aboutsummaryrefslogtreecommitdiffstats
path: root/drivers
diff options
context:
space:
mode:
Diffstat (limited to 'drivers')
-rw-r--r--drivers/staging/Kconfig2
-rw-r--r--drivers/staging/Makefile1
-rw-r--r--drivers/staging/echo/Kconfig9
-rw-r--r--drivers/staging/echo/Makefile1
-rw-r--r--drivers/staging/echo/TODO10
-rw-r--r--drivers/staging/echo/bit_operations.h253
-rw-r--r--drivers/staging/echo/echo.c632
-rw-r--r--drivers/staging/echo/echo.h220
-rw-r--r--drivers/staging/echo/fir.h369
-rw-r--r--drivers/staging/echo/mmx.h288
10 files changed, 1785 insertions, 0 deletions
diff --git a/drivers/staging/Kconfig b/drivers/staging/Kconfig
index 762b471fdeda..25338b7eac98 100644
--- a/drivers/staging/Kconfig
+++ b/drivers/staging/Kconfig
@@ -39,4 +39,6 @@ source "drivers/staging/winbond/Kconfig"
39 39
40source "drivers/staging/wlan-ng/Kconfig" 40source "drivers/staging/wlan-ng/Kconfig"
41 41
42source "drivers/staging/echo/Kconfig"
43
42endif # STAGING 44endif # STAGING
diff --git a/drivers/staging/Makefile b/drivers/staging/Makefile
index 574198479d66..93decb89b1d8 100644
--- a/drivers/staging/Makefile
+++ b/drivers/staging/Makefile
@@ -8,3 +8,4 @@ obj-$(CONFIG_VIDEO_GO7007) += go7007/
8obj-$(CONFIG_USB_IP_COMMON) += usbip/ 8obj-$(CONFIG_USB_IP_COMMON) += usbip/
9obj-$(CONFIG_W35UND) += winbond/ 9obj-$(CONFIG_W35UND) += winbond/
10obj-$(CONFIG_PRISM2_USB) += wlan-ng/ 10obj-$(CONFIG_PRISM2_USB) += wlan-ng/
11obj-$(CONFIG_ECHO) += echo/
diff --git a/drivers/staging/echo/Kconfig b/drivers/staging/echo/Kconfig
new file mode 100644
index 000000000000..f1d41ea9cd48
--- /dev/null
+++ b/drivers/staging/echo/Kconfig
@@ -0,0 +1,9 @@
1config ECHO
2 tristate "Line Echo Canceller support"
3 default n
4 ---help---
5 This driver provides line echo cancelling support for mISDN and
6 Zaptel drivers.
7
8 To compile this driver as a module, choose M here. The module
9 will be called echo.
diff --git a/drivers/staging/echo/Makefile b/drivers/staging/echo/Makefile
new file mode 100644
index 000000000000..7d4caac12a8d
--- /dev/null
+++ b/drivers/staging/echo/Makefile
@@ -0,0 +1 @@
obj-$(CONFIG_ECHO) += echo.o
diff --git a/drivers/staging/echo/TODO b/drivers/staging/echo/TODO
new file mode 100644
index 000000000000..1ca09afd603e
--- /dev/null
+++ b/drivers/staging/echo/TODO
@@ -0,0 +1,10 @@
1TODO:
2 - checkpatch.pl cleanups
3 - Lindent
4 - typedef removals
5 - handle bit_operations.h (merge in or make part of common code?)
6 - remove proc interface, only use echo.h interface (proc interface is
7 racy and not correct.)
8
9Please send patches to Greg Kroah-Hartman <greg@kroah.com> and Cc: Steve
10Underwood <steveu@coppice.org> and David Rowe <david@rowetel.com>
diff --git a/drivers/staging/echo/bit_operations.h b/drivers/staging/echo/bit_operations.h
new file mode 100644
index 000000000000..b32f4bf99397
--- /dev/null
+++ b/drivers/staging/echo/bit_operations.h
@@ -0,0 +1,253 @@
1/*
2 * SpanDSP - a series of DSP components for telephony
3 *
4 * bit_operations.h - Various bit level operations, such as bit reversal
5 *
6 * Written by Steve Underwood <steveu@coppice.org>
7 *
8 * Copyright (C) 2006 Steve Underwood
9 *
10 * All rights reserved.
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2, as
14 * published by the Free Software Foundation.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 *
25 * $Id: bit_operations.h,v 1.11 2006/11/28 15:37:03 steveu Exp $
26 */
27
28/*! \file */
29
30#if !defined(_BIT_OPERATIONS_H_)
31#define _BIT_OPERATIONS_H_
32
33#ifdef __cplusplus
34extern "C" {
35#endif
36
37#if defined(__i386__) || defined(__x86_64__)
38/*! \brief Find the bit position of the highest set bit in a word
39 \param bits The word to be searched
40 \return The bit number of the highest set bit, or -1 if the word is zero. */
41static __inline__ int top_bit(unsigned int bits)
42{
43 int res;
44
45 __asm__ (" xorl %[res],%[res];\n"
46 " decl %[res];\n"
47 " bsrl %[bits],%[res]\n"
48 : [res] "=&r" (res)
49 : [bits] "rm" (bits));
50 return res;
51}
52/*- End of function --------------------------------------------------------*/
53
54/*! \brief Find the bit position of the lowest set bit in a word
55 \param bits The word to be searched
56 \return The bit number of the lowest set bit, or -1 if the word is zero. */
57static __inline__ int bottom_bit(unsigned int bits)
58{
59 int res;
60
61 __asm__ (" xorl %[res],%[res];\n"
62 " decl %[res];\n"
63 " bsfl %[bits],%[res]\n"
64 : [res] "=&r" (res)
65 : [bits] "rm" (bits));
66 return res;
67}
68/*- End of function --------------------------------------------------------*/
69#else
70static __inline__ int top_bit(unsigned int bits)
71{
72 int i;
73
74 if (bits == 0)
75 return -1;
76 i = 0;
77 if (bits & 0xFFFF0000)
78 {
79 bits &= 0xFFFF0000;
80 i += 16;
81 }
82 if (bits & 0xFF00FF00)
83 {
84 bits &= 0xFF00FF00;
85 i += 8;
86 }
87 if (bits & 0xF0F0F0F0)
88 {
89 bits &= 0xF0F0F0F0;
90 i += 4;
91 }
92 if (bits & 0xCCCCCCCC)
93 {
94 bits &= 0xCCCCCCCC;
95 i += 2;
96 }
97 if (bits & 0xAAAAAAAA)
98 {
99 bits &= 0xAAAAAAAA;
100 i += 1;
101 }
102 return i;
103}
104/*- End of function --------------------------------------------------------*/
105
106static __inline__ int bottom_bit(unsigned int bits)
107{
108 int i;
109
110 if (bits == 0)
111 return -1;
112 i = 32;
113 if (bits & 0x0000FFFF)
114 {
115 bits &= 0x0000FFFF;
116 i -= 16;
117 }
118 if (bits & 0x00FF00FF)
119 {
120 bits &= 0x00FF00FF;
121 i -= 8;
122 }
123 if (bits & 0x0F0F0F0F)
124 {
125 bits &= 0x0F0F0F0F;
126 i -= 4;
127 }
128 if (bits & 0x33333333)
129 {
130 bits &= 0x33333333;
131 i -= 2;
132 }
133 if (bits & 0x55555555)
134 {
135 bits &= 0x55555555;
136 i -= 1;
137 }
138 return i;
139}
140/*- End of function --------------------------------------------------------*/
141#endif
142
143/*! \brief Bit reverse a byte.
144 \param data The byte to be reversed.
145 \return The bit reversed version of data. */
146static __inline__ uint8_t bit_reverse8(uint8_t x)
147{
148#if defined(__i386__) || defined(__x86_64__)
149 /* If multiply is fast */
150 return ((x*0x0802U & 0x22110U) | (x*0x8020U & 0x88440U))*0x10101U >> 16;
151#else
152 /* If multiply is slow, but we have a barrel shifter */
153 x = (x >> 4) | (x << 4);
154 x = ((x & 0xCC) >> 2) | ((x & 0x33) << 2);
155 return ((x & 0xAA) >> 1) | ((x & 0x55) << 1);
156#endif
157}
158/*- End of function --------------------------------------------------------*/
159
160/*! \brief Bit reverse a 16 bit word.
161 \param data The word to be reversed.
162 \return The bit reversed version of data. */
163uint16_t bit_reverse16(uint16_t data);
164
165/*! \brief Bit reverse a 32 bit word.
166 \param data The word to be reversed.
167 \return The bit reversed version of data. */
168uint32_t bit_reverse32(uint32_t data);
169
170/*! \brief Bit reverse each of the four bytes in a 32 bit word.
171 \param data The word to be reversed.
172 \return The bit reversed version of data. */
173uint32_t bit_reverse_4bytes(uint32_t data);
174
175/*! \brief Find the number of set bits in a 32 bit word.
176 \param x The word to be searched.
177 \return The number of set bits. */
178int one_bits32(uint32_t x);
179
180/*! \brief Create a mask as wide as the number in a 32 bit word.
181 \param x The word to be searched.
182 \return The mask. */
183uint32_t make_mask32(uint32_t x);
184
185/*! \brief Create a mask as wide as the number in a 16 bit word.
186 \param x The word to be searched.
