diff options
Diffstat (limited to 'drivers')
-rw-r--r-- | drivers/net/tulip/Kconfig | 15 | ||||
-rw-r--r-- | drivers/net/tulip/Makefile | 1 | ||||
-rw-r--r-- | drivers/net/tulip/xircom_tulip_cb.c | 1726 |
3 files changed, 1 insertions, 1741 deletions
diff --git a/drivers/net/tulip/Kconfig b/drivers/net/tulip/Kconfig index 20ac1503021e..d913405bc393 100644 --- a/drivers/net/tulip/Kconfig +++ b/drivers/net/tulip/Kconfig | |||
@@ -141,7 +141,7 @@ config ULI526X | |||
141 | be called uli526x. | 141 | be called uli526x. |
142 | 142 | ||
143 | config PCMCIA_XIRCOM | 143 | config PCMCIA_XIRCOM |
144 | tristate "Xircom CardBus support (new driver)" | 144 | tristate "Xircom CardBus support" |
145 | depends on CARDBUS | 145 | depends on CARDBUS |
146 | ---help--- | 146 | ---help--- |
147 | This driver is for the Digital "Tulip" Ethernet CardBus adapters. | 147 | This driver is for the Digital "Tulip" Ethernet CardBus adapters. |
@@ -152,17 +152,4 @@ config PCMCIA_XIRCOM | |||
152 | To compile this driver as a module, choose M here. The module will | 152 | To compile this driver as a module, choose M here. The module will |
153 | be called xircom_cb. If unsure, say N. | 153 | be called xircom_cb. If unsure, say N. |
154 | 154 | ||
155 | config PCMCIA_XIRTULIP | ||
156 | tristate "Xircom Tulip-like CardBus support (old driver)" | ||
157 | depends on CARDBUS && BROKEN_ON_SMP | ||
158 | select CRC32 | ||
159 | ---help--- | ||
160 | This driver is for the Digital "Tulip" Ethernet CardBus adapters. | ||
161 | It should work with most DEC 21*4*-based chips/ethercards, as well | ||
162 | as with work-alike chips from Lite-On (PNIC) and Macronix (MXIC) and | ||
163 | ASIX. | ||
164 | |||
165 | To compile this driver as a module, choose M here. The module will | ||
166 | be called xircom_tulip_cb. If unsure, say N. | ||
167 | |||
168 | endif # NET_TULIP | 155 | endif # NET_TULIP |
diff --git a/drivers/net/tulip/Makefile b/drivers/net/tulip/Makefile index 451090d6fcca..200cbf7c815c 100644 --- a/drivers/net/tulip/Makefile +++ b/drivers/net/tulip/Makefile | |||
@@ -2,7 +2,6 @@ | |||
2 | # Makefile for the Linux "Tulip" family network device drivers. | 2 | # Makefile for the Linux "Tulip" family network device drivers. |
3 | # | 3 | # |
4 | 4 | ||
5 | obj-$(CONFIG_PCMCIA_XIRTULIP) += xircom_tulip_cb.o | ||
6 | obj-$(CONFIG_PCMCIA_XIRCOM) += xircom_cb.o | 5 | obj-$(CONFIG_PCMCIA_XIRCOM) += xircom_cb.o |
7 | obj-$(CONFIG_DM9102) += dmfe.o | 6 | obj-$(CONFIG_DM9102) += dmfe.o |
8 | obj-$(CONFIG_WINBOND_840) += winbond-840.o | 7 | obj-$(CONFIG_WINBOND_840) += winbond-840.o |
diff --git a/drivers/net/tulip/xircom_tulip_cb.c b/drivers/net/tulip/xircom_tulip_cb.c deleted file mode 100644 index c3f8e303c6c7..000000000000 --- a/drivers/net/tulip/xircom_tulip_cb.c +++ /dev/null | |||
@@ -1,1726 +0,0 @@ | |||
1 | /* xircom_tulip_cb.c: A Xircom CBE-100 ethernet driver for Linux. */ | ||
2 | /* | ||
3 | Written/copyright 1994-1999 by Donald Becker. | ||
4 | |||
5 | This software may be used and distributed according to the terms | ||
6 | of the GNU General Public License, incorporated herein by reference. | ||
7 | |||
8 | The author may be reached as becker@scyld.com, or C/O | ||
9 | Scyld Computing Corporation | ||
10 | 410 Severn Ave., Suite 210 | ||
11 | Annapolis MD 21403 | ||
12 | |||
13 | */ | ||
14 | |||
15 | #define DRV_NAME "xircom_tulip_cb" | ||
16 | #define DRV_VERSION "0.92" | ||
17 | #define DRV_RELDATE "June 27, 2006" | ||
18 | |||
19 | /* A few user-configurable values. */ | ||
20 | |||
21 | #define xircom_debug debug | ||
22 | #ifdef XIRCOM_DEBUG | ||
23 | static int xircom_debug = XIRCOM_DEBUG; | ||
24 | #else | ||
25 | static int xircom_debug = 1; | ||
26 | #endif | ||
27 | |||
28 | /* Maximum events (Rx packets, etc.) to handle at each interrupt. */ | ||
29 | static int max_interrupt_work = 25; | ||
30 | |||
31 | #define MAX_UNITS 4 | ||
32 | /* Used to pass the full-duplex flag, etc. */ | ||
33 | static int full_duplex[MAX_UNITS]; | ||
34 | static int options[MAX_UNITS]; | ||
35 | static int mtu[MAX_UNITS]; /* Jumbo MTU for interfaces. */ | ||
36 | |||
37 | /* Keep the ring sizes a power of two for efficiency. | ||
38 | Making the Tx ring too large decreases the effectiveness of channel | ||
39 | bonding and packet priority. | ||
40 | There are no ill effects from too-large receive rings. */ | ||
41 | #define TX_RING_SIZE 16 | ||
42 | #define RX_RING_SIZE 32 | ||
43 | |||
44 | /* Set the copy breakpoint for the copy-only-tiny-buffer Rx structure. */ | ||
45 | #ifdef __alpha__ | ||
46 | static int rx_copybreak = 1518; | ||
47 | #else | ||
48 | static int rx_copybreak = 100; | ||
49 | #endif | ||
50 | |||
51 | /* | ||
52 | Set the bus performance register. | ||
53 | Typical: Set 16 longword cache alignment, no burst limit. | ||
54 | Cache alignment bits 15:14 Burst length 13:8 | ||
55 | 0000 No alignment 0x00000000 unlimited 0800 8 longwords | ||
56 | 4000 8 longwords 0100 1 longword 1000 16 longwords | ||
57 | 8000 16 longwords 0200 2 longwords 2000 32 longwords | ||
58 | C000 32 longwords 0400 4 longwords | ||
59 | Warning: many older 486 systems are broken and require setting 0x00A04800 | ||
60 | 8 longword cache alignment, 8 longword burst. | ||
61 | ToDo: Non-Intel setting could be better. | ||
62 | */ | ||
63 | |||
64 | #if defined(__alpha__) || defined(__ia64__) || defined(__x86_64__) | ||
65 | static int csr0 = 0x01A00000 | 0xE000; | ||
66 | #elif defined(__powerpc__) | ||
67 | static int csr0 = 0x01B00000 | 0x8000; | ||
68 | #elif defined(CONFIG_SPARC) | ||
69 | static int csr0 = 0x01B00080 | 0x8000; | ||
70 | #elif defined(__i386__) | ||
71 | static int csr0 = 0x01A00000 | 0x8000; | ||
72 | #else | ||
73 | #warning Processor architecture undefined! | ||
74 | static int csr0 = 0x00A00000 | 0x4800; | ||
75 | #endif | ||
76 | |||
77 | /* Operational parameters that usually are not changed. */ | ||
78 | /* Time in jiffies before concluding the transmitter is hung. */ | ||
79 | #define TX_TIMEOUT (4 * HZ) | ||
80 | #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/ | ||
81 | #define PKT_SETUP_SZ 192 /* Size of the setup frame */ | ||
82 | |||
83 | /* PCI registers */ | ||
84 | #define PCI_POWERMGMT 0x40 | ||
85 | |||
86 | #include <linux/module.h> | ||
87 | #include <linux/moduleparam.h> | ||
88 | #include <linux/kernel.h> | ||
89 | #include <linux/pci.h> | ||
90 | #include <linux/netdevice.h> | ||
91 | #include <linux/etherdevice.h> | ||
92 | #include <linux/delay.h> | ||
93 | #include <linux/init.h> | ||
94 | #include <linux/mii.h> | ||
95 | #include <linux/ethtool.h> | ||
96 | #include <linux/crc32.h> | ||
97 | |||
98 | #include <asm/io.h> | ||
99 | #include <asm/processor.h> /* Processor type for cache alignment. */ | ||
100 | #include <asm/uaccess.h> | ||
101 | |||
102 | |||
103 | /* These identify the driver base version and may not be removed. */ | ||
104 | static char version[] __devinitdata = | ||
105 | KERN_INFO DRV_NAME ".c derived from tulip.c:v0.91 4/14/99 becker@scyld.com\n" | ||
106 | KERN_INFO " unofficial 2.4.x kernel port, version " DRV_VERSION ", " DRV_RELDATE "\n"; | ||
107 | |||
108 | MODULE_AUTHOR("Donald Becker <becker@scyld.com>"); | ||
109 | MODULE_DESCRIPTION("Xircom CBE-100 ethernet driver"); | ||
110 | MODULE_LICENSE("GPL v2"); | ||
111 | MODULE_VERSION(DRV_VERSION); | ||
112 | |||
113 | module_param(debug, int, 0); | ||
114 | module_param(max_interrupt_work, int, 0); | ||
115 | module_param(rx_copybreak, int, 0); | ||
116 | module_param(csr0, int, 0); | ||
117 | |||
118 | module_param_array(options, int, NULL, 0); | ||
119 | module_param_array(full_duplex, int, NULL, 0); | ||
120 | |||
121 | #define RUN_AT(x) (jiffies + (x)) | ||
122 | |||
123 | /* | ||
124 | Theory of Operation | ||
125 | |||
126 | I. Board Compatibility | ||
127 | |||
128 | This device driver was forked from the driver for the DECchip "Tulip", | ||
129 | Digital's single-chip ethernet controllers for PCI. It supports Xircom's | ||
130 | almost-Tulip-compatible CBE-100 CardBus adapters. | ||
131 | |||
132 | II. Board-specific settings | ||
133 | |||
134 | PCI bus devices are configured by the system at boot time, so no jumpers | ||
135 | need to be set on the board. The system BIOS preferably should assign the | ||
136 | PCI INTA signal to an otherwise unused system IRQ line. | ||
137 | |||
138 | III. Driver operation | ||
139 | |||
140 | IIIa. Ring buffers | ||
141 | |||
142 | The Xircom can use either ring buffers or lists of Tx and Rx descriptors. | ||
143 | This driver uses statically allocated rings of Rx and Tx descriptors, set at | ||
144 | compile time by RX/TX_RING_SIZE. This version of the driver allocates skbuffs | ||
145 | for the Rx ring buffers at open() time and passes the skb->data field to the | ||
146 | Xircom as receive data buffers. When an incoming frame is less than | ||
