1444#define CX2_INTA_BIT_FATAL_ERROR 0x40000000
1445#define CX2_INTA_BIT_PARITY_ERROR 0x80000000
1446
1447/* Interrupts enabled at init time. */
1448#define CX2_INTA_MASK_ALL \
1449 (CX2_INTA_BIT_TX_QUEUE_1 | \
1450 CX2_INTA_BIT_TX_QUEUE_2 | \
1451 CX2_INTA_BIT_TX_QUEUE_3 | \
1452 CX2_INTA_BIT_TX_QUEUE_4 | \
1453 CX2_INTA_BIT_TX_CMD_QUEUE | \
1454 CX2_INTA_BIT_RX_TRANSFER | \
1455 CX2_INTA_BIT_FATAL_ERROR | \
1456 CX2_INTA_BIT_PARITY_ERROR | \
1457 CX2_INTA_BIT_STATUS_CHANGE | \
1458 CX2_INTA_BIT_FW_INITIALIZATION_DONE | \
1459 CX2_INTA_BIT_BEACON_PERIOD_EXPIRED | \
1460 CX2_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE | \
1461 CX2_INTA_BIT_PREPARE_FOR_POWER_DOWN | \
1462 CX2_INTA_BIT_POWER_DOWN | \
1463 CX2_INTA_BIT_RF_KILL_DONE )
1464
1465#define IPWSTATUS_ERROR_LOG (CX2_SHARED_LOWER_BOUND + 0x410)
1466#define IPW_EVENT_LOG (CX2_SHARED_LOWER_BOUND + 0x414)
1467
1468/* FW event log definitions */
1469#define EVENT_ELEM_SIZE (3 * sizeof(u32))
1470#define EVENT_START_OFFSET (1 * sizeof(u32) + 2 * sizeof(u16))
1471
1472/* FW error log definitions */
1473#define ERROR_ELEM_SIZE (7 * sizeof(u32))
1474#define ERROR_START_OFFSET (1 * sizeof(u32))
1475
1476enum {
1477 IPW_FW_ERROR_OK = 0,
1478 IPW_FW_ERROR_FAIL,
1479 IPW_FW_ERROR_MEMORY_UNDERFLOW,
1480 IPW_FW_ERROR_MEMORY_OVERFLOW,
1481 IPW_FW_ERROR_BAD_PARAM,
1482 IPW_FW_ERROR_BAD_CHECKSUM,
1483 IPW_FW_ERROR_NMI_INTERRUPT,
1484 IPW_FW_ERROR_BAD_DATABASE,
1485 IPW_FW_ERROR_ALLOC_FAIL,
1486 IPW_FW_ERROR_DMA_UNDERRUN,
1487 IPW_FW_ERROR_DMA_STATUS,
1488 IPW_FW_ERROR_DINOSTATUS_ERROR,
1489 IPW_FW_ERROR_EEPROMSTATUS_ERROR,
1490 IPW_FW_ERROR_SYSASSERT,
1491 IPW_FW_ERROR_FATAL_ERROR
1492};
1493
1494#define AUTH_OPEN 0
1495#define AUTH_SHARED_KEY 1
1496#define AUTH_IGNORE 3
1497
1498#define HC_ASSOCIATE 0
1499#define HC_REASSOCIATE 1
1500#define HC_DISASSOCIATE 2
1501#define HC_IBSS_START 3
1502#define HC_IBSS_RECONF 4
1503#define HC_DISASSOC_QUIET 5
1504
1505#define IPW_RATE_CAPABILITIES 1
1506#define IPW_RATE_CONNECT 0
1507
1508
1509/*
1510 * Rate values and masks
1511 */
1512#define IPW_TX_RATE_1MB 0x0A
1513#define IPW_TX_RATE_2MB 0x14
1514#define IPW_TX_RATE_5MB 0x37
1515#define IPW_TX_RATE_6MB 0x0D
1516#define IPW_TX_RATE_9MB 0x0F
1517#define IPW_TX_RATE_11MB 0x6E
1518#define IPW_TX_RATE_12MB 0x05
1519#define IPW_TX_RATE_18MB 0x07
1520#define IPW_TX_RATE_24MB 0x09