187 \return The mask. */
188uint16_t make_mask16(uint16_t x);
189
190/*! \brief Find the least significant one in a word, and return a word
191 with just that bit set.
192 \param x The word to be searched.
193 \return The word with the single set bit. */
194static __inline__ uint32_t least_significant_one32(uint32_t x)
195{
196 return (x & (-(int32_t) x));
197}
198/*- End of function --------------------------------------------------------*/
199
200/*! \brief Find the most significant one in a word, and return a word
201 with just that bit set.
202 \param x The word to be searched.
203 \return The word with the single set bit. */
204static __inline__ uint32_t most_significant_one32(uint32_t x)
205{
206#if defined(__i386__) || defined(__x86_64__)
207 return 1 << top_bit(x);
208#else
209 x = make_mask32(x);
210 return (x ^ (x >> 1));
211#endif
212}
213/*- End of function --------------------------------------------------------*/
214
215/*! \brief Find the parity of a byte.
216 \param x The byte to be checked.
217 \return 1 for odd, or 0 for even. */
218static __inline__ int parity8(uint8_t x)
219{
220 x = (x ^ (x >> 4)) & 0x0F;
221 return (0x6996 >> x) & 1;
222}
223/*- End of function --------------------------------------------------------*/
224
225/*! \brief Find the parity of a 16 bit word.
226 \param x The word to be checked.
227 \return 1 for odd, or 0 for even. */
228static __inline__ int parity16(uint16_t x)
229{
230 x ^= (x >> 8);
231 x = (x ^ (x >> 4)) & 0x0F;
232 return (0x6996 >> x) & 1;
233}
234/*- End of function --------------------------------------------------------*/
235
236/*! \brief Find the parity of a 32 bit word.
237 \param x The word to be checked.
238 \return 1 for odd, or 0 for even. */
239static __inline__ int parity32(uint32_t x)
240{
241 x ^= (x >> 16);
242 x ^= (x >> 8);
243 x = (x ^ (x >> 4)) & 0x0F;
244 return (0x6996 >> x) & 1;
245}
246/*- End of function --------------------------------------------------------*/
247
248#ifdef __cplusplus
249}
250#endif
251
252#endif
253/*- End of file ------------------------------------------------------------*/
diff --git a/drivers/staging/echo/echo.c b/drivers/staging/echo/echo.c
new file mode 100644
index 000000000000..4a281b14fc58
--- /dev/null
+++ b/drivers/staging/echo/echo.c
@@ -0,0 +1,632 @@
1/*
2 * SpanDSP - a series of DSP components for telephony
3 *
4 * echo.c - A line echo canceller. This code is being developed
5 * against and partially complies with G168.
6 *
7 * Written by Steve Underwood <steveu@coppice.org>
8 * and David Rowe <david_at_rowetel_dot_com>
9 *
10 * Copyright (C) 2001, 2003 Steve Underwood, 2007 David Rowe
11 *
12 * Based on a bit from here, a bit from there, eye of toad, ear of
13 * bat, 15 years of failed attempts by David and a few fried brain
14 * cells.
15 *
16 * All rights reserved.
17 *
18 * This program is free software; you can redistribute it and/or modify
19 * it under the terms of the GNU General Public License version 2, as
20 * published by the Free Software Foundation.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 *
27 * You should have received a copy of the GNU General Public License
28 * along with this program; if not, write to the Free Software
29 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
30 *
31 * $Id: echo.c,v 1.20 2006/12/01 18:00:48 steveu Exp $
32 */
33
34/*! \file */
35
36/* Implementation Notes
37 David Rowe
38 April 2007
39
40 This code started life as Steve's NLMS algorithm with a tap
41 rotation algorithm to handle divergence during double talk. I
42 added a Geigel Double Talk Detector (DTD) [2] and performed some
43 G168 tests. However I had trouble meeting the G168 requirements,
44 especially for double talk - there were always cases where my DTD
45 failed, for example where near end speech was under the 6dB
46 threshold required for declaring double talk.
47
48 So I tried a two path algorithm [1], which has so far given better
49 results. The original tap rotation/Geigel algorithm is available
50 in SVN http://svn.rowetel.com/software/oslec/tags/before_16bit.
51 It's probably possible to make it work if some one wants to put some
52 serious work into it.
53
54 At present no special treatment is provided for tones, which
55 generally cause NLMS algorithms to diverge. Initial runs of a
56 subset of the G168 tests for tones (e.g ./echo_test 6) show the
57 current algorithm is passing OK, which is kind of surprising. The
58 full set of tests needs to be performed to confirm this result.
59
60 One other interesting change is that I have managed to get the NLMS
61 code to work with 16 bit coefficients, rather than the original 32
62 bit coefficents. This reduces the MIPs and storage required.
63 I evaulated the 16 bit port using g168_tests.sh and listening tests
64 on 4 real-world samples.
65
66 I also attempted the implementation of a block based NLMS update
67 [2] but although this passes g168_tests.sh it didn't converge well
68 on the real-world samples. I have no idea why, perhaps a scaling
69 problem. The block based code is also available in SVN
70 http://svn.rowetel.com/software/oslec/tags/before_16bit. If this
71 code can be debugged, it will lead to further reduction in MIPS, as
72 the block update code maps nicely onto DSP instruction sets (it's a
73 dot product) compared to the current sample-by-sample update.
74
75 Steve also has some nice notes on echo cancellers in echo.h
76
77
78 References:
79
80 [1] Ochiai, Areseki, and Ogihara, "Echo Canceller with Two Echo
81 Path Models", IEEE Transactions on communications, COM-25,
82 No. 6, June
83 1977.
84 http://www.rowetel.com/images/echo/dual_path_paper.pdf
85
86 [2] The classic, very useful paper that tells you how to
87 actually build a real world echo canceller:
88 Messerschmitt, Hedberg, Cole, Haoui, Winship, "Digital Voice
89 Echo Canceller with a TMS320020,
90 http://www.rowetel.com/images/echo/spra129.pdf
91
92 [3] I have written a series of blog posts on this work, here is
93 Part 1: http://www.rowetel.com/blog/?p=18
94
95 [4] The source code http://svn.rowetel.com/software/oslec/
96
97 [5] A nice reference on LMS filters:
98 http://en.wikipedia.org/wiki/Least_mean_squares_filter
99
100 Credits:
101
102 Thanks to Steve Underwood, Jean-Marc Valin, and Ramakrishnan
103 Muthukrishnan for their suggestions and email discussions. Thanks
104 also to those people who collected echo samples for me such as
105 Mark, Pawel, and Pavel.
106*/
107
108#include <linux/kernel.h> /* We're doing kernel work */
109#include <linux/module.h>
110#include <linux/kernel.h>
111#include <linux/slab.h>
112#define malloc(a) kmalloc((a), GFP_KERNEL)
113#define free(a) kfree(a)
114
115#include "bit_operations.h"
116#include "echo.h"
117
118#define MIN_TX_POWER_FOR_ADAPTION 64
119#define MIN_RX_POWER_FOR_ADAPTION 64
120#define DTD_HANGOVER 600 /* 600 samples, or 75ms */
121#define DC_LOG2BETA 3 /* log2() of DC filter Beta */
122
123/*-----------------------------------------------------------------------*\
124 FUNCTIONS
125\*-----------------------------------------------------------------------*/
126
127/* adapting coeffs using the traditional stochastic descent (N)LMS algorithm */
128
129
130#ifdef __BLACKFIN_ASM__
131static void __inline__ lms_adapt_bg(echo_can_state_t *ec, int clean, int shift)
132{
133 int i, j;
134 int offset1;
135 int offset2;
136 int factor;
137 int exp;
138 int16_t *phist;
139 int n;
140
141 if (shift > 0)
142 factor = clean << shift;
143 else
144 factor = clean >> -shift;
145
146 /* Update the FIR taps */
147
148 offset2 = ec->curr_pos;
149 offset1 = ec->taps - offset2;
150 phist = &ec->fir_state_bg.history[offset2];
151
152 /* st: and en: help us locate the assembler in echo.s */
153
154 //asm("st:");
155 n = ec->taps;
156 for (i = 0, j = offset2; i < n; i++, j++)
157 {
158 exp = *phist++ * factor;
159 ec->fir_taps16[1][i] += (int16_t) ((exp+(1<<14)) >> 15);
160 }
161 //asm("en:");
162
163 /* Note the asm for the inner loop above generated by Blackfin gcc
164 4.1.1 is pretty good (note even parallel instructions used):
165
166 R0 = W [P0++] (X);
167 R0 *= R2;
168 R0 = R0 + R3 (NS) ||
169 R1 = W [P1] (X) ||
170 nop;
171 R0 >>>= 15;
172 R0 = R0 + R1;
173 W [P1++] = R0;
174
175 A block based update algorithm would be much faster but the
176 above can't be improved on much. Every instruction saved in
177 the loop above is 2 MIPs/ch! The for loop above is where the
178 Blackfin spends most of it's time - about 17 MIPs/ch measured
179 with speedtest.c with 256 taps (32ms). Write-back and
180 Write-through cache gave about the same performance.
181 */
182}
183
184/*
185 IDEAS for further optimisation of lms_adapt_bg():
186
187 1/ The rounding is quite costly. Could we keep as 32 bit coeffs
188 then make filter pluck the MS 16-bits of the coeffs when filtering?
189 However this would lower potential optimisation of filter, as I
190 think the dual-MAC architecture requires packed 16 bit coeffs.