147 | RX_COPYBREAK bytes long, a fresh skbuff is allocated and the frame is | ||
148 | copied to the new skbuff. When the incoming frame is larger, the skbuff is | ||
149 | passed directly up the protocol stack and replaced by a newly allocated | ||
150 | skbuff. | ||
151 | |||
152 | The RX_COPYBREAK value is chosen to trade-off the memory wasted by | ||
153 | using a full-sized skbuff for small frames vs. the copying costs of larger | ||
154 | frames. For small frames the copying cost is negligible (esp. considering | ||
155 | that we are pre-loading the cache with immediately useful header | ||
156 | information). For large frames the copying cost is non-trivial, and the | ||
157 | larger copy might flush the cache of useful data. A subtle aspect of this | ||
158 | choice is that the Xircom only receives into longword aligned buffers, thus | ||
159 | the IP header at offset 14 isn't longword aligned for further processing. | ||
160 | Copied frames are put into the new skbuff at an offset of "+2", thus copying | ||
161 | has the beneficial effect of aligning the IP header and preloading the | ||
162 | cache. | ||
163 | |||
164 | IIIC. Synchronization | ||
165 | The driver runs as two independent, single-threaded flows of control. One | ||
166 | is the send-packet routine, which enforces single-threaded use by the | ||
167 | dev->tbusy flag. The other thread is the interrupt handler, which is single | ||
168 | threaded by the hardware and other software. | ||
169 | |||
170 | The send packet thread has partial control over the Tx ring and 'dev->tbusy' | ||
171 | flag. It sets the tbusy flag whenever it's queuing a Tx packet. If the next | ||
172 | queue slot is empty, it clears the tbusy flag when finished otherwise it sets | ||
173 | the 'tp->tx_full' flag. | ||
174 | |||
175 | The interrupt handler has exclusive control over the Rx ring and records stats | ||
176 | from the Tx ring. (The Tx-done interrupt can't be selectively turned off, so | ||
177 | we can't avoid the interrupt overhead by having the Tx routine reap the Tx | ||
178 | stats.) After reaping the stats, it marks the queue entry as empty by setting | ||
179 | the 'base' to zero. Iff the 'tp->tx_full' flag is set, it clears both the | ||
180 | tx_full and tbusy flags. | ||
181 | |||
182 | IV. Notes | ||
183 | |||
184 | IVb. References | ||
185 | |||
186 | http://cesdis.gsfc.nasa.gov/linux/misc/NWay.html | ||
187 | http://www.digital.com (search for current 21*4* datasheets and "21X4 SROM") | ||
188 | http://www.national.com/pf/DP/DP83840A.html | ||
189 | |||
190 | IVc. Errata | ||
191 | |||
192 | */ | ||
193 | |||
194 | /* A full-duplex map for media types. */ | ||
195 | enum MediaIs { | ||
196 | MediaIsFD = 1, MediaAlwaysFD=2, MediaIsMII=4, MediaIsFx=8, | ||
197 | MediaIs100=16}; | ||
198 | static const char media_cap[] = | ||
199 | {0,0,0,16, 3,19,16,24, 27,4,7,5, 0,20,23,20 }; | ||
200 | |||
201 | /* Offsets to the Command and Status Registers, "CSRs". All accesses | ||
202 | must be longword instructions and quadword aligned. */ | ||
203 | enum xircom_offsets { | ||
204 | CSR0=0, CSR1=0x08, CSR2=0x10, CSR3=0x18, CSR4=0x20, CSR5=0x28, | ||
205 | CSR6=0x30, CSR7=0x38, CSR8=0x40, CSR9=0x48, CSR10=0x50, CSR11=0x58, | ||
206 | CSR12=0x60, CSR13=0x68, CSR14=0x70, CSR15=0x78, CSR16=0x04, }; | ||
207 | |||
208 | /* The bits in the CSR5 status registers, mostly interrupt sources. */ | ||
209 | enum status_bits { | ||
210 | LinkChange=0x08000000, | ||
211 | NormalIntr=0x10000, NormalIntrMask=0x00014045, | ||
212 | AbnormalIntr=0x8000, AbnormalIntrMask=0x0a00a5a2, | ||
213 | ReservedIntrMask=0xe0001a18, | ||
214 | EarlyRxIntr=0x4000, BusErrorIntr=0x2000, | ||
215 | EarlyTxIntr=0x400, RxDied=0x100, RxNoBuf=0x80, RxIntr=0x40, | ||
216 | TxFIFOUnderflow=0x20, TxNoBuf=0x04, TxDied=0x02, TxIntr=0x01, | ||
217 | }; | ||
218 | |||
219 | enum csr0_control_bits { | ||
220 | EnableMWI=0x01000000, EnableMRL=0x00800000, | ||
221 | EnableMRM=0x00200000, EqualBusPrio=0x02, | ||
222 | SoftwareReset=0x01, | ||
223 | }; | ||
224 | |||
225 | enum csr6_control_bits { | ||
226 | ReceiveAllBit=0x40000000, AllMultiBit=0x80, PromiscBit=0x40, | ||
227 | HashFilterBit=0x01, FullDuplexBit=0x0200, | ||
228 | TxThresh10=0x400000, TxStoreForw=0x200000, | ||
229 | TxThreshMask=0xc000, TxThreshShift=14, | ||
230 | EnableTx=0x2000, EnableRx=0x02, | ||
231 | ReservedZeroMask=0x8d930134, ReservedOneMask=0x320c0000, | ||
232 | EnableTxRx=(EnableTx | EnableRx), | ||
233 | }; | ||
234 | |||
235 | |||
236 | enum tbl_flag { | ||
237 | HAS_MII=1, HAS_ACPI=2, | ||
238 | }; | ||
239 | static struct xircom_chip_table { | ||
240 | char *chip_name; | ||
241 | int valid_intrs; /* CSR7 interrupt enable settings */ | ||
242 | int flags; | ||
243 | } xircom_tbl[] = { | ||
244 | { "Xircom Cardbus Adapter", | ||
245 | LinkChange | NormalIntr | AbnormalIntr | BusErrorIntr | | ||
246 | RxDied | RxNoBuf | RxIntr | TxFIFOUnderflow | TxNoBuf | TxDied | TxIntr, | ||
247 | HAS_MII | HAS_ACPI, }, | ||
248 | { NULL, }, | ||
249 | }; | ||
250 | /* This matches the table above. */ | ||
251 | enum chips { | ||
252 | X3201_3, | ||
253 | }; | ||
254 | |||
255 | |||
256 | /* The Xircom Rx and Tx buffer descriptors. */ | ||
257 | struct xircom_rx_desc { | ||
258 | s32 status; | ||
259 | s32 length; | ||
260 | u32 buffer1, buffer2; | ||
261 | }; | ||
262 | |||
263 | struct xircom_tx_desc { | ||
264 | s32 status; | ||
265 | s32 length; | ||
266 | u32 buffer1, buffer2; /* We use only buffer 1. */ | ||
267 | }; | ||
268 | |||
269 | enum tx_desc0_status_bits { | ||
270 | Tx0DescOwned=0x80000000, Tx0DescError=0x8000, Tx0NoCarrier=0x0800, | ||
271 | Tx0LateColl=0x0200, Tx0ManyColl=0x0100, Tx0Underflow=0x02, | ||
272 | }; | ||
273 | enum tx_desc1_status_bits { | ||
274 | Tx1ComplIntr=0x80000000, Tx1LastSeg=0x40000000, Tx1FirstSeg=0x20000000, | ||
275 | Tx1SetupPkt=0x08000000, Tx1DisableCRC=0x04000000, Tx1RingWrap=0x02000000, | ||
276 | Tx1ChainDesc=0x01000000, Tx1NoPad=0x800000, Tx1HashSetup=0x400000, | ||
277 | Tx1WholePkt=(Tx1FirstSeg | Tx1LastSeg), | ||
278 | }; | ||
279 | enum rx_desc0_status_bits { | ||
280 | Rx0DescOwned=0x80000000, Rx0DescError=0x8000, Rx0NoSpace=0x4000, | ||
281 | Rx0Runt=0x0800, Rx0McastPkt=0x0400, Rx0FirstSeg=0x0200, Rx0LastSeg=0x0100, | ||
282 | Rx0HugeFrame=0x80, Rx0CRCError=0x02, | ||
283 | Rx0WholePkt=(Rx0FirstSeg | Rx0LastSeg), | ||
284 | }; | ||
285 | enum rx_desc1_status_bits { | ||
286 | Rx1RingWrap=0x02000000, Rx1ChainDesc=0x01000000, | ||
287 | }; | ||
288 | |||
289 | struct xircom_private { | ||
290 | struct xircom_rx_desc rx_ring[RX_RING_SIZE]; | ||
291 | struct xircom_tx_desc tx_ring[TX_RING_SIZE]; | ||
292 | /* The saved address of a sent-in-place packet/buffer, for skfree(). */ | ||
293 | struct sk_buff* tx_skbuff[TX_RING_SIZE]; | ||
294 | |||
295 | /* The X3201-3 requires 4-byte aligned tx bufs */ | ||
296 | struct sk_buff* tx_aligned_skbuff[TX_RING_SIZE]; | ||
297 | |||
298 | /* The addresses of receive-in-place skbuffs. */ | ||
299 | struct sk_buff* rx_skbuff[RX_RING_SIZE]; | ||
300 | u16 setup_frame[PKT_SETUP_SZ / sizeof(u16)]; /* Pseudo-Tx frame to init address table. */ | ||
301 | int chip_id; | ||
302 | struct net_device_stats stats; | ||
303 | unsigned int cur_rx, cur_tx; /* The next free ring entry */ | ||
304 | unsigned int dirty_rx, dirty_tx; /* The ring entries to be free()ed. */ | ||
305 | unsigned int tx_full:1; /* The Tx queue is full. */ | ||
306 | unsigned int speed100:1; | ||
307 | unsigned int full_duplex:1; /* Full-duplex operation requested. */ | ||
308 | unsigned int autoneg:1; | ||
309 | unsigned int default_port:4; /* Last dev->if_port value. */ | ||
310 | unsigned int open:1; | ||
311 | unsigned int csr0; /* CSR0 setting. */ | ||
312 | unsigned int csr6; /* Current CSR6 control settings. */ | ||
313 | u16 to_advertise; /* NWay capabilities advertised. */ | ||
314 | u16 advertising[4]; | ||
315 | signed char phys[4], mii_cnt; /* MII device addresses. */ | ||
316 | int saved_if_port; | ||
317 | struct pci_dev *pdev; | ||
318 | spinlock_t lock; | ||
319 | }; | ||
320 | |||
321 | static int mdio_read(struct net_device *dev, int phy_id, int location); | ||
322 | static void mdio_write(struct net_device *dev, int phy_id, int location, int value); | ||
323 | static void xircom_up(struct net_device *dev); | ||
324 | static void xircom_down(struct net_device *dev); | ||
325 | static int xircom_open(struct net_device *dev); | ||
326 | static void xircom_tx_timeout(struct net_device *dev); | ||
327 | static void xircom_init_ring(struct net_device *dev); | ||
328 | static int xircom_start_xmit(struct sk_buff *skb, struct net_device *dev); | ||
329 | static int xircom_rx(struct net_device *dev); | ||
330 | static void xircom_media_change(struct net_device *dev); | ||
331 | static irqreturn_t xircom_interrupt(int irq, void *dev_instance); | ||
332 | static int xircom_close(struct net_device *dev); | ||