1521#define IPW_TX_RATE_36MB 0x0B
1522#define IPW_TX_RATE_48MB 0x01
1523#define IPW_TX_RATE_54MB 0x03
1524
1525#define IPW_ORD_TABLE_ID_MASK 0x0000FF00
1526#define IPW_ORD_TABLE_VALUE_MASK 0x000000FF
1527
1528#define IPW_ORD_TABLE_0_MASK 0x0000F000
1529#define IPW_ORD_TABLE_1_MASK 0x0000F100
1530#define IPW_ORD_TABLE_2_MASK 0x0000F200
1531#define IPW_ORD_TABLE_3_MASK 0x0000F300
1532#define IPW_ORD_TABLE_4_MASK 0x0000F400
1533#define IPW_ORD_TABLE_5_MASK 0x0000F500
1534#define IPW_ORD_TABLE_6_MASK 0x0000F600
1535#define IPW_ORD_TABLE_7_MASK 0x0000F700
1536
1537/*
1538 * Table 0 Entries (all entries are 32 bits)
1539 */
1540enum {
1541 IPW_ORD_STAT_TX_CURR_RATE = IPW_ORD_TABLE_0_MASK + 1,
1542 IPW_ORD_STAT_FRAG_TRESHOLD,
1543 IPW_ORD_STAT_RTS_THRESHOLD,
1544 IPW_ORD_STAT_TX_HOST_REQUESTS,
1545 IPW_ORD_STAT_TX_HOST_COMPLETE,
1546 IPW_ORD_STAT_TX_DIR_DATA,
1547 IPW_ORD_STAT_TX_DIR_DATA_B_1,
1548 IPW_ORD_STAT_TX_DIR_DATA_B_2,
1549 IPW_ORD_STAT_TX_DIR_DATA_B_5_5,
1550 IPW_ORD_STAT_TX_DIR_DATA_B_11,
1551 /* Hole */
1552
1553
1554
1555
1556
1557
1558
1559 IPW_ORD_STAT_TX_DIR_DATA_G_1 = IPW_ORD_TABLE_0_MASK + 19,
1560 IPW_ORD_STAT_TX_DIR_DATA_G_2,
1561 IPW_ORD_STAT_TX_DIR_DATA_G_5_5,
1562 IPW_ORD_STAT_TX_DIR_DATA_G_6,
1563 IPW_ORD_STAT_TX_DIR_DATA_G_9,
1564 IPW_ORD_STAT_TX_DIR_DATA_G_11,
1565 IPW_ORD_STAT_TX_DIR_DATA_G_12,
1566 IPW_ORD_STAT_TX_DIR_DATA_G_18,
1567 IPW_ORD_STAT_TX_DIR_DATA_G_24,
1568 IPW_ORD_STAT_TX_DIR_DATA_G_36,
1569 IPW_ORD_STAT_TX_DIR_DATA_G_48,
1570 IPW_ORD_STAT_TX_DIR_DATA_G_54,
1571 IPW_ORD_STAT_TX_NON_DIR_DATA,
1572 IPW_ORD_STAT_TX_NON_DIR_DATA_B_1,
1573 IPW_ORD_STAT_TX_NON_DIR_DATA_B_2,
1574 IPW_ORD_STAT_TX_NON_DIR_DATA_B_5_5,
1575 IPW_ORD_STAT_TX_NON_DIR_DATA_B_11,
1576 /* Hole */
1577
1578
1579
1580
1581
1582
1583
1584 IPW_ORD_STAT_TX_NON_DIR_DATA_G_1 = IPW_ORD_TABLE_0_MASK + 44,
1585 IPW_ORD_STAT_TX_NON_DIR_DATA_G_2,
1586 IPW_ORD_STAT_TX_NON_DIR_DATA_G_5_5,
1587 IPW_ORD_STAT_TX_NON_DIR_DATA_G_6,
1588 IPW_ORD_STAT_TX_NON_DIR_DATA_G_9,
1589 IPW_ORD_STAT_TX_NON_DIR_DATA_G_11,
1590 IPW_ORD_STAT_TX_NON_DIR_DATA_G_12,
1591 IPW_ORD_STAT_TX_NON_DIR_DATA_G_18,
1592 IPW_ORD_STAT_TX_NON_DIR_DATA_G_24,
1593 IPW_ORD_STAT_TX_NON_DIR_DATA_G_36,
1594 IPW_ORD_STAT_TX_NON_DIR_DATA_G_48,
1595 IPW_ORD_STAT_TX_NON_DIR_DATA_G_54,
1596 IPW_ORD_STAT_TX_RETRY,
1597 IPW_ORD_STAT_TX_FAILURE,