191
192 2/ Block based update would be more efficient, as per comments above,
193 could use dual MAC architecture.
194
195 3/ Look for same sample Blackfin LMS code, see if we can get dual-MAC
196 packing.
197
198 4/ Execute the whole e/c in a block of say 20ms rather than sample
199 by sample. Processing a few samples every ms is inefficient.
200*/
201
202#else
203static __inline__ void lms_adapt_bg(echo_can_state_t *ec, int clean, int shift)
204{
205 int i;
206
207 int offset1;
208 int offset2;
209 int factor;
210 int exp;
211
212 if (shift > 0)
213 factor = clean << shift;
214 else
215 factor = clean >> -shift;
216
217 /* Update the FIR taps */
218
219 offset2 = ec->curr_pos;
220 offset1 = ec->taps - offset2;
221
222 for (i = ec->taps - 1; i >= offset1; i--)
223 {
224 exp = (ec->fir_state_bg.history[i - offset1]*factor);
225 ec->fir_taps16[1][i] += (int16_t) ((exp+(1<<14)) >> 15);
226 }
227 for ( ; i >= 0; i--)
228 {
229 exp = (ec->fir_state_bg.history[i + offset2]*factor);
230 ec->fir_taps16[1][i] += (int16_t) ((exp+(1<<14)) >> 15);
231 }
232}
233#endif
234
235/*- End of function --------------------------------------------------------*/
236
237echo_can_state_t *echo_can_create(int len, int adaption_mode)
238{
239 echo_can_state_t *ec;
240 int i;
241 int j;
242
243 ec = kmalloc(sizeof(*ec), GFP_KERNEL);
244 if (ec == NULL)
245 return NULL;
246 memset(ec, 0, sizeof(*ec));
247
248 ec->taps = len;
249 ec->log2taps = top_bit(len);
250 ec->curr_pos = ec->taps - 1;
251
252 for (i = 0; i < 2; i++)
253 {
254 if ((ec->fir_taps16[i] = (int16_t *) malloc((ec->taps)*sizeof(int16_t))) == NULL)
255 {
256 for (j = 0; j < i; j++)
257 kfree(ec->fir_taps16[j]);
258 kfree(ec);
259 return NULL;
260 }
261 memset(ec->fir_taps16[i], 0, (ec->taps)*sizeof(int16_t));
262 }
263
264 fir16_create(&ec->fir_state,
265 ec->fir_taps16[0],
266 ec->taps);
267 fir16_create(&ec->fir_state_bg,
268 ec->fir_taps16[1],
269 ec->taps);
270
271 for(i=0; i<5; i++) {
272 ec->xvtx[i] = ec->yvtx[i] = ec->xvrx[i] = ec->yvrx[i] = 0;
273 }
274
275 ec->cng_level = 1000;
276 echo_can_adaption_mode(ec, adaption_mode);
277
278 ec->snapshot = (int16_t*)malloc(ec->taps*sizeof(int16_t));
279 memset(ec->snapshot, 0, sizeof(int16_t)*ec->taps);
280
281 ec->cond_met = 0;
282 ec->Pstates = 0;
283 ec->Ltxacc = ec->Lrxacc = ec->Lcleanacc = ec->Lclean_bgacc = 0;
284 ec->Ltx = ec->Lrx = ec->Lclean = ec->Lclean_bg = 0;
285 ec->tx_1 = ec->tx_2 = ec->rx_1 = ec->rx_2 = 0;
286 ec->Lbgn = ec->Lbgn_acc = 0;
287 ec->Lbgn_upper = 200;
288 ec->Lbgn_upper_acc = ec->Lbgn_upper << 13;
289
290 return ec;
291}
292/*- End of function --------------------------------------------------------*/
293
294void echo_can_free(echo_can_state_t *ec)
295{
296 int i;
297
298 fir16_free(&ec->fir_state);
299 fir16_free(&ec->fir_state_bg);
300 for (i = 0; i < 2; i++)
301 kfree(ec->fir_taps16[i]);
302 kfree(ec->snapshot);
303 kfree(ec);
304}
305/*- End of function --------------------------------------------------------*/
306
307void echo_can_adaption_mode(echo_can_state_t *ec, int adaption_mode)
308{
309 ec->adaption_mode = adaption_mode;
310}
311/*- End of function --------------------------------------------------------*/
312
313void echo_can_flush(echo_can_state_t *ec)
314{
315 int i;
316
317 ec->Ltxacc = ec->Lrxacc = ec->Lcleanacc = ec->Lclean_bgacc = 0;
318 ec->Ltx = ec->Lrx = ec->Lclean = ec->Lclean_bg = 0;
319 ec->tx_1 = ec->tx_2 = ec->rx_1 = ec->rx_2 = 0;
320
321 ec->Lbgn = ec->Lbgn_acc = 0;
322 ec->Lbgn_upper = 200;
323 ec->Lbgn_upper_acc = ec->Lbgn_upper << 13;
324
325 ec->nonupdate_dwell = 0;
326
327 fir16_flush(&ec->fir_state);
328 fir16_flush(&ec->fir_state_bg);
329 ec->fir_state.curr_pos = ec->taps - 1;
330 ec->fir_state_bg.curr_pos = ec->taps - 1;
331 for (i = 0; i < 2; i++)
332 memset(ec->fir_taps16[i], 0, ec->taps*sizeof(int16_t));
333
334 ec->curr_pos = ec->taps - 1;
335 ec->Pstates = 0;
336}
337/*- End of function --------------------------------------------------------*/
338
339void echo_can_snapshot(echo_can_state_t *ec) {
340 memcpy(ec->snapshot, ec->fir_taps16[0], ec->taps*sizeof(int16_t));
341}
342/*- End of function --------------------------------------------------------*/
343
344/* Dual Path Echo Canceller ------------------------------------------------*/
345
346int16_t echo_can_update(echo_can_state_t *ec, int16_t tx, int16_t rx)
347{
348 int32_t echo_value;
349 int clean_bg;
350 int tmp, tmp1;
351
352 /* Input scaling was found be required to prevent problems when tx
353 starts clipping. Another possible way to handle this would be the
354 filter coefficent scaling. */
355
356 ec->tx = tx; ec->rx = rx;
357 tx >>=1;
358 rx >>=1;
359
360 /*
361 Filter DC, 3dB point is 160Hz (I think), note 32 bit precision required
362 otherwise values do not track down to 0. Zero at DC, Pole at (1-Beta)
363 only real axis. Some chip sets (like Si labs) don't need
364 this, but something like a $10 X100P card does. Any DC really slows
365 down convergence.
366
367 Note: removes some low frequency from the signal, this reduces
368 the speech quality when listening to samples through headphones
369 but may not be obvious through a telephone handset.
370
371 Note that the 3dB frequency in radians is approx Beta, e.g. for
372 Beta = 2^(-3) = 0.125, 3dB freq is 0.125 rads = 159Hz.
373 */
374
375 if (ec->adaption_mode & ECHO_CAN_USE_RX_HPF) {
376 tmp = rx << 15;
377#if 1
378 /* Make sure the gain of the HPF is 1.0. This can still saturate a little under
379 impulse conditions, and it might roll to 32768 and need clipping on sustained peak
380 level signals. However, the scale of such clipping is small, and the error due to
381 any saturation should not markedly affect the downstream processing. */
382 tmp -= (tmp >> 4);
383#endif
384 ec->rx_1 += -(ec->rx_1>>DC_LOG2BETA) + tmp - ec->rx_2;
385
386 /* hard limit filter to prevent clipping. Note that at this stage
387 rx should be limited to +/- 16383 due to right shift above */
388 tmp1 = ec->rx_1 >> 15;
389 if (tmp1 > 16383) tmp1 = 16383;
390 if (tmp1 < -16383) tmp1 = -16383;
391 rx = tmp1;
392 ec->rx_2 = tmp;
393 }
394
395 /* Block average of power in the filter states. Used for
396 adaption power calculation. */
397
398 {
399 int new, old;
400
401 /* efficient "out with the old and in with the new" algorithm so
402 we don't have to recalculate over the whole block of
403 samples. */
404 new = (int)tx * (int)tx;
405 old = (int)ec->fir_state.history[ec->fir_state.curr_pos] *
406 (int)ec->fir_state.history[ec->fir_state.curr_pos];
407 ec->Pstates += ((new - old) + (1<<ec->log2taps)) >> ec->log2taps;
408 if (ec->Pstates < 0) ec->Pstates = 0;
409 }
410
411 /* Calculate short term average levels using simple single pole IIRs */
412
413 ec->Ltxacc += abs(tx) - ec->Ltx;
414 ec->Ltx = (ec->Ltxacc + (1<<4)) >> 5;
415 ec->Lrxacc += abs(rx) - ec->Lrx;
416 ec->Lrx = (ec->Lrxacc + (1<<4)) >> 5;
417
418 /* Foreground filter ---------------------------------------------------*/
419
420 ec->fir_state.coeffs = ec->fir_taps16[0];
421 echo_value = fir16(&ec->fir_state, tx);
422 ec->clean = rx - echo_value;
423 ec->Lcleanacc += abs(ec->clean) - ec->Lclean;
424 ec->Lclean = (ec->Lcleanacc + (1<<4)) >> 5;
425
426 /* Background filter ---------------------------------------------------*/
427
428 echo_value = fir16(&ec->fir_state_bg, tx);
429 clean_bg = rx - echo_value;
430 ec->Lclean_bgacc += abs(clean_bg) - ec->Lclean_bg;
431 ec->Lclean_bg = (ec->Lclean_bgacc + (1<<4)) >> 5;
432
433 /* Background Filter adaption -----------------------------------------*/
434
435 /* Almost always adap bg filter, just simple DT and energy
436 detection to minimise adaption in cases of strong double talk.