333 | static struct net_device_stats *xircom_get_stats(struct net_device *dev); | ||
334 | static int xircom_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); | ||
335 | static void set_rx_mode(struct net_device *dev); | ||
336 | static void check_duplex(struct net_device *dev); | ||
337 | static const struct ethtool_ops ops; | ||
338 | |||
339 | |||
340 | /* The Xircom cards are picky about when certain bits in CSR6 can be | ||
341 | manipulated. Keith Owens <kaos@ocs.com.au>. */ | ||
342 | static void outl_CSR6(u32 newcsr6, long ioaddr) | ||
343 | { | ||
344 | const int strict_bits = | ||
345 | TxThresh10 | TxStoreForw | TxThreshMask | EnableTxRx | FullDuplexBit; | ||
346 | int csr5, csr5_22_20, csr5_19_17, currcsr6, attempts = 200; | ||
347 | unsigned long flags; | ||
348 | save_flags(flags); | ||
349 | cli(); | ||
350 | /* mask out the reserved bits that always read 0 on the Xircom cards */ | ||
351 | newcsr6 &= ~ReservedZeroMask; | ||
352 | /* or in the reserved bits that always read 1 */ | ||
353 | newcsr6 |= ReservedOneMask; | ||
354 | currcsr6 = inl(ioaddr + CSR6); | ||
355 | if (((newcsr6 & strict_bits) == (currcsr6 & strict_bits)) || | ||
356 | ((currcsr6 & ~EnableTxRx) == 0)) { | ||
357 | outl(newcsr6, ioaddr + CSR6); /* safe */ | ||
358 | restore_flags(flags); | ||
359 | return; | ||
360 | } | ||
361 | /* make sure the transmitter and receiver are stopped first */ | ||
362 | currcsr6 &= ~EnableTxRx; | ||
363 | while (1) { | ||
364 | csr5 = inl(ioaddr + CSR5); | ||
365 | if (csr5 == 0xffffffff) | ||
366 | break; /* cannot read csr5, card removed? */ | ||
367 | csr5_22_20 = csr5 & 0x700000; | ||
368 | csr5_19_17 = csr5 & 0x0e0000; | ||
369 | if ((csr5_22_20 == 0 || csr5_22_20 == 0x600000) && | ||
370 | (csr5_19_17 == 0 || csr5_19_17 == 0x80000 || csr5_19_17 == 0xc0000)) | ||
371 | break; /* both are stopped or suspended */ | ||
372 | if (!--attempts) { | ||
373 | printk(KERN_INFO DRV_NAME ": outl_CSR6 too many attempts," | ||
374 | "csr5=0x%08x\n", csr5); | ||
375 | outl(newcsr6, ioaddr + CSR6); /* unsafe but do it anyway */ | ||
376 | restore_flags(flags); | ||
377 | return; | ||
378 | } | ||
379 | outl(currcsr6, ioaddr + CSR6); | ||
380 | udelay(1); | ||
381 | } | ||
382 | /* now it is safe to change csr6 */ | ||
383 | outl(newcsr6, ioaddr + CSR6); | ||
384 | restore_flags(flags); | ||
385 | } | ||
386 | |||
387 | |||
388 | static void __devinit read_mac_address(struct net_device *dev) | ||
389 | { | ||
390 | long ioaddr = dev->base_addr; | ||
391 | int i, j; | ||
392 | unsigned char tuple, link, data_id, data_count; | ||
393 | |||
394 | /* Xircom has its address stored in the CIS; | ||
395 | * we access it through the boot rom interface for now | ||
396 | * this might not work, as the CIS is not parsed but I | ||
397 | * (danilo) use the offset I found on my card's CIS !!! | ||
398 | * | ||
399 | * Doug Ledford: I changed this routine around so that it | ||
400 | * walks the CIS memory space, parsing the config items, and | ||
401 | * finds the proper lan_node_id tuple and uses the data | ||
402 | * stored there. | ||
403 | */ | ||
404 | outl(1 << 12, ioaddr + CSR9); /* enable boot rom access */ | ||
405 | for (i = 0x100; i < 0x1f7; i += link+2) { | ||
406 | outl(i, ioaddr + CSR10); | ||
407 | tuple = inl(ioaddr + CSR9) & 0xff; | ||
408 | outl(i + 1, ioaddr + CSR10); | ||
409 | link = inl(ioaddr + CSR9) & 0xff; | ||
410 | outl(i + 2, ioaddr + CSR10); | ||
411 | data_id = inl(ioaddr + CSR9) & 0xff; | ||
412 | outl(i + 3, ioaddr + CSR10); | ||
413 | data_count = inl(ioaddr + CSR9) & 0xff; | ||
414 | if ( (tuple == 0x22) && | ||
415 | (data_id == 0x04) && (data_count == 0x06) ) { | ||
416 | /* | ||
417 | * This is it. We have the data we want. | ||
418 | */ | ||
419 | for (j = 0; j < 6; j++) { | ||
420 | outl(i + j + 4, ioaddr + CSR10); | ||
421 | dev->dev_addr[j] = inl(ioaddr + CSR9) & 0xff; | ||
422 | } | ||
423 | break; | ||
424 | } else if (link == 0) { | ||
425 | break; | ||
426 | } | ||
427 | } | ||
428 | } | ||
429 | |||
430 | |||
431 | /* | ||
432 | * locate the MII interfaces and initialize them. | ||
433 | * we disable full-duplex modes here, | ||
434 | * because we don't know how to handle them. | ||
435 | */ | ||
436 | static void find_mii_transceivers(struct net_device *dev) | ||
437 | { | ||
438 | struct xircom_private *tp = netdev_priv(dev); | ||
439 | int phy, phy_idx; | ||
440 | |||
441 | if (media_cap[tp->default_port] & MediaIsMII) { | ||
442 | u16 media2advert[] = { 0x20, 0x40, 0x03e0, 0x60, 0x80, 0x100, 0x200 }; | ||
443 | tp->to_advertise = media2advert[tp->default_port - 9]; | ||
444 | } else | ||
445 | tp->to_advertise = | ||
446 | /*ADVERTISE_100BASE4 | ADVERTISE_100FULL |*/ ADVERTISE_100HALF | | ||
447 | /*ADVERTISE_10FULL |*/ ADVERTISE_10HALF | ADVERTISE_CSMA; | ||
448 | |||
449 | /* Find the connected MII xcvrs. | ||
450 | Doing this in open() would allow detecting external xcvrs later, | ||
451 | but takes much time. */ | ||
452 | for (phy = 0, phy_idx = 0; phy < 32 && phy_idx < sizeof(tp->phys); phy++) { | ||
453 | int mii_status = mdio_read(dev, phy, MII_BMSR); | ||
454 | if ((mii_status & (BMSR_100BASE4 | BMSR_100HALF | BMSR_10HALF)) == BMSR_100BASE4 || | ||
455 | ((mii_status & BMSR_100BASE4) == 0 && | ||
456 | (mii_status & (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL | BMSR_10HALF)) != 0)) { | ||
457 | int mii_reg0 = mdio_read(dev, phy, MII_BMCR); | ||
458 | int mii_advert = mdio_read(dev, phy, MII_ADVERTISE); | ||
459 | int reg4 = ((mii_status >> 6) & tp->to_advertise) | ADVERTISE_CSMA; | ||
460 | tp->phys[phy_idx] = phy; | ||
461 | tp->advertising[phy_idx++] = reg4; | ||
462 | printk(KERN_INFO "%s: MII transceiver #%d " | ||
463 | "config %4.4x status %4.4x advertising %4.4x.\n", | ||
464 | dev->name, phy, mii_reg0, mii_status, mii_advert); | ||
465 | } | ||
466 | } | ||
467 | tp->mii_cnt = phy_idx; | ||
468 | if (phy_idx == 0) { | ||
469 | printk(KERN_INFO "%s: ***WARNING***: No MII transceiver found!\n", | ||
470 | dev->name); | ||
471 | tp->phys[0] = 0; | ||
472 | } | ||
473 | } | ||
474 | |||
475 | |||
476 | /* | ||
477 | * To quote Arjan van de Ven: | ||
478 | * transceiver_voodoo() enables the external UTP plug thingy. | ||
479 | * it's called voodoo as I stole this code and cannot cross-reference | ||
480 | * it with the specification. | ||
481 | * Actually it seems to go like this: | ||
482 | * - GPIO2 enables the MII itself so we can talk to it. The MII gets reset | ||
483 | * so any prior MII settings are lost. | ||
484 | * - GPIO0 enables the TP port so the MII can talk to the network. | ||
485 | * - a software reset will reset both GPIO pins. | ||
486 | * I also moved the software reset here, because doing it in xircom_up() | ||
487 | * required enabling the GPIO pins each time, which reset the MII each time. | ||
488 | * Thus we couldn't control the MII -- which sucks because we don't know | ||
489 | * how to handle full-duplex modes so we *must* disable them. | ||
490 | */ | ||
491 | static void transceiver_voodoo(struct net_device *dev) | ||
492 | { | ||
493 | struct xircom_private *tp = netdev_priv(dev); | ||
494 | long ioaddr = dev->base_addr; | ||
495 | |||
496 | /* Reset the chip, holding bit 0 set at least 50 PCI cycles. */ | ||
497 | outl(SoftwareReset, ioaddr + CSR0); | ||
498 | udelay(2); | ||
499 | |||
500 | /* Deassert reset. */ | ||
501 | outl(tp->csr0, ioaddr + CSR0); | ||
502 | |||
503 | /* Reset the xcvr interface and turn on heartbeat. */ | ||
504 | outl(0x0008, ioaddr + CSR15); | ||
505 | udelay(5); /* The delays are Xircom-recommended to give the | ||
506 | * chipset time to reset the actual hardware | ||
507 | * on the PCMCIA card | ||
508 | */ | ||
509 | outl(0xa8050000, ioaddr + CSR15); | ||
510 | udelay(5); | ||
511 | outl(0xa00f0000, ioaddr + CSR15); | ||
512 | udelay(5); | ||
513 | |||
514 | outl_CSR6(0, ioaddr); | ||
515 | //outl_CSR6(FullDuplexBit, ioaddr); | ||
516 | } | ||
517 | |||
518 | |||
519 | static int __devinit xircom_init_one(struct pci_dev *pdev, const struct pci_device_id *id) | ||
520 | { | ||
521 | struct net_device *dev; | ||
522 | struct xircom_private *tp; | ||
523 | static int board_idx = -1; | ||
524 | int chip_idx = id->driver_data; | ||
525 | long ioaddr; | ||
526 | int i; | ||
527 | |||
528 | /* when built into the kernel, we only print version if device is found */ | ||
529 | #ifndef MODULE | ||
530 | static int printed_version; | ||
531 | if (!printed_version++) | ||
532 | printk(version); | ||
533 | #endif | ||
534 | |||
535 | //printk(KERN_INFO "xircom_init_one(%s)\n", pci_name(pdev)); | ||
536 | |||
537 | board_idx++; | ||
538 | |||
539 | if (pci_enable_device(pdev)) | ||
540 | return -ENODEV; | ||
541 | |||
542 | pci_set_master(pdev); | ||
543 | |||
544 | ioaddr = pci_resource_start(pdev, 0); | ||
545 | dev = alloc_etherdev(sizeof(*tp)); | ||
546 | if (!dev) { | ||