1598 IPW_ORD_STAT_RX_ERR_CRC,
1599 IPW_ORD_STAT_RX_ERR_ICV,
1600 IPW_ORD_STAT_RX_NO_BUFFER,
1601 IPW_ORD_STAT_FULL_SCANS,
1602 IPW_ORD_STAT_PARTIAL_SCANS,
1603 IPW_ORD_STAT_TGH_ABORTED_SCANS,
1604 IPW_ORD_STAT_TX_TOTAL_BYTES,
1605 IPW_ORD_STAT_CURR_RSSI_RAW,
1606 IPW_ORD_STAT_RX_BEACON,
1607 IPW_ORD_STAT_MISSED_BEACONS,
1608 IPW_ORD_TABLE_0_LAST
1609};
1610
1611#define IPW_RSSI_TO_DBM 112
1612
1613/* Table 1 Entries
1614 */
1615enum {
1616 IPW_ORD_TABLE_1_LAST = IPW_ORD_TABLE_1_MASK | 1,
1617};
1618
1619/*
1620 * Table 2 Entries
1621 *
1622 * FW_VERSION: 16 byte string
1623 * FW_DATE: 16 byte string (only 14 bytes used)
1624 * UCODE_VERSION: 4 byte version code
1625 * UCODE_DATE: 5 bytes code code
1626 * ADDAPTER_MAC: 6 byte MAC address
1627 * RTC: 4 byte clock
1628 */
1629enum {
1630 IPW_ORD_STAT_FW_VERSION = IPW_ORD_TABLE_2_MASK | 1,
1631 IPW_ORD_STAT_FW_DATE,
1632 IPW_ORD_STAT_UCODE_VERSION,
1633 IPW_ORD_STAT_UCODE_DATE,
1634 IPW_ORD_STAT_ADAPTER_MAC,
1635 IPW_ORD_STAT_RTC,
1636 IPW_ORD_TABLE_2_LAST
1637};
1638
1639/* Table 3 */
1640enum {
1641 IPW_ORD_STAT_TX_PACKET = IPW_ORD_TABLE_3_MASK | 0,
1642 IPW_ORD_STAT_TX_PACKET_FAILURE,
1643 IPW_ORD_STAT_TX_PACKET_SUCCESS,
1644 IPW_ORD_STAT_TX_PACKET_ABORTED,
1645 IPW_ORD_TABLE_3_LAST
1646};
1647
1648/* Table 4 */
1649enum {
1650 IPW_ORD_TABLE_4_LAST = IPW_ORD_TABLE_4_MASK
1651};
1652
1653/* Table 5 */
1654enum {
1655 IPW_ORD_STAT_AVAILABLE_AP_COUNT = IPW_ORD_TABLE_5_MASK,
1656 IPW_ORD_STAT_AP_ASSNS,
1657 IPW_ORD_STAT_ROAM,
1658 IPW_ORD_STAT_ROAM_CAUSE_MISSED_BEACONS,
1659 IPW_ORD_STAT_ROAM_CAUSE_UNASSOC,
1660 IPW_ORD_STAT_ROAM_CAUSE_RSSI,
1661 IPW_ORD_STAT_ROAM_CAUSE_LINK_QUALITY,
1662 IPW_ORD_STAT_ROAM_CAUSE_AP_LOAD_BALANCE,
1663 IPW_ORD_STAT_ROAM_CAUSE_AP_NO_TX,
1664 IPW_ORD_STAT_LINK_UP,
1665 IPW_ORD_STAT_LINK_DOWN,
1666 IPW_ORD_ANTENNA_DIVERSITY,
1667 IPW_ORD_CURR_FREQ,
1668 IPW_ORD_TABLE_5_LAST
1669};
1670
1671/* Table 6 */
1672enum {
1673 IPW_ORD_COUNTRY_CODE = IPW_ORD_TABLE_6_MASK,
1674 IPW_ORD_CURR_BSSID,
1675 IPW_ORD_CURR_SSID,
1676 IPW_ORD_TABLE_6_LAST
1677};
1678
1679/* Table 7 */
1680enum {
1681 IPW_ORD_STAT_PERCENT_MISSED_BEACONS = IPW_ORD_TABLE_7_MASK,
1682 IPW_ORD_STAT_PERCENT_TX_RETRIES,
1683 IPW_ORD_STAT_PERCENT_LINK_QUALITY,
1684 IPW_ORD_STAT_CURR_RSSI_DBM,
1685 IPW_ORD_TABLE_7_LAST
1686};
1687
1688#define IPW_ORDINALS_TABLE_LOWER (CX2_SHARED_LOWER_BOUND + 0x500)