437 However this is not critical for the dual path algorithm.
438 */
439 ec->factor = 0;
440 ec->shift = 0;
441 if ((ec->nonupdate_dwell == 0)) {
442 int P, logP, shift;
443
444 /* Determine:
445
446 f = Beta * clean_bg_rx/P ------ (1)
447
448 where P is the total power in the filter states.
449
450 The Boffins have shown that if we obey (1) we converge
451 quickly and avoid instability.
452
453 The correct factor f must be in Q30, as this is the fixed
454 point format required by the lms_adapt_bg() function,
455 therefore the scaled version of (1) is:
456
457 (2^30) * f = (2^30) * Beta * clean_bg_rx/P
458 factor = (2^30) * Beta * clean_bg_rx/P ----- (2)
459
460 We have chosen Beta = 0.25 by experiment, so:
461
462 factor = (2^30) * (2^-2) * clean_bg_rx/P
463
464 (30 - 2 - log2(P))
465 factor = clean_bg_rx 2 ----- (3)
466
467 To avoid a divide we approximate log2(P) as top_bit(P),
468 which returns the position of the highest non-zero bit in
469 P. This approximation introduces an error as large as a
470 factor of 2, but the algorithm seems to handle it OK.
471
472 Come to think of it a divide may not be a big deal on a
473 modern DSP, so its probably worth checking out the cycles
474 for a divide versus a top_bit() implementation.
475 */
476
477 P = MIN_TX_POWER_FOR_ADAPTION + ec->Pstates;
478 logP = top_bit(P) + ec->log2taps;
479 shift = 30 - 2 - logP;
480 ec->shift = shift;
481
482 lms_adapt_bg(ec, clean_bg, shift);
483 }
484
485 /* very simple DTD to make sure we dont try and adapt with strong
486 near end speech */
487
488 ec->adapt = 0;
489 if ((ec->Lrx > MIN_RX_POWER_FOR_ADAPTION) && (ec->Lrx > ec->Ltx))
490 ec->nonupdate_dwell = DTD_HANGOVER;
491 if (ec->nonupdate_dwell)
492 ec->nonupdate_dwell--;
493
494 /* Transfer logic ------------------------------------------------------*/
495
496 /* These conditions are from the dual path paper [1], I messed with
497 them a bit to improve performance. */
498
499 if ((ec->adaption_mode & ECHO_CAN_USE_ADAPTION) &&
500 (ec->nonupdate_dwell == 0) &&
501 (8*ec->Lclean_bg < 7*ec->Lclean) /* (ec->Lclean_bg < 0.875*ec->Lclean) */ &&
502 (8*ec->Lclean_bg < ec->Ltx) /* (ec->Lclean_bg < 0.125*ec->Ltx) */ )
503 {
504 if (ec->cond_met == 6) {
505 /* BG filter has had better results for 6 consecutive samples */
506 ec->adapt = 1;
507 memcpy(ec->fir_taps16[0], ec->fir_taps16[1], ec->taps*sizeof(int16_t));
508 }
509 else
510 ec->cond_met++;
511 }
512 else
513 ec->cond_met = 0;
514
515 /* Non-Linear Processing ---------------------------------------------------*/
516
517 ec->clean_nlp = ec->clean;
518 if (ec->adaption_mode & ECHO_CAN_USE_NLP)
519 {
520 /* Non-linear processor - a fancy way to say "zap small signals, to avoid
521 residual echo due to (uLaw/ALaw) non-linearity in the channel.". */
522
523 if ((16*ec->Lclean < ec->Ltx))
524 {
525 /* Our e/c has improved echo by at least 24 dB (each factor of 2 is 6dB,
526 so 2*2*2*2=16 is the same as 6+6+6+6=24dB) */
527 if (ec->adaption_mode & ECHO_CAN_USE_CNG)
528 {
529 ec->cng_level = ec->Lbgn;
530
531 /* Very elementary comfort noise generation. Just random
532 numbers rolled off very vaguely Hoth-like. DR: This
533 noise doesn't sound quite right to me - I suspect there
534 are some overlfow issues in the filtering as it's too
535 "crackly". TODO: debug this, maybe just play noise at
536 high level or look at spectrum.
537 */
538
539 ec->cng_rndnum = 1664525U*ec->cng_rndnum + 1013904223U;
540 ec->cng_filter = ((ec->cng_rndnum & 0xFFFF) - 32768 + 5*ec->cng_filter) >> 3;
541 ec->clean_nlp = (ec->cng_filter*ec->cng_level*8) >> 14;
542
543 }
544 else if (ec->adaption_mode & ECHO_CAN_USE_CLIP)
545 {
546 /* This sounds much better than CNG */
547 if (ec->clean_nlp > ec->Lbgn)
548 ec->clean_nlp = ec->Lbgn;
549 if (ec->clean_nlp < -ec->Lbgn)
550 ec->clean_nlp = -ec->Lbgn;
551 }
552 else
553 {
554 /* just mute the residual, doesn't sound very good, used mainly
555 in G168 tests */
556 ec->clean_nlp = 0;
557 }
558 }
559 else {
560 /* Background noise estimator. I tried a few algorithms
561 here without much luck. This very simple one seems to
562 work best, we just average the level using a slow (1 sec
563 time const) filter if the current level is less than a
564 (experimentally derived) constant. This means we dont
565 include high level signals like near end speech. When
566 combined with CNG or especially CLIP seems to work OK.
567 */
568 if (ec->Lclean < 40) {
569 ec->Lbgn_acc += abs(ec->clean) - ec->Lbgn;
570 ec->Lbgn = (ec->Lbgn_acc + (1<<11)) >> 12;
571 }
572 }
573 }
574
575 /* Roll around the taps buffer */
576 if (ec->curr_pos <= 0)
577 ec->curr_pos = ec->taps;
578 ec->curr_pos--;
579
580 if (ec->adaption_mode & ECHO_CAN_DISABLE)
581 ec->clean_nlp = rx;
582
583 /* Output scaled back up again to match input scaling */
584
585 return (int16_t) ec->clean_nlp << 1;
586}
587
588/*- End of function --------------------------------------------------------*/
589
590/* This function is seperated from the echo canceller is it is usually called
591 as part of the tx process. See rx HP (DC blocking) filter above, it's
592 the same design.
593
594 Some soft phones send speech signals with a lot of low frequency
595 energy, e.g. down to 20Hz. This can make the hybrid non-linear
596 which causes the echo canceller to fall over. This filter can help
597 by removing any low frequency before it gets to the tx port of the
598 hybrid.
599
600 It can also help by removing and DC in the tx signal. DC is bad
601 for LMS algorithms.
602
603 This is one of the classic DC removal filters, adjusted to provide sufficient
604 bass rolloff to meet the above requirement to protect hybrids from things that
605 upset them. The difference between successive samples produces a lousy HPF, and
606 then a suitably placed pole flattens things out. The final result is a nicely
607 rolled off bass end. The filtering is implemented with extended fractional
608 precision, which noise shapes things, giving very clean DC removal.
609*/
610
611int16_t echo_can_hpf_tx(echo_can_state_t *ec, int16_t tx) {
612 int tmp, tmp1;
613
614 if (ec->adaption_mode & ECHO_CAN_USE_TX_HPF) {
615 tmp = tx << 15;
616#if 1
617 /* Make sure the gain of the HPF is 1.0. The first can still saturate a little under
618 impulse conditions, and it might roll to 32768 and need clipping on sustained peak
619 level signals. However, the scale of such clipping is small, and the error due to
620 any saturation should not markedly affect the downstream processing. */
621 tmp -= (tmp >> 4);
622#endif
623 ec->tx_1 += -(ec->tx_1>>DC_LOG2BETA) + tmp - ec->tx_2;
624 tmp1 = ec->tx_1 >> 15;
625 if (tmp1 > 32767) tmp1 = 32767;
626 if (tmp1 < -32767) tmp1 = -32767;
627 tx = tmp1;
628 ec->tx_2 = tmp;
629 }
630
631 return tx;
632}
diff --git a/drivers/staging/echo/echo.h b/drivers/staging/echo/echo.h
new file mode 100644
index 000000000000..7a91b4390f3b
--- /dev/null
+++ b/drivers/staging/echo/echo.h
@@ -0,0 +1,220 @@
1/*
2 * SpanDSP - a series of DSP components for telephony
3 *
4 * echo.c - A line echo canceller. This code is being developed
5 * against and partially complies with G168.
6 *
7 * Written by Steve Underwood <steveu@coppice.org>
8 * and David Rowe <david_at_rowetel_dot_com>
9 *
10 * Copyright (C) 2001 Steve Underwood and 2007 David Rowe
11 *
12 * All rights reserved.
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License version 2, as
16 * published by the Free Software Foundation.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 *
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 *
27 * $Id: echo.h,v 1.9 2006/10/24 13:45:28 steveu Exp $
28 */
29
30#ifndef __ECHO_H
31#define __ECHO_H
32
33/*! \page echo_can_page Line echo cancellation for voice
34
35\section echo_can_page_sec_1 What does it do?