547 | printk (KERN_ERR DRV_NAME "%d: cannot alloc etherdev, aborting\n", board_idx); | ||
548 | return -ENOMEM; | ||
549 | } | ||
550 | SET_NETDEV_DEV(dev, &pdev->dev); | ||
551 | |||
552 | dev->base_addr = ioaddr; | ||
553 | dev->irq = pdev->irq; | ||
554 | |||
555 | if (pci_request_regions(pdev, dev->name)) { | ||
556 | printk (KERN_ERR DRV_NAME " %d: cannot reserve PCI resources, aborting\n", board_idx); | ||
557 | goto err_out_free_netdev; | ||
558 | } | ||
559 | |||
560 | /* Bring the chip out of sleep mode. | ||
561 | Caution: Snooze mode does not work with some boards! */ | ||
562 | if (xircom_tbl[chip_idx].flags & HAS_ACPI) | ||
563 | pci_write_config_dword(pdev, PCI_POWERMGMT, 0); | ||
564 | |||
565 | /* Stop the chip's Tx and Rx processes. */ | ||
566 | outl_CSR6(inl(ioaddr + CSR6) & ~EnableTxRx, ioaddr); | ||
567 | /* Clear the missed-packet counter. */ | ||
568 | (volatile int)inl(ioaddr + CSR8); | ||
569 | |||
570 | tp = netdev_priv(dev); | ||
571 | |||
572 | spin_lock_init(&tp->lock); | ||
573 | tp->pdev = pdev; | ||
574 | tp->chip_id = chip_idx; | ||
575 | /* BugFixes: The 21143-TD hangs with PCI Write-and-Invalidate cycles. */ | ||
576 | /* XXX: is this necessary for Xircom? */ | ||
577 | tp->csr0 = csr0 & ~EnableMWI; | ||
578 | |||
579 | pci_set_drvdata(pdev, dev); | ||
580 | |||
581 | /* The lower four bits are the media type. */ | ||
582 | if (board_idx >= 0 && board_idx < MAX_UNITS) { | ||
583 | tp->default_port = options[board_idx] & 15; | ||
584 | if ((options[board_idx] & 0x90) || full_duplex[board_idx] > 0) | ||
585 | tp->full_duplex = 1; | ||
586 | if (mtu[board_idx] > 0) | ||
587 | dev->mtu = mtu[board_idx]; | ||
588 | } | ||
589 | if (dev->mem_start) | ||
590 | tp->default_port = dev->mem_start; | ||
591 | if (tp->default_port) { | ||
592 | if (media_cap[tp->default_port] & MediaAlwaysFD) | ||
593 | tp->full_duplex = 1; | ||
594 | } | ||
595 | if (tp->full_duplex) | ||
596 | tp->autoneg = 0; | ||
597 | else | ||
598 | tp->autoneg = 1; | ||
599 | tp->speed100 = 1; | ||
600 | |||
601 | /* The Xircom-specific entries in the device structure. */ | ||
602 | dev->open = &xircom_open; | ||
603 | dev->hard_start_xmit = &xircom_start_xmit; | ||
604 | dev->stop = &xircom_close; | ||
605 | dev->get_stats = &xircom_get_stats; | ||
606 | dev->do_ioctl = &xircom_ioctl; | ||
607 | #ifdef HAVE_MULTICAST | ||
608 | dev->set_multicast_list = &set_rx_mode; | ||
609 | #endif | ||
610 | dev->tx_timeout = xircom_tx_timeout; | ||
611 | dev->watchdog_timeo = TX_TIMEOUT; | ||
612 | SET_ETHTOOL_OPS(dev, &ops); | ||
613 | |||
614 | transceiver_voodoo(dev); | ||
615 | |||
616 | read_mac_address(dev); | ||
617 | |||
618 | if (register_netdev(dev)) | ||
619 | goto err_out_cleardev; | ||
620 | |||
621 | printk(KERN_INFO "%s: %s rev %d at %#3lx,", | ||
622 | dev->name, xircom_tbl[chip_idx].chip_name, pdev->revision, ioaddr); | ||
623 | for (i = 0; i < 6; i++) | ||
624 | printk("%c%2.2X", i ? ':' : ' ', dev->dev_addr[i]); | ||
625 | printk(", IRQ %d.\n", dev->irq); | ||
626 | |||
627 | if (xircom_tbl[chip_idx].flags & HAS_MII) { | ||
628 | find_mii_transceivers(dev); | ||
629 | check_duplex(dev); | ||
630 | } | ||
631 | |||
632 | return 0; | ||
633 | |||
634 | err_out_cleardev: | ||
635 | pci_set_drvdata(pdev, NULL); | ||
636 | pci_release_regions(pdev); | ||
637 | err_out_free_netdev: | ||
638 | free_netdev(dev); | ||
639 | return -ENODEV; | ||
640 | } | ||
641 | |||
642 | |||
643 | /* MII transceiver control section. | ||
644 | Read and write the MII registers using software-generated serial | ||
645 | MDIO protocol. See the MII specifications or DP83840A data sheet | ||
646 | for details. */ | ||
647 | |||
648 | /* The maximum data clock rate is 2.5 Mhz. The minimum timing is usually | ||
649 | met by back-to-back PCI I/O cycles, but we insert a delay to avoid | ||
650 | "overclocking" issues or future 66Mhz PCI. */ | ||
651 | #define mdio_delay() inl(mdio_addr) | ||
652 | |||
653 | /* Read and write the MII registers using software-generated serial | ||
654 | MDIO protocol. It is just different enough from the EEPROM protocol | ||
655 | to not share code. The maxium data clock rate is 2.5 Mhz. */ | ||
656 | #define MDIO_SHIFT_CLK 0x10000 | ||
657 | #define MDIO_DATA_WRITE0 0x00000 | ||
658 | #define MDIO_DATA_WRITE1 0x20000 | ||
659 | #define MDIO_ENB 0x00000 /* Ignore the 0x02000 databook setting. */ | ||
660 | #define MDIO_ENB_IN 0x40000 | ||
661 | #define MDIO_DATA_READ 0x80000 | ||
662 | |||
663 | static int mdio_read(struct net_device *dev, int phy_id, int location) | ||
664 | { | ||
665 | int i; | ||
666 | int read_cmd = (0xf6 << 10) | (phy_id << 5) | location; | ||
667 | int retval = 0; | ||
668 | long ioaddr = dev->base_addr; | ||
669 | long mdio_addr = ioaddr + CSR9; | ||
670 | |||
671 | /* Establish sync by sending at least 32 logic ones. */ | ||
672 | for (i = 32; i >= 0; i--) { | ||
673 | outl(MDIO_ENB | MDIO_DATA_WRITE1, mdio_addr); | ||
674 | mdio_delay(); | ||
675 | outl(MDIO_ENB | MDIO_DATA_WRITE1 | MDIO_SHIFT_CLK, mdio_addr); | ||
676 | mdio_delay(); | ||
677 | } | ||
678 | /* Shift the read command bits out. */ | ||
679 | for (i = 15; i >= 0; i--) { | ||
680 | int dataval = (read_cmd & (1 << i)) ? MDIO_DATA_WRITE1 : 0; | ||
681 | |||
682 | outl(MDIO_ENB | dataval, mdio_addr); | ||
683 | mdio_delay(); | ||
684 | outl(MDIO_ENB | dataval | MDIO_SHIFT_CLK, mdio_addr); | ||
685 | mdio_delay(); | ||
686 | } | ||
687 | /* Read the two transition, 16 data, and wire-idle bits. */ | ||
688 | for (i = 19; i > 0; i--) { | ||
689 | outl(MDIO_ENB_IN, mdio_addr); | ||
690 | mdio_delay(); | ||
691 | retval = (retval << 1) | ((inl(mdio_addr) & MDIO_DATA_READ) ? 1 : 0); | ||
692 | outl(MDIO_ENB_IN | MDIO_SHIFT_CLK, mdio_addr); | ||
693 | mdio_delay(); | ||
694 | } | ||
695 | return (retval>>1) & 0xffff; | ||
696 | } | ||
697 | |||
698 | |||
699 | static void mdio_write(struct net_device *dev, int phy_id, int location, int value) | ||
700 | { | ||
701 | int i; | ||
702 | int cmd = (0x5002 << 16) | (phy_id << 23) | (location << 18) | value; | ||
703 | long ioaddr = dev->base_addr; | ||
704 | long mdio_addr = ioaddr + CSR9; | ||
705 | |||
706 | /* Establish sync by sending 32 logic ones. */ | ||
707 | for (i = 32; i >= 0; i--) { | ||
708 | outl(MDIO_ENB | MDIO_DATA_WRITE1, mdio_addr); | ||
709 | mdio_delay(); | ||
710 | outl(MDIO_ENB | MDIO_DATA_WRITE1 | MDIO_SHIFT_CLK, mdio_addr); | ||
711 | mdio_delay(); | ||
712 | } | ||
713 | /* Shift the command bits out. */ | ||
714 | for (i = 31; i >= 0; i--) { | ||
715 | int dataval = (cmd & (1 << i)) ? MDIO_DATA_WRITE1 : 0; | ||
716 | outl(MDIO_ENB | dataval, mdio_addr); | ||
717 | mdio_delay(); | ||
718 | outl(MDIO_ENB | dataval | MDIO_SHIFT_CLK, mdio_addr); | ||
719 | mdio_delay(); | ||
720 | } | ||
721 | /* Clear out extra bits. */ | ||
722 | for (i = 2; i > 0; i--) { | ||
723 | outl(MDIO_ENB_IN, mdio_addr); | ||
724 | mdio_delay(); | ||
725 | outl(MDIO_ENB_IN | MDIO_SHIFT_CLK, mdio_addr); | ||
726 | mdio_delay(); | ||
727 | } | ||
728 | return; | ||
729 | } | ||
730 | |||
731 | |||
732 | static void | ||
733 | xircom_up(struct net_device *dev) | ||
734 | { | ||
735 | struct xircom_private *tp = netdev_priv(dev); | ||
736 | long ioaddr = dev->base_addr; | ||
737 | int i; | ||
738 | |||
739 | xircom_init_ring(dev); | ||
740 | /* Clear the tx ring */ | ||
741 | for (i = 0; i < TX_RING_SIZE; i++) { | ||
742 | tp->tx_skbuff[i] = NULL; | ||
743 | tp->tx_ring[i].status = 0; | ||
744 | } | ||
745 | |||
746 | if (xircom_debug > 1) | ||
747 | printk(KERN_DEBUG "%s: xircom_up() irq %d.\n", dev->name, dev->irq); | ||
748 | |||
749 | outl(virt_to_bus(tp->rx_ring), ioaddr + CSR3); | ||
750 | outl(virt_to_bus(tp->tx_ring), ioaddr + CSR4); | ||
751 | |||
752 | tp->saved_if_port = dev->if_port; | ||
753 | if (dev->if_port == 0) | ||
754 | dev->if_port = tp->default_port; | ||
755 | |||
756 | tp->csr6 = TxThresh10 /*| FullDuplexBit*/; /* XXX: why 10 and not 100? */ | ||
757 | |||
758 | set_rx_mode(dev); | ||
759 | |||
760 | /* Start the chip's Tx to process setup frame. */ | ||
761 | outl_CSR6(tp->csr6, ioaddr); | ||
762 | outl_CSR6(tp->csr6 | EnableTx, ioaddr); | ||
763 | |||
764 | /* Acknowledge all outstanding interrupts sources */ | ||
765 | outl(xircom_tbl[tp->chip_id].valid_intrs, ioaddr + CSR5); | ||
766 | /* Enable interrupts by setting the interrupt mask. */ | ||
767 | outl(xircom_tbl[tp->chip_id].valid_intrs, ioaddr + CSR7); | ||
768 | /* Enable Rx */ | ||
769 | outl_CSR6(tp->csr6 | EnableTxRx, ioaddr); | ||
770 | /* Rx poll demand */ | ||
771 | outl(0, ioaddr + CSR2); | ||
772 | |||
773 | /* Tell the net layer we're ready */ | ||
774 | netif_start_queue (dev); | ||
775 | |||
776 | /* Check current media state */ | ||
777 | xircom_media_change(dev); | ||
778 | |||
779 | if (xircom_debug > 2) { | ||
780 | printk(KERN_DEBUG "%s: Done xircom_up(), CSR0 %8.8x, CSR5 %8.8x CSR6 %8.8x.\n", | ||