1689#define IPW_ORDINALS_TABLE_0 (CX2_SHARED_LOWER_BOUND + 0x180)
1690#define IPW_ORDINALS_TABLE_1 (CX2_SHARED_LOWER_BOUND + 0x184)
1691#define IPW_ORDINALS_TABLE_2 (CX2_SHARED_LOWER_BOUND + 0x188)
1692#define IPW_MEM_FIXED_OVERRIDE (CX2_SHARED_LOWER_BOUND + 0x41C)
1693
1694struct ipw_fixed_rate {
1695 u16 tx_rates;
1696 u16 reserved;
1697} __attribute__ ((packed));
1698
1699#define CX2_INDIRECT_ADDR_MASK (~0x3ul)
1700
1701struct host_cmd {
1702 u8 cmd;
1703 u8 len;
1704 u16 reserved;
1705 u32 param[TFD_CMD_IMMEDIATE_PAYLOAD_LENGTH];
1706} __attribute__ ((packed));
1707
1708#define CFG_BT_COEXISTENCE_MIN 0x00
1709#define CFG_BT_COEXISTENCE_DEFER 0x02
1710#define CFG_BT_COEXISTENCE_KILL 0x04
1711#define CFG_BT_COEXISTENCE_WME_OVER_BT 0x08
1712#define CFG_BT_COEXISTENCE_OOB 0x10
1713#define CFG_BT_COEXISTENCE_MAX 0xFF
1714#define CFG_BT_COEXISTENCE_DEF 0x80 /* read Bt from EEPROM*/
1715
1716#define CFG_CTS_TO_ITSELF_ENABLED_MIN 0x0
1717#define CFG_CTS_TO_ITSELF_ENABLED_MAX 0x1
1718#define CFG_CTS_TO_ITSELF_ENABLED_DEF CFG_CTS_TO_ITSELF_ENABLED_MIN
1719
1720#define CFG_SYS_ANTENNA_BOTH 0x000
1721#define CFG_SYS_ANTENNA_A 0x001
1722#define CFG_SYS_ANTENNA_B 0x003
1723
1724/*
1725 * The definitions below were lifted off the ipw2100 driver, which only
1726 * supports 'b' mode, so I'm sure these are not exactly correct.
1727 *
1728 * Somebody fix these!!
1729 */
1730#define REG_MIN_CHANNEL 0
1731#define REG_MAX_CHANNEL 14
1732
1733#define REG_CHANNEL_MASK 0x00003FFF
1734#define IPW_IBSS_11B_DEFAULT_MASK 0x87ff
1735
1736static const long ipw_frequencies[] = {
1737 2412, 2417, 2422, 2427,
1738 2432, 2437, 2442, 2447,
1739 2452, 2457, 2462, 2467,
1740 2472, 2484
1741};
1742
1743#define FREQ_COUNT ARRAY_SIZE(ipw_frequencies)
1744
1745#define IPW_MAX_CONFIG_RETRIES 10
1746
1747static inline u32 frame_hdr_len(struct ieee80211_hdr *hdr)
1748{
1749 u32 retval;
1750 u16 fc;
1751
1752 retval = sizeof(struct ieee80211_hdr);
1753 fc = le16_to_cpu(hdr->frame_ctl);
1754
1755 /*
1756 * Function ToDS FromDS
1757 * IBSS 0 0
1758 * To AP 1 0
1759 * From AP 0 1
1760 * WDS (bridge) 1 1
1761 *
1762 * Only WDS frames use Address4 among them. --YZ
1763 */
1764 if (!(fc & IEEE80211_FCTL_TODS) || !(fc & IEEE80211_FCTL_FROMDS))
1765 retval -= ETH_ALEN;
1766
1767 return retval;
1768}
1769
1770#endif /* __ipw2200_h__ */