36This module aims to provide G.168-2002 compliant echo cancellation, to remove
37electrical echoes (e.g. from 2-4 wire hybrids) from voice calls.
38
39\section echo_can_page_sec_2 How does it work?
40The heart of the echo cancellor is FIR filter. This is adapted to match the
41echo impulse response of the telephone line. It must be long enough to
42adequately cover the duration of that impulse response. The signal transmitted
43to the telephone line is passed through the FIR filter. Once the FIR is
44properly adapted, the resulting output is an estimate of the echo signal
45received from the line. This is subtracted from the received signal. The result
46is an estimate of the signal which originated at the far end of the line, free
47from echos of our own transmitted signal.
48
49The least mean squares (LMS) algorithm is attributed to Widrow and Hoff, and
50was introduced in 1960. It is the commonest form of filter adaption used in
51things like modem line equalisers and line echo cancellers. There it works very
52well. However, it only works well for signals of constant amplitude. It works
53very poorly for things like speech echo cancellation, where the signal level
54varies widely. This is quite easy to fix. If the signal level is normalised -
55similar to applying AGC - LMS can work as well for a signal of varying
56amplitude as it does for a modem signal. This normalised least mean squares
57(NLMS) algorithm is the commonest one used for speech echo cancellation. Many
58other algorithms exist - e.g. RLS (essentially the same as Kalman filtering),
59FAP, etc. Some perform significantly better than NLMS. However, factors such
60as computational complexity and patents favour the use of NLMS.
61
62A simple refinement to NLMS can improve its performance with speech. NLMS tends
63to adapt best to the strongest parts of a signal. If the signal is white noise,
64the NLMS algorithm works very well. However, speech has more low frequency than
65high frequency content. Pre-whitening (i.e. filtering the signal to flatten its
66spectrum) the echo signal improves the adapt rate for speech, and ensures the
67final residual signal is not heavily biased towards high frequencies. A very
68low complexity filter is adequate for this, so pre-whitening adds little to the
69compute requirements of the echo canceller.
70
71An FIR filter adapted using pre-whitened NLMS performs well, provided certain
72conditions are met:
73
74 - The transmitted signal has poor self-correlation.
75 - There is no signal being generated within the environment being
76 cancelled.
77
78The difficulty is that neither of these can be guaranteed.
79
80If the adaption is performed while transmitting noise (or something fairly
81noise like, such as voice) the adaption works very well. If the adaption is
82performed while transmitting something highly correlative (typically narrow
83band energy such as signalling tones or DTMF), the adaption can go seriously
84wrong. The reason is there is only one solution for the adaption on a near
85random signal - the impulse response of the line. For a repetitive signal,
86there are any number of solutions which converge the adaption, and nothing
87guides the adaption to choose the generalised one. Allowing an untrained
88canceller to converge on this kind of narrowband energy probably a good thing,
89since at least it cancels the tones. Allowing a well converged canceller to
90continue converging on such energy is just a way to ruin its generalised
91adaption. A narrowband detector is needed, so adapation can be suspended at
92appropriate times.
93
94The adaption process is based on trying to eliminate the received signal. When
95there is any signal from within the environment being cancelled it may upset
96the adaption process. Similarly, if the signal we are transmitting is small,
97noise may dominate and disturb the adaption process. If we can ensure that the
98adaption is only performed when we are transmitting a significant signal level,
99and the environment is not, things will be OK. Clearly, it is easy to tell when
100we are sending a significant signal. Telling, if the environment is generating
101a significant signal, and doing it with sufficient speed that the adaption will
102not have diverged too much more we stop it, is a little harder.
103
104The key problem in detecting when the environment is sourcing significant
105energy is that we must do this very quickly. Given a reasonably long sample of
106the received signal, there are a number of strategies which may be used to
107assess whether that signal contains a strong far end component. However, by the
108time that assessment is complete the far end signal will have already caused
109major mis-convergence in the adaption process. An assessment algorithm is
110needed which produces a fairly accurate result from a very short burst of far
111end energy.
112
113\section echo_can_page_sec_3 How do I use it?
114The echo cancellor processes both the transmit and receive streams sample by
115sample. The processing function is not declared inline. Unfortunately,
116cancellation requires many operations per sample, so the call overhead is only
117a minor burden.
118*/
119
120#include "fir.h"
121
122/* Mask bits for the adaption mode */
123#define ECHO_CAN_USE_ADAPTION 0x01
124#define ECHO_CAN_USE_NLP 0x02
125#define ECHO_CAN_USE_CNG 0x04
126#define ECHO_CAN_USE_CLIP 0x08
127#define ECHO_CAN_USE_TX_HPF 0x10
128#define ECHO_CAN_USE_RX_HPF 0x20
129#define ECHO_CAN_DISABLE 0x40
130
131/*!
132 G.168 echo canceller descriptor. This defines the working state for a line
133 echo canceller.
134*/
135typedef struct
136{
137 int16_t tx,rx;
138 int16_t clean;
139 int16_t clean_nlp;
140
141 int nonupdate_dwell;
142 int curr_pos;
143 int taps;
144 int log2taps;
145 int adaption_mode;
146
147 int cond_met;
148 int32_t Pstates;
149 int16_t adapt;
150 int32_t factor;
151 int16_t shift;
152
153 /* Average levels and averaging filter states */
154 int Ltxacc, Lrxacc, Lcleanacc, Lclean_bgacc;
155 int Ltx, Lrx;
156 int Lclean;
157 int Lclean_bg;
158 int Lbgn, Lbgn_acc, Lbgn_upper, Lbgn_upper_acc;
159
160 /* foreground and background filter states */
161 fir16_state_t fir_state;
162 fir16_state_t fir_state_bg;
163 int16_t *fir_taps16[2];
164
165 /* DC blocking filter states */
166 int tx_1, tx_2, rx_1, rx_2;
167
168 /* optional High Pass Filter states */
169 int32_t xvtx[5], yvtx[5];
170 int32_t xvrx[5], yvrx[5];
171
172 /* Parameters for the optional Hoth noise generator */
173 int cng_level;
174 int cng_rndnum;
175 int cng_filter;
176
177 /* snapshot sample of coeffs used for development */
178 int16_t *snapshot;
179} echo_can_state_t;
180
181/*! Create a voice echo canceller context.
182 \param len The length of the canceller, in samples.
183 \return The new canceller context, or NULL if the canceller could not be created.
184*/
185echo_can_state_t *echo_can_create(int len, int adaption_mode);
186
187/*! Free a voice echo canceller context.
188 \param ec The echo canceller context.
189*/
190void echo_can_free(echo_can_state_t *ec);
191
192/*! Flush (reinitialise) a voice echo canceller context.
193 \param ec The echo canceller context.
194*/
195void echo_can_flush(echo_can_state_t *ec);
196
197/*! Set the adaption mode of a voice echo canceller context.
198 \param ec The echo canceller context.
199 \param adapt The mode.
200*/
201void echo_can_adaption_mode(echo_can_state_t *ec, int adaption_mode);
202
203void echo_can_snapshot(echo_can_state_t *ec);
204
205/*! Process a sample through a voice echo canceller.
206 \param ec The echo canceller context.
207 \param tx The transmitted audio sample.
208 \param rx The received audio sample.
209 \return The clean (echo cancelled) received sample.
210*/
211int16_t echo_can_update(echo_can_state_t *ec, int16_t tx, int16_t rx);
212
213/*! Process to high pass filter the tx signal.
214 \param ec The echo canceller context.
215 \param tx The transmitted auio sample.
216 \return The HP filtered transmit sample, send this to your D/A.
217*/
218int16_t echo_can_hpf_tx(echo_can_state_t *ec, int16_t tx);
219
220#endif /* __ECHO_H */
diff --git a/drivers/staging/echo/fir.h b/drivers/staging/echo/fir.h
new file mode 100644
index 000000000000..e1bfc4994886
--- /dev/null
+++ b/drivers/staging/echo/fir.h
@@ -0,0 +1,369 @@
1/*
2 * SpanDSP - a series of DSP components for telephony
3 *
4 * fir.h - General telephony FIR routines
5 *
6 * Written by Steve Underwood <steveu@coppice.org>
7 *
8 * Copyright (C) 2002 Steve Underwood
9 *
10 * All rights reserved.
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2, as
14 * published by the Free Software Foundation.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 *
25 * $Id: fir.h,v 1.8 2006/10/24 13:45:28 steveu Exp $
26 */
27
28/*! \page fir_page FIR filtering
29\section fir_page_sec_1 What does it do?
30???.
31
32\section fir_page_sec_2 How does it work?
33???.
34*/
35
36#if !defined(_FIR_H_)
37#define _FIR_H_
38
39/*
40 Blackfin NOTES & IDEAS:
41
42 A simple dot product function is used to implement the filter. This performs
43 just one MAC/cycle which is inefficient but was easy to implement as a first
44 pass. The current Blackfin code also uses an unrolled form of the filter
45 history to avoid 0 length hardware loop issues. This is wasteful of
46 memory.
47
48 Ideas for improvement:
49
50 1/ Rewrite filter for dual MAC inner loop. The issue here is handling
51 history sample offsets that are 16 bit aligned - the dual MAC needs
52 32 bit aligmnent. There are some good examples in libbfdsp.
53
54 2/ Use the hardware circular buffer facility tohalve memory usage.
55
56 3/ Consider using internal memory.