781 | dev->name, inl(ioaddr + CSR0), inl(ioaddr + CSR5), | ||
782 | inl(ioaddr + CSR6)); | ||
783 | } | ||
784 | } | ||
785 | |||
786 | |||
787 | static int | ||
788 | xircom_open(struct net_device *dev) | ||
789 | { | ||
790 | struct xircom_private *tp = netdev_priv(dev); | ||
791 | |||
792 | if (request_irq(dev->irq, &xircom_interrupt, IRQF_SHARED, dev->name, dev)) | ||
793 | return -EAGAIN; | ||
794 | |||
795 | xircom_up(dev); | ||
796 | tp->open = 1; | ||
797 | |||
798 | return 0; | ||
799 | } | ||
800 | |||
801 | |||
802 | static void xircom_tx_timeout(struct net_device *dev) | ||
803 | { | ||
804 | struct xircom_private *tp = netdev_priv(dev); | ||
805 | long ioaddr = dev->base_addr; | ||
806 | |||
807 | if (media_cap[dev->if_port] & MediaIsMII) { | ||
808 | /* Do nothing -- the media monitor should handle this. */ | ||
809 | if (xircom_debug > 1) | ||
810 | printk(KERN_WARNING "%s: Transmit timeout using MII device.\n", | ||
811 | dev->name); | ||
812 | } | ||
813 | |||
814 | #if defined(way_too_many_messages) | ||
815 | if (xircom_debug > 3) { | ||
816 | int i; | ||
817 | for (i = 0; i < RX_RING_SIZE; i++) { | ||
818 | u8 *buf = (u8 *)(tp->rx_ring[i].buffer1); | ||
819 | int j; | ||
820 | printk(KERN_DEBUG "%2d: %8.8x %8.8x %8.8x %8.8x " | ||
821 | "%2.2x %2.2x %2.2x.\n", | ||
822 | i, (unsigned int)tp->rx_ring[i].status, | ||
823 | (unsigned int)tp->rx_ring[i].length, | ||
824 | (unsigned int)tp->rx_ring[i].buffer1, | ||
825 | (unsigned int)tp->rx_ring[i].buffer2, | ||
826 | buf[0], buf[1], buf[2]); | ||
827 | for (j = 0; buf[j] != 0xee && j < 1600; j++) | ||
828 | if (j < 100) printk(" %2.2x", buf[j]); | ||
829 | printk(" j=%d.\n", j); | ||
830 | } | ||
831 | printk(KERN_DEBUG " Rx ring %8.8x: ", (int)tp->rx_ring); | ||
832 | for (i = 0; i < RX_RING_SIZE; i++) | ||
833 | printk(" %8.8x", (unsigned int)tp->rx_ring[i].status); | ||
834 | printk("\n" KERN_DEBUG " Tx ring %8.8x: ", (int)tp->tx_ring); | ||
835 | for (i = 0; i < TX_RING_SIZE; i++) | ||
836 | printk(" %8.8x", (unsigned int)tp->tx_ring[i].status); | ||
837 | printk("\n"); | ||
838 | } | ||
839 | #endif | ||
840 | |||
841 | /* Stop and restart the chip's Tx/Rx processes . */ | ||
842 | outl_CSR6(tp->csr6 | EnableRx, ioaddr); | ||
843 | outl_CSR6(tp->csr6 | EnableTxRx, ioaddr); | ||
844 | /* Trigger an immediate transmit demand. */ | ||
845 | outl(0, ioaddr + CSR1); | ||
846 | |||
847 | dev->trans_start = jiffies; | ||
848 | netif_wake_queue (dev); | ||
849 | tp->stats.tx_errors++; | ||
850 | } | ||
851 | |||
852 | |||
853 | /* Initialize the Rx and Tx rings, along with various 'dev' bits. */ | ||
854 | static void xircom_init_ring(struct net_device *dev) | ||
855 | { | ||
856 | struct xircom_private *tp = netdev_priv(dev); | ||
857 | int i; | ||
858 | |||
859 | tp->tx_full = 0; | ||
860 | tp->cur_rx = tp->cur_tx = 0; | ||
861 | tp->dirty_rx = tp->dirty_tx = 0; | ||
862 | |||
863 | for (i = 0; i < RX_RING_SIZE; i++) { | ||
864 | tp->rx_ring[i].status = 0; | ||
865 | tp->rx_ring[i].length = PKT_BUF_SZ; | ||
866 | tp->rx_ring[i].buffer2 = virt_to_bus(&tp->rx_ring[i+1]); | ||
867 | tp->rx_skbuff[i] = NULL; | ||
868 | } | ||
869 | /* Mark the last entry as wrapping the ring. */ | ||
870 | tp->rx_ring[i-1].length = PKT_BUF_SZ | Rx1RingWrap; | ||
871 | tp->rx_ring[i-1].buffer2 = virt_to_bus(&tp->rx_ring[0]); | ||
872 | |||
873 | for (i = 0; i < RX_RING_SIZE; i++) { | ||
874 | /* Note the receive buffer must be longword aligned. | ||
875 | dev_alloc_skb() provides 16 byte alignment. But do *not* | ||
876 | use skb_reserve() to align the IP header! */ | ||
877 | struct sk_buff *skb = dev_alloc_skb(PKT_BUF_SZ); | ||
878 | tp->rx_skbuff[i] = skb; | ||
879 | if (skb == NULL) | ||
880 | break; | ||
881 | skb->dev = dev; /* Mark as being used by this device. */ | ||
882 | tp->rx_ring[i].status = Rx0DescOwned; /* Owned by Xircom chip */ | ||
883 | tp->rx_ring[i].buffer1 = virt_to_bus(skb->data); | ||
884 | } | ||
885 | tp->dirty_rx = (unsigned int)(i - RX_RING_SIZE); | ||
886 | |||
887 | /* The Tx buffer descriptor is filled in as needed, but we | ||
888 | do need to clear the ownership bit. */ | ||
889 | for (i = 0; i < TX_RING_SIZE; i++) { | ||
890 | tp->tx_skbuff[i] = NULL; | ||
891 | tp->tx_ring[i].status = 0; | ||
892 | tp->tx_ring[i].buffer2 = virt_to_bus(&tp->tx_ring[i+1]); | ||
893 | if (tp->chip_id == X3201_3) | ||
894 | tp->tx_aligned_skbuff[i] = dev_alloc_skb(PKT_BUF_SZ); | ||
895 | } | ||
896 | tp->tx_ring[i-1].buffer2 = virt_to_bus(&tp->tx_ring[0]); | ||
897 | } | ||
898 | |||
899 | |||
900 | static int | ||
901 | xircom_start_xmit(struct sk_buff *skb, struct net_device *dev) | ||
902 | { | ||
903 | struct xircom_private *tp = netdev_priv(dev); | ||
904 | int entry; | ||
905 | u32 flag; | ||
906 | |||
907 | /* Caution: the write order is important here, set the base address | ||
908 | with the "ownership" bits last. */ | ||
909 | |||
910 | /* Calculate the next Tx descriptor entry. */ | ||
911 | entry = tp->cur_tx % TX_RING_SIZE; | ||
912 | |||
913 | tp->tx_skbuff[entry] = skb; | ||
914 | if (tp->chip_id == X3201_3) { | ||
915 | skb_copy_from_linear_data(skb, | ||
916 | tp->tx_aligned_skbuff[entry]->data, | ||
917 | skb->len); | ||
918 | tp->tx_ring[entry].buffer1 = virt_to_bus(tp->tx_aligned_skbuff[entry]->data); | ||
919 | } else | ||
920 | tp->tx_ring[entry].buffer1 = virt_to_bus(skb->data); | ||
921 | |||
922 | if (tp->cur_tx - tp->dirty_tx < TX_RING_SIZE/2) {/* Typical path */ | ||
923 | flag = Tx1WholePkt; /* No interrupt */ | ||
924 | } else if (tp->cur_tx - tp->dirty_tx == TX_RING_SIZE/2) { | ||
925 | flag = Tx1WholePkt | Tx1ComplIntr; /* Tx-done intr. */ | ||
926 | } else if (tp->cur_tx - tp->dirty_tx < TX_RING_SIZE - 2) { | ||
927 | flag = Tx1WholePkt; /* No Tx-done intr. */ | ||
928 | } else { | ||
929 | /* Leave room for set_rx_mode() to fill entries. */ | ||
930 | flag = Tx1WholePkt | Tx1ComplIntr; /* Tx-done intr. */ | ||
931 | tp->tx_full = 1; | ||
932 | } | ||
933 | if (entry == TX_RING_SIZE - 1) | ||
934 | flag |= Tx1WholePkt | Tx1ComplIntr | Tx1RingWrap; | ||
935 | |||
936 | tp->tx_ring[entry].length = skb->len | flag; | ||
937 | tp->tx_ring[entry].status = Tx0DescOwned; /* Pass ownership to the chip. */ | ||
938 | tp->cur_tx++; | ||
939 | if (tp->tx_full) | ||
940 | netif_stop_queue (dev); | ||
941 | else | ||
942 | netif_wake_queue (dev); | ||
943 | |||
944 | /* Trigger an immediate transmit demand. */ | ||
945 | outl(0, dev->base_addr + CSR1); | ||
946 | |||
947 | dev->trans_start = jiffies; | ||
948 | |||
949 | return 0; | ||
950 | } | ||
951 | |||
952 | |||
953 | static void xircom_media_change(struct net_device *dev) | ||
954 | { | ||
955 | struct xircom_private *tp = netdev_priv(dev); | ||
956 | long ioaddr = dev->base_addr; | ||
957 | u16 reg0, reg1, reg4, reg5; | ||
958 | u32 csr6 = inl(ioaddr + CSR6), newcsr6; | ||
959 | |||
960 | /* reset status first */ | ||
961 | mdio_read(dev, tp->phys[0], MII_BMCR); | ||
962 | mdio_read(dev, tp->phys[0], MII_BMSR); | ||
963 | |||
964 | reg0 = mdio_read(dev, tp->phys[0], MII_BMCR); | ||
965 | reg1 = mdio_read(dev, tp->phys[0], MII_BMSR); | ||
966 | |||
967 | if (reg1 & BMSR_LSTATUS) { | ||
968 | /* link is up */ | ||
969 | if (reg0 & BMCR_ANENABLE) { | ||
970 | /* autonegotiation is enabled */ | ||
971 | reg4 = mdio_read(dev, tp->phys[0], MII_ADVERTISE); | ||
972 | reg5 = mdio_read(dev, tp->phys[0], MII_LPA); | ||
973 | if (reg4 & ADVERTISE_100FULL && reg5 & LPA_100FULL) { | ||
974 | tp->speed100 = 1; | ||
975 | tp->full_duplex = 1; | ||
976 | } else if (reg4 & ADVERTISE_100HALF && reg5 & LPA_100HALF) { | ||
977 | tp->speed100 = 1; | ||
978 | tp->full_duplex = 0; | ||
979 | } else if (reg4 & ADVERTISE_10FULL && reg5 & LPA_10FULL) { | ||
980 | tp->speed100 = 0; | ||
981 | tp->full_duplex = 1; | ||
982 | } else { | ||
983 | tp->speed100 = 0; | ||
984 | tp->full_duplex = 0; | ||
985 | } | ||
986 | } else { | ||
987 | /* autonegotiation is disabled */ | ||
988 | if (reg0 & BMCR_SPEED100) | ||
989 | tp->speed100 = 1; | ||
990 | else | ||
991 | tp->speed100 = 0; | ||
992 | if (reg0 & BMCR_FULLDPLX) | ||
993 | tp->full_duplex = 1; | ||
994 | else | ||
995 | tp->full_duplex = 0; | ||
996 | } | ||
997 | printk(KERN_DEBUG "%s: Link is up, running at %sMbit %s-duplex\n", | ||
998 | dev->name, | ||
999 | tp->speed100 ? "100" : "10", | ||
1000 | tp->full_duplex ? "full" : "half"); | ||
1001 | netif_carrier_on(dev); | ||
1002 | newcsr6 = csr6 & ~FullDuplexBit; | ||
1003 | if (tp->full_duplex) | ||
1004 | newcsr6 |= FullDuplexBit; | ||
1005 | if (newcsr6 != csr6) | ||
1006 | outl_CSR6(newcsr6, ioaddr + CSR6); | ||
1007 | } else { | ||
1008 | printk(KERN_DEBUG "%s: Link is down\n", dev->name); | ||
1009 | netif_carrier_off(dev); | ||
1010 | } | ||
1011 | } | ||
1012 | |||
1013 | |||
1014 | static void check_duplex(struct net_device *dev) | ||
1015 | { | ||
1016 | struct xircom_private *tp = netdev_priv(dev); | ||
1017 | u16 reg0; | ||