57
58 Using less memory might also improve speed as cache misses will be
59 reduced. A drop in MIPs and memory approaching 50% should be
60 possible.
61
62 The foreground and background filters currenlty use a total of
63 about 10 MIPs/ch as measured with speedtest.c on a 256 TAP echo
64 can.
65*/
66
67#if defined(USE_MMX) || defined(USE_SSE2)
68#include "mmx.h"
69#endif
70
71/*!
72 16 bit integer FIR descriptor. This defines the working state for a single
73 instance of an FIR filter using 16 bit integer coefficients.
74*/
75typedef struct
76{
77 int taps;
78 int curr_pos;
79 const int16_t *coeffs;
80 int16_t *history;
81} fir16_state_t;
82
83/*!
84 32 bit integer FIR descriptor. This defines the working state for a single
85 instance of an FIR filter using 32 bit integer coefficients, and filtering
86 16 bit integer data.
87*/
88typedef struct
89{
90 int taps;
91 int curr_pos;
92 const int32_t *coeffs;
93 int16_t *history;
94} fir32_state_t;
95
96/*!
97 Floating point FIR descriptor. This defines the working state for a single
98 instance of an FIR filter using floating point coefficients and data.
99*/
100typedef struct
101{
102 int taps;
103 int curr_pos;
104 const float *coeffs;
105 float *history;
106} fir_float_state_t;
107
108#ifdef __cplusplus
109extern "C" {
110#endif
111
112static __inline__ const int16_t *fir16_create(fir16_state_t *fir,
113 const int16_t *coeffs,
114 int taps)
115{
116 fir->taps = taps;
117 fir->curr_pos = taps - 1;
118 fir->coeffs = coeffs;
119#if defined(USE_MMX) || defined(USE_SSE2) || defined(__BLACKFIN_ASM__)
120 if ((fir->history = malloc(2*taps*sizeof(int16_t))))
121 memset(fir->history, 0, 2*taps*sizeof(int16_t));
122#else
123 if ((fir->history = (int16_t *) malloc(taps*sizeof(int16_t))))
124 memset(fir->history, 0, taps*sizeof(int16_t));
125#endif
126 return fir->history;
127}
128/*- End of function --------------------------------------------------------*/
129
130static __inline__ void fir16_flush(fir16_state_t *fir)
131{
132#if defined(USE_MMX) || defined(USE_SSE2) || defined(__BLACKFIN_ASM__)
133 memset(fir->history, 0, 2*fir->taps*sizeof(int16_t));
134#else
135 memset(fir->history, 0, fir->taps*sizeof(int16_t));
136#endif
137}
138/*- End of function --------------------------------------------------------*/
139
140static __inline__ void fir16_free(fir16_state_t *fir)
141{
142 free(fir->history);
143}
144/*- End of function --------------------------------------------------------*/
145
146#ifdef __BLACKFIN_ASM__
147static inline int32_t dot_asm(short *x, short *y, int len)
148{
149 int dot;
150
151 len--;
152
153 __asm__
154 (
155 "I0 = %1;\n\t"
156 "I1 = %2;\n\t"
157 "A0 = 0;\n\t"
158 "R0.L = W[I0++] || R1.L = W[I1++];\n\t"
159 "LOOP dot%= LC0 = %3;\n\t"
160 "LOOP_BEGIN dot%=;\n\t"
161 "A0 += R0.L * R1.L (IS) || R0.L = W[I0++] || R1.L = W[I1++];\n\t"
162 "LOOP_END dot%=;\n\t"
163 "A0 += R0.L*R1.L (IS);\n\t"
164 "R0 = A0;\n\t"
165 "%0 = R0;\n\t"
166 : "=&d" (dot)
167 : "a" (x), "a" (y), "a" (len)
168 : "I0", "I1", "A1", "A0", "R0", "R1"
169 );
170
171 return dot;
172}
173#endif
174/*- End of function --------------------------------------------------------*/
175
176static __inline__ int16_t fir16(fir16_state_t *fir, int16_t sample)
177{
178 int32_t y;
179#if defined(USE_MMX)
180 int i;
181 mmx_t *mmx_coeffs;
182 mmx_t *mmx_hist;
183
184 fir->history[fir->curr_pos] = sample;
185 fir->history[fir->curr_pos + fir->taps] = sample;
186
187 mmx_coeffs = (mmx_t *) fir->coeffs;
188 mmx_hist = (mmx_t *) &fir->history[fir->curr_pos];
189 i = fir->taps;
190 pxor_r2r(mm4, mm4);
191 /* 8 samples per iteration, so the filter must be a multiple of 8 long. */
192 while (i > 0)
193 {
194 movq_m2r(mmx_coeffs[0], mm0);
195 movq_m2r(mmx_coeffs[1], mm2);
196 movq_m2r(mmx_hist[0], mm1);
197 movq_m2r(mmx_hist[1], mm3);
198 mmx_coeffs += 2;
199 mmx_hist += 2;
200 pmaddwd_r2r(mm1, mm0);
201 pmaddwd_r2r(mm3, mm2);
202 paddd_r2r(mm0, mm4);
203 paddd_r2r(mm2, mm4);
204 i -= 8;
205 }
206 movq_r2r(mm4, mm0);
207 psrlq_i2r(32, mm0);
208 paddd_r2r(mm0, mm4);
209 movd_r2m(mm4, y);
210 emms();
211#elif defined(USE_SSE2)
212 int i;
213 xmm_t *xmm_coeffs;
214 xmm_t *xmm_hist;
215
216 fir->history[fir->curr_pos] = sample;
217 fir->history[fir->curr_pos + fir->taps] = sample;
218
219 xmm_coeffs = (xmm_t *) fir->coeffs;
220 xmm_hist = (xmm_t *) &fir->history[fir->curr_pos];
221 i = fir->taps;
222 pxor_r2r(xmm4, xmm4);
223 /* 16 samples per iteration, so the filter must be a multiple of 16 long. */
224 while (i > 0)
225 {
226 movdqu_m2r(xmm_coeffs[0], xmm0);
227 movdqu_m2r(xmm_coeffs[1], xmm2);
228 movdqu_m2r(xmm_hist[0], xmm1);
229 movdqu_m2r(xmm_hist[1], xmm3);
230 xmm_coeffs += 2;
231 xmm_hist += 2;
232 pmaddwd_r2r(xmm1, xmm0);
233 pmaddwd_r2r(xmm3, xmm2);
234 paddd_r2r(xmm0, xmm4);
235 paddd_r2r(xmm2, xmm4);
236 i -= 16;
237 }
238 movdqa_r2r(xmm4, xmm0);
239 psrldq_i2r(8, xmm0);
240 paddd_r2r(xmm0, xmm4);
241 movdqa_r2r(xmm4, xmm0);
242 psrldq_i2r(4, xmm0);
243 paddd_r2r(xmm0, xmm4);
244 movd_r2m(xmm4, y);
245#elif defined(__BLACKFIN_ASM__)
246 fir->history[fir->curr_pos] = sample;
247 fir->history[fir->curr_pos + fir->taps] = sample;
248 y = dot_asm((int16_t*)fir->coeffs, &fir->history[fir->curr_pos], fir->taps);
249#else
250 int i;
251 int offset1;
252 int offset2;
253
254 fir->history[fir->curr_pos] = sample;
255
256 offset2 = fir->curr_pos;
257 offset1 = fir->taps - offset2;
258 y = 0;
259 for (i = fir->taps - 1; i >= offset1; i--)
260 y += fir->coeffs[i]*fir->history[i - offset1];
261 for ( ; i >= 0; i--)
262 y += fir->coeffs[i]*fir->history[i + offset2];
263#endif
264 if (fir->curr_pos <= 0)
265 fir->curr_pos = fir->taps;
266 fir->curr_pos--;
267 return (int16_t) (y >> 15);
268}
269/*- End of function --------------------------------------------------------*/
270
271static __inline__ const int16_t *fir32_create(fir32_state_t *fir,
272 const int32_t *coeffs,
273 int taps)
274{
275 fir->taps = taps;
276 fir->curr_pos = taps - 1;
277 fir->coeffs = coeffs;
278 fir->history = (int16_t *) malloc(taps*sizeof(int16_t));
279 if (fir->history)
280 memset(fir->history, '\0', taps*sizeof(int16_t));
281 return fir->history;
282}
283/*- End of function --------------------------------------------------------*/
284
285static __inline__ void fir32_flush(fir32_state_t *fir)
286{
287 memset(fir->history, 0, fir->taps*sizeof(int16_t));
288}
289/*- End of function --------------------------------------------------------*/
290
291static __inline__ void fir32_free(fir32_state_t *fir)
292{
293 free(fir->history);
294}
295/*- End of function --------------------------------------------------------*/
296
297static __inline__ int16_t fir32(fir32_state_t *fir, int16_t sample)
298{
299 int i;
300 int32_t y;
301 int offset1;
302 int offset2;
303
304 fir->history[fir->curr_pos] = sample;
305 offset2 = fir->curr_pos;
306 offset1 = fir->taps - offset2;
307 y = 0;
308 for (i = fir->taps - 1; i >= offset1; i--)
309 y += fir->coeffs[i]*fir->history[i - offset1];
310 for ( ; i >= 0; i--)
311 y += fir->coeffs[i]*fir->history[i + offset2];
312 if (fir->curr_pos <= 0)
313 fir->curr_pos = fir->taps;
314 fir->curr_pos--;
315 return (int16_t) (y >> 15);
316}
317/*- End of function --------------------------------------------------------*/
318
319#ifndef __KERNEL__
320static __inline__ const float *fir_float_create(fir_float_state_t *fir,
321 const float *coeffs,
322 int taps)
323{
324 fir->taps = taps;
325 fir->curr_pos = taps - 1;
326 fir->coeffs = coeffs;
327 fir->history = (float *) malloc(taps*sizeof(float));
328 if (fir->history)
329 memset(fir->history, '\0', taps*sizeof(float));
330 return fir->history;
331}
332/*- End of function --------------------------------------------------------*/
333
334static __inline__ void fir_float_free(fir_float_state_t *fir)
335{
336 free(fir->history);
337}
338/*- End of function --------------------------------------------------------*/
339
340static __inline__ int16_t fir_float(fir_float_state_t *fir, int16_t sample)
341{
342 int i;
343 float y;
344 int offset1;
345 int offset2;
346
347 fir->history[fir->curr_pos] = sample;
348
349 offset2 = fir->curr_pos;
350 offset1 = fir->taps - offset2;
351 y = 0;
352 for (i = fir->taps - 1; i >= offset1; i--)
353 y += fir->coeffs[i]*fir->history[i - offset1];
354 for ( ; i >= 0; i--)
355 y += fir->coeffs[i]*fir->history[i + offset2];
356 if (fir->curr_pos <= 0)
357 fir->curr_pos = fir->taps;
358 fir->curr_pos--;
359 return (int16_t) y;
360}
361/*- End of function --------------------------------------------------------*/
362#endif
363
364#ifdef __cplusplus
365}
366#endif
367
368#endif
369/*- End of file ------------------------------------------------------------*/
diff --git a/drivers/staging/echo/mmx.h b/drivers/staging/echo/mmx.h
new file mode 100644
index 000000000000..b5a3964865b6
--- /dev/null
+++ b/drivers/staging/echo/mmx.h
@@ -0,0 +1,288 @@
1/*
2 * mmx.h
3 * Copyright (C) 1997-2001 H. Dietz and R. Fisher
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21#ifndef AVCODEC_I386MMX_H
22#define AVCODEC_I386MMX_H
23
24/*
25 * The type of an value that fits in an MMX register (note that long
26 * long constant values MUST be suffixed by LL and unsigned long long
27 * values by ULL, lest they be truncated by the compiler)
28 */
29
30typedef union {
31 long long q; /* Quadword (64-bit) value */
32 unsigned long long uq; /* Unsigned Quadword */
33 int d[2]; /* 2 Doubleword (32-bit) values */
34 unsigned int ud[2]; /* 2 Unsigned Doubleword */
35 short w[4]; /* 4 Word (16-bit) values */
36 unsigned short uw[4]; /* 4 Unsigned Word */
37 char b[8]; /* 8 Byte (8-bit) values */
38 unsigned char ub[8]; /* 8 Unsigned Byte */
39 float s[2]; /* Single-precision (32-bit) value */
40} mmx_t; /* On an 8-byte (64-bit) boundary */
41
42/* SSE registers */
43typedef union {
44 char b[16];
45} xmm_t;
46
47
48#define mmx_i2r(op,imm,reg) \
49 __asm__ __volatile__ (#op " %0, %%" #reg \
50 : /* nothing */ \
51 : "i" (imm) )
52
53#define mmx_m2r(op,mem,reg) \
54 __asm__ __volatile__ (#op " %0, %%" #reg \
55 : /* nothing */ \
56 : "m" (mem))
57
58#define mmx_r2m(op,reg,mem) \
59 __asm__ __volatile__ (#op " %%" #reg ", %0" \
60 : "=m" (mem) \
61 : /* nothing */ )
62
63#define mmx_r2r(op,regs,regd) \
64 __asm__ __volatile__ (#op " %" #regs ", %" #regd)
65
66
67#define emms() __asm__ __volatile__ ("emms")
68
69#define movd_m2r(var,reg) mmx_m2r (movd, var, reg)
70#define movd_r2m(reg,var) mmx_r2m (movd, reg, var)
71#define movd_r2r(regs,regd) mmx_r2r (movd, regs, regd)
72
73#define movq_m2r(var,reg) mmx_m2r (movq, var, reg)
74#define movq_r2m(reg,var) mmx_r2m (movq, reg, var)
75#define movq_r2r(regs,regd) mmx_r2r (movq, regs, regd)
76
77#define packssdw_m2r(var,reg) mmx_m2r (packssdw, var, reg)
78#define packssdw_r2r(regs,regd) mmx_r2r (packssdw, regs, regd)
79#define packsswb_m2r(var,reg) mmx_m2r (packsswb, var, reg)
80#define packsswb_r2r(regs,regd) mmx_r2r (packsswb, regs, regd)
81
82#define packuswb_m2r(var,reg) mmx_m2r (packuswb, var, reg)
83#define packuswb_r2r(regs,regd) mmx_r2r (packuswb, regs, regd)
84
85#define paddb_m2r(var,reg) mmx_m2r (paddb, var, reg)
86#define paddb_r2r(regs,regd) mmx_r2r (paddb, regs, regd)
87#define paddd_m2r(var,reg) mmx_m2r (paddd, var, reg)
88#define paddd_r2r(regs,regd) mmx_r2r (paddd, regs, regd)
89#define paddw_m2r(var,reg) mmx_m2r (paddw, var, reg)
90#define paddw_r2r(regs,regd) mmx_r2r (paddw, regs, regd)
91
92#define paddsb_m2r(var,reg) mmx_m2r (paddsb, var, reg)
93#define paddsb_r2r(regs,regd) mmx_r2r (paddsb, regs, regd)
94#define paddsw_m2r(var,reg) mmx_m2r (paddsw, var, reg)
95#define paddsw_r2r(regs,regd) mmx_r2r (paddsw, regs, regd)
96
97#define paddusb_m2r(var,reg) mmx_m2r (paddusb, var, reg)
98#define paddusb_r2r(regs,regd) mmx_r2r (paddusb, regs, regd)
99#define paddusw_m2r(var,reg) mmx_m2r (paddusw, var, reg)
100#define paddusw_r2r(regs,regd) mmx_r2r (paddusw, regs, regd)
101
102#define pand_m2r(var,reg) mmx_m2r (pand, var, reg)
103#define pand_r2r(regs,regd) mmx_r2r (pand, regs, regd)
104
105#define pandn_m2r(var,reg) mmx_m2r (pandn, var, reg)
106#define pandn_r2r(regs,regd) mmx_r2r (pandn, regs, regd)
107
108#define pcmpeqb_m2r(var,reg) mmx_m2r (pcmpeqb, var, reg)
109#define pcmpeqb_r2r(regs,regd) mmx_r2r (pcmpeqb, regs, regd)
110#define pcmpeqd_m2r(var,reg) mmx_m2r (pcmpeqd, var, reg)
111#define pcmpeqd_r2r(regs,regd) mmx_r2r (pcmpeqd, regs, regd)
112#define pcmpeqw_m2r(var,reg) mmx_m2r (pcmpeqw, var, reg)
113#define pcmpeqw_r2r(regs,regd) mmx_r2r (pcmpeqw, regs, regd)
114
115#define pcmpgtb_m2r(var,reg) mmx_m2r (pcmpgtb, var, reg)
116#define pcmpgtb_r2r(regs,regd) mmx_r2r (pcmpgtb, regs, regd)
117#define pcmpgtd_m2r(var,reg) mmx_m2r (pcmpgtd, var, reg)
118#define pcmpgtd_r2r(regs,regd) mmx_r2r (pcmpgtd, regs, regd)
119#define pcmpgtw_m2r(var,reg) mmx_m2r (pcmpgtw, var, reg)
120#define pcmpgtw_r2r(regs,regd) mmx_r2r (pcmpgtw, regs, regd)
121
122#define pmaddwd_m2r(var,reg) mmx_m2r (pmaddwd, var, reg)
123#define pmaddwd_r2r(regs,regd) mmx_r2r (pmaddwd, regs, regd)
124
125#define pmulhw_m2r(var,reg) mmx_m2r (pmulhw, var, reg)
126#define pmulhw_r2r(regs,regd) mmx_r2r (pmulhw, regs, regd)
127
128#define pmullw_m2r(var,reg) mmx_m2r (pmullw, var, reg)
129#define pmullw_r2r(regs,regd) mmx_r2r (pmullw, regs, regd)
130
131#define por_m2r(var,reg) mmx_m2r (por, var, reg)
132#define por_r2r(regs,regd) mmx_r2r (por, regs, regd)