1018 | |||
1019 | mdio_write(dev, tp->phys[0], MII_BMCR, BMCR_RESET); | ||
1020 | udelay(500); | ||
1021 | while (mdio_read(dev, tp->phys[0], MII_BMCR) & BMCR_RESET); | ||
1022 | |||
1023 | reg0 = mdio_read(dev, tp->phys[0], MII_BMCR); | ||
1024 | mdio_write(dev, tp->phys[0], MII_ADVERTISE, tp->advertising[0]); | ||
1025 | |||
1026 | if (tp->autoneg) { | ||
1027 | reg0 &= ~(BMCR_SPEED100 | BMCR_FULLDPLX); | ||
1028 | reg0 |= BMCR_ANENABLE | BMCR_ANRESTART; | ||
1029 | } else { | ||
1030 | reg0 &= ~(BMCR_ANENABLE | BMCR_ANRESTART); | ||
1031 | if (tp->speed100) | ||
1032 | reg0 |= BMCR_SPEED100; | ||
1033 | if (tp->full_duplex) | ||
1034 | reg0 |= BMCR_FULLDPLX; | ||
1035 | printk(KERN_DEBUG "%s: Link forced to %sMbit %s-duplex\n", | ||
1036 | dev->name, | ||
1037 | tp->speed100 ? "100" : "10", | ||
1038 | tp->full_duplex ? "full" : "half"); | ||
1039 | } | ||
1040 | mdio_write(dev, tp->phys[0], MII_BMCR, reg0); | ||
1041 | } | ||
1042 | |||
1043 | |||
1044 | /* The interrupt handler does all of the Rx thread work and cleans up | ||
1045 | after the Tx thread. */ | ||
1046 | static irqreturn_t xircom_interrupt(int irq, void *dev_instance) | ||
1047 | { | ||
1048 | struct net_device *dev = dev_instance; | ||
1049 | struct xircom_private *tp = netdev_priv(dev); | ||
1050 | long ioaddr = dev->base_addr; | ||
1051 | int csr5, work_budget = max_interrupt_work; | ||
1052 | int handled = 0; | ||
1053 | |||
1054 | spin_lock (&tp->lock); | ||
1055 | |||
1056 | do { | ||
1057 | csr5 = inl(ioaddr + CSR5); | ||
1058 | /* Acknowledge all of the current interrupt sources ASAP. */ | ||
1059 | outl(csr5 & 0x0001ffff, ioaddr + CSR5); | ||
1060 | |||
1061 | if (xircom_debug > 4) | ||
1062 | printk(KERN_DEBUG "%s: interrupt csr5=%#8.8x new csr5=%#8.8x.\n", | ||
1063 | dev->name, csr5, inl(dev->base_addr + CSR5)); | ||
1064 | |||
1065 | if (csr5 == 0xffffffff) | ||
1066 | break; /* all bits set, assume PCMCIA card removed */ | ||
1067 | |||
1068 | if ((csr5 & (NormalIntr|AbnormalIntr)) == 0) | ||
1069 | break; | ||
1070 | |||
1071 | handled = 1; | ||
1072 | |||
1073 | if (csr5 & (RxIntr | RxNoBuf)) | ||
1074 | work_budget -= xircom_rx(dev); | ||
1075 | |||
1076 | if (csr5 & (TxNoBuf | TxDied | TxIntr)) { | ||
1077 | unsigned int dirty_tx; | ||
1078 | |||
1079 | for (dirty_tx = tp->dirty_tx; tp->cur_tx - dirty_tx > 0; | ||
1080 | dirty_tx++) { | ||
1081 | int entry = dirty_tx % TX_RING_SIZE; | ||
1082 | int status = tp->tx_ring[entry].status; | ||
1083 | |||
1084 | if (status < 0) | ||
1085 | break; /* It still hasn't been Txed */ | ||
1086 | /* Check for Rx filter setup frames. */ | ||
1087 | if (tp->tx_skbuff[entry] == NULL) | ||
1088 | continue; | ||
1089 | |||
1090 | if (status & Tx0DescError) { | ||
1091 | /* There was an major error, log it. */ | ||
1092 | #ifndef final_version | ||
1093 | if (xircom_debug > 1) | ||
1094 | printk(KERN_DEBUG "%s: Transmit error, Tx status %8.8x.\n", | ||
1095 | dev->name, status); | ||
1096 | #endif | ||
1097 | tp->stats.tx_errors++; | ||
1098 | if (status & Tx0ManyColl) { | ||
1099 | tp->stats.tx_aborted_errors++; | ||
1100 | } | ||
1101 | if (status & Tx0NoCarrier) tp->stats.tx_carrier_errors++; | ||
1102 | if (status & Tx0LateColl) tp->stats.tx_window_errors++; | ||
1103 | if (status & Tx0Underflow) tp->stats.tx_fifo_errors++; | ||
1104 | } else { | ||
1105 | tp->stats.tx_bytes += tp->tx_ring[entry].length & 0x7ff; | ||
1106 | tp->stats.collisions += (status >> 3) & 15; | ||
1107 | tp->stats.tx_packets++; | ||
1108 | } | ||
1109 | |||
1110 | /* Free the original skb. */ | ||
1111 | dev_kfree_skb_irq(tp->tx_skbuff[entry]); | ||
1112 | tp->tx_skbuff[entry] = NULL; | ||
1113 | } | ||
1114 | |||
1115 | #ifndef final_version | ||
1116 | if (tp->cur_tx - dirty_tx > TX_RING_SIZE) { | ||
1117 | printk(KERN_ERR "%s: Out-of-sync dirty pointer, %d vs. %d, full=%d.\n", | ||
1118 | dev->name, dirty_tx, tp->cur_tx, tp->tx_full); | ||
1119 | dirty_tx += TX_RING_SIZE; | ||
1120 | } | ||
1121 | #endif | ||
1122 | |||
1123 | if (tp->tx_full && | ||
1124 | tp->cur_tx - dirty_tx < TX_RING_SIZE - 2) | ||
1125 | /* The ring is no longer full */ | ||
1126 | tp->tx_full = 0; | ||
1127 | |||
1128 | if (tp->tx_full) | ||
1129 | netif_stop_queue (dev); | ||
1130 | else | ||
1131 | netif_wake_queue (dev); | ||
1132 | |||
1133 | tp->dirty_tx = dirty_tx; | ||
1134 | if (csr5 & TxDied) { | ||
1135 | if (xircom_debug > 2) | ||
1136 | printk(KERN_WARNING "%s: The transmitter stopped." | ||
1137 | " CSR5 is %x, CSR6 %x, new CSR6 %x.\n", | ||
1138 | dev->name, csr5, inl(ioaddr + CSR6), tp->csr6); | ||
1139 | outl_CSR6(tp->csr6 | EnableRx, ioaddr); | ||
1140 | outl_CSR6(tp->csr6 | EnableTxRx, ioaddr); | ||
1141 | } | ||
1142 | } | ||
1143 | |||
1144 | /* Log errors. */ | ||
1145 | if (csr5 & AbnormalIntr) { /* Abnormal error summary bit. */ | ||
1146 | if (csr5 & LinkChange) | ||
1147 | xircom_media_change(dev); | ||
1148 | if (csr5 & TxFIFOUnderflow) { | ||
1149 | if ((tp->csr6 & TxThreshMask) != TxThreshMask) | ||
1150 | tp->csr6 += (1 << TxThreshShift); /* Bump up the Tx threshold */ | ||
1151 | else | ||
1152 | tp->csr6 |= TxStoreForw; /* Store-n-forward. */ | ||
1153 | /* Restart the transmit process. */ | ||
1154 | outl_CSR6(tp->csr6 | EnableRx, ioaddr); | ||
1155 | outl_CSR6(tp->csr6 | EnableTxRx, ioaddr); | ||
1156 | } | ||
1157 | if (csr5 & RxDied) { /* Missed a Rx frame. */ | ||
1158 | tp->stats.rx_errors++; | ||
1159 | tp->stats.rx_missed_errors += inl(ioaddr + CSR8) & 0xffff; | ||
1160 | outl_CSR6(tp->csr6 | EnableTxRx, ioaddr); | ||
1161 | } | ||
1162 | /* Clear all error sources, included undocumented ones! */ | ||
1163 | outl(0x0800f7ba, ioaddr + CSR5); | ||
1164 | } | ||
1165 | if (--work_budget < 0) { | ||
1166 | if (xircom_debug > 1) | ||
1167 | printk(KERN_WARNING "%s: Too much work during an interrupt, " | ||
1168 | "csr5=0x%8.8x.\n", dev->name, csr5); | ||
1169 | /* Acknowledge all interrupt sources. */ | ||
1170 | outl(0x8001ffff, ioaddr + CSR5); | ||
1171 | break; | ||
1172 | } | ||
1173 | } while (1); | ||
1174 | |||
1175 | if (xircom_debug > 3) | ||
1176 | printk(KERN_DEBUG "%s: exiting interrupt, csr5=%#4.4x.\n", | ||
1177 | dev->name, inl(ioaddr + CSR5)); | ||
1178 | |||
1179 | spin_unlock (&tp->lock); | ||
1180 | return IRQ_RETVAL(handled); | ||
1181 | } | ||
1182 | |||
1183 | |||
1184 | static int | ||
1185 | xircom_rx(struct net_device *dev) | ||
1186 | { | ||
1187 | struct xircom_private *tp = netdev_priv(dev); | ||
1188 | int entry = tp->cur_rx % RX_RING_SIZE; | ||
1189 | int rx_work_limit = tp->dirty_rx + RX_RING_SIZE - tp->cur_rx; | ||
1190 | int work_done = 0; | ||
1191 | |||
1192 | if (xircom_debug > 4) | ||
1193 | printk(KERN_DEBUG " In xircom_rx(), entry %d %8.8x.\n", entry, | ||
1194 | tp->rx_ring[entry].status); | ||
1195 | /* If we own the next entry, it's a new packet. Send it up. */ | ||
1196 | while (tp->rx_ring[entry].status >= 0) { | ||
1197 | s32 status = tp->rx_ring[entry].status; | ||
1198 | |||
1199 | if (xircom_debug > 5) | ||
1200 | printk(KERN_DEBUG " In xircom_rx(), entry %d %8.8x.\n", entry, | ||
1201 | tp->rx_ring[entry].status); | ||
1202 | if (--rx_work_limit < 0) | ||
1203 | break; | ||
1204 | if ((status & 0x38008300) != 0x0300) { | ||
1205 | if ((status & 0x38000300) != 0x0300) { | ||
1206 | /* Ignore earlier buffers. */ | ||
1207 | if ((status & 0xffff) != 0x7fff) { | ||
1208 | if (xircom_debug > 1) | ||
1209 | printk(KERN_WARNING "%s: Oversized Ethernet frame " | ||
1210 | "spanned multiple buffers, status %8.8x!\n", | ||
1211 | dev->name, status); | ||
1212 | tp->stats.rx_length_errors++; | ||
1213 | } | ||
1214 | } else if (status & Rx0DescError) { | ||
1215 | /* There was a fatal error. */ | ||
1216 | if (xircom_debug > 2) | ||
1217 | printk(KERN_DEBUG "%s: Receive error, Rx status %8.8x.\n", | ||
1218 | dev->name, status); | ||
1219 | tp->stats.rx_errors++; /* end of a packet.*/ | ||
1220 | if (status & (Rx0Runt | Rx0HugeFrame)) tp->stats.rx_length_errors++; | ||
1221 | if (status & Rx0CRCError) tp->stats.rx_crc_errors++; | ||
1222 | } | ||
1223 | } else { | ||
1224 | /* Omit the four octet CRC from the length. */ | ||
1225 | short pkt_len = ((status >> 16) & 0x7ff) - 4; | ||
1226 | struct sk_buff *skb; | ||
1227 | |||
1228 | #ifndef final_version | ||
1229 | if (pkt_len > 1518) { | ||
1230 | printk(KERN_WARNING "%s: Bogus packet size of %d (%#x).\n", | ||
1231 | dev->name, pkt_len, pkt_len); | ||
1232 | pkt_len = 1518; | ||
1233 | tp->stats.rx_length_errors++; | ||
1234 | } | ||
1235 | #endif | ||
1236 | /* Check if the packet is long enough to accept without copying | ||
1237 | to a minimally-sized skbuff. */ | ||
1238 | if (pkt_len < rx_copybreak | ||
1239 | && (skb = dev_alloc_skb(pkt_len + 2)) != NULL) { | ||
1240 | skb_reserve(skb, 2); /* 16 byte align the IP header */ | ||
1241 | #if ! defined(__alpha__) | ||
1242 | skb_copy_to_linear_data(skb, bus_to_virt(tp->rx_ring[entry].buffer1), | ||
1243 | pkt_len); | ||
1244 | skb_put(skb, pkt_len); | ||
1245 | #else | ||
1246 | memcpy(skb_put(skb, pkt_len), | ||
1247 | bus_to_virt(tp->rx_ring[entry].buffer1), pkt_len); | ||
1248 | #endif | ||
1249 | work_done++; | ||
1250 | } else { /* Pass up the skb already on the Rx ring. */ | ||
1251 | skb_put(skb = tp->rx_skbuff[entry], pkt_len); | ||
1252 | tp->rx_skbuff[entry] = NULL; | ||
1253 | } | ||
1254 | skb->protocol = eth_type_trans(skb, dev); | ||
1255 | netif_rx(skb); | ||
1256 | dev->last_rx = jiffies; | ||
1257 | tp->stats.rx_packets++; | ||
1258 | tp->stats.rx_bytes += pkt_len; | ||
1259 | } | ||
1260 | entry = (++tp->cur_rx) % RX_RING_SIZE; | ||
1261 | } | ||
1262 | |||
1263 | /* Refill the Rx ring buffers. */ | ||
1264 | for (; tp->cur_rx - tp->dirty_rx > 0; tp->dirty_rx++) { | ||
1265 | entry = tp->dirty_rx % RX_RING_SIZE; | ||
1266 | if (tp->rx_skbuff[entry] == NULL) { | ||
1267 | struct sk_buff *skb; | ||
1268 | skb = tp->rx_skbuff[entry] = dev_alloc_skb(PKT_BUF_SZ); | ||
1269 | if (skb == NULL) | ||
1270 | break; | ||
1271 | skb->dev = dev; /* Mark as being used by this device. */ | ||
1272 | tp->rx_ring[entry].buffer1 = virt_to_bus(skb->data); | ||
1273 | work_done++; | ||
1274 | } | ||
1275 | tp->rx_ring[entry].status = Rx0DescOwned; | ||
1276 | } | ||
1277 | |||
1278 | return work_done; | ||
1279 | } | ||
1280 | |||
1281 | |||
1282 | static void | ||
1283 | xircom_down(struct net_device *dev) | ||
1284 | { | ||
1285 | long ioaddr = dev->base_addr; | ||
1286 | struct xircom_private *tp = netdev_priv(dev); | ||
1287 | |||
1288 | /* Disable interrupts by clearing the interrupt mask. */ | ||
1289 | outl(0, ioaddr + CSR7); | ||
1290 | /* Stop the chip's Tx and Rx processes. */ | ||
1291 | outl_CSR6(inl(ioaddr + CSR6) & ~EnableTxRx, ioaddr); | ||
1292 | |||
1293 | if (inl(ioaddr + CSR6) != 0xffffffff) | ||
1294 | tp->stats.rx_missed_errors += inl(ioaddr + CSR8) & 0xffff; | ||
1295 | |||
1296 | dev->if_port = tp->saved_if_port; | ||
1297 | } | ||
1298 | |||
1299 | |||
1300 | static int | ||
1301 | xircom_close(struct net_device *dev) | ||
1302 | { | ||
1303 | long ioaddr = dev->base_addr; | ||
1304 | struct xircom_private *tp = netdev_priv(dev); | ||
1305 | int i; | ||
1306 | |||
1307 | if (xircom_debug > 1) | ||
1308 | printk(KERN_DEBUG "%s: Shutting down ethercard, status was %2.2x.\n", | ||
1309 | dev->name, inl(ioaddr + CSR5)); | ||
1310 | |||
1311 | netif_stop_queue(dev); | ||
1312 | |||
1313 | if (netif_device_present(dev)) | ||
1314 | xircom_down(dev); | ||
1315 | |||
1316 | free_irq(dev->irq, dev); | ||
1317 | |||
1318 | /* Free all the skbuffs in the Rx queue. */ | ||
1319 | for (i = 0; i < RX_RING_SIZE; i++) { | ||
1320 | struct sk_buff *skb = tp->rx_skbuff[i]; | ||
1321 | tp->rx_skbuff[i] = NULL; | ||
1322 | tp->rx_ring[i].status = 0; /* Not owned by Xircom chip. */ | ||
1323 | tp->rx_ring[i].length = 0; | ||
1324 | tp->rx_ring[i].buffer1 = 0xBADF00D0; /* An invalid address. */ | ||
1325 | if (skb) { | ||
1326 | dev_kfree_skb(skb); | ||
1327 | } | ||
1328 | } | ||
1329 | for (i = 0; i < TX_RING_SIZE; i++) { | ||
1330 | if (tp->tx_skbuff[i]) | ||
1331 | dev_kfree_skb(tp->tx_skbuff[i]); | ||
1332 | tp->tx_skbuff[i] = NULL; | ||
1333 | } | ||
1334 | |||
1335 | tp->open = 0; | ||
1336 | return 0; | ||
1337 | } | ||
1338 | |||
1339 | |||
1340 | static struct net_device_stats *xircom_get_stats(struct net_device *dev) | ||
1341 | { | ||
1342 | struct xircom_private *tp = netdev_priv(dev); | ||
1343 | long ioaddr = dev->base_addr; | ||
1344 | |||
1345 | if (netif_device_present(dev)) | ||
1346 | tp->stats.rx_missed_errors += inl(ioaddr + CSR8) & 0xffff; | ||
1347 | |||
1348 | return &tp->stats; | ||
1349 | } | ||
1350 | |||
1351 | static int xircom_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd) | ||
1352 | { | ||
1353 | struct xircom_private *tp = netdev_priv(dev); | ||
1354 | ecmd->supported = | ||
1355 | SUPPORTED_10baseT_Half | | ||
1356 | SUPPORTED_10baseT_Full | | ||
1357 | SUPPORTED_100baseT_Half | | ||
1358 | SUPPORTED_100baseT_Full | | ||
1359 | SUPPORTED_Autoneg | | ||
1360 | SUPPORTED_MII; | ||
1361 | |||
1362 | ecmd->advertising = ADVERTISED_MII; | ||
1363 | if (tp->advertising[0] & ADVERTISE_10HALF) | ||
1364 | ecmd->advertising |= ADVERTISED_10baseT_Half; | ||
1365 | if (tp->advertising[0] & ADVERTISE_10FULL) | ||
1366 | ecmd->advertising |= ADVERTISED_10baseT_Full; | ||
1367 | if (tp->advertising[0] & ADVERTISE_100HALF) | ||
1368 | ecmd->advertising |= ADVERTISED_100baseT_Half; | ||
1369 | if (tp->advertising[0] & ADVERTISE_100FULL) | ||
1370 | ecmd->advertising |= ADVERTISED_100baseT_Full; | ||
1371 | if (tp->autoneg) { | ||
1372 | ecmd->advertising |= ADVERTISED_Autoneg; | ||
1373 | ecmd->autoneg = AUTONEG_ENABLE; | ||
1374 | } else | ||
1375 | ecmd->autoneg = AUTONEG_DISABLE; | ||
1376 | |||
1377 | ecmd->port = PORT_MII; | ||
1378 | ecmd->transceiver = XCVR_INTERNAL; | ||
1379 | ecmd->phy_address = tp->phys[0]; | ||
1380 | ecmd->speed = tp->speed100 ? SPEED_100 : SPEED_10; | ||
1381 | ecmd->duplex = tp->full_duplex ? DUPLEX_FULL : DUPLEX_HALF; | ||
1382 | ecmd->maxtxpkt = TX_RING_SIZE / 2; | ||
1383 | ecmd->maxrxpkt = 0; | ||
1384 | return 0; | ||
1385 | } | ||
1386 | |||
1387 | static int xircom_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd) | ||
1388 | { | ||
1389 | struct xircom_private *tp = netdev_priv(dev); | ||
1390 | u16 autoneg, speed100, full_duplex; | ||
1391 | |||
1392 | autoneg = (ecmd->autoneg == AUTONEG_ENABLE); | ||
1393 | speed100 = (ecmd->speed == SPEED_100); | ||
1394 | full_duplex = (ecmd->duplex == DUPLEX_FULL); | ||
1395 | |||
1396 | tp->autoneg = autoneg; | ||
1397 | if (speed100 != tp->speed100 || | ||
1398 | full_duplex != tp->full_duplex) { | ||
1399 | tp->speed100 = speed100; | ||
1400 | tp->full_duplex = full_duplex; | ||
1401 | /* change advertising bits */ | ||
1402 | tp->advertising[0] &= ~(ADVERTISE_10HALF | | ||
1403 | ADVERTISE_10FULL | | ||
1404 | ADVERTISE_100HALF | | ||
1405 | ADVERTISE_100FULL | | ||
1406 | ADVERTISE_100BASE4); | ||
1407 | if (speed100) { | ||
1408 | if (full_duplex) | ||
1409 | tp->advertising[0] |= ADVERTISE_100FULL; | ||
1410 | else | ||
1411 | tp->advertising[0] |= ADVERTISE_100HALF; | ||
1412 | } else { | ||
1413 | if (full_duplex) | ||
1414 | tp->advertising[0] |= ADVERTISE_10FULL; | ||
1415 | else | ||
1416 | tp->advertising[0] |= ADVERTISE_10HALF; | ||
1417 | } | ||
1418 | } | ||
1419 | check_duplex(dev); | ||
1420 | return 0; | ||
1421 | } | ||
1422 | |||
1423 | static void xircom_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) | ||
1424 | { | ||
1425 | struct xircom_private *tp = netdev_priv(dev); | ||
1426 | strcpy(info->driver, DRV_NAME); | ||
1427 | strcpy(info->version, DRV_VERSION); | ||
1428 | strcpy(info->bus_info, pci_name(tp->pdev)); | ||
1429 | } | ||
1430 | |||
1431 | static const struct ethtool_ops ops = { | ||
1432 | .get_settings = xircom_get_settings, | ||
1433 | .set_settings = xircom_set_settings, | ||
1434 | .get_drvinfo = xircom_get_drvinfo, | ||
1435 | }; | ||
1436 | |||
1437 | /* Provide ioctl() calls to examine the MII xcvr state. */ | ||
1438 | static int xircom_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) | ||
1439 | { | ||
1440 | struct xircom_private *tp = netdev_priv(dev); | ||
1441 | u16 *data = (u16 *)&rq->ifr_ifru; | ||
1442 | int phy = tp->phys[0] & 0x1f; | ||
1443 | unsigned long flags; | ||
1444 | |||
1445 | switch(cmd) { | ||
1446 | /* Legacy mii-diag interface */ | ||
1447 | case SIOCGMIIPHY: /* Get address of MII PHY in use. */ | ||
1448 | if (tp->mii_cnt) | ||
1449 | data[0] = phy; | ||
1450 | else | ||
1451 | return -ENODEV; | ||
1452 | return 0; | ||
1453 | case SIOCGMIIREG: /* Read MII PHY register. */ | ||
1454 | save_flags(flags); | ||
1455 | cli(); | ||
1456 | data[3] = mdio_read(dev, data[0] & 0x1f, data[1] & 0x1f); | ||
1457 | restore_flags(flags); | ||
1458 | return 0; | ||
1459 | case SIOCSMIIREG: /* Write MII PHY register. */ | ||
1460 | if (!capable(CAP_NET_ADMIN)) | ||
1461 | return -EPERM; | ||
1462 | save_flags(flags); | ||
1463 | cli(); | ||
1464 | if (data[0] == tp->phys[0]) { | ||
1465 | u16 value = data[2]; | ||
1466 | switch (data[1]) { | ||
1467 | case 0: | ||
1468 | if (value & (BMCR_RESET | BMCR_ANENABLE)) | ||
1469 | /* Autonegotiation. */ | ||
1470 | tp->autoneg = 1; | ||
1471 | else { | ||
1472 | tp->full_duplex = (value & BMCR_FULLDPLX) ? 1 : 0; | ||
1473 | tp->autoneg = 0; | ||
1474 | } | ||
1475 | break; | ||
1476 | case 4: | ||
1477 | tp->advertising[0] = value; | ||
1478 | break; | ||
1479 | } | ||
1480 | check_duplex(dev); | ||
1481 | } | ||
1482 | mdio_write(dev, data[0] & 0x1f, data[1] & 0x1f, data[2]); | ||
1483 | restore_flags(flags); | ||
1484 | return 0; | ||
1485 | default: | ||
1486 | return -EOPNOTSUPP; | ||
1487 | } | ||
1488 | |||
1489 | return -EOPNOTSUPP; | ||
1490 | } | ||
1491 | |||
1492 | /* Set or clear the multicast filter for this adaptor. | ||
1493 | Note that we only use exclusion around actually queueing the | ||
1494 | new frame, not around filling tp->setup_frame. This is non-deterministic | ||
1495 | when re-entered but still correct. */ | ||
1496 | static void set_rx_mode(struct net_device *dev) | ||
1497 | { | ||
1498 | struct xircom_private *tp = netdev_priv(dev); | ||
1499 | struct dev_mc_list *mclist; | ||
1500 | long ioaddr = dev->base_addr; | ||
1501 | int csr6 = inl(ioaddr + CSR6); | ||
1502 | u16 *eaddrs, *setup_frm; | ||
1503 | u32 tx_flags; | ||
1504 | int i; | ||
1505 | |||
1506 | tp->csr6 &= ~(AllMultiBit | PromiscBit | HashFilterBit); | ||
1507 | csr6 &= ~(AllMultiBit | PromiscBit | HashFilterBit); | ||
1508 | if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */ | ||
1509 | tp->csr6 |= PromiscBit; | ||
1510 | csr6 |= PromiscBit; | ||
1511 | goto out; | ||
1512 | } | ||
1513 | |||
1514 | if ((dev->mc_count > 1000) || (dev->flags & IFF_ALLMULTI)) { | ||
1515 | /* Too many to filter well -- accept all multicasts. */ | ||
1516 | tp->csr6 |= AllMultiBit; | ||
1517 | csr6 |= AllMultiBit; | ||
1518 | goto out; | ||
1519 | } | ||
1520 | |||
1521 | tx_flags = Tx1WholePkt | Tx1SetupPkt | PKT_SETUP_SZ; | ||
1522 | |||
1523 | /* Note that only the low-address shortword of setup_frame is valid! */ | ||
1524 | setup_frm = tp->setup_frame; | ||
1525 | mclist = dev->mc_list; | ||
1526 | |||
1527 | /* Fill the first entry with our physical address. */ | ||
1528 | eaddrs = (u16 *)dev->dev_addr; | ||
1529 | *setup_frm = cpu_to_le16(eaddrs[0]); setup_frm += 2; | ||
1530 | *setup_frm = cpu_to_le16(eaddrs[1]); setup_frm += 2; | ||
1531 | *setup_frm = cpu_to_le16(eaddrs[2]); setup_frm += 2; | ||
1532 | |||
1533 | if (dev->mc_count > 14) { /* Must use a multicast hash table. */ | ||
1534 | u32 *hash_table = (u32 *)(tp->setup_frame + 4 * 12); | ||
1535 | u32 hash, hash2; | ||
1536 | |||
1537 | tx_flags |= Tx1HashSetup; | ||
1538 | tp->csr6 |= HashFilterBit; | ||
1539 | csr6 |= HashFilterBit; | ||
1540 | |||
1541 | /* Fill the unused 3 entries with the broadcast address. | ||
1542 | At least one entry *must* contain the broadcast address!!!*/ | ||
1543 | for (i = 0; i < 3; i++) { | ||
1544 | *setup_frm = 0xffff; setup_frm += 2; | ||
1545 | *setup_frm = 0xffff; setup_frm += 2; | ||
1546 | *setup_frm = 0xffff; setup_frm += 2; | ||
1547 | } | ||
1548 | |||
1549 | /* Truly brain-damaged hash filter layout */ | ||
1550 | /* XXX: not sure if I should take the last or the first 9 bits */ | ||
1551 | for (i = 0; i < dev->mc_count; i++, mclist = mclist->next) { | ||
1552 | u32 *hptr; | ||
1553 | hash = ether_crc(ETH_ALEN, mclist->dmi_addr) & 0x1ff; | ||
1554 | if (hash < 384) { | ||
1555 | hash2 = hash + ((hash >> 4) << 4) + | ||
1556 | ((hash >> 5) << 5); | ||
1557 | } else { | ||
1558 | hash -= 384; | ||
1559 | hash2 = 64 + hash + (hash >> 4) * 80; | ||
1560 | } | ||
1561 | hptr = &hash_table[hash2 & ~0x1f]; | ||
1562 | *hptr |= cpu_to_le32(1 << (hash2 & 0x1f)); | ||
1563 | } | ||
1564 | } else { | ||
1565 | /* We have <= 14 mcast addresses so we can use Xircom's | ||
1566 | wonderful 16-address perfect filter. */ | ||
1567 | for (i = 0; i < dev->mc_count; i++, mclist = mclist->next) { | ||
1568 | eaddrs = (u16 *)mclist->dmi_addr; | ||
1569 | *setup_frm = cpu_to_le16(eaddrs[0]); setup_frm += 2; | ||
1570 | *setup_frm = cpu_to_le16(eaddrs[1]); setup_frm += 2; | ||
1571 | *setup_frm = cpu_to_le16(eaddrs[2]); setup_frm += 2; | ||
1572 | } | ||
1573 | /* Fill the unused entries with the broadcast address. | ||
1574 | At least one entry *must* contain the broadcast address!!!*/ | ||
1575 | for (; i < 15; i++) { | ||
1576 | *setup_frm = 0xffff; setup_frm += 2; | ||
1577 | *setup_frm = 0xffff; setup_frm += 2; | ||
1578 | *setup_frm = 0xffff; setup_frm += 2; | ||
1579 | } | ||
1580 | } | ||
1581 | |||
1582 | /* Now add this frame to the Tx list. */ | ||
1583 | if (tp->cur_tx - tp->dirty_tx > TX_RING_SIZE - 2) { | ||
1584 | /* Same setup recently queued, we need not add it. */ | ||
1585 | /* XXX: Huh? All it means is that the Tx list is full...*/ | ||
1586 | } else { | ||
1587 | unsigned long flags; | ||
1588 | unsigned int entry; | ||
1589 | int dummy = -1; | ||
1590 | |||
1591 | save_flags(flags); cli(); | ||
1592 | entry = tp->cur_tx++ % TX_RING_SIZE; | ||
1593 | |||
1594 | if (entry != 0) { | ||
1595 | /* Avoid a chip errata by prefixing a dummy entry. */ | ||
1596 | tp->tx_skbuff[entry] = NULL; | ||
1597 | tp->tx_ring[entry].length = | ||
1598 | (entry == TX_RING_SIZE - 1) ? Tx1RingWrap : 0; | ||
1599 | tp->tx_ring[entry].buffer1 = 0; | ||
1600 | /* race with chip, set Tx0DescOwned later */ | ||
1601 | dummy = entry; | ||
1602 | entry = tp->cur_tx++ % TX_RING_SIZE; | ||
1603 | } | ||
1604 | |||
1605 | tp->tx_skbuff[entry] = NULL; | ||
1606 | /* Put the setup frame on the Tx list. */ | ||
1607 | if (entry == TX_RING_SIZE - 1) | ||
1608 | tx_flags |= Tx1RingWrap; /* Wrap ring. */ | ||
1609 | tp->tx_ring[entry].length = tx_flags; | ||
1610 | tp->tx_ring[entry].buffer1 = virt_to_bus(tp->setup_frame); | ||
1611 | tp->tx_ring[entry].status = Tx0DescOwned; | ||
1612 | if (tp->cur_tx - tp->dirty_tx >= TX_RING_SIZE - 2) { | ||
1613 | tp->tx_full = 1; | ||
1614 | netif_stop_queue (dev); | ||
1615 | } | ||
1616 | if (dummy >= 0) | ||
1617 | tp->tx_ring[dummy].status = Tx0DescOwned; | ||
1618 | restore_flags(flags); | ||
1619 | /* Trigger an immediate transmit demand. */ | ||
1620 | outl(0, ioaddr + CSR1); | ||
1621 | } | ||
1622 | |||
1623 | out: | ||
1624 | outl_CSR6(csr6, ioaddr); | ||
1625 | } | ||
1626 | |||
1627 | |||
1628 | static struct pci_device_id xircom_pci_table[] = { | ||
1629 | { 0x115D, 0x0003, PCI_ANY_ID, PCI_ANY_ID, 0, 0, X3201_3 }, | ||
1630 | {0}, | ||
1631 | }; | ||
1632 | MODULE_DEVICE_TABLE(pci, xircom_pci_table); | ||
1633 | |||
1634 | |||
1635 | #ifdef CONFIG_PM | ||
1636 | static int xircom_suspend(struct pci_dev *pdev, pm_message_t state) | ||
1637 | { | ||
1638 | struct net_device *dev = pci_get_drvdata(pdev); | ||
1639 | struct xircom_private *tp = netdev_priv(dev); | ||
1640 | printk(KERN_INFO "xircom_suspend(%s)\n", dev->name); | ||
1641 | if (tp->open) | ||
1642 | xircom_down(dev); | ||
1643 | |||
1644 | pci_save_state(pdev); | ||
1645 | pci_disable_device(pdev); | ||
1646 | pci_set_power_state(pdev, 3); | ||
1647 | |||
1648 | return 0; | ||
1649 | } | ||
1650 | |||
1651 | |||
1652 | static int xircom_resume(struct pci_dev *pdev) | ||
1653 | { | ||
1654 | struct net_device *dev = pci_get_drvdata(pdev); | ||
1655 | struct xircom_private *tp = netdev_priv(dev); | ||
1656 | printk(KERN_INFO "xircom_resume(%s)\n", dev->name); | ||
1657 | |||
1658 | pci_set_power_state(pdev,0); | ||
1659 | pci_enable_device(pdev); | ||
1660 | pci_restore_state(pdev); | ||
1661 | |||
1662 | /* Bring the chip out of sleep mode. | ||
1663 | Caution: Snooze mode does not work with some boards! */ | ||
1664 | if (xircom_tbl[tp->chip_id].flags & HAS_ACPI) | ||
1665 | pci_write_config_dword(tp->pdev, PCI_POWERMGMT, 0); | ||
1666 | |||
1667 | transceiver_voodoo(dev); | ||
1668 | if (xircom_tbl[tp->chip_id].flags & HAS_MII) | ||
1669 | check_duplex(dev); | ||
1670 | |||
1671 | if (tp->open) | ||
1672 | xircom_up(dev); | ||
1673 | return 0; | ||
1674 | } | ||
1675 | #endif /* CONFIG_PM */ | ||
1676 | |||
1677 | |||
1678 | static void __devexit xircom_remove_one(struct pci_dev *pdev) | ||
1679 | { | ||
1680 | struct net_device *dev = pci_get_drvdata(pdev); | ||
1681 | |||
1682 | printk(KERN_INFO "xircom_remove_one(%s)\n", dev->name); | ||
1683 | unregister_netdev(dev); | ||
1684 | pci_release_regions(pdev); | ||
1685 | free_netdev(dev); | ||
1686 | pci_set_drvdata(pdev, NULL); | ||
1687 | } | ||
1688 | |||
1689 | |||
1690 | static struct pci_driver xircom_driver = { | ||
1691 | .name = DRV_NAME, | ||
1692 | .id_table = xircom_pci_table, | ||
1693 | .probe = xircom_init_one, | ||
1694 | .remove = __devexit_p(xircom_remove_one), | ||
1695 | #ifdef CONFIG_PM | ||
1696 | .suspend = xircom_suspend, | ||
1697 | .resume = xircom_resume | ||
1698 | #endif /* CONFIG_PM */ | ||
1699 | }; | ||
1700 | |||
1701 | |||
1702 | static int __init xircom_init(void) | ||
1703 | { | ||
1704 | /* when a module, this is printed whether or not devices are found in probe */ | ||
1705 | #ifdef MODULE | ||
1706 | printk(version); | ||
1707 | #endif | ||
1708 | return pci_register_driver(&xircom_driver); | ||
1709 | } | ||
1710 | |||
1711 | |||
1712 | static void __exit xircom_exit(void) | ||
1713 | { | ||
1714 | pci_unregister_driver(&xircom_driver); | ||
1715 | } | ||
1716 | |||
1717 | module_init(xircom_init) | ||
1718 | module_exit(xircom_exit) | ||
1719 | |||
1720 | /* | ||
1721 | * Local variables: | ||
1722 | * c-indent-level: 4 | ||
1723 | * c-basic-offset: 4 | ||
1724 | * tab-width: 4 | ||
1725 | * End: | ||
1726 | */ | ||