133
134#define pslld_i2r(imm,reg) mmx_i2r (pslld, imm, reg)
135#define pslld_m2r(var,reg) mmx_m2r (pslld, var, reg)
136#define pslld_r2r(regs,regd) mmx_r2r (pslld, regs, regd)
137#define psllq_i2r(imm,reg) mmx_i2r (psllq, imm, reg)
138#define psllq_m2r(var,reg) mmx_m2r (psllq, var, reg)
139#define psllq_r2r(regs,regd) mmx_r2r (psllq, regs, regd)
140#define psllw_i2r(imm,reg) mmx_i2r (psllw, imm, reg)
141#define psllw_m2r(var,reg) mmx_m2r (psllw, var, reg)
142#define psllw_r2r(regs,regd) mmx_r2r (psllw, regs, regd)
143
144#define psrad_i2r(imm,reg) mmx_i2r (psrad, imm, reg)
145#define psrad_m2r(var,reg) mmx_m2r (psrad, var, reg)
146#define psrad_r2r(regs,regd) mmx_r2r (psrad, regs, regd)
147#define psraw_i2r(imm,reg) mmx_i2r (psraw, imm, reg)
148#define psraw_m2r(var,reg) mmx_m2r (psraw, var, reg)
149#define psraw_r2r(regs,regd) mmx_r2r (psraw, regs, regd)
150
151#define psrld_i2r(imm,reg) mmx_i2r (psrld, imm, reg)
152#define psrld_m2r(var,reg) mmx_m2r (psrld, var, reg)
153#define psrld_r2r(regs,regd) mmx_r2r (psrld, regs, regd)
154#define psrlq_i2r(imm,reg) mmx_i2r (psrlq, imm, reg)
155#define psrlq_m2r(var,reg) mmx_m2r (psrlq, var, reg)
156#define psrlq_r2r(regs,regd) mmx_r2r (psrlq, regs, regd)
157#define psrlw_i2r(imm,reg) mmx_i2r (psrlw, imm, reg)
158#define psrlw_m2r(var,reg) mmx_m2r (psrlw, var, reg)
159#define psrlw_r2r(regs,regd) mmx_r2r (psrlw, regs, regd)
160
161#define psubb_m2r(var,reg) mmx_m2r (psubb, var, reg)
162#define psubb_r2r(regs,regd) mmx_r2r (psubb, regs, regd)
163#define psubd_m2r(var,reg) mmx_m2r (psubd, var, reg)
164#define psubd_r2r(regs,regd) mmx_r2r (psubd, regs, regd)
165#define psubw_m2r(var,reg) mmx_m2r (psubw, var, reg)
166#define psubw_r2r(regs,regd) mmx_r2r (psubw, regs, regd)
167
168#define psubsb_m2r(var,reg) mmx_m2r (psubsb, var, reg)
169#define psubsb_r2r(regs,regd) mmx_r2r (psubsb, regs, regd)
170#define psubsw_m2r(var,reg) mmx_m2r (psubsw, var, reg)
171#define psubsw_r2r(regs,regd) mmx_r2r (psubsw, regs, regd)
172
173#define psubusb_m2r(var,reg) mmx_m2r (psubusb, var, reg)
174#define psubusb_r2r(regs,regd) mmx_r2r (psubusb, regs, regd)
175#define psubusw_m2r(var,reg) mmx_m2r (psubusw, var, reg)
176#define psubusw_r2r(regs,regd) mmx_r2r (psubusw, regs, regd)
177
178#define punpckhbw_m2r(var,reg) mmx_m2r (punpckhbw, var, reg)
179#define punpckhbw_r2r(regs,regd) mmx_r2r (punpckhbw, regs, regd)
180#define punpckhdq_m2r(var,reg) mmx_m2r (punpckhdq, var, reg)
181#define punpckhdq_r2r(regs,regd) mmx_r2r (punpckhdq, regs, regd)
182#define punpckhwd_m2r(var,reg) mmx_m2r (punpckhwd, var, reg)
183#define punpckhwd_r2r(regs,regd) mmx_r2r (punpckhwd, regs, regd)
184
185#define punpcklbw_m2r(var,reg) mmx_m2r (punpcklbw, var, reg)
186#define punpcklbw_r2r(regs,regd) mmx_r2r (punpcklbw, regs, regd)
187#define punpckldq_m2r(var,reg) mmx_m2r (punpckldq, var, reg)
188#define punpckldq_r2r(regs,regd) mmx_r2r (punpckldq, regs, regd)
189#define punpcklwd_m2r(var,reg) mmx_m2r (punpcklwd, var, reg)
190#define punpcklwd_r2r(regs,regd) mmx_r2r (punpcklwd, regs, regd)
191
192#define pxor_m2r(var,reg) mmx_m2r (pxor, var, reg)
193#define pxor_r2r(regs,regd) mmx_r2r (pxor, regs, regd)
194
195
196/* 3DNOW extensions */
197
198#define pavgusb_m2r(var,reg) mmx_m2r (pavgusb, var, reg)
199#define pavgusb_r2r(regs,regd) mmx_r2r (pavgusb, regs, regd)
200
201
202/* AMD MMX extensions - also available in intel SSE */
203
204
205#define mmx_m2ri(op,mem,reg,imm) \
206 __asm__ __volatile__ (#op " %1, %0, %%" #reg \
207 : /* nothing */ \
208 : "m" (mem), "i" (imm))
209#define mmx_r2ri(op,regs,regd,imm) \
210 __asm__ __volatile__ (#op " %0, %%" #regs ", %%" #regd \
211 : /* nothing */ \
212 : "i" (imm) )
213
214#define mmx_fetch(mem,hint) \
215 __asm__ __volatile__ ("prefetch" #hint " %0" \
216 : /* nothing */ \
217 : "m" (mem))
218
219
220#define maskmovq(regs,maskreg) mmx_r2ri (maskmovq, regs, maskreg)
221
222#define movntq_r2m(mmreg,var) mmx_r2m (movntq, mmreg, var)
223
224#define pavgb_m2r(var,reg) mmx_m2r (pavgb, var, reg)
225#define pavgb_r2r(regs,regd) mmx_r2r (pavgb, regs, regd)
226#define pavgw_m2r(var,reg) mmx_m2r (pavgw, var, reg)
227#define pavgw_r2r(regs,regd) mmx_r2r (pavgw, regs, regd)
228
229#define pextrw_r2r(mmreg,reg,imm) mmx_r2ri (pextrw, mmreg, reg, imm)
230
231#define pinsrw_r2r(reg,mmreg,imm) mmx_r2ri (pinsrw, reg, mmreg, imm)
232
233#define pmaxsw_m2r(var,reg) mmx_m2r (pmaxsw, var, reg)
234#define pmaxsw_r2r(regs,regd) mmx_r2r (pmaxsw, regs, regd)
235
236#define pmaxub_m2r(var,reg) mmx_m2r (pmaxub, var, reg)
237#define pmaxub_r2r(regs,regd) mmx_r2r (pmaxub, regs, regd)
238
239#define pminsw_m2r(var,reg) mmx_m2r (pminsw, var, reg)
240#define pminsw_r2r(regs,regd) mmx_r2r (pminsw, regs, regd)
241
242#define pminub_m2r(var,reg) mmx_m2r (pminub, var, reg)
243#define pminub_r2r(regs,regd) mmx_r2r (pminub, regs, regd)
244
245#define pmovmskb(mmreg,reg) \
246 __asm__ __volatile__ ("movmskps %" #mmreg ", %" #reg)
247
248#define pmulhuw_m2r(var,reg) mmx_m2r (pmulhuw, var, reg)
249#define pmulhuw_r2r(regs,regd) mmx_r2r (pmulhuw, regs, regd)
250
251#define prefetcht0(mem) mmx_fetch (mem, t0)
252#define prefetcht1(mem) mmx_fetch (mem, t1)
253#define prefetcht2(mem) mmx_fetch (mem, t2)
254#define prefetchnta(mem) mmx_fetch (mem, nta)
255
256#define psadbw_m2r(var,reg) mmx_m2r (psadbw, var, reg)
257#define psadbw_r2r(regs,regd) mmx_r2r (psadbw, regs, regd)
258
259#define pshufw_m2r(var,reg,imm) mmx_m2ri(pshufw, var, reg, imm)
260#define pshufw_r2r(regs,regd,imm) mmx_r2ri(pshufw, regs, regd, imm)
261
262#define sfence() __asm__ __volatile__ ("sfence\n\t")
263
264/* SSE2 */
265#define pshufhw_m2r(var,reg,imm) mmx_m2ri(pshufhw, var, reg, imm)
266#define pshufhw_r2r(regs,regd,imm) mmx_r2ri(pshufhw, regs, regd, imm)
267#define pshuflw_m2r(var,reg,imm) mmx_m2ri(pshuflw, var, reg, imm)
268#define pshuflw_r2r(regs,regd,imm) mmx_r2ri(pshuflw, regs, regd, imm)
269
270#define pshufd_r2r(regs,regd,imm) mmx_r2ri(pshufd, regs, regd, imm)
271
272#define movdqa_m2r(var,reg) mmx_m2r (movdqa, var, reg)
273#define movdqa_r2m(reg,var) mmx_r2m (movdqa, reg, var)
274#define movdqa_r2r(regs,regd) mmx_r2r (movdqa, regs, regd)
275#define movdqu_m2r(var,reg) mmx_m2r (movdqu, var, reg)
276#define movdqu_r2m(reg,var) mmx_r2m (movdqu, reg, var)
277#define movdqu_r2r(regs,regd) mmx_r2r (movdqu, regs, regd)
278
279#define pmullw_r2m(reg,var) mmx_r2m (pmullw, reg, var)
280
281#define pslldq_i2r(imm,reg) mmx_i2r (pslldq, imm, reg)
282#define psrldq_i2r(imm,reg) mmx_i2r (psrldq, imm, reg)
283
284#define punpcklqdq_r2r(regs,regd) mmx_r2r (punpcklqdq, regs, regd)
285#define punpckhqdq_r2r(regs,regd) mmx_r2r (punpckhqdq, regs, regd)
286
287
288#endif /* AVCODEC_I386MMX_